
Programming Simultaneous Actions Using
Common Knowledge: Preliminary Version*

Yoram Moses and Mark R. Tuttle

MIT Laboratory for Computer Science
Cambridge, Massachusetts 02139

Abstract: This work applies the theory of knowl
edge in distributed systems to the design of fault
tolerant protocols for problems involving coordinated
simultaneous actions in synchronous systems. We give
a simple method for transforming specifications of
such problems into high-level protocols programmed
using explicit tests of whether certain facts are com
mon knowledge. The resulting protocols are optimal
in all runs: for every possible input to system and
pattern of processor failures, they are guaranteed to
perform the simultaneous actions as soon as any other
protocol can possibly perform them. A careful anal
ysis of when facts become common knowledge shows
how to efficiently implement these protocols in many
variants of the omissions failure model. In the gen
eralized omissions model, however, it is shown that
any protocol that is optimal in this sense must re
quire co-NP hard computations. The analysis in this
paper exposes subtle differences between the failure
models, including the precise point at which this gap
in complexity occurs.

1 Introduction

The problem of ensuring proper coordination between
processors in distributed systems with unreliable com
ponents is both important and difficult. There are
generally two aspects to such coordination: the ac
tions the different processors perform, and the rela
tive timing of these actions. Both aspects are crucial,

*The first author's affiliation as of 1987 will be the depart
ment of Applied Mathematics, Weizmann Institute, Rehovot,
76100, Israel. His work was primarily supported by an IBM
Post-doctoral fellowship. The work of both authors was sup
ported by the Office of Naval Research under contract NOOOI4
85-K-0168, by the Office of Army Research under contract
DAAG29-84-K-0058, by the National Science Foundation under
grant DCR-8302391, and by the Defense Advanced Research
Projects agency (DARPA) under contract N00014-83-K-0125.

0272-5428/86/0QOO/0208$0 1.00 © 1986 IEEE

208

for instance, in maintaining consistent views of a dis
tributed database. In particular, it is often most de
sirable to perform coordinated actions simultaneously
at different sites of the system. It is therefore of great
interest to study the design of protocols involving si
multaneous actions.

This paper presents a novel approach to the design
of fault-tolerant protocols for performing coordinated
simultaneous actions in synchronous systems, for a
number of variants of the omissions failure model (cf.
[MSFJ). We define a general notion of a simultane
ous choice problem, which is intended to capture the
essence of simultaneous coordination in such a sys
tem. Many well-known problems, such as simulta
neous Byzantine agreement, distributed firing squad,
etc. can be formulated as such problems. Given a sat
isfiable specification of a simultaneous choice prob
lem, we derive a protocol for the problem with the
unique property of being optimal in all runs: For ev
ery possible input to the system and pattern of faulty
processor behavior, this protocol is guaranteed to per
form the simultaneous actions as soon as they would
be performed under any other correct protocol for the
problem. In contrast, most previous protocols for co
ordinated actions in unreliable systems do not adapt
their behavior based on the pattern of failures, and
hence always perform as poorly as they do in their
worst case run. (We will often use optimal as short
hand for optimal in all runs.)

Our approach is based on the close relationship be
tween knowledge, communication and action in dis
tributed systems. More specifically, a number of re
cent works (cf. [HM),[DM),[Mo)) point out that simul
taneous actions are closely related to common knowl
edge. Informally, a fact is common knowledge if it
is true, everyone knows it, everyone knows that ev
eryone knows it, and so on ad infinitum. Roughly
speaking, every processor performing a simultaneous
action - an action that is guaranteed to be performed

by all of the processors simultaneously whenever it
is performed at all - knows that the action is be
ing performed. It follows that every processor knows
that all other processors know that the action is be
ing performed. This argument can be formalized and
completed to show that when a simultaneous action is
performed, all relevant processors must have common
knowledge that it is being performed. Consequently,
a necessary condition for performing simultaneous ac
tions is attaining common knowledge of particular
facts. Interestingly, our work shows that in a pre
cise sense this is also a sufficient condition: The prob
lem of performing simultaneous actions reduces to the
problem of attaining common knowledge of particular
facts.

In deriving optimal protocols for simultaneous
choice problems, we make explicit and direct use of
the correspondence between common knowledge and
simultaneous actions. 'the derivation is done in two
stages. In the first stage we program the protocol in
a high-level language in which processors' actions de
pend on explicit tests of whether certain facts are com
mon knowledge (cf. [DM),[HF). These high-level pro
tocols are automatically extracted from the problem
specification via a few simple manipulations. For ex
ample, consider the following simple version of the dis
tributed firing squad problem (cf. [BL),[CDDS),[R]):
An external source may send "start" messages to some
of the processors in the system, at unpredictable, pos
sibly different, times. It is required that (i) if some
nonfaulty processor receives a "start" message, all
nonfaulty processors should simultaneously perform
an irreversible "firing" action at some later point,
(ii) whenever any processor "fires" all of the non
faulty processors do, and (iii) if no processor receives
a "start" message, then no "firing" occurs. The high
level protocol we derive for this problem requires all
processors to act as follows:

In every round do:

if it is common knowledge that some
processor received a «startJl message

then
«lire" and halt

else
send current view to every processor.

The second stage in the derivation. consists of de
signing effective methods for implementing tests for
common knowledge. We present a uniform method
for effectively implementing these tests, in all of the
variants of the omissions failure model we consider.
This provides a way of compiling such high-level pro
tocols into low-level standard protocols in these fail
ure models. As a consequence, for example, the above

209

protocol yields an optimal protocol for the distributed
firing squad problem. No previous protocol for this
problem suggested in the literature is optimal in all
runs. Furthermore, in many cases this protocol "fires"
much earlier than any other known protocol for this
problem. A general method for obtaining optimal pro
tocols for simultaneous problems in the simpler crash
failure model is implicit in the work of Dwork and
Moses (cf. [DM), which provided the original motiva
tion for this work.

We show that optimal protocols for simultaneous
choice problems in all variants of the omissions model
can always be implemented in a communication effi
cient way. However, it turns out that a naive method
of implementing tests for common knowledge is not
computationally efficient: It requires processors to
perform exponential time computations between con
secutive rounds of communication. One of the major
technical contributions of this paper is in investigating
methods of efficiently implementing tests for common
knowledge in the different variants of. the omissions
model. In the standard omissions model, we provide
a clean and concise method of efficiently implementing
tests for common knowledge. The analysis underly
ing this method exposes some of the basic structure of
the omissions model, as well as crisply characterizing
the set of facts that can be common knowledge at any
point in the execution of a protocol. In the receiving
omissions model, in which faulty processors may·fail
to receive messages rather than to send messages, the
problem is shown to be trivial. This exposes a big
difference between two seemingly symmetric models.

We r',.re not able to efficiently implement tests
for common knowledge in the generalized omusions
model, in which an undelivered message implies only
that either the sender or the intended receiver is
faulty. This, it turns out, is not a coincidence. In
fact, we show that unless P=NP, no optimal proto
col for any non-trivial simultaneous problem in this
model can be computationally efficient. We prove
that any such protocol must require the participating
processors to perform co-NP hard computations be
tween consecutive rounds of communication. In par
ticular, there can be no computationally efficient opti
mal protocol for the distributed firing squad problem
stated above, for simultaneously performing Byzan
tine agreement (cf. [PSL),[DM]), and for most any
other simultaneous problem in this model. We con
sider another variant of the omissions model, called
generalized omission, with. information, in which it is
assumed that the intended receiver of an undelivered
message can test (and therefore knows) whether it or
the sender is at fault. We show that the techniques
used in the standard omissions model extend to this
model, yielding computationally efficient optimal pro-

tocols. We are therefore able to precisely identify the
point at which optimal protocols for simultaneous ac
tions become comp.utationally prohibitive.

