
Knowledge, Probability, and Adversaries 
(Preliminary Report) 

Joseph Y. Halpern 
IBM Almaden Research Center 

San Jose, CA 95120 

halpern@ibm.com 

Abstract: What should it mean for an agent to know 
or believe an assertion is true with probability .99? 
Different papers [FH88, FZ88, HMT88] give differ- 
ent answers, choosing to use quite different, probabil- 
ity spaces when computing the probability an agent 
assigns to an event. We show that each choice can 
be understood in terms of a betting game, and that 
each choice corresponds to betting against a different 
opponent. We consider three types of adversaries. 
The first, selects the outcome of all nondeterminis- 
tic choices in the system; the second represents the 
knowledge of the agent’s opponent (this is the key 
place the papers mentioned above differ); the third is 
needed in asynchronous systems to choose the time 
the bet is placed. We illustrate the need for consid- 
ering all three types of adversaries with a number of 
examples. Given a class of adversaries, we show how 
to assign probability spaces to agents in a way most 
appropriate for that class, where “most appropriate” 
is made precise in terms this betting game. We con- 
clude by showing how different assignments of prob- 
ability spaces (corresponding to different opponents) 
yield different levels of guarantees in coordinated at- 
tack. 

The second author was supported by an IBM Graduate Fel- 
lowship, and in part by the National Science Foundation un- 
der Grant CCR8&11442, by the Office of Naval Research un- 
der Contract NOO014-85-K-0168, and by the Defense Advanced 
Research Projects Agency (DARPA) under Contract NOO014- 
83-K-0125. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct com- 
mercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is 
by permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

@ 1989 ACM 0-89791-326~4/89/0008/0103 $1.50 

Mark FL Tuttle 
MIT Laboratory for Computer Science 

Cambridge,,.MA 02139 

tuttle@lcs.mit.edu 

1 Introduction 

Probabilistic systems consist of a collection of agents 
interacting in the presence of some source of random- 
ness (such as a fair coin). The precise meaning of 
an agent, of course, depends on the system under 
consideration: an agent may be a processor in a dis- 
tributed system or a consumer in an economic model. 
Cryptographic and other probabilistic protocols make 
various guarantees to these agents about the proba 
bilities of various events occurring. A number of re- 
cent papers have tried to formalize reasoning about 
knowledge and probability in such systems. The in- 
tent, in part, is to provide a framework within which 
these guarantees can be described and analyzed. Fa- 
gin and Halpern [FH88] present an abstract model 
for knowledge and probability in which they assign 
to each agent and each state a probability space to 
be used when computing the probability, according 
to that agent at that state, that a formula cp is true. 
They do not tell us how to choose these probability 
spaces, although they do show that more than one 
choice may be reasonable. One particular (and quite 
natural) choice is made in [FZ88] and some arguments 
are presented for its appropriateness; another is made 
in [HMT88] and used to analyze interactive proof sys- 
tems. 

In this paper we attempt to clarify this issue. We 
argue that no single probability space is appropri- 
ate in all contexts; different, probability spaces can be 
viewed as most appropriate in the context of betting 
with different adversaries. From this point of view, a 
statement such as “I know event E will happen with 
probability at least CX” is meaningless until the adver- 
sary is specified. Knowing that E holds with proba- 
bility .99 against a weak adversary is not as good as 
knowing that E holds with probability .99 against a 
stronger adversary. 

Adversaries actually play three fundamentally dif- 
ferent roles in our framework. We briefly describe 



these three roles here, and explore them in greater 
depth in the rest of the paper. 

Typically when we analyze probabilistic protocols, 
we do so in terms of probabilities on the runs or ex- 
ecutions of the protocol. When we say a protocol is 
correct with probability .99, we mean the protocol 
will do the right thing in .99‘of the runs. A closer 
analysis of the situation reveals some subtleties. In 
fact, we do no2 have a probability distribution on the 
entire set of runs. For example, in an algorithm like 
Rabin’s primality testing algorithm [Rab80], we typi- 
cally do not assume a distribution on the inputs (the 
numbers to be tested). The only source of probability 
comes from the coin tosses. This means that for every 
fixed input, there is a probability space on the runs 
of the protocol on that input, rather than there being 
one probability space on the set of all runs. We can 
view the choice of input as a nondeterministic choice 
to which we do not assign a probability. Thus, we 
prove the algorithm works correctly with high proba- 
bility for each initial nondeterministic choice. A sim- 
ilar situation arises in probabilistic protocols that are 
designed to work in the presence of a nondetermin- 
istic (perhaps adversarial) scheduler (e.g., [Rab82]). 
Again, we do not wish to assume some probability 
of playing a given scheduler. Instead, we factor out 
the choice of scheduler and prove that the protocol is 
correct with high probability for each scheduler. 

This, then, is the first role played by the adversary: 
to factor out the nondeterminism in the system, al- 
lowing us to place a well-defined probability on the set 
of runs for each fixed adversary. We remark that this 
need to factor out the nondeterminism is implicit in 
most analyses of probabilistic protocols, and appears 
explicitly in [Rab82, Var85, FZ88]. 

The probability on the runs can be viewed as giving 
us an a priori probability of an event, before the pro- 
tocol is run. However, the probability an agent places 
on runs will in general change over time, as a function 
of information received by the agent in the course of 
the execution of the protocol. New subtleties arise in 
analyzing this probability. 

Consider a situation with three agents pl, pa, and 
ps. Agent p2 tosses a fair coin at time 1 and observes 
the outcome at time 2, but agents pi and p3 never 
learn the outcome. What is the probability accord- 
ing to pl that the coin lands heads? Clearly at time 1 
it should be l/2. What about at time 2? There is one 
argument that says the answer should be l/2. After 
all, agent pl does not learn any more about the coin 
as a result having tossed it, so why should its proba- 
bility change? Another argument says that after the 
coin has been tossed, it does not make sense to say 
that the probability of heads is l/2. The coin has 

either landed heads or it hasn’t, so the probability of 
the coin landing heads is either 6 or 1 (although agent 
pl does not know which). This point of view appears 
in a number of papers in the philosophical literature 
(for example, [VF80, Lew80]). Interestingly, this is- 
sue even has implications for quantum mechanics (see 
[Mer85]). 

We claim that these two choices of probability are 
best explained in terms of an adversary. This point 
comes out clearly if we consider betting games. If an 
agent believes an event E has probability (Y, then it 
should be willing to accept a payoff of $1/a for a bet 
of $1 on E (assuming it is risk neutral). Certainly at 
time 1, agent pr should be willing to accept an offer 
from either p2 or p3 to bet $1 for a payoff of $2 if 
the coin lands heads. On the other hand, agent 1 is 
clearly not willing to accept such an offer from pa at 
time 2 (since p2 would presumably offer the bet only 
when it is sure it will win), although it is still willing 
to accept this bet from ~3. The point here is that in a 
betting game, not only is your knowledge important, 
but also’ the knowledge of the opponent offering the 
bet. Betting games are not played in isolation! 

Thus, the second role played by the adversary in 
our framework is to model the knowledge of the op- 
ponent offering a bet to an agent at a given point 
in the run. One obvious choice is to assume you are 
playing against someone whose knowledge is identical 
to your own. This is what decision theorists implic- 
itly do when talking about an agent’s posterior prob- 
abilities [BG54]; it is also how we can understand the 
choice of probability space made in [FZSS]. By way of 
contrast, the choice in [HMT88] corresponds to play- 
ing someone who has complete knowledge about the 
past and knows the outcome of the coin flip; this cor- 
responds to the viewpoint that says that when the 
coin has landed, the probability of heads is either 0 
or 1 (although you may not know which). 

A further complication arises when analyzing asyn- 
chronous systems. In this case there is a precise sense 
in which the agent does not even know exactly when 
the event to which it would like to assign a prob- 
ability is being tested. Thus we need to consider 
a third type of adversary in asynchronous systems, 
whose role is to choose the time. We give an example 
of an asynchronous system where there are a num- 
ber of plausible answers to the question “What is the 
probability the most recent coin toss landed heads?“. 
It turns out that the different answers again corre- 
spond to playing different classes of adversaries. We 
remark that the case of asynchronous systems is also 
considered in [FZ88]. We can understand the assign- 
ment of “confidence” made there as corresponding to 
playing against a certain class of adversaries of this 

104 



third type. 
Having shown that different definitions of proba- 

bilistic knowledge correspond to different classes of 
adversaries, we show, given a class of adversaries, 
how to construct a definition most appropriate for 
this class. We formalize our intuition concerning the 
probability an agent assigns to an event in terms of 
a betting game between the agent and an adversary. 
We show that our “most appropriate” definition has 
the property that it enables an agent to break even in 
this game, and any other definition with this property 
must correspond to an adversary even more powerful 
than the actual adversary. These results form the 
technical core of our paper. 

The rest of the paper is organized as follows. In the 
next section, Section 2, we provide a formal model of 
a distributed system. In Section 3 we consider the 
problem of putting a probability on the runs of a sys- 
tem; this is where we need the first type of adversary, 
to factor out the nondeterministic choices. In Section 
4 we start to consider the issue of how probability 
should change over time. In Section 5 we consider the 
choices that must be made in a general definition of 
probabilistic knowledge. In Section 6 we consider par- 
ticular choices of probability assignments that seem 
reasonable in synchronous systems. Here we consider 
the second type of adversary, representing the knowl- 
edge of the other party in the betting game. In the 
full paper, we consider asynchronous systems, where 
we also here we have to consider the third type of 
adversary. In Section 7 we apply our ideas to ana- 
lyzing the coordinated attack problem, showing how 
different notions of probability correspond to different 
levels of guarantees in coordinated attack. 

