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Abstract

An algorithm for detecting and recovering from deadlock in a system using remote
procedure calls is presented, along with a proof of correctness. The proof uses the
I/O Automata model of Lynch and Tuttle, described in [LT88] and [LT87|. First.
correctness conditions for the problem are given in terms of I/O Automata. Next.
a high-level graph-theoretic representation of the algorithm is shown to be correct.
- Then a lower-level formulation of the algorithm, taking into account its distributed
nature, is shown to be equivalent to the higher-level representation, and thus correct.

In giving the correctness conditions, we introduce client automata, which model
the behavior of the user’s program, and allow almost all details of this user program
to be suppressed at both specification and proof time.

To simplify the proof of the high-level version of the algorithm, safety propertics
are proved with a simplified version of the algorithm. Then, the algorithm is trans-
formed to the full version, and it is argued that the safety properties hold for the
transformed version.

A new technique that can be used either for expanding the number of algorithms
to which a proof applies or for simplifying the proof that a lower-level algorithm solves
the same problem as a higher-level one is presented. This is effected by underspec-
ifying the predicates used in the preconditions of the I/O automata. This captures
the concept that whether the algorithm takes a certain action under an intermediate
range of conditions does not impact its correctness. This lack of specification can be
carried through to the low-level algorithm, presumably making the job of the imple-
mentor easier or allowing more efficient code, since then at times arbitrary choices
may be made. It can also be used to make showing that the low-level algorithm solves
the same problem as the high-level one easier.

The proof of the liveness properties of the high-level version of the algorithin makes
use of a metric on states of the algorithm. Rather than the conventional technigue of



claiming that the set of values of the metric is well-founded, we show that every subset
of such values occurring in a particular execution of the algorithm is well-founded.
This enables us to allow the user program to request zn arbitrary but finite number
of remote procedure calls with arbitrary arguments.

We then present the low-level version of the algorithm, along with specifications
for the communications network, etc. used by it. A proof is presented showing that
the low-level version of the algorithm (together with the network, etc.) is equivalent
(from the point of view of the user's program) to the high-level version.

Thesis Supervisor: Nancy A. Lynch
Title: Professor of Computer Science
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Chapter 1
Introduction

This thesis presents an algorithm for detecting and recovering from deadlock in a
| remote procedure call system and a proof that this algorithm is correct.

1.1 Motivation

The target environment that motivates this work is the Fault Tolerant Paral-
lel Processor (FTPP) under development at the Charles Stark Draper Laboratory
(CSDL) in Cambridge, Massachusetts. The FTPP is described in detail elsewhere
([Har85] and [Har87]).

1.1.1 FTPP

The FTPP consists of many (the prototype has 16) Motorola 68020 processors,
each with its own local memory, connected together by a fault tolerant network specif-
ically developed for the FTPP. Lower-level layers of software make the system appear
to the programmer as a collection of reliable processors (generally one-third to one-
quarter the number of physical processors) connected by a reliable network.

The FTPP is designed for applications that require highly reliable high-throughput
computation. The designers believe that it achieves higher performance than other
existing processors that are as reliable as the FTPP, and higher reliability than other
existing processors that have similar performance levels. These issues are, however.
far beyond the scope of this thesis; see [Har85] for more information.

One probable application of the FTPP is for autonomous vehicle control (an air-
craft, spacecraft, or submarine). In this case the computer would be responsible
for all aspects of vehicle management, including control, guidance, navigation and
destination planning. This requires approximating solutions to the Traveling Sales-
man Problem so that the computer can determine the next destination. Prior work
([Kim386]) indicates that a parallel processing environment would be useful in quickly
obtaining approximate solutions.

1.1.2 RPC Model

The programming model of asynchronous functional remote procedure calls (R-
PCs) has been selected for the FTPP. Nonfunctional remote procedure calls are dis-
cussed in [LG85). This programming model is discussed in [Tro87], and is summarized
below. By asynchronous we mean that the process making an remote procedure call
may continue to compute and even make additional remote procedure calls without




waiting for the first to complete; this is the mechanism by which parallelism is made
available to the programmer. By functional we mean that remote procedure calls
may not have side effects.

The purpose of the programming model is to provide a framework for expressing
what we shall refer to as the “user's computation.” It also serves as a basis for
expressing correctness conditions for the system that is provided for running programs
formulated in terms of this model. Throughout the thesis we assume that only one
program is run at a time, and only consider a single run of it. It should be clear
that multiple programs could be run by bundling them into a super-program to bhe
run at once, or sequentially by having the main program call each subprogram in
turn. Thus, we will no longer address this issue. Also, we will assume that the text
of procedures is always accessible; this is easy, since it is read-only.

The user describes the “user’s computation™ by specifying several procedures.
Each procedure may compute (possibly with side effects on variables local to that
procedure). [t may request that other procedures be evaluated with specified argu-
ments. These other procedures are then its children; it is their parent. Computation
continues, however, after the request is made, rather than blocking until the answer
is ready. Thus, many requests can be made without regard to how many have com-
pleted. No guarantees are made about the order in which the answers to the requests
become available. The procedure is informed when a child completes, and the results
are then available. It may notify the system that it has completed (providing its “an-
swer”). The answer generated by a procedure must depend only on the arguments
specified with it.!

These rules allow a tree of procedures to be generated, with vertices representing
instantiations of procedures and edges representing the parent-child relationships.
The system may evaluate the procedures specified by the multiple requests of a given
procedure in parallel.

The term depth is the depth of the tree described above.

The environment for which the programming model is intended consists of reliable
processors connected by a reliable network. Each processor is capable of executing a
certain number of processes. This limit is derived from stack space and task control
block memory consumption and the amount of memory available; it may be con-
figurable but will not change during a run of a program. No secondary storage is
available for paging or swapping. We are only concerned with the number of proces-
sors and the number of processes per processor, and shall consider them constant.
Each process can evaluate one procedure at a time. Thus, there is a limit on the
number of procedures that can be evaluated at a time. This is a major restriction
imposed by the programming model, but it does not seem avoidable given the lack
of secondary storage. This limit, does not, however, rule out recursion, but does con-
strain the maximum depth. Initial estimates are that there will be 4-16 processors.

't might also depend on a random number generator, but the important point is that it does
not depend on the internal state of any other procedure.




and 16-256 processes per processor. Space for procedure text is not counted in this
analysis, since we assume it is statically allocated on each processor.

Comparison with other models

This model is quite different from the model used for work in nested transactions
((LMWF88]). In nested transactions, it is expected that data objects will be accessed
by many higher-level transactions, and will have state across those accesses. Our
mode! explicitly forbids independently existing data objects by requiring that the
result of a remote procedure call be a function of its arguments, and not of any other
state.

1.1.3 Possibility of deadlock

Consider a simple scheduler for such a system. This scheduler assigns a remote
procedure call to a process if a free process exists, and conveys requests to commit
(with results) to the parent of the committing remote procedure call. Now, consider
a large computation tree being evaluated using this scheduler. There can easily arise
a situation where all processes have remote procedure calls assigned to them, but
no remote procedure call can request to commit because all have children that have
been requested but have not yet committed. Thus, every remote procedure call can
be waiting for more processes to become free so that a child can be evaluated, but
no processes can become free, and the system can deadlock. In order to make the
remote procedure call system useful, we must add a deadlock detection and recovery
algorithm. In this way it will be possible to guarantee that a computation will actually
terminate.

1.1.4 Alternatives to deadlock recovery

Alternatively, various forms of preassigning work to various processors to avoid
deadlock can be considered. There are several considerations which prevent this
from being done completely. One is that the number of processors on which the
computation is run is not known until run time, and may change during a computation
(as processors fail, for example). Processor failure is not contradictory with being
reliable, since the system may have to disable a processor in a controlled manner in
order to ensure continued reliable operation. This could occur if one processor out
of three that were being operated as a triply redundant processor failed, since the
remaining processors would not be able to tolerate a fault.

