
Code Generation for the IOA Language

by

Michael J. Tsai

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2002

c© 2002 Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 24, 2002

Certified by. .
Nancy A. Lynch

NEC Professor of Software Science and Engineering
Thesis Supervisor

Certified by. .
Joshua A. Tauber

PhD Candidate
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Code Generation for the IOA Language

by

Michael J. Tsai

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2002, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents a framework of tools for compiling distributed algorithms writ-
ten in the IOA language. The target of the compilation is Java code that runs on
a network of workstations. The framework includes machinery for matching IOA
data types with their implementations and a library of commonly used data type
implementations. The interface generator tool produces an auxiliary automaton that
connects the algorithm to local sources of I/O. The invocation generator tool assists
the user in creating sources of local input. The framework provides two means of
resolving nondeterminism: a source-to-source transformer accompanied by user input
and a language extension for annotating IOA source files.

Thesis Supervisor: Nancy A. Lynch
Title: NEC Professor of Software Science and Engineering

Thesis Supervisor: Joshua A. Tauber
Title: PhD Candidate

2

Acknowledgments

I could not have asked for better advisors. Professor Nancy Lynch introduced me

to the IOA project three years ago. She has been extremely helpful throughout this

project, and her confidence in me has been most encouraging. Josh Tauber, who

followed my work most closely, always provided just the right level of guidance and

supervision. From discussions of intricate coding details, to high-level design, to how

to present my work in writing, he has been an endless source of ideas and constructive

criticism. His design of the code generator forms the immediate basis for my work.

Toh Ne Win and Laura Dean participated in many important discussions about

IOA and Java and gave valuable feedback as users of my code. Additionally, Toh im-

plemented many crucial classes and answered my random questions. Antonio Ramı́rez

created much of the infrastructure that my code depends upon and helped me learn

the IOA codebase. Professor Stephen Garland helped me with the IOA front-end,

taught me LSL, and asked thoughtful questions. Atish Dev Nigam and Holly Reimers

contributed valuable code, and Atish was a great sounding board for my attempts at

explaining the workings of the toolset. Daniel Chvatik commented on drafts of this

document.

Other members of LCS have provided suggestions and feedback, including Stanislav

Funiak, Professor Michael Ernst, Andrej Bogdanov, and Shien Jin Ong. Professor

David Gifford’s class helped give me a formal understanding of much of the work I

had been doing.

Ultimately, none of this would have been possible without the love and support

of my family. It is to them that I dedicate this work.

3

Contents

1 Introduction 12

1.1 The IOA Language and Toolset . 12

1.2 IOA Code Generation . 13

1.3 Thesis Overview . 17

1.4 Writing Conventions . 21

2 Abstract Data Types 23

2.1 Overview . 23

2.1.1 Code Generation . 23

2.1.2 Data Types . 24

2.1.3 Chapter Roadmap . 26

2.2 Implementation Classes . 26

2.2.1 ADTs Extend ioa.runtime.adt.ADT 27

2.2.2 ADTs are Immutable . 27

2.2.3 Static Methods Implement Operators 28

2.2.4 Return Value Casting . 29

2.2.5 Arbitrary Initialization and Parameterizations 29

2.2.6 Inheritance . 32

2.2.7 Comparing ADTs . 33

2.2.8 Exceptions . 34

2.3 Registry Classes . 34

2.3.1 Looking up Simple Sorts and Operators 35

2.3.2 Looking up Compound Sorts and Operators 36

4

2.3.3 Curried Parameters . 37

2.3.4 Looking up Dynamic Sorts and Operators 39

2.3.5 Matching Compound Sorts and Operators 40

2.3.6 Installer . 42

2.3.7 Looking up Return Types . 44

2.3.8 Shortcutting . 46

2.3.9 Locating ADTs at Compile-Time 46

2.4 Registration Classes . 47

2.4.1 Standard Registration Classes 48

2.4.2 Dynamic Registration Classes 48

2.4.3 Non-Standard Registration Classes 49

2.4.4 Flexibility Without Registration Classes 49

2.5 Test Classes . 51

2.5.1 Testing Implementation Classes 51

2.5.2 Testing Registration Classes 52

2.5.3 Catching Bugs in the Implementation/Registration Interface . 53

2.6 Recipe for Writing ADTs . 53

2.7 Sharing ADTs with the Simulator . 55

2.8 ADT Library . 56

2.8.1 Standard IOA ADTs . 56

2.8.2 Other ADTs . 60

3 The Interface Generator 62

3.1 Type Definitions . 63

3.2 States of the Interface Automaton . 64

3.3 Input Actions of the Interface Automaton 65

3.4 Output Actions of the Interface Automaton 66

3.5 getInvocation and putInvocation . 67

3.6 Example . 67

3.6.1 Algorithm Automaton Banking 68

5

3.6.2 Interface Automaton BankingInterface 69

4 The Next Action Determinator 72

4.1 Kinds of Nondeterminism . 73

4.2 The NAD Transformation . 73

4.2.1 States of A′ . 73

4.2.2 The Scheduler Transition . 74

4.2.3 Transitions of A′ . 75

4.3 Summary . 75

4.4 Example . 76

4.4.1 Nondeterministic Automaton Adder 76

4.4.2 Next-Action Deterministic Automaton AdderNAD 77

4.5 Evaluation of the NAD . 78

5 Compiling the Nondeterminism Resolution Language 80

5.1 NDR Language Extensions . 81

5.2 Adding NDR to the Code Generator 83

5.2.1 Parsing NDR Constructs . 83

5.2.2 Compiling NDR Constructs 84

5.2.3 Handling Transitions with Parameters 86

5.3 Java Translation Overview . 86

5.4 Java Translations of NDR Blocks . 87

5.4.1 Schedules . 87

5.4.2 Determinators . 88

5.5 Java Translations of NDR Statements 89

5.5.1 Programs . 89

5.5.2 Assignments . 89

5.5.3 Conditionals . 90

5.5.4 Loops . 91

5.5.5 fire Statements . 91

5.5.6 yield Statements . 92

6

5.6 Example . 92

5.7 Comparisons With the Simulator . 93

6 MPI 95

6.1 Serializing ADTs . 95

6.2 Setting up MPI . 96

6.3 Running Automata . 97

6.4 MPI Experiment . 97

6.5 Future Work . 98

7 Invocations and Runtime I/O 99

7.1 ADT S-Expressions . 99

7.1.1 Converting ADTs to S-Expressions 100

7.1.2 Converting S-Expressions to ADTs 100

7.1.3 Encoding Examples . 101

7.2 Threading . 103

7.3 Lockable Sequences and LSeqSort . 103

7.3.1 Java Code to Update Stdin 105

7.3.2 IOA Code to Update Stdin . 107

7.3.3 Implementing the Locking Operators 108

7.4 The Invocation Generator . 110

7.4.1 Reusing the Simulator . 110

7.4.2 Implementation . 111

7.4.3 Example . 112

7.4.4 Future Work . 112

8 Miscellany 115

8.1 Preconditions and where Clauses . 115

8.2 API Documentation . 115

8.3 Regression Tests . 116

8.4 Graphical User Interface . 117

7

9 Discussion and Future Work 119

A ADT Implementation Examples 121

A.1 String: A Simple Sort . 121

A.1.1 LSL Trait . 121

A.1.2 Implementation Class: ioa.runtime.adt.StringSort 122

A.1.3 Registration Class: ioa.registry.java.StringSort 125

A.1.4 Test Class . 126

A.1.5 IOA File . 131

A.1.6 Generated Java Code . 131

A.2 Set: A Compound Sort . 132

A.2.1 LSL Trait . 132

A.2.2 Implementation Class: ioa.runtime.adt.SetSort 132

A.2.3 Registration Class: ioa.registry.java.SetSort 137

A.2.4 Test Class . 138

A.2.5 IOA File . 142

A.2.6 Generated Java Code . 143

B NDR Compilation Example 144

B.1 Automaton with NDR Annotations 144

B.2 Generated Java Code . 145

C Banking Example 150

C.1 Automaton with NDR Annotations 150

C.2 Generated Java Code . 154

C.3 Trace . 166

8

List of Figures

1-1 Code Generation Process Overview 16

1-2 Creating Interface Automata . 16

1-3 Composing the Algorithm and Auxiliary Automata 17

1-4 Removing Nondeterminism With the NAD 17

2-1 Code Generation Package Structure 24

2-2 The Three Types of ADT Classes and Their Dependencies 26

2-3 Abstract Contents of the Registry . 35

2-4 Information Flow and the Registry 35

2-5 Translating and Emitting an Operator on a Compound Sort 38

2-6 Sort Template Grammar . 41

3-1 Sort Identifier Grammar . 64

4-1 The Scheduler Transition’s Main Control Loop 76

5-1 IOA Grammar for an Automaton . 81

5-2 Annotated IOA Grammar for an Automaton 82

5-3 IOA Grammar for a Choice . 82

5-4 Annotated IOA Grammar for a Choice 83

5-5 Flattening Nested Statements . 87

6-1 Implementation of readResolve() for Booleans 96

7-1 Updating Stdin from the Main Thread 106

7-2 Java Code for Updating Stdin From the Main Thread 106

9

7-3 Registering the Locking Operators . 109

7-4 Input to the Invocation Generator . 113

7-5 Output of the Invocation Generator 114

10

List of Tables

2.1 Class Correspondence Between the Code Generator and Simulator . . 56

11

Chapter 1

Introduction

1.1 The IOA Language and Toolset

Distributed algorithms are becoming increasingly important in modern computer sys-

tems, but they are notoriously difficult to design and implement correctly. The In-

put/Output Automaton model [16] provides a formal way to describe distributed

algorithms at a high level of abstraction. Researchers can then reason about them

using this concise representation to express properties and theorems. Such analytic

work can increase confidence in the correctness of an algorithm.

IOA [9, 10] is a formal language for specifying I/O automata. The IOA toolkit, in

development by the Theory of Distributed Systems (TDS) and Networks and Mobile

Systems (NMS) groups, is a suite of tools for working with the IOA language. The

toolkit is intended as an environment for algorithm and system design using I/O

automata. The toolkit has a number of components.

The IOA front-end tool, ioaCheck, can check the syntax and static semantics of

IOA programs, as well as prettyprint them. Soon it will be able to compose multiple

automata into a single primitive automaton; this facilitates hierarchical development

of systems. After checking IOA programs the front-end translates them into the

intermediate langauge (IL), an s-expression printout of the abstract syntax tree and

symbol table.

The IL program may be used as input to a variety of other tools. The ioa2lsl [3]

12

tool converts a restricted class of IOA programs into the Larch Shared Language [11].

The Larch Prover (LP) may then be used to verify theorems about the underlying I/O

automata. A prototype translator [7] to TLA+ allows model checking via Lamport’s

TLC.

The IOA simulator [4], the most developed member of the toolkit, facilitates

interactive development of IOA programs by interpreting closed I/O automata on the

fly. The user can observe the state of the automaton after each transition and verify

that it is operating as expected, while the simulator verifies that the automaton’s

invariants hold at each step. The simulator supports paired simulation [20], in which

two automata are simulated in lock-step. After each transition the simulator verifies

that the simulation relation between them holds. Additionally, the simulator can

produce execution traces that may be used as input to the Daikon invariant detector

[5].

The IOA code generator, currently under development, will compile a restricted

class of IOA programs into a standard imperative language. The target of our first

implementation is Java. Unlike the simulator, the code generator is not restricted

to supporting closed automata. Rather, it can accept an entire system of automata,

each of which communicates with the others and exchanges information with the

environment. The goal is for the code generator to produce the Java code for each

node (automaton) so that the system may be run on a network of workstations. This

thesis presents several contributions to the IOA code generator, which are further

described below.

1.2 IOA Code Generation

The IOA toolkit may be used to write IOA programs that describe I/O automata

and to gain confidence that they are correct. However, putting the algorithm into

practice requires coding it up to run on a system of physical machines. This process

is time-consuming and error-prone. It is easy to introduce subtle programming errors

and quite difficult to detect them. Further, if the IOA specification changes, the code

13

must be rewritten and the time spent debugging the old code is lost.

The obvious solution is to reduce the chance of errors by minimizing human in-

volvement in the process. This is the primary motivation for the development of the

IOA code generator, which is an automated tool that translates IOA programs into

Java. The generated code is provably correct, subject to stated assumptions about

the correctness of system services and hand-coded data type implementations, and

the faithfulness of the code generator’s implementation to its design [23].

The output of the code generator is a Java program that represents one node of

the distributed computation. Each workstation runs its own copy of the program

in a Java virtual machine. The nodes communicate with each other by exchanging

messages using the Java bindings [1] for the Message Passing Interface (MPI) [18].

IOA has been designed to be suitable for both verification and code generation.

However, these two goals are often at odds; features such as concurrency, nonde-

terminism, and declarative transition effects simplify verification at the expense of

complicating the implementation. The general strategy is for the programmer to

design a simple, high-level program that is optimized for verification. He can then

successively refine the program into lower-level versions that are more straightforward

to implement. Each step of this refinement can be verified, e.g., by proving simulation

relations.

The input to the code generator is a program in node-channel form. It is arranged

as a collection of automata (one for each node) that communicate via reliable, one-

way FIFO channels. Channels connect nodes to each other and to external input and

output (modeled as environment automata). The code generator produces Java code

that implements the node automata. The implementation of the FIFO channels is

the same for each program, and so it is included in a runtime library.

The code generation process consists of a sequence of program transformations.

Each transformer reads an IOA program and produces another IOA program in a

simpler, more stylized form that is more amenable to code generation. Some of

these transformations require input from the programmer. The last transformation

produces not another IOA program, but a Java one.

14

The following is a general outline of the code generation steps. For more details,

see Section 1.3 and [23].

• The interface generator creates an auxiliary interface automaton for each node

automaton. The interface automaton connects the node to external sources of

input and output, such as files or the user’s console (Figure 1-2).

• The composer takes as input the node automaton, the interface automaton,

and auxiliary network automata (which are not program-specific). It produces

a single primitive automaton for the system comprised of these parts (Figure 1-

3).

• The output of the composer is a nondeterministic automaton. The next action

determinator (NAD) transforms this into an automaton that is next-action de-

terministic. That is, at any given time only one action of the automaton is

enabled. In effect, it collects implicit nondeterminism throughout the automa-

ton into a single scheduler action where the nondeterminism is made explicit

(Figure 1-4).

• The user specifies a scheduler for the next-action deterministic automaton,

which determines when each action should be enabled and what the values of

its parameters should be. This has the effect of removing the nondeterminism

so that the automaton becomes next-state deterministic.

• Or, instead of the preceding two steps, the user can resolve nondeterminism

using annotations in the IOA source file. The code generator can then compile

the annotations to Java.

• The final step is for the code emitter to generate a Java program from the

much-simplified IOA program. The output of the emitter is a subclass of the

ioa.runtime.Automaton class in the code generator’s runtime library.

15

Algorithm

Checker

Composer

Node

Interface
AutomatonLibrary

Interface
Generator

NAD

GUI

Code
Emitter

Scheduled
Automaton

Java Source

Datatype
Library

Programmer
Input

Figure 1-1: Overview of the code generation process when using the NAD to resolve
nondeterminism.

Algorithm Checker Interface
Generator

Interface
Automaton

Figure 1-2: Interface automata are created by parsing IOA programs into IL and
running the interface generator tool on the IL.

16

Algorithm Checker Composer Node

Interface
Automaton

Library

Figure 1-3: Unscheduled node automata are created by composing the original algo-
rithm automata with the interface automata from.

Node NAD GUI Sheduled
Node

User

Figure 1-4: Unscheduled node automata are scheduled by running them through
the NAD, which makes them next-action deterministic. The user then provides a
schedule, making them next-state deterministic.

1.3 Thesis Overview

This section describes the contributions of this thesis to the IOA code generator.

Abstract Data Types

The code emitter’s job is to translate a simplified IOA program into Java. In most

cases, this translation proceeds in the same way for all IOA programs: an automaton

always translates to a class, a transition always translates to a method, and a state

variable always translates to a member variable. Data types cannot be translated in

this manner because they are extensible. At any time, the user can introduce new

data types that are specific to her problem domain.

IOA data types are specified axiomatically using the Larch Shared Language (LSL)

[11]. They are implemented in Java, as part of the runtime library. We assume

that the data type implementations are correct and that they correspond to the

LSL specifications. When the code emitter encounters an operation on a data type,

17

it must find the corresponding method in the runtime library that implements the

operation. This task is handled by the implementation registry. Creating a new data

type involves not only implementing it in Java (for inclusion in the runtime library),

but also telling the registry which IOA data type and operators the implementation

corresponds to. At compile-time, the code emitter consults the registry to look up

the implementations of the program nodes it is translating.

With respect to abstract data types, I have:

• Created a new implementation registry and lookup mechanism, based on a

prototype by Joshua A. Tauber, which was in turn based on work by Antonio

Ramı́rez-Robredo.

• Added several layers of abstraction to make adding new data type implemen-

tations as easy as possible for toolkit users. Registering an operator on a data

type now takes one line of code instead of approximately eighteen. This system

has been used by Nigam [19] to implement some ADTs that are not built into

IOA, and by Win [30] to implement IOA’s shorthand data types.

• Completed the implementations of IOA’s built-in data types.

• Modified the IOA simulator to use the code generator’s registry and data type

implementations. Toolkit users can now create a single implementation for each

new data type and use it with both the simulator and the code generator.

• Created a mechanism by which the generated code can assign values of the

correct type to uninitialized state variables.

• Documented the code generator’s ADT architecture and provided a recipe for

adding new data types.

Interface Generator

The interface generator takes as input a primitive node automaton and produces for

it a customized interface automaton. The interface automaton connects the node

18

automaton to the environment. It parses input from the console and translates it

into input actions on the node automaton. Similarly, it translates output actions on

the node automaton into textual output on the console.

Our implementation of the node automaton is single-threaded, and IOA requires

that the execution of each transition be atomic. However, just as IOA input actions

are non-blocking, console input may arrive at any time. Therefore, an important

function of the interface automaton is buffering. The interface automaton runs in two

threads of its own, one for input and one for output. It receives input as it arrives

and buffers it until the node automaton is ready for the corresponding transition to

be invoked.

The interface generator module was envisioned by Tauber [23]. I have provided

an implementation, which relies heavily on Ramı́rez-Robredo’s work on the IOA in-

termediate language [20] and on Reimers’s intermediate language unparser [21].

Next Action Determinator

The NAD takes as input a primitive automaton that is the composition of the node

automaton and the interface and network automata. It produces an automaton that

is next-action deterministic, that is, where only one action is enabled at a given time.

IOA programs contain explicit nondeterminism in the form of choose statements

and implicit nondeterminism in that transitions may happen in any order and with

any parameters that satisfy their preconditions. The NAD makes the implicit non-

determinism explicit and collects it into a single scheduler transition. It assigns each

transition a unique index and adds a program counter state variable to the automa-

ton. The precondition of each transition is modified so that it is only enabled when

the program counter is equal to the transition’s index. The scheduler transition is

responsible for setting the value of the program counter and determining parameter

values that satisfy the precondition of the enabled transition.

The NAD transformation is due to Vaziri, Tauber, and Lynch [28]. I have pro-

vided an implementation, in the form of a source-to-source transformer. Vaziri [29]

has shown that the semantic transformation of the I/O automata and the syntactic

19

transformation produced by the code generator’s NAD module are equivalent.

Compiling the Nondeterminism Resolution Language

An alternative method of resolving nondeterminism is to annotate the IOA program

using the nondeterminism resolution language that Ramı́rez-Robredo developed for

the simulator. The annotations allow the user to specify a schedule and also to

determine the values of choose statements. I have extended the code emitter to

compile the annotations to Java. This approach to resolving nondeterminism has

many practical advantages, and I expect that users will prefer it to using the NAD

tool.

Invocations and Runtime I/O

The interface automaton’s job is to translate input from the local environment into

input actions and to translate output actions into output to the local environment.

I have defined an s-expression representation for invocations of IOA actions. The

interface automaton reads a file consisting of a list of these invocations and causes

the corresponding input actions to be executed. When an output invocation is ex-

ecuted, the interface automaton creates an invocation s-expression and appends it

to an output file. Because invocations are tedious to create by hand, I have cre-

ated a convenience tool called the invocation generator that creates them from fire

statements written in the nondeterminism resolution language.

Other

Other contributions in this thesis include:

• Work on the IOA front-end—in particular, implementation of the intermediate

language translator and parts of the prettyprinter.

• Enhancements to the intermediate language classes, including improved parsing,

printing, and type checking.

20

• Enhancements to the prototype code emitter to handle transition parameters,

preconditions, where clauses, and other features related to data types.

• Implementations of the auxiliary interface automata that link the node automa-

ton to the console.

• Enhancements to the data type implementations so that they can be transferred

across the network, and a simple experiment that demonstrates how to use

mpiJava with the IOA toolkit.

• A prototype graphical user interface from which the user can edit IOA programs

and run some of the tools that are needed for the code generation process.

• A regression testing framework for the IOA toolkit, along with a suite of unit

tests and regression tests for the modules described in this document.

1.4 Writing Conventions

This thesis includes code fragments and program examples written in several different

programming languages. The following typesetting conventions are used to help the

reader:

• Sans-serif type is used for IOA and LSL, with language keywords in bold.

• Constant width type is used for Java, with language keywords slanted.

• Constant width type is also used for grammars, filenames, command names,

URLs, program output, and strings.

• Grammars are expressed in BNF, and terminals are enclosed in quotation marks.

In addition, several potentially vague terms are used as follows:

User a person using the IOA toolset to develop and verify algorithms. Users program

in IOA and LSL.

21

Programmer a person developing the IOA toolset itself. Programmers program in

Java and PolyJ. Users become programmers when they extend the IOA toolset

to support additional abstract datatypes.

Algorithm automaton the original automaton that the user begins with and that

he may also use with the simulator or LP. During the code generation process,

the algorithm automaton will be composed with other auxiliary automata.

Compile-time when the code emitter translates the final automaton (a composition

of the algorithm automaton and auxiliary automata) from IOA into Java.

Runtime when the generated Java code runs on a network of workstations.

Node a networked workstation that carries out one part of the distributed compu-

tation by running the generated Java code.

22

Chapter 2

Abstract Data Types

2.1 Overview

2.1.1 Code Generation

When the IOA code generator converts an IOA program into runnable Java code,

it first parses the program, which has already been translated from IOA into the

intermediate language (IL) by the front-end. The result of this parse is an ab-

stract syntax tree with nodes for each element of the IOA program (e.g. transitions,

state variables, and operators). The source syntax tree consists of objects from the

ioa.codegen.source.java package.

The next step is to translate the source syntax tree, node by node, into the target

syntax tree. The target tree consists of objects from the ioa.codegen.target.java

package and has nodes that correspond to Java language elements (e.g. classes, vari-

ables, and methods). In the final step, the code generator walks the target syntax

tree, asking each node to emit itself as a string. The result of emitting the whole

target tree is a Java program that can be compiled and run, with the help of classes

in the ioa.runtime.adt and ioa.runtime.io packages. These runtime packages are

self-contained; no other part of the code generator is needed to run the generated

code.

The relation between the different parts of the code generator is summarized by

23

ioa

codegen

registry runtimesource target

adtjavajavajava

impl

java

IOA
Nodes

Java
Nodes

Registration
Classes

Registry
Classes

Implementation
Classes

Test
Classes

test

junit

Figure 2-1: Code Generation Package Structure

the package diagram in Figure 2-1.

The brunt of the code generator’s work is in translating the nodes of the source

tree into nodes of the target tree. In most cases, this translation proceeds in the same

way for all IOA programs: an automaton always translates to a class, a transition

always translates to a method, and a state variable always translates to a member

variable. These translations can be hard-coded into the nodes of the source syntax

tree. However, data types must be handled differently, and we will talk about them

now.

2.1.2 Data Types

IOA data types are divided into two categories: sorts and sort constructors. Sorts

are simple data types such as integers (Int), real numbers (Real), and booleans (Bool).

Sort constructors are compound data types that are parameterized by other sorts or

sort constructors. Examples include sequences of integers (Seq[Int]) and mappings

from strings to sequences of integers (Map[String, Seq[Int]]). Most of the discussion

in this thesis applies to both sorts and sort constructors; therefore, for brevity, I will

use “sort” to mean “sort or sort constructor” and clearly indicate sections that apply

24

only to one category of data types.

Data types cannot be translated in the fixed manner of Section 2.1.1 because they

are extensible. At any time, the programmer can add new data types by specifying

them in the Larch Shared Language (LSL) [11] and implementing them in Java. Doing

so should not require modifying the core of the code generator.

Each IOA sort is implemented by a Java class, and each operator is implemented

by a method on that class. At compile time, one of the code generator’s jobs is to

map IOA sorts and operators to their Java implementations, so that it can create the

proper nodes in the target syntax tree. Much of the work in adding support for new

data types involves telling the code generator about this correspondence.

The classes involved in generating code for abstract data types (ADTs) may be

divided into three categories:

• Implementation Classes, which implement sorts and their operators. These are

written by the user, one per data type, and live in ioa.runtime.adt. Of the

three kinds of classes, this is the only one that is needed at runtime (i.e. when

compiling or running the generated code).

• Registry Classes, which maintain a mapping between IOA sorts (and opera-

tors) and the Java implementation classes (and methods) that implement them.

These are built into the code generator.

• Registration Classes, which interface between the implementation classes and

the registry classes so that each group is isolated from the other. These are writ-

ten by the user, one per implementation class. They implement the Registrable

interface. Registration classes that are part of the standard IOA toolkit distri-

bution belong to the ioa.registry.java package. If a user extends the code

generator to support additional data types, their registration classes may belong

to one of the user’s packages.

The relation between these categories and the package structure is shown in Fig-

ure 2-1. The dependencies between them are shown in Figure 2-2; in particular, note

that registration classes decouple the implementation classes from the registry.

25

Registry ClassesImplementation Classes Registration Classes

User-Defined
Part of the Code
Generator Core

Figure 2-2: The three types of ADT classes and their dependencies. Registration
classes call methods of the registry classes and depend on the names of the methods
in their corresponding implementation class. The registry classes and implementation
classes are independent of one another.

2.1.3 Chapter Roadmap

The remainder of this chapter describes how the code generator’s ADT classes are

designed and how they may be extended to support additional sorts. Section 2.2 tells

how IOA sorts are implemented in Java, Section 2.3 explains how the code generator

uses the registry to map sorts and operators to their implementations, and Section

2.4 describes how to install new implementation classes into the registry. Section

2.5 explains the testing architecture for verifying implementation classes, registration

classes, and the correspondence between them. Section 2.6 gives a recipe for writing

new ADTs. Section 2.7 explains how the work described here has been reused in

the IOA simulator. Sections 2.8.1 and 2.8.2 explain the data types that have already

been implemented, and Appendix A contains complete examples of the files needed

to add support for new data types and examples of the generated Java code.

2.2 Implementation Classes

The code generator supports the standard sorts defined in the IOA manual [9]: Array,

Bool, Char, Int, Map, Mset, Nat, Real, Seq, Set, and String; as well as the shorthand sorts

enumeration, tuple, and union. Each sort is implemented by a Java class called an

implementation class that belongs to the ioa.runtime.adt package. By convention,

the name of the implementation class is the name of the IOA sort followed by “Sort”.

Thus, the IOA boolean sort, Bool, is implemented by BoolSort; and the IOA multiset

26

sort, Mset, is implemented by MsetSort. For brevity, in this section I will sometimes

refer to the implementation class as “the ADT.”

Each IOA operator is associated with a single sort that introduces it and is im-

plemented by a static method in the implementation class of the introducing sort.

For instance, the + : Int , Int → Int addition operator on integers is introduced by

Int and implemented by IntSort.add(). When the code generator generates code for

a program, it translates each operator application into a static method invocation.

Thus, the static methods form the interface between the implementation class and

the rest of the generated code.

2.2.1 ADTs Extend ioa.runtime.adt.ADT

Implementation classes extend the ioa.runtime.adt.ADT abstract class. They must

override the non-static equals() method inherited from java.lang.Object, so that it

checks for value equality instead of reference equality.

The ADT abstract class provides implementations for two operators that are com-

mon to all IOA data types: equality (=) and inequality (6=). These operators

are implemented by static methods in ADT. equals() and notEquals() take two ADTs

(classes that extend ADT) as parameters and return BoolSorts that indicate whether

the ADTs are equal or unequal. The implementations for these operators are automat-

ically installed into the registry; there is no need to mention them in the registration

class (see Section 2.4).

2.2.2 ADTs are Immutable

ADTs are immutable1. Each ADT overrides equals() so that it returns true for

objects that represent the same value, even though they may not be the same ob-

ject. Because they override equals(), ADTs must also override hashCode() so that it

satisfies the Java language’s hashCode() contract [22]:

1Thus, all of the container ADTs are slow because insertion and deletion require an amount of
copying that is linear in the number of contained elements. Future work could optimize away the
unnecessary copying.

27

. . .If two objects are equal according to the equals() method, then

calling the hashCode() method on each of the two objects must produce

the same integer result.

If this clause of the contract is violated, collection data types that use hash tables

will fail. They will not be able to find objects that they contain, making it impossible

to test for membership or remove objects.

Since immutable ADTs properly override hashCode(), container ADTs may be

implemented using hash tables. For instance, MapSort uses a hash table to maintain

a mapping, and MsetSort uses one to map elements to their multiplicities.

In addition, all ADTs should override toString() to “unparse” themselves; this is

important for readable output from the simulator [4, 20, 5] and also when debugging

the code generator.

2.2.3 Static Methods Implement Operators

The implementation class contains a public static method, also called a code gener-

ation method, for each of the sort’s operators. Making the methods static simplifies

code generation by making the syntax of the generated code more regular. However,

because static method calls are verbose and unnatural for writing Java data types, all

but the simplest implementation classes define two sets of methods: instance meth-

ods implement the operators on the sort, and public static methods are called by the

generated code.

The public static methods are just wrappers for the instance methods, so it is

simple to implement them. Maintaining these two sets of methods is a little extra

work compared to implementing everything using the public static methods; however,

the instance methods are useful to have when hand-coding programs elsewhere in the

toolkit.

The parameters and return values (if any) of the static methods are instances of

ADT. If the exact type of a parameter is known, then it is specified in the method

28

signature; otherwise, it is labelled ADT2 to indicate that it is known to be an imple-

mentation class. The order of the method’s parameters is the same as the order of

the operands in the domain of the IOA operator. This means that in most cases

the first parameter happens to be an instance of the ADT that defines the method.

For example, the prototype of the method for the indexing operator on mappings

[]: Map[D, R], D → R is public static ADT get(MapSort map, ADT key). Its im-

plementation simply calls the MapSort instance method public ADT get(ADT key).

2.2.4 Return Value Casting

Java is a statically typed language, and a Java program will only compile if the

compiler can verify that methods are called with parameters of the correct types.

Container data types are usually written to contain Objects, so after taking an Object

out of a container, one must downcast it (cast it to a more specific type) before using

it. This is a general problem with Java containers such as Vector and Hashtable, and

it affects implementation classes in the same way.

To deal with this, whenever the code generator emits a method call, it also emits

a downcast for the return value. For instance, the generated code for an IOA term

such as head(aSeqOfInt) might be ((IntSort)SeqSort.head(aSeqOfInt_v0)). The code

generator handles this automatically (see Section 2.3.7). The implementation class

writer can assume both that parameters to his classes’ methods will be downcast so

that they satisfy the method signatures and that non-specific return types, such as

ADT, will not pose problems for code using his methods.

2.2.5 Arbitrary Initialization and Parameterizations

The IOA language allows state variables to be initialized explicitly or arbitrarily.

Explicitly initialized variables are assigned values by the programmer. For instance,

an automaton’s states section might include the line

a : A r r a y [I n t , B o o l] : = c o n s t a n t (t r u e)

2Or ComparableADT; see Section 2.2.7.

29

which initializes a to an array where the value at each integer index is the boolean

constant true. Alternatively, the programmer may write a : Array[Int , Bool]. This

indicates that the variable is arbitrarily initialized, and IOA allows the elements of a

to take on any values so long as they are of the correct sort. In this case, the code

generator must initialize a before firing any of the automaton’s transitions.

When the code generator needs to create an initial value for a variable, it first

finds the implementation class for the variable’s sort and calls its method

public static ADT construct(Parameterization p)

which is charged with creating and returning “some” instance of the implementa-

tion class. The Parameterization parameter provides the implementation class with

information about the subsorts of the sort constructor that it is implementing.