2 Modeling systems 

In order to study probability in a distributed system, 
we need a formal definition of such a system. Our 
model is that-of [HF88], a simplification of [HM84]. 
We briefly describe it here. 

Consider an arbitrary system of n interacting 
agents pl,...$pn. Intuitively, a run of a system is 
a complete description of one of the possible interac- 
tions of the agents. Such an interaction is uniquely 
determined by the sequence of global states through 
which the system passes as a result of the interac- 
tion. Formally, a global state is an (n + 1)-tuple 

(se, Sl, f * . , s,,) of local states, where s, is the local 
state of the environment, and si is the local state of 
agent pi. Loosely speaking, the environment compo- 
nent of the global state is intended to capture every- 
thing relevant to the state of the system that cannot 

be deduced from the agents’ local states. A run of the 
system is mapping r from time to global states. We 
assume for sake of convenience that times are nonneg- 
ative integers. We identify a system with the set R 
of all possible runs of the system, intuitively the set 
of all possible interactions of the system agents. We 
denote the global state at time k: in run r by r(K), 
the local state of pi in r(l) by ri(k), and the local 
state of the environment by re(k). We refer to the 
ordered pair (r,lc) consisting of a run r and a time k 
as a point. 

A fact is considered to be true or false of a point. 
We identify a fact ‘p with the set of points at which 
‘p is true, and write (r, h) k ‘p iff cp is true at (r, k).l 
In a system R, a fact ‘p is said to be a fact about the 
run if, given two points of the same run, ‘p is either 
true at both points or false at both points. Similarly, 
a fact p is said to be a fact about the global state if, 
given two points with the same global state, cp is true 
at both points or false at both points. 

We now define what it means for an agent to know 
a fact (0 at a point (P, k) of a system R. Intuitively, 
ri(k) captures all of agent pi's information at (r,k). 
We say pi considers a point (r’, k’) possible at (r, k), 
and write (r,k) -i (r’,k’), if pi has the same local 
state at both points; that is, if t;(lc) = r:(P). Fol- 
lowing [HM84] ( an many other papers since then), d 
we say pi knows cp at (r, k) if up is true at all points pi 
considers possible at (P, k). This means pi knows cp 
at (P, k) if ‘p is guaranteed to hold given the informa 
tion recorded in pi’s local state at (r,k). More for- 
mally, we denote the fact that pi knows ‘p at (r, k) by 
(r,k) + Keep, and define (T, Jz) b Kicp iff (r’, P) + cp 
for all (r’, k’) E Xi(r,k), where ICi(r,k) is the set of 
all points in 77, agent pi considers possible at (r, k). 
While this definition of knowledge depends heavily on 
the system R (it restricts the set of points an agent 
considers possible at a given point), the system will 
always be clear from context and we omit explicit 
reference to R in our notation, 

3 Probability on runs 

In order to discuss the probability of events in a dis- 
tributed system, we must specify a probability space. 
In this section we show that in order to place a reason- 
able probability distribution on the runs of a system, 
it is necessary to postulate the existence of a class of 
adversaries. 

‘In Section 5 we define a logical language for describing such 
facts. FormalLy, a fact is the interpretation of a formula in such 
a language. See [HM84] for a complete formal treatment of the 
syntax and semantics of such a language. 

105 



Consider the simple system consisting of a single 
agent who flips a fair coin once and halts. This system 
consists of two runs, one in which the coin comes 
up heads and one in which the coin comes up tails. 
There is an obvious probability distribution on these 
two runs induced by the coin toss: each is assigned 
probability l/2. 

Now consider the system (suggested by Moshe 
Vardi; a variant also appears in [FZSS]) consisting 
of two agents, pl and pz, where pl has an input bit 
and two coins, one fair coin landing heads with prob- 
ability l/2 and one biased coin landing heads with 
probability 2/3. If the input bit is 0, p1 flips the fair 
coin once and halts. If the input bit is 1, pl flips 
the biased coin and halts. This system consists of 
four runs of the form (6, c) in which the input bit has 
value b and the outcome of the coin toss is c. What is 
the appropriate probability distribution on the runs 
of this system? For example, what is the probability 
of heads? 

Clearly the probability of heads is l/2 if the input 
bit is 0 and 2/3 if the input bit is 1, but we cannot 
make sense of the probability of heads until we are 
told how the input bit is set. In order to avoid think- 
ing about nonprobabilistic events in a probabilistic 
system, it is conceivable one would be willing to as- 
sume the existence of a fixed distribution on the input 
bit, say one guaranteeing each input is equally likely. 
With this assumption, we can compute that the prob- 
ability of the input bit being 0 is 3 -3 + 4 . Q = A. 
Often, however, such an assumption leads to results 
about a system that are simply too weak to be of 
any use. Knowing an algorithm produces the correct 
answer in .99 of its runs when all inputs are equally 
likely is of no use when the algorithm is used in the 
context of a different distribution on the inputs (one 
can imagine, for example, a primality-testing algo- 
rithm used in the context of different cryptographic 
protocols). 

To overcome this problem, one might be willing to 
assume the existence of some fixed but unknown dis- 
tribution on the inputs. Proving that an algorithm 
produces the correct answer in .99 of the runs in the 
context of an unknown distribution, however, is no 
easier than proving that for each fixed input the al- 
gorithm is correct in .99 of the runs, since it is al- 
ways possible for the unknown distribution to place 
all the probability on the input for which the algo- 
rithm performs particularly poorly. Here the advan- 
tage of viewing the system as a single probability 
space is lost, since this is precisely the proof tech- 
nique one would use when no distribution is assumed 
in the first place. In fact, unless we are willing to as- 
sume a distribution on the distributions themselves, 

we are simply moving the problem of dealing with a 
nondeterministic choice of inputs up one level to deal- 
ing with the problem of a nondeterministic choice of 
distributions! 

This discussion leads us to conclude that some 
choices in a distributed system must be viewed as 
inherently nondeterministic (or, perhaps better, non- 
probabilistic), and that it is inappropriate, both 
philosophically and pragmatically, to model probe 
bilistically what is inherently nondeterministic. But 
then how can we reason probabilistically about a 
system involving both nondeterministic and proba 
bilistic choices? Our solution-which is essentially 
a formalization of the standard approach taken in 
the literature-is to factor out initial nondetermin- 
istic events, and view the system as a collection of 
subsystems, each with its natural probability distri- 
bution. In the coin flipping example above, we would 
consider two probability spaces, once corresponding 
to the input bit being 0 and the other corresponding 
to the input bit being 1. The probability of heads is 
l/2 in the first space and 2/3 in the second. 

We want to stress that although this example may 
seem artificial, analogous examples frequently arise 
in the literature. In a probabilistic primality testing 
algorithm, for example, we do not want to assume 
a probability distribution on the inputs. We want 
to know that for all choices of input, the algorithm 
gives the right answer with high probability. In this 
situation, the natural thing to do is to partition the 
runs of the algorithm into a collection of subsystems, 
one for each possible input, and prove the algorithm 
gives the right answer with high probability in each of 
these subsystems (and, indeed, this is precisely what 
is done in both [Rab80, SSU]). 

In many contexts of interest, the choice of input is 
not the only source of nondeterminism in the system. 
Later nondeterministic choices may also be made 
throughout a run. In asynchronous distributed sys- 
tems, for example, it is common to view the choice of 
the next processor to take a step or the next message 
to be delivered as a nondeterministic choice. Simi- 
lar arguments to those made above can be used to 
show that we need to factor out these nondetermin- 
istic choices in order to use the probabilistic choices 
(coin flips) to place a well-defined probability on the 
set of runs. A common technique for factoring out 
these nondeterministic choices is to assume the exis- 
tence of a scheduler deterministically choosing (as a 
function of the history of the system up to that point) 
the next processor to take a step (cf. [Rab82, Var85]). 
It is standard practice to fix some class of schedulers, 
perhaps the class of “fair” schedulers or “polynomial- 
time” schedulers, and argue that for every scheduler 

106 



Figure 1: A computation tree. 

in this class the system satisfies some condition. 
If we view all nondeterministic choices as under the 

control of some adversary from some class of adver- 
saries, then there is a straightforward way to view the 
set of runs of a system as a collection of probability 
spaces, one for each adversary. By fixing an adver- 
sary we factor out the nondeterministic choices and 
are left with a purely probabilistic system, with the 
obvious distribution on the runs determined by the 
probabilistic choices made during the runs. This is 
essentially the approach taken in [FZ88]. 

Once we fix the adversary we can represent the set 
of runs of the system as a set of contpvtaZion trees, 
one associated with each adversary (see Figure 1). 
Nodes of the tree are global states, and edges of the 
tree are labeled with positive real numbers such that 
for every node the values labeling the node’s outgoing 
edges sum to I. (We assume every node has at most a 
countable number of outgoing edges.) Intuitively, the 
value labeling an outgoing edge of node s represents 
the probability the system makes the corresponding 
transition from node s.~ The runs of the system are 
the paths in the tree. We can view each tree as a 
probability space in a natural way, since all nonde- 
terministic choices have been factored out. Given a 
finite path in the tree, the probability of the set of 
runs extending this finite path is simply the product 
of the probabilities labeling the edges in this finite 
path. 