Another is that it is possible that the computation will be a search problem in
which the depth of parts of the search tree will depend strongly on the input data.
which again cannot be predicted until run time. While these arguments preclude
total scheduling ahead of time, they should not be construed to mean that any such
attempts are without merit; reducing the frequency of deadlock can certainly be
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expected to improve performance of the system, since as will be seen later the deadlock
recovery algorithm functions by throwing away work and later redoing it.

Another possible approach is to constrain the user to write programs that never
deadlock. We feel that it is simpler for the user to present him with a simple model
such as ours, and guarantee to execute the program correctly if the simple limit of
maximum depth is observed. Of course, efficiency concerns will dictate that the user
should attempt to avoid deadlock situations in the normal case. However, assuming
that the user is also expected to provide a correctness proof of his program, the
task is made much easier because he will only need to show that the depth of the
remote procedure call tree induced by his program is bounded (by the parameter
the given machine can guarantee, depending on the amount of resources available).
rather then presenting a proof that deadlock will not occur. This modularity of proofs

should reduce the total amount of work needed to implement and prove correct several
programs.

1.2 New algorithm

A distributed scheduling algorithm for the RPC system that detects and recovers
from deadlock is presented. The algorithm guarantees that (under reasonable behav-
ior by the user’s program) any computation with a depth less than the total number
of processes (on all processors) will complete. The existence of such an algorithm
makes the verification of programs built using the RPC system significantly easier
since it need only be shown that the depth is bounded by the process limit, rather
than that the computation never deadlocks due to lack of space. This is important
especially if the size of the target system is not known at verification time.

1.3 Proof

A proof of correctness for the algorithm is presented. The model used in the
proof (as opposed to the RPC programming model) is I/O automata, described in
[LT88]. We assume the reader is familiar with this work; if not, the reader is strongly
encouraged to obtain and read a copy before attempting to read this thesis in detail.
More information can be found in [LT87]. Parts of the liveness proof were inspired

by [WLL88) and [Wel88).

Separation of safety and liveness

A technique for breaking up proofs is presented. First, safety properties are proved
with a simplified version of the algorithm. Since this algorithm is less complex, the
safety proof is less complicated and irrelevant details only needed for showing liveness
are suppressed.
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Then, the algorithm is transformed to the full version, and it is argued that the
transformation preserves safety properties. The main technique of the transformation
is to add preconditions to the actions of the automaton (when specified as actions
with preconditions and effects sections). Since this merely removes transitions from
the transition function of the automaton. every execution of the new automaton is
an execution of the old, and all safety properties still hold a fortiori.

Underspecified predicates

Underspecified predicates are presented. This is a mechanism for leaving out
unnecessary details in the high-level version of the algorithm. These details can then
be given in the low-level version, or left unspecified there, to be given in the actual
implementation.

This is effected by underspecifying the predicates used in the preconditions of
the I/O automata. In this proof, this technique is confined to those preconditions
added for the liveness section. This captures the concept that in certain states. we
do not need to be able to tell whether the algorithm takes certain actions in arder
to show correctness. The underspecification is effected by placing constraints on
the underspecified predicates, and allowing any predicate meeting these constraints
to be substituted in. The proof then only uses the information provided by these
constraints, and thus is valid for any predicate satisfying the constraints.

This lack of specification can be carried through to the low-level algorithm, pre-
sumably making the job of the implementor easier or allowing more efficient code.
since then at times arbitrary choices may be made. Possibly, choices that have not
been fully specified can be fine-tuned for efficiency on an empirical basis, while main-
taining correctness. Providing this freedom may encourage the use of proofs of algo-
rithms in system-building. Additionally, it can be used to make the task of showing
that the low-level algorithm solves the same problem as the high-level one easier. by
allowing one more fully to specify the behavior of the low-level algorithm in wayvs that
might seem unnatural or hard to express at the high level. These two uses are, in
some sense, the same, since an implementation can be regarded as an even lower-level
version of the algorithm presented as the “low-level” algorithm.

Summary equivalence classes

The safety property proof makes use of a mapping of schedules of the automata
modeling the user’s computation onto a small set of summary classes. The safety
properties are then concerned only with the class to which each execution of a client
automaton maps. This allows us to abstract away the details of the user program
while specifying and proving the safety properties.

o
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Chapter 2
Problem Statement

In this chapter we specify correctness conditions for the deadlock recovery algo-
rithm.

We define client automata as a means of modeling the behavior of a user’s program.
We define a notion of well-formedness that these automata preserve, and specify an
allowable set of fzir behaviors.

We define a tree-based naming scheme and organization for a collection of client
automata used to model the user’s computation.

We then define a trivial scheduler which, when composed with a client automaton
at every vertex of the tree that is the basis of the naming scheme, has the fair behav-
iors desired. Since this trivial scheduler has no resource constraints, all requests by
client automata to evaluate remote procedure calls may easily be satisfied. We define
correctness of a deadlock recovery automaton in terms of the fair behaviors of the
composition of the trivial scheduler and the client automata and an additional con-
straint on resource usage (since the entire point of the deadlock recovery automaton
is to perform computation when the amount of resources available is insufficient to
guarantee that deadlock will not occur).

2.1 Static computation substrate

The basic structure of a computation involving nested functional remote procedure
calls is that of a tree. The vertices are possible remote procedure call instantiations
in the user’s prograin, and the edges are the caller/callee relationships between these.

This tree is used for two purposes. One is naming the client automata used to
model the user’s computation. The other is describing part of the state of the deadlock
recovery automaton.

2.1.1 Naming scheme

Assume that there is some alphabet used in naming, and, for any node, each child
is associated with a unique element of this alphabet (children of different parents may
use the same elements). Without loss of generality, we shall assume that the numerals
1 through 9 are the first elements of this alphabet.

There is a pseudo-node that exists only for the purpose of making the first request
for computation to the system. The node that makes this first request is named super-
root.

The children of super-root are named root-1, root-2, etc. As will be required later.
in any execution the super-root will call exactly one such child. Thus, we shall refer
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Figure 2.1: Tree structure

to this node simply as root.

The name of any other node is the name of its parent concatenated with the
element of the alphabet associated with the child, separated by punctuation to make
the names easier to read. Thus, the chiidren of root-! are named root-1.1, root-1.2.
etc. The children of root-4.9 are root-4.9.1, root-4.9.2, etc. Figure 2.1 illustrates this
convention.

We shall use the symbol T to refer to such a name.

Let parent(T) refer to the parent of T. The name of the parent of a node can be
trivially obtained from the name of the node by removing the last component, with
a special case when the parent is super-root.

Let ancestors(T) be the set containing T and all its ancestors in the computation
tree. The node super-root is not considered to be an ancestor of any node, since it is
meant to model the user requesting that the program be run, rather than part of the
program itself. )

Let children(T) be the set of nodes that are direct children of T.

2.1.2 Bound on depth of tree

We require the maximum depth of the tree to be less than TOTAL_.RESOURCES.
a parameter for the correctness conditions specifying the number of processes avail-
able to the deadlock recovery automaton. Thus, names T for which the number of
components is greater than TOTAL_RESOURCES are not names of vertices of the
tree.

Processes are a logical resource, capable of “executing” remote procedure calls.We
assume that each process is identified with a processor (which has a network address.
used in the distributed version). Several or many of our “processes” could be im-
plemented by a single physical processor, but that issue is beyond the scope of this
thesis.