In the base case, construct() is being called on the implementation class of a

simple sort. In this case, the Parameterization carries no useful information and is

ignored. construct() returns a suitable default value.

In the recursive case, construct() is being called on the implementation class of

a compound sort. Typically, constructing the compound sort will require recursively

constructing instances of the subsorts. For instance, because each index of an array

must have a value, an array must construct at least one instance of its element type

subsort. It can then use this to initialize itself. The Parameterization contains all the

information about the subsorts, so the array can call its ADT constructSubsort(int)

method to create an instance of one of the subsorts.

In the case of arrays, construct() looks like:

public static ADT construct(Parameterization p)
{

ADT elementValue = p.constructSubsort(p.nSubsorts () - 1);
return constant(elementValue);

}

30

It simply creates an instance of the element subsort3 and creates an array where

all the slots have the same value.

Since the generated code contains Parameterization objects, Parameterization

must be part of the code generator’s self-contained runtime package. (See Figure 2-1.)

The registry classes are not part of the runtime, so Parameterization may not use

them when it recursively constructs subsorts. Therefore, the code generator looks

up all the needed implementation classes at compile-time and stores the results in

the Parameterization. Each Parameterization stores the implementation class and

Parameterization for each of its subsorts.

Ultimately, the purpose of a Parameterization is to provide the information nec-

essary for the ADT implementation to construct a value of the proper type. When the

code generator translates a state variable, it creates a member variable in the target

syntax tree. If the IOA program initialized the state variable, it translates the IOA

initializing term into a Java one. Otherwise, it creates an InitialValue node in the

target syntax tree. An InitialValue is a term that stores the class that will generate

the value, as well as a Parameterization containing the needed subsort information.

Emitting an InitialValue creates a call to the construct(Parameterization)

method of the implementation class for the value’s type, e.g. ArraySort.construct()

for the above example. The parameter of the method is generated by emitting the

InitialValue’s stored Parameterization object. The return value of construct() is

cast (from ADT) to the appropriate type.

The result of emitting a Parameterization is a Java fragment that reconsti-

tutes the Parameterization. Again using the above example, the generated code

for a : Array[Int , Bool] is:

ArraySort a_v0 =
(ArraySort)ArraySort.construct(

new Parameterization(
new Class []
{ioa.runtime.adt.IntSort.class,
ioa.runtime.adt.BoolSort.class},

new Parameterization []

3The nSubsorts() - 1 is necessary because arrays can have two or three subsorts, depending
on whether they are one- or two-dimensional; the element subsort is always the last one.

31

{new Parameterization (),
new Parameterization ()}));

The parameters to the outermost Parameterization constructor are an array of

implementation classes for the subsorts and an array of Parameterizations for them.

The innermost Parameterization constructors take no arguments because Int and

Bool have no subsorts.

The astute reader will have noticed that Parameterization is seemingly a runtime

class that knows how to emit itself. This is impossible because knowledge about emit-

ting is confined to the code generator’s internals and is not part of the runtime. There

are, in fact, two Parameterization classes: ioa.runtime.adt.Parameterization and

ioa.codegen.target.java.Parameterization. The former contains the functionality

needed at runtime, and the latter (which is a subclass) handles the emitting. Creation

of Parameterizations is handled by the registry classes’ factory (ImplFactory), which

in the case of the code generator always creates emittable Parameterizations.

2.2.6 Inheritance

ADTs can inherit method implementations from their superclass. For instance,

equals() and notEquals() are implemented in ADT, and the other ADTs inherit these

implementations. When BoolSort.equals() is called, ADT.equals() is invoked. In-

heriting observer methods in this manner will also work for user-defined methods.

In contrast to observer methods, producer methods return new instances of the

data type. For instance, SeqSort.append() returns a new SeqSort based on the

original and the parameter. If a subclass of SeqSort does not override append(), then

append() will continue to return SeqSorts; it will not return instances of the subclass.

This is clearly not acceptable because then calling append() demotes the subclass to

a SeqSort, and it cannot be promoted by casting because it actually was created as a

SeqSort and nothing more.

On the other hand, if the subclass is written to override append(), then it has

gained little from inheritance: just to add a method or modify an existing one, every

32

one of the ADT’s producers must be rewritten to return instances of the subclass.

And if a producer is added to the base class, then all the derived classes will break.

In summary, inheritance does not work as well as we would like, but the limitations

lie with immutability rather than with our design of the ADT classes.

2.2.7 Comparing ADTs

Container ADTs such as priority queues require that the elements they contain be

totally ordered. To support this, element ADTs that support comparison (such as

Int, Real, and String) extend ioa.runtime.adt.ComparableADT instead of ADT. To do

this, they must provide implementations of the following method:

public int compareTo(Object object)

The parameter is assumed to be a ComparableADT, but it is declared as an Object

so that ComparableADT can implement java.lang.Comparable. This lets the ADT

implementation use Java containers such as trees and utility functions such as sort().

The return value of compareTo() should be zero if the two ADTs are equal, negative if

this is less than object, and positive if the reverse is true. In ADTs such as IntSort

that define comparison operators, the comparison operators are implemented in terms

of compareTo().

Operators on ordered data types are implemented in the normal way, except that

generic data type parameters are declared as ComparableADTs instead of ADTs. For

example, the priority queue implementation contains this method:

public static PQSort add(ComparableADT a, PQSort p)

Although the priority queue trait assumes that the element sort is totally or-

dered, the IOA checker does not prevent the user from creating priority queues of

uncomparable types. In the case of the code generator, such errors will be caught

at compile-time when the Java compiler complains that an ADT has been passed to

a method that requires a ComparableADT. The same code when run through the

simulator results in a SimException that reports an illegal method argument.

33

2.2.8 Exceptions

The static code generation methods should signal errors and representation violations

by throwing RepExceptions or subclasses of RepException. These unchecked excep-

tions will be caught by the runtime system. Examples of situations in which it is

appropriate to throw a RepException are when the code tries to:

• divide by zero

• find the predecessor of the natural number zero

• take the head or tail of an empty sequence

• pop an empty stack

• access a non-current value of a union

2.3 Registry Classes

When the code generator translates an IOA term into Java, it must match IOA sorts

and operators to Java classes and methods. To do this, it uses the registry classes,

which maintain a mapping between IOA objects and their Java implementations.

The principal class that maintains this mapping is ConstrImplRegistry, whose name

stands for “Constructor Implementation Registry.” I will refer to it simply as “the

registry.”

The contents of the registry are diagrammed in Figure 2-3.

The registry is used in two phases. In the first phase, the registration classes

install their implementation classes into the registry. This process is described in

Section 2.4. In the second phase, the code generator uses the registry to look up

the implementations of the IOA objects that it needs to emit. These two phases are

diagrammed in Figure 2-4 and are described below.

To look up a sort or operator, the code generator calls getImpl() on the reg-

istry. This method takes a single parameter, an intermediate language ioa.il.Sort

34

ConstrImplRegistry

Int IntSortSorts

SortConstructors Array[I,E] ArraySort

Operators __+__: Int, Int --> Int IntSort.add(IntSort, IntSort)

__|-__: Seq[E], E --> Seq[E] SeqSort.append(SeqSort, ADT)OpConstructors

= Sort = Operator = SortImpl = OpImpl

Figure 2-3: Abstract Contents of the Registry

IOA
NodesConstrImplRegistryRegistration

Classes
installation lookup

Figure 2-4: Information Flow and the Registry

or ioa.il.Operator, and returns an instance of ioa.registry.SortImpl or

ioa.registry.OpImpl, respectively. How the lookup process works and what kinds

of SortImpls and OpImpls (which are both subtypes of Impl, a marker interface for

implementations) are returned depend on whether the sorts are simple or compound.

2.3.1 Looking up Simple Sorts and Operators

For simple sorts and operators, the registry maintains two tables. The sort table

maps Sort keys to SortImpls, and the operator table maps Operator keys to OpImpls.

Keys are simply structured String representations that include the name of the sort

or operator and (recursively) all of its subsorts. The syntax of keys is an implemen-

tation detail that is subject to change; they are created using the makeOpKey() and

makeSortKey() methods of ConstrImplRegistry.

The registry’s installSortImpl() and installOpImpl() methods let one add map-

pings to the tables, and the getImpl(Sort) and getImpl(Operator) methods use them

to look up SortImpl and OpImpl objects for simple sorts and operators.

When looking up a simple sort, the registry returns a SortImpl that is an instance

35

of ioa.codegen.target.java.Class. The Class object knows the name of the class

that implements the sort (e.g., ioa.runtime.adt.SeqSort). The code generator calls

upon it to emit these pieces of information when the time is right.

Looking up simple operators works in the same way. The registry returns an

OpImpl that is an instance of ioa.codegen.target.java.Operator. The Operator is

a node in the target syntax tree, and it knows which method (e.g., SeqSort.head())

implements the IOA operator that it represents. It also remembers which

ioa.il.Operator object it is supposed to be implementing. When the code generator

asks the Operator to emit itself, it passes the Operator a list of actual parameters.

The Operator emits the name of the method (e.g., SeqSort.head) followed by the list

of parameters (delimited by commas and enclosed by parentheses). It emits a cast

of the return value of the method to the implementation class of the sort that the

IOA operator returns. This lets one, for instance, take a StringSort out of a SeqSort

and assign it to a variable of type StringSort, even though SeqSort.head() returns

a vanilla ADT.

2.3.2 Looking up Compound Sorts and Operators

For compound sorts and operators, the registry maintains two more tables. The

sort constructor table maps Strings to chains of SortConstructors, and the opera-

tor constructor table maps Strings to chains of OpConstructors. Unlike their Impl

counterparts, SortConstructor and OpConstructor are not nodes of the target syntax

tree. Instead, they are intermediary objects that know how to construct Classes

and Operators. They represent IOA sort and operator constructors and extend

ioa.registry.Constructor.

The keys of the sort constructor table and operator constructor tables are shallow

IOA names (omitting subsorts) for sorts and operators (e.g., Map and __|-__). The

values are chains of constructor objects that share the same shallow name. When

looking up a compound Sort or Operator, the registry uses the corresponding table

to find the appropriate chain of constructors. If the code generator has an imple-

mentation for the Sort or Operator, then one of the Constructors in the chain must

36

claim to be able to implement it. The registry searches down the chain, asking each

Constructor whether it match()es (can implement) the given Sort or Operator; see

Section 2.3.5. When it finds the right Constructor, the registry asks the constructor

to construct the appropriate SortImpl or OpImpl. The registry returns the Impl, and

from then on everything proceeds as in Section 2.3.1. Figure 2-5 shows the process

of generating code for an operator on a compound sort.

2.3.3 Curried Parameters

In most cases, there is a one-to-one mapping between IOA operators and the Java

methods that implement them. Sometimes, however, it is impractical to write a

method for each operator. In this case, it is useful to implement a family of IOA

operators with the same Java method. For instance, Char has nullary operators for

each character: ′a ′, ′b ′, etc. There are many such operators, and they differ only in

the character value that they return. It is therefore convenient to implement all such

operators with a single method, CharSort.lit(char). The parameter to this method

is a char that differs depending on which IOA operator is being applied at a given

time. For instance, when the IOA program references the nullary operator ′a ′, the

code generator outputs CharSort.lit(’a’).

Here, the character literal ’a’ is a curried parameter; it is not present in the IOA

operator application, but it is added to the Java method invocation. The operator is

nullary, but the implementation method is unary. The ’a’ is built into the subclass

of Operator object that implements ′a ′. This class is called ExtOperator4; and it

supports an arbitrary number of curried parameters, which it prepends to the argu-

ment list during emission. Operators with curried parameters may be registered using

Installer.addCurriedOp() instead of addOp(). Curried operators on compound sorts

are not supported at this time.

4The implementation is due to Toh Ne Win.

37

Translation

Template:
__|-__: Seq[E], E --> Seq[E]

ioa.registry.OpConstructor <
ioa.codegen.impl.java.JavaOpConstructor

ioa.registry.OpImpl <
ioa.codegen.target.java.Operator

Operator:
__|-__: Seq[Nat], Nat -->Seq[Nat]

Implementation Method:
SeqSort.append(SeqSort, ADT)

ioa.il.Operator <
ioa.codegen.source.java.JOperator

Signature:
__|-__: Seq[Nat], Nat -->Seq[Nat]

Look Up

seq |- nIOA

(SeqSort)SeqSort.append(seq_v0, n_v1)Java

Construct

Emit

(apply op319 v0 v1)

Checker

ILParser

IL

= class

= program text

superclass < subclass

Finds Matching OpConstructor
with E bound to Nat

Figure 2-5: Translating and emitting an operator on a compound sort. First, the
IOA program is parsed by the checker. The checker outputs an intermediate language
version of the program. The ILParser parses this into nodes of the source syntax
tree. The code generator begins the translation. When it encounters an operator on
Seq[Nat], it looks it up in the registry and finds an OpConstructor for Seq[E], which
can handle Seq[Nat]. The OpConstructor constructs an Operator node in the target
syntax tree. The code generator translates the IOA operator invocation into a Java
method call, and emits the text of that call with the actual parameters.

38

2.3.4 Looking up Dynamic Sorts and Operators

In addition to simple sorts and parameterized sorts, there is a third class of sorts

called shorthand sorts, which includes tuples, unions, and enumerations. Shorthand

sorts are dynamic in the sense that their operators are not known until compile time,

when the code generator examines the user-defined data types that are introduced in

the program text. Since new shorthand data types may be introduced in each IOA

program, the implementation classes for these sorts must have methods that can each

implement a group of operators.

For example, a tuple Tup may be defined to have two fields, a and b:

type Tup = t u p l e o f a : Nat , b : Nat

The runtime class for tuples keeps a mapping of field names to field values. One

method implements field lookup for all tuples, and another implements field setting

for all tuples. These operators are implemented using curried parameters, as described

in Section 2.3.3.

In the Char example from Section 2.3.3, all the possible characters are known when

the implementation class is compiled; for shorthand sorts, the operators are not known

until the IOA program is compiled. In the case of tuples, the code generator cannot

know a priori what the field names are, or even how many fields there are.

The implementations of non-dynamic sorts are installed when the code genera-

tor starts up. For sorts implemented dynamically, the implementation classes are

installed by the DynamicImplRegistry5 the first time that their implementations are

looked up. In fact, the actual registry used by the code generator is a

DynamicImplRegistry. When looking up an implementation, it first tries delegating

to its superclass, ConstrImplRegistry. If the normal registry cannot find the imple-

mentation, the dynamic registry tries to find one itself.

When the code generator starts up, all the registration classes for dynamic sorts,

dynamic registration classes, notify the DynamicImplRegistry of their existence. Then,

when the DynamicImplRegistry encounters a Sort for which the normal registry could

5The implementation of the dynamic registry is due to Toh Ne Win.

39

not find an implementation, it calls each dynamic registration class’s

isDynamic(Sort) method to ask if it can install mappings for that sort and its op-

erators. isDynamic(Sort) returns true only if the dynamic registration class can

implement the specified sort.

When the DynamicImplRegistry encounters an Operator that the normal registry

could not find, it first tries to look up the sorts in the Operator’s domain. It as-

sumes that one of these sorts introduces the operator. When the registry finds the

dynamic registration class for the sort that does, it calls the dynamic registration

class’s installDynamic() method, which adds the mapping for the operator to the

registry. The operator can then be looked up and returned.

A Sort or Operator is only looked for in the DynamicImplRegistry once. After

that, it will have been added to the normal registry so there will be no need to

consult the DynamicImplRegistry.

For example, suppose that the IOA program makes use of a union. The first

time one of its operators, say a selection operator, is used it will not be found in

the registry. The domain of the operator is a single value of the union type. The

DynamicImplRegistry finds a dynamic registration class that can implement the union.

It then asks the registration class to install all the operators introduced by that union

type. Thereafter, operator lookups for that union in the ConstrImplRegistry will

succeed.

2.3.5 Matching Compound Sorts and Operators

With compound sorts and operators, the table key is a shallow name such as Map or

__|-__ (as opposed to Map[E] or __|-__: Seq[E], E -> Seq[E] that tells the registry

which chain of constructors to search through. Each constructor has a template,

which indicates the pattern of sorts or operators that it can implement. The syntax

for templates is defined by the grammar in Figure 2-6.

Each SortConstructor has a template of the form (name subsorts). For instance,

the SortConstructor for MapSort is (Map 0 1). Since the sort variables 0 and 1 can

each match any sort, this template says that MapSort can implement any kind of Map

40

sort ::= name | "(" name subsorts ")" | sortVariable

name ::= id

subsorts ::= sort+

sortVariable ::= integer

op ::= "(" name domains range ")"

domains ::= "(" sugaredSort+ ")"

range ::= sugaredSort

sugaredSort ::= sort | "%me"

Figure 2-6: Sort Template Grammar

that has two, possibly different, subsorts. This template would match Map[Int, Real],

and it would also match Map[Int, Seq[Real]]. If the template had been (Map 0 0), then

the two subsorts would have to be the same; the SortConstructor could then match

Map[Int, Int] or Map[Seq[Int], Seq[Int]], but not Map[Int, Real].

OpConstructors have templates of the form op, and matching operators to tem-

plates works much the same as matching sorts to templates. The one difference is that

operator templates may include a %me token. %me is shorthand that stands for the sort

template of the sort that is currently being installed. This makes templates easier

to read and write. For instance, the template for the prepend operator on sequences

may be written (__|-__ (%me 0) %me) instead of (__|-__ ((Seq 0) 0) (Seq 0)).

In general, matching is a recursive process. A sort template matches a sort if

it has the same shallow name and its subsorts can match the sort’s subsorts. An

operator template matches an operator if it has the same name and if the sorts in its

domain and range match the pattern in the template. The recursion must bottom

out because the template is of finite length and therefore has finitely many nestings.

Mutual recursion is not possible because templates do not contain references, only

values.

Presently, the Java code generator uses only a fraction of the flexibility provided

by constructors and templates. For instance, all sequences are implemented using

SeqSort, but the registry classes could support different implementation classes for

different operators.

41

2.3.6 Installer

Motivation

The registry provides four methods for adding sort and operator mappings, one for

each table:

• add(String key, boolean isLiteral, SortImpl impl)

• add(String key, OpImpl impl)

• add(String name, boolean isLiteral, SortConstructor sortCon)

• add(String name, OpConstructor opCon)

Unfortunately, it is cumbersome to use these methods. One must call

ConstrImplRegistry methods to make operator and sort keys using the registry’s

static makeOpKey() and makeSortKey() methods. One must write classes that extend

SortImpl, OpImpl, SortConstructor, and OpConstructor (which are all abstract) and

create instances of them. This can certainly be done, but it needlessly complicates the

interface to the registry. Therefore, a facade [8] class called ioa.registry.Installer

mediates between the ADT writer and the registry, providing a clean interface that

does not expose to the ADT writer any of the classes that make up the code generator.

Standard Usage

One creates an instance of Installer using the ImplFactory and passing it a reference

to the registry and the name of the implementation class of that sort. The factory

will then return an Installer specialized for code generation or simulation. Once

an Installer has been created, its methods may be used to add mappings to the

registry. The commonly used methods are:

• addSort(String template)

• addOp(String opTemplateString, String methodName)

And there are also some less commonly used methods to handle special cases:

42

• addLiteralSort(String template)

• addAssignOp(String template, String methodName,

String assignMethodName)

• addCurriedOp(String template, String methodName, Vector builtIns,

boolean arrayMode) (See Section 2.3.3.)

• addShortcutOp(String template, String methodName,

String shortcutStyle) (See Section 2.3.8.)

The parameters for these methods are all built-in Java types for which the Java

compiler can recognize literals. Thus, calls to Installer’s methods are concise and

the programmer using Installer is isolated from the inner workings of the code

generator. At this point in the evolution of the design, registration classes are almost

entirely data.

Exceptional Usage

In most cases the LSL name of the operator should be passed to Installer; however,

there are some exceptions due to the way the front end and intermediate language

work:

• When registering a selection operator with LSL form . foo, @<sel>foo should

be passed.

• The conditional operator (which is built-into LSL) should be registered as

@<if>.

• Multiple argument slots between the two parts of a mixfix operator should be

collapsed to one. For instance, the LSL operator [, ,] should be registered

as [__]. Though there is only one argument slot in the name, the registry will

get the correct number of arguments from the template.

43

Implementation

Installer has a simple implementation: it creates the keys and Impl objects needed

to call the registry methods listed at the top of this section. A new instance of

Installer is created for each data type that will be added to the registry. The in-

stance remembers the registry in which to install, the sort being installed, and the

implementation class for it. Installer’s methods use this information, in addition to

their parameters, to create instances of ioa.codegen.target.Class (for simple sorts),

ioa.codegen.target.Operator (for operators on simple sorts),

ioa.codegen.impl.java.JavaSortConstructor (for sort constructors), and

ioa.codegen.impl.java.JavaOpConstructor (for operators on sort constructors). It

then installs these instances into the registry. Class, Operator, JavaSortConstructor,

and JavaOpConstructor are the canonical Java implementations of the Impl and

Constructor objects described in Sections 2.3.1 and 2.3.2. Aside from being spe-

cialized for emitting Java code, they are augmented with functionality for testing

(see Section 2.5.3).

Installer is designed to be subclassed. At present, there is one subclass for the

code generator and one for the simulator. Each Installer is customized to install

particular types of implementations. The public methods of Installer are template

methods [8] and in most cases should not be overridden in subclasses. Instead, for

each public method there is a corresponding “hook” method that encapsulates the

functionality that is likely to differ between Installers. These should be overrid-

den to return the proper types of SortImpls and OpImpls. For example, the public

method for installing an operator is addOp(). The code generator’s installer over-

rides opConstructorHook() to return a JavaOpConstructor. The simulator’s installer

overrides it to return a SimOpConstructor.

2.3.7 Looking up Return Types

As described in Section 2.3.1, when an Operator emits itself as a method call on

an implementation class, it also casts the return value to the proper implementation

44

class. Some implementation class methods always return the same type; for instance,

the cardinality of a set is always represented by an IntSort. Others, however, return

different types in different circumstances; for instance, when indexing into an array,

the type of the return value depends on how the array is parameterized.

The needed information is available in the source (IOA/IL) syntax tree: each

ioa.il.Operator stores an ioa.il.Sort object that represents its range. Therefore,

the registry classes must find this Sort, look it up in the registry to find its imple-

mentation class, and give the implementation class to the

ioa.codegen.target.java.Operator, so that it can emit the proper casts.

Ideally, perhaps, the constructor for Operator could include a parameter for the

implementation class of its return type; that way, every Operator would always know

how to cast its return value. However, this is not always possible. The registry is

populated first by sort A and its operators, then by sort B and its operators, etc.

Thus, each operator on A is constructed before sort B is even in the registry—so

clearly there is no way to look up the implementation class for B while creating an

operator on A. In fact, there can even be cyclic dependencies. For instance, Int and

Nat define conversion operators that each depend on the other sort: nat() operates on

Ints and returns a Nat, and int() operates on Nats and returns an Int.

Therefore, Operator’s constructor does not take an implementation class as a

parameter. Instead, it must find it after the registry has been fully populated. The

code generator has no mechanism at this time for notifying objects that the registry

has been fully populated and emission has begun. Therefore, for simplicity, we use

the first emission of the Operator as a proxy for this notification. In other words, once

an emit() method has been called, we know that all the non-dynamic registration

classes have installed their sorts and operators into the registry.

For modularity reasons, Operator does not know about the objects in the source

syntax tree or about the registry. Therefore, to look up the implementation class

of its return type, it uses a helper object called a ReturnClassThunk. As its name

implies, ReturnClassThunk is a thunk that knows how to find the implementation

class of the return type of an operator. Each time an Operator is created, it is

45

passed a ReturnClassThunk, which encapsulates access to the source syntax tree and

the registry. When the Operator needs to find the return class, it calls the thunk’s

lookupReturnClass() method, which does the actual work.

2.3.8 Shortcutting

The implementations of the ∧ , ∨ , and if then else operators shortcut. That

is, if the first clause of a conjunction is false, the second is not evaluated; if the first

clause of a disjunct is true, the second is not evaluated; and only the then or else

clause of a conditional is evaluated, depending on the value of the predicate. These

behaviors are useful in code generation because they allow the user to guard against

runtime exceptions (see Section 2.2.8).

The above operators cannot be implemented in the previously described way be-

cause Java always evaluates all method parameters. Instead, they are implemented

using ShortcutOperator6, which emits special forms in the target language. For in-

stance, the if then else operator is implemented using Java’s ternary operator:

IOA: a := if (x > y) then a else b

Java: a_v2 =

(((BoolSort)IntSort.gt(x_v0, y_v1))).booleanValue() ? a_v2 : b_v3;

and the ∧ operator is implemented using Java’s shortcutting && operator:

IOA: c : = b ∧ a

Java: c_v2 = BoolSort.lit(b_v1.booleanValue() && a_v0.booleanValue());

Some glue code is needed to convert between implementation classes and Java’s

primitive types: BoolSort.lit() makes a BoolSort from a boolean, and

BoolSort.booleanValue() makes a boolean from a BoolSort.

2.3.9 Locating ADTs at Compile-Time

When the code generator starts up, it calls upon the ADTLoader to find registration

classes that should be installed in the registry. The ADTLoader searches directories

6The implementation is due to Toh Ne Win.

46

and jar files for classes that implement the Registrable interface. Search path and

exclusions are specified in the .ioarc file and may be overridden on the command

line. This lets one, for example, choose from alternate implementations of a data type

at compile-time. For more information, see [19].

2.4 Registration Classes

Each implementation class in ioa.runtime.adt (see Section 2.2) has a corresponding

registration class in ioa.registry.java. By custom, the implementation class and the

registration class have the same name. The job of the registration class is to populate

the registry with mappings for the sort and its operators. As such, the registration

class depends on the registry and is strongly coupled with its implementation class.

Any changes to the specification of an implementation class must be propagated to

the corresponding registration class.

Each registration class implements the ioa.registry.Registrable interface:

public interface Registrable
{

public void install(ConstrImplRegistry reg)
throws RegistryException;

}

The code generator calls the install() method to populate the registry with

mappings from the registration class. In addition, by convention, each registration

class includes two constants:

// name of the IOA sort
public final static String sortName = "Foo";

// name of the implementation class
public final static String className = "FooSort";

Registration classes may use these when they need to refer to other sorts.

47

2.4.1 Standard Registration Classes

The body of the install() method first creates an instance of Installer (see Sec-

tion 2.3.6) by passing it reg (which was a parameter of install()) and the two

constants defined in Section 2.4. It then uses the Installer to add mappings for the

sort and all its operators. When installing an operator, the registration class passes

to the Installer method the operator’s template (see Section 2.3.5) and the name

of the implementation class method that implements it. See Appendixes A.1.3 and

A.2.3 for example install() methods.

Note that the registration class need not install the equality, inequality, and con-

ditional operators; these are the same for all ADTs and so they are registered auto-

matically by the call to addSort() or addLiteralSort().

Exception: Literal Operators

In addition to normal operators, for sorts with literals like Int and Real the registration

class installs a special literal operator. The syntax for registering it looks like this:

installer.addOp("(@<const>lit () % me)", "lit")

This tells the code generator that it can use IntSort.lit(), to create IntSorts

from integer literals in the source program. In order for this to work, the registration

class should install the sort using addLiteralSort() rather than addSort(). The

signature of the literal operator’s implementation method is defined by the code

generator to take a single int parameter. This is because the argument to the literal

operator in the target syntax tree is a Numeral, a class that emits itself as an int.

2.4.2 Dynamic Registration Classes

When information about a dynamic sort (see Section 2.3.4) is known, the main

registry asks the dynamic registry to actually install the dynamic sort. At this

point, the dynamic registry calls upon the dynamic registration class (which extends

DynamicRegistrable) to run its installDynamic() method.

48

installDynamic() uses Installer’s addCurriedOp() method to add the dynamic

sort’s operators to the registry. addCurriedOp()’s signature is like that of addOp(),

but it has two additional arguments.

The first additional argument is a Vector of extra information, builtIns, that

contains curried parameters that will be passed to the code generation method when

it is called. For example, in the lookupField() method of TupleSort, the built-in

argument is a Vector with one argument, the field name. Hence, the .a operator on

a tuple would be emitted as TupleSort.lookupField("a", aTuple) and .b would be

emitted as TupleSort.lookupField("b", aTuple).

The second additional argument is a boolean that enables “array mode,” in which

all the arguments to the code generation method are passed as one array. This allows

operators with a variable number of arguments. For example, TupleSort.make()

implements the mixfix [,...,] operator for creating tuples. TupleSort.make() has

to take an array of arguments because different tuples have different numbers of fields.

2.4.3 Non-Standard Registration Classes

A few non-standard operators do not fit the patterns that Installer knows about.

The non-standard parts must be registered “manually” (as described in the first part

of Section 2.3.6). They must use the ConstrImplRegistry instance passed to the

registration class to add mappings directly, and they must define their own code

emitters (that handle casting if applicable). An example in which a non-standard

registration class is required is LSeq (Section 7.3).

2.4.4 Flexibility Without Registration Classes

Registration classes are the mechanism we have chosen to support alternate imple-

mentations of data types. For instance, one could write a wrapper for Java’s BitSet

class and use it to provide an optimized implementation of Array[Nat, Bool]. Ensur-

ing that the corresponding registration class is loaded allows the code generator to

find implementations for all kinds of arrays, and the load order determines which

49

implementation has the first chance to claim that it implements a sort.

This flexibility is possible because whenever the code generator encounters an

operator it looks up its implementation in the registry. A weakness of our current

scheme, however, is that operator references in implementation classes do not indirect

through the registry. The operator that tells whether an element is a member of a

set returns a Bool. Its implementation method assumes that Bool is implemented by

BoolSort and calls BoolSort.lit() to generate the return value. Likewise, the set

cardinality operator assumes that Int is implemented by IntSort.

A strong case can be made that Bool only needs one implementation, however

for numeric sorts we desire more flexibility. The standard implementations of Int,

Nat, and Real rely on Java’s primitive types. They provide good performance, but are

subject to the same precision limitations as the underlying Java types. The Fibonacci

example from Dean’s thesis overflows Java’s integer bounds after a small number of

steps, and certainly many real-world situations would as well. Likewise, Java’s floating

point arithmetic means that our implementation of Real does not conform to basic

arithmetic identities. Multiplying a number by its reciprocal may not yield exactly

1, for instance.

We considered changing the implementations of the built-in numeric types to

use the “arbitrary” precision numeric classes in Java’s java.math package. However,

performance tests done by Nigam [19] showed that this was not a good solution for

the common case where extra precision is not needed.

In Section 2.2.3 I described how operators are officially implemented by static

methods but that usually these delegate to instance methods that do the real work.

This level of indirection provides a clean solution to the problem of providing alternate

implementations for sorts that are accessed through hard-coded references.

We rely on the factory method pattern defined by Gamma et. al. [8]. Consider

the case of IntSort, which provides the standard low-precision implementation of Int.

Every instance of IntSort (that is created outside the IntSort class) is created by

the factory method lit(). Normally, this returns an IntSort; but if the user has

requested the high-precision Int implementation (by setting a flag in IntSort), it can

50

return a BigIntSort, which uses BigInteger as its underlying representation instead

of int.

BigIntSort is a subclass of IntSort, and it overrides all the methods that create

IntSorts. Other classes are free to call the static IntSort methods directly; since

these delegate to instance methods, Java’s dispatch will ensure that BigIntSorts are

properly treated as such.

2.5 Test Classes

2.5.1 Testing Implementation Classes

The correctness of the generated code depends on the correctness of the implemen-

tation classes. Therefore, each implementation class has a corresponding test class,

implemented using the JUnit testing framework [2]. See Appendix A.2.4 for an ex-

ample. By convention, the test class for FooSort is called FooSortTest. Test classes

live in the ioa.test.junit.runtime.adt package and must extend TestCase, which is

provided by JUnit. They follow the standard JUnit pattern, containing:

• A main() that calls junit.textui.TestRunner.run(suite()). This lets one test

a particular class by invoking java on its test class.

• A setUp() method that creates variables (typically instances of ADTs) that

will be shared by the test methods. In JUnit terminology, the setUp() method

creates the fixture.