The remainder of the paper is organized as follows:
Section 2 defines the models of distributed systems
used in the paper, and Section 3 gives a precise def
inition of notions of knowledge in such a system. In
section 4: we define the notion of a ,imultaneou, choice
problem, a large class of problems requiring coordi
nated simultaneous action. Section 5 presents a uni
form method for deriving an optimal high-level pro
tocol from the specification of a simultaneous choice
problem, using explicit tests for common knowledge.
Section 6 deals with the problem of efficiently imple
menting tests of whether facts relevant to simulta
neous choice problems are common knowledge. The
analysis in Section 6 reveals interesting properties of
the different failure models, and exposes finedistinc
tions between them. Finally, Section 7 contains con
cluding remarks and suggeitions for future work.

2 Model of a SysteDl

This section presents the various models of distributed
systems with which this paper is concerned. Our
treatment extends and is closely related to that of
[DM).

We consider a synchronous distributed system con-
. sisting of a finite collection P = {PI' ••• ,Pn} of n ~ 2

processors (automata), each pair of which is con
nected by a two-way communication link. The pro
cessors share a discrete global clock that starts out
at time 0 and advances by increments of one.1 Com
munication in the system proceeds in a sequence of
rounds, with round k taking place between time k - 1
and time k. In each round, every processor first sends
messages it needs to send to other processors, and
then receives messages sent to it by other processors
in the same round. The identity of the sender and des
tination of each message, as well as the round in which
it is sent, are assumed to be part of the message. The
processors in the system communicate among them
selves, as well as with elements external to the sys
tem (clients), who may make various requests of the
system (think, for example, of a distributed airline
reservation system). A processor p starts out in some
initial state t7. At any given time, a processor's input
history consists of its initial state together with the re
quests it received from the system's (external) clients.

lWe assume the existence of a shared global clock for ease
of exposition. The analysis performed in this paper applies
even if processors have local clocks and start operating in an
arbitrarily staggered order.

210

Similarly, a processor's message history consists of the
set of messages it has received from other processors.
A processor's view at any given time consists of its
input history, message history, and the time on the
global clock.

We think of the processors as following a protocol,
which specifies exactly what messages each processor
is required to send (and what other actions the pro
cessor should take) at each round, as a deterministic
function of the processor's view. However, processors
are unreliable, and thus some of them might be fD,wty,
the rest being nonfaulty. Both faulty and nonfaulty
processors faithfully follow their protocol, but their
behaviors differ in the messages they succeed in send
ing and receiving. A nonfaulty processor succeeds in
sending all of the messages it is required by the pro
tocol to send, and receives all of the messages sent to
it. We will distinguish a number of different models
of faulty processor behavior: (i) The omis,ioM model
(cf. [MSF]), in which a faulty processor receives all of
the messages sent to it but succeeds in sending only
an arbitrary (not necessarily strict) subset of the mes
sages it is required to send; (ii) the receitJing omusion,
model, in which a faulty processor succeeds in receiv
ing only an arbitrary subset of the messages sent to
it, but succeeds in sending all of the messages it is re.
quired to send; (iii) the generalized omi"iofU model,
in which a faulty processor both succeeds in sellding
only an arbitrary subset of the messages it is required
to send and in receiving only an arbitrary subset of
the messages sent to it; and (iv) generalized omusio""
with in/ormation, which differs from the generalized
omissions model in that a processor that does not re.
ceive a message from another processor can determine
whether it or the sender is at fault. (Formally, this
is modeled by the processor receiving an "error" mes..
sage to that effect.)

An infinite execution of a protocol is called a rUR

of the protocol. A run of a given protocol can be
uniquely specified by presenting a complete history
of the events that take place, from time 0 until the
end of time. This includes each processor's complete
input history, message history, and, if the processor
is faulty in the particular run, its precise behavior in
each round. Formally, a faulty behavior sequence for a
processor in the omissions model is simply a sequence
(Sl, S2, ...) of sets of processors. A processor is said
to displQ,y such a faulty behavior sequence in a given
run if in every round k of the run the processor fails to
send the messages it is required to send to processors
in Sic, and succeeds in sending all such messages to
processors not in Sic. A failure pattern of a run is a
set of pairs (p" (Sf , S~, ...)) consisting of a processor
and a faulty behavior sequence, such that the proces
sors appearing in the failure pattern are exactly those

that are faulty in the run, and they each display the
corresponding faulty behavior sequence. The notion
of a failure pattern can be similarly defined for the
other models of failure we have mentioned. In the re
ceiving omissions model the sets Sk are replaced by
sets of processors Rk from which the processor fails
to receive messages, and in the variants of generalized
omissions they are replaced by pairs (Sic, Rk) of sets
of processors. Given "Yl' ••• , "Yn, where "Yi is proces
sor Pi'S complete input history in a given run p, the
(ezternal) input to p is simply "Y = ("Yl' ••• ,"Yn). A
pair (11",'1), where 11" is a failure pattern and "Y is an
input, is called an operating environment. A run is
uniquely determined by a protocol and an operating
environment. The fact that an operating environment
is independent of the protocol will allow us to com
pare different protocols according to their behavior in
corresponding runs - runs with the same operating
environments.

Our purpose is to study the behavior of protocols
in the presence of a bounded number of failures of a
particular type, in a given setting of possible inputs.
Thus, we identify a system with the set of all possi
ble runs of a given protocol under such circumstances.
Formally, a system is determined by a protocol P, a
failure model, natural numbers n ~ 2 and t ~ n - 2,
and sets r i of individual processor inputs, i, ~ n. ~he

system is identified with the set of all runs of P by n
processors, at most t of which are faulty (in the sense
of the given failure model), and in which every pro
cessor Pi'S input (initial state and external messages)
is some "Yi E ri. Thus, the set of possible inputs in
the system has the form r1 X r2 x·· · X rn. This
definition ensures that the external input to the sys
tem is orthogonal to, and hence carries no information
about, the failure pattern. Furthermore, it ensures
that one processor's external input contains no infor
mation about other processors' external input.

A pair (p, t), where p is a run and t is a natural
number, is called a point, and represents the state
of the system after the first t rounds of p. Roughly
speaking, a point corresponds to an instantaneous de
scription of the system. We denote processor p's view
at the point (p, t) is denoted v(p, p, t).

3 Definition of Kno'Wledge

Our analysis makes essential use of reasoning about
processors' knowledge at various points in the execu
tion of a protocol. This section presents precise def
initions of the types of knowledge we will deal with.
Our treatment is a modification of that of [DM) and
[HM].

211

We assume that a particular system, a set of runs
as defined in the previous section, is fixed ahead of
time. All runs mentioned will be runs of this system,
and all points will be points in such runs. We as
sume the existence of an underlying logical language
for representing all of the relevant ground facts
facts about the system that do not explicitly men
tion processors' knowledge; e.g., «the value of register
z is 0", or ·processor Pi failed in round 9". Formally,
a ground fact cp will be identified with a set of points
T(cp). A ground fact cp is said to hold at a point (p, l),
denoted (p, t) t= cp, iff (p, l) E T(cp). We will define
various ground facts as we go along. The set of points
corresponding to these facts will be clear from the
context. A fact is said to be valid if it is true of all
points in all systems. A fact is said to be valid in the
system for a given system if it true of all points in the
system.