There are a fixed number of processes, and each may be allocated to exactly one
remote procedure call at a given time (or it may be idle). Any remote procedure call
that has been created but not yet completed occupies a process. Thus, to evaluate

14




a computation tree of depth h requires at least h processes. We therefore bound
the depth of the computation tree, so that we only consider computations for which
execution is possible.

2.2 Client automata

Client automata are used to mudel the behavior of the user’s program. In modeling
the user’s program, the actual computations performed internally are of no concern
to us; we are concerned with requests by client automata to create child remote
procedure calls and to commit. Thus, we specify the external action signature for a
client automaton, and define a notion of well-formedness for it. Then, we specify the
fair behaviors of client automata.

2.2.1 External action signature

Client automata may request that children be evaluated or request to commit,
and are informed when they are created or when the children they have requested
have committed.

The external action signature of the client automaton for node T' of the compu-
tation tree is given below. All actions of a given automaton are thus tagged with the
name of the corresponding node in the computation tree (the argument T') to provide
unique names for the actions of each automaton.

Input Actions:
create(T)
commit(T”, results), T’ a child of T
die(T)

Output Actions:
request-create-child(T”), 7" a child of T

request-commit(T’, results)

The following description of the meaning of the actions is merely intended to be
helpful in understanding them, and should not be used when reasoning rigorously
about the deadlock recovery algorithm. “Client” and “system” refer to client au-
tomata (or a particular one) and the deadlock recovery automaton, respectively. As
specified above, the first three are input actions and the last two are output actions.

The create(T') action tells the client automaton named T' that it should begin
computation.

15



The commit action notifies the automaton that its child, specified by T, has
committed with the return value results. The argument results is a description of the
results of the computation.

The die action places the automaton back into a start state.

The request-create-child action, when taken by the automaton, is a request for
computation (specified by T”) to be performed. (In an implementation, the system
might require the child procedure to be specified, and return a handle to the user by
which it would refer to this child in the future.)

The request-commit action is taken by the client when it has completed compu-
tation, and the parameter results contains a description of the answer, to be passed
to the parent via the commit action. The client automaton must be in a start state
after this action.

2.2.2 Motivation

In the remote procedure call model, no provision is made for accessing global
variables. This convention is automatically enforced by our model of client automata
since the action signature of the client automata prevents any side effects or references
to data of other automata.

The deadlock recovery automaton must be able to abort client automata when
resources are needed elsewhere, and restart them later. In an implementation, this
might be accomplished by recording the arguments when the RPC is initially started,
effecting restart by discarding all state and restarting the procedure. To model this,
a die input action is defined, and the client automaton is required to be reset to its
initial state after this action.

We shall require that super-root only request one child; this seems to be a natural
model.

2.2.3 Well-formedness for client automata

Here, we define well-formedness for sequences of external actions of client au-
tomata.

Definition:
A sequence of external actions of super-root is well-formed if it is the empty sequence, |
the single action request-create-child(T') or that action followed by commit(T, results).

Note that by the action signature of this client automaton, the child T requested
must be one of the possible roots. The super-root may call exactly one “root” child.
in keeping with our model that a user makes a single request for computation. Note
that no infinite sequence of actions of super-root is well-formed.

The conditions for client automata other than super-root are given below.
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Definition:
A block is a subsequence of external actions of a client automaton bounded by (but not
including) either die actions or boundaries between request-commit and create actions.

Thus, the first block consists of all actions up to (but not including) the first die
or all actions up to (and including) the first request-commit that is followed by create.
For finite sequences, we may talk about the last block of a sequence. Note that a
finite sequence ending in request-commit does not have an empty block at the end.
but that a sequence ending in die does.

Definition:

Let last-block(3) be the last block of the finite sequence 3, all actions after the last die
or request-commit/create boundary. This will be the empty sequence if 3 is empty or ends
in die.

Definition:

Two actions, request-create-child(T") and commit(T", results), are said to be matching if
they are in the same block.

Definition:
A finite sequence of external actions 3’ of a (non super-root) client automaton is well-
formed if for 3, any block of any prefix of ', the following conditions hold:

e The first action of (3 is create(T), or 3 is empty.
e At most one create action appears in 8.

e There is at most one matching commit(T”, results) action for any request-create-child.
and the request-create-child occurs before the commit action. No commit action for
which there is no matching request-create-child action occurs.

o No request-create-child(T’) action occurs more than once.

o If a request-commit(T, results) action occurs in 3, then no actions occur after it.
and every preceding request-create-child(T’) action is followed by a matching commit
action (which must precede the request-commit).

An infinite sequence is well-formed if every finite prefix of it is well-formed.

To summarize, a client automaton may only perform output actions after it has
been created, may only request-commit if all children it has requested have returned.
and may not requesi children after it has requested to commit.

Since the definition of well-formedness is hard to work with, we give an inductive
characterization of finite well-formed sequences.

Definition:

Define the set W inductively as follows, assuming that T’ is a child of 7.

The empty sequence is in W. The sequence of actions 3 = fr is in W exactly if Ji>
in W and the following hold:
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o If x is create(T') then last-block(3) is empty, or ends in request-commit(T, results).

o if 7 is request-create-child(T"’) then create(T') occurs in last-block(3), request-create-
child(T’) does not appear in last-block(3), and no request-commit appears in last-
block().

o if m is commit(T", results) then request-create-child(T") occurs in last-block(3), and no
other commit action with the same identifier T’ appears.

e if 7 is the action request-commit(T, results), then every request-create action in last-
block(3) has a matching commit action, create(T') occurs in last-block(3), and request-
commit does not.

Lemma 2.1 W is ezactly equal to the set of finite well-formed sequences of erternal
actions of client automata.

Proof:

We first show that every sequence in W is well-formed. We do this by induction on the
length of sequences in W.

Basis:

Observe that the empty sequence, the basis of the inductive definition of W, is well-
formed. It contains one block, which is empty, and thus this sequence satisfies the definition
of well-formedness.

Inductive Step:
Suppose 3 = ('r, where 7 is a single action. Assume 3 € W and that ' is well-formed.
We verify that this implies that 3 is well-formed by enumeration of possible values of r.

die(T): Every block of 3 is the same as a block of ', by the definition of blocks. Since
B’ is well-formed, § is well-formed.

create(T): Since f'create(T) € W, last-block(f') is empty or ends in request-commit(T,
results). Since the last block of 3 contains only create(T'), and every other block is also
in @, B8 is well-formed.

raquest-create-child(T”): Since 8 € W, create(T) occurs in last-block(3') and request-
create-child(T”) and request-commit(T, results) do not. Examining the definition of
well-formedness, we see that the first three requirements (pertaining to create and
commit) are still satisfied. The next, uniqueness of request-create-child actions, is satis-
fied because we showed that request-create-child(T") did not exist. The last is satisfied
because no request-commit action appears. Thus § is well-formed.

commit(T”, results): Since B'commit(T", results) € W, we know (by the definition of 11"}
that request-create-child(7”) occurs in last-block(3’) and no other commit with the same
identifier occurs. Since B’ is well-formed, we know that request-commit(T, results) does
not appear. Since the other conditions for well-formedness must be true of 3 if they
are true of 3, 0 is well-formed.
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request-commit(T, results): Since 8 € W, last-block(3’) contains create(T'), does not con-
tain request-commit(7’, results), and every request-create-child has a matching commit.
Examining the definition of well-formedness, we see that the first four requirements
(pertaining to create, commit and request-create-child) are still satisfied. The last is
satisfied because no request-commit action exists in 3’ and every request-create-child
has a matching commit. Thus, 3 is well-formed.

Thus, all sequences in W are well-formed.

Now we show that every finite well-formed sequence is in W.

Consider any finite well-formed sequence. By the definition of well-formedness, any
prefix is also well-formed. By induction on the length of finite well-formed sequences, we
show that every finite well-formed sequence is in W.