Given an adversary A, we denote the computation 
tree corresponding to A by 7~. Notice that 7~ may be 
viewed as a probability space, a tuple (RA, XA, PA) 
where ??,A iS the set of runs in 7A, XA consists of sub- 

2 We represent only transitions that have positive probabil- 
ity. Thus, we are assuming here that there is a discrete prob- 
ability on the set of possible transitions at each node. This 
means, for example, that we are disallowing the possibility that 
the next step will be a random assignment to a variable 2 cho 
sen with uniform probability from the interval [O, l]. We could 
easily extend our model to deal with this situation by assigning 
probabilities to sets of transitions, rather than just individual 
transitions. We have chosen to consider only discrete proba 
bility distributions here for ease of exposition. 

sets of RA that are measurable (that is, the ones to 
which a probability can be assigned; these are gen- 
erated by starting with sets of runs with a common 
finite prefix and closing off under countable union and 
complementation), and a probability function PA de- 
fined on sets in XA so that the probability of a set 
of runs with a common prefix is the product of the 
probabilities labeling the edges of the prefix. If we 
restrict attention to finite runs (as is done in [FZSSJ), 
then it is easy to see that each individual run is mea 
surable, so that XA consists of all possible subsets 
of RA. Moreover, the probability of a run is just the 
product of the transition probabilities along the edges 
of the run. 

Formally, we define a probabilistic system to consist 
of a collection of computation trees (which we view 
as separate probability spaces); that is, a collection 
of probability spaces of the form 7A = @A, XA, PA), 
where A ranges over some set A of adversaries. We as- 
sume that the environment component in each global 
state in 7A encodes the adversary A and the entire 
past history of the run. This technical assumption 
ensures that different nodes in the same computation 
tree have different global states, and that we cannot 
have the same global state in two different compu- 
tation trees. Given a point c, we denote the com- 
putation tree containing c by 7(c). Our technical 
assumption guarantees that 7(c) is well-defined. 

The choice of the appropriate set of adversaries 
A against which the system runs is typically made 
by the system designer when specifying the correct- 
ness conditions the system is to satisfy. An adversary 
might be limited to choosing the initial input of the 
agents (in which case the set of possible adversaries 
would correspond to the set of possible inputs) as is 
the case in the context of primality-testing algorithms 
in which an agent receives a single number (the num- 
ber to be tested) as input. On the other hand, an ad- 
versary may also determine the order in which agents 
are allowed to take steps, the order in which messages 
arrive, or which processors fail. One might also wish 
to restrict the computational power of’the adversary 
to polynomial time. It depends on the application. 

4 Probability at a point 

We are interested in understanding knowledge and 
probability in distributed systems. An agent’s knowl- 
edge varies over time, as its state changes. We would 
expect the probability an agent assigns to an event 
to vary over time as well. Clearly an agent’s prob- 
ability distribution at a given point must somehow 
be related to the distribution on runs if it is to be 

107 



at all meaningful. Nevertheless, the distributions are 
different; depending on the choice we make, we can 
be led to quite different analyses of a protocol. 

To understand this distinction, consider the Coor- 
dinated Attack problem [Gra78]. Two generals A and 
B must decide whether to attack a common enemy, 
but we require that any attack be a coordinated at- 
tack; that is, A attacks iff B attacks. Unfortunately, 
they can communicate only by messengers who may 
be captured by the enemy. It is known that it is 
impossible for the generals to coordinate an attack 
under such conditions [Gra78, HM84]. Suppose, how- 
ever, we relax this condition and require only that the 
generals coordinate their attack with high probabil- 
ity [FH88, FZ88]. To eliminate all nondeterminism, 
let us assume general A flips a fair coin to determine 
whether to attack, and let us assume the probability 
a messenger is lost to the enemy is l/2. Our new cor- 
rectness condition is that the condition “A attacks iff 
B attacks” holds with probability $99. 

Consider the following two-step solution CA1 to 
the problem. At round 0, A flips a coin and sends 
10 messengers to B iff the coin landed heads. At 
round 1, B sends a messenger to tell A whether it 
has learned the outcome of the coin toss. At round 
2, A attacks iff the coin landed heads (regardless of 
what it hears from B) and B attacks iff at round 1 
it learned that the coin landed heads. It is not hard 
to see that if we put the natural probability space 
on the set of runs, then with probability at least .99 
(taken over the runs) A attacks iff B attacks: if the 
coin lands tails then neither attacks, and if the coin 
lands heads then with probability at least .99 at least 
one of the ten messengers sent from A to B at round 
0 avoids capture and both generals attack. 

This is very different, however, from saying that at 
all times both generals know that with probability at 
least .99 the attack will be coordinated. To see this, 
consider the state just before attacking in which A has 
decided to attack but has received a message from B 
saying that B has not learned the outcome of the coin 
toss. At this point, A is certain the attack will not be 
coordinated. Although we have not yet given a formal 
definition of how to compute an agent’s probability at 
a given point, it seems unreasonable for an agent to 
believe with high probability that an event will occur 
when information available to the agent guarantees it 
will not occur. 

On the other hand, consider the solution CA2 dif- 
fering from the preceding one only in that B does 
not try to send a messenger to A at round 1 inform- 
ing A about whether B has learned the outcome of 
the coin toss. An easy argument shows that in this 
protocol, at all times both generals have confidence 

(in some sense of the word) at least .99 that the at- 
tack will be coordinated. Consider B, for example, 
after having failed to receive a message from A. B 
reasons that either A’s coin landed tails and neither 
general will attack, which would happen with probrt 
bility l/2, or A’s coin landed heads and all messen- 
gers were lost, which would happen with probability 
l/211; and hence the conditional probability that the 
attack will be coordinated given that B received no 
messengers from A is at least .99. 

As the preceding discussion shows, in a protocol 
which has a certain property P with high probability 
taken over the runs, an agent may still find itself in 
a state where it knows perfectly well that P does not 
(and will not) hold. While correctness conditions P 
for problems arising in computer science have typi- 
cally been stated in terms of a probability distribu- 
tion on the runs, it might be of interest to consider 
protocols where an agent knows P with high prob+ 
bility at all points. As we shall show, the probability 
distribution on the runs typically corresponds to each 
agent’s probability distribution at time 0. Thus, we 
can view the probability on the runs as an a ptioti 
probability distribution. To require a fact to hold 
with high probability from each agent’s point of view 
at all times is typically a much stronger requirement 
than that of requiring it to hold with high probability 
over the set of runs. Arguably, in many cases, it is 
also a more natural requirement. We return to this 
point later in the paper. 

5 Definitions of probabilistic 
knowledge 

We want to make sense of statements such as “at 
the point c, agent pi knows p holds with probability 
a! .” The problem is that, although we typically have a 
well-defined probability distribution on the set of runs 
in each computation tree, in order to make sense of 
such statements we need a probability distribution on 
the points pi considers possible at c. The reason we 
need a distribution on points and not just on runs is 
that many interesting facts are facts about points and 
not about runs. Consider, for example, the fact “the 
coin landed heads.” If the coin is flipped many times 
in a run, this fact may be true at some points and not 
others. If we were willing to restrict our attention to 
facts about the run, then we could make do simply 
with a distribution on runs, but this would preclude 
the discussion of many interesting events in a system. 

We begin by reviewing the general framework 
of [FH88] in which, given a particular assignment of 
probability spaces to points and agents, we can make 

108 



sense of such statements about an agent’s probabilis- 
tic knowledge. The remainder of the paper will focus 
on the construction of appropriate probability assign- 
ments . 

Define a probability assignment P to be a mapping 
from an agent pi and point c to a probability space 
P. = (Si,c, Xi,,, I+). H ere Si,e is a set of points, 
A’~~~ is the set of measurable subsets of Si,,, and A+ 
is a probability function assigning a probability to the 
sets in Xi,c.3 In most cases of interest, one can think 

of si,c as a subset of the points agent pi considers 
possible at c, and of ~i,~ as indicating the relative 
likelihood according to p; that a particular point in 
Si,e is actually the current point c. 

Given such an assignment, let Si,e(p) be the 
set of the points in Si+ satisfying (o; that is, 

S&f) = {d E s,c : & /= cp). It is natural to interpret 

Pi,c(Si,c(P)) a~ th e probability cp is true, according to 
agent pi at the point c. One problem with this in- 
terpretation, of course, is that the set S+(cp) is not 
guaranteed to be measurable, and hence ~+(S+(~)) 
is not guaranteed to be well-defined. In order to deal 
with this problem, we follow the approach of [FHM], 
and make use of inner and outer measures. Given a 
probability space (S, X, ,u), the inner measure p* and 
outer measure CL* is defined by 

p.(S’) = sup {p(T) : 2’ E S’ and T E X} 
p*(S’) = inf {p(T) : T 2 S’ and T E X) 

for all subsets S’ of S. Roughly speaking, the in- 
ner (resp. outer) measure of Si,,(cp) is the best lower 
(resp. upper) bound on the probability ‘p is true, ac- 
cording to pi at c. It is easy to see that p*(T) = 
1 -p+(P) for any set T, where TC is the complement 
of T. Given a probability assignment P, we write 
P, c b Pri(p) 2 cr to mean /+,(S+((p)) > (Y.~ Note 
that we need the probability assignment P to make 
sense of Pri. We take ICrp to be an abbreviation 
for K,(Pri((o) 2 a); thus KiQp means that agent pi 
knows that the probability of cp is at least cu since 
Pri(p) 2 o holds at all points pi considers possible. 