We now define what facts a processor is said to
"know" at any given point (p, l) in the system.
Roughly speaking, Pi is said to know a fact cp if cp
is guaranteed to hold, given Pi'S view of the run.
More formally, we say that two points (p, Ie) and

(p' ,Ie') are Pi-equivalent, denoted (p, Ie) ..!... (p', Ie'), iff
V(pi,p,le) = V(pi,p', Ie'). (Given that the global time
is defined to be part of a processors view, it turns out

that (p, Ie) ~ (p', Ie') implies that Ie = Ie'.) We say
that a processor Pi /cnowl a fact cp at (p, Ie), denoted
(p, Ie) F KiCP, if (p', Ie) t= cp for all points (p', Ie) sat-

isfying (p, Ie) ~ (pi, Ie). This definition of knowledge
is essentially the total view interpretation of [HM). It
is "external" , in the sense that a processor is ascribed
knowledge based solely on the processor's informa
tion, and not, say, on its computational power or on
internal actions it performs.

We will find it useful to extend this definition of
knowledge to sets of processors as well. The view of a
set of processors G ~ P at (p, Ie), denoted v(G, p, Ie),
is defined by:

v(G,p,k) ~f {(p,v(p,p,Ie)): pEG}.

Thus, roughly speaking, G's view is simply the joint
view of its members. We say that the group G ha, im
plicit knowledge of cp at (p, Ie), denoted (p, Ie) F 10 cp,
if for all runs pi satisfying v(G, p, k) = ,,(G, pi, Ie) it is
the case that (pi, Ie) t= cp. In the particular case that
G is a singleton set {Pi}, the notions of 1a and K i

coincide. Intuitively, G has implicit knowledge of cp
if the joint view of G's members guarantees that cp
holds. Notice that if processor P knows cp and proces
sor q knows cp :::::> ,p, then together they have implicit
knowledge of-,p, even if neither of them knows ,p in
dividually. The notion of implicit knowledge was first
defined in [HM].

Finally, the state of common knowledge among a
group of processors will be central to our analysis.
The kind of groups of interest will not always be ex
plicitly given as fixed subsets of P. For example,
we will be most interested in facts that are common
knowledge to the group JI of nonfaulty processors.
In any given context (i.e., run), this group is a fixed
set G of processors. But the precise identity of JI
varies from one context to another. This motivates
us to define common ~nowledge for a slightly more
general notion of a group of processors: An indesical
set S of processors is a function mapping points to
sets of processors. That is, S : (p, t) S(p, t), where
S(p, t) ~ P. The notion of an indexical set is a direct
generalization of the notion of a fixed set of processors.
In particular, we can identify a fixed set of processors
with a constant indexical set. The group JI of non
faulty processors, the group P of all processors, the
group of all processors that haven't displayed faulty
behavior by the current time, and many other groups
of interest are all indexical sets of processors. Given
an indexical set S, we define E, V', essentially corre
sponding to everyone in S knows tp, by:

E,tp~ A K,(p, e S ::) tp).
PiES

Roughly speaking, E, tp holds exactly if every member
of S knows that if it is a member of· S then tp holds.
Notice that if S is a fixed set G, then p, e S iff K.(p, e
$), and hence E,tp == Eotp is valid in the system.

We can now define tp is common knowledge to $,
denoted 0, V', by:

O,tp ~f V' A E,tp A E,E,tp A··· A c:"V' A···.

In other words, (p, t) F 0, tp iff both (p, t) F tp and
for all m ~ 1 it is the case that (p, t) F E';"tp. The
definitions of E, and 0, directly generalize the stan
dard notions from [HM] and [DM].

We now mention some of the properties of the no
tions of knowledge defined above. An operator M
is said to satisfy the modal system 85 if it satis
fies (a) if tp is valid in the system then M tp is valid
in the system; and the following formulas are valid:
(b) M tp ::) tp (c) (Mtp A M (tp ::) ,p)) ::) M,p; (d)
Mtp ::) MMtp; and (e) -,Mtp ::) M-,MV'. The defini
tions of knowledge, implicit knowledge, and common
knowledge given above immediately imply the follow
ing proposition (cf. [HM2], [DM]):

Proposition 1: The operators K" 10 and 0, each
satisfy the modal system 85.

A useful tool for thinking about E';"tp and O,tp is
an undirected graph whose nodes are the points of the

212

system, in which two points (p,le) and (p', Ie) are con
nected by an edge iff the points are ",-equivalent for
some processor Pi e $(p,Ie).n S(p',lc). ·This graph is
called the ,imilarit, graph relative to $. For example,
if S is the set JI of nonfaulty processors, two points
are .connected by an edge in the similarity graph iff
there is a processor who is nonfaulty at both points,
which has the same view at both points. It can now be
shown that (p, Ie) F c:" tp iff (p', Ie) F tp for all points
(p', Ie) of distance ~ m from (p, Ie) in this graph. Two
points (p, t) and (p', t) are said to be ,imilar relative
to S, denoted (p, t) ~ (p', t), if they are in the same
connected co~ponent of this graph. The indexical set
S is generally clear from context (usually being the set
JI ofnonfaulty processors). We thus denote similarity
by ~ without the superscript S. We can now show:

Theorem 2: (p,le) F O,tp iff (p', Ie) F tp for all
points (pi, Ie) satisfying (p, Ie) ~ (p' , Ie).

One of the useful properties of common knowledge
is:

O,tp ::) E,O,tp,

which implies that when a fact becomes com
mon knowledge all relevant processors simuitaneoully
come to know that it is common knowledge. Another
useful fact about common knowledge is captured by
the following rule, which roughly states that facts that
are ·public· are common knowledge:

if tp ::) E, V' is valid in the system
then tp ::) 0, tp is valid in the system.

According to our definitions, facts about the system
are properties of points: they are either true or false
at any given point. It is often useful to be able to
refer to facts as being about things other than points,
e.g., about runs. A fact tp is said to be a fact about
the run if fixing the run determines whether or not tp
is true. That is, if for all runs p and times Ie and t it is
the case that (p, Ie) F tp iff .(p, t) F tp. The meaning
of a fact being about the input, about the operating
environment, about the past, about the jir,t Ie round"
etc., are similarly defined.

4: Simultaneous Choice

In order to study the design of protocols for problems
involving coordinated simultaneous actions, we need
a definition of this class of problems. Lacking a most
general definition of such problems, we focus on the
class of ,imultaneou, choice problems, a large class of
problems that capture the essence of such coordinated

actions in a distributed environment. Roughly speak
ing, these problems require that all of the relevant
processors identically choose one of a number of pos
sible alternative actions, where for every action we are
given conditions under which the action must be per
formed and conditions under which its performance
is forbidden. A specification of such a problem must,
in addition, determine the possible settings (i.e., pos
sible external inputs) in which the protocol may be
required to perform the choice.