• A suite() method whose body is return new TestSuite(FooSortTest.class);

(where FooSort is the name of the ADT being tested). This tells JUnit to create

a suite of all the tests for the ADT.

• Test methods for hashCode(), equals(), and each implementation method. The

name of a test method must begin with test. The rest of the test method name

should be the name of the method being tested. (For instance, BoolSortTest

51

contains a testLte() method that tests BoolSort’s lte() method.) Test meth-

ods consist of a series of calls to assert() and assertEquals(), which are pro-

vided by JUnit. Together, the assertions perform black box tests, which test

based on the cases in the specification, and glass box tests, which test based on

the cases in the implementation.

In addition, each test class must be listed in the AllADTsTest class. This can be

accomplished by adding a new line to AllADTsTest’s suite() method that says

result.addTest(FooSortTest.suite ());

Once this has been done, one can test the new ADT along with all the old ones

by running java ioa.test.junit.runtime.adt.AllADTsTest, or by running

make adt-impl in the toolkit’s Test directory. To test a single ADT, run

java ioa.test.junit.runtime.adt.FooSortTest.

If an equality assertion fails, JUnit will print out the value it expected and the

value it received. The values may then be compared to track down the bug. To take

advantage of this feature, ADTs should override Object.toString() to “unparse”

themselves. By convention, simple ADTs unparse themselves into IOA syntax. Con-

tainer ADTs unparse themselves into s-expressions, which are more compact than the

IOA syntax necessary to construct them.

2.5.2 Testing Registration Classes

It is also important to test the registration class to make sure that the signatures of

the operators that it registers match the signatures of the operators that the front-end

outputs. This is accomplished by creating an IOA program that uses all of the sort’s

operators (see Appendix A.2.5) and running it through the code generator. These

test programs are stored in the toolkit’s Test directory. Instructions for creating and

running the tests are displayed by the make help and make add-help commands in

the directory.

52

2.5.3 Catching Bugs in the Implementation/Registration In-

terface

The tests in Section 2.5.2 do not ensure that the registration class maps operators to

the correct methods, or even to methods that exist. Manual checking must be used

to determine the correctness of the mapping, but the CorrespondenceTest class can

increase confidence in the registration class by checking that the methods it registers

actually exist in the implementation class.

CorrespondenceTest uses the list of Registrables found by the ADTLocator to

decide which classes to test. It works by using a mock object [17] that poses as

a registry to each registration class. When the registration class installs an op-

erator, CorrespondenceTest checks that the implementation class includes a suit-

able method to implement it. In order to do this, it uses the getMethodName() and

getNumParameters() methods of Operator or JavaOpConstructor to get information

about the method being registered. These two methods are included in the JavaMethod

interface, so CorrespondenceTest will work with any registered object that implements

JavaMethod.

One problem with this design is that since Operator implements JavaMethod, so

will any class that extends it (to provide non-standard functionality, for instance);

and therefore CorrespondenceTest will think that it can test the subclass. In fact,

the subclass may be so non-standard (see Section 7.3.3) that the information pro-

vided by the JavaMethod accessors no longer makes sense. To handle this situation,

JavaMethod includes another method, isTestable(), that lets test classes determine

whether the registered object claims it can be tested as described above. Subclasses of

Operator that do non-standard things should override isTestable() to return false,

thus preventing spurious errors when CorrespondenceTest is run.

2.6 Recipe for Writing ADTs

To add a new ADT to the code generator, you must:

53

• Create an implementation class in the ioa.runtime.adt package.

– Make sure that it extends ioa.runtime.adt.ADT (Section 2.2.1).

– Include a public static method for each operator (Section 2.2.3).

– Be sure to override the non-static equals(), hashCode(), and toString()

methods from java.lang.Object (Section 2.2.2).

– Create a static construct(Parameterization) method (Section 2.2.5).

– Make the class Serializable (Section 6.1).

– Add methods for converting to and from s-expressions (Section 7.1).

• Create a registration class in the ioa.registry.java package (Section 2.4). Use

Installer to install the sort and its operators (Section 2.3.6).

• Write a JUnit-based test class for the implementation class and add it to

AllADTsTest (Section 2.5.1). Be sure to test equals() and hashCode().

• Write an IOA test for the registration class and hook it up to the Makefile-based

tester (Section 2.5.2).

To add a new dynamic sort, there are only a few differences:

• Some operators are likely to use curried parameters and are registered using

addCurriedOp() (Section 2.3.3).

• The install() method should simply add a stub instance to DynamicImplRegistry:

DynamicImplRegistry.addDynReg(new TupleSort ());

• The registration class should have a boolean isDynamic(Sort sort) method

that returns true if the given sort can be implemented dynamically by the

registration class. DynamicImplRegistry will query this method whenever a

dynamic sort is in need of installation.

54

• The registration class should have an installDynamic(Sort sort) method

that does the actual installing. Install the necessary operators by calling

addCurriedOp() and/or addOp() here. DynamicImplRegistry will call this method

once isDynamic() returns true. Remember to call addSort() to install the reg-

ular comparison and conditional operators.

2.7 Sharing ADTs with the Simulator

The abstract data types and infrastructure described in this chapter were originally

developed for the IOA code generator. Concurrent with the code generator work,

Chefter, Ramı́rez-Robredo, and Dean [4, 20, 5, 12] developed a simulator that inter-

prets IOA. The two projects faced similar issues in matching IOA sorts and operators

with Java implementations. In fact, the simulator had a registry and its own Java

implementations of some basic IOA data types7.

For obvious reasons, we determined that the code generator and simulator should

use the same ADT implementations at runtime. They now use the same implementa-

tion classes, the same registration classes, and the same registry. The difference is in

the mappings they install into the registry. In each case, the registration class gets an

Installer from a factory and uses it to populate the registry. For the code generator,

the factory returns a CGInstaller; for the simulator it returns a SimInstaller.

Table 2.1 shows the correspondence between the classes in the code generator

and those in the simulator. Mappings to the classes on the left are installed by

CGInstaller and mappings to the ones on the right are installed by SimInstaller.

In the code generator’s target syntax, Operator nodes have an emit() method that

prints out Java code to call the static class method that implements the operator.

In the simulator’s syntax tree, BasicOpImpl nodes have an apply() method that is

supposed to perform the work of the operator. To do this, they use Java’s reflection

7The registry worked in a similar manner. In fact, the code generator’s (and later the shared)
registry was based on earlier simulator work [20] by Ramı́rez-Robredo. The main difference is that
in the old design the ADT implementations were interwoven with the code that registered them,
which made adding new ADTs difficult. More detailed comparison between the two is contained in
[25]

55

Code Generator Simulator
ioa.codegen.target.java.Class ioa.simulator.impl.BasicSortImpl

ioa.codegen.impl.java.JavaSortConstructor ioa.simulator.impl.SimSortConstructor

ioa.codegen.target.java.Operator ioa.simulator.impl.BasicOpImpl

ioa.codegen.target.java.ShortcutOperator ioa.simulator.impl.ShortcutOpImpl

ioa.codegen.target.java.ExtOperator ioa.simulator.impl.ExtOpImpl

ioa.codegen.impl.java.JavaOpConstructor ioa.simulator.impl.SimOpConstructor

ioa.codegen.impl.java.JavaShortcutOpConstructor ioa.simulator.impl.SimShortcutOpConstructor

Table 2.1: Class Correspondence Between the Code Generator and Simulator

API to look up the implementation method and invoke it. Curried parameters are

handled in the same way as in the code generator, and shortcutting operators are

similarly special-cased.

2.8 ADT Library

2.8.1 Standard IOA ADTs

This section gives an overview of the implementation classes for the data types that

are built into the IOA language.

BoolSort

Bool is a predefined sort in LSL and IOA, so every other sort depends on its im-

plementation, BoolSort. BoolSorts are interned: there is only one object for true

and one for false. Other ADT implementations may wish to access these values; for

instance, the set membership operator always returns an instance of BoolSort. Three

public class methods8 are provided for doing this: True(); False(); and lit(), which

converts a Java boolean into a BoolSort.

Authors: Joshua A. Tauber, Michael J. Tsai

8True() and False() are capitalized (contrary to our naming convention) to avoid conflicts
with the Java keywords true and false.

56

IntSort

IntSort is a straightforward implementation of integers using Java’s int. Other

ADTs that return integers depend on IntSort. For instance, the count operator im-

plemented by MsetSort returns IntSorts that indicate the multiplicities of elements

in the set. To support uses such as this, IntSort provides a public class method

lit(), which converts Java Integers into IntSorts. The nat() conversion operator is

implemented, but the front-end currently does not know how to parse it.

The sort has an alternate implementation, BigIntSort, that uses Java’s BigInteger

to handle larger integers9 (for instance, those generated by Fibonacci). IntSort main-

tains a flag (which may be set when the runtime starts up) for switching between

these two implementations. This is further described in Section 2.4.4.

Authors: Joshua A. Tauber, Michael J. Tsai, Atish Dev Nigam

ArraySort

ArraySort maps indices to values. The space of possible indices is very large—in

theory, it is unbounded. Therefore, ArraySort uses a sparse representation based on

Hashtable. Each array has a constant that specifies the value at indices for which

no value was specified (thus allowing arrays to be total). Two-dimensional Arrays

are implemented in the same class, as Hashtables mapping pairs of indices to values.

When an ArraySort is created, it can optionally have a constant value, which acts as

a default for indices that are not explicitly mapped in that Hashtable.

In IOA, each element of an array is considered a separate state variable, and

the array notation array [i] : = j is merely a shorthand for modifying them (not the

array itself). During code generation, statements of that form are desugared to

array = assign(array , i , j). The desugaring mechanism is general; any operator appli-

cation appearing on the left hand side of an assignment will be desugared so that the

new left hand side is the first operand and the new right hand side is an operator appli-

cation with the original operands plus the original right hand side. Operators that can

9BigInteger supports integers of up to 232 decimal digits.

57

appear on the left hand side of an assignment are registered with Installer as assign-

ment operators. This involves providing an additional parameter assignMethodName,

which is the name of the method that implements the operator when it is used as an

lvalue.

Author: Michael J. Tsai

CharSort

CharSort is a simple wrapper for Java chars. It implements lexicographic comparison

by comparing Unicode values, which means that ’A’ is less than ’a’. CharSorts are

not interned at present, although this would be a simple space and time optimization.

The front-end does not (yet) specially handle character literals, as it does for

integers and reals. Instead, each character literal is a nullary operator whose range

is a Char. These operators are all implemented by the CharSort.lit() method and

registered with curried parameters, as described in Section 2.3.3.

Author: Michael J. Tsai

MapSort

MapSort is much like ArraySort. It differs in that IOA Maps do not support constant

values, and it is implemented with a HashMap from the Java Collections framework.

(This is the new way of doing things in JDK 1.3. It should be faster than the

Hashtable that ArraySort uses, which was all that was available when it was written

with JDK 1.1.) Objects in the domain and range must be immutable, and objects in

the domain must properly override equals() and hashCode().

Author: Michael J. Tsai

MsetSort

MsetSort implements IOA multisets using a HashMap to map elements (Objects) to

their multiplicities (Integers). Objects stored in the set must be immutable and must

properly override equals() and hashCode().

Author: Michael J. Tsai

58

NatSort

NatSort is implemented similarly to IntSort. It throws an exception if asked to

contain a negative number. The int() conversion operator is implemented but the

front-end currently does not know how to parse it. Like IntSort, NatSort has an

alternate implementation (BigNatSort) that uses BigIntegers.

Authors: Michael J. Tsai, Atish Dev Nigam

RealSort

RealSort implements real numbers using Java doubles. At present, it ignores floating

point precision issues. As a result, values that should be equal may be reported as

unequal (and vice-versa). However, we also provide BigRealSort, an alternate im-

plementation that uses java.math.BigDecimal. This provides better, but not perfect

precision, and it still cannot represent irrational numbers such as π.

Authors: Michael J. Tsai, Atish Dev Nigam

SeqSort

SeqSort is a Vector-based implementation of IOA sequences. Sequences are homoge-

nous lists of values that are indexable by integers.

Authors: Joshua A. Tauber, Michael J. Tsai

SetSort

SetSort implements IOA sets (as well as ChoiceSet) using a HashSet for speed. Because

it was written before MsetSort, it is not based on MsetSort. Also, it is probably faster

this way.

Authors: Michael J. Tsai, Toh Ne Win

StringSort

StringSort implements IOA’s String data type using Java Strings. An IOA String is

the same as Seq[Char], a sequence of characters.

59

Author: Michael J. Tsai

EnumSort, TupleSort, and UnionSort

Because information about user-defined types is not known until after the program

has been parsed, these sorts have dynamic registration classes to create their operator

implementations on-demand. See Section 2.3.4.

Authors: Toh Ne Win, Laura G. Dean, Michael J. Tsai

2.8.2 Other ADTs

The implementation classes described in this section are part of the standard IOA

distribution, but they are not built into the language. Non-built-in data types are

defined in external LSL files, which are referenced using the -path switch of ioaCheck.

LSeqSort

See the description in Section 7.3.

Author: Michael J. Tsai

PQSort

PQSort implements priority queues using a binary heap. Its elements must be

ComparableADTs. PQSort supports both queues where the largest element is at the

head and queues where the smallest element is. These correspond to the IOA types

PQ[E] and PMQ[E], respectively. The registration classes for both of these sorts refer-

ence the same PQSort implementation class. The registration classes install the same

operator implementations, except that add is implemented by addMax() or addMin()

depending on the type of queue. Initially, an empty PQSort does not know which

style of queue it is implementing. However, by the first add it is able to set that

information based on which implementation method was called.

Authors: Atish Dev Nigam, Michael J. Tsai

60

NullSort

NullSort implements Null, which is a lifted type. It can hold either one value of some

specified subsort or the distinguished value nil.

Authors: Toh Ne Win, Michael J. Tsai

StackSort

StackSort implements stacks using a Vector.

Authors: Atish Dev Nigam, Michael J. Tsai

TimedInvocationSort

TimedInvocationSort implements TimedInvocation, which is a tuple of an invocation,

a time, and a node. Ordinarily, this could be implemented as a tuple without the need

for adding a new ADT. However, TimedInvocations differ from other tuples in that they

are totally ordered and support an ordering operator. Thus, TimedInvocationSort

is a ComparableADT. TimedInvocationSort does not obey the standard contract that

compareTo() must return 0 exactly when equals() returns true. This is because the

ordering of TimedInvocations is specified only in terms of their nodes and times. There

should never be two TimedInvocations with equal nodes and times, but different invo-

cations, because the order would be undefined. If this case ever arises, compareTo()

will throw a RepException.

Author: Michael J. Tsai

TreeSort

TreeSort implements binary trees. Each node stores a data object and may have 0,

1, or 2 children.

Authors: Toh Ne Win, Michael J. Tsai

61

Chapter 3

The Interface Generator

The algorithm automaton communicates with the external environment (e.g., users

at consoles or input and output files) through an auxiliary interface automaton. The

composition of these two automata and the auxiliary network automata is a primitive

automaton. After we remove the nondeterminism from the primitive automaton, we

generate Java code for it. The interface automaton is defined algorithmically in

terms of the the algorithm automaton. Producing the interface automaton, given the

algorithm automaton, is the job of the interface generator.

The interface automaton interacts with its local environment by sending and re-

ceiving invocations. An invocation is simply the label of an action from the algorithm

automaton combined with its actual parameters. The user can send input into the

system by passing the interface automaton an invocation of an input action. Like-

wise, the external environment observes the system through the invocations of output

actions that it receives from the interface automaton.

At a high level, composing the algorithm and interface automata has the effect of

making all of the algorithm automaton’s input and output actions internal. The only

non-internal actions of the composite automaton are:

i n p u t g e t I n v o c a t i o n (i n v : I O A I n v o c a t i o n)
output p u t I n v o c a t i o n (i n v : I O A I n v o c a t i o n)

These are both introduced by the interface automaton, and we require that the

62

algorithm automaton not have actions with these labels.

3.1 Type Definitions

Invocations consist of an action label and actual parameters, both of which depend

on the definition of the algorithm automaton. Therefore, the representation of an

invocation cannot be defined in advance; it must be generated from the algorithm

automaton.

Among the first things the interface generator does is parse the algorithm automa-

ton and create a new sort, IOA Invocation, to represent invocations on it1. IOA Invocation

is a shorthand sort defined as:

type I O A I n v o c a t i o n = t u p l e o f a c t i o n : I O A A c t i o n ,
p a r a m s : Seq [I O A P a r a m e t e r]

This definition is fixed, but since IOA Action and IOA Parameter differ with the

algorithm automaton, IOA Invocation must also.

The action field of the tuple identifies the action to be invoked. The IOA Action sort

is defined as an enumeration of the names of the actions in the algorithm automaton.

It does not take into account transition cases because after composition there will

only be one transition with each label.

The params field of the tuple is a sequence of the actual parameters. The parame-

ters of an action may have different sorts, for instance Int and Bool, but the elements of

an IOA sequence must always have the same sort. Therefore, we define IOA Parameter

as a union of all the possible sorts that an actual parameter can have. Through this

indirection, the params sequence can then hold heterogenous actual parameters2.

The IOA Parameter sort is defined as a union of all the (unique) sorts of the actual

parameters of actions in the algorithm automaton. The tags of the union are the

1The prototype interface generator avoided the complexity of introducing new sorts and operators
by using integers instead of invocations. Each transition had a number, and the parameters were
restricted to integers.

2An alternate design would have been to create a specialized invocation tuple for each kind of
action, however this would have made the resulting IOA (and the Java to generate it) longer and
more complex.

63

sort ::= name | name "’_" subsorts "_’"

subsorts ::= sort ("’" sort)*

Figure 3-1: Grammar for representing sorts and their subsorts as IOA identifiers.

names of the sorts. For instance, if p:IOA Parameter contains an integer, its value may

be accessed with p. Int.

It is also possible for the union to contain compound sorts. In this case, the name

of the union tag is constructed using the grammar in Figure 3-1. For example, the tag

for the Array[Int ,Bool] sort is Array ′ Int ′Bool ′. The two different subsort delimiters,

′ and ′, are necessary to handle nested compound sorts.

The interface generator contains a general mechanism for introducing new short-

hand sorts and their operators. For instance, if the programmer wants to introduce a

new union he can call a single method, passing it the name of the sort and the names

and sorts of the fields. The symbol table will then be populated with the union sort,

its accompanying tag enumeration, and all the operators on these two sorts. I hope

that this mechanism can be reused in the development of other intermediate language

transformation tools.

3.2 States of the Interface Automaton

The interface automaton has two state variables:

s t a t e s
s t d i n : LSeq [I O A I n v o c a t i o n] ,
s t d o u t : LSeq [I O A I n v o c a t i o n]

The two sequences implement FIFO invocation buffers. head(stdin) is the oldest

input invocation (the one that appears earliest in the trace), and head(stdout) is the

oldest output invocation.

The LSeq sort is identical to the standard Seq sort except that it supports locking.

LSeq is defined by the following LSL trait:

64

L o c k a b l e S e q u e n c e (E) : t r a i t
i n c l u d e s

S e q u e n c e (LSeq f o r Seq)
i n t r o d u c e s

l o c k S t d i n , l o c k S t d o u t : LSeq [E] → LSeq [E]
u n l o c k S t d i n , u n l o c k S t d o u t : LSeq [E] → LSeq [E]

The semantics of the new operators are not specified in this LSL trait. The

operators’ only purpose is to allow the interface generator to mark regions where the

generated Java code needs to obtain exclusive access to shared variables. This is

described in more detail in Section 7.3.

3.3 Input Actions of the Interface Automaton

For each output action3 a of the algorithm automaton, the interface automaton con-

tains an input action a′ with the same number and types of parameters. a performs

the “work” of the action, while a′ translates an invocation of a into an IOA Invocation.

The composite automaton contains an action that combines the effects of a and a′.

The action is hidden during the composition.

The effect of a′ is:

s t d o u t := l o c k S t d o u t (s t d o u t) ;
s t d o u t := s t d o u t ` i n v ;
s t d o u t := u n l o c k S t d o u t (s t d o u t)

The first and last statements establish and relinquish exclusive access to the output

invocation buffer. The middle statement appends inv to the buffer, where inv is an

IOA Invocation whose action is the name of a and whose parameters are the parameters

of a.

For instance, if a is:

output f o o (i : I n t , b : B o o l)

then the effect of a′ is:

3The output action named SEND is ignored because it deals with network output rather than
console output. It is a special stub that will be replaced by MPI calls.

65

s t d o u t := l o c k S t d o u t (s t d o u t) ;
s t d o u t := s t d o u t ` [f o o , { } ` I n t (i) ` B o o l (b)] ;
s t d o u t := u n l o c k S t d o u t (s t d o u t)

The second line of this requires some explanation. The right hand side of the

assignment creates a new sequence by appending an invocation to the old sequence.

The [,] operator for making the invocation takes two operands. foo is a nullary

operator that produces an IOA Action. {} ` Int(i) ` Bool(b) creates a sequence by

appending two elements to the empty sequence. The Int operator takes an integer i

and packages it in an IOA Parameter. The Bool operator does the same thing with a

boolean.

3.4 Output Actions of the Interface Automaton

For each input action4 a of the algorithm automaton, the interface automaton contains

an output action a′ with the same number and types of parameters. a performs the

“work” of the action (as defined by the algorithm automaton), while a′ translates an

IOA Invocation into an invocation of a.

The precondition of a′ is that the action and parameters in the first invocation in

stdin match the current action and parameters. For instance, if a is:

i n p u t f o o (i : I n t , b : B o o l)

then the precondition of a′ is:

pre h e a d (s t d i n) . a c t i o n = f o o ∧
l e n (h e a d (s t d i n) . p a r a m s) = 2 ∧
t a g (h e a d (s t d i n) . p a r a m s [0]) = I n t ∧
h e a d (s t d i n) . p a r a m s [0] . I n t = i ∧
t a g (h e a d (s t d i n) . p a r a m s [1]) = B o o l ∧
h e a d (s t d i n) . p a r a m s [1] . B o o l = b

The effect of a′ is to remove the invocation from stdin. It looks like:

4The input action named RECEIVE is ignored because it deals with network input rather than
console input. It is a special stub that will be replaced by MPI calls.

66

e f f s t d i n := l o c k S t d i n (s t d i n) ;
s t d i n := t a i l (s t d i n) ;
s t d i n := u n l o c k S t d i n (s t d i n) ;

3.5 getInvocation and putInvocation

Conceptually, the interface automaton contains the actions:

i n p u t g e t I n v o c a t i o n (i n v : I O A I n v o c a t i o n)
output p u t I n v o c a t i o n (i n v : I O A I n v o c a t i o n)

getInvocation receives an invocation from the environment and appends it to stdin.

putInvocation removes an invocation from stdout and sends it to the environment. In

the current version of the code generator, the environment is a collection of input and

output files, one per computation node.

The interface generator does not, however, output the definitions of these actions.

Since they do not depend on the algorithm automaton, they are implemented once and

for all in the code generator’s runtime library. The class ioa.runtime.io.Stdin imple-

ments getInvocation, and the class ioa.runtime.io.Stdout implements putInvocation.

Neither of these actions needs to be scheduled, and each of them runs in its own Java

thread. This is how we model the fact that input can arrive at any time.

The runtime handling of invocations is described in more depth in Chapter 7.

3.6 Example

This section shows the interface automaton that is generated for an automaton that

implements a bank. The banking automaton is a modified version of one presented by

Toh Ne Win and Gustavo Santos [32]. Its workings are not important for the purposes

of this example; the main point is to see the form of the interface automaton.

67

3.6.1 Algorithm Automaton Banking

The algorithm automaton has output actions OK and reportBalance and input actions

requestDeposit, requestWithdrawal, and requestBalance.

% I m p l e m e n t a t i o n o f n u l l p o s s i b i l i t y
type OpRec = tup le of l o c : I n t ,

seqno : I n t ,
amount : I n t ,
r e p o r t e d : Bool

type BalRec = tup le of l o c : I n t ,
v a l u e : I n t

% D e f i n e s sums o v e r a s e t
u s e s NonDet
u s e s C h o i c e S e t (OpRec)
u s e s C h o i c e S e t (BalRec)

automaton Banking
s ignature

input
r e q u e s t D e p o s i t (n : I n t , i : I n t) where n > 0 ,
r e q u e s t W i t h d r a w a l (n : I n t , i : I n t) where n > 0 ,
r e q u e s t B a l a n c e (i : I n t)

output
OK(i : I n t , x : OpRec) ,
r e p o r t B a l a n c e (n : I n t , i : I n t)

i n t e r n a l
doBalance (i : I n t ,

tempChosenOps : Set [OpRec] ,
amount : I n t)

s t a t e s
ops : Set [OpRec] : = { } ,
p e n d i n g o p s : Set [OpRec] : = { } ,
r e p o r t e d o p s : Set [OpRec] : = { } ,
p e n d i n g b a l s : Set [BalRec] : = { } ,
d o n e b a l s : Set [BalRec] : = { } ,
b a l s : Set [BalRec] : = { } ,
l a s t S e q n o : Ar ray [I n t , I n t] : = c o n s t a n t (0) ,
chosenOps : Set [OpRec] : = {}

t r a n s i t i o n s
input r e q u e s t D e p o s i t (n , i)
e f f

l a s t S e q n o [i] : = l a s t S e q n o [i] + 1 ;
ops := i n s e r t ([i , l a s t S e q n o [i] , n , f a l s e] , ops) ;
p e n d i n g o p s := i n s e r t ([i , l a s t S e q n o [i] , n , f a l s e] ,

p e n d i n g o p s)

input r e q u e s t W i t h d r a w a l (n , i)
e f f

l a s t S e q n o [i] : = l a s t S e q n o [i] + 1 ;

68

ops := i n s e r t ([i , l a s t S e q n o [i] , − n , f a l s e] , ops) ;
p e n d i n g o p s := i n s e r t ([i , l a s t S e q n o [i] , − n , f a l s e] ,

p e n d i n g o p s)

input r e q u e s t B a l a n c e (i)
e f f

p e n d i n g b a l s := i n s e r t ([i , 0] , p e n d i n g b a l s) ;
b a l s := p e n d i n g b a l s ∪ d o n e b a l s

output OK(i , x)
% X i s n ′ t a r e a l param e t e r , i t j u s t h e l p s a v o i d choose

pre
x ∈ ops ∧ x . l o c = i ∧ ¬x . r e p o r t e d

e f f
ops := i n s e r t (s e t r e p o r t e d (x , true) , d e l e t e (x , ops)) ;
p e n d i n g o p s := d e l e t e (x , p e n d i n g o p s) ;
r e p o r t e d o p s := i n s e r t (s e t r e p o r t e d (x , true) ,

r e p o r t e d o p s)

output r e p o r t B a l a n c e (n , i)
pre

[i , n] ∈ d o n e b a l s
e f f

d o n e b a l s := d e l e t e ([i , n] , d o n e b a l s) ;
b a l s := p e n d i n g b a l s ∪ d o n e b a l s

i n t e r n a l doBalance (i , tempChosenOps , amount)
pre

[i , 0] ∈ p e n d i n g b a l s
e f f

chosenOps := tempChosenOps ;
p e n d i n g b a l s := d e l e t e ([i , 0] , p e n d i n g b a l s) ;
d o n e b a l s := i n s e r t ([i , amount] , d o n e b a l s) ;
b a l s := p e n d i n g b a l s ∪ d o n e b a l s

3.6.2 Interface Automaton BankingInterface

This section shows the actual output of the interface generator. The interface automa-

ton has states stdin and stdout. For each input action in the algorithm automaton it

has an output action, and vice-versa. The input actions remove IOA Invocations from

stdin, and the output actions add IOA Invocations to stdout.

The output has been converted from the intermediate language back to IOA using

the IL-to-IOA translator developed by Reimers [21] (and subsequently enhanced by

Nigam and myself). I have hand-modified the output slightly by adding linebreaks

and indentation to format it for this page. Note that the output is not quite valid

69

IOA. The IL-to-IOA translator needs to be improved so that type definitions are

outputted in an order that does not have any forward references.

type I O A I n v o c a t i o n = tup le of a c t i o n : IOA Act ion ,
params : Seq [IOA Parameter]

type IOA Parameter = union of I n t : I n t ,
OpRec : OpRec ,

Set ′ OpRec ′ : Set [OpRec]
type IOA Act ion = enumeration of OK , r e p o r t B a l a n c e
type BalRec = tup le of l o c : I n t , v a l u e : I n t
type OpRec = tup le of l o c : I n t ,

seqno : I n t ,
amount : I n t ,

r e p o r t e d : Bool
automaton B a n k i n g I n t e r f a c e

s ignature
input
OK(i : I n t , x : OpRec) ,
r e p o r t B a l a n c e (n : I n t , i : I n t)

output
r e q u e s t D e p o s i t (n : I n t , i : I n t) where n > 0 ,
r e q u e s t W i t h d r a w a l (n : I n t , i : I n t) where n > 0 ,
r e q u e s t B a l a n c e (i : I n t)

s t a t e s
s t d i n : LSeq [I O A I n v o c a t i o n] : = { } ,
s t d o u t : LSeq [I O A I n v o c a t i o n] : = {}

t r a n s i t i o n s
output r e q u e s t D e p o s i t (n : I n t , i : I n t) where n > 0 case 1

pre ((((((head (s t d i n) . a c t i o n) = (r e q u e s t D e p o s i t)) ∧
((l e n (head (s t d i n) . params)) = 2)) ∧
((tag (head (s t d i n) . params [0])) = (I n t))) ∧
((head (s t d i n) . params [0] . I n t) = n)) ∧
((tag (head (s t d i n) . params [1])) = (I n t))) ∧
((head (s t d i n) . params [1] . I n t) = i)

e f f s t d i n := l o c k S t d i n (s t d i n) ;
s t d i n := t a i l (s t d i n) ;
s t d i n := u n l o c k S t d i n (s t d i n)

output r e q u e s t W i t h d r a w a l (n : I n t , i : I n t) where n > 0 case 1
pre ((((((head (s t d i n) . a c t i o n) = (r e q u e s t W i t h d r a w a l)) ∧

((l e n (head (s t d i n) . params)) = 2)) ∧
((tag (head (s t d i n) . params [0])) = (I n t))) ∧
((head (s t d i n) . params [0] . I n t) = n)) ∧
((tag (head (s t d i n) . params [1])) = (I n t))) ∧
((head (s t d i n) . params [1] . I n t) = i)

e f f s t d i n := l o c k S t d i n (s t d i n) ;
s t d i n := t a i l (s t d i n) ;
s t d i n := u n l o c k S t d i n (s t d i n)

output r e q u e s t B a l a n c e (i : I n t) case 1
pre ((((head (s t d i n) . a c t i o n) = (r e q u e s t B a l a n c e)) ∧

((l e n (head (s t d i n) . params)) = 1)) ∧
((tag (head (s t d i n) . params [0])) = (I n t))) ∧
((head (s t d i n) . params [0] . I n t) = i)

70

e f f s t d i n := l o c k S t d i n (s t d i n) ;
s t d i n := t a i l (s t d i n) ;
s t d i n := u n l o c k S t d i n (s t d i n)

input OK(i : I n t , x : OpRec) case 1
e f f s t d o u t := l o c k S t d o u t (s t d o u t) ;

s t d o u t := s t d o u t ` ([OK, (({ }) ` (I n t (i))) `
(OpRec (x))]) ;

s t d o u t := u n l o c k S t d o u t (s t d o u t)
input r e p o r t B a l a n c e (n : I n t , i : I n t) case 1

e f f s t d o u t := l o c k S t d o u t (s t d o u t) ;
s t d o u t := s t d o u t ` ([r e p o r t B a l a n c e ,

(({ }) ` (I n t (n))) `
(I n t (i))]) ;

s t d o u t := u n l o c k S t d o u t (s t d o u t)

71

Chapter 4

The Next Action Determinator

The output of composing the node automaton with the interface automaton is a

nondeterministic automaton: more than one action may be enabled at a time and

the effects of the actions may be nondeterministic. The next action determinator

(NAD) is a source-to-source transformer. It takes as input the nondeterministic

automaton and outputs a modified version, the NAD automaton, that is next-action

deterministic. That is, at any given time only one locally controlled1 action of the

NAD automaton is enabled.