We now have all the definitions needed to give se- 
mantics to a logical language of knowledge and prob- 
ability. In particular, the language of most interest to 
us in the remainder of this paper is the language L(a) 
obtained by fixing a set ip of primitive propositions 
and closing under the standard boolean connectives 
(conjunction and negation), the knowledge operators 
Ki, probability formulas of the form Pri(p) 2 o, and 

3We often identify the probability space Pi C with the sam- 
ple space S+; the intention should be clear f&m context. 

‘We remark that we can easily extend these definitions to 
F;18.0mplicated formulas SW& as Pri (cp) 1 ZPri(+); see 

the standard (linear time) temporal logic operators 
next 0 and until U. Note that C(a) is sufficiently 
powerful to express the operators Kr and the tem- 
poral operators henceforth 0 and eventually 0. In 
the context of a given system, we say that L(a) is 
state-generated if each of the primitive propositions 
in Cp is a fact about the global state; and we say that 
C(Q) is suficiently rich if for every countable set G of 
global states contained in a single computation tree 
there is a primitive proposition in Q true at precisely 
those points with global states in G. This condition 
ensures, for example, that the language C(Q) is rich 
enough to allow us to talk about individual global 
states. The assumption that C(ip) is state-generated 
is quite reasonable in practice: we typically take the 
primitive propositions to represent facts about the 
global state, like “the coin landed heads,” “the mes- 
sage was received,” or “the value of variable 2 is 0.” 
Sufficient richness is a technical condition required for 
a few of our results. We can always make a language 
sufficiently rich by adding primitive propositions. 

We now have a natural way of making sense of 
knowledge and probability, given a probability assign- 
ment P. Unfortunately, we still do not know how to 
choose P, but our choices are somewhat more con- 
strained than they may at first appear. We are given 
the computation trees and the associated distribu- 
tions on runs, and we clearly want the distribution 
on the sample space Si,, of points we associate with 
agent pi at point c to be related somehow to these 
distributions on runs. We next show that once we 
choose the sample spaces Si,,, there is a straightfor- 
ward way to use the distribution on runs to induce 
a distribution on Si,,. Thus, once we are given an 
appropriate choice of sample spaces and the distribu- 
tions on runs of the computation trees, we can con- 
struct the probability assignment. The problem of 
choosing a probability assignment, therefore, essen- 
tially reduces to choosing the sample spaces. This 
reduction will clarify important issues in determining 
the appropriate choice of probability assignments. 

The idea of our construction is quite straightfor- 
ward: given a sample space Si,C and a subset S c Si,,, 
the probability of S (relative to ,Y&) is just the prob- 
ability of the runs going through S normalized by the 
probability of the set of runs going through Si,,. In 
other words, the probability of S is the conditional 
probability a run passes through S, given that the 
run passes through Si,,. 

In order for this simple idea to work, however, the 
set Si,, must satisfy a few requirements. One natu- 
ral choice for Si,e is the set Xi(c) of all points agent 
pi considers possible at c. In general, however, this 
set contains points from many different computation 

109 



trees, and attempting to impose a distribution on this 
set of points leads to the same difficulties that led us 
to factor out nondeterminism and view a system as 
a collection of computation trees in the first place. 
Recall the example from Section 3 in which pi tosses 
a fair or biased coin, depending on whether his in- 
put is 0 or 1. Before (and after) the coin is tossed, 
p2 considers four worlds possible, one from each pos- 
sible run. We can no more place a probability on 
these points than we could place a probability on the 
four runs. On the other hand, given a point c from 
a run with input bit 1 (corresponding to the biased 
coin), if we restrict S+ to consist of the two points in 
the computation tree with input 1, then we can put 
a probability on the two points in the obvious way 
and compute the probability of heads as 2/3. This 
intuition leads us to require that each set Si,e be con- 
tained entirely within a single computation tree: 

REQl. All points of Si,c are in I(c). 

We remark that, while REQr does not allow us 
to take Si,, to be all of Xi(e), it still seems natural 
to choose Si,e c K,(c). We say that a probability 
assignment is consistent if it satisfies this condition. 
As pointed out in [FH88], a consequence of this is 
that if pi knows ‘p, then cp holds with probability 1; 
that is, Ki(v) =+- (Pri(cp) = 1).5 With a consistent 
assignment, it cannot be the case that agent pi both 
knows ‘p and at the same time assigns ~cp positive 
probability. 

The single condition REQl , however, is not enough 
for our idea for imposing a distribution on the set 
Si,e of points to work. Because this idea involves 
conditioning on the set of runs passing through Si,c, 
the definition of conditional probability forces us 
to require that that this set of runs is a measur- 
able set with positive measure. Suppose I(c) = 
(%?A~ XA, PA), for some adversary A. Given a set 
S of points contained in 7(c), denote by R(S) the 
set of runs passing through S; that is, R(S) = 
(r E %?,A : (f, k) E S for some /c}. We require that 

REQ2: R(Si,c) E XA and PA(R(&)) > 0. 

REQ2 is a relatively weak requirement. The fol- 
lowing lemma shows that, in practice, REQ2 is typ- 
ically satisfied. A set S of points is said to be 
state-generated if (r,Ic) E S and r(k) = r’(V) im- 
ply (T’, J,!) E S; in other words, S contains all points 
with the same global state as (r,k). 

Proposition 1: If Si,c is state-generated, then Si,, 
satisfies REQ2. 

31n fact, as pointed out in FHSS], this axiom characterizes 
the property that the probability space used by pi is a subset 
of the points that pi considers possible. 

Given a set of points Si,e satisfying REQl and 
REQ2, we now make precise our idea for imposing a 
distribution on Si,e. Intuitively, to const.ruct the col- 
lection Jz’~,~ of measurable subsets of 5&, we project 
the measurable subsets of the runs of 7(c) onto Si,c. 
Formally, given a set R’ of runs and a set S of points, 
we define Proj(R’,S) = {(r,lc) E S : P E R’}. We 
define 

x i,c = {PrOj(a’, si,,) : ‘R’ E XA}. 

Finally, we define the probability function pi,c on the 
measurable subsets of Si,e via conditional probability: 

for all S E Xi,c. Let Pi,e = (Si,c, xi,,, /4,e)- 

Proposition 2: If Silt satisfies REQl and REQ2, 
then Pi,c is a probability space. 

We can now formalize our intuition that the con- 
struction of probability assignments reduces to the 
choosing of sample spaces. Define a sample space as- 
signment to be a function S that assigns to each agent 
pi and point c a sample space S(i, c) = Si,e satisfying 
REQ1 and REQ2. Define a transition probability as- 
signment to be a function r mapping an adversary A 
to the distribution PA on the runs of the computation 
tree & (corresponding to adversary A) induced by 
the transition probabilities labeling the edges of 7~. 
Given assignments S and r, our construction shows 
how to obtain a probability space Pi,e for all agents pi 
and all points c. This naturally determines a proba- 
bility assignment P, which we call the the probability 
assignment induced by S and r. We omit reference to 
r when it is clear from context. For future reference, 
we define a fact ‘p to be measurable with respect to S 
if Si,e(v) E Xi,e for all agents i and points c. 

The preceding discussion makes precise the idea 
that choosing a probability assignment reduces to 
choosing a sample space assignment, but still does 
not help us choose the sample space assignment. Dif- 
ferent choices result in probability assignments with 
quite different properties. Let us return to the exam- 
ple in the introduction, where p1 tosses a fair coin, 
and neither p2 nor p3 observe the outcome. Clearly, 
at time 2 (after the coin has been tossed), pz considers 
two points possible: say h (the coin landed heads) and 
t (the coin landed tails). Consider the sample space 
assignment S1 such that S1(2, h) = S1(2,t) = {h,t}. 
Thus, at both of the points h and t, the same sam- 
ple space is being used. In this case, at both points, 
the probability of heads is l/2. Thus, with respect 

110 



to the induced probability assignment, pa knows that 
the probability of heads is l/2. On the other hand, 
consider assignment S2 such that S2(2, h) = {h} and 
S2(2,t) = {t}. With respect to the induced proba 
bility assignment, the probability of heads at h ac- 
cording to p2 is 1, while the probability of heads at 
t is 0. In this case, all that p2 can say is that it 
knows that the probability of heads is either 1 or 0, 
but it doesn’t know which. Which is the right proba- 
bility assignment? As we hinted in the introduction, 
the answer depends on another type of adversary, the 
one that p2 views itself as playing against. This is the 
focal point of the next section. 