Formally, a simultaneous action is an action a to
gether with associated conditions pro(a) and con(a),
which are conditions on the operating environment. A
simultaneous choice problem C is specified by a set of
actions {a1 , ••• , am}, with their associated conditions,
together with sets r i of possible inputs to proces
sor Pi. A protocol P = P(n, t) implements C if every
run p of the systems defined by (P(n,t),n,t,{ri}iS")
satisfies the following conditions: (i) at most one
of the eli'S is performed, (ii) any eli performed is
performed simultaneously by all nonfaulty proces
sors, (iii) a. is performed if p satisfies pro(a.), and
(iv) CIt is not performed if p satisfies con(eIi). We
say that C is implementable if such a protocol P ex
ists. Denoting by '1'(eIi) the property of being a run
in which eli is performed, it is easy to see that if P
implements C then the following formulas are valid in
the system: pro(ot) :::> '1'(ot), con(a.) :::> -,'1'(a.), and
'1'(a.) :::> -,W(ai) (i :F i). We also consider a closely
related class of problems, called strict simultaneous
choice problems, which are defined as simultaneous
choice problems are, except that runs of an imple
menting protocol are required to satisfy the modified
condition (i/) ezactly one of the Bi'S is performed, to
gether with the conditions (ii)-(iv) above. We note
that we have chosen the set JI of nonfaulty processors
as the set of processors required to perform actions si
multaneously, but the notion of a simultaneous choice
problem may be similarly stated in terms of any (in
dexical) set of processors, even the set P of all pro
cessors, with the analysis in this section and the next
one carrying through without change.

Many familiar problems requiring simultaneous ac
tion by a group of processors are instances of a simul
taneous choice or strict simultaneous choice. In all
known instances, the conditions pro(Gi) and con(Gi)
are facts about the input and the existence of fail
ures. (By the ezistence of failures we mean whether
any failure whatsoever occurs during the run. Some
protocols allow the nonfaulty processors to display de
fault behavior in the presence offailuresj cf. [LF].) For
example, the distributed firing squad problem is a si
multaneous choice consisting of the "firing" action a,
the condition pro(a) being the receipt of a "start" sig
nal by a nonfaulty processor, and the condition con(a)

213

being that no processor receives a "start" signal. The
associated sets r. of inputs simply allow for a "start"
message to be delivered to any processor at any time.
The simultaneous Byzantine agreement problem (cf.
[DM], [PSL]) is an example of a strict simultaneous
choice. This problem consists of an action ao of "de
ciding 0" and an action a1 of "deciding 1". The con
dition pro(oo) is that all initial values are 0, and the
condition pro(a1) is that all initial values are 1. (The
conditions con(ao) and co",(a1) are both taken to be
false.) The associated sets r. each consists of two
possible inputs: one starting with initial value 0 and
receiving no further external input during the run,
and the other starting with initial value 1. Notice
that for most assignments of initial values, deciding
either 0 or 1 is acceptable according to the problem
specification. Simultaneous Byzantine agreement is
a ,trict simultan~ous choice, since the processors are
required to decide either 0 or 1 in every run.

We are now in a position to formally state the re
lationship between simultaneous action and common
knowledge mentioned in the introduction: When a si
multaneous choice is performed, it is common knowl
edge that the choice is being performed.

Lemma 3: Let p be a run of a protocol Pimple
menting a simultaneous choice (resp. strict simultane
ous choice) among {a1' .•. ' am}. H a. is performed at
time tin p, then (p,t) F OJ/W(at).

5 Optimal Protocols

In this section, we show how a high-level, optimal pro
tocol for a simultaneous choice problem can be ex
tracted directly from the problem specification. We
start by. considering a very simple protocol 1 that
will serve as a basic building block in such optimal
protocols:

for t ~ 0, at time t each processor sends its current
view to every other processor.

This protocol is called the full-information protocol
(cf. [H], [FL], [PSL]). Intuitively, since 1 requires pro
cessors to send all of the information available to
them at each point during a run, one would expect
this protocol to give each processor as much informa
tion about the operating environment as any protocol
would. In fact, the next lemma shows that if a pro
cessor can not distinguish two operating environments
during runs of 1, then the processor can not distin
guish these operating environments during runs of any
other protocol.

Lemma 4: Let p, p' be runs of 1 and ~, ~' be runs of
a protocol P such that p and ~ (resp., pi and ~') have

the same operating environment. H (p, i) .!. (p', l)
then (~,l) ~ (~/,l).

The following corollary of Lemma 4 .captures the
generality of the protocol 1 in a precise sense. The
first part says that 1 is as good as any protocol for
perpetuating knowledge about the operating environ
ment. More importantly, the second part says that
facts about the operating environment become com
mon knowledge to the nonfaulty processors during
runs of 1 at least as early as they do during runs
of any other protocol.

Corollary 6: Let tp be a fact about the operat
ing environment, and let p be· a run of 1 and ~ be a
run of a protocol P such that p and ~ have the same
operating environment. Then

a) H (~,l) F Kitp then (p,t) F Kitp.

b) H (~,t) F OJ/tp then (p,t) F CJ/tp.

We now show how 1 can be used as the basis of an
optimal protocol for any implementable simultaneous
choice. From the definition of a simultaneous choice
we see that performing the action CIi during a run is
forbidden iff the run satisfies either con(CIi) or one of
the pro(ai)'s (for j =F i). Let us define

enabled(CIi) ~f ""con(ai) A A ...,pro(a,,·).
i-:pi

A run satisfies enabled(CIi) iff performing CIi during
the run is not forbidden by the specification of the
problem. IT enabled(CIi) is common knowledge at a
point (p, i), then it is common knowledge at (p, t)
that performing CIi is not forbidden. Conversely, if
the action CIi is performed at the point (p, t), then
Lemma 3 implies that W(Gi) is common knowledge
at (p, t). Since '\lI(CIi) ::> enabled(CIi) , it follows that
enabled(Gi) is also common knowledge at (p,t). This
motivates consideration of the following protocol Pc.:

for t ~ 0, at time t perform the following:
if CJ/enabled(Gi) holds for some eli

then
let i = min{j: OJ/enabled(oi) holds};
perform eli;
halt

else
send current view to every processor.

214

The protocol Pc. is not a protocol in the usual sense
since a processor's actions depend on whether certain
facts are common knowledge (cf. [DM]; see [HF] for
a similar notion of knowledge-based protocols). Pro
tocols in which processors' actions do not depend on
explicit tests for knowledge or common knowledge of
certain facts are called standard protocols (termed
simple protocols in [HFJ). Notice that Pc. halts when
VOJ/ enabled(CIi) first holds. Corollary 5 implies that
i
this holds in runs of 1 as early as it holds in runs
of any other protocol. Intuitively, since Pc. sends mes
sages precisely as required by 1 until an action is per
formed, the same should be true in runs of Pc.. We
formalize this in the following lemma.

Lemma 6: Let p be a run of 1 and let ~ be a
run of Pc. such that p and ~ have the same operat
ing environment. IT (~, t) ~ VC J/ enabled(CIi) then

i
(p, t) ~ VOJ/enabled(ai).

i

Finally, using Lemma 3, Corollary 5, and Lemma 6,
we can show that Pc. is an optimal protocol:

Theorem 'T: H C is an implementable simultaneous
choice (resp., strict simultaneous choice), then Pc. is
an optimal protocol for C.

Thus, by Lemma 6 and Theorem 7, the problem
of optimally performing simultaneous choice problems
can be reduced to the problem of determining when
facts such as enabled(CIi) become common knowledge
during runs of 1. In the remainder of the paper we
restrict ·our attention exclusively to the protocol 1.
Recall that a fundamental property of 1 is that pro
cessors are required to send their entire view in every
round. Since,· strictly speaking, a processor's view is
exponential in sise, 1 seems to require processors to
send messages of exponential length. We now show
that there is a simple, compact representation of a
processor's view that may be sent instead.