Basis:
Consider the smallest well-formed sequence, the empty sequence. This is explicitly
included in W as the basis of the inductive definition.

Inductive step:

We must then show that if ¥ is in W and well-formed, if y7 is well-formed, then 7 is
in W.

We consider each possible action 7, and argue that either 4 or 47 is not well-formed or
that y7 is in W.

die(T'): The definition of W, by failing to set conditions under which die can be added,
includes in W any sequence in W extended by die(T'). Thus, ydie(T) is in W.

create(T): If the last block of ¥ is empty, then ycreate(T') is in W. If the last block of
v ends in request-commit(T, results), then ycreate(T') is in W. If the last block of v
is non-empty and does not end in request-commit(T, results), then ycreate(T) is not
well-formed because the last block of it contains two create actions.

request-create-child(T'): If yrequest-create-child(T") is well-formed, the last block of y may
not contain another request-create-child(7"’) action, or a request-commit action. Also,
the first action of the last block must be create. Observing the conditions specified in
the definition of W for adding request-create-child, we see that they are satisfied, and.
therefore, yrequest-create-child is in W.

commit(T’, results): If ycommit(T’, results) is well-formed, the last block of ¥ may not
contain another commit(7”, results) and must contain a matching request-commit. Since
v is in W and the conditions in the definition of W for adding commit are satisfied.
yecommit(T’, results) is in W.

request-commit(T, results): If yrequest-commit(T, results) is well-formed, last-block(~)
must contain a matching commit action for every request-create-child action. Also. the
last block must begin with create. Since no action may occur after a request-commit
action, there is no request-commit action in 4. We see from the definition of W that
yrequest-commit(T', results) is in IV.
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Thus, all finite well-formed sequences of external actions of client automata are in W.
O

Recall that an infinite sequence is well-formed if every finite prefix of it is well-
formed. Since W is the set of finite well-formed sequences, it is equivalent to state
that an infinite sequence is well-formed if every finite prefix is in W. The inductive
characterization just shown to be equivalent to the definition of well-formedness will
generally be used in proofs.

Corollary 2.2 The set of well-formed sequences of a client automaton T is non-
empty, prefiz-closed and limit-closed.

Proof:

These properties obviously hold for super-root, all well-formed sequences of which have
length 0, 1 or 2.

For any other client automaton, observe that the empty sequence is well-formed, so the
set of well-formed sequences is not empty.

Consider a well-formed sequence 3, and v, a prefix of 4. If 8 is finite, § € W, and
therefore vy € W and is well-formed. If 3 is infinite, then every prefix of it (including v)
is well-formed, according to the definition of well-formedness. Thus, the set of well-formed
sequences is prefix-closed.

Since an infinite sequence is well-formed exactly if every finite prefix is well-formed, the
set of well-formed sequences is limit-closed.

O

2.2.4 Behaviors of client automata

In order for the deadlock recovery automaton to work correctly, we must preclude
“unreasonable” actions on the part of client automata. In this section we place
restrictions on behaviors of client automata.

Definition:
A client automaton C is an automaton with the external action signature given earlier
such that:

e C preserves! well-formedness.

¢ In any well-formed behavior 8 of C there are a finite number of request-create-child
actions in any block.

¢ Every fair behavior 8 of C satisfies the following implication:
If 3 is well-formed and finite, then last-block(3) either

1. is empty, or

1(LT88], p. 13. C preserves well-formedness if B is well-formed whenever 3 is well-formed, 7 is
an output action of C, and g~ is a finite behavior of C.
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2. has a request-create for a child with no matching commit, or

3. contains a request-commit.

Restated informally, the second condition requires that a client automaton never
requests an infinite number of children. The third condition means that a client
automaton must continue to take steps unless it has not been created, has requested
a child that has not committed, or has requested to commit. These conditions are
intuitively satisfying since they mean that the deadlock recovery automaton will not
be considered incorrect because the user’s program requests an infinite number of
children or unreasonably stops taking steps.

Lemma 2.3 FEvery well-formed behavior of a client automaton that does not contain
a die action is finite.

Proof:

Since the behavior is well-formed and has only one block, it contains at most one
create(T') and one request-create(T'). By the definition of client automata, it has finitely
many request-create-child(T”) actions. Further, it contains at most one commit(T’, results)
action for each request-create. There are no die actions. Since there is not an infinite number
of any action, the total number of actions is finite. 0

2.3 Correctness conditions

Given that we have an automaton that implements the algorithm, referred to as
the deadlock recovery automaton, we define correctness in terms of the composition
of the deadlock recovery automaton and the client automata, referred to as A,. The

subscript h appears because this is the high-level version of the algorithm, as opposed
to the distributed version presented in Chapter 6.

2.3.1 Composition

There is one client automaton at each node in the computation tree, including
super-root. There is another automaton, the deadlock recovery automaton, that per-
forms the deadlock detection and recovery function.

Definition:
Aj is the composition of the deadlock recovery automaton and all of the client automata.

In order to discuss the composition of these automata, we must show that they
are strongly compatible ([LT88], p. 6). Without loss of generality, we can assume
that any internal actions of the deadlock recovery automaton have names distinct
from any action of any client. We must require that no output action of the deadlock
recovery automaton is an output action of any client. In our case, it will be obvious
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from inspecting the automaton definition that this is true. Since no action of any
client automaton is shared by any other client automaton, it is clear that there is no
action shared by an infinite number of components.

2.3.2 Motivation

Intuitively, the deadlock recovery automaton must create all requested children,
and must faithfully convey requests to commit back to the parents. This is hard
to directly capture formally in a way that everyone will agree is reasonable. Thus,
we define a trivial scheduler automaton. This scheduler has no constraints about
resources and is extremely simple; we feel that everyone will be able to see that it
“solves” the problem at hand.

We require that in an execution of A, (the composition of the deadlock recov-
ery automaton and client automaton, as defined above) the behavior at each client
automaton after any die actions is one that could have occurred with the trivial sched-
uler automaton. Informally, the user’s program should not be able to tell that it is
interacting with a deadlock recovery automaton rather than a trivial scheduler.

2.3.3 Trivial scheduler

The state of the trivial scheduler consists of a variable status for each remote
procedure call, and a set save-results of ordered pairs of remote procedure call names
and their return values. The allowable values of status are not-started, requested.
running, committing, and committed. These correspond to nodes in their initial state.
nodes that have been requested by their parents, have been created, have requested
to commit, and have been committed, respectively.

In the initial state each variable status has the value not-started, and the set
saved-results is empty.

We place all output actions of this scheduler in the same class, and thus any finite
behavior in which no locally-controlled action is enabled in the final state is fair. We
later show that every fair behavior of the composition of the trivial scheduler and
client automata is finite, and thus are not concerned with which infinite behaviors
are fair.

Input Actions:

request-create-child(T):

Effects:
status(T) := requested

request-commit(T, results):

Effects:
status(T') := committing
saved-results := saved-results U (T, results)
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Output Actions:

create(T):
Preconditions:
status(T") = requested

Effects:
status(7’) := running

commit(T, results):
Preconditions:
status(7T") = committing
(T, results) € saved-results

Effects:
status(7) := committed

We shall refer to the composition of the trivial scheduler and client automata as
A,

Definition:
Let triv-beh be the set of fair behaviors of A;.

Before proving properties of triv-beh, we informally defend the correctness of the
trivial scheduler. We see that after a child is requested, the create action becomes
enabled and remains so until it occurs. When a child requests to commit, the commit
action becomes enabled and remains so until it occurs; the return value is associatively
stored with the transaction identifier and thus faithfully passed to the parent. Since
(as will be shown) there are no infinite behaviors in triv-beh, and since in any finite
fair behavior no actions are enabled in the last state (by the definition of fair), the
system satisfies every request made by a client.