We conclude this section with one further example. 
Consider a system where a fair die is tossed by pi and 
p2 does not know the outcome. Suppose that at time 
2 the die has already been tossed. Let cl, . . . Cc be the 
six points corresponding to the possible outcomes of 
the die. What sample space assignment should we use 
for ~2. One obvious choice is to take the assignment 
S’ which’assigns the same sample space at all six 
points, the space consisting of all the points. With re- 
spect to this sample space, each point will have prob- 
ability l/6. Let p be the statement “the die landed 
on an even number.” Clearly, in the probability space 
induced by this sample space, cp holds with probabil- 
ity l/2. Since p2 ,uses the same sample space at all 
six points, agent p2 knows that the probability of ‘p 
is l/2. A second possibility is to consider two sample 
spaces Sr = {cl, q., cs} and S2 = { ~4, cg , cs}; let the 
assignment S2 assign the sample space Si to agent 
p2 at all the points in Si, and the sample space S’s at 
all the points in S2. Thus, at all the points in 5’1, the 
probability of cp is l/3, while at all the points in S2, 
the probability of cp is 2/3. All p;! can say is that it 
knows that the probability of cp is either l/3 or 2/3, 
but it does not know which. 

Clearly we can subdivide the six points into even 
smaller subspaces. It is not too hard to show that 
the more we subdivide, the less precise is ~2’s knowl- 
edge of the probability. (We prove a formal ver- 
sion of this statement in the next section.) But why 
bother subdividing? Why not stick to the first sam- 
ple space assignment, which gives the most precise 
(and seemingly natural) answer? Our reply is that, 
again, this may not be the appropriate answer when 
playing against certain adversaries. 

6 Probability assignments in 
synchronous systems 

We first consider the problem of selecting appropriate 
probability assignments in completely synchronous 

systems. Intuitively, a system is synchronous if all 
agents effectively have access to a global clock. For- 
mally, a system is synchronous [HV89] if for all points 
(r,k) and (r’,J$) and all agents pi, if ri(L) = v,!(P) 
then k = k’. This means, for example, that no two 
points an agent pi considers indistinguishable can lie 
on the same run. 

When considering probability, it turns out that 
many things become much easier in the context of 
synchronous systems. For example, it turns out that, 
in practice, sample space assignments satisfy three 
natural properties: (a) they are state-generated; (b) 
they satisfy the property that c E Si,c for all agents pi 
and points c; and (c) they are uniform, which means 
that d E & implies S&d = SQ for all agents pi 
and points c and d.6 We say that S (and its induced 
probability assignment) is standard if it satisfies these 
three properties. For the remainder of this section we 
restrict attention to standard assignments. 

One convenient feature of synchronous systems is 
that all facts of interest are measurable. Recall that 
a L(a) is state-generated with respect to a system 7Z 
if all the primitive propositions in @ are facts about 
the global state. 

Proposition 3: In a synchronous system, if S is a 
consistent sample space assignment and ,C(ip) is state- 
generated, then cp is measurable with respect to S for 
all facts ‘p E l(Q). 

This result says that for all practical purposes we 
do not have to concern ourselves with nonmeasurable 
sets and inner measures in synchronous systems. 

We begin by defining four probability assignments. 
Each of these assignment can be understood in terms 
of a betting game against an appropriate adversary. 
(This is the second type of adversary mentioned in the 
introduction.) We make this intuition precise after we 
have defined the probability assignments. 

The first of these assignments corresponds to what 
decision theorists would call an agent’s posterior 
probability. This is essentially the probability an 
agent would assign to an event given everything the 
agent knows. This intuitively corresponds to the bet 
an agent would be willing to accept from a copy of it- 
self, someone with precisely the same knowledge that 
it has. We make this relationship between probability 
and betting precise shortly. 

What probability space corresponds to an agent’s 
conditioning on its knowledge in this way? Since we 

6This condition is essentially the definition of a uniform 
probability assignment from [FHSS]. A probability assignment 
induced by a uniform sample space assignment as we have de- 
tied it here is a uniform probability assignment in the sense 
of [FHSS]. 

111 



have identified an agent pi’s knowledge with the set 
of points pi considers possible at c, this set of points 
seems the most natural choice for the space. As we 
have seen, however, this set of points is not in gen- 
eral contained in one computation tree. Thus, we 
consider instead the set of points in c’s computation 
tree I(c) that pi considers possible at c. This is 
just the set Tree+ = {d E I(c) : c pi d}. It is clear 
that TEei,, satisfies REQl; that it satisfies REQz 
follows by Proposition 1 since it is state-generated. 
By Proposition 2, therefore, the induced probability 
space (Treei,,, Xi,,, pi,c) is indeed a probability space. 
Let 9’0“ be the sample space assignment that assigns 
the space Treei,, to agent pi at the point c, and let 
Pp”*’ be the probability assignment induced by S?“‘i. 

The probability space P/‘y’ has a natural inter- 
pretation. It is generated by conditioning on every- 
thing pi knows at the point c and the fact that it is 
playing against the adversary A that generated the 
tree r[A in which c lies. Of course, the agent consid- 
ers many adversaries possible. Thus, the statement 
P *o”, c /= K,~+IJ means that for all adversaries pi con- 
siders possible at c (given its information at c), the 
probability of 9 given all pi knows is at least cr. PpO” 
is precisely the assignment advocated in ~~881 in the 
synchronous case. 

Suppose now that pi were considering accepting a 
bet from someone (not necessarily an agent in the 
system) with complete knowledge of the past history 
of the system. In this case, we claim that the appro- 
priate choice of probability space for pi at the point 
c = (r, k) is all the other points (T’, Ic) that have the 
same prefix as (r,k) up to time k; in other words, 
all points with the global state r(h). Call this set 
of points Prefi,,. Note that Prefi,, is independent 
of pi, and depends only on the point c. Moreover, 
Prefi,, is clearly state-generated (by r(lc) itself), so 
by Proposition 1 we can again use the construction 
of Proposition 2 to induce a natural probability dis- 
tribution on this set of points. Let SfY’ denote the 
sample space assignment that assigns Pref+ to pi at 
c and let P’“’ denote the probability assignment in- 
duced by Sf”. We remark that this is the probability 
assignment used in [HMT88], as well as [LS82]. 

In the probability space P,$‘, any event that has 
already happened by the point c will have probability 
1. Future events (that get decided further down the 
computation tree) still have nontrivial probabilities, 
which is why we have termed it a future probability 
assignment. 

Let us reconsider yet again the coin tossing exam- 
ple from the introduction, where agent p2 tosses a 
fair coin at time 1 but agents pi and p3 do not learn 
the outcome. Since the coin has already landed at 

time 2, it is easy to check that we have VU*, c k 
Ki(Prr(heads) = 1 VPrl(heads) = 0). On the other 
hand, we have PP”‘#, c + IC1(Pq(heads) = l/2). 
Thus, PpO*i and Pfrr correspond to the two nat- 
ural answers we considered for the probability of 
heads. They capture the intuition that the answer 
depends on the knowledge of the adversary p1 is bet- 
ting against: Pj”* corresponds to betting against pz, 
and ~J’o’* corresponds to betting against ~3. 

Notice that in both the cases of P*“” and Pf *‘, the 
probability space associated with an agent at a point 
corresponds to the set of points the agent and the ad- 
versary both consider possible. Suppose, in general, 
that pi is considering what an appropriate bet to ac- 
cept frompj would be. We claim that in this case the 
probability assignment should be generated by the 
joirzi knowledge of agents pi and pj, as represented 
by the intersection of the points they both consider 
possible; that is, by the set Dee:,= = Treei,,n Zkj,,. 

(Note that ‘Dee:,, = Txei,c, so that this construction 
can be viewed as a generalization of the previous one.) 
Again it is easy to see that Dee& is state-generated, 
so by Proposition 1 we can use Proposition 2 to induce 
the natural distribution on this set of points. Let Sj 
be the sample space assignment that assigns Treei,c 
to pi at c, and let Pj be the probability assignment 
induced by Sj . 

t All the examples we have seen up to now have had 
the property that Si,, C Xi(c), which means they are 
consistent. While consistency is a natural restriction 
on probability assignments, it is not a requirement of 
our framework. There may be be technical reasons 
for considering inconsistent assignments. For exam- 
ple, one obvious (although inconsistent) probability 
assignment associates with the point (r,R) the set of 
all time k: points in its computation tree. Call this set 
ANi,c. (AZ& is in fact independent of pi.) The prob- 
ability space induced by the construction of Propo- 
sition 2 in this case simulates the probability on the 
runs. Let us denote the associated sample space and 
probability assignments by Sprier and Pprior. Notice 
that if pi uses the probability space P:,zor, it is essen- 
tially ignoring all that it has learned up to the point 
c, which is why we have termed it a prior probability. 

All four of the sample space assignments we have 
constructed are standard assignments. It is not diffi- 
cult to see, in fact, that any assignment constructed 
on the basis of some adversary’s knowledge will be 
standard. This lends some justification to our re- 
striction to standard assignments. We can view these 
four assignments as points in a lattice of all possible 
standard sample space assignments. We define an or- 
dering 5 on this lattice as follows: S’ < S iff every 
space Si,, of S can be partitioned into the spaces Si,d 



of S’ with d E Si,e. Consider Sp”*t and Sfut, for ex- 
ample. Every set Treei,, of P’* can be partitioned 
into the sets Treeild of Sfut with d E Treei,,. In fact, 
it is clear that 

Sf*t < Sj < Spo*t < Sprier 
- - 

Furthermore, notice that P”* is greatest (with re- 
spect to 5) among all consistent sample space as- 
signments. 