Given a run p, the communication graph (cf. [Me);
see Figure 1) of p represents what messages are de
livered in p. It is a layered. graph (with one layer
corresponding to every natural number) in which ev
ery processor in the system is represented by one node
in every layer. A portion of a communication graph
is shown in Figure 1. We denote the node repre
senting Pi at time t by (pi, t). Edges connect nodes
in adjacent layers, with an edge between (pi, Ie - 1)
and (Pi, Ie) iff a message from Pi is delivered to Pi
in round k. The labeled communication graph is ob
tained by labeling a layer 0 node of the communication

6 Testing Common Knovvledge

graph by the processor's initial state, and the other
nodes by the inputs the processor receives from exter
nal clients. We note in passing that the labeled com
munication graph of a run of 1 is a representation of
the operating environment of the run. For every point
(p, l), we denote by 9 (p, l) the first l + 1 layers of the
labeled communication gra.ph of p, representing the
first l rounds of the run p.

Informally, at every point (p, t), a processor p,'s
view corresponds to a certain subgraph 9, (p, t) of
.9(p,l). For example, 91(p,3) is shown in Figure 1
for a particular run p. The graphs 9, (p, t) are easily
definable in terms of .9 (p, t). Details are left to the
full paper. The next lemma states that the labeled
communication graph corresponding to a processor's
view at a point uniquely determines its view at the
point.

Figure 1: Communication graphs.

Programming protocols using tests for common
knowledge is a very powerful programming technique:
We have reduced the problem of designing an opti
mal protocol for a simultaneous choice to the prob
lem of testing for common knowledge of certain facts.
However, since the resulting protocols involve tests
for common knowledge, it is not immediately obvious
that they can be compiled into standard protocols that
can be followed by conventional processors. We now
show that this is generally possible. However, in order
to do so we need to slightly restrict the class of "ac
ceptable" simultaneous choices by requiring that the
conditions enabled(CIi) be decidable. Using "9(p,l)"
to denote the property of being a run having 9(p, l) as
a prefix of its labeled communication graph, a fact rp
is said to be effective if there is a deterministic algo
rithm for determining whether "g (p, l) :> rp" is valid
in the system, given 9(p, l) as input. For all natu
ral simultaneous choice problems it is the case that
the conditions enabled(CIi) are effective facts. We say
that a simultaneous choice is effective if each condition
enabled(G,) is effective.

Suppose, now, that cpo is an effective fact. Then it is
possible to effectively determine whether rp is common
knowledge at a point (p, l) by enumerating all (expo
nentially many) points (p',l), testing whether each of
them is similar to (p, t), and determining whether or
not r> holds at each of these points. Thus, we have:

o 1 2 3

1'8

1'2

PI

9(p,3)

o 1 2 3

1'8

1'2

PI

Lemma 8 : For all runs p and p' of "
u(p" p, f) = u(p" p', t) iff 9,(p, f) = 9i(p', f).

Theorem 9 : For all variants of the omissions
model, if C is an effective, implementable simultane
ous choice, then Pc may be compiled into a standard
optimal protocol for C.

Consequently, a processor's view of the run and the
processor's view of the corresponding labeled commu
nication graph convey the same information. It is
easy to see that the size of 9, (p, l) is polynomial in
the number of processors n, the global time i, and the
size of the messages sent to the system by its clients.
Thus, if we require processors to send their view of the
labeled communication graph instead of their view of
the run, then messages required by 1 are only poly
nomial in size.2 In addition, a processor receiving
such messages in a given round can easily construct
the labeled communication graph corresponding to its
view at the end of the round in only polynomial time.
Thus, the use of such compact representations of a
processor's view is also·computationally efficient.

2'In the Byzantine failure models in which processors are
allowed to lie, however, such compact representations are not
guaranteed to exist; cf. [0].

Clearly, implementing tests for common knowledge
of certain facts by the method described above is very
inefficient. The rest of the paper is devoted to investi
gating ways of implementing such tests in a computa
tionally efficient manner in the different failure mod
els. In order to do so, we must further restrict the
class of "acceptable" simultaneous choices to require
that computing whether enabled(Gi) is determined by
a subgraph of the labeled communication graph is
computationally tractable. We say that a fact rp is
practical if it is a fact about the input and existence
of failures for which there is an algorithm determining
the validity of "9.(p,t) :> enabled(CJ,)" in polynomial
time. A simultaneous choice is practical if each con
dition enabled(as) is practical. Notice that all natural
simultaneous choice problems are practical. We note
that if C is a practical simultaneous choice, then the
above mentioned method can be used to compile Pc

215

f=-[==:: :: ~ }I- -----

t.
C

Ie t., ,

t+l-1

S'

~==~G I }/

Ie t., ,

t+l-1

The run Pl. The run P2. The run P2- The run Pa.

Figure 2: Runs illustrating Lemma 10.

into a PSPACE implementation of C. However, as we
will see in the rest of this section, it is often possible
to do much better.

6.1 The OmissioDs Model

In this subsection, we develop an efficient con
struction that precisely characterizes what facts are
common knowledge in a run of 1 in the omis
sions failure model. This construction gives rise
to computationally-efficient, optimal protocols imple
menting simultaneous choices. The construction is ar
rived at as a result of a careful analysis of what facts
are not common knowledge at a point (p, t). This
construction is motivated by the next two lemmas.

We say that a processor is ,ilent from time Ie if it
sends no messages from time Ie. A processor is said to
fail before time t if it displays faulty behavior before
time t. Now, consider the runs PI and P2 of Fig
ure 2, where we indicate only faulty behavior: solid
lines indicate silence, and dashed lines indicate spo
radic faulty behavior. Notice that I processors fail
in PI by time t. In the following lemma we show
that (PI, t) ,..." (p2' t) where P2 differs from PI only in
that the faulty processors are silent in P2 from time Ie,
where Ie =,l- (t + 1-f).

Lemma 10: Let PI be a run in which at most I
processors fail before time l. Let P2 be a run differing
from PI only in that processors failing before time t
in PI are silent from time Ie in P2, where Ie = t - (t +
1 - I). Then (PI, l) ,..." (P2' t).

The proof of Lemma 10 follows from a technical
lemma similar to Lemma 15 of [DM). Details are left
to the full paper. Lemma 10 implies, for instance, that
the views at time.1e of processors failing before time t
in PI are not common knowledge at time t since these
processors are silent from time Ie in P2. In addition,
no fact about the input not determined by time Ie is
common knowledge.

216

Figure 3: Runs illustrating Lemma 11.

Given a point (p, Ie) and a set of processors G, we
define

B(G, P, Ie) ~f {p : (p, Ie) F la(«p if fawt,")}.

The essence of the second lemma is captured by the
runs P2 and PS of Figure 3. In P2, the faulty processors
are silent from time Ie. G is the set of nonfaulty proces
sors and B' = B(G, P, Ie). The run PS differs from P2
in that the processors in P - B' do not fail in Ps.
The following lemma states that (P2, l) ,..." (Ps, t) and,
in addition, that the processors in G have the same
views at time Ie in both P2 and PS. Formally, we have
(see Figure 3):

Lemma 11: Let P2 be a run in which the I proces
sors that fail are silent from time Ie = l - (t + 1 - f).
Let G be the set of nonfaulty processors in P2, and let
B' = B (G, P2, Ie). Let Ps be a run that differs from P2
in that processors in P - B' do not fail. Then

a) (P2, l) ,..." (ps, l), and

b) !I(G, P2, Ie) = !I(G, Ps, Ie).