Definition:
A behavior 8 of the composition of a scheduler and client automata is well-formed if
VT B|T is well-formed.

Lemma 2.4 FEvery element of triv-beh is well-formed.

Proof:
It suffices to show that every finite behavior is well-formed, since by definition an infinite
behavior is well-formed if every finite prefix of it is well-formed.

Basis:
The empty behavior is well-formed.

Inductive Step:
Assume that 3 € triv-beh is well-formed, and that 87 € triv-beh. Observe that gr is
well-formed by enumerating the possible values of 7 for arbitrary 8 and T'.
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request-create-child(T): Client automata preserve well-formedness, so this is obviously
well-formed.

request-commit(T, results): As above, client automata preserve well-formedness.

create(T): According to the definition of W, the alternate characterization of well-
formedness, create(T') may be added iff the current block of T is empty (or ends
in request-commit(T, results)). The precondition for this action is that status(T) =
requested, and we see that this can only be true if the request-create-child(T') action
was the most recent action with identifier T. Since request-create-child(T') can only
happen once (because client automata preserve well-formedness), create(T) can only
occur once, and hence does not occur in 3. Since create(T') does not occur in 3 and 3
is well-formed, 8|T is empty and 87 is well-formed.

commit(T, results): According to the definition of W, commit(T, results) may be added
if request-create-child(T') appears and no commit with the same identifier appears. The
precondition for this action is that status(T') = committing, and we see that this can
only be true if the request-commit(T, results) action was the most recent action with
identifier T. Since request-commit with a particular identifier can only occur once, by
client automata well-formedness, no commit action can have occurred with this iden-
tifier. Since request-commit(T, results) occurs, create(T') occurs (by well-formedness).
Since create(T) occurs, request-create(T') must occur, by inspection of the automa-
ton code. Since commit(T, results) appears only once and is preceded by a matching
request-create(T'), Ar is well-formed.

Lemma 2.5 FEvery element of triv-beh is finite.

Proof:

Every action of any element of triv-beh is an action of some client automaton. Since
every element of triv-beh is well-formed (by the previous lemma), the number of actions at
any client automaton is finite, by Lemma 2.3. Consider the set of all clients that take a non-
zero number of actions. By well-formedness, the first action at each such client automaton
T must be create(T'), and, therefore, request-create(T') must occur. Thus, any such client
automaton is requested by its parent, and this set is a tree. Recall that the depth of the
tree is at most TOTAL_RESOURCES, a constant. Hence, we have a tree with finite depth
in which no vertex has an infinite number of children. By Kénig’s Lemma?2, the number of
vertices in such a tree is finite.

Since the number of actions taken by any ciient is finite, and only finitely many clients
take a non-zero number of steps, the total number of actions is finite. »)

2[EveT9), p. 32.



2.3.4 Correctness in terms of the trivial scheduler

We give a specification of the deadlock recovery problem as a set of behaviors
(correct-beh), and define deadlock recovery automaton correctness in terms of this
set.

We note that a schedule of Ay may have die actions, while the trivial scheduler
may not. We must, however, define correct-beh in such a way that the fair behaviors of
Ap, can be contained in correct-beh. To achieve this, we shall define a set of expanded
schedules that include die actions, yet still correspond to triv-beh.

Definition:
Define last-blocks() for 3 a behavior of A, to be the subsequence v of 8 containing,
for each T, exactly those actions in last-block(B|T ).

Definition:

Let die-triv-beh be the set of all behaviors 3 of Ay such that last-blocks(3) € triv-beh.

Note that sequences in die-triv-beh may have arbitrary actions occurring at a client
T if those actions are followed by a die(T') action.

A schedule of A, must not “use” more resources than are available; executing
computations in a resource-poor or possibly resource-poor environment is the reason
to construct a deadlock recovery autornaton.

Definition:

Let the function occupies-resources of a sequence of external actions 8 of a client cu-
tomaton be 1 if in last-block(3) a create but not a request-commit exists, and zero otherwise
Let the function maz-resources of v, a sequence of external actions of Ay, be the maximum
over all prefixes of 7 of the number of client automata T such that occupies-resources(y|T)
is 1, or

. P
max occupies-resource 7).
m equ: p «v'|T)

Definition:
Let correct-beh be the set of sequences, 3, consisting of external actions of A, such that
the following are true.

i. B is finite

2. B is well-formed

3. maz-resources() < TOTAL_RESOURCES

4. B € die-triv-beh

Since there is only a finite amount of computation to be done, it is reasonable

to require that it be done in a finite number of steps. By making this restriction
explicitly, we avoid the problem of having to define last-block for an infinite schedule.
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We require that every schedule be well-formed. Without this restriction, a dead-
lock recovery automaton that takes an action that violates well-formedness at a client
automaton, but then later takes a die action for that client and thereafter does not
violate well-formedness would be considered correct. However, we require that the
RPC “operating system”, which is the deadlock recovery automaton, never do this
on the grounds that users should not have to deal with such unreasonable actions.

Definition:
A deadlock recovery automaton is correct if the fair behaviors of the composition of it
and client automata are contained in correct-beh.

2.3.5 Sufficient conditions for correctness

Although the specification of correctness in terms of the trivial scheduler is easy
to understand, it is less convenient to prove that a deadlock recovery automaton is
correct using the definition directly than it is using an alternative characterization
of correctness. We define an alternate set of schedules, and show that every every
fair behavior of this set is in correct-beh. Thus, any deadlock recovery automaton for
which the fair behaviors of A, are contained in alt-beh is correct.

Definition:
Let alt-sched be the set of sequences 3 of external actions of Ay such that the following
are true.

1. B is finite

2. B is well-formed

3. maz-resources(3) < TOTAL_RESOURCES
4

. Every create(T) action is pre--ded by a request-create-child(T') action and no
die(paren{(T')) action exists between the request-create-child(T') and the create(T).

5. Every commit(T, results) action is preceded by a request-commit(T, results) action
with no intervening die(T) action.

6. For every request-create-child(T) later than any action die(parent(T)), there is a
create(T) action following it, which itself is not followed by a die(T') action.

7. For every request-commit(T, results) later than any die(parent(T)), there is a (match-
ing) commit(T, results) action following it.

8. For every T, B|T is a fair behavior of client automaton 7.

Definition:
Let alt-beh be the behaviors of alt-sched.

Lemma 2.8 alt-beh C correct-beh




Proof:

Consider any element 3 of alt-beh.

First, we note that it trivially satisfies the first three conditions for membership in
correct-beh because they are also the first conditions for membership in alt-beh.

We must show that § € die-triv-beh. Let 4 be last-blocks(3). We claim that this behavior
v is a fair behavior of A;, and thus 3 € die-triv-beh. First we argue that it is a behavior of
Ay, and then that it is a fair behavior.

Consider a particular client T. Since B|T is well-formed, %|T is well-formed, since the
definition of well-formedness requires all blocks to meet a set of conditions, and +IT is
merely the last block of 3|T. Thus, v is well-formed for all clients.

To show that v is a behavior of A;, we must show that each action of v is enabled when
taken. We proceed by induction on the length of v, using the fact that v is well-formed and
that the conditions on 3 required for membership in alt-beh are satisfied.

Basis:
The empty behavior is obviously a behavior of A,.