Intuitively, S’ 5 S if the spaces of S’ are a re- 
finement of the spaces of S. In the case of consis- 
tent assignments, if we interpret Si,e as the intersec- 
tion of pi’s knowledge with the adversary’s knowl- 
edge, S’ < S means the adversary corresponding to 
S’ considers fewer points possible and hence knows 
more than the adversary corresponding to S. This 
means, for example, that Spar’, as the maximal con- 
sistent assignment, corresponds to the least powerful 
adversary. 

The ordering on sample spaces assignments induces 
an obvious ordering on probability assignments: if 
S’ 5 S, then the induced assignments P’ and P sat- 
isfy V < P. An important point to note is that if 
Pf < P, then pile can be obtained from p+ by con- 
ditioning with respect to Si,c: 

Proposition 4: In a synchronous system, if P’ 5 P, 
then for all agents p; , all points c, and all measurable 
subsets S’ E X& of Si,c 

(a) S’ E Xi,c (so that, in particular, Si,e itself is a 
measurable subset of Si,,), 

(b) pi,c(S,!,A > 0, 

Cc) d,c(S’) = Pi,e(S’ISi,e) = *j. 

It follows that any consistent probability assignment 
can be obtained from Pp*” by conditioning. 

We are now able to make precise the sense in which 
PHONE, ‘Pi, and PJ“* are the “right” probability assign- 
ments for an agent to use when playing against an op- 
ponent who knows exactly as much as it does, when 
playing against Pj, and when playing against an op- 
ponent who has complete information about the past. 
We focus on Pi here, but the arguments are the same 
in all cases. 

Consider the following betting game between 
agents pi and pi at a point C. Agent pj offers pi a 
payoff of ,B for a bet on ‘p. Agent pi either accepts 
or rejects the bet. If pi accepts the bet, pi pays one 
dollar to pi, and pj pays fl dollars to pi if cp is true 
at C. It follows that pi’s profit on this bet is either 
p - 1 or -1 depending on whether ‘p is true or false 

at c when pi accepts the bet, and 0 when pi rejects 
the bet. 

Intuitively, assuming that pi is risk neutral7 pi can 
always be convinced to accept a bet on cp no matter 
how low the probability of cp is, as long as pi believes 
there is some nontrivial chance cp is true and the pay- 
off /3 is high enough. Our intuition says there must 
be some relationship between the probability Q with 
which pi knows p and this acceptable payoff ,B that 
would induce pi to accept a bet on ‘p. If a is close 
to 0 then pi might require a high payoff to make the 
bet’s risk acceptable, but if a is close to 1 then pi 
might be willing to accept a much lower payoff since 
the chance of losing is so remote. Our claim that Pi 
is the right probability assignment is based on the 
fact that Pj determines for an agent pi the lowest 
acceptable payoff for a bet with pj on a fact ‘p. In 
other words, Pi determines precisely how an agent pi 
should bet when betting against pj. In fact, Pj is in 
a sense the unique such probability assignment. We 
now make this intuition precise. 

What should pi consider an acceptable payoff for a 
bet on cp, assuming pi does not want to lose money 
on the bet? Since pi is presumably following some 
strategy for offering bets to pi, the acceptable payoff 
should take this strategy into account. Consider, for ’ 
example, the system in which pj secretly flips a fair 
coin at time 0, and offers at time 1 to bet pi that the 
coin landed heads. If pj is following the strategy of 
always offering a payoff of $2, independent of the out- 
come of the coin toss, then pi can always safely accept 
the bet since, on average, it will not lose any money 
(that is, pi’s expected profit is zero). If pi offers a 
payoff of $2 only when the coin lands tails, then pi is 
certain to lose money. On the other hand, if pi offers 
a payoff of $2 only when the coin lands heads, then it 
is pj who is certain to lose money. While we expect 
that pj will not follow a strategy that will cause it 
to lose money, we assume only that pj’s strategy for 
offering bets depends only on its local state. In other 
words, given two points pi is unable to distinguish, 
pi must offer the same payoff for a bet on cp at both 
points. Formally, a strategy for pi is a function from 
pj’s local state at a point c to the payoff pj should 
offer pi for a bet on ‘p at c. Similarly, we assume that 
pi’s strategy for accepting or rejecting bets (that is, 
for computing acceptable payoffs) is also a function 
of its local state. 

Again, what should pi consider an acceptable pay- 
‘offforabetoncp ? %ppose pi decides it will accept 
any bet on ‘p with a payoff of at least l/o when its 

‘Informally, an agent is said to be risk neutral if it is willing 
to accept all bets where its expectation of winning is nonneg- 
ative. 



local state is si (remember that pi’s strategy for ac- 
cepting bets must be a function of its local state). 
Denoting by Bet(cp, CY) the rule “accept any bet on cp 
with a payoff of at least l/a,” how well does pi do by 
following Be2(cp, CY) when its local state is si? Clearly 
pi will win some bets and lose others, so we are in- 
terested in camputing pi’s expected profit. This in 
turn depends on @j’s strategy. This leads us to com- 
pute, for each of pj ‘s strategies f, agent pi’s expected 
profit when pi follows Bei(cp, a) and pj follows f. IA- 
tuitively, if, for each of pj’s strategies f, agent pi’s 
expected profit is nonnegative, then pi does not lose 
money on average by following Bet (cp, a), regardless 
Of pj ‘S strategy. 

Before we can compute pi’s expected profit, how- 
ever, there is an important question to answer: What 
probability space should we use to compute this ex- 
pectation at a point c? One reasonable choice is to 
take tiei,,; this would correspond to computing this 
expectation with respect to everything pi knows. An- 
other reasonable choice would be to take Tnzei c. The 
intuition would be that pi wants to do well fo; every 
possible choice of what pj could do to pi. The sets 
%ei,e correspond to the different things pj could do, 
since pj ‘s strategy is a function of its local state. For 
definiteness, we take the expectation with respect to 
the probability space Treei,e here, and then show that 
our results would not have been affected (at least in 
the synchronous setting) if we had chosen the space 
%ei,c instead. 

Let the value of the random variable IV! = 
Wf(cp, cr) at a point d denote pi’s profit (or winnings) 
at d, assuming pi is following Bei(v, cr) and pj is fol- 
lowing f. Assume that ‘p is measurable with respect 
to 9. Let Ei,e[Wf] = E,,g [W’] denote the ex- 

pected value of WI with resp?&t to the probability 
space Tree:,,. We say pi breaks even with Bet(cp, CY) 
at C if Ei,,[WJ] 2 0 for every strategy f for pj. We 
say the rule Bet(cp, a) is safe for pi at c if pi breaks 
even with Bet(cp, CX) at all points pi considers possible 
at c. 

To justify our definition of safe bets, we now prove 
that the definition remains unchanged if we take the 
expectation with respect to Treei,c instead of Twei C. 
We define Tree: c- safe to mean safe as defined abode, 
and Treei,,-sclfe’ just as we defined safe, except that 
now we take the expectation with respect to Treei,, 
instead of Tree: =. , 

Proposition 5: For all facts ‘p, all agents pi, and all 
points c, the rule Bet(p,cr) is Treei,,-safe for pi at c 
iff Bet(cp, a) is Tree: ,-safe for pi at c. 

Our claim that Pj is the right probability assign- 
ment to use when playing against pj is made concrete 

by the following result which states that Pj deter- 
mines for every agent p; precisely what bets are safe 
when betting against pi. 

Theorem 6: For all facts ‘p measurable with respect 
to Pi, all agents pi, and all points c, the rule Be,t(p, CY) 
is safe for pi at c iff Pj, c b KiQp. 

This result of is the core of our paper. It says that 
that Pi determines precisely what bets are safe for 
pi to accept. If, using the probability assignment Pj, 
agent pi knows the probability of cp is at least cx, then 
pi will at least b reak even betting on ‘p when the 
payoff is l/a. On the other hand, if, using Pi, agent 
pi considers it possible that the probability of (o is 
less than CN, then there is a strategy pj can use that 
causes pi to lose money betting on 9 when the payoff 
is I/or. In other words, Pj is the right probability 
assignment to use when betting against pj. 

While this theorem is stated only for measurable 
facts cp, remember that Proposition 3 assures us 
that facts of interest are typically measurable in syn- 
chronous systems. In fact, the same theorem holds 
even for nonmeasurable facts, once we define an ap- 
propriate notion of expectation for such facts; we de- 
fer those details to the full paper. 

The proof of Theorem 6 depends only on the fact 
that Pj is induced by 9 and is actually independent. 
of the particular transition probability assignment 7 
determining the distribution on runs. In this sense 
it is really Sj that is determining what bets are safe 
for pi to accept. We can formalize this intuition that 
an arbitrary sample space assignment S determines 
safe bets as follows. We say S determines safe bets 
against pj if the following condition holds: 

P,c b Kycp implies Bet(p,cr) is safe for pi at c 

for all facts ‘p E ,C(Q), all agents pi, and all points 
c, and all probability assignments induced by S (and 
some transition probability assignment T). The proof 
of Theorem 6 shows that Sj determines safe bets 
against pj. It turns out that there are other assign- 
ments that determine safe bets against pj, but if the 
language is sufficiently rich, so that there are a lot of 
possible events that can be bet on, then Sj enjoys the 
distinction of being the maximum such assignment. 

Theorem 7: In a synchronous system, 

(a) if S 5 9, then S determines safe bets safe bets 
against pj. 