Thus, for instance, the failure of the processors in
P - B' can not be common knowledge at (P2' l) since
they do not fail in PS.

Going back to Figures 2 and 3, notice that if I' < I
then, setting p~ = Ps, Lemmas 10 and 11 can be ap
plied again. Iterating this process (at most t times) we
reach a run p satisfying (PI, t) ,..." (p, l) in which the i
faulty processors are silent from time k = l-(t+l- i),
and at (p, k) all the faulty processors are implicitly
known to be faulty by the nonfaulty processors. We
are about to show that the view of the nonfaulty pro
cessors at (p, k) will characterize what facts are com
mon knowledge at (PI,t). This is shown by consider
ing what happens when individual processors perform
an analogous iterative construction based on their in
dividual views. We now formalize such a local con
struction, illustrated in Figure 4.

Figure 4: An example of the construction for t = 9.

GJ.a=B"s 882 IT}· ..
• •• 1· ..
• G=Gs •

2

o

.
~O

Corollary 14: If 'P is a fact about the input and the
existence of failures, then (p, t) F= aN 'P iff "V ::> 'P"
is valid in the system for V = yep, t).

Recall that if cp is a practical fact, then it is pos
sible to determine in polynomial time whether or not
"V ::) cp" is valid. We note that a processor knows
that another processor is faulty iff it knows of a mes
sage the processor failed to send and this is an easy
fact to check given ~he communication graph corre
sponding to the processor's view. Since the construc
tion of ~ (p, t) halts after t iterations, the construc
tion can be computed locally in polynomial time. By
Corollary 14 we now have the following:

Let Go = {Pi} and ko = l. For i 2: 0, we de
fine Bi = B(Gi,P, ki), and we define Gi +1 and Ici+l
inductively as follows:

If ~ ever becomes negative, then for all j > i we
define kj = ~ and we define Gj and Bj to be empty.

This construction must halt within t iterations, and
we can show that the results of the construction (the
limits of the sequences {G,,}, {B,,}, and {~}) are inde
pendent of the processor Pi with which the construc
tion began. We denote the results of the construction
by G, h, and k. We define ~(p, t) to be v(a, p, k)
if k 2: 0, and empty otherwise. Since each processor
is able to compute ~ (p, t) independently, ~ (p, t) is
common knowledge at (p,t). Conversely, Lemmas 10
and 11 can be used to show that V(p,f) completely
characterizes the connected component of (p, f) in the
similarity graph. That is:

Lemma 12: V(p, f) =V(p', t) iff (p, f) ~ (p', f).

Consequently, the set ~(p, t) completely character
izes the set of facts that are common knowledge at
the point (p, f). More precisely we have the following:

Theorem 13: (p, f) F= aJ/ cp iff (p', t) t= cp for all pi
satisfying V(p, t) = V(pi, t).

As a result, facts about the input and existence of
failures that are common knowledge at the point (p, t)
must follow directly from the set ~(p,t), as we ·see
in the following corollary. Using "V" to denote the
property of being a run having Vasa set of views, we
have the following:

217

Theorem 15: If C is a practical, implementable
simultaneous choice, then Pc can be compiled into a
polynomial-time, standard protocol for C.

We reiterate the fact that Pc is a protocol for C that
is optimal in all run,: actions are performed in runs
of Pc as soon as they can possibly be performed by
any protocol in runs having the same operating en
vironment. Thus, for example, simultaneous Byzan
tine agreement is performed in anywhere between two
and t + 1 rounds, depending on the pattern of fail
ures (as is shown in [DM] to be the case in the crash
failure model). Similarly, the firing squad problem
can be performed in anywhere between one and t + 1
rounds after a "start" signal is received. Paradoxi
cally, in all these cases, the simultaneous actions can
be performed quickly only when many failures become
known to the nonfaulty processors early in the run. In
particular, if there are no failures, no fact. about the
input is common knowledge less that t+ 1 rounds after
it is first determined to hold.

The fact that the information in V(p, t) is essen
tially all that is common knowledge at a given point
has interesting implications. For example, recall that
in the traditional simultaneous Byzantine agreement
or consensus problems (cf. [PSL], [F), [DM)), the pro
cessors are only required to decide, say, v in case they
all started with an initial value of v. It would be more
pleasing, however, if they would decide t) whenever the
majority of initial values were v. This is clearly impos
sible, since some processors may be silent throughout
the run. However, by choosing the majority of the ini
tial values appearing in V(p, t) as their decision value,
the processors can approximate majority fairly well:
Hmore than (n+t)/2 of-the initial values are v, then t1

will be chosen. In fact, we can show that the approx
imation can be bad only in runs in which agreement
is obtained early. In particular, if agreement cannot
be obtained before time t + 1 (this would happen ex
actly if V(p, t) is empty for l ~ t), then the value

agreed upon would be the majority value in case more
than n/2 + 1 of the processors have the same initial
value. Furthermore, a weak protocol for (exact) ma
jority does exist: A protocol that either decides that
there was a failure or decides on the true majority
value.

This implies that, in the omissions model, simultane
ous actions can be performed by all processors when
ever they can be performed by the set of nonfaulty
processors.

As a final remark, let ~ and G, be the intermedi
ate results of beginning the construction at the point
(p,t), and denote t1(G"p,~) by Vi. Consider the op
erator £ defined by £(lti) = lti+l for all i. We find
it interesting that ~, which is the greatest fixpoint
of the operator t, characterizes the facts 'P for which
C)/'P holds, where we know from [HM] that C)/'P is
the greatest fixpoint of X == 'P 1\ E)/X.

Interestingly, since messages from faulty processors
can convey new information about the failure pattern,
such messages do affect the construction. Therefore,
a faulty processor can play an important role in de
termining what facts become common knowledge and
when, even after the processor has been discovered
to be faulty. In the crash failure model, however, a
failed processor does not communicate with other pro
cessors after its failing round and has little affect on
what facts become common knowledge. This is an es
sential property of the omissions model operationally
distinguishing it from the crash failure model.

We note that all of the analysis in this section car
ries over into the crash failure model without change.,
In particular, our construction can be used to de
rive efficient optimal protocols for simultaneous choice
problems in the crash failure model, thus slightly ex
tending [DM]. Ruben Michel has independently char
acterized the similarity graph in the crash failure
model and some of its variants (cf. [Mi]l.

Notice that every processor, faulty or nonfaulty, is
able to compute the set ~ (p, t) locally. Consequently,
a fact is common knowledge to the nonfaulty proces
sors iff it is common knowledge to all processors.

Proposition 16 :
C)/'P == Cp'P.

In the omissions model,

processors fail only to receive messages. While at first
glance these models seem very similar, they are actu
ally quite different.

For example, Proposition 16 shows that in the omis
sions model nonvalid facts do become common knowl
edge to the set P of all processors. In contrast, the
following proposition tells us that the only facts that
are common knowledge to the group of all processors
at a point (p, t) in the receiving omissions model are
facts valid at time t, where afact 'P is said to be valid
(in the system) at time t if "time = t ::) 'P'" is valid in
the system.

Proposition 1'1: Let t ~ 2. In the receiving omis
sions model, (p, t) t= CP'P iff 'P is valid at time t.

Consequently, no interesting simultaneous action can
ever be guaranteed to be performed in this model by
the set of all processors, even if all communication is
successful.