The user can specify a schedule for the next-action deterministic automaton. The

schedule selects actions to execute and chooses parameters for them. The user also

replaces the remaining explicit nondeterminism (in the form of choose expressions)

with deterministic values. The final scheduled automaton is called next-state de-

terministic. With all the nondeterminism removed, it is then possible to generate

runnable code to implement the automaton in an imperative programming language.

This chapter will give an overview of the NAD transformation from a syntactic

point of view (in terms of the IOA language). Vaziri et. al. [29] describe the precise

semantic transformation (in terms of the I/O Automaton model) and show that it

conforms to the syntactic one. Note that the form of the NAD automaton described

in that paper is slightly different from the one generated by the NAD tool in the IOA

1A locally controlled action is one that is either output or internal. input actions are, by
definition, always enabled.

72

toolkit. In particular, the NAD implementation uses integers for transition identifiers

instead of enumerations2.

4.1 Kinds of Nondeterminism

IOA programs contain both explicit and implicit nondeterminism. Explicit nondeter-

minism includes choose statements, which represent nondeterministic values, possibly

constrained by a where clause. Implicit nondeterminism includes the label of the next

action and the values of its parameters.

The goal of the NAD transformation is to make all implicit nondeterminism ex-

plicit, i.e. transform all implicit nondeterminism into choose statements. The user

can then determine the chooses by replacing them with deterministic values.

4.2 The NAD Transformation

The NAD takes as input a primitive automaton A. It requires that the automaton

not have a state variable named PC or an action named Scheduler. The output of the

NAD is a new automaton NAD(A) = A′ that contains no implicit nondeterminism.

Further, Traces(A) = Traces(A′), i.e. the transformation preserves the external

behavior of A. If the name of N is Name, the name of A′ is NameNAD. A′ differs from

A as described in the following subsections.

4.2.1 States of A′

A′ contains all the state variables of A.

A′ has an integer state variable PC, which represents a program counter. Each

transition of A′ is numbered with a unique integer, a transition index. PC takes on

only those values. PC is initialized to s, where s is the index of the Scheduler transition.

2The NAD tool was implemented before the paper was written; and at the time, the toolkit’s
intermediate language did not support shorthand sorts such as enumerations.

73

A′ contains a new state variable for each free variable in the actual parameters of its

locally controlled transitions. These new states have the same types and intermediate

language identifiers as the the parameters they were derived from. This means that

everywhere A referenced one of the actual parameters, A′ will reference the state

variable derived from it. The names of the state variables are the same as the names

of the parameters, except that a prefix is added to make them unique. The prefix is

the letter “t” followed by the transition index and an underscore.

4.2.2 The Scheduler Transition

A′ contains a new internal transition called Scheduler. It has transition index s and is

defined as follows:

Scheduler has no parameters. The precondition of Scheduler is PC = s. The effect

of Scheduler does the following:

• For each state variable v added above, the effect contains a statement of the

form v := choose. This makes assignment of the parameter values explicitly

nondeterministic.

• The effect contains the statement PC := choose p where p 6= s. This makes the

choice of the next transition explicitly nondeterministic. The where clause en-

sures that the next transition will not be Scheduler3.

• The final part of the effect is a conditional statement. Let ii be the indices of

the locally controlled non-Scheduler transitions and let pi be their preconditions.

Then the conditional statement is:

i f ¬((PC = i1 ∧ p1) ∨
(PC = i2 ∧ p2) ∨
. . .
(PC = in ∧ pn)) then

PC := s
f i

3At present, it does not ensure that the choice is a legal transition index, however.

74

If the PC has been assigned the index of an enabled transition, the conditional

does nothing and that transition will be the next to run. Otherwise, the con-

ditional sets PC to Scheduler’s transition index so that a new transition and

parameters can be picked.

4.2.3 Transitions of A′

For each locally controlled transition t of A, A′ contains a transition t′. t′ is similar

to t with a few changes:

• In the precondition and effect, all references to the parameters of t are replaced

by references to the corresponding new state variables in A′.

• The precondition has a new conjunct requiring that PC equals the transition

index of t′. This ensures that t′ only runs when it has been scheduled and

that only one transition is enabled at a time. Thus, A′ will be next-action

deterministic.

• For every actual parameter in t, t′ contains an actual parameter that is an iden-

tical term except that the free variables have been replaced by fresh variables.

• The precondition of t adds conjuncts requiring that these fresh variables are

equal to their corresponding new state variables.

• At the end of the effect, PC is assigned the value s, to return control to Scheduler.

4.3 Summary

The Scheduler action decides which transition will run next. Its precondition is that

the program counter is equal to its index. Its effect is to assign choose values to

each of the stand-in state variables (Section 4.2.1) that represents one of the chosen

action’s parameters. This is equivalent to assigning parameter values for each of the

transitions, then choosing which transition to run (by setting the program counter

75

accordingly). It is possible that the precondition of the chosen transition will not be

satisfied. In this case, Scheduler sets the program counter to its own index. The next

time it runs it will hope for better luck.

Assign Choose
Values to State

Variables

Choose Transition
to Run

Run the
Transitionif enabled

if disabled

Figure 4-1: The Scheduler Transition’s Main Control Loop

Normally, transitions can be executed at any time. However, in the scheduled au-

tomaton, Scheduler decides which transition should run when. Thus, each locally con-

trolled transition is modified so that it runs only when given permission by Scheduler,

and so that it relinquishes control to Scheduler after it has finished running. To do

this, a conjunct is added to each transition’s precondition requiring that the program

counter is equal to its transition index. Additional precondition conjuncts require

that the actual parameters of the transition match the corresponding state variables

created above. Subsequent references to these actual parameters are replaced by ref-

erences to the state variables. Finally, at the end of the effect clause, the transition

sets the program counter to Scheduler’s transition index.

4.4 Example

This section shows a simple example of an automaton before and after the NAD

transformation.

4.4.1 Nondeterministic Automaton Adder

The Adder automaton has a single input action add whose effect is to compute a sum

and store it in a state variable. Once it has done this, the result action can output

the sum.

76

automaton Adder
s ignature

input add (i , j : I n t)
output r e s u l t (k : I n t)

s t a t e s
v a l u e : I n t ,
r e a d y : Bool := f a l s e

t r a n s i t i o n s
input add (i , j)

e f f
v a l u e := i + j ;
r e a d y := true

output r e s u l t (k)
pre

k = v a l u e ∧ r e a d y
e f f

r e a d y := f a l s e

4.4.2 Next-Action Deterministic Automaton AdderNAD

The AdderNAD automaton has two additional state variables, one for the program

counter and one for the parameter to the lone output action. The output action’s

precondition has been modified to require that the program counter is equal to its

index and that the parameter is equal to the stand-in state variable. Its effect has been

modified to set the program counter to Scheduler’s index. Finally, the new Scheduler

transition chooses values for the program counter and the output action’s parameter.

If the output action is not enabled, it sets the program counter to its own index so

that it will run again.

automaton AdderNAD
s ignature

input add (i , j : I n t)
output r e s u l t (k : I n t) % t r a n s i t i o n i n d e x 1
i n t e r n a l S c h e d u l e r % t r a n s i t i o n i n d e x 0

s t a t e s
v a l u e : I n t ,
r e a d y : Bool := f a l s e ,
PC : I n t := 0 ,
t 1 k : I n t

t r a n s i t i o n s
input add (i , j)

e f f
v a l u e := i + j ;
r e a d y := true

output r e s u l t (k)

77

pre
PC = 1 ∧ t 1 k = k ∧ t 1 k = v a l u e ∧ r e a d y

e f f
r e a d y := f a l s e ;
PC := 0

i n t e r n a l S c h e d u l e r
pre

PC = 0
e f f

t 1 k = choose
PC = choose
i f ¬(PC = 1 ∧ k = v a l u e ∧ r e a d y) then

PC := 0
f i

4.5 Evaluation of the NAD

The next action determinator is easy to use, but adding the scheduling information

is hard. The chief problem is that the user thinks in terms of the node automaton,

but he must schedule the NAD automaton. This is difficult because IOA for the

NAD automaton is generated by the IL-to-IOA translator, which does not preserve

the organization, formatting, or comments from the original algorithm automaton

source file. Also, the NAD automaton contains the original automaton’s parameters

renamed as state variables.

Second, there is the minor problem that the schedule (i.e. the resolutions of the

chooses) needs to be pasted into skeleton Scheduler transition in the NAD output

each time the node automaton changes. This is actually more annoying than it

first appears. Chances are that deciding which transition to run will require some

temporary variables for use in the scheduling logic; these must also be added to the

NAD automaton after each regeneration.

Third, and more serious, is that the schedule must be written in very low-level

terms. For instance, to “fire” a transition the user must locate and set the NAD-

generated state variables that represent the transition’s parameters. Then he must

set the PC state variable to the program counter value that corresponds to the tran-

sition. The values of the program counter and the names of the state variables both

depend on the transition indices. However, the transition indices depend on the in-

78

termediate language representation of the IOA program4. As such, they are unstable;

semantics-preserving changes to the node automaton, such as changing the order of

the transitions in the source file, can change the transition indices. There is no warn-

ing to the programmer when the numbers have changed; his schedule will simply stop

working or behave unexpectedly.

One solution to this latter problem would be to use better transition identifiers.

As described in [29], the PC variable could be an enumeration of transition names

instead of integers. This would solve the stability problem and allow the IOA checker

to report errors when the schedule contained invalid transition identifiers (because

the name would not be in the definition of the enumerated type). However, the state

variable names would still depend on the transition names. Also, there is still the

problem of ensuring that the parameter state variables are set properly; the checker

will not signal an error if they are uninitialized.

4At present the BasicIntILFactory assigns increasing integers to each transition it creates.

79

Chapter 5

Compiling the Nondeterminism

Resolution Language

The implementation of the NAD was completed in August 1999. At the time, we

were far from having a working system for compiling IOA, and an easier to use NAD

was not on the critical path. I revisited the scheduling problems in the winter of 2002.

By this time, Antonio Ramı́rez-Robredo had completed his thesis [20] on a new IOA

simulator. One component of Ramı́rez-Robredo’s work was a set of extensions to the

IOA language for resolving choose nondeterminism and scheduling transitions. These

NDR (for “nondeterminism resolution”) language constructs appear as annotations

in IOA programs. Most tools ignore the annotations, but the simulator uses them.

In fact, the mechanism for scheduling transitions to select valid executions forms the

backbone of the simulator’s interpreter.

NDR solves most of the problems with the NAD in Section 4.5. (The user still has

to schedule interface automaton actions that he did not write.) Since the annotations

are added directly to the IOA source file, there is no need to copy and paste each time

the automaton is changed. The semantic checker can verify that each fired transition

actually exists, and also that the number and types of its actual parameters are

suitable.

Thus, rather than trying to reinvent these features in the NAD, I decided to add

NDR support to the code generator. NDR fragments could be compiled directly to

80

Java, and the NDR schedule could form the main1 method of the generated Java

class. An added benefit is that NDR schedules and choose resolutions can be shared

between the simulator and the code generator. The user can specify this information

once and use it with both tools at different points in the development process. Finally,

NDR has the benefit of not modifying the underlying IOA code2.

The remainder of this section explains the relevent NDR syntax elements and

shows how they may be translated to Java.

5.1 NDR Language Extensions

Ramı́rez-Robredo’s thesis [20] introduces IOA syntax extensions to support simu-

lation and paired simulation. The extensions include labeling invariants, labeling

transition definitions, resolving nondeterminism by scheduling transitions and deter-

mining choose values, and specifying proofs of simulation relations. The extensions

were then modified somewhat by Dean [5] as she reimplemented them in a newer

version of the IOA front-end.

This section is concerned with the extensions for resolving nondeterminism. I

have extracted the relevent BNF productions from Dean’s thesis and will explain

them below.

basicAutomaton ::= "signature" formatActions+ states

transitions tasks?

Figure 5-1: IOA Grammar for an Automaton

Automaton definitions have been extended to allow an optional schedule block

that specifies transitions to be scheduled. The schedule can reference (but not modify)

the state variables of the automaton and evaluate arbitrary terms to decide which

1“Main” as in the method that oversees everything, not as in the actual “main” method.
2However, tools such as the composer must be aware of NDR so that they can preserve the

annotations.

81

basicAutomaton ::= "signature" formatActions+ states

transitions tasks? schedule?

schedule ::= "schedule" states? "do" NDRProgram "od"

NDRProgram ::= NDRStatement;*

NDRStatement ::= assignment

| NDRConditional

| NDRWhile

| NDRFire

NDRConditional ::= "if" predicate "then" NDRProgram

("elseif" predicate "then" NDRProgram)*

("else" NDRProgram)? "fi"

NDRWhile ::= "while" predicate "do" NDRProgram "od"

NDRFire ::= "fire" actionType actionName

actionActuals? transCase?

| "fire"

Figure 5-2: Annotated IOA Grammar for an Automaton

transitions to schedule. The fire statement schedules the running of a transition and

specifies its actual parameters. Execution begins at the top of the schedule block.

When a fire statement is reached, the simulator executes the specified transition and

then returns to the statement immediately following the fire in the schedule.

choice ::= "choose" (variable "where" predicate)?

Figure 5-3: IOA Grammar for a Choice

IOA choose statements have been extended to allow optional determinator blocks

that specify values that may be chosen. Determinators are like schedules except that

instead of fireing transitions the determinator yields values.

Determinators “remember” where they left off; execution of a determinator re-

sumes after the last-executed yield statement (rather than at the top of the block).

Therefore, to specify that a sequence of values should be yielded it is sufficient to

include a sequence of yield statements. The first time the determinator is executed

it will yield the value from the first statement, the second time from the second

82

choice ::= "choose" (variable ("where" predicate)?)?

choiceNDR?

choiceNDR ::= "det" "do" NDRProgramY "od"

| NDRYield

NDRProgramY ::= NDRStatementY;*

NDRStatementY ::= assignment

| NDRConditionalY

| NDRWhileY

| NDRYield

NDRConditionalY ::= "if" predicate "then" NDRProgramY

("elseif" predicate "then" NDRProgramY)*

("else" NDRProgramY)? "fi"

NDRWhileY ::= "while" predicate "do" NDRProgramY "od"

NDRYield ::= "yield" term

Figure 5-4: Annotated IOA Grammar for a Choice

statement, and so on.

The resumptive nature of these semantics was inspired by CLU iterators [15]. It

makes the IOA programmer’s job particularly easy because much of the control flow

is handled by the language, although it complicates the job of the code generator

because Java does not have native support for this type of control flow.

Unlike schedules, the contents of a determinator are surrounded by an implicit

infinite loop.

5.2 Adding NDR to the Code Generator

5.2.1 Parsing NDR Constructs

The first step in adding NDR support to the code generator was parsing the NDR

language extensions in the intermediate language. The simulator already had code

to do this, thanks to work by Ramı́rez-Robredo [20]. He designed the intermediate

language parser to allow elements to have extensions. Syntactically, an extension is

an additional s-expression at the end of a list that represents an IL element. If the IL

83

parser detects an extension, it first uses the current factory to create the normal node

for the IL element and then gives the factory the node and the extension so that the

factory can add any extension-specific information to the node. The NDR language

extensions are implemented as extensions by the simulator; and, as such, the logic for

parsing them was embedded in the simulator’s specialized IL factory. Likewise, the

Java parse tree nodes for these elements were part of the simulator’s IL nodes.

I separated the NDR node representations from the simulator, creating generic

IL nodes for determined choices, scheduled automata, while loops, fire statements,

and yield statements. Now the simulator nodes extend these NDR nodes to add the

simulator-specific behavior (in particular, the machinery for interpreting the nodes at

runtime). The logic for parsing the NDR nodes is now contained in the NDRILFactory.

Note that I have extracted from the simulator only those of Ramı́rez-Robredo’s lan-

guage extensions that pertain to resolving nondeterminism. Other extensions, such

as those for verifying simulation relations, remain part of the simulator.

5.2.2 Compiling NDR Constructs

The next step was to modify the code generator to handle these new IL nodes. My

intent in implementing the NDR forms described above was to make the generated

code have the same observable behavior as when the simulator interprets the NDR

forms directly. In particular, I retain the CLU-iterator semantics for determinators

even though they are not built into the target language (Java).

This has important implications for the generated code. The simulator walks an

internal representation of an IOA/NDR program, and the simulator’s control mech-

anism can remember, for each NDR program, where execution should resume. The

generated Java code must somehow also do this. I considered two possible designs:

• In the first design, each NDR statement (or perhaps each basic block) is repre-

sented by an executable object. Executing the object performs the work of the

NDR statement and passes control to the next executable object. In the case of

yield, the executable object for the next NDR statement could be passed along

84

with the value to be yielded. Higher-level logic could then store the resume

point for the NDR program.

• In the second design, the NDR program is translated to a Java implementation

of machine code. Each NDR statement is assigned an address, and a program

counter variable keeps track of the current execution point in the NDR pro-

gram. More specifically, addresses can be represented by integers. Program

counters are implemented by instance variables (one per NDR program). The

Java translation of an NDR program is a switch statement on the pc variable,

and the Java translation of each NDR statement is protected by a case guard.

These designs are quite different. The first is high-level and essentially amounts to

generating Java code for an NDR interpreter. The second is low-level and essentially

adds to Java goto’s with first-class labels. I chose the second design for several reasons:

• The first design seemed harder to implement, although this is perhaps only due

to my lack of imagination. Program logic would be distributed among many

generated classes.

• The first design seemed harder to debug. Control logic would be encoded in

the runtime connections between instances of these classes. To debug the con-

trol flow, one would have to read the generated code that hooked up these

connections.

• The first design would lead to slower runtime execution. Each NDR statement

would require a runtime object and a method call. In the second design, instead

of objects there are Java statements; and instead of method calls there are

switch statements, which may be compiled into conditional branches to an

address offset by an index register.

The main reason for considering the first design was that the low-level approach

seemed dirty. After all, goto was deliberately left out of Java. Nevertheless, the first

design’s only advantage was an aura of apparent cleanliness that quickly faded as I

85

tried to imagine implementing it. Explicit addresses and program counters may be

ugly and tedious to interpret in one’s head, but Java admits a straightforward and

succint implementation.

5.2.3 Handling Transitions with Parameters

In Tauber’s prototype, the code generator did not handle transitions with parameters

because we expected that it would only be generating code for automata outputted

by the next action determinator (see Chapter 4). The NAD changes transition pa-

rameters into state variables, thus leaving all the transitions parameterless.

Extending the code generator to support parameters was straightforward. For

each action formal parameter, the code generator adds a formal parameter to the

Java method that implements the transition. The type of the parameter corresponds

to the implementation class for the IOA parameter’s sort (see Section 2.2). The actual

parameters are supplied by fire statements in the schedule; see Section 5.5.5.

One complication is that IOA transition parameters may be arbitrary terms3.

For instance, an action may take parameters i and i+1. The code generator creates

a dummy parameter for each IOA formal parameter that is not a simple variable

reference.

5.3 Java Translation Overview

A nice property of the second design is that IOA terms may be compiled into the

same Java code regardless of whether they are part of an NDR program or an IOA

program. Statements in NDR programs, on the other hand, translate differently from

statements in IOA programs.

Each statement is ultimately contained by an NDR schedule block or det block.

These blocks each translate into Java methods whose bodies are switch statements

3In the output of the composer, the parameters will be in a restricted form, however it is worth
handling the general case so that the code generator can compile automata that have not been
generated from a composition.

86

inside infinite while loops.

Primitive statements—assignments, yields, and fires—translate into a single case

and associated block. The case ensures that the block is only executed when the

program counter has the appropriate value. The last statement of the block sets the

program counter to the number of the next statement to execute.

Programs (which consist of lists of statements) translate into lists of case state-

ments as shown in Figure 5-5. Although NDR programs may be nested, the Java

translation removes nesting so that each top-level NDR program is a single flat list

of cases. This impedes readability somewhat but leads to a simpler implementation.

statement
if test then
 statement
 if test then
 statement
 else
 statement
 fi
else
 statement
fi

1
2
3
4
5

6

7

case2

case3

case7

case1

case4

case5

case6

Figure 5-5: Nested statements are flattened into a sequence of statements that jump
from one to the next. Arrows indicate control flow.

5.4 Java Translations of NDR Blocks

5.4.1 Schedules

A schedule block translates into a Java method named schedule and an instance

variable, schedulePC, for its program counter. The body of the method consists of

an infinite while loop labeled scheduleLoop. Inside the loop is a switch statement

that chooses a case based on the value of schedulePC. schedulePC is initalized to

the address of the first statement in the schedule transition. After executing this

87

statement, schedulePC will have been assigned a new value. Control will proceed to

the end of the switch and jump back up to the top of the infinite loop. The switch

will then transfer control to the case corresponding to the new value of schedulePC.

The last case represents the end of the IOA schedule. It breaks out of the schedule

loop, allowing the automaton’s schedule method to return. If the schedule is infinite,

this last case will never be reached.

A schedule block can optionally contain declarations for state variables to be used

within the schedule. These are translated into Java instance variables, just like normal

IOA state variables would be.

5.4.2 Determinators

A det block translates into a Java method named resolveChooseN and a correspond-

ing instance variable choosePCN . N is a unique number identifying the det block and

is assigned based on the order of the dets in the program. The program counter is

represented as an instance variable rather than a local variable in resolveChooseN

because it must be remembered between executions of the det block. This is necessary

to support the resumptive semantics for yield.

The enclosing choose translates to a method call on resolveChooseN , which re-

turns the value yielded. The inside of resolveChooseN has the same structure as

schedule. The body consists of an infinite while loop with a switch inside. One dif-

ference from schedule is that det blocks contain an implicit NDR while loop. Thus,

the first case of the switch in a det block is the compilation of the NDR while loop’s

test. The loop itself is implemented the same way as an explicit while loop, described

in Section 5.5.4.

88

5.5 Java Translations of NDR Statements

5.5.1 Programs

NDR programs (lists of statements) translate into a list of case statements. In order

to do this, the code generator translates each statement of the program into a list of

cases, making sure that the next address after the last case of each statement is the

address of the first case of the next statement. The address of the program is the

address of the first case, and the last case jumps to the address of the first statement

after the program.

For instance, the program:

y i e l d 2 ; % PC 6
y i e l d 3 % PC 7

translates to:

case 6: /* yield */
{

choosePC0 = 7;
return ((NatSort)NatSort.lit (2));

}

case 7: /* yield */
{

choosePC0 = 3;
return ((NatSort)NatSort.lit (3));

}

5.5.2 Assignments

An NDR assignment translates into a list of one Java case. The Java first statement

of the case updates the value of the state (or schedule) variable being modified. The

second statement sets the program counter to the address of the NDR statement

after the assignment. The third statement is a break, which effectively jumps to this

address.

For instance, the assignment:

b a z := ¬b a z

89

translates to:

case 27: /* assignment */
{

baz_v10 = ((BoolSort)BoolSort.not(baz_v10));
schedulePC = 21;
break;

}

Here, 21 is the address of the statement after the assignment.

5.5.3 Conditionals

An NDR conditional translates into a list of Java cases. The first one evaluates the

test expression of the NDR conditional and sets the program counter to the address

of the appropriate program. The subsequent cases are the translations of the NDR

programs. The last case of each of these programs sets the program counter to the

address of the statement after the IOa conditional.

For instance, the conditional:

i f b a z then

translates to:

case 25: /* conditional test */
{

if (baz_v10.booleanValue ())
{

schedulePC = 26; break;
}
else
{

schedulePC = 21; break;
};

}

Here, 26 is the address of the then block, and 21 is the address of the else block.

90

5.5.4 Loops

An NDR while loop is similar to a conditional. The first case evaluates the test

expression. If it is true, the program counter is set to the address of the first statement

in the loop. Otherwise, it is set to the address of the first statement after the loop.

The last statement in the loop jumps back up to the test case. If it is known at

compile time that the loop test will always be true, the address of the statement

after the loop is set to be -42, which should signal to the reader that it is not a valid

address.

For instance, the loop:

w h i l e t r u e do

translates to:

case 21: /* while loop test */
{

if (((BoolSort)BoolSort.True ()). booleanValue ())
{

schedulePC = 23; break;
}
else
{

schedulePC = 22; break;
};

}

Here, 23 is the address of the first statement in the loop, and 22 is the address of

the first statement after the loop.

5.5.5 fire Statements

An NDR fire statement translates into a list of one Java case. The first statement

of the case sets the program counter to the address of the NDR statement after the

fire. Since the program counter is implemented as a Java instance variable, it will be

remembered until control returns to the schedule method. The second statement of

the case calls the method that implements the fired transition, passing it the actual

parameters. The transition’s precondition and where clause are verified inside the

91

method that implements the transition (see Section 8.1).

For instance, the fire statement:

f i r e i n t e r n a l b a r (1 , 2)

translates to:

case 24: /* fire */
{

schedulePC = 25;
action_bar (((IntSort)IntSort.lit (1)),

((IntSort)IntSort.lit (2)));
}

Here, 25 is the address of the statement after the fire.

5.5.6 yield Statements

An NDR yield statement translates into a list of one Java case. The first statement

of the case sets the program counter to the address of the NDR statement after the

yield. Again, the program counter will be remembered until the next execution of

the current choose-resolving method. The second statement of the case evaluates the

expression to be yielded and returns it.

For instance, the yield statement:

y i e l d 2

translates to:

case 6: /* yield */
{

choosePC0 = 7; return ((NatSort)NatSort.lit (2));
}

Here, 7 is the address of the statement after the yield.

5.6 Example

Appendix B shows an example automaton and its Java translation. The automaton

is not meant to “do anything” other than exercise the NDR language constructs

92

concisely.

5.7 Comparisons With the Simulator

Like the simulator, the generated Java code does not check that the value yielded by

a determinator satisfies the choose’s where clause, however this would be a straight-

forward addition.

The simulator allows schedules to fire input actions. This probably does not make

sense for the code generator. After composition with the interface automaton (see

Chapter 3) all the original input actions will have become internal. The remaining

input action, getInvocation, is implemented specially. It runs in a separate thread

handled by ioa.runtime.io.Stdin and is not scheduled by the programmer. Never-

theless, the code generator supports firing of input actions to allow local testing using

the same IOA files as the simulator. The ioa.codegen.source.java.JNDRFire class

can optionally disallow firing of input actions4.

Since the code generator and simulator share ADT implementations (see Sec-

tion 2.7), they also share the implementation of the NonDet pseudo-trait (see Sec-

tion 2.5 of [20]). This trait provides operators for generating random numbers and

booleans, which are useful in writing schedules.

The NDR syntax additions admit a fire statement that does not specify a transi-

tion or parameters. The simulator interprets such a statement as a directive to fire an

enabled transition uniformly at random. The code generator does not support this

kind of fire and will instead report a compile-time error.

Future work: This restriction was an oversight; it should be straightforward to

generate Java code that checks which transitions are enabled and uses reflection to

fire one of them.

When the simulator runs, it outputs a trace showing which transitions executed

and when state variables were modified. I have extended the base Automaton class so

4Although, it should always allow firing of RECEIVE, the lone input action that will remain after
composition with the auxiliary automata (Section 6.5).

93

that it will produce similar traces. At the beginning of each transition, the gener-

ated Java code calls the base class’s enteredTransition() method; at the end of the

transition it calls exitedTransition(). These methods print the trace information to

the console. The base class maintains a map that records the values of all the state

variables. If, at the end of a transition, it finds that the state variables have changed,

it prints out a list of the changed variables and their new values.

This output is not exactly the same as the simulator’s. The code generator should

be modified to output step information. Also, when the simulator evaluates an as-

signment statement, it marks the lvalue as being modified. The generated Java code

compares the values of the state variables to see if they have changed. Thus, the sim-

ulator considers a reassignment of the same value to a variable to be a state change,

while the generated code does not.

Future work: Future versions of the code generator could take the simulator’s

approach, at the expense of a little more complexity and reduced performance.

Future work: An interesting project would be to modify the code generator to

output AspectJ [14] instead of Java. Then the tracing and variable monitoring could

be implemented using aspects, instead of having the code generator insert calls to

tracing methods.

Future work: Another short project would be to extend the Automaton base class

to support commands for limiting the number of steps run and setting the random

number seed. This would allow more direct comparison of traces produced by the

simulator and the generated Java code. When run for the same number of steps with

the same random numbers, the output should be identical, modulo the state variable

caveat mentioned above. It would also be useful for the Automaton base class (or the

code generator shell) to have a command-line switch for controlling whether traces

are printed (or generated in the first place).

94

Chapter 6

MPI

The code generator produces Java code that runs on a network of workstations. The

Java virtual machines on the different workstations communicate via a small subset

of mpiJava [1]. As described in Tauber’s thesis proposal [23], we model the MPI

service as an automaton that provides reliable FIFO channels. A lower-level automa-

ton corresponds to the programmatic interface of MPI, and we introduce auxiliary

automata that compose with the lower-level automaton to implement the abstract

communication service.

6.1 Serializing ADTs

In order to transmit IOA values between machines, the ADT implementation classes

must be converted into bytes that are transferred across the network and reconstituted

as Java objects. mpiJava provides support for sending and receiving Java objects that

implement Java’s Serializable interface, and we take full advantage of this.

The Serializable interface is actually a marker that tells the Java runtime that a

class will allow itself to be serialized. The runtime provides a default implementation

of serialization (and deserialization) that is suitable for most purposes. Most of our

implementation classes therefore get this for free by implementing Serializable.

The only complication is for classes that intern their instances. BoolSort maintains

canonical TRUE and FALSE objects and compares them using ==. When a BoolSort

95

/**
* When a BoolSort arrives from MPI and is deserialized,
* it may not == any of the canonical BoolSort instances.
* This method , automatically invoked by Java, will substitute
* the appropriate interned value.
*/

private Object readResolve ()
throws java.io.ObjectStreamException

{
return value ? TRUE : FALSE;

}

Figure 6-1: Implementation of readResolve() for Booleans

arrives from the network, it must be replaced by the canonical BoolSort instance in

the current virtual machine.

This is accomplished by implementing the readResolve() method (Figure 6-1). A

similar technique is used by TreeSort and NullSort. The Java virtual machine will

automatically call readResolve(), if present, when it deserializes an ADT.

Although we intend for each ADT to be Serializable, each class must imple-

ment the interface separately, rather than implementing it in the base ADT class. This

encourages programmer awareness to help prevent late surprises in which a class seem-

ingly works with Java’s default serialization but fails in an unexpected way because

readResolve() was not implemented.

6.2 Setting up MPI

Interaction with mpiJava is handled by ioa.runtime.Automaton, the base class from

which the generated Java classes inherit. The subclass’s main() method calls

Automaton’s main(), passing the name of the class as an argument. The base class

uses this to set up MPI.

MPI assigns each node automaton an integer rank, which serves as its address for

sending and receiving messages.

96

6.3 Running Automata

At runtime, MPI starts a Java virtual machine at each node and loads the com-

piled automaton class. I have written a Perl script, jmpirun, that simplifies the

user’s interaction with MPI. The user passes jmpirun the name of the automaton

class and (optionally) the number of machines to run it on. jmpirun then creates

a wrapper executable that the C MPI implementation (MPICH, in our case) can

start on each machine. MPICH locates the proper number of workstations from the

machines.LINUX file and runs the wrapper executable on each of them. The wrapper

executable creates a Java virtual machine and uses it to run the main() method of

the automaton class.

The main() method calls back to the Automaton base class to start up mpiJava at

the local node. It then creates the input and output threads. It adds the threads to a

round-robin scheduler to ensure that each one runs at regular intervals. It then starts

the three threads. The input thread collects invocations from the local environment

and appends them to the input sequence. The output thread removes invocations

from the output sequence and sends them to the local environment (a file or the

console). The main thread runs the schedule that the user has written.

6.4 MPI Experiment

I developed a simple experiment to demonstrate that ADT serialization worked and

that MPICH and mpiJava were correctly installed on the TDS network. The demon-

stration consists of a single Java class called ADTTest. Each node sets up mpiJava.

One node is chosen, by rank, to be the “coordinator.” Each other node uses mpiJava

to send a message to the coordinator. One node sends an array of integers. Another

sends a union of a map, a set, and a multiset. A third node sends a tuple of primitive

types. When the coordinator receives a message, it prints it out on the user’s console.

After the coordinator has received a message from each other node it closes down

mpiJava and exits.