(b) if S determines safe bets against pj and C(G) is 
sufficiently rich, then S < 9. 

114 



We interpret Theorems 6 and 7 as providing strong 
evidence that Sj is the right sample space assignment, 
and hence that Pi is the right probability assignment, 
to use when playing against an adversary with Pj’s 
knowledge. It says that the only way for p; to be 
guaranteed it is using a safe betting strategy against 
Pj is by assuming the adversary is at least as powerful 
as pi. Intuitively, the more powerful the adversary 
the less confident the agent is that it will be able 
to win a bet with this adversary, and the higher the 
payoff the agent will require before accepting a bet. 
Consequently, pi is being unduly conservative if it 
takes a probability assignment that corresponds to 
an agent that is more powerful than pj since it may 
pass up bets it should accept. 

In the process of making this intuition precise, we 
can prove a theorem that gives us further insight into 
relationships between sample space assignments on 
the lattice. Recall that we have defined I(,Qv to mean 
agent pi knows a is a lower bound on the probabil- 
ity of cp. We can extend this definition to deal with 
intervals in a straightforward way. We would like to 
define J$“‘cp to mean &(a 5 Pri((P) 5 p), which 
should mean agent pi knows the probability of ‘p is 
somewhere between EY and fl. Since 9 may not cor- 
respond to a measurable set, what we really mean 
is that the inner measure of ‘p is at least (Y and the 
outer meaSure is at most /3. Since we interpret Pri 
as inner measure when ‘p does not correspond to a 
measurable set, and since p*(T) = 1 - p*(T”) for any 
set T, we can capture this intuition in terms of our 
language by interpreting K~*B1~ as an abbreviation 
for Kj[(Pri(v)) 2 (Y) A (Pri(l$D) 2 1 - p)]. We CEUl 

now prove the following. 

Theorem 8: In a synchronous system, if P’ and P 
are consistent probability assignments satisfying P’ < 
P, then 

(4 

04 

for every fact ‘p, every agent pi, every point c, 
andallcr,/?withO<o<fi<l,wehave 

P’, c + I~~~B’cp implies P, c + I(ilol*plp, 

there exist a fact cp, an agent pi, a point c, and 
cu,PwithO<a<p<lsuchthat 

P’, c k Kr”‘cp and yet P, c k Kt”‘p 

P’, d k K~‘“‘-~ and yet P, d /= Kf”pl-p. 

If L(*) iZ s’u%icnt!y riik, t1iC.u v E L(Q). 

Part (a) shows that an agent’s confidence interval 
does not increase in the presence of a more power- 
ful adversary; part (b) shows that it might actually 

decrease. The formula cp from part (b) gives an ex- 
ample of a case that agent pi might be unduly conser- 
vative by using an inappropriate probability assign- 
ment. Using P’, agent pi would reject bets on ‘p with 
payoff l/o even though it should be accepting all such 
bets. 

Our results show that Pport has a special status 
among probability assignments. It is a maximum as- 
signment among consistent assignments in the lattice 
with the < ordering, and so, by Theorem 8, gives the 
sharpest bounds on the probability interval among 
all consistent probability assignments. In addition, 
any other consistent probability assignment can be 
obtained from PJ““~ by a process of conditioning. Fi- 
nally, Ppo” is the probability assignment that corre- 
sponds to what decision theorists seem to use when 
referring to an agent’s subjective (or posterior) prob- 
ability. However, as we have seen, Pp“*’ may not 
always be the “right” probability assignment to use. 
The right choice depends on the knowledge of the ad- 
versary offering us the bet in the system we wish to 
analyze. Although Ppore may give a smaller inter- 
val than Pj (intuitively giving sharper bounds on an 
agent’s belief a fact is true), if pi uses the better lower 
bound from Ppa*’ as a guide to deciding what bet to 
accept from pj, it may wind up losing money. In 
fact, it follows from Theorems 7 and 8 that Pj is the 
probability assignment that gives an agent the best 
interval and still guarantees a good betting strategy. 

Even in cases where Ppo’t is the “right” choice, it 
is not necessarily the probability we want to use in 
computations. It may not always be necessary to ob- 
tain the sharpest interval of confidence possible. A 
rough bound may be sufficient. Theorem 8 shows 
that proving a lower bound on an agent’s confidence , 
using a certain choice of probability space implies the 
same bound holds with any definition higher in the 
lattice. The advantage of using a probability assign- 
ment that lies lower in lattice is that, because the 
individual probability spaces are smaller, the compu- 
tations may be simpler. When arguing about the level 
of confidence of an agent, it seems best to choose a 
definition as low in the lattice as possible to make the 
proof as simple as possible, but high enough to enable 
one to prove a sufficiently high level of confidence. 

. 

In this section we have seen how to understand and 
construct probability assignments for synchronous 
systems. In the full paper, we also consider asyn- 
chronous systems, where we find it necessary to con- 
sider a third type of adversary sketched in the intro- 
duction. 

115 



7 An application: coordinated 
attack 

We now apply these different probability assignments 
to understanding probabilistic coordinated attack as 
defined in Section 4. In [HM84] it is shown that a 
state of knowledge called common knowledge is a nec- 
essary condition for coordinated attack. Intuitively, 
a formula cp is common knowledge if all agents know 
cp, all agents know all agents know ‘p, and so on ad 
infinitum. In the same paper it is shown that com- 
mon knowledge of nontrivial facts cannot be attained 
in systems where there is no upper bound on message 
delivery time (and, in particular, in asynchronous sys- 
tems), and hence that coordinated attack is not possi- 
ble in such systems. We now examine the relationship 
between probabilistic common knowledge and proba- 
bilistic coordinated attack. 

The definition of common knowledge [HM84] cap- 
tures the intuition given above as follows. Given a set 

G C (PI,.--, p,} of agents, we define everyone in G 
knows p by E, - ApiEG Kicp. Defining Eicp induc- 

tively by Ezcp = ‘p and Eicp = E,E&lp, we define cp 
is common knowledge to G by C,cp z A*>,-, E$. It 
is not hard to prove that common knowledge satisfies 
the following statements [HM85]: 

1. the fixed point axiom: C,cp s Ea(cp A Cocp). 

2. the induction rule: From 1c, 1 E,($ A ‘p) infer 
II, 3 COP. 

The first statement says that C,cp is a fixed point 
of the equation X E E,(cp A X). In fact, it can be 
shown to follow from the induction rule that &cp is 
the greatest fixed point, and thus is implied by all 
other fixed points of this equation [HM85]. 

By direct analogy, probabilistic common knowledge 
is defined in [FH88] as the greatest fixed point of the 
equation X G E,“(cp A X), where E,?J z APiEG I(~“(P.~ 
It is easy to show that the definition of Cgcp satisfies 
the obvious analogues of the fixed point axiom and 
induction rule given above. 

Now consider the probabilistic attack problem, and 
suppose cp is the fact “A attacks iff B attacks.” In the 
original coordinated attack problem, since cp is true 
at all points, the induction rule implies Cocp holds at 
all points. Are there implementations of the proba 
bilistic attack problem where C,“cp holds at all points? 

‘As is shown in [FHSS], this definition is not equivalent 
to the infinite conjunction of (Eg)kp, k > 0; however it is 
equivalent to the inlkite conjunction of (Fa)kq, k > 0, where 
we define (Fs)k(p inductively by unwinding the fixed point 
equation: (F~)O+J = cp and (F,“)kq = Eg(cp A (FG)k-icp). 

The answer depends on the choice of probability as- 
signment. Stronger assignments yield stronger no- 
tions of probabilistic common knowledge which make 
stronger requirements of the implementation. 

Consider the assignment PJut. Here the adversary 
offering an agent a bet knows the entire global state 
at every point. If there is any point where the attack 
is uncoordinated, then no run extending this point 
can satisfy ‘p. At this point cp holds with probability 
0 (according to Pfnt), so it easily follows that Cg(o 
cannot hold. This says that an algorithm achieves 
probabilistic coordinated attack with respect to PJui 
iff it achieves coordinated attack. Since coordinated 
attack is known to be unattainable in asynchronous 
systems, we cannot get probabilistic coordinated at- 
tack either with respect to such a strong adversary. 

Next consider the assignment Ppo’L. Here the ad- 
versary offering the bet has precisely the same knowl- 
edge as the agent itself. Consequently, if it is possible 
to reach a point at which the agent can determine 
from its local state that no run extending the point 
can satisfy ‘p, the agent knows cp does not hold, and 
hence neither does Cgcp. Consequently, our first im- 
plementation CA1 of the probabilistic attack prob- 
lem does not have the property that Cg”cp holds at 
all points (with respect to P”““), but our second im- 
plementation CA2 does. This can be proved by first 
showing notice that Eg(p holds at all points (with re- 
spect to Ppo’)) and hence by the induction rule (tak- 
ing the formula $ in the rule to be true), so does 

C,uP. 
Notice that with respect to any consistent probabil- 

ity assignment, if at some point an agent in G knows 
9 does not hold, then Cgcp cannot hold at this point 
(since CEcp implies E,“cp by the fixed point axiom, 
while Ki~‘p implies lE,Qp for all i E G). Conse- 
quently, it cannot be the case that Cz”cp holds at all 
points of CA1 with respect to any consistent assign- 
ment. Is it possible for Cgcp to hold at all points 
of CA1 with respect to any probability assignment? 
Since this algorithm guarantees p holds with probe- 
bility Q, taken over the runs, the obvious solution is 
to make the assignment mimic the probability distri- 
bution on the runs. In particular, consider Pgrior. It 
is easy to see that with this assignment, every agent 
knows cp with probability (Y at all points of the sys- 
tem. Since E,Oy holds at all points, it follows by the 
induction rule that Cgcp holds at all points as well. 