In the receiving omissions model, a nonfaulty pro
cessor receives all of the messages required by the pro
tocol to be sent to it. Thus, at time k+1 all nonfaulty
processors have an identical view of the first k rounds.

Theorem 18: Let 'P be a fact about the first k
rounds and let p be a run of F in the receiving omis
sions model. Then (p,k) F 'P iff (p,k + 1) F C)/'P.

Theorem 18 implies that given a practical simultane
ous choice C, Pc can be efficiently implemented and
can perform actions one round after the first condi
tion enabled(as) is determined to hold. In particular,
simultaneous Byzantine agreement can be obtained in
one round in this model.

These results show that while at first glance the
assignment of responsibility for undelivered messages
to sending or to receiving processors may seem arbi
trary, the assignment dramatically affects what facts
are common knowledge, and hence when simultane
ous ·actions can be performed. We consider this to be
an indication that the omissions model is not a robust
failure model.

6.3 Generalized Omissions

6.2 Receiving Omissions

In the omissions model, faulty processors fail only to
send messages. In this subsection, we consider the
symmetric receiving omissions model, in which faulty

218

Perhaps a more natural failure model is the gener
alized omissions model, in which faulty processors
might omit both to send and to receive messages. We
first consider generalized omissions with information,
a model in which a processor that does not receive
a message can determine whether it or the sender is

at fault. In this case, the construction used for the
omissions model can be modified to yield a similar set
of views V (p, l) that are common knowledge at (p, l).
This yields a similar method of deriving efficient op
timal protocols for simultaneous choice problems in
this model. (Roughly speaking, the main difference
between the two constructions is that receiving fail
ures in round k count as sending failures in round
Ie + 1. See the full paper for details.) Thus, efficient
compiled protocols are possible in this model:

Theorem 19: Let C be a practical, implementable
simultaneous choice. In the generalized omissions
model with information, Pc can be compiled into a
polynomial-time, standard protocol for C.

In general, however, such failure information is not
available. In the generalized omissions model, an un
delivered message implies only that either the sender
or the intended receiver is faulty. Recall that a proces
sor's view depends only on the labeled communication
graph of the run. In all more benevolent failure mod
els a missing edge in this graph uniquely identifies a
faulty processor. However, now undelivered messages
merely place constraints on which sets of processors
could be faulty. There can be many different ways to
ascribe failures to processors in a manner consistent
with this graph.

The following theorem shows that the computa
tional complexity of determining what facts are com
mon knowledge is dramatically greater with general
ized omissions than with the more benign failure mod
els. This theorem holds, however, only for nontrivial
facts. We say that a practical fact fP is nontrivial if it
is undetermined (i.e., neither fP nor --'fP is valid in the
system) and if it is possible to compute in polynomial
time a labeled communication graph 9(p, l) that de
termines that p satisfies fP. We say that a practi
cal simultaneous choice is nontrivial if each condition
enabled(Gi) is nontrivial. Notice that any natural si
multaneous choice is nontrivial. The following theo
rem shows that the problem of determining whether
such nontrivial practical facts are common knowledge
is co-NP hard.

Lemma 20: Let ~1, ••• , CPm be nontrivial practical
facts. In the generalized omissions model, the prob
lem of determining whether (p, t) 1= VO)/CPi is co-NP

i
hard.

As an immediate corollary, we have:

Theorem 21: In the generalized omissions model,
any optimal protocol for a nontrivial practical simul
taneous choice requires processors to be able to per
form co-NP hard tasks.

219

---------8
Minimal G

9(·, .)
determining ...------

Y'Pi •

__i - --+---4-1---.&--1' + 1

I.. 1..+1 1..+2 I..+S

Figure 5: Embedding a graph G in a run p.

It follows that optimal protocols for simultaneous
choice problems as simple as the distributed firing
squad problem or simultaneous Byzantine agreement
are computationally infeasible, assuming P =F NP.
This is the first known evidence for this being the
case.

Lemma 20 is proved by reducing a co-NP complete
problem to the problem of determining whether a non
trivial practical fact VCPi holds. We now introduce

i
the co-NP complete problem used in this reduction.
We say that a graph G is k-coverable if G has a vertex
cover of size k.

Lemma 22 (Goldreieh, Moses, Tuttle): Given
(G, k) such that G is a k-coverable graph, determining
whether G is not (k-1)-coverable is co-NP complete.

Given a k-coverable graph G, we construct a run p
as illustrated in Figure 5. 9(·,·) is a minimal la
beled communication graph determining that p sat
isfies YfPi. In p, part of the communication graph

i
during round t + 1 is an embedding of G in which an
edge from node t} to node winG is represented by
an undelivered message from processor ptJ to Pw. In
addition, two processors are silent from time t +1 OD,

and t + 1 processors do not fail in p. We then show
that G is not (Ie - 1)-coverable iff V0)I fPi holds at

i
(p, t). (Complete details are given in the full paper.)

In addition to increasing the difficulty of deter
mining whether a fact is common knowledge at a
point, the following theorem show that the uncer
tainty about the failure pattern has interesting effects
on when facts become common knowledge. For exam
ple, now for the first time the relationship between the
number of processors n and the number of faulty pro-'
cessors t affects when facts become common knowl
edge, as the following theorem shows.

Theorem 28: In the generalized omissions model:

a) H n :5 2t then the only facts that are common
knowledge at time 2 are facts valid at time 2.

b) H n > 2t then some facts not valid at time 2 do
become common knowledge at time 2.

Consequently, when n :5 2t no nontrivial simultaneous
choice can be performed at time 2 in this model. We
remark that this is the first evidence of behavior in a
benevolent failure model depending on the ratio of n
and t. Theorem 23 can be used to show that protocols
optimal in the generalized omissions model will not be
optimal in the omissions model.

7 Conclusions

This paper applies the theory of knowledge in dis
tributed systems to thoroughly analyze the design
of fault tolerant protocols for a large and interesting
class of problems. This is a good example of the power
of applying reasoning about knowledge to obtain gen
eral unifying results and a high-level perspective on
issues in the study of unreliable systems. We believe
that reasoning about knowledge will continue to prove
to be an effective tool in studying the basic structure
and the fundamental phenomena in a large variety of
problems in distributed computing.

Given the effectiveness of a knowledge-based analy
sis in the case of simultaneous actions, it would be in
teresting to know whether a similar analysis can shed
similar light on the case of eventutllly coordinated ac
tions. Dolev, Reischuk, and Strong show that the
problem of performing eventually coordinated actions
is quite very different from performing simultaneous
actions (d. [DRS)). In addition to common knowledge,
an analysis of eventually coordinated actions may be
able to make good use of the notion of ewentutll com
mon /cnowledge (cf. [HM), [Mo)). We note that it is
possible to show that for eventual choice problems
there do not, in general, exist protocols that are op
timal in all run'. For example, one can give two pro
tocols for (eventual) Byzantine agreement with the
property that for every operating environment one of
these protocols will reach Byzantine agreement (i.e.,
all processors will decide on a value) by time 2 at the
latest. However, if t > 1, no single protocol can guar
antee to reach agreement by time 2 in all runs. What
is the best notion of optimality that can be achieved
in eventual coordination?