97

6.5 Future Work

The code generator currently lacks an important piece of its interface to MPI. After

composition with the auxiliary network automata (two for each remote node), the

automaton will have two non-hidden actions that must be implemented:

i n p u t SEND(m :M , c o n s t i , c o n s t j)
output RECEIVE (m :M , c o n s t i , c o n s t j)

Here, M is a message type and i and j are source and destination nodes. These

actions may be implemented in the Automaton base class. The network automata

each have queue state variables that will appear as tuples in the composition. The

implementations of SEND and RECEIVE will need to locate the proper tuple based on

i and j in order to access the queues. I suspect that this will be possible using Java’s

reflection interface.

98

Chapter 7

Invocations and Runtime I/O

This chapter describes how nodes interact with their local (non-network) environment.

7.1 ADT S-Expressions

We have already established (in Section 1.3) that each node’s input and output files

consist of lists of invocations, and that invocations are represented at runtime as IOA

tuples (Section 3.1). But how are the tuples stored on disk? One option would be to

rely on Java’s serialization feature as we do for sending data types across the network.

However, for testing and debugging purposes we would like to be able to read and

edit the input files manually. Further, it would be nice to be able to read arbitrary

output invocations even though we do not have a translator from data type instances

back to the surface syntax. We need a text representation that is human readable

but that can be unambiguously parsed into TupleSorts, ideally without any auxiliary

information about the automaton. The representation should be extensible so that it

can support additional data types that the user may define.

The natural choice is s-expressions. They are human readable and easily navigable

in text editors such as Emacs. Even better, the IOA toolkit already includes classes

for representing, parsing, and printing them. I chose to represent each ADT as a

list of two or more elements. The first element is a string that is the name of the

ADT’s implementation class. Subsequent elements encode the value of the data type

99

instance.

In the next two sections, I will explain how ADTs are unparsed into s-expressions

and how they are reparsed back into ADTs. Then I will show a few representative

examples of how ADTs are encoded as s-expressions.

7.1.1 Converting ADTs to S-Expressions

Each ADT instance must be able to convert itself to an s-expression. Programmati-

cally, this is enforced by having the ADT implement the SPrintable interface. This

requires it to implement a single method toSValue() that returns an s-expression,

which is represented by the SValue class. The method can encode the ADT-specific

information (such as the elements in a set) in any way it chooses. The only re-

quirement is that toSValue() return a two-element list whose first element is the

name of the implementation class. The ADT base class provides a helper method,

toSValue(SValue). When passed the ADT-specific information, it returns the two-

element list headed by the implementation class name.

For an example implementation of toSValue(), see the SetSort class in Ap-

pendix A.

7.1.2 Converting S-Expressions to ADTs

The ADT base class is the top-level interface for reconstituting an ADT from an s-

expression. It contains a static method construct(SValue) that takes an s-expression

and returns an ADT. The base class does not know how to parse all the different types

of ADT s-expressions; that would be impossible since the ADT library is extensible.

It therefore relies on the implementation classes to parse themselves. It reads the

first element of the s-expression to get the name of the implementation class. It then

uses Java’s reflection interface to locate that class and ask it to parse the remainder

of the s-expression.

Each implementation class includes a static construct(SValue) method that cre-

ates an instance given the remaining part of the s-expression. This functionality is

100

provided with a method rather than a constructor because I intend for it to call the

ADT’s constructor. This will allow it to reuse any defensive representation checks,

e.g. that a natural number is not negative. It also provides easy support for interned

objects (Section 6.1); construct() can return a shared instance rather than creating

a new one.

For an example implementation of construct(SValue), see the SetSort class in

Appendix A.

7.1.3 Encoding Examples

Individual ADT implementations can decide how to represent themselves as

s-expressions. A simple example is booleans. The first element of the s-expression is

the name of the implementation class (as required) and the second element is either

the string “true” or the string “false”. Thus, a true boolean is encoded as:

(ioa.runtime.adt.BoolSort true)

When the ADT base class is asked to parse this s-expression, it will call BoolSort’s

construct(SValue) method, passing it the s-expression “true”. BoolSort will then use

this to decide which canonical instance to return.

Integers are handled in a similar way, with a numeral in place of “true” in the

above example. The IntSort class uses Java’s Integer class to parse the numeral

string into a number.

Array instances are represented as follows:

(ioa.runtime.adt.ArraySort ((ioa.runtime.adt.IntSort 7)

(((ioa.runtime.adt.IntSort 1)

(ioa.runtime.adt.IntSort 2))

((ioa.runtime.adt.IntSort 3)

(ioa.runtime.adt.IntSort 4))

((ioa.runtime.adt.IntSort 5)

(ioa.runtime.adt.IntSort 6)))))

101

The 7 is the array’s constant value, the value that all unassigned indices take on.

The list that follows consists of pairs of mappings: 1 maps to 2, 3 maps to 4, and 5

maps to 6.

Tuples are represented similarly to arrays, as pairs of associations. An instance of

the tuple:

type myTuple = t u p l e o f a : B o o l , b : I n t

where a is true and b is 50 is represented as:

(ioa.runtime.adt.TupleSort ((a (ioa.runtime.adt.BoolSort true))

(b (ioa.runtime.adt.IntSort 50))))

Enumerations encode the names of the tags in the sort and the zero-based index1

of the current instance’s tag. For instance, the d instance of the union:

type myEnum = enumerat ion o f a , b , c , d , e

is represented as:

(ioa.runtime.adt.EnumSort (3.0 a b c d e))

Unions are simply a combination of an enumeration and an object value. For

instance, the union

type myUnion = union o f a : B o o l , b : I n t

can hold a value of type Bool or Int. A myUnion that holds the integer 6 would be

written in IOA as b(6). The s-expression representation is:

(ioa.runtime.adt.UnionSort ((ioa.runtime.adt.IntSort 6)

(ioa.runtime.adt.EnumSort (1.0 a b))))

1The indices are always integers, but they appear as decimals due to the way the s-expression
printer works.

102

7.2 Threading

At runtime, each node uses three Java threads2.

An input thread receives invocations from the environment and sequences them

inside the interface automaton; it implements getInvocation (see Section 3.5). An

output thread removes invocations from the interface automaton’s output sequence

and passes them on to the environment; it implements putInvocation (see Section 3.5).

Finally, the main thread executes all the other transitions and interacts with MPI.

Multiple threads are necessary because the Java platform does not support non-

blocking I/O.

The input thread is managed by ioa.runtime.io.Stdin. At present, it reads

invocation s-expressions from a file that is named according to the node’s rank, an

integer identifier assigned by MPI that is unique among the nodes in the system (see

Chapter 6). This allows us to provide input for all the nodes in a series of numbered

files that are accessible through the network file system. This is convenient for testing

and development purposes. Stdin can also read node-local input files, and it might

be extended to receive interactive input from a console or GUI.

The output thread is managed by ioa.runtime.io.Stdout. It writes invocations

out as s-expressions in a file named according to the node’s rank. In the future,

Stdout might be modified to generate output in a more human readable form.

Future work: It would be nice to have a mechanism for specifying delays in input

files. One solution would be to augment the syntax of the NDR language with a delay

construct that would be outputted as a special invocation. Another option would be

to introduce a reserved transition name that the input thread would treat specially.

7.3 Lockable Sequences and LSeqSort

The stdin and stdout sequences (see Section 3.2) are implemented by static variables

in the Automaton base class. From an IOA perspective, these sequences are simply

2mpiJava may allocate additional threads for its own use (see Chapter 6); in any case, the
generated code and the runtime we provide use three threads directly.

103

LSeq[IOA Invocation] state variables inside a composite automaton with atomic transi-

tions.

From a Java perspective, however, the sequence objects are shared between threads.

The stdin state variable is appended to by the getInvocation action and tailed by the

original input actions (which are now internal). getInvocation runs in the input thread,

but the other actions run in the main thread. Sharing the objects between threads

introduces two requirements for correctness:

• Steps must be taken to ensure that each thread has an up-to-date reference3

to the shared sequence object. An analogous problem arises with stdout and

putInvocation.

• Additionally, the sections of code that modify these sequences must run atom-

ically to prevent race conditions:

– The input thread could load the current value while the main thread was

updating it. Then the update from the main thread would be lost when

the input thread wrote back.

– The main thread could load the current value while the input thread was

updating it. Then the update from the input thread would be lost when

the main thread wrote back.

Both of these requirements are addressed using locking. The shared sequences

are represented using LSeqSorts (see Section 7.3), which are just like SeqSorts except

that they also have support for locking and unlocking.

Since the interface automaton had state variables for sequences stdin and stdout,

the automaton class will have instance variables to represent these sequences. Tran-

sitions (other than getInvocation and putInvocation) access the sequences through the

state variables, so the generated code accesses them through the instance variables.

3Since our ADT implementations are immutable, the potential problem is not of mutating an
object at the wrong time but of retaining a reference to an obsolete object.

104

The input thread maintains a local variable to access the LSeqSort representing

stdin, and the output thread has a local variable to access the LSeqSort representing

stdout.

Crucially, the threads must agree on the values of the LSeqSorts. The base

Automaton class maintains two static variables that always point to the official values

of stdin and stdout. When a thread wants to access one of the sequences, it calls

Automaton.getStdin() or Automaton.getStdout() to retrieve the value of Automaton’s

static variable; it then copies the return value into its instance variable (main thread)

or local variable (input or output thread). Likewise, when a thread finishes modi-

fying one of the sequences, it writes its instance variable or local variable back to

Automaton’s static variable using setStdin() and setStdout().

Locking is used to ensure that a thread can atomically obtain the value of a

sequence, create a new value, and update the official value.

7.3.1 Java Code to Update Stdin

When the main thread removes a value from stdin, it follows this sequence of steps

(also see Figure 7-1):

0. Initially, the automaton instance’s instance variable points to a possibly stale

LSeqSort object. Stdin’s local variable and the Automaton class’s static variable

both point to the current LSeqSort (“old” in the figure).

1. The main thread acquires a lock on the Stdin class.

2. The automaton instance calls Automaton.getStdin() to update its instance vari-

able to point to the official LSeqSort object that represents stdin (“old” in the

figure).

3. The automaton instance computes a new LSeqSort object that is the tail of the

previous sequence and updates its instance variable to point to this LSeqSort

(“new” in the figure).

105

4. The automaton instance calls Automaton.setStdin() to update the official stdin

with the LSeqSort value held by its instance variable.

5. The main thread releases the lock on the Stdin class.

Old
LSeqSort

New
LSeqSort

ioa.runtime.io.Stdin
stdin local variable

(updated in input thread)

Automaton instance stdin instance variable
(updated in main thread)

Stale
LSeqSort

ioa.runtime.Automaton

subclass

stdin static variable
(points to official value)

0
= object = variable

0

3

4

0

2

1: main acquires
5: main releases

= lock

controls access to

Figure 7-1: Updating Stdin from the Main Thread

The Java code generated to accomplish update stdin is shown in Figure 7-2. The

numbered steps correspond to the operations in the preceding list. Some quirks of

the translation will be explained in Section 7.3.2.

stdin_v0 = stdin_v0 ; // artifact of translation
synchronized (ioa.runtime.io.Stdin.class) // step 1
{

stdin_v0 = ioa.runtime.Automaton.getStdin (); // step 2
stdin_v0 = (LSeqSort)LSeqSort.tail(stdin_v0); // step 3
stdin_v0 = stdin_v0 ; // artifact of translation
ioa.runtime.Automaton.setStdin(stdin_v0); // step 4

} // step 5

Figure 7-2: Java Code for Updating Stdin From the Main Thread

There are three other cases that employ a similar locking strategy:

• When the main thread adds a value to stdout.

• When the input thread adds a value to stdin.

106

• When the output thread removes a value from stdout.

In Java, each object has a lock. It does no good to obtain a lock on an LSeqSort

object because it is immutable; each time stdin is changed, Stdin’s variable points to

a new object. Therefore, the Stdin and Stdout classes are used as the lock objects.

7.3.2 IOA Code to Update Stdin

The Java code fragment in Figure 7-2 appears in each method of the automaton class

that implements a (former) input action of the algorithm automaton. Since the rest

of the action’s effects must be translated, the fragment is generated by translation

from IOA. In contrast, the corresponding code in the input thread is hand-written

and compiled into the runtime library. Therefore, the input to the code emitter must

contain a series of IOA statements that translates to the above code.

The basic idea is to add special IOA operators that translate to the synchronized

block and the code for calling the methods on the Automaton class. These operators

are added as part of the special LSeq sort, which (not surprisingly) is implemented by

LSeqSort. LSeq (lockable sequence) is IOA’s standard sequence data type extended

to support four new operators: lockStdin, unlockStdin, lockStdout, and unlockStdout.

Schematically, the IOA should look something like:

l o c k S t d i n (s t d i n) ;
s t d i n := t a i l (s t d i n) ;
u n l o c k S t d i n (s t d i n)

The middle line does the tailing and translates to Java in the normal way. The

special operators in the other two lines would then translate into the locking and

synchronization code.

This simple idea is complicated by the fact that lockStdin(stdin) and

unlockStdin(stdin) are not valid IOA statements. They are just terms. To make the

IOA valid, we can put the terms on the right hand side of assignment statements.

This is a hack, but it is simpler than the alternatives.

s t d i n := l o c k S t d i n (s t d i n) ;
s t d i n := t a i l (s t d i n) ;

107

s t d i n := u n l o c k S t d i n (s t d i n)

We define lockStdin and unlockStdin to be the identity function, so that the IOA

program will have the desired meaning. That is, the first and third lines will not have

any effect except in the Java translation.

The code emitter goes about translating the three IOA statements in the normal

way. In particular, the left hand side of the first assignment will translate into the left

hand side of a Java assignment. In order to produce valid Java, the translation of the

lockStdin operator must complete this assignment and also begin the synchronized

block and call getStdin(). Therefore, the Java translation of lockStdin(stdin) is:

stdin_v0;
synchronized (ioa.runtime.io.Stdin.class)
{

stdin_v0 = ioa.runtime.Automaton.getStdin ();

Here, stdin_v0 is the name of the instance variable that represents stdin. The

first line of Java (stdin_v0;) is the right hand side of the first assignment statement

in Figure 7-2. That assignment has no effect; it is merely an artifact of the decision

to generate the locking code by translation.

The translation of the unlockStdin operator is:

stdin_v0;
ioa.runtime.Automaton.setStdin(stdin_v0);

}

The first line of Java (stdin_v0;) is the right hand side of the assignment statement

that was generated as the normal translation of stdin : =. Again, the assignment has

no effect and is merely an artifact of the translation. The call to setStdin() updates

the official value of stdin. Finally, the closing brace ends the synchronized block, thus

releasing the lock.

7.3.3 Implementing the Locking Operators

Ordinarily, IOA operator invocations translate into Java method calls (Section 2.2.3).

However, since the locking operators translate into different sorts of Java fragments,

they need special emitters and a non-standard registration class to install them. The

108

LSeq sort and its standard sequence operators (head, a, etc.) are registered using

Installer as in Section 2.4.1.

The locking operators are registered as shown in Figure 7-3. The LSeqSort reg-

istration class declares static inner classes that extend LockOp (a helper class that

extends ioa.codegen.target.java.Operator), one for each of the four new operators.

Each new kind of operator overrides emitApplication() to emit itself in a particular

way. For example, LockStdinOp emits code that establishes a lock on Stdin and grabs

the shared LSeqSort value that represents stdin.

{
public LockStdinOp () throws CGException
{

super ();
}

/**
* Emit code that will lock Stdin . <TT>opands </TT>
* must contain a single parameter , the LSeqSort to lock.
*
* i.e. if the LSeqSort is v0, then emit:
*
* v0;
* synchronized (ioa.runtime.io.Stdin.class)
* {
* v0 = ioa.runtime.Automaton.getStdin ();
*/

public Emitter emitApplication(Emitter e,
EVector opands,
String op,
int numOpands)

throws CGException
{

Emittable stdin = unpackOperand(opands , numOpands);
e.emit(stdin).put(";\n");
e.put("synchronized (ioa.runtime.io.Stdin.class)\n");
e.put("{\n");
e.emit(stdin);
e.put(" = ioa.runtime.Automaton.getStdin ();\n");
return e;

}
}

Figure 7-3: Registering the Locking Operators

109

unpackOperand() is simply a utility function of LockOp that checks the size of the

opands EVector and returns its first element, cast to an Emittable. Note that the

custom operators do not emit casts for their return values because there are none.

7.4 The Invocation Generator

One piece of the puzzle remains: where do the input files (containing lists of invo-

cations) come from? Obviously, the user could enter them by hand; however, this

would be cumbersome (especially entering the shorthand sorts), albeit simple.

Another option is to design a graphical user interface for constructing invoca-

tions. Though this is a worthwhile goal, it would be a large project and it would be

challenging to find an efficient way of entering actual parameters4.

A third option is to design an abbreviation language that may be automatically

desugared into the IOA Invocation s-expressions. Invocations might look something

like:

(fire (actionName caseName) ((Int 1) (Bool true)))

7.4.1 Reusing the Simulator

I ended up choosing a variant of the last option: Ramı́rez-Robredo’s NDR language

extensions. NDR schedule blocks already provide a means of specifying an action and

its actual parameters: fire statements. They already have a notation for specifying

arbitrary data type instances: the IOA data type operators. We can let the user

specify the list of invocations as fire statements in an automaton schedule and use

the machinery of the simulator to evaluate the actual parameters.

Some benefits to this approach soon become evident:

• The user already knows IOA syntax and so should find the notation familiar.

4For instance, we would want a type inference mechanism so that if the user enters “1” she does
not need to specify whether it is an Int, Nat, or Real.

110

• The IOA front-end can verify the input file, checking the spelling of action and

case names, and the number and type of the actual parameters.

• The notation for specifying data types is concise and can make use of the front-

end’s type inference abilities. For instance, writing {} ` 1 is all that is needed to

specify a singleton sequence, and the front-end will infer the sequence’s subsort

based on the action’s signature.

• Temporary variables are available. It is common for invocations to use identical

or similar parameters, so this is a great notational convenience.

• The IOA and NDR control flow constructs may be used; rather than writing

out a straight list of fire statements, the user can write a program using loops

and conditionals to generate all the fires.

• Most of the needed functionality is already implemented in the front-end and

the simulator. We just need to hook everything together in the right way.

• The fire statements for generating input may potentially be reused when devel-

oping with the simulator.

Note that the automaton passed to the invocation generator should be the algo-

rithm automaton before it has been composed with the interface automaton. The

reason is that after composition the input actions (for which the invocation generator

is creating invocations) will have become internal.

7.4.2 Implementation

The invocation generator is implemented by the ioa.codegen.ig.InvocationGenerator

class. It is a shell tool that takes as input an IL file and the number of invocations

to generate. As with the simulator, if the file contains more than one automaton an

automaton name may be specified on the command line to disambiguate.

Internally, the invocation generator runs a copy of the IOA simulator. It adds a

listener to the simulator to receive notifications when transitions are fired. When a

111

transition fires, the invocation generator creates an IOA Invocation tuple that combines

the name of the action with its actual parameters. It then converts the IOA Invocation

to an s-expression and prints it to the console.

7.4.3 Example

Figure 7-4 shows an example input to the invocation generator. For simplicity, the

automaton contains only two (input) transitions, and all the parameters are of type

Nat.

Figure 7-5 shows the invocations outputted by the invocation generator when the

schedule in Figure 7-4 is executed for eight steps. The output is a list of s-expressions

that represent IOA Invocations. I have added linebreaks and indenting to make the

output easier to read and italicized the important parts. Within each tuple, the first

italicized number tells the name of the action to be invoked. 0.0 denotes send and

1.0 denotes send2. The second and subsequent italicized numbers are the transition

parameters.

7.4.4 Future Work

Due to lack of time, the invocation generator is more cumbersome to use than it

needs to be. It requires that the input file contain an automaton and a schedule block

that will be used to generate the invocations. In normal use, I expect that the user

will have one input file for each node. At present, this requires repeating the same

automaton definition at the beginning of each input file.

Ideally, the user would create a single file containing the automaton definition.

It might also contain a schedule block to control the execution at the node (in the

manner of Chapter 5). The user would then create a collection of files containing

only schedule blocks. These would be used to generate the invocations for the input

at each of the nodes. The invocation generator would be able to take as input the

automaton file and one of the input files. To generate invocations, it would simulate

the automaton using the schedule in the input file, not the one in the automaton file.

112

axioms NonDet

automaton I n v o c a t i o n 0 1

s i g n a t u r e

i n p u t s e n d (n : Nat) ,
s e n d 2 (n1 : Nat , n2 : Nat)

s t a t e s

q u e u e : Seq [Nat] : = {}
t r a n s i t i o n s

i n p u t s e n d (n : Nat)
e f f q u e u e := n a q u e u e

i n p u t s e n d 2 (n1 : Nat , n2 : Nat)
e f f q u e u e := n2 a (n1 a q u e u e)

s c h e d u l e

s t a t e s

a : Nat := 6
do w h i l e t r u e do

f i r e i n p u t s e n d (a) ;
a := a + 1 ;
i f a > 8 then

f i r e i n p u t s e n d 2 (randomNat (1 0 0 , 2 0 0) ,
randomNat (2 0 0 , 3 0 0))

e l s e

f i r e i n p u t s e n d (1)
f i

od

od

Figure 7-4: Input to the Invocation Generator

113

(ioa.runtime.adt.TupleSort

((action (ioa.runtime.adt.EnumSort (0.0 send send2)))

(params (ioa.runtime.adt.LSeqSort ((ioa.runtime.adt.UnionSort

((ioa.runtime.adt.NatSort 6)

(ioa.runtime.adt.EnumSort (0.0 Nat)))))))))

(ioa.runtime.adt.TupleSort

((action (ioa.runtime.adt.EnumSort (0.0 send send2)))

(params (ioa.runtime.adt.LSeqSort ((ioa.runtime.adt.UnionSort

((ioa.runtime.adt.NatSort 1)

(ioa.runtime.adt.EnumSort (0.0 Nat)))))))))

(ioa.runtime.adt.TupleSort

((action (ioa.runtime.adt.EnumSort (0.0 send send2)))

(params (ioa.runtime.adt.LSeqSort ((ioa.runtime.adt.UnionSort

((ioa.runtime.adt.NatSort 7)

(ioa.runtime.adt.EnumSort (0.0 Nat)))))))))

(ioa.runtime.adt.TupleSort

((action (ioa.runtime.adt.EnumSort (0.0 send send2)))

(params (ioa.runtime.adt.LSeqSort ((ioa.runtime.adt.UnionSort

((ioa.runtime.adt.NatSort 1)

(ioa.runtime.adt.EnumSort (0.0 Nat)))))))))

(ioa.runtime.adt.TupleSort

((action (ioa.runtime.adt.EnumSort (0.0 send send2)))

(params (ioa.runtime.adt.LSeqSort ((ioa.runtime.adt.UnionSort

((ioa.runtime.adt.NatSort 8)

(ioa.runtime.adt.EnumSort (0.0 Nat)))))))))

(ioa.runtime.adt.TupleSort

((action (ioa.runtime.adt.EnumSort (1.0 send send2)))

(params (ioa.runtime.adt.LSeqSort ((ioa.runtime.adt.UnionSort

((ioa.runtime.adt.NatSort 148)

(ioa.runtime.adt.EnumSort (0.0 Nat))))

(ioa.runtime.adt.UnionSort

((ioa.runtime.adt.NatSort 269)

(ioa.runtime.adt.EnumSort (0.0 Nat)))))))))

(ioa.runtime.adt.TupleSort

((action (ioa.runtime.adt.EnumSort (0.0 send send2)))

(params (ioa.runtime.adt.LSeqSort ((ioa.runtime.adt.UnionSort

((ioa.runtime.adt.NatSort 9)

(ioa.runtime.adt.EnumSort (0.0 Nat)))))))))

(ioa.runtime.adt.TupleSort

((action (ioa.runtime.adt.EnumSort (1.0 send send2)))

(params (ioa.runtime.adt.LSeqSort ((ioa.runtime.adt.UnionSort

((ioa.runtime.adt.NatSort 117)

(ioa.runtime.adt.EnumSort (0.0 Nat))))

(ioa.runtime.adt.UnionSort

((ioa.runtime.adt.NatSort 228)

(ioa.runtime.adt.EnumSort (0.0 Nat)))))))))

Figure 7-5: Output of the Invocation Generator

114

Chapter 8

Miscellany

Some changes and additions that I have made to the IOA toolkit did not belong

in any of the previous chapters but are nonetheless relevant to this thesis. In this

chapter I briefly discuss some of them.

8.1 Preconditions and where Clauses

The code emitter now verifies transition parameters and where clauses. Each transi-

tion translates into a Java method, and at the beginning of the method the emitter

evaluates the precondition and where clause terms. It passes the values to methods

in the base class that check whether they are true, signalling an error if they are not.

8.2 API Documentation

Most of the code-level documentation for the IOA toolkit is written in Javadoc com-

ments. I have added a doclet (heavily based on work by the 6.170 course staff) that

extends Javadoc to support additional documentation tags, such as @requires and

@fix, that are used throughout the IOA codebase. A Perl script called makedocs

automates the process of generating Javadocs for the entire IOA codebase. One chal-

lenge is that portions of the IOA front end are written in the PolyJ language, which

Javadoc has difficulty parsing. makedocs contains some preliminary work towards

115

massaging PolyJ files into a format that Javadoc can read.

8.3 Regression Tests

In Section 2.5 I described unit tests for the ADT implementations and registration

classes. However, it is also desirable to have end-to-end regression tests for the dif-

ferent components of the IOA toolkit.

I have developed a regression testing framework that is easy to use and easy to

extend to support additional tests and tools as they become available. The tools cur-

rently supported by the framework are the static semantic checker (and IL generator),

the code generator, the simulator, the simulator’s Daikon connection, the paired sim-

ulator, the code generator, the IOA prettyprinter, the IOA-to-LATEX converter, the

IL unparser, and the IL-to-IOA converter.

The framework includes a library of tests contributed by tool developers. A test

consists of an input file for a particular tool and one or more goal files that specify

the expected output when the tool is run on the input file. If the input file is written

in IOA but the tool requires input in a different format (such as IL), the framework

will perform the necessary conversions.

For example, when testing the code generator, the user supplies an IOA input file

and goal files for the output of the code emitter and the Java compiler. The framework

uses ioaCheck -il to convert the IOA file to IL, which it feeds to the code generator.

The code generator outputs a Java file, which the framework compares to the goal

that the user has provided. In addition, the framework tries to compile the generated

Java code and compares the output of the Java compiler against the list of expected

compiler warnings (usually none).

The framework provides commands for controlling which tools are run with which

test cases and for displaying and summarizing the results. There are also commands

for adding new tests, updating the goal files with the current output, and committing

updated goal files into CVS.

In addition to end-to-end tests, the regression testing framework can run the

116

unit tests from Section 2.5 and other unit tests that are part of the simulator.

The framework may be found in the toolkit’s Test directory in the Makefile and

Makefile.common files. Running make help in that directory prints out the docu-

mentation for running the existing tests and adding new ones.

8.4 Graphical User Interface

Our approach of compiling I/O automata using a series of source-to-source trans-

formers (Figure 1-1) has many advantages from a modelling standpoint. It is also

convenient for tool development because the individual tools may be implemented

and verified separately. One downside to this approach is that the end user of the

toolkit must contend with all of the tools. Each tool requires a particular kind of

input (IOA or IL) and has various command-line switches, and the tools must be

used in a particular order. As a result, our system is difficult to use.

In Section 8.3 I describe one way to improve usability for toolkit developers.

However, it does not go far enough for end users. I think what is needed is an

easy-to-use graphical user interface (GUI) for the IOA tookit.

I have created a prototype of such a tool using Java’s Swing libraries. The pro-

totype is centered around the idea of a project, a collection of related files such as

auxliary automata and inputs to the different nodes. The Project window shows a

list of the files in the project for easy access, and projects may be saved to disk to

remember the files between sessions.

The GUI lets the user edit IOA files with a rudimentary editor, and it can show

the corresponding IL file, which is useful for tool debugging. The user can press a

button to check the syntax of an IOA file, and the GUI’s line number display helps

the user locate and fix any syntax errors that are found. The user can edit either the

IOA or the IL and press a button to cause the changes to be reflected in the other.

Since the GUI’s text editor is primitive compared to other editors—such as GNU

Emacs, which can be used with an IOA mode written by Laura Dean—each editor

window contains a button for opening the current file in the user’s preferred external

117

editor.

Finally, the GUI has menu commands for running the interface generator (Chap-

ter 3) and next action determinator (Chapter 4) tools. After one of these tools

transforms the frontmost IOA window, the GUI converts the output of the tool from

IL into IOA and displays it in a new window.

Of course, this is only the beginning of what the GUI could do to help the user. In

[26] I suggest some ways the GUI could be extended, and I think that users of modern

integrated development environments will have many ideas of their own. Although

the current GUI is presently inadequate for real use, I hope that it provides a good

starting point for future toolkit developers.

118

Chapter 9

Discussion and Future Work

This thesis has described several tools that are used in the process of generating Java

code for IOA programs. Our code generation system is not yet complete, mainly

because the composer tool has not yet been completed. This means that we cannot

combine the algorithm automaton with the auxiliary automata necessary to connect

it to the console and the network.

The tools do, however, work in isolation. The ADT library and the registry

have been successfully used by researchers using the IOA simulator and its Daikon

connection. This document has demonstrated the source-to-source transformers and

the invocation generator. In the absence of the composer, I cannot demonstrate all

the tools in this thesis working in an integrated fashion. However, it is possible to

show the interaction between the ADTs and the NDR compiler, and I will do so now.

For an example IOA program I have chosen one of the banking automata that

Toh Ne Win and Gustavo Santos used to test the IOA-Daikon connection [32]. Ap-

pendix C.1 shows the IOA program, complete with a schedule written using the NDR

language extensions. Appendix C.2 shows the Java that the code generator created,

using the registry to look up ADT implementations and employing the NDR com-

piler to resolve nondeterminism. Finally, Appendix C.3 shows the trace produced by

running the Java code. For the reasons discussed in Section 5.7, the output is not

exactly the same as that produced by the simulator. However, it does demonstrate

some of the key tools developed in this thesis.

119

The main work that remains is the implementation of the composer tool. Once

we are using the composer, the input to the code emitter will be of a slightly different

form. State variables in the output of the composer are stored in tuples based on

the automaton that they originated from. This is important because it will affect

the way the runtime libraries access state variables. The SEND and RECEIVE actions

read and write to sequence state variables that are queues of messages. In order to

access the sequences, the runtime library will need to locate the TupleSorts (among

the automaton’s instance variables) that correspond to the states of the network

automata.

The same challenge applies to the the interface automaton, which needs to access

the stdin and stdout sequences. As discussed in Chapter 7, the translated state vari-

ables are only accessed from the main thread. The input and output threads access

the sequences through methods on the base Automaton class (which itself does not

access the state variables, either). The only references to the state variables, then,

are in the code emitted by the locking operators (Section 7.3.3). The locking opera-

tors receive a reference to the target tree nodes that represent stdin and stdout. They

will need to examine the structure of this operator application to find the tuple that

holds the sequence state variables. Then they will be able to emit code that assigns

to the state variables by setting values of the tuple’s fields.

Once the code generator is fully working, we will likely want to examine ways to

improve performance. In the initial implementation, all of the abstract data types

are implemented using immutable Java objects. It is very inefficient to copy an

entire collection each time it is modified. After composition, each automaton’s state

variables are collected in a single tuple. This means that changing one variable

will cause a copy of the entire state tuple for that automaton. Future work should

investigate how to use mutability behind the scenes to reduce unneeded copying.

Finally, users would greatly appreciate an improved graphical user interface that

can guide them through the code generation process, control which machines are used

to run the computation, and display the execution at each node.

120

Appendix A

ADT Implementation Examples

These sections show complete examples of the files one needs to create to add support

for a new sort or sort constructor.

A.1 String: A Simple Sort

A.1.1 LSL Trait

This trait simply lists the operators on String; the real LSL trait also states properties

of these operators.