Inductive Step:
Assume 6 is a behavior of A;, and é7 is a prefix of an element of alt-beh. We verify that
6= is a behavior of A, by enumeration of the possible values of r:

request-create-child(T): This is an input action and thus always enabled.
request-commit(T): This is an input action and thus always enabled.

create(T): The conditions for membership in alt-beh require that there exists in .J a
request-create-child(T') action that is not followed by a die(parent(T)) action. Thus the
request-create-child(T') action must be in 7 (recall that request-create-child(T') is in the
action signature of automaton T). Since the request-create-child(T') action occurs in 5.
we know that the create(T) action had been enabled. Because v is well-formed and
thus create(T) may not appear twice, we know that create(T') has not occurred. Since
create(T') remains enabled until it occurs, it must still be enabled.

commit(T, results): The conditions for membership in alt-beh require that there exists in
B a request-commit(T, results) action that is not followed by a die(T') action. Thus. the
request-commit(T, results) action must be in . Since the request-commit(T', results)
action occurs in v, we know that commit(T, results) had been enabled. Because 7 is
well-formed and thus commit(T, results) may not appear twice, we know that commit(T,
results) has not occurred. Since commit(T, results) remains enabled until it occurs. it
must still be enabled.

We must now show that v is a fair behavior of A,. We know that for all T, 7|T is a
fair behavior of T, because S|T is a fair behavior of T (by the definition of alt-sched) and
¥|T = last-block(B|T).

Construct from 7 an execution a as follows. Take an execution a7 of each client
automaton T such that behavior(ag) = 7|T; there must be one, since otherwise 7|T could
not be a behavior of T. Modify v by inserting each internal action of client T' (from a )
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immediately before the next external action of the client, and placing internal actions that
are not followed by an external action at the end of the sequence. Call this new sequence
of actions é.

Now insert scates between every two adjacent actions of §, and at the beginning and
end. For each client automaton, use the state from the corresponding position of ap. The
start state of the trivial scheduler automaton is given with the automaton description, and
the state following each action can be straightforwardly obtained from the previous state by
examining the automaton description. We call the resulting execution a; it is an exe ution
of A, (by the previous inductive proof, every locally-controlled action of the trivial scheduler
is enabled when taken).

Since 3 is finite, there are a finite number of external actions of A; in 7, although there
might be an infinite number of internal actions of client automata. We note that internal
actions of client automata cannot change the state of the trivial scheduler automaton, and
thus if no locally-controlled action of the trivial scheduler is enabled in the state following
the last external action of the trivial scheduler, no such action ever becomes enabled again
and the execution is fair to the trivial scheduler.

We consider all the output actions (there are no internal actions) of the trivial scheduler,
and show that each cannot be enabled in the state following the last such action.

create(T): If request-create-child(T') does not appear in 7, this action is not enabled. If
it does, then by the conditions for membership in alt-beh there is a create(T') action in
B not followed by a die(T') action, and thus the create(T') action is in 7.

commit(7T, results): If request-commit(T, results) does not appear in v, this action is not
enabled. Ifit does, then by the conditions for membership in alt-beh there is a commit(7,
results) in 3 which is not followed by a die(T’), and thus commit(T, results) is in v, and
thus not enabled.

Thus, a is a fair execution of the trivial scheduler. Since for all T, a|T is a fair execution

of T, a is a fair execution of A,;. Since the behavior of a is v, v is a fair behavior of A,

and is thus in triv-beh. Therefore, 3 € die-triv-beh. This is the last of the conditions

for membership in correct-beh, and thus our arbitrary member of alt-beh is contained in
correct-beh.

a

Lemma 2.7 A deadlock recovery automaton is correct if its external action signature
is strongly competible with client automata and every fair behavior of the composition
of it and client automata is contained in alt-beh.

Proof:

Consider a deadlock recovery automaton for which every fair behavior of the composition
of it and client automata is contained in alt-beh. Since alt-beh C correct-beh, the fair
behaviors of the above composition are contained in correct-beh. o




Chapter 3

Safety Version of the Deadlock Recovery
Algorithm

In order to make the proof easier to understand, we present several different
versions of the deadlock recovery automaton. The most important distinction is
drawn between the high-level versions, in which there is one automaton operating on
a single global state, and the distributed version, presented in Chapter 6, in which
there is one automaton for every client automaton.

Additionally, two versions of the high-level version are presented. The first, or
“safety” version, presented in this chapter, satisfies all of the required safety proper-
ties. However, it does not satisfy the liveness properties. The second, or “liveness”
version, presented in Chapter 5, has more constraints about the behavior of the al-
gorithm that seem to be necessary to prove the liveness properties. Although it does
not possess the desired liveness properties, the safety version is simpler and thus it
is easier to show that it possesses the desired safety properties. Later, we show that
all safety properties that hold for the safety version (all safety properties — not just
those we show) also hold for the liveness version.

We give an English description of the algorithm. We then describe the state
of the deadlock recovery automaton, and then describe the automaton itself using
preconditions/effects notation. ’

3.1 Algorithm description

. The description of the algorithm given here is meant to be informative and ex-
planatory. The explanation of what the algorithm does and the informal description
of why it works is divided into two parts. The first part describes “normal operation”,
a subset of the actions of the deadlock recovery automaton that makes no attempts to
detect, avoid, or recover from deadlock; this subset would only be able to run a given
computation successfully if it happened to never run out of resources. The second
part describes actions associated with deadlock detection and recovery. Successively
more complex descriptions of the algorithm are given for this part — later versions
will specify more precisely actions that are left indeterminate in the earlier ones.

3.1.1 Normal operation

When a process (represented by a node) requests the calling of another process
(represented by & child of that node), the child is marked as pending creation. If there
is space available, a node pending creation can be allocated space on some processor.
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thus “creating” the child.! When a process completes, the corresponding node is
marked as having requested to commit. At any time the system may “commit” any
node that is marked as having requested to commit. This act notifies the calling
process of the completion of its child process and its return value.

This naive scheduler, while able to complete the computation of a given problem
if the number of processors is large enough, can lead to deadlock. Assume the user’s
computation requires each process to call b child processes, up to a depth of h. Now,
assume that the creation of children proceeds in a balanced manner, so that all nodes
at depth h — 1 are created before any are created at depth h. This will require at
least %! processes. Now, if this much space is not available (likely for moderate
values of h, since this is exponential in k), nodes will not be able to be created, but
merely to be requested. However, no process can complete (request to commit) since
it has children that have been requested that cannot commit since they have not been
created. Thus, the system is in deadlock.

3.1.2 Detection and recovery

Given that deadlock may happen, the algorithm must be able to detect and recover
from deadlock. We do not require, however, that the algorithm detect deadlock before
taking actions we think of as deadlock recovery.

When the system has detected the possibility of deadlock, it chooses a process and
then aborts it. Aborting a node consists of killing that node and all of its descendants,
and recording that the node was aborted. Killing a remote procedure call consists of
discarding any in-progress computation of that node; we then say that that node has
died. This action frees resources, and thus more processes may be created. At the
time of abort, the node is marked so that it may be restarted at a later time when
more resources are available. These steps are repeated if necessary.

An entire subtree rooted at the deadlock master is killed as part of deadlock
recovery. The technique used to implement this is called “convergecast”, and is
discussed in [Seg83] and [Awe85). The deadlock master is marked as ready to die, and
this marking is propagated along the edges of the tree. When a node with the “ready
to die” marking is able to die (having no remaining children is the main condition), it
does so. When all the children of the parent node have died (or otherwise terminated),
that node may die. In this manner all descendants of the deadlock master eventually
die, and then the deadlock master may do so as well. This approach allows reasonable
efficiency, a simple distributed implementation, and avoids having to synchronize
actions across many processors in the distributed case.

If this strategy were applied naively, the system could alternately abort a node
and restart it an infinite number of times, a clearly unacceptable result. We impose
conditions on the choice of which process to abort and when processes may be aborted

In the algorithm as presented we just count the amount of space assigned and do not worry
about its location, as this algorithm assumes a load-balancer is available to it.
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in order to prevent oscillations in the system and ensure progress. The main concept
used by the algorithm to ensure progress is that of unabortable work, by which we
mean work that cannot be aborted by the deadlock recovery automaton. As the com-
putation proceeds and recovery actions take place, certain processes are designated
“precious” (initially the root of the computation tree is the cnly node so designated).
These processes never die, and thus any process that commits to a precious process
has completed work that is not abortable.