We summarize our discussion in the following 
proposition. 

Proposition 9: 

1. CA1 achieves probabilistic coordinated attack 
with respect to Pprior but not Ppoai. 

116 



2. CA2 achieves probabilistic coordinated attack 
with respect to ?‘p”** but not P’*‘. 

3. A protocol achieves probabilistic coordinated at- 
tack with respect to P fur iff it achieves coordi- 
nated attack, and hence no such protocol exists. 

This proposition shows how increasing the power of 
the adversary (moving down in the lattice) strength- 
ens the kind of guarantees that can be made for prob- 
abilistic attack. Note that all of the probability as- 
signments agree at time 0, and the probability they 
assign to a set of points is identical to the proba- 
bility of the set of runs going through those points. 
However, at later times, it is only Ppriof that agrees 
with the initial probability on runs. Thus, for the 
other probability assignments, saying that cp holds 
with probability greater than a at all points (r,rC) in 
7~ according to pi will generally be a stronger state- 
ment than saying it holds with probability a taken 
over the runs of 7~. 

Of course, it is perfectly conceivable we might want 
to consider probability assignments besides those that 
we have discussed above, which will make yet more 
guarantees. Considering such intermediate assign- 
ments might be particularly appropriate in protocols 
where security is a major consideration, such as cryp- 
tographic protocols. There it becomes quite impor- 
tant to consider the knowledge of the agent we are 
betting against. 

We remark that a slightly different definition 
of probabilistic coordinated attack is considered in 
[FZ88]: it is required only that the conditional prob- 
ability both parties attack together, given that one of 
the parties attacks, is at least (Y.~ It is then shown 
in [FZ88] that this form of probabilistic coordinated 
attack corresponds to all the agents having average 
belief of a that the attack will be coordinated. We 
can reinterpret these results in our language as show- 
ing that this notion of coordinated attack is equiva 
lent to probabilistic common knowledge with respect 
to another probability assignment, much in the spirit 
of Pprior. In particular, the probability space used by 
[FZ88] for this analysis is not Pport, but an inconsis- 
tent probability assignment. However, it should be 
noted that one can be led to counterintuitive results 
using an inconsistent probability assignment. Con- 
sider Ppr’o* in the context of CA1. Since there is 
a point at which the information in agent A’s local 
state guarantees the attack will not be coordinated, 
according to Pprior both Kzcp and KAl(P hold at this 

‘Although it is not clear from the definition of probabilistic 
attack given in [FZ88] over what the probability is being taken, 
the results given dearly assume that the probability is being 
taken over the runs. 

point. In other words, the choice of Pprior has the ef- 
fect of saying that at a point an agent can have high 
confidence in a fact it knows to be false. 

The preceding discussion raises another interest- 
ing point. While it is typically the case that in dis- 
tributed systems applications only probabilities on 
runs are considered (which corresponds to Ppr’ar), it 
is not clear that this is always appropriate. If an agent 
running a probabilistic coordinated attack algorithm 
that is guaranteed to work with high probability over 
the runs finds itself in a state where it knows that the 
attack will not be coordinated, then it seems clear 
that it should not proceed with the attack. It may 
be worth reconsidering a number of algorithms to see 
if they can be redesigned to give stronger guarantees. 
This may be particularly appropriate in the context 
of zeroknowledge protocols [GMR89], where the cur- 
rent definitions allow a prover to continue playing 
against a verifier even if the prover knows perfectly 
will that it leak information, Although it is extremely 
unlikely that the prover will find itself in this situa- 
tion, it may be worth trying to redesign the protocol 
to deal with this possibility. While adaptive protocols, 
where processors modify their actions in light of what 
they have learned, are common in the control theory 
literature, the probabilistic algorithms that are used 
in distributed systems typically are not adaptive. It 
seems that a number of algorithms can be converted 
to adaptive algorithms with relatively little overhead. 
We hope to study this issue more carefully in a future 
work. 

8 Conclusion 

We have provided a framework for capturing knowl- 
edge and probability in distributed systems. Our 
framework makes it clear that in order for an agent 
to evaluate the probability of a formula rp at a given 
point, it needs to specify the adversary (or, more ac- 
curately, adversaries) which determines the probabil- 
ity space. This use of adversaries may help clear up 
a number of subtle issues in the study of probability, 
such as what the probability+that a coin lands heads 
is after the coin has been tossed. In addition, our 
approach allows us to unify the different approaches 
to probability in distributed systems that have ap- 
peared in earlier works. Of course, what needs to be 
done now is to use these definitions to analyze prob- 
abilistic (especially cryptographic) protocols! 



Acknowledgments [HMT88] J. Halpern, Y. Moses, and M. Tuttle, A 

Thanks to. Moshe Vardi, Hagit Attiya, and Adam 
Grove for stimulating discussions. 

knowledge-based analysis of zero knowl- 
edge, Proc. Z&h ACM Symp. on Theory 
of Computing, 1988, pp. 132-147. 

References 
[HV89] J. Halpern and M. Vardi, The complexity 

of reasoning about knowledge and time, I: 
Lower bounds, Journal of Computer and 
System Sciences 38:1, 1989, pp. 195-237. [BG54] 

[FHSS] 

[~~88] 

[GMR89] 

[Gra78] 

[HF88] 

[HM84] 

[HM85] 

D. Blackwell and M. A. Girshick, Theory 
of Games and Sfatistical Decisions, John 
Wiley & Sons, Inc., New York, 1954. 

R. Fagin and J. Halpern, Reasoning about 
knowledge and probability: preliminary re- 
port, Proceedings of the Second Conference 
on Theonztical Aspects of Reasoning about 
Knowledge (M. Vardi, ed.), Morgan Kauf- 
mann, 1988, pp. 277-293. 

M. J. Fischer and L. D. Zuck, Reasoning 
about Uncertainty in 
Fault-Tolerant Distributed Systems, Tech- 
nical Report YALEU/DCS/TR-643, Yale 
University, 1988. 

S. Goldwasser, S. Micsli, and C. Rackoff, 
The knowledge complexity of interactive 
proof systems, SIAM Journal on Comput- 
ing l&l, 1989, pp. 186-208. 

J. Gray, Notes on database operating 
systems, Operating Systems: An Ad- 
vanced Course (R. Bayer, R. Graham, 
and G. Seegmuller, eds.), Lecture Notes 
in Computer Science, Vol. 66, Springer- 
Verlag, 1978. Also appears as IBM Re- 
search Report RJ 2188, 1987. 

J. Halpern and R. Fagin, Modelling knowl- 
edge and action in distributed systems, 
Concuwency 88 (F. Vogt, ed.), 1988, 
pp. 18-32. A revised and expanded ver- 
sion appears as IBM Research Report RJ 
6303, 1988. 

J. Halpern and Y. Moses, Knowledge 
and common knowledge in a distributed 
environment, Proc. 3rd ACM Symp. on 
Principles of Distributed Computing, 1984, 
pp. 50-61. A revised and expanded version 
appears as IBM Research Report RJ 4421, 
1988. 

J. Halpern and Y. Moses, A guide to 
the modal logics of knowledge and be- 
lief, Ninth International Joint Conference 
on Artificial Intelligence (IJCAI-85), 1985, 
pp. 480-490. 

[Lew80] 

[LS82] 

[Mer85] 

[Rab80] 

[Rab82] 

[SS77] 

[v=851 

[VFSO] 

D. Lewis, A subjectivist’s guide to objec- 
tive chance, Ifs (W. L. Harper, R. Stal- 
naker, and G. Pearce, eds.), D. Reidel Pub- 
lishing Company, 1980, pp. 267-297. 

D. Lehmann and S. Shelah, Reasoning 
about time and chance, Information and 
Control 53, 1982, pp. 165-198. 

N. D. Mermin, Is the moon there when no- 
body looks? Reality and the quantum the- 
ory, Physics Today 38:4, 1985, pp. 38-47. 

M. 0. Rabin, Probabilistic algorithm for 
testing primality, Journal of Number The- 
ory 12, 1980, pp. 128-138. 

M. 0. Rabin, N-process mutual exclusion 
with bounded waiting by 4 . logn-valued 
shared variable, JournaZ of Computer and ’ 
System Sciences 25:1, 1982, pp. 66-75. 

R. Solovay and V. Strassen, A fast Monte 
Carlo test for primality, SIAM Journal on 
Computing 6:1, 1977, pp. 84-85. 

M. Y. Vardi, Automatic verification of 
probabilistic concurrent finite-state pro- 
grams, Proc. 26th IEEE Symp. on Founda- 
tions of Computer Science, 1985, pp. 327- 
338. 

B. C. Van Fraassen, A temporal frame- 
work for conditionals and chance, Ifs 
(W. L. Harper, R. Stalnaker, and 
G. Pearce, eds.), D. Reidel Publishing 
Company, 1980, pp. 323-340. 

118 