S t r i n g : t r a i t
i n c l u d e s

Sequence (Char f o r E , S t r i n g f o r Seq [E])
int roduces

< , ≤ , > , ≥ : S t r i n g , S t r i n g → Bool

Sequence (E) : t r a i t
i n c l u d e s

I n t e g e r
int roduces
{ } : → Seq [E]
` : Seq [E] , E → Seq [E]
a : E , Seq [E] → Seq [E]
‖ : Seq [E] , Seq [E] → Seq [E]
∈ : E , Seq [E] → Bool

head , l a s t : Seq [E] → E
t a i l , i n i t : Seq [E] → Seq [E]
l e n : Seq [E] → I n t

[] : Seq [E] , I n t → E

121

A.1.2 Implementation Class: ioa.runtime.adt.StringSort

/*
* Copyright (c) 2002 Massachusetts Institute of Technology.
* All Rights Reserved.
*
* MIT grants permission to use, copy, modify , and distribute this software and
* its documentation for NON-COMMERCIAL purposes and without fee, provided that
* this copyright notice appears in all copies.
*
* MIT provides this software "as is," without representations or warranties of
* any kind, either expressed or implied , including but not limited to the
* implied warranties of merchantability , fitness for a particular purpose , and
* noninfringement . MIT shall not be liable for any damages arising from any
* use of this software.
*/

package ioa.runtime.adt;

import ioa.util.sexp .*;

/**
* <tt>StringSort </tt> implements Strings using <tt>java.lang.String </tt>.
*
* @author Michael Tsai (00/05/??) -- Wrapper for SeqSort[CharSort]
* @author Michael Tsai (00/06/27) -- Rewrote to use String
* @see ioa.registry.java.StringSort
* @see ioa.runtime.adt.BoolSort
* @see ioa.runtime.adt.CharSort
* @see ioa.runtime.adt.IntSort
*/

public class StringSort extends ComparableADT implements java.io.Serializable
{

// Code Generation Methods
// -----------------------

/** {}: -> String */
public static StringSort empty () {

return new StringSort ();
}

/** __|-__: String , Char -> String */
public static StringSort append(StringSort s, CharSort c) {

return s.append(c);
}

/** __-|__: Char, String -> String */
public static StringSort prepend(CharSort c, StringSort s) {

return s.prepend(c);
}

/** __||__: String , String -> String */
public static StringSort catenate(StringSort s1, StringSort s2) {

return s1.catenate(s2);
}

/** __\\in__: Char, String -> Bool */
public static BoolSort in(CharSort c, StringSort s) {

return s.in(c);
}

/** head: String -> Char */
public static CharSort head(StringSort s) {

return s.head ();
}

/** last: String -> Char */
public static CharSort last(StringSort s) {

122

return s.last ();
}

/** tail: String -> String */
public static StringSort tail(StringSort s) {

return s.tail ();
}

/** init: String -> String */
public static StringSort init(StringSort s) {

return s.init ();
}

/** len: String -> Int */
public static IntSort len(StringSort s) {

return s.len ();
}

/** __[__]: String , Int -> Char */
public static CharSort index(StringSort s, IntSort i) {

return s.index(i);
}

/** __<__: String , String -> Bool */
public static BoolSort lt(StringSort s1, StringSort s2) {

return s1.lt(s2);
}

/** __<=__: String , String -> Bool */
public static BoolSort lte(StringSort s1, StringSort s2) {

return s1.lte(s2);
}

/** __>__: String , String -> Bool */
public static BoolSort gt(StringSort s1, StringSort s2) {

return s1.gt(s2);
}

/** __>=__: String , String -> Bool */
public static BoolSort gte(StringSort s1, StringSort s2) {

return s1.gte(s2);
}

// Member Variables
// ----------------
protected String string;

// Creators
// --------
public StringSort () {

this.string = "";
}

public StringSort(String string) {
this.string = string;

}

public static ADT construct(Parameterization p)
{

return empty ();
}

// Observers
// ---------
public String toString () {

return this.string;
}

public BoolSort in(CharSort c) {
return BoolSort.lit(this.string.indexOf(c.toString ()) != -1);

123

}

public IntSort len () {
return IntSort.lit(this.string.length ());

}

public CharSort index(IntSort i) {
if (i.value () < 0)

throw new RepException("Index given to StringSort was less than 0");
else if (i.value () <= this.string.length () - 1)

return new CharSort(new Character(this.string.charAt(i.value ())));
else

throw new RepException("Can’t take index "+i+
" because the String isn’t that long.");

}

public int compareTo(Object o)
{

StringSort s = (StringSort)o;
return this.string.compareTo(s.string);

}

public BoolSort lt(StringSort s)
{

return BoolSort.lit(this.compareTo(s) < 0);
}

public BoolSort lte(StringSort s)
{

return BoolSort.lit(this.compareTo(s) <= 0);
}

public BoolSort gt(StringSort s)
{

return BoolSort.lit(this.compareTo(s) > 0);
}

public BoolSort gte(StringSort s)
{

return BoolSort.lit(this.compareTo(s) >= 0);
}

public boolean equals(Object o) {
if (! (o instanceof StringSort))

return false;
StringSort s = (StringSort)o;
return this.string.equals(s.string);

}

public int hashCode () {
return this.string.hashCode ();

}

public boolean isEmpty () {
return this.string.length () == 0;

}

// Producers
// ---------
public StringSort append(CharSort c) {

return new StringSort(this.string + c.toString ());
}

public StringSort prepend(CharSort c) {
return new StringSort(c.toString () + this.string);

}

public StringSort catenate(StringSort s) {
return new StringSort(this.string + s.string);

}

124

public CharSort head () {
if (! isEmpty ())

return CharSort.lit(new Character(this.string.charAt (0)));
else

throw new
RepException("Attempt to take head () of empty StringSort");

}

public CharSort last () {
if (! isEmpty ())

return CharSort.lit(
new Character(this.string.charAt(this.string.length () - 1)));

else
throw new

RepException("Attempt to take last () of empty StringSort");
}

public StringSort tail () {
if (! isEmpty ())

return new StringSort(
this.string.substring (1, this.string.length ()));

else
throw new

RepException("Attempt to take tail () of empty StringSort");
}

public StringSort init () {
if (! isEmpty ())

return new StringSort(
this.string.substring (0, this.string.length () - 1));

else
throw new

RepException("Attempt to take init () of empty StringSort");
}

// SValue Conversions
// ------------------

public SValue toSValue ()
{

SValue rep = new SString(string);
return toSValue(rep);

}

public static ADT construct(SValue svalue)
{

return new StringSort(svalue.toString ());
}

}

A.1.3 Registration Class: ioa.registry.java.StringSort

/*
* Copyright (c) 2001 Massachusetts Institute of Technology.
* All Rights Reserved.
*
* MIT grants permission to use, copy, modify , and distribute this software and
* its documentation for NON-COMMERCIAL purposes and without fee, provided that
* this copyright notice appears in all copies.
*
* MIT provides this software "as is," without representations or warranties of
* any kind, either expressed or implied , including but not limited to the
* implied warranties of merchantability , fitness for a particular purpose , and
* noninfringement . MIT shall not be liable for any damages arising from any
* use of this software.
*/

125

package ioa.registry.java;

import ioa.registry.ConstrImplRegistry;
import ioa.registry.ImplFactory;
import ioa.registry.Installer;
import ioa.registry.Registrable;
import ioa.registry.RegistryException;

/**
* Registration class for Strings.
*
* @author Michael Tsai
* @see ioa.runtime.adt.BoolSort
* @see ioa.runtime.adt.CharSort
* @see ioa.runtime.adt.IntSort
* @see ioa.runtime.adt.StringSort
*/

public class StringSort implements Registrable
{

// Class Variables

/**
* Name of the Sort for which this registers implementations.
*/

public final static String sortName = "String";

/**
* Name of the Class that implements the Sort
*/

public final static String className = "StringSort";

/**
* Install mappings from the sort String and its operators to the
* ioa.runtime.adt.StringSort class and its methods in the given
* registry.
*/

public void install(ConstrImplRegistry reg) throws RegistryException
{

Installer installer =
ImplFactory.getInstance (). newInstaller(className , reg);

installer.addSort(sortName);

installer.addOp("({__ } () % me)", "empty");
installer.addOp("(__|-__ (%me Char) %me)", "append");
installer.addOp("(__-|__ (Char %me) %me)", "prepend");
installer.addOp("(__||__ (%me %me) %me)", "catenate");
installer.addOp("(__\\in__ (Char %me) Bool)", "in");
installer.addOp("(head (%me) Char)", "head");
installer.addOp("(last (%me) Char)", "last");
installer.addOp("(tail (%me) %me)", "tail");
installer.addOp("(init (%me) %me)", "init");
installer.addOp("(len (%me) Int)", "len");
installer.addOp("(__[__] (%me Int) Char)", "index");
installer.addOp("(__<__ (%me %me) Bool)", "lt");
installer.addOp("(__<=__ (%me %me) Bool)", "lte");
installer.addOp("(__>__ (%me %me) Bool)", "gt");
installer.addOp("(__>=__ (%me %me) Bool)", "gte");

}
}

A.1.4 Test Class

/*
* Copyright (c) 2000 Massachusetts Institute of Technology.
* All Rights Reserved.
*
* MIT grants permission to use, copy, modify , and distribute this software and

126

* its documentation for NON-COMMERCIAL purposes and without fee, provided that
* this copyright notice appears in all copies.
*
* MIT provides this software "as is," without representations or warranties of
* any kind, either expressed or implied , including but not limited to the
* implied warranties of merchantability , fitness for a particular purpose , and
* noninfringement . MIT shall not be liable for any damages arising from any
* use of this software.
*/

package ioa.test.junit.runtime.adt;

import ioa.runtime.adt.ADT;
import ioa.runtime.adt.BoolSort;
import ioa.runtime.adt.CharSort;
import ioa.runtime.adt.IntSort;
import ioa.runtime.adt.RepException;
import ioa.runtime.adt.StringSort;
import ioa.util.sexp .*;
import junit.framework .*;

/**
* JUnit-based black box and glass box tests for ioa.runtime.adt.StringSort.
* @author Michael J. Tsai (00/06/27)
*/

public class StringSortTest extends TestCase
{

// Member Variables
// ----------------
protected StringSort empty;
protected StringSort aString;
protected StringSort bString;
protected StringSort ab;
protected StringSort abc;
protected StringSort abcd;
protected StringSort bc;
protected StringSort bcd;
protected StringSort cd;
protected StringSort sexp;

protected IntSort zero;
protected IntSort one;
protected IntSort two;
protected IntSort three;
protected IntSort minusOne;

protected CharSort a;
protected CharSort b;
protected CharSort c;
protected CharSort d;

protected BoolSort bTrue;
protected BoolSort bFalse;

/**
* Runs all the tests in this class and outputs the results to stdout.
*/

public static void main(String [] args)
{

junit.textui.TestRunner.run(suite ());
}

// Framework Stuff
// ---------------
public StringSortTest(String name)
{

super(name);
}

/**

127

* Set up the fixtures.
*/

protected void setUp ()
{

this.empty = new StringSort("");
this.aString = new StringSort("a");
this.bString = new StringSort("b");
this.ab = new StringSort("ab");
this.abc = new StringSort("abc");
this.abcd = new StringSort("abcd");
this.bc = new StringSort("bc");
this.bcd = new StringSort("bcd");
this.cd = new StringSort("cd");
this.sexp = new StringSort(" (foo 2 (3))");

this.a = CharSort.lit(new Character (’a’));
this.b = CharSort.lit(new Character (’b’));
this.c = CharSort.lit(new Character (’c’));
this.d = CharSort.lit(new Character (’d’));

this.zero = IntSort.lit (0);
this.one = IntSort.lit (1);
this.two = IntSort.lit (2);
this.three = IntSort.lit (3);
this.minusOne = IntSort.lit (-1);

this.bFalse = BoolSort.False ();
this.bTrue = BoolSort.True ();

}

/**
* @return a single Test that runs all the tests in this class
*/

public static Test suite ()
{

return new TestSuite(StringSortTest.class);
}

// Test Methods
// ------------
public void testEmpty ()
{

assertEquals("", empty.toString ());
}

public void testAppend ()
{

assertEquals(abc, ab.append(c));
assertEquals(abcd, abc.append(d));
assertEquals("a", empty.append(a). toString ());

}

public void testPrepend ()
{

assertEquals(abc, bc.prepend(a));
assertEquals(abcd, bcd.prepend(a));
assertEquals("a", empty.prepend(a). toString ());

}

public void testCatenate ()
{

assertEquals(empty , empty.catenate(empty));
assertEquals(ab, empty.catenate(ab));
assertEquals(ab, ab.catenate(empty));
assertEquals(abcd, ab.catenate(cd));

}

public void testIn ()
{

assertEquals(bTrue , ab.in(a));

128

assertEquals(bTrue , abc.in(a));
assertEquals(bTrue , ab.in(b));
assertEquals(bTrue , abc.in(b));
assertEquals(bFalse , ab.in(c));
assertEquals(bTrue , abc.in(c));
assertEquals(bFalse , ab.in(c));
assertEquals(bFalse , empty.in(a));

}

public void testHead ()
{

assertEquals(a, ab.head ());
assertEquals(a, abc.head ());
assertEquals(b, bc.head ());
try { empty.head (); fail (); } catch (RepException e) {}

}

public void testLast ()
{

assertEquals(b, ab.last ());
assertEquals(c, abc.last ());
assertEquals(c, bc.last ());
try { empty.last (); fail (); } catch (RepException e) {}

}

public void testTail ()
{

try { empty.tail (); fail (); } catch (RepException e) {}
assertEquals(empty , aString.tail ());
assertEquals(bString , ab.tail ());
assertEquals(bc, abc.tail ());
assertEquals(bcd, abcd.tail ());

}

public void testInit ()
{

try { empty.init (); fail (); } catch (RepException e) {}
assertEquals(empty , aString.init ());
assertEquals(aString , ab.init ());
assertEquals(ab, abc.init ());
assertEquals(abc, abcd.init ());

}

public void testLen ()
{

assertEquals(zero, empty.len ());
assertEquals(one, aString.len ());
assertEquals(two, ab.len ());

}

public void testIndex ()
{

try { empty.index(zero); fail (); } catch (RepException e) {}
try { aString.index(one); fail (); } catch (RepException e) {}
try { aString.index(minusOne); fail (); } catch (RepException e) {}
assertEquals(a, aString.index(zero));
assertEquals(b, abc.index(one));

}

public void testLt ()
{

assertEquals(bTrue , aString.lt(ab));
assertEquals(bFalse , ab.lt(aString));
assertEquals(bTrue , ab.lt(bc));
assertEquals(bFalse , bc.lt(ab));
assertEquals(bFalse , ab.lt(ab));
assertEquals(bTrue , empty.lt(ab));

}

public void testLte ()

129

{
assertEquals(bTrue , aString.lte(ab));
assertEquals(bFalse , ab.lte(aString));
assertEquals(bTrue , ab.lte(bc));
assertEquals(bFalse , bc.lte(ab));
assertEquals(bTrue , ab.lte(ab));
assertEquals(bTrue , empty.lte(ab));

}

public void testGt ()
{

assertEquals(bFalse , aString.gt(ab));
assertEquals(bTrue , ab.gt(aString));
assertEquals(bFalse , ab.gt(bc));
assertEquals(bTrue , bc.gt(ab));
assertEquals(bFalse , ab.gt(ab));
assertEquals(bFalse , empty.gt(ab));

}

public void testGte ()
{

assertEquals(bFalse , aString.gte(ab));
assertEquals(bTrue , ab.gte(aString));
assertEquals(bFalse , ab.gte(bc));
assertEquals(bTrue , bc.gte(ab));
assertEquals(bTrue , ab.gte(ab));

}

public void testEquals ()
{

assertEquals(bTrue , StringSort.equals(abc, new StringSort("abc")));
assertEquals(bFalse , StringSort.equals(abc, bc));

}

public void testNotEquals ()
{

assertEquals(bFalse , StringSort.notEquals(abc, new StringSort("abc")));
assertEquals(bTrue , StringSort.notEquals(abc, bc));

}

public void testIfThenElse ()
{

assertEquals(abc, StringSort.ifThenElse(bTrue , abc, bc));
assertEquals(bc, StringSort.ifThenElse(bFalse , abc, bc));

}

public void testHashCode ()
{

assertEquals(ab.hashCode (), aString.catenate(bString). hashCode ());
assertTrue(ab.hashCode () != aString.hashCode ());

}

public void testCompareTo ()
{

assertTrue (ab.compareTo(bc) < 0);
assertTrue (abc.compareTo(aString) > 0);
assertTrue (abc.compareTo(abc) == 0);

}

public void testToSValue ()
{

String expected = "(ioa.runtime.adt.StringSort \" (foo 2 (3))\")";
assertEquals(expected , sexp.toSValue (). toString ());

}

public void testConstructSValue ()
{

assertEquals(sexp, ADT.construct(sexp.toSValue ()));
}

}

130

A.1.5 IOA File

automaton S t r i n g 0 1
s ignature

i n t e r n a l a1
s t a t e s

s : S t r i n g := { } ,
i : I n t ,
c : Char := ′A ′ ,
b : Bool

t r a n s i t i o n s
i n t e r n a l a1

pre
s = {}

e f f
s := s ` c ;
s := c a s ;
s := s ‖ s ;
b := c ∈ s ;
c := head (s) ;
c := l a s t (s) ;
s := t a i l (s) ;
s := i n i t (s) ;
i := l e n (s) ;
c := s [2] ;
b := s = s ;
b := s [1] = s [2] ;
b := s < s ;
b := s ≤ s ;
b := s > s ;
b := s ≥ s ;
b := s = s ;
b := s 6= s ;
s := i f b then s e l s e s

A.1.6 Generated Java Code

import java.io.*; import ioa.runtime.adt .*; import ioa.runtime .*;

public class String01 extends ioa.runtime.Automaton {
public StringSort s_v1 = ((StringSort)StringSort.empty ());
public IntSort i_v2 = (IntSort)IntSort.construct(new Parameterization ());
public CharSort c_v3 = ((CharSort)CharSort.lit(’A’));
public BoolSort b_v4 =

(BoolSort)BoolSort.construct(new Parameterization ());
public void action_a1 ()

{
enteredTransition("internal a1(" + ") in automaton String01");
assertPrecondition ((((BoolSort)StringSort.equals(s_v1,

((StringSort)StringSort.empty ())))). booleanValue ());
s_v1 = ((StringSort)StringSort.append(s_v1, c_v3));
s_v1 = ((StringSort)StringSort.prepend(c_v3, s_v1));
s_v1 = ((StringSort)StringSort.catenate(s_v1, s_v1));
b_v4 = ((BoolSort)StringSort.in(c_v3, s_v1));
c_v3 = ((CharSort)StringSort.head(s_v1));
c_v3 = ((CharSort)StringSort.last(s_v1));

131

s_v1 = ((StringSort)StringSort.tail(s_v1));
s_v1 = ((StringSort)StringSort.init(s_v1));
i_v2 = ((IntSort)StringSort.len(s_v1));
c_v3 = ((CharSort)StringSort.index(s_v1 , ((IntSort)IntSort.lit (2))));
b_v4 = ((BoolSort)StringSort.equals(s_v1, s_v1));
b_v4 =

((BoolSort)CharSort.equals (((CharSort)StringSort.index(s_v1,

((IntSort)IntSort.lit (1)))),
((CharSort)StringSort.index(s_v1,

((IntSort)IntSort.lit (2))))));
b_v4 = ((BoolSort)StringSort.lt(s_v1, s_v1));
b_v4 = ((BoolSort)StringSort.lte(s_v1, s_v1));
b_v4 = ((BoolSort)StringSort.gt(s_v1, s_v1));
b_v4 = ((BoolSort)StringSort.gte(s_v1, s_v1));
b_v4 = ((BoolSort)StringSort.equals(s_v1, s_v1));
b_v4 = ((BoolSort)StringSort.notEquals(s_v1, s_v1));
s_v1 = ((StringSort)((b_v4). booleanValue () ? s_v1 : s_v1));
exitedTransition("internal a1(" + ") in automaton String01");

}

public static void main(String [] args) {
ioa.runtime.Automaton.main(new String [] {"String01"});
}

}

A.2 Set: A Compound Sort

A.2.1 LSL Trait

This trait simply lists the operators on Set; the real LSL trait also states properties

of these operators. It is not shown here because it assumes other traits, which makes

it harder to see what all the operators are.

Set (E) : t r a i t
i n c l u d e s

I n t e g e r
int roduces
{ } : → Set [E]
{ } : E → Set [E]
i n s e r t , d e l e t e : E , Set [E] → Set [E]
∈ : E , Set [E] → Bool
∪ , ∩ , − : Set [E] , Set [E] → Set [E]
⊂ , ⊃ , ⊆ , ⊇ : Set [E] , Set [E] → Bool

s i z e : Set [E] → I n t

A.2.2 Implementation Class: ioa.runtime.adt.SetSort

/*
* Copyright (c) 2002 Massachusetts Institute of Technology.
* All Rights Reserved.
*

132

* MIT grants permission to use, copy, modify , and distribute this software and
* its documentation for NON-COMMERCIAL purposes and without fee, provided that
* this copyright notice appears in all copies.
*
* MIT provides this software "as is," without representations or warranties of
* any kind, either expressed or implied , including but not limited to the
* implied warranties of merchantability , fitness for a particular purpose , and
* noninfringement . MIT shall not be liable for any damages arising from any
* use of this software.
*/

package ioa.runtime.adt;

import ioa.util.sexp .*;
import ioa.util.logger.IOACategory;
import ioa.util.ToStringComparator;

import java.util.Collections;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;
import java.util.TreeSet;

/**
* <p> <tt>SetSort </tt> implements IOA sets using a <tt>HashSet </tt> for
* speed . Because it was written before <tt>MsetSort </tt>, it is not
* based on <tt>MsetSort </tt>. Also, it is probably faster this way .</p>
*
* @author Michael Tsai (00/04/19)
* @see ioa.registry.java.SetSort
* @see ioa.runtime.adt.IntSort
* @see ioa.runtime.adt.BoolSort
*/

public class SetSort extends ADT implements Cloneable,
Enumerable,
java.io.Serializable

{
// Class Variables
private static IOACategory
cat = IOACategory.getInstance(SetSort.class.getName ());

// Member Variables
// ----------------

protected Set set = new HashSet ();

// Creators
// --------

/** Construct a new, empty set . */
public SetSort () {}

// Code Generation Methods
// -----------------------

/** {}: -> Set[E] */
public static SetSort empty () {

return new SetSort ();
}

/** { __}: E -> Set[E] */
public static SetSort singleton(Object o) {

return new SetSort (). insert(o);
}

/** insert : E, Set[E] -> Set[E] */
public static SetSort insert(Object o, SetSort s) {

return s.insert(o);
}

133

/** delete ; E, Set[E] -> Set[E] */
public static SetSort delete(Object o, SetSort s) {

return s.delete(o);
}

/** __\in__: E, Set[E] -> Bool */
public static BoolSort isIn(Object o, SetSort s) {

return BoolSort.lit(s.contains(o));
}

/** __\U__: Set[E], Set[E] -> Set[E] */
public static SetSort union(SetSort s1, SetSort s2) {

return s1.union(s2);
}

/** __\I__: Set[E], Set[E] -> Set[E] */
public static SetSort intersection(SetSort s1, SetSort s2) {

return s1.intersection(s2);
}

/** __-__: Set[E], Set[E] -> Set[E] */
public static SetSort difference(SetSort s1, SetSort s2) {

return s1.difference(s2);
}

/** __\supset__ : Set[E], Set[E] -> Bool */
public static BoolSort isSupset(SetSort s1, SetSort s2) {

return BoolSort.lit(s1.isSupset(s2));
}

/** __\subset__ : Set[E], Set[E] -> Bool */
public static BoolSort isSubset(SetSort s1, SetSort s2) {

return BoolSort.lit(s1.isSubset(s2));
}

/** __\subseteq__ : Set[E], Set[E] -> Bool */
public static BoolSort isSubsetEq(SetSort s1, SetSort s2) {

return BoolSort.lit(s1.isSubsetEq(s2));
}

/** __\supseteq__ : Set[E], Set[E] -> Bool */
public static BoolSort isSupsetEq(SetSort s1, SetSort s2) {

return BoolSort.lit(s1.isSupsetEq(s2));
}

/** size: Set[E] -> Int */
public static IntSort size(SetSort s) {

return IntSort.lit(s.size ());
}

// Observers
// ---------

/** @return true if this contains o and false otherwise */
public boolean contains(Object o) {

return set.contains(o);
}

/** @return true if this \ subset s and false otherwise */
public boolean isSubset(SetSort s) {

return s.set.containsAll(this.set) && ! this.set.equals(s.set);
}

/** @return true if this \ supset s and false otherwise */
public boolean isSupset(SetSort s) {

return this.set.containsAll(s.set) && ! this.set.equals(s.set);
}

/** @return true if this \ subseteq s and false otherwise */
public boolean isSubsetEq(SetSort s) {

134

return s.set.containsAll(this.set);
}

/** @return true if this \ supseteq s and false otherwise */
public boolean isSupsetEq(SetSort s) {

return this.set.containsAll(s.set);
}

/** @return |this | */
public int size () {

return set.size ();
}

/**
* Returns the underlying java.util.Set, but
* the elements are unmodifiable . The elements
* are also ordered alphabetically as they’d print out.
**/

public Set getSet () {
return Collections.unmodifiableSet(set);

}

/**
* Returns the underlying java.util.Set, but the elements are
* unmodifiable . The elements are also ordered alphabetically as
* they’d print out - this should only be used for diff testing to
* remove nondeterminism in printing.
*
**/

public Set getSetOrdered () {
TreeSet ts = new TreeSet (new ToStringComparator ());
ts.addAll (set);
return Collections.unmodifiableSet(ts);

}

public boolean equals(Object o) {
if (o instanceof SetSort)

return this.set.equals (((SetSort) o).set);
else

return false;
}

public int hashCode () {
int result = 0;

Iterator iter = this.set.iterator ();
while (iter.hasNext ())
{

result += iter.next (). hashCode ();
}

return result;
}

// Producers
// --------

/** @return shallow copy of this */
public Object clone () {

SetSort result = new SetSort ();
result.set.addAll(this.set);
return result;

}

/** @return this \U {o} */
public SetSort insert(Object o) {

SetSort result = (SetSort)this.clone ();
result.set.add(o);

135

return result;
}

/** @return this - {o} */
public SetSort delete(Object o) {

SetSort result = (SetSort)this.clone ();
result.set.remove(o);
return result;

}

/** @return a new SetSort whose elements are this \U s */
public SetSort union(SetSort s) {

SetSort result = (SetSort)this.clone ();
result.set.addAll(s.set);
return result;

}

/** @return a new SetSort whose elements are this \I s */
public SetSort intersection(SetSort s) {

SetSort result = (SetSort)this.clone ();
result.set.retainAll(s.set);
return result;

}

/** @return a new SetSort whose elements are this - s */
public SetSort difference(SetSort s) {

SetSort result = (SetSort)this.clone ();
result.set.removeAll(s.set);
return result;

}

/**
* Select a random element from a set.
* @return a random element of this set.
* @exception RepException if the set is empty
**/

public static Object chooseRandom (SetSort set) {
int i = set.size ();
if (i == 0)

throw new
RepException("Cannot take an element out of an empty set");

return set.getSet (). toArray ()[NonDet.rnd.nextInt (i)];
}

/**
* Exclude a random element from a set and return the rest.
* @return a subset of the set such that there’s one element removed.
* @exception RepException if the set is empty
**/

public static SetSort rest (SetSort set) {
int i = set.size ();
if (i == 0)

throw new
RepException("Cannot take an element out of an empty set");

return SetSort.delete(set.getSet (). toArray ()[NonDet.rnd.nextInt (i)],
set);

}

/**
* Predicate on whether a set is empty
* @return true of the set is empty.
**/

public static BoolSort isEmpty (SetSort set) {
int i = set.size ();
return BoolSort.lit (i == 0);

}

/** @return an instance of SetSort */
public static ADT construct(Parameterization p)
{

136

return empty ();
}

/**
* Returns a String representation of this, in alphabetical order
* @return a String representation of this.
**/

public String toString () {
Iterator iter = getSetOrdered (). iterator ();
String result = "(";

while (iter.hasNext ()) {
result += iter.next (). toString () + " ";

}
return result.trim () + ")";

}

// Enumerable
// ----------
public Iterator iterator ()
{

return set.iterator ();
}

// SValue Conversions
// ------------------

public SValue toSValue ()
{

SList rep = new SList ();
// don’t use getSetOrdered () if we care about performance
Iterator i = getSetOrdered (). iterator ();
while (i.hasNext ())
{

ADT adt = (ADT)i.next ();
rep.add(adt.toSValue ());

}
return toSValue(rep);

}

public static ADT construct(SValue svalue)
{

SetSort set = empty ();
SList rep = (SList)svalue;
Iterator i = rep.iterator ();
while (i.hasNext ())
{

SValue s = (SValue)i.next ();
set.set.add(ADT.construct(s));

}
return set;

}
}

A.2.3 Registration Class: ioa.registry.java.SetSort

/*
* Copyright (c) 2001 Massachusetts Institute of Technology.
* All Rights Reserved.
*
* MIT grants permission to use, copy, modify , and distribute this software and
* its documentation for NON-COMMERCIAL purposes and without fee, provided that
* this copyright notice appears in all copies.
*
* MIT provides this software "as is," without representations or warranties of
* any kind, either expressed or implied , including but not limited to the
* implied warranties of merchantability , fitness for a particular purpose , and

137

* noninfringement . MIT shall not be liable for any damages arising from any
* use of this software.
*/

package ioa.registry.java;

import ioa.registry.ConstrImplRegistry;
import ioa.registry.ImplFactory;
import ioa.registry.Installer;
import ioa.registry.Registrable;
import ioa.registry.RegistryException;

/**
* Registration class for Sets. The implementations of
* ioa.registry.java.SetSort and ioa.runtime.adt.SetSort are
* intertwined . Changes in one should be reflected in the other.
*
* @author Michael Tsai (00/04/20)
* @see ioa.runtime.adt.SetSort
*/

public class SetSort implements Registrable
{

// Class Variables

/** Name of the Sort for which this registers implementations . */
public final static String sortName = "Set";

/** Name of the Class that implements the Sort */
public final static String className = "SetSort";

/**
* Install mappings from the Sort constructor Set and its operators
* to the ioa.runtime.adt.SetSort class and its methods in the given
* registry.
*/

public void install(ConstrImplRegistry reg) throws RegistryException
{

Installer installer =
ImplFactory.getInstance (). newInstaller(className , reg);

installer.addSort("(Set 0)");

installer.addOp("({__ } () % me)", "empty");
installer.addOp("({__ } (0) % me)", "singleton");
installer.addOp("(insert (0 %me) %me)", "insert");
installer.addOp("(delete (0 %me) %me)", "delete");
installer.addOp("(__\\in__ (0 %me) Bool)", "isIn");
installer.addOp("(__\\U__ (%me %me) %me)", "union");
installer.addOp("(__\\I__ (%me %me) %me)", "intersection");
installer.addOp("(__-__ (%me %me) %me)", "difference");
installer.addOp("(__\\ subset__ (%me %me) Bool)", "isSubset");
installer.addOp("(__\\ supset__ (%me %me) Bool)", "isSupset");
installer.addOp("(__\\ subseteq__ (%me %me) Bool)", "isSubsetEq");
installer.addOp("(__\\ supseteq__ (%me %me) Bool)", "isSupsetEq");
installer.addOp("(size (%me) Int)", "size");
installer.addOp("(chooseRandom (%me) 0)" , "chooseRandom");
installer.addOp("(rest (%me) %me)", "rest");
installer.addOp("(isEmpty (%me) Bool)", "isEmpty");

}
}

A.2.4 Test Class

/*
* Copyright (c) 2002 Massachusetts Institute of Technology.
* All Rights Reserved.
*

138

* MIT grants permission to use, copy, modify , and distribute this software and
* its documentation for NON-COMMERCIAL purposes and without fee, provided that
* this copyright notice appears in all copies.
*
* MIT provides this software "as is," without representations or warranties of
* any kind, either expressed or implied , including but not limited to the
* implied warranties of merchantability , fitness for a particular purpose , and
* noninfringement . MIT shall not be liable for any damages arising from any
* use of this software.
*/

package ioa.test.junit.runtime.adt;

import junit.framework .*;
import ioa.runtime.adt.SetSort;
import ioa.runtime.adt.BoolSort;
import ioa.runtime.adt.IntSort;
import ioa.runtime.adt.ADT;
import ioa.util.sexp .*;