The concept of unabortable work is the motivation behind many of the decisions
in the design of the algorithm. Many details exist to preserve invariants necessary
for showing that unabortable work is not undone. Others exist to create liveness
properties to ensure that the amount of unabortable work that has been done will
always increase.

Precious nodes are never aborted. Since a node’s work is lost if any ancestor is
aborted, we must also ensure that no ancestor of a precious node is ever aborted.
Thus, we enforce the invariant that in every state the parent of every precious node
is also precious, and thus that all ancestors of a precious node are precious. This is
enforced by requiring that a node that is precious remain so until it commits, and
that only children of precious processes become precious.

If too many nodes become precious, however, further deadlock can arise for the
same reasons as before. The algorithm must be able to complete a computation for
which the depth is equal to the maximum number of processes that may be active at
once. Consider a system that can only run n nodes at once, running a computation
with depth n. The invariant that all precious nodes lie on a simple path from the
root helps in showing that this is achievable, since otherwise a situation could occur
in which n nodes are precious and none of them can complete since they are all
waiting for children. This invariant can be preserved by having the deadlock recovery
automaton only designate a node precious if the parent of the node is precious and
none of the children of that parent are precious.

The details of the algorithm are constructed so that it is possible to show that
- given any situation more unabortable work will be completed. Since the only way
that work is undone is by aborting nodes, and progress is made unless the system is
in deadlock, the algorithm concentrates on ensuring that aborting nodes leads to the
achievement of unabortable work. That this always occurs is the subject of Chapter 3,
and the basic motivations are given here since they seem helpful in understanding the
algorithm.

The first time deadlock is detected, a (non-precious) node is selected for aborting.
This node is called the deadlock master. The next time, the parent of this node is
aborted, and each time deadlock is detected the next ancestor is aborted. This con-
tinues until a precious ancestor is reached. Since a precious node cannot be aborted,
a new node is chosen. Again (assuming deadlock continues to occur) the ancestors of
this node are killed. Eventually, all the children of the precious node furthest from
root are aborted. Since this node has aborted children and no “live” (children that
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have been requested but neither aborted nor committed) children, an aborted child is
restarted. It is also made precious, thus increasing the number of precious processes.

After the number of precious processes increases to the point where a leaf process
(one that has no children) is precious, this leaf ciild will commit (since it can request
no children, it must commit), and unabortable work will have been achieved since its
parent must also be precious.

3.2 The state of the deadlock recovery automaton

Because of the restricted way in which the liveness version of the high-level algo-
rithm differs from the safety version, the set of possible states is identical. The state
of the automaton consists of a static (with respect to both size and configuration)
tree, along with information attached to each node and to the tree as a whole.

3.2.1 Description of the state

The tree corresponds exactly with the tree organization for the client automata
discussed in Section 2.1 and uses the same naming scheme. We shall use the words
vertex and node interchangeably, tending to use the former when we wish to emphasize
properties of trees rather than remote procedure calls.

The state consists of variables status and death-status associated with each vertex.
and the variables master, precious and saved-results, which are not associated with
any vertex. Let status(T) be the value of the variable status associated with vertex
T, and death-status(T) the value of death-status.

We describe each component of the state, and give its value in the initial state of
the deadlock recovery automaton.

The variable status

Each node has a variable status, the possible values of which are enumerated
below. A description of the meaning of status(T) having this value is also given:
these are meant to help in understanding the formal description of the algorithm in
terms of I/O automata and are not part of the specification of the algorithm.

not-started: This node is inactive; it either has not been requested, or its parent
has died or committed.

requested: The parent of this node has requested that it be created. No resources
have yet been allocated for nodes having this value of status.

running: The node is executing, and occupies resources.

committing. The node has requested to commit, and no longer occupies re-
sources.



committed: The node has been committed.

dead: The node has died, and occupies no resources. This differs from not-started
in that it must be restarted eventually.

In the initial state, the distinguished node super-root has status = running, while
for all others it is not-started.
The variable death-status

This variable contains additional state relating to the die convergecast procedure;
possible values are described below.

nil: In the initial state and during normal operation, death-status = nil. After
a node has been killed, death-status also has this value.

dying: The node has been notified that it should die.

The variable master

Its value ranges over the set of nodes in the tree and nil. It contains the identity
of the current deadlock master or nil if there is no deadlock master. In the initial
state, master = nil.
The variable precious

precious is a set of nodes. A node’s membership in this set means that it is
precious. In the initial state, precious = 0.
The variable saved-results

saved-results is a set of ordered pairs used to store the return values from remote
procedure calls as they are committing. Each pair is of the form (T, results). In the
initial state, saved-results = ()

3.2.2 Notation for the tree state

The following are definitions, functions and derived variables of the state, intro-
duced to make the algorithm code easier to follow and reason about.
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Derived variables

Let using-resources be the set of all nodes for which

status(T) = running.
Let alive-nodes be the set of all nodes for which

status(T) € {requested, running, committing}.
Let alive-children(T ) be
alive-nodes N children(T ).

Let alive-children-count(T ) be

|{ alive-children(T )}|.

Let alive-child(T) be the sole element of alive-children(T) in states in which alive-
children-count(T) = 1, and be otherwise undefined.

Let dead-children(T) be
dead-nodes N children(T ).

3.3 The deadlock recovery automaton

The following is the automaton definition for the safety version of the deadlock
recovery automaton. ’

Input Actions:

request-create-child(7"), T not a root node:

Effects:
status(T') := requested

request-create-child(T), T a root node:
Effects:

status(T") := requested
precious := precious U T

request-commit(T’, results):
Effects:
status(T) := committing
saved-results := saved-results U (T, results)
death-status(T') := nil
VT’ € children(T), status(T"’) := not-started
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Output Actions:

create(T):
Preconditions:
status(T') = requested
||using-resourcesl] < TOTAL.RESOURCES

Effects:
status(T') := running

commit(T”, results):
Preconditions:
status(7T’) = committing
(T, results) € saved-results

Effects:
status(7"') := committed
saved-results := saved-results — (7", results)
precious := precious — {T"}
if master = T'
if parent(T’) € precious
master := nil
else
master := parent(T")

die(T):

Preconditions:
all children of T have status € { not-started, requested, committed, dead }
death-status(T') := dying

Effects:
status(T) := dead
death-status(T') := nil
VT',T' € children(T), status(T’) := not-started

Internal Actions:

restart(T):
Preconditions:
T' = parent(T)
T € dead-children(T")
status(7”) = running
death-status(7") = nil
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Effects:
status(T’) := requested

restart-precious(T’):
Preconditions:
T’ = parent(T)
T € dead-children(T")
status(7") = running
death-status(T’) = nil
T’ € precious A children(T") N precious = 0

Effects:
status(T') := requested
precious := precious U {T'}

become-master(T):
Preconditions:
master = nil
T ¢ precious
status = running
Effects:
master := T

new-master(T):
Preconditions:
master € children(T)
status(master) = dead

Effects:
if T € precious then
master := nil
else
master .= T

begin-die(T'):
Preconditions:
status = running
death-status(T') = nil
master =T

Effects:
death-status(T') = dying
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die-down(T'):
Preconditions:
status(T) = running
death-status(parent(T)) = dying
death-status(T) = nil

Effects:
death-status(T') := dying

precious(T):
Preconditions:
T’ € precious
T € alive-children(T")
T # master
children(T") N precious = @

Effects:

precious := precious U {T'}
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Chapter 4
Safety Properties

This chapter presents a proof that A, possesses certain safety properties. It is
argued that every behavior of A, satisfies the first five, or “safety,” conditions nec-
essary for membership in alt-beh, described in Section 2.3.5 on page 26. More safety
properties than are needed to show these properties are proved, however, because
they are used in the proof of liveness properties.