We provide a method of deriving an optimal pro
tocol for any given impiemeAttJ6le specification of a

220

simultaneous choice problem. However, in this work,
we have completely sidestepped the interesting ques
tion of characterizing the problems that are and are
not implementable in different failure models. We be
lieve that a general analysis of the implementability
of problems involving coordinated actions in differ
ent failure models will expose many of the impor
tant operational differences between the models. As
an example, our specification of the distributed firing
squad problem in the introduction is implementable
in the variants of the omissions model, but is not im
plementable in more malevolent models, in which a
faulty processor can falsely claim to have received a
"start" message, and otherwise behave correctly (see
[BLl and [CDDS] for definitions of similar problems
that are implementable in the more malicious mod
els).

We have shown how to derive optimal protocols
for nontrivial simultaneous choice problems in the
generalised omissions model, requiring processors to
perform PSPACE computations between consecutive
rounds. We have also shown that any optimal pro
tocol for such a problem must require the processors
to perform co-NP hard computations between rounds.
Determining the precise complexity of this task is a
non-trivial open problem, due to the interesting com
binatorial structure underlying the generalized omis
sions model. It would also be interesting to extend our
study to more malicious failure models, such as the
Byzantine and the tJutAentictJted Byzantine models (d.
[F]). It is not immediately clear whether the notion of
a failure pattern can be defined in these models in
a protocol-independent fashion. Thus, it is not clear
that the notion of optimality in all runs is well de
fined in such models. If such definitions are possible,
we believe that the co-NP hardness result from tile
generalized omissions model should extend to thae
models. Furthermore, capturing the precise combina
torialstructure of the similarity graph in these models
is bound to expose many of the mysterious properties
of the models.

As we have seen, there are no computationally effi
cient optimal protocols for simultaneous choice prob
lems in the generalised omissions model. Since it
is unreasonable to expect processors to perform co
NP hard computations between consecutive rounds of
communication, it is natural to ask what is the ear
liest time that such actions can be performed by n:
.ource bounded processors (e.g., processors that can
only perform polynomial time computations). Are
there always guaranteed to be optimal protocols for
such processors? How can they be derived? The anal
ysis of this question is no longer as closely related
to the question of when facti about the run become
common knowledge. It seems that the information-

based definition of knowledge that we presented in
section 3, used in many other papers as the defini
tion of knowledge in a distributed system (cf. [CM],
[DM], [FI], [HM], and [PRJ), is not appropriate for
reasoning about such questions. A major challenge
motivated by this is the formulation of useful theories
of resource-bounded knowledge that would provide us
with appropriate tools for analyzing such questions.
Such a theory would provide notions such as poly
nomial time knowledge and polynomial time common
knowledge, which would correspond to the actions and
the simultaneous actions that polynomial time proces
sors can perform. Note that the fact that (subopti
mal) polyno~ial time protocols for the simultaneous
Byzantine abeement problem exist even in the more
malicious failure models imply that, given the right
notions, many relevant facts should become polyno
mial time common knowledge. Much work is left to
be done.

Ackno"Wledgrnents

We are greatly indebted to Oded Goldreich for his
generous collaboration on the proof of Lemma 22.
We thank Oded Goldreich, Joe Halpern, Amos Israeli,
and Moshe Vardi for comments that improved the pre
sentation of this work, and we thank Paul Beame,
Cynthia Dwork, Vassos Had.nacos, and David Peleg
for stimulating discussions on the topic of this paper.

References

[BL] J. Burns and N. A. Lynch, The Byzantine
Firing Squad Problem, MIT Technical Report,
MIT/LCS/TM-I75, April 1985.

[CM) K. M. Chandy and J. Misra, How proceues learn,
Di,tributed Computin" 1:1, 1986, pp. 40-52.

[C) B. Coan, A Communication-Efficient Canonical Form
for Fault-Tolerant Distributed Protocols, Proceedin,s
0/ the Fifth PODC, 1986, pp. 63-72.

[CDDS] B. Coan, D. Dolev, C. Dwork, and L. Stockmeyer,
The distributed firing squad problem, Proceedin" 0/
the SetJenteenth STOC, 1985, pp. 335-345.

[DRS] D. Dolev, R. Reischuk, and H. R. Strong, Eventual is
earlier than immediate, Proceedin" o/the ISth FOCS,
1982, pp. 196-203.

[DM] C. Dwork and Y. Moses, Knowledge and common
knowledge in a Byzantine environment: The cue of
crash failures. Proceedin" 0/ the Conference on The
oretical ~,pec" 0/ Reasonin, About KnotIJled,e, Mon
terey, 1986, J.Y. Halpern ed., Morgan Kaufmann,
pp. 149-170. Slightly revised u MIT Technical Re
port, MIT/LCS/TM-SOO, July 1985.

[F] M. J. Fischer, The consensus problem in unreliable
distributed systems (a brief survey), Yale Univer,it"
Technical Report YALEU/DOS/RR-S7!J, 1983.

[FI] M. J. Fischer and N. Immerman, Foundations of
knowledge for distributed systems, Proceeding, 0/ the
Conference on Theoretical A,pect, 0/ Reasoning About
Knowledge, Monterey, 1986, J.Y. Halpern ed., Mor
gan Kaufmann, pp. 171-185.

[FL] M. J. Fischer and N. A. Lynch, A lower bound for
the time to assure interactive consistency, In/orma
tion Proce"ing Letter" 14:4, 1982, pp. 183-186.

[H] V. Hadzilacos, A lower bound for Byzantine agree
ment with fail-stop processors, Haruard Uniuer,itJ/
Technical Report TR-S1-8S.

[HF] J. Y. Halpern and R. Fagin, A formal model of knowl
edge, action, and communication in distributed sys
tems, Proceedin" 0/ the Fourth PODC, 1985, pp. 224
236.

[BM] J. Y. Halpern and Y. Moses, Knowledge and common
knowledge in a distributed environment, Version of
January 1986 is available as IBM research report RJ
.u.'l. Early versions appeared in Proceedin" 0/ the
Third PODO, 1984, pp. 50-61; and as mM research
report RJ .u.ll, 1984.

[HM2] J. Y. Halpern and Y. Moses, A guide to the modal
logic of knowledge and belief, Proceedin" 0/ the Ninth
IJCAI, 1985, pp. 480-490.

[LF] L. Lamport and M. J. Fischer, Byzantine grenerals
and transaction commit protocols, SRI Technical Re
port Op.6S, 1982.

[Me] M. Merritt, Notes on the Dolev-Strong lower bound
for Byzantine agreement, unpublished manuscript,
1985.

[Mi] R. Michel, Attaining common knowledge in synchron
ous distributed networks, unpublished manuscript,
1986.

[Mo] Y. Moses, Knowledge in a distributed environment,
Ph.D. The,", Stanford Uniuer,it, Technical report
STAN-OS-l1!O, 1986.

[MSF] C. Mohan, H. R. Strong, and S. Finkelstein, Meth
ods for distributed transaction commit and recovery
using Byzantine agreement within clusters of proces
sors, Proceedin" of the Second PODO, 1983, pp. 89
103.

[MT] Y. Moses and M. Tuttle, Programming simultaneous
actions using common knowledge, MIT Technical Re
port, MIT/LOS/TM-S1S.

[PRJ R. Parikh and R. Ramanujam, Distributed processes
and the logic of knowledge (preliminary report), Pro
ceedin" 0/ the W orishop on Logic, of Pro,rams, 1985,
pp. 256-268.

[PSL] M. Pease, R. Shostak, and L. Lamport, Reaching
agreement in the presence of faults, JAOM, 2':2,
1980, pp. 228-234.

[R] M. O. Rabin, Efficient solutions to the distributed
firing squad problem, private communication.

221