/**
* JUnit-based black box and glass box tests for ioa.runtime.adt.SetSort.
* @author Michael J. Tsai (00/06/22)
*/

public class SetSortTest extends TestCase
{

// Member Variables
// ----------------
protected SetSort empty;
protected SetSort one;
protected SetSort two;
protected SetSort three;
protected SetSort oneAndTwo;
protected SetSort oneAndThree;
protected SetSort twoAndThree;
protected SetSort oneAndTwoAndThree;

protected BoolSort bTrue;
protected BoolSort bFalse;

/**
* Runs all the tests in this class and outputs the results to stdout.
*/

public static void main(String [] args)
{

junit.textui.TestRunner.run(suite ());
}

// Framework Stuff
// ---------------
public SetSortTest(String name)
{

super(name);
}

/**
* Set up the fixtures.
*/

protected void setUp ()
{

empty = new SetSort ();
one = empty.insert(IntSort.lit (1));
two = empty.insert(IntSort.lit (2));
three = empty.insert(IntSort.lit (3));
oneAndTwo = one.insert(IntSort.lit (2));
oneAndThree = one.insert(IntSort.lit (3));
twoAndThree = two.insert(IntSort.lit (3));
oneAndTwoAndThree = oneAndTwo.insert(IntSort.lit (3));

bTrue = BoolSort.True ();

139

bFalse = BoolSort.False ();
}

/**
* @return a single Test that runs all the tests in this class
*/

public static Test suite ()
{

return new TestSuite(SetSortTest.class);
}

// Test Methods
// ------------
public void testContains ()
{

assertTrue(oneAndThree.contains(IntSort.lit (1)));
assertTrue(oneAndThree.contains(IntSort.lit (3)));
assertTrue (! oneAndThree.contains(IntSort.lit (2)));
assertTrue (! empty.contains(IntSort.lit (1)));

}

public void testIsSubset ()
{

assertTrue(empty.isSubset(one));
assertTrue(one.isSubset(oneAndTwo));
assertTrue(oneAndTwo.isSubset(oneAndTwoAndThree));

assertTrue (! one.isSubset(empty));
assertTrue (! oneAndTwo.isSubset(one));
assertTrue (! oneAndTwoAndThree.isSubset(oneAndTwo));

assertTrue (! oneAndTwo.isSubset(oneAndTwo));
assertTrue (! empty.isSubset(empty));

}

public void testIsSupset ()
{

assertTrue(one.isSupset(empty));
assertTrue(oneAndTwo.isSupset(one));
assertTrue(oneAndTwoAndThree.isSupset(oneAndTwo));

assertTrue (! empty.isSupset(one));
assertTrue (! one.isSupset(oneAndTwo));
assertTrue (! oneAndTwo.isSupset(oneAndTwoAndThree));

assertTrue (! oneAndTwo.isSupset(oneAndTwo));
assertTrue (! empty.isSupset(empty));

}

public void testIsSubsetEq ()
{

assertTrue(empty.isSubsetEq(one));
assertTrue(one.isSubsetEq(oneAndTwo));
assertTrue(oneAndTwo.isSubsetEq(oneAndTwoAndThree));

assertTrue (! one.isSubsetEq(empty));
assertTrue (! oneAndTwo.isSubsetEq(one));
assertTrue (! oneAndTwoAndThree.isSubsetEq(oneAndTwo));

assertTrue(oneAndTwo.isSubsetEq(oneAndTwo));
assertTrue(empty.isSubsetEq(empty));

}

public void testIsSupsetEq ()
{

assertTrue(one.isSupsetEq(empty));
assertTrue(oneAndTwo.isSupsetEq(one));
assertTrue(oneAndTwoAndThree.isSupsetEq(oneAndTwo));

assertTrue (! empty.isSupsetEq(one));

140

assertTrue (! one.isSupsetEq(oneAndTwo));
assertTrue (! oneAndTwo.isSupsetEq(oneAndTwoAndThree));

assertTrue(oneAndTwo.isSupsetEq(oneAndTwo));
assertTrue(empty.isSupsetEq(empty));

}

public void testSize ()
{

assertEquals (0, empty.size ());
assertEquals (1, one.size ());
assertEquals (2, oneAndTwo.size ());

}

public void testEquals ()
{

assertTrue(oneAndTwo.equals(oneAndTwo));

SetSort oneAndTwo2 = new SetSort ();
oneAndTwo2 = oneAndTwo2.insert(IntSort.lit (1));
oneAndTwo2 = oneAndTwo2.insert(IntSort.lit (2));
assertTrue(oneAndTwo.equals(oneAndTwo2));

assertTrue(oneAndTwo.equals(oneAndTwoAndThree.delete(IntSort.lit (3))));

assertTrue (! one.equals(two));
assertTrue (! oneAndTwo.equals(oneAndThree));

assertTrue (! one.equals(IntSort.lit (1)));
}

public void testNotEquals ()
{

assertEquals(bTrue , SetSort.notEquals(oneAndTwo , oneAndThree));
assertEquals(bFalse , SetSort.notEquals(oneAndTwo , oneAndTwo));

}

public void testIfThenElse ()
{

assertEquals(oneAndTwo,
SetSort.ifThenElse(bTrue, oneAndTwo , oneAndThree));

assertEquals(oneAndThree,
SetSort.ifThenElse(bFalse , oneAndTwo , oneAndThree));

}

public void testInsert ()
{

assertEquals(oneAndTwo , one.insert(IntSort.lit (2)));
assertEquals("Immutability", empty.insert(IntSort.lit (1)), one);
assertEquals(oneAndTwoAndThree , oneAndTwo.insert(IntSort.lit (3)));
assertEquals("Immutabiliity", one.insert(IntSort.lit (2)), oneAndTwo);

}

public void testDelete ()
{

assertEquals(one, oneAndTwo.delete(IntSort.lit (2)));
assertEquals("Immutability", one.insert(IntSort.lit (2)), oneAndTwo);
assertEquals(oneAndTwo , oneAndTwoAndThree.delete(IntSort.lit (3)));
assertEquals("Immutability", oneAndTwoAndThree,

oneAndTwo.insert(IntSort.lit (3)));
assertEquals(empty , empty.delete(IntSort.lit (2)));

}

public void testUnion ()
{

assertEquals(empty , empty.union(empty));
assertEquals(one, empty.union(one));
assertEquals(one, one.union(empty));
assertEquals(oneAndTwo , one.union(two));
assertEquals(oneAndTwo , two.union(one));

141

assertEquals(oneAndTwoAndThree , oneAndTwo.union(three));
assertEquals(oneAndTwoAndThree , three.union(oneAndTwo));

}

public void testIntersection ()
{

assertEquals(one, oneAndTwo.intersection(oneAndThree));
assertEquals(one, oneAndThree.intersection(oneAndTwo));
assertEquals(two, oneAndTwo.intersection(twoAndThree));
assertEquals(two, twoAndThree.intersection(oneAndTwo));
assertEquals(empty , empty.intersection(one));
assertEquals(empty , one.intersection(empty));

}

public void testDifference ()
{

assertEquals(one, oneAndTwo.difference(two));
assertEquals(one, oneAndTwoAndThree.difference(twoAndThree));
assertEquals(one, one.difference(empty));
assertEquals(one, one.difference(two));
assertEquals(empty , empty.difference(empty));

}

public void testHashCode ()
{

assertEquals(oneAndTwo.hashCode (), one.insert(two). hashCode ());
assertTrue(one.hashCode () != oneAndTwo.hashCode ());

}

public void testToSValue ()
{

String expected = "(ioa.runtime.adt.SetSort (" +
"(ioa.runtime.adt.IntSort 1) " +
"(ioa.runtime.adt.IntSort 2)))";

assertEquals(expected , oneAndTwo.toSValue (). toString ());
}

public void testConstructSValue ()
{

assertEquals(oneAndTwo , ADT.construct(oneAndTwo.toSValue ()));
}

}

A.2.5 IOA File

automaton Set01
s ignature

i n t e r n a l a1
s t a t e s

s : Set [I n t] ,
i : I n t ,
b : Bool

t r a n s i t i o n s
i n t e r n a l a1

e f f
s := { } ;
s := {3} ;
s := i n s e r t (i , s) ;
s := d e l e t e (i , s) ;
b := i ∈ s ;
s := s ∪ s ;
s := s ∩ s ;
s := s − s ;

142

b := s ⊂ s ;
b := s ⊆ s ;
b := s ⊃ s ;
b := s ⊇ s ;
i := s i z e (s) ;
b := s = s ;
b := s 6= s ;
s := i f b then s e l s e s

A.2.6 Generated Java Code

import java.io.*; import ioa.runtime.adt .*; import ioa.runtime .*;

public class Set01 extends ioa.runtime.Automaton {
public SetSort s_v1 =

(SetSort)SetSort.construct(new
Parameterization(new Class []

{ioa.runtime.adt.IntSort.class },
new Parameterization []

{new
Parameterization ()}));

public IntSort i_v2 = (IntSort)IntSort.construct(new Parameterization ());
public BoolSort b_v3 =

(BoolSort)BoolSort.construct(new Parameterization ());
public void action_a1 ()

{
enteredTransition("internal a1(" + ") in automaton Set01");
s_v1 = ((SetSort)SetSort.empty ());
s_v1 = ((SetSort)SetSort.singleton (((IntSort)IntSort.lit (3))));
s_v1 = ((SetSort)SetSort.insert(i_v2, s_v1));
s_v1 = ((SetSort)SetSort.delete(i_v2, s_v1));
b_v3 = ((BoolSort)SetSort.isIn(i_v2, s_v1));
s_v1 = ((SetSort)SetSort.union(s_v1, s_v1));
s_v1 = ((SetSort)SetSort.intersection(s_v1, s_v1));
s_v1 = ((SetSort)SetSort.difference(s_v1, s_v1));
b_v3 = ((BoolSort)SetSort.isSubset(s_v1, s_v1));
b_v3 = ((BoolSort)SetSort.isSubsetEq(s_v1, s_v1));
b_v3 = ((BoolSort)SetSort.isSupset(s_v1, s_v1));
b_v3 = ((BoolSort)SetSort.isSupsetEq(s_v1, s_v1));
i_v2 = ((IntSort)SetSort.size(s_v1));
b_v3 = ((BoolSort)SetSort.equals(s_v1, s_v1));
b_v3 = ((BoolSort)SetSort.notEquals(s_v1, s_v1));
s_v1 = ((SetSort)((b_v3). booleanValue () ? s_v1 : s_v1));
exitedTransition("internal a1(" + ") in automaton Set01");

}

public static void main(String [] args) {
ioa.runtime.Automaton.main(new String [] {"Set01"});
}

}

143

Appendix B

NDR Compilation Example

These sections show an example illustrating the compilation process described in

Section 5.

B.1 Automaton with NDR Annotations

automaton NDR01
s ignature

i n t e r n a l f o o
i n t e r n a l bar (i , j : I n t)

s t a t e s
n : Nat := 1 ,
b : Bool := true ,
k : I n t := 8

t r a n s i t i o n s
i n t e r n a l f o o

e f f
n := choose det do

y i e l d 1 ;
i f b then

y i e l d 2 ;
y i e l d 3

e l s e
y i e l d 4 ;
y i e l d 5

f i ;
whi le k < 1 0 do

y i e l d 6 ;
i f b then

y i e l d 7 ;
y i e l d 8

e l s e i f k < 1 2 then

144

y i e l d 9 ;
y i e l d 10

e l s e
y i e l d 1 1 ;
y i e l d 12

f i ;
y i e l d 13

od
od

i n t e r n a l bar (i , i +1 : I n t)
e f f

b := choose det do
y i e l d ¬b

od ;
k := choose det do

y i e l d k + i
od

schedule
s t a t e s

baz : Bool
do

whi le true do
f i r e i n t e r n a l f o o ;
f i r e i n t e r n a l bar (1 , 2) ;
i f baz then

f i r e i n t e r n a l bar (k , k +1);
baz := ¬baz

f i
od

od

B.2 Generated Java Code

import java.io.*; import ioa.runtime.adt .*; import ioa.runtime .*;

public class NDR01 extends ioa.runtime.Automaton {
public NatSort n_v4 = ((NatSort)NatSort.lit (1));
public BoolSort b_v5 = ((BoolSort)BoolSort.True ());
public IntSort k_v6 = ((IntSort)IntSort.lit (8));
int choosePC0 = 0;
int choosePC1 = 17;
int choosePC2 = 19;

public BoolSort baz_v10 =
(BoolSort)BoolSort.construct(new Parameterization ());

int schedulePC = 21;
public void action_foo ()

{
enteredTransition("internal foo in automaton NDR01");
n_v4 = (NatSort)resolveChoose0 ();
exitedTransition("internal foo in automaton NDR01");

}

public void action_bar (IntSort i_v1, IntSort dummy0)
{

enteredTransition("internal bar in automaton NDR01");
b_v5 = (BoolSort)resolveChoose1(i_v1, dummy0);

145

k_v6 = (IntSort)resolveChoose2(i_v1, dummy0);
exitedTransition("internal bar in automaton NDR01");

}

protected NatSort resolveChoose0 ()
{

while (true)
{

switch (choosePC0) {
case 0: /* while loop test */
{

if
(((BoolSort)BoolSort.True ()). booleanValue ())
{ choosePC0 = 1; break;
}

else
{ choosePC0 = -42; break;
}
;

}

case 1: /* yield */
{ choosePC0 = 2; return ((NatSort)NatSort.lit (1));
}

case 2: /* conditional test */
{

if
(b_v5.booleanValue ())
{ choosePC0 = 6; break;
}

else
{ choosePC0 = 4; break;
}
;

}

case 6: /* yield */
{ choosePC0 = 7; return ((NatSort)NatSort.lit (2));
}

case 7: /* yield */
{ choosePC0 = 3; return ((NatSort)NatSort.lit (3));
}

case 4: /* yield */
{ choosePC0 = 5; return ((NatSort)NatSort.lit (4));
}

case 5: /* yield */
{ choosePC0 = 3; return ((NatSort)NatSort.lit (5));
}

case 3: /* while loop test */
{

if
(((BoolSort)IntSort.lt(k_v6,

((IntSort)IntSort.lit (10)))). booleanValue ())
{ choosePC0 = 8; break;
}

else
{ choosePC0 = 0; break;
}

146

;

}

case 8: /* yield */
{ choosePC0 = 9; return ((NatSort)NatSort.lit (6));
}

case 9: /* conditional test */
{

if
(b_v5.booleanValue ())
{ choosePC0 = 13; break;
}
else
if
(((BoolSort)IntSort.lt(k_v6,

((IntSort)IntSort.lit (12)))). booleanValue ())
{ choosePC0 = 15; break;
}

else
{ choosePC0 = 11; break;
}
;

}

case 13: /* yield */
{ choosePC0 = 14; return ((NatSort)NatSort.lit (7));
}

case 14: /* yield */
{ choosePC0 = 10; return ((NatSort)NatSort.lit (8));
}

case 15: /* yield */
{ choosePC0 = 16; return ((NatSort)NatSort.lit (9));
}

case 16: /* yield */
{ choosePC0 = 10; return ((NatSort)NatSort.lit (10));
}

case 11: /* yield */
{ choosePC0 = 12; return ((NatSort)NatSort.lit (11));
}

case 12: /* yield */
{ choosePC0 = 10; return ((NatSort)NatSort.lit (12));
}

case 10: /* yield */
{ choosePC0 = 3; return ((NatSort)NatSort.lit (13));
}
default:

throw new Error("NDR program jumped to invalid PC");};

}
;

}

protected BoolSort resolveChoose1 (IntSort i_v1, IntSort dummy0)
{

while (true)
{

switch (choosePC1) {
case 17: /* while loop test */

147

{
if
(((BoolSort)BoolSort.True ()). booleanValue ())
{ choosePC1 = 18; break;
}

else
{ choosePC1 = -42; break;
}
;

}

case 18: /* yield */
{ choosePC1 = 17; return ((BoolSort)BoolSort.not(b_v5));
}
default:

throw new Error("NDR program jumped to invalid PC");};

}
;

}

protected IntSort resolveChoose2 (IntSort i_v1, IntSort dummy0)
{

while (true)
{

switch (choosePC2) {
case 19: /* while loop test */
{

if
(((BoolSort)BoolSort.True ()). booleanValue ())
{ choosePC2 = 20; break;
}

else
{ choosePC2 = -42; break;
}
;

}

case 20: /* yield */
{ choosePC2 = 19; return ((IntSort)IntSort.add(k_v6, i_v1));
}
default:

throw new Error("NDR program jumped to invalid PC");};

}
;

}

protected void schedule ()
{

scheduleLoop : while (true)
{

switch (schedulePC) {
case 21: /* while loop test */
{

if
(((BoolSort)BoolSort.True ()). booleanValue ())
{ schedulePC = 23; break;
}

else
{ schedulePC = 22; break;
}
;

148

}

case 23: /* fire */
{ schedulePC = 24; action_foo ();
}

case 24: /* fire */
{

schedulePC = 25;
action_bar (((IntSort)IntSort.lit (1)),

((IntSort)IntSort.lit (2)));

}

case 25: /* conditional test */
{

if
(baz_v10.booleanValue ())
{ schedulePC = 26; break;
}

else
{ schedulePC = 21; break;
}
;

}

case 26: /* fire */
{

schedulePC = 27;
action_bar(k_v6,

((IntSort)IntSort.add(k_v6,
((IntSort)IntSort.lit (1)))));

}

case 27: /* assignment */
{

baz_v10 = ((BoolSort)BoolSort.not(baz_v10));
schedulePC = 21;
break;

}

case 22: /* schedule ended */
{ break scheduleLoop;
}
default:

throw new Error("NDR program jumped to invalid PC");};

}
;

}

public static void main(String [] args) {
ioa.runtime.Automaton.main(new String [] {"NDR01"});
}

}

149

Appendix C

Banking Example

C.1 Automaton with NDR Annotations

% Automaton implements the B Banking example in Garland and Lynch ′ s
% ”Using I /O Automata for Developing Distributed Systems”

% modified by mjt not to use ful ly qualified state variable references
% in the schedule

% Implementation of null possibi l ity
type OpRec = tuple of loc : Int ,

seqno : Int ,

amount : Int ,

reported : Bool
type BalRec = tuple of loc : Int ,

value : Int

% Defines sums over a set
uses NonDet
uses ChoiceSet (OpRec)

uses ChoiceSet (BalRec)

% Sorry no actual parameters to automaton

% This automaton is BankA and Env manually composed

automaton Banking03
signature

output
OK(i : Int , x : OpRec) ,

reportBalance (n : Int , i : Int)

internal
doBalance(i : Int , tempChosenOps : Set [OpRec] , amount : Int) ,

% These are actually inputs to bank
requestDeposit (n : Int , i : Int) where n > 0 ,

requestWithdrawal(n : Int , i : Int) where n > 0 ,

requestBalance (i : Int)

states

150

ops : Set [OpRec] : = { } ,

pending ops : Set [OpRec] : = { } ,

reported ops : Set [OpRec] : = { } ,

pending bals : Set [BalRec] : = { } ,

done bals : Set [BalRec] : = { } ,

bals : Set [BalRec] : = { } ,

lastSeqno : Array [Int , Int] : = constant (0) ,

chosenOps : Set [OpRec] : = { } ,

%Environment
active : Array [Int , Bool] : = constant (false) ,

% Auxiliary information to help Daikon
actives : Set [Int] : = { } ,

not actives : Set [Int] : = {}
%Dummy variables

transitions
internal requestDeposit (n , i)

pre
% Env
n > 0 ∧ ¬active [i]

eff
lastSeqno [i] : = lastSeqno [i] + 1 ;

ops := insert ([i , lastSeqno [i] , n , false] , ops) ;

pending ops := insert ([i , lastSeqno [i] , n , false] , pending ops) ;

% Env
active [i] : = true ;

actives := insert (i , actives) ;

not actives := delete (i , not actives)

internal requestWithdrawal(n , i)

pre
% Env
n > 0 ∧ ¬active [i]

eff
lastSeqno [i] : = lastSeqno [i] + 1 ;

ops := insert ([i , lastSeqno [i] , −n , false] , ops) ;

pending ops := insert ([i , lastSeqno [i] , −n , false] , pending ops) ;

% Env
active [i] : = true ;

actives := insert (i , actives) ;

not actives := delete (i , not actives)

internal requestBalance (i)

pre
% Env
¬active [i]

eff
pending bals := insert ([i , 0] , pending bals) ;

bals := pending bals ∪ done bals ;

%Env
active [i] : = true ;

actives := insert (i , actives) ;

not actives := delete (i , not actives)

output OK(i , x)

% X isn ′ t a real parameter , i t just helps avoid choose
pre

x ∈ ops ∧ x . loc = i ∧ ¬x . reported
eff

ops := insert (set reported (x , true) , delete (x , ops)) ;

151

pending ops := delete (x , pending ops) ;

reported ops := insert (set reported (x , true) , reported ops) ;

% Env
active [i] : = false ;

not actives := insert (i , not actives) ;

actives := delete (i , actives)

output reportBalance (n , i)

pre
[i , n] ∈ done bals

eff
done bals := delete ([i , n] , done bals) ;

bals := pending bals ∪ done bals ;

% Env
active [i] : = false ;

not actives := insert (i , not actives) ;

actives := delete (i , actives)

internal doBalance(i , tempChosenOps , amount)

pre
[i , 0] ∈ pending bals

eff
chosenOps := tempChosenOps ;

pending bals := delete ([i , 0] , pending bals) ;

done bals := insert ([i , amount] , done bals) ;

bals := pending bals ∪ done bals

% Now scheduling blocks to test the automaton

schedule
states

numLocations : Int ,

location : Int ,

actionChosen : Int ,

maxAmount : Int ,

op : OpRec,

tempOps : Set [OpRec] : = { } ,

tempOps2 : Set [OpRec] : = { } ,

loopBreak : Bool := false ,

tempBals : Set [BalRec] : = { } ,

bal : BalRec ,

amount : Int

do
numLocations := 2 0 ;

maxAmount := 1 0 0 0 ;

while (true) do
% We′ l l pick a random location now
location := randomInt (0 , numLocations − 1) ;

actionChosen := randomInt (0 , 1 0) ;

i f (actionChosen ≥ 0 ∧ actionChosen ≤ 2) then
% Do a deposit . But must be sure we′ re not active at this location
i f ¬active [location] then

fire internal requestDeposit (randomInt (1 , maxAmount) , location)

f i
f i ;

152

i f (actionChosen ≥ 3 ∧ actionChosen ≤ 4) then
i f ¬active [location] then

fire internal requestWithdrawal (randomInt (1 , maxAmount) , location)

f i
f i ;

i f (actionChosen = 5) then
i f ¬active [location] then

fire internal requestBalance (location)

f i
f i ;

i f (actionChosen ≥ 6 ∧ actionChosen ≤ 8) then
tempOps := pending ops ;

loopBreak := false ;

while (¬isEmpty(tempOps) ∧ ¬loopBreak) do
op := chooseRandom (ops) ;

tempOps := delete (op , tempOps) ;

i f (¬op . reported) then
loopBreak := true ;

fire output OK (op . loc , op)

f i
od

f i ;

i f (actionChosen = 9) then
tempBals := done bals ;

loopBreak := false ;

i f (¬isEmpty(tempBals)) then
bal := chooseRandom (tempBals) ;

tempBals := delete (bal , tempBals) ;

fire output reportBalance (bal . value , bal . loc)

f i
f i ;

i f (actionChosen = 1 0) then
% Find a null balance
tempBals := pending bals ;

loopBreak := false ;

bal := [1 0 , 1 0] ;

i f (¬isEmpty(tempBals)) then
bal := chooseRandom (tempBals) ;

tempBals := delete (bal , tempBals) ;

% There is a null bal to do balance for
loopBreak := false ;

tempOps := ops ;

tempOps2 := { } ;

while (¬isEmpty(tempOps)) do
op := chooseRandom(tempOps) ;

tempOps := delete (op , tempOps) ;

i f (op . loc = bal . loc) then
tempOps2 := insert (op , tempOps2)

f i
od ;

tempOps := tempOps2 ;

amount := 0 ;

while (¬isEmpty(tempOps)) do
op := chooseRandom(tempOps) ;

tempOps := delete (op , tempOps) ;

amount := amount + op .amount
od ;

fire internal doBalance (bal . loc , tempOps2 , amount)

f i
f i

od
od

153

C.2 Generated Java Code

import java.io.*; import ioa.runtime.adt .*; import ioa.runtime .*;

public class Banking03 extends ioa.runtime.Automaton {
public SetSort ops_v9 = ((SetSort)SetSort.empty ());
public SetSort pending_ops_v10 = ((SetSort)SetSort.empty ());
public SetSort reported_ops_v11 = ((SetSort)SetSort.empty ());
public SetSort pending_bals_v12 = ((SetSort)SetSort.empty ());
public SetSort done_bals_v13 = ((SetSort)SetSort.empty ());
public SetSort bals_v14 = ((SetSort)SetSort.empty ());
public ArraySort lastSeqno_v15 =

((ArraySort)ArraySort.constant (((IntSort)IntSort.lit (0))));
public SetSort chosenOps_v16 = ((SetSort)SetSort.empty ());
public ArraySort active_v17 =

((ArraySort)ArraySort.constant (((BoolSort)BoolSort.False ())));
public SetSort actives_v18 = ((SetSort)SetSort.empty ());
public SetSort not_actives_v19 = ((SetSort)SetSort.empty ());
public IntSort numLocations_v20 =

(IntSort)IntSort.construct(new Parameterization ());
public IntSort location_v21 =

(IntSort)IntSort.construct(new Parameterization ());
public IntSort actionChosen_v22 =

(IntSort)IntSort.construct(new Parameterization ());
public IntSort maxAmount_v23 =

(IntSort)IntSort.construct(new Parameterization ());
public TupleSort op_v24 =

(TupleSort)TupleSort.construct(new
Parameterization(new Object []

{new Object []
{"loc",
"seqno",
"amount",
"reported"},

new Object []
{ioa.runtime.adt.IntSort.class,
ioa.runtime.adt.IntSort.class,
ioa.runtime.adt.IntSort.class,
ioa.runtime.adt.BoolSort.class },

new Object []
{new

Parameterization (),
new

Parameterization (),
new

Parameterization (),
new

Parameterization ()}}));
public SetSort tempOps_v25 = ((SetSort)SetSort.empty ());
public SetSort tempOps2_v26 = ((SetSort)SetSort.empty ());
public BoolSort loopBreak_v27 = ((BoolSort)BoolSort.False ());
public SetSort tempBals_v28 = ((SetSort)SetSort.empty ());
public TupleSort bal_v29 =

(TupleSort)TupleSort.construct(new
Parameterization(new Object []

{new Object []
{"loc",
"value"},

new Object []
{ioa.runtime.adt.IntSort.class,
ioa.runtime.adt.IntSort.class },

new Object []
{new

Parameterization (),
new

Parameterization ()}}));
public IntSort amount_v8 =

(IntSort)IntSort.construct(new Parameterization ());
int schedulePC = 0;

154

public void action_requestDeposit (IntSort n_v6, IntSort i_v4)
{

enteredTransition("internal requestDeposit (" + n_v6 +
", " +i_v4 +") in automaton Banking03");
assertPrecondition ((((BoolSort)(BoolSort.lit (((BoolSort)IntSort.gt(n_v6,

((IntSort)IntSort.lit (0)))). booleanValue () &&
((BoolSort)BoolSort.not (((BoolSort)ArraySort.elementAt(active_v17,

i_v4)))). booleanValue ())))). booleanValue ());
lastSeqno_v15 =

(ArraySort.assign(lastSeqno_v15,
i_v4,
((IntSort)IntSort.add (((IntSort)ArraySort.elementAt(lastSeqno_v15,

i_v4)),
((IntSort)IntSort.lit (1))))));

ops_v9 =
((SetSort)SetSort.insert (((TupleSort)

TupleSort.make("loc%seqno%amount%reported %",
new Object []

{i_v4,
((IntSort)ArraySort.elementAt(lastSeqno_v15,

i_v4)),
n_v6,
((BoolSort)BoolSort.False ())})),
ops_v9));

pending_ops_v10 =
((SetSort)SetSort.insert (((TupleSort)

TupleSort.make("loc%seqno%amount%reported %",
new Object []

{i_v4,
((IntSort)ArraySort.elementAt(lastSeqno_v15,

i_v4)),
n_v6,
((BoolSort)BoolSort.False ())})),

pending_ops_v10));
active_v17 =

(ArraySort.assign(active_v17 , i_v4 , ((BoolSort)BoolSort.True ())));
actives_v18 = ((SetSort)SetSort.insert(i_v4, actives_v18));
not_actives_v19 = ((SetSort)SetSort.delete(i_v4, not_actives_v19));
exitedTransition("internal requestDeposit (" + n_v6 +

", " +i_v4 +") in automaton Banking03");

}

public void action_requestWithdrawal (IntSort n_v6, IntSort i_v4)
{

enteredTransition("internal requestWithdrawal (" + n_v6 + ", "
+i_v4 +") in automaton Banking03");

assertPrecondition ((((BoolSort)(BoolSort.lit (((BoolSort)
IntSort.gt(n_v6,
((IntSort)IntSort.lit (0)))). booleanValue () &&

((BoolSort)BoolSort.not (((BoolSort)ArraySort.elementAt(active_v17,
i_v4)))). booleanValue ())))). booleanValue ());

lastSeqno_v15 =
(ArraySort.assign(lastSeqno_v15,

i_v4,
((IntSort)IntSort.add (((IntSort)ArraySort.elementAt(lastSeqno_v15,

i_v4)),
((IntSort)IntSort.lit (1))))));

ops_v9 =
((SetSort)SetSort.insert (((TupleSort)

TupleSort.make("loc%seqno%amount%reported %",
new Object []

{i_v4,
((IntSort)ArraySort.elementAt(lastSeqno_v15,

i_v4)),
((IntSort)IntSort.neg(n_v6)),
((BoolSort)BoolSort.False ())})),
ops_v9));

pending_ops_v10 =
((SetSort)SetSort.insert (((TupleSort)

155

TupleSort.make("loc%seqno%amount%reported %",
new Object []

{i_v4,
((IntSort)ArraySort.elementAt(lastSeqno_v15,

i_v4)),
((IntSort)IntSort.neg(n_v6)),
((BoolSort)BoolSort.False ())})),
pending_ops_v10));

active_v17 =
(ArraySort.assign(active_v17 , i_v4 , ((BoolSort)BoolSort.True ())));

actives_v18 = ((SetSort)SetSort.insert(i_v4, actives_v18));
not_actives_v19 = ((SetSort)SetSort.delete(i_v4, not_actives_v19));
exitedTransition("internal requestWithdrawal (" + n_v6 +

", " +i_v4 +") in automaton Banking03");

}

public void action_requestBalance (IntSort i_v4)
{

enteredTransition("internal requestBalance (" + i_v4 +
") in automaton Banking03");

assertPrecondition ((((BoolSort)BoolSort.not(((BoolSort)
ArraySort.elementAt(active_v17,

i_v4))))). booleanValue ());
pending_bals_v12 =

((SetSort)SetSort.insert (((TupleSort)TupleSort.make("loc%value %",
new Object []

{i_v4,
((IntSort)IntSort.lit (0))})),

pending_bals_v12));
bals_v14 = ((SetSort)SetSort.union(pending_bals_v12 , done_bals_v13));
active_v17 =

(ArraySort.assign(active_v17 , i_v4 , ((BoolSort)BoolSort.True ())));
actives_v18 = ((SetSort)SetSort.insert(i_v4, actives_v18));
not_actives_v19 = ((SetSort)SetSort.delete(i_v4, not_actives_v19));
exitedTransition("internal requestBalance (" + i_v4

+") in automaton Banking03");

}

public void action_OK (IntSort i_v4, TupleSort x_v5)
{

enteredTransition("output OK(" + i_v4 + ", " +x_v5
+") in automaton Banking03");

assertPrecondition ((((BoolSort)(BoolSort.lit (((BoolSort)
(BoolSort.lit(((BoolSort)SetSort.isIn(x_v5,

ops_v9)). booleanValue () && ((BoolSort)IntSort.equals (((IntSort)
TupleSort.lookupField("loc",

x_v5)),
i_v4)). booleanValue ()))). booleanValue () && ((BoolSort)

BoolSort.not(((BoolSort)TupleSort.lookupField("reported",
x_v5)))). booleanValue ())))). booleanValue ());

ops_v9 =
((SetSort)SetSort.insert (((TupleSort)

TupleSort.setField("reported",
x_v5,
((BoolSort)BoolSort.True ()))),

((SetSort)SetSort.delete(x_v5, ops_v9))));
pending_ops_v10 = ((SetSort)SetSort.delete(x_v5, pending_ops_v10));
reported_ops_v11 =

((SetSort)SetSort.insert (((TupleSort)
TupleSort.setField("reported",

x_v5,
((BoolSort)BoolSort.True ()))),
reported_ops_v11));

active_v17 =
(ArraySort.assign(active_v17 , i_v4 , ((BoolSort)BoolSort.False ())));

not_actives_v19 = ((SetSort)SetSort.insert(i_v4, not_actives_v19));
actives_v18 = ((SetSort)SetSort.delete(i_v4, actives_v18));
exitedTransition("output OK(" + i_v4 + ", " +x_v5 +

156

") in automaton Banking03");

}

public void action_reportBalance (IntSort n_v6, IntSort i_v4)
{

enteredTransition("output reportBalance (" + n_v6 + ", " +
i_v4 +") in automaton Banking03");

assertPrecondition ((((BoolSort)SetSort.isIn (((TupleSort)
TupleSort.make("loc%value%",

new
Object []
{i_v4,

n_v6 })),
done_bals_v13))). booleanValue ());

done_bals_v13 =
((SetSort)SetSort.delete (((TupleSort)TupleSort.make("loc%value%",

new Object []
{i_v4,
n_v6 })),

done_bals_v13));
bals_v14 = ((SetSort)SetSort.union(pending_bals_v12 , done_bals_v13));
active_v17 =

(ArraySort.assign(active_v17 , i_v4 , ((BoolSort)BoolSort.False ())));
not_actives_v19 = ((SetSort)SetSort.insert(i_v4, not_actives_v19));
actives_v18 = ((SetSort)SetSort.delete(i_v4, actives_v18));
exitedTransition("output reportBalance (" + n_v6 + ", "

+i_v4 +") in automaton Banking03");

}

public void
action_doBalance (IntSort i_v4,

SetSort tempChosenOps_v7,
IntSort amount_v8)

{
enteredTransition("internal doBalance (" + i_v4 + ", " +

tempChosenOps_v7 + ", " +amount_v8 +") in automaton Banking03");
assertPrecondition ((((BoolSort)SetSort.isIn (((TupleSort)

TupleSort.make("loc%value %",
new

Object []
{i_v4,

((IntSort)IntSort.lit (0))})),
pending_bals_v12))). booleanValue ());

chosenOps_v16 = tempChosenOps_v7;
pending_bals_v12 =

((SetSort)SetSort.delete (((TupleSort)TupleSort.make("loc%value%",
new Object []

{i_v4,
((IntSort)IntSort.lit (0))})),

pending_bals_v12));
done_bals_v13 =

((SetSort)SetSort.insert (((TupleSort)TupleSort.make("loc%value%",
new Object []

{i_v4,
amount_v8 })),

done_bals_v13));
bals_v14 = ((SetSort)SetSort.union(pending_bals_v12 , done_bals_v13));
exitedTransition("internal doBalance (" + i_v4 + ", " +tempChosenOps_v7
+ ", " +amount_v8 +") in automaton Banking03");

}

protected void schedule ()
{

scheduleLoop : while (true)
{

switch (schedulePC) {
case 0: /* assignment */

157

{
numLocations_v20 = ((IntSort)IntSort.lit (20));
schedulePC = 2;
break;

}

case 2: /* assignment */
{

maxAmount_v23 = ((IntSort)IntSort.lit (1000));
schedulePC = 3;
break;

}

case 3: /* while loop test */
{

if
(((BoolSort)BoolSort.True ()). booleanValue ())
{ schedulePC = 4; break;
}

else
{ schedulePC = 1; break;
}
;

}

case 4: /* assignment */
{

location_v21 =
((IntSort)NonDet.randomInt (((IntSort)IntSort.lit (0)),

((IntSort)IntSort.sub(numLocations_v20,
((IntSort)IntSort.lit (1))))));

schedulePC = 5;
break;

}

case 5: /* assignment */
{

actionChosen_v22 =
((IntSort)NonDet.randomInt (((IntSort)IntSort.lit (0)),

((IntSort)IntSort.lit (10))));
schedulePC = 6;
break;

}

case 6: /* conditional test */
{

if
(((BoolSort)(BoolSort.lit (((BoolSort)
IntSort.gte(actionChosen_v22,
((IntSort)IntSort.lit (0)))). booleanValue () &&
((BoolSort)IntSort.lte(actionChosen_v22,
((IntSort)IntSort.lit (2)))). booleanValue ()))). booleanValue ())

{ schedulePC = 8; break;
}

else
{ schedulePC = 7; break;
}
;

}

case 8: /* conditional test */
{

158

if
(((BoolSort)BoolSort.not (((BoolSort)

ArraySort.elementAt(active_v17,
location_v21)))). booleanValue ())

{ schedulePC = 9; break;
}

else
{ schedulePC = 7; break;
}
;

}

case 9: /* fire */
{

schedulePC = 7;
action_requestDeposit (((IntSort)
NonDet.randomInt (((IntSort)IntSort.lit (1)),

maxAmount_v23)),
location_v21);

}

case 7: /* conditional test */
{

if
(((BoolSort)(BoolSort.lit (((BoolSort)IntSort.gte(actionChosen_v22,

((IntSort)IntSort.lit (3)))). booleanValue () &&
((BoolSort)IntSort.lte(actionChosen_v22,

((IntSort)IntSort.lit (4)))). booleanValue ()))). booleanValue ())
{ schedulePC = 11; break;
}

else
{ schedulePC = 10; break;
}
;

}

case 11: /* conditional test */
{

if
(((BoolSort)BoolSort.not(((BoolSort)

ArraySort.elementAt(active_v17,
location_v21)))). booleanValue ())

{ schedulePC = 12; break;
}

else
{ schedulePC = 10; break;
}
;

}

case 12: /* fire */
{

schedulePC = 10;
action_requestWithdrawal (((IntSort)

NonDet.randomInt (((IntSort)IntSort.lit (1)),
maxAmount_v23)),

location_v21);

}

case 10: /* conditional test */
{

if

159

(((BoolSort)IntSort.equals(actionChosen_v22,
((IntSort)
IntSort.lit (5)))). booleanValue ())

{ schedulePC = 14; break;
}

else
{ schedulePC = 13; break;
}
;

}

case 14: /* conditional test */
{

if
(((BoolSort)BoolSort.not (((BoolSort)

ArraySort.elementAt(active_v17,
location_v21)))). booleanValue ())

{ schedulePC = 15; break;
}

else
{ schedulePC = 13; break;
}
;

}

case 15: /* fire */
{ schedulePC = 13; action_requestBalance(location_v21);
}

case 13: /* conditional test */
{

if
(((BoolSort)(BoolSort.lit (((BoolSort)

IntSort.gte(actionChosen_v22,
((IntSort)IntSort.lit (6)))). booleanValue () &&
((BoolSort)IntSort.lte(actionChosen_v22,

((IntSort)IntSort.lit (8)))). booleanValue ()))). booleanValue ())
{ schedulePC = 17; break;
}

else
{ schedulePC = 16; break;
}
;

}

case 17: /* assignment */
{ tempOps_v25 = pending_ops_v10 ; schedulePC = 18; break;
}

case 18: /* assignment */
{

loopBreak_v27 = ((BoolSort)BoolSort.False ());
schedulePC = 19;
break;

}

case 19: /* while loop test */
{

if
(((BoolSort)(BoolSort.lit (((BoolSort)BoolSort.not(((BoolSort)

SetSort.isEmpty(tempOps_v25)))). booleanValue () &&
((BoolSort)BoolSort.not(loopBreak_v27)).
booleanValue ()))). booleanValue ())

160

{ schedulePC = 20; break;
}

else
{ schedulePC = 16; break;
}
;

}

case 20: /* assignment */
{

op_v24 = ((TupleSort)SetSort.chooseRandom(ops_v9));
schedulePC = 21;
break;

}

case 21: /* assignment */
{

tempOps_v25 =
((SetSort)SetSort.delete(op_v24 , tempOps_v25));

schedulePC = 22;
break;

}

case 22: /* conditional test */
{

if
(((BoolSort)BoolSort.not(((BoolSort)

TupleSort.lookupField("reported",
op_v24)))). booleanValue ())

{ schedulePC = 23; break;
}

else
{ schedulePC = 19; break;
}
;

}

case 23: /* assignment */
{

loopBreak_v27 = ((BoolSort)BoolSort.True ());
schedulePC = 24;
break;

}

case 24: /* fire */
{

schedulePC = 19;
action_OK (((IntSort)TupleSort.lookupField("loc", op_v24)),

op_v24);

}

case 16: /* conditional test */
{

if
(((BoolSort)IntSort.equals(actionChosen_v22,

((IntSort)
IntSort.lit (9)))). booleanValue ())

{ schedulePC = 26; break;
}

else
{ schedulePC = 25; break;

161

}
;

}

case 26: /* assignment */
{ tempBals_v28 = done_bals_v13 ; schedulePC = 27; break;
}

case 27: /* assignment */
{

loopBreak_v27 = ((BoolSort)BoolSort.False ());
schedulePC = 28;
break;

}

case 28: /* conditional test */
{

if
(((BoolSort)BoolSort.not(((BoolSort)

SetSort.isEmpty(tempBals_v28)))). booleanValue ())
{ schedulePC = 29; break;
}

else
{ schedulePC = 25; break;
}
;

}

case 29: /* assignment */
{

bal_v29 = ((TupleSort)SetSort.chooseRandom(tempBals_v28));
schedulePC = 30;
break;

}

case 30: /* assignment */
{

tempBals_v28 =
((SetSort)SetSort.delete(bal_v29 , tempBals_v28));

schedulePC = 31;
break;

}

case 31: /* fire */
{

schedulePC = 25;
action_reportBalance (((IntSort)TupleSort.lookupField("value",

bal_v29)),
((IntSort)TupleSort.lookupField("loc",

bal_v29)));

}

case 25: /* conditional test */
{

if
(((BoolSort)IntSort.equals(actionChosen_v22,

((IntSort)IntSort.lit (10)))).
booleanValue ())

{ schedulePC = 32; break;
}

else
{ schedulePC = 3; break;

162

}
;

}

case 32: /* assignment */
{ tempBals_v28 = pending_bals_v12 ; schedulePC = 33; break;
}

case 33: /* assignment */
{

loopBreak_v27 = ((BoolSort)BoolSort.False ());
schedulePC = 34;
break;

}

case 34: /* assignment */
{

bal_v29 =
((TupleSort)TupleSort.make("loc%value%",

new Object []
{((IntSort)IntSort.lit (10)),
((IntSort)IntSort.lit (10))}));

schedulePC = 35;
break;

}

case 35: /* conditional test */
{

if
(((BoolSort)BoolSort.not(((BoolSort)

SetSort.isEmpty(tempBals_v28)))). booleanValue ())
{ schedulePC = 36; break;
}

else
{ schedulePC = 3; break;
}
;

}

case 36: /* assignment */
{

bal_v29 = ((TupleSort)SetSort.chooseRandom(tempBals_v28));
schedulePC = 37;
break;

}

case 37: /* assignment */
{

tempBals_v28 =
((SetSort)SetSort.delete(bal_v29 , tempBals_v28));

schedulePC = 38;
break;

}

case 38: /* assignment */
{

loopBreak_v27 = ((BoolSort)BoolSort.False ());
schedulePC = 39;
break;

}

case 39: /* assignment */

163

{ tempOps_v25 = ops_v9 ; schedulePC = 40; break;
}

case 40: /* assignment */
{

tempOps2_v26 = ((SetSort)SetSort.empty ());
schedulePC = 41;
break;

}

case 41: /* while loop test */
{

if
(((BoolSort)BoolSort.not (((BoolSort)

SetSort.isEmpty(tempOps_v25)))). booleanValue ())
{ schedulePC = 43; break;
}

else
{ schedulePC = 42; break;
}
;

}

case 43: /* assignment */
{

op_v24 = ((TupleSort)SetSort.chooseRandom(tempOps_v25));
schedulePC = 44;
break;

}

case 44: /* assignment */
{

tempOps_v25 =
((SetSort)SetSort.delete(op_v24 , tempOps_v25));

schedulePC = 45;
break;

}

case 45: /* conditional test */
{

if
(((BoolSort)IntSort.equals (((IntSort)

TupleSort.lookupField("loc",
op_v24)),

((IntSort)
TupleSort.lookupField("loc",

bal_v29)))). booleanValue ())
{ schedulePC = 46; break;
}

else
{ schedulePC = 41; break;
}
;

}

case 46: /* assignment */
{

tempOps2_v26 =
((SetSort)SetSort.insert(op_v24 , tempOps2_v26));

schedulePC = 41;
break;

}

164

case 42: /* assignment */
{ tempOps_v25 = tempOps2_v26 ; schedulePC = 47; break;
}

case 47: /* assignment */
{

amount_v8 = ((IntSort)IntSort.lit (0));
schedulePC = 48;
break;

}

case 48: /* while loop test */
{

if
(((BoolSort)BoolSort.not(((BoolSort)

SetSort.isEmpty(tempOps_v25)))). booleanValue ())
{ schedulePC = 50; break;
}

else
{ schedulePC = 49; break;
}
;

}

case 50: /* assignment */
{

op_v24 = ((TupleSort)SetSort.chooseRandom(tempOps_v25));
schedulePC = 51;
break;

}

case 51: /* assignment */
{

tempOps_v25 =
((SetSort)SetSort.delete(op_v24 , tempOps_v25));

schedulePC = 52;
break;

}

case 52: /* assignment */
{

amount_v8 =
((IntSort)IntSort.add(amount_v8,

((IntSort)TupleSort.lookupField("amount",
op_v24))));

schedulePC = 48;
break;

}

case 49: /* fire */
{

schedulePC = 3;
action_doBalance (((IntSort)TupleSort.lookupField("loc",

bal_v29)),
tempOps2_v26,
amount_v8);

}

case 1: /* schedule ended */
{ break scheduleLoop;
}
default:

165

throw new Error("NDR program jumped to invalid PC");};

}
;

}

public static void main(String [] args) {
ioa.runtime.Automaton.main(new String [] {"Banking03"});
}

}

C.3 Trace

[[[[Begin initialization [[[[

%%%% Modified state variables:

actionChosen --> 87

active --> (ArraySort (ConstantValue false))

actives --> ()

amount --> 87

bal --> [87, 87]

bals --> ()

chosenOps --> ()

done_bals --> ()

lastSeqno --> (ArraySort (ConstantValue 0))

location --> 87

loopBreak --> false

maxAmount --> 87

not_actives --> ()

numLocations --> 87

op --> [87, 87, 87, true]

ops --> ()

pending_bals --> ()

pending_ops --> ()

reported_ops --> ()

tempBals --> ()

tempOps --> ()

tempOps2 --> ()

]]]] End initialization]]]]

[[[[transition: internal requestDeposit(14, 11) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 2

active --> (ArraySort (ConstantValue false) (11 true))

actives --> (11)

amount --> 87

bal --> [87, 87]

bals --> ()

chosenOps --> ()

done_bals --> ()

lastSeqno --> (ArraySort (ConstantValue 0) (11 1))

location --> 11

loopBreak --> false

maxAmount --> 1000

not_actives --> ()

numLocations --> 20

op --> [87, 87, 87, true]

ops --> ([11, 1, 14, false])

pending_bals --> ()

pending_ops --> ([11, 1, 14, false])

reported_ops --> ()

tempBals --> ()

tempOps --> ()

tempOps2 --> ()

]]]]

166

[[[[transition: internal requestWithdrawal(739, 3) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 3

active --> (ArraySort (ConstantValue false) (11 true) (3 true))

actives --> (11 3)

lastSeqno --> (ArraySort (ConstantValue 0) (11 1) (3 1))

location --> 3

not_actives --> ()

ops --> ([11, 1, 14, false] [3, 1, -739, false])

pending_ops --> ([11, 1, 14, false] [3, 1, -739, false])

]]]]

[[[[transition: internal requestWithdrawal(411, 7) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 4

active --> (ArraySort (ConstantValue false) (11 true) (3 true) (7 true))

actives --> (11 3 7)

lastSeqno --> (ArraySort (ConstantValue 0) (11 1) (3 1) (7 1))

location --> 7

not_actives --> ()

ops --> ([11, 1, 14, false] [3, 1, -739, false] [7, 1, -411, false])

pending_ops --> ([11, 1, 14, false] [3, 1, -739, false] [7, 1, -411,

false])

]]]]

[[[[transition: internal requestDeposit(844, 10) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 1

active --> (ArraySort (ConstantValue false) (10 true) (11 true) (3 true) (7

true))

actives --> (10 11 3 7)

lastSeqno --> (ArraySort (ConstantValue 0) (10 1) (11 1) (3 1) (7 1))

location --> 10

not_actives --> ()

ops --> ([10, 1, 844, false] [11, 1, 14, false] [3, 1, -739, false] [7, 1,

-411, false])

pending_ops --> ([10, 1, 844, false] [11, 1, 14, false] [3, 1, -739, false]

[7, 1, -411, false])

]]]]

[[[[transition: internal requestDeposit(246, 0) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 1

active --> (ArraySort (ConstantValue false) (0 true) (10 true) (11 true) (3

true) (7 true))

actives --> (0 10 11 3 7)

lastSeqno --> (ArraySort (ConstantValue 0) (0 1) (10 1) (11 1) (3 1) (7 1))

location --> 0

not_actives --> ()

ops --> ([0, 1, 246, false] [10, 1, 844, false] [11, 1, 14, false] [3, 1,

-739, false] [7, 1, -411, false])

pending_ops --> ([0, 1, 246, false] [10, 1, 844, false] [11, 1, 14, false]

[3, 1, -739, false] [7, 1, -411, false])

]]]]

[[[[transition: output OK(11, [11, 1, 14, false]) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 6

active --> (ArraySort (ConstantValue false) (0 true) (10 true) (11 false)

(3 true) (7 true))

actives --> (0 10 3 7)

location --> 9

loopBreak --> true

not_actives --> (11)

op --> [11, 1, 14, false]

ops --> ([0, 1, 246, false] [10, 1, 844, false] [11, 1, 14, true] [3, 1,

-739, false] [7, 1, -411, false])

pending_ops --> ([0, 1, 246, false] [10, 1, 844, false] [3, 1, -739, false]

[7, 1, -411, false])

reported_ops --> ([11, 1, 14, true])

tempOps --> ([0, 1, 246, false] [10, 1, 844, false] [3, 1, -739, false] [7,

1, -411, false])

167

]]]]

[[[[transition: output OK(10, [10, 1, 844, false]) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 7

active --> (ArraySort (ConstantValue false) (0 true) (10 false) (11 false)

(3 true) (7 true))

actives --> (0 3 7)

bal --> [10, 10]

location --> 6

not_actives --> (10 11)

op --> [10, 1, 844, false]

ops --> ([0, 1, 246, false] [10, 1, 844, true] [11, 1, 14, true] [3, 1,

-739, false] [7, 1, -411, false])

pending_ops --> ([0, 1, 246, false] [3, 1, -739, false] [7, 1, -411,

false])

reported_ops --> ([10, 1, 844, true] [11, 1, 14, true])

tempBals --> ()

tempOps --> ([0, 1, 246, false] [3, 1, -739, false] [7, 1, -411, false])

]]]]

[[[[transition: internal requestDeposit(811, 8) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 1

active --> (ArraySort (ConstantValue false) (0 true) (10 false) (11 false)

(3 true) (7 true) (8 true))

actives --> (0 3 7 8)

lastSeqno --> (ArraySort (ConstantValue 0) (0 1) (10 1) (11 1) (3 1) (7 1)

(8 1))

location --> 8

not_actives --> (10 11)

ops --> ([0, 1, 246, false] [10, 1, 844, true] [11, 1, 14, true] [3, 1,

-739, false] [7, 1, -411, false] [8, 1, 811, false])

pending_ops --> ([0, 1, 246, false] [3, 1, -739, false] [7, 1, -411, false]

[8, 1, 811, false])

]]]]

[[[[transition: output OK(8, [8, 1, 811, false]) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 6

active --> (ArraySort (ConstantValue false) (0 true) (10 false) (11 false)

(3 true) (7 true) (8 false))

actives --> (0 3 7)

location --> 17

not_actives --> (10 11 8)

op --> [8, 1, 811, false]

ops --> ([0, 1, 246, false] [10, 1, 844, true] [11, 1, 14, true] [3, 1,

-739, false] [7, 1, -411, false] [8, 1, 811, true])

pending_ops --> ([0, 1, 246, false] [3, 1, -739, false] [7, 1, -411,

false])

reported_ops --> ([10, 1, 844, true] [11, 1, 14, true] [8, 1, 811, true])

tempOps --> ([0, 1, 246, false] [3, 1, -739, false] [7, 1, -411, false])

]]]]

[[[[transition: internal requestWithdrawal(930, 17) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 3

active --> (ArraySort (ConstantValue false) (0 true) (10 false) (11 false)

(17 true) (3 true) (7 true) (8 false))

actives --> (0 17 3 7)

lastSeqno --> (ArraySort (ConstantValue 0) (0 1) (10 1) (11 1) (17 1) (3 1)

(7 1) (8 1))

location --> 17

not_actives --> (10 11 8)

ops --> ([0, 1, 246, false] [10, 1, 844, true] [11, 1, 14, true] [17, 1,

-930, false] [3, 1, -739, false] [7, 1, -411, false] [8, 1, 811, true])

pending_ops --> ([0, 1, 246, false] [17, 1, -930, false] [3, 1, -739,

false] [7, 1, -411, false])

]]]]

[[[[transition: output OK(17, [17, 1, -930, false]) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 8

168

active --> (ArraySort (ConstantValue false) (0 true) (10 false) (11 false)

(17 false) (3 true) (7 true) (8 false))

actives --> (0 3 7)

location --> 2

not_actives --> (10 11 17 8)

op --> [17, 1, -930, false]

ops --> ([0, 1, 246, false] [10, 1, 844, true] [11, 1, 14, true] [17, 1,

-930, true] [3, 1, -739, false] [7, 1, -411, false] [8, 1, 811, true])

pending_ops --> ([0, 1, 246, false] [3, 1, -739, false] [7, 1, -411,

false])

reported_ops --> ([10, 1, 844, true] [11, 1, 14, true] [17, 1, -930, true]

[8, 1, 811, true])

tempOps --> ([0, 1, 246, false] [3, 1, -739, false] [7, 1, -411, false])

]]]]

[[[[transition: internal requestDeposit(562, 18) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 0

active --> (ArraySort (ConstantValue false) (0 true) (10 false) (11 false)

(17 false) (18 true) (3 true) (7 true) (8 false))

actives --> (0 18 3 7)

lastSeqno --> (ArraySort (ConstantValue 0) (0 1) (10 1) (11 1) (17 1) (18

1) (3 1) (7 1) (8 1))

location --> 18

loopBreak --> false

not_actives --> (10 11 17 8)

ops --> ([0, 1, 246, false] [10, 1, 844, true] [11, 1, 14, true] [17, 1,

-930, true] [18, 1, 562, false] [3, 1, -739, false] [7, 1, -411, false] [8, 1,

811, true])

pending_ops --> ([0, 1, 246, false] [18, 1, 562, false] [3, 1, -739, false]

[7, 1, -411, false])

tempBals --> ()

]]]]

[[[[transition: internal requestDeposit(471, 14) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 2

active --> (ArraySort (ConstantValue false) (0 true) (10 false) (11 false)

(14 true) (17 false) (18 true) (3 true) (7 true) (8 false))

actives --> (0 14 18 3 7)

lastSeqno --> (ArraySort (ConstantValue 0) (0 1) (10 1) (11 1) (14 1) (17

1) (18 1) (3 1) (7 1) (8 1))

location --> 14

not_actives --> (10 11 17 8)

ops --> ([0, 1, 246, false] [10, 1, 844, true] [11, 1, 14, true] [14, 1,

471, false] [17, 1, -930, true] [18, 1, 562, false] [3, 1, -739, false] [7, 1,

-411, false] [8, 1, 811, true])

pending_ops --> ([0, 1, 246, false] [14, 1, 471, false] [18, 1, 562, false]

[3, 1, -739, false] [7, 1, -411, false])

]]]]

[[[[transition: output OK(0, [0, 1, 246, false]) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 8

active --> (ArraySort (ConstantValue false) (0 false) (10 false) (11 false)

(14 true) (17 false) (18 true) (3 true) (7 true) (8 false))

actives --> (14 18 3 7)

location --> 11

loopBreak --> true

not_actives --> (0 10 11 17 8)

op --> [0, 1, 246, false]

ops --> ([0, 1, 246, true] [10, 1, 844, true] [11, 1, 14, true] [14, 1,

471, false] [17, 1, -930, true] [18, 1, 562, false] [3, 1, -739, false] [7, 1,

-411, false] [8, 1, 811, true])

pending_ops --> ([14, 1, 471, false] [18, 1, 562, false] [3, 1, -739,

false] [7, 1, -411, false])

reported_ops --> ([0, 1, 246, true] [10, 1, 844, true] [11, 1, 14, true]

[17, 1, -930, true] [8, 1, 811, true])

tempOps --> ([14, 1, 471, false] [18, 1, 562, false] [3, 1, -739, false]

[7, 1, -411, false])

]]]]

169

[[[[transition: internal requestBalance(6) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 5

active --> (ArraySort (ConstantValue false) (0 false) (10 false) (11 false)

(14 true) (17 false) (18 true) (3 true) (6 true) (7 true) (8 false))

actives --> (14 18 3 6 7)

bals --> ([6, 0])

location --> 6

not_actives --> (0 10 11 17 8)

pending_bals --> ([6, 0])

]]]]

[[[[transition: internal doBalance(6, (), 0) in automaton Banking03

%%%% Modified state variables:

actionChosen --> 10

amount --> 0

bal --> [6, 0]

bals --> ([6, 0])

chosenOps --> ()

done_bals --> ([6, 0])

location --> 14

loopBreak --> false

op --> [7, 1, -411, false]

pending_bals --> ()

tempBals --> ()

tempOps --> ()

tempOps2 --> ()

]]]]

170

Bibliography

[1] Mark Baker, Bryan Carpenter, Sung Hoon Ko, and Xinying Li. mpiJava: A

Java interface to MPI. Submitted to the First UK Workshop on Java for High

Performance Network Computing, Europar 1998.

[2] Kent Beck and Erich Gamma. JUnit Testing Framework.

http://www.junit.org

[3] Andrej Bogdanov. Formal verification of simulations between I/O automata.

Master of Engineering thesis, MIT, 2001.

http://theory.lcs.mit.edu/tds/papers/Bogdanov/thesis.pdf

[4] Anna E. Chefter. A Simulator for the IOA Language. Master of Engineering

thesis, MIT, 1998.

http://theory.lcs.mit.edu/tds/papers/Chefter/thesis.html

[5] Laura G. Dean. Improved Simulation of Input/Output Automata. Master of En-

gineering thesis, MIT, 2001.

http://theory.lcs.mit.edu/tds/papers/Dean/thesis.html

[6] Martin Fowler et al. Refactoring: Improving the Design of Existing Code.

Addison-Wesley, 1999.

[7] Stanislav Funiak. Model Checking IOA Programs with TLC. Manuscript, 2001.

http://theory.lcs.mit.edu/tds/papers/Funiak/report.ps

[8] Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

171

[9] Steven J. Garland, Nancy A. Lynch, and Mandana Vaziri. IOA: A Language

for Specifying, Programming, and Validating Distribued Systems. Laboratory for

Computer Science, MIT, December 2000.

http://theory.lcs.mit.edu/tds/papers/Garland/ioaManual.ps.gz

[10] Stephen J. Garland and Nancy A. Lynch. The IOA Language and Toolset: Sup-

port for Designing, Analyzing, and Building Distributed Systems. Technical Re-

port MIT/LCS/TR-762, Laboratory for Computer Science, MIT, August 1998

(original version: September 25, 1997).

http://theory.lcs.mit.edu/tds/papers/Lynch/IOA-TR-762.ps

[11] John V. Guttag and James J. Horning, editors. Larch: Languages and Tools

for Formal Specification. Texts and Monographs in Computer Science. Springer-

Verlag, 1993.

http://www.sds.lcs.mit.edu/spd/larch/pub/larchBook.ps

[12] Dilsun Kirli Kaynar, Anna Chefter, Laura Dean, Stephen Garland, Nancy Lynch,

Toh Ne Win, Antonio Ramı́rez-Robredo. The IOA Simulator. Technical Report,

MIT, April 2002.

http://theory.lcs.mit.edu/~dilsun/Publications/SimManual.ps

[13] Bill Joy, Guy Steele, James Gosling, Gilad Bracha. The Java Language Specifi-

cation, Second Edition. Addison-Wesley, 2000.

[14] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and

William G. Griswold. An Overview of AspectJ. In Proceedings of the European

Conference on Object-Oriented Programming. Budapest, Hungary, 18–22 June

2001.

http://aspectj.org/documentation/papersAndSlides/ECOOP2001-Overview.pdf

[15] Barbara Liskov, et al. CLU Reference Manual, Technical Report MIT/LCS/TR-

225, MIT Laboratory for Computer Science, Cambridge, MA, October 1979.

172

[16] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, March

1996.

[17] Tim Mackinnon, Steve Freeman, Philip Craig. Endo-Testing: Unit Testing with

Mock Objects. eXtreme Programming and Flexible Processes in Software Engi-

neering - XP2000.

http://www.mockobjects.com/misc/mockobjects.pdf

[18] Message Passing Interface Forum. MPI: A message-passing interface standard.

International Journal of Supercomputer Applications, 8(3/4), 1994.

[19] Atish Dev Nigam. Enhancing the IOA Code Generator’s Abstract Data Types.

Manuscript, 2001.

http://theory.lcs.mit.edu/tds/papers/Nigam/report.pdf

[20] J. Antonio Ramı́rez-Robredo. Paired Simulation of I/O Automata. Master of

Engineering thesis, MIT, 2000.

http://theory.lcs.mit.edu/tds/papers/Ramirez/thesis.html

[21] Holly Reimers. Two Translators for the IOA Toolkit. Advanced Undergraduate

Project, MIT, 2000.

http://theory.lcs.mit.edu/tds/papers/Reimers/final2.ps.gz

[22] Sun Microsystems. Javadocs for hashCode().

http://java.sun.com/products/jdk/1.1/docs/api/java.lang.Object.html

[23] Joshua A. Tauber. Verifiable Code Generation from Abstract I/O Automata Mod-

els for Distributed Computing. PhD thesis proposal, MIT, March 2001.

http://theory.lcs.mit.edu/~josh/papers/proposal.ps.gz

[24] Michael J. Tsai Abstract Data Types for IOA Code Generation. Manuscript, 2001.

http://theory.lcs.mit.edu/~mjt/ADTsForIOACodeGeneration.pdf

[25] Michael J. Tsai. Comparison of ADTs for the IOA Code Generator and Simula-

tor. Slides, 2001.

http://theory.lcs.mit.edu/~mjt/adt-presentation.pdf

173

[26] Michael J. Tsai. Design and Implementation of the IOA GUI, Interface Gener-

ator, and NAD Modules. Manuscript, 2000.

http://theory.lcs.mit.edu/~mjt/mjtDesignAndImpl.pdf

[27] Franklyn Turbak and David Gifford with Brian Reistad. Applied Semantics of

Programming Languages. Course notes for MIT 6.821, draft of August 19, 2001.

[28] Mandana Vaziri, Joshua A. Tauber, and Nancy A. Lynch. A transformation of

I/O automata removing implicit nondeterminism. Manuscript, 1998.

[29] Mandana Vaziri, Joshua A. Tauber, Michael Tsai, Nancy Lynch. Compilation of

I/O Automata into Executable Code: Removing Nondeterminism. Manuscript,

1999.

[30] Toh Ne Win. Implementing Dynamic Sorts for IOA. Manuscript, 2001.

[31] Toh Ne Win. Logging in the IOA Toolkit. Manuscript, 2001.

http://theory.lcs.mit.edu/~tohn/logging.html

[32] Toh Ne Win and Gustavo Santos. A Test for the IOA-Daikon Connection: Bank-

ing Examples in IOA. Manuscript, 2001.

http://sdg.lcs.mit.edu/~tohn/home/research/papers/banking.ps

174