4.1 Summary classes for client automata

By the definition of client automata, we know that any client automaton preserves
well-formedness. This requirement often precludes a client automaton from taking a
particular — or any — output action, and the algorithm relies on this. Further, we
find that there is a correlation between the state of the deadlock recovery automaton
and the set of locally-controlled actions a client automaton may take. Thus, we
characterize behaviors of client automata so that we may reason about them more
easily.

We define summary classes, and place each well-formed finite behavior of a client
automaton into one of these classes. There is no need to consider behaviors that
are not well-formed because we have already required that client automata preserve
well-formedness and will argue that the deadlock recovery automaton preserves well-
formedness (for client automata). We show that a behavior of a client automaton
in a certain summary class may only be extended in particular ways. Then, we use
summary classes in the expression of safety properties, abstracting away the details
of client automata.

We define the summary classes by describing, for each class, the behaviors that
belong to it. When we say that a client automaton is in a surnmary class at a
particular time, we mean that the behavior of the client automaton is in the summary
class. For example, a client auton:aton that has taken a create action and then a
request-create-child action would be in the child-outstanding class.

Consider a client automaton A. with finite behavior #’. We define below the
summary class of the client automaton as a function of last-block(S'), which we will
denote by 3.

idle: B is empty or B contains request-commit.

started: B is non-empty, does not contain a request-commit action, and every
request-create-child has a matching commit action.
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input actions output actions
class create die commit req-cr-ch request-commit
idle started idle dia-error cliens-error client-error
started dra-evror idle dra-error ch-out idle
ch-out dra-error idle ch-out/started client-error client.error

Table 4.1: Transition table for summary classes.

child-outstanding: [ is non-empty, does not contain a request-commit, and there
is a request-create-child without a matching commit action.

It is easy to see that every finite well-formed behavior is in one of these classes.
The empty behavior is in idle. Any behavior containing request-commit is also in
idle. All other behaviors are obviously non-empty and do not contain request-commit
and fall into child-outstanding if they contain an unfulfilled child request and started
otherwise.

We give an informal characterization of these classes as au aid to understanding
the safety proof.

idle: A client in this class either has not been created, has been created and
requested to commit, or has been killed.

started: A client in this class has been created, and every child that it has
requested has committed.

child-outstanding: A client in this class has been created and has requested at
least one child that has not committed.

Table 4.1 is included to help the reader understand and to motivate summary
classes. Given a behavior for which the summary class is given in the left column,
the table shows which summary classes are possible after an action. The notations
client-error aNd dra-error mean that the action would violate well-formedness, and that the
client and the deadlock recovery automaton, respectively, are at fault. Note that this
table is derived from the definitions and is not an equivalent definition because of the
uncertainty in the summary class after a commit action.

4.1.1 Well-formedness constraints in terms of summary classes

We wish to rephrase some of the well-formedness constraints in terms of summary
classes, so that we may use the fact that an automaton is in a particular summary
class to rule out its taking certain actions. We also wish to be able to tell whether a
client occupies resources by examining its summary class; this will make it easier to
show that the system never occupies more resources than is allowed.
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Lemma 4.1 The following statements are true of every well-formed behavior of a
client automaton:

e request-commit only occurs when the finite behavior before it is in the started
class.

e No locally-controlled action of a client automaton occurs when the finite behav-
ior before it is in the idle class.

Proof:

By the definition of W (page 17) and the fact the W is the set of finite well-formed
sequences of external actions of client automata (Lemma 2.1), request-commit(T, results)
can only occur if every preceding request-create has a matching commit action, create(T')

,occurs and request-commit does not. Thus the conditions for the execution to belong to the
started class are satisfied.

Assume a client is in the idle summary class, and has behavior 3. Thus, last-block(3)
is either empty or contains a request-commit. Examining the definition of W, we see that
neither frequest-create-child nor Frequest-commit is well-formed.

O

Lemma 4.2 A client automaton occupies resources if and only if it is in either the
started or child-outstanding summary class.

Proof:

Examine the definitions of the summary classes and observe that exactly in the started
and child-outstanding classes are the requirements for occupying resources met. In particu-
lar, note that the conditions for the idle class require either that the current block is empty
(and therefore does not contain create) or contains request-commit. 0

4.2 List of safety properties

Definition:

Let restricted-last-blocks(3) be similar to last-blocks(3) except that if the last block of
any client contains a request-commit action no actions from that client appear in restricted-
last-blocks.

This definition is made because some properties are more naturally expressed in
terms of restricted-last-blocks, and some in terms of last-blocks.

Lemma 4.3 The following statements are true of any ezecution o = ... S, 1Tpn_15n
of As.

1. behavior(a) is well-formed.

2. In state 3, of a, the following are true:
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(a) status(T) # not-started <> a request-create-child(T") action exists in
restricted-last-blocks(a).

(b) status(T) = committing A (T, results) € saved-results = a request-
commit(T, results) action exists in last-blocks(a).

(c) status(T) = committing <=>
3 results such that (T, results) € saved-results

(d) status(T) = committed <= commit(T, results) exists in restricted-last-
blocks(a).

3. In state s, of a, the following are true for all 7"

(a) status(T') # not-started => status(parent(T')) = running

(b) T = master = status(T) € {running, committing, dead}

(c) T = master => T ¢ precious

(d) T € precious => status(T) € {requested, running, committing}
(e) T € precious => ancestors(T) glprecious

(f) |children(T) N precious| < 1

4. In state s, of a, the following are true for all T"

(a) death-status(T) = dying => status(T) = running

(b) death-status(T) = dying =
death-status(parent(T)) = dying ® master =T
(c) status(T) = dying => master # nil A death-status(master) = dying

5. Let St represent the summary class of client automaton T in s,. In state s, of
a, the following are true for all T

(a) St € {started, child-outstanding} <=> status(T) = running

(b) St = started =

Ve € children(T) : status(c) € {not-started, committed}
(c) St = child-outstanding =

Jc € children(T) : status(c) ¢ {not-started, committed}

Proof:
The proof of these properties is by induction on the length of executions.

Basis:
Consider the shortest execution possible, the one consisting of one state and no actions.
In the initial state, it is easy to see that the conditions are satisfied.
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Since the sequence consisting of no actions of a client automaton is well-formed, the
first condition is satisfied.

All nodes have status not-started, except super-root, which has status running. Thus,
the first group of properties hold. In the initial state, master = nil and precious = nil,
and the properties of the next group are satisfied. No node has death-status dying, so the
properties of the next group are satisfied.

All client automata are in summary class idle, since their schedules are empty. The
corresponding nodes have status not-started. Thus, the properties in the last section hold.

Inductive step:

Given an execution a = ...T,_28,-2Th-18,—1 that satisfies the conditions, we show
that @’ = ...Tp_28,-2%n—15n-17n3n satisfies the conditions by enumerating possible values
of m,. In general we will argue that each condition holds, using the same organization as
the statement of the conditions. Conditions that are obviously unchanged by the action
will not be discussed.

request-create-child(T'), T not a root node:

1. Since clients preserve well-formedness, o’ is well-formed.

2. Since in the previous state no request-create-child(T') action existed in restricted-last-
blocks(a), status(T) must have been not-started.

(a) After this action, status(T) is requested, and a request-create-child(T') action
occurs, and thus the condition is true.

(b) status(T) = requested, so this condition holds.

(c) Since status(T) in s,_; was requested, it was not committing, and thus the
left hand side was false in both the previous and current states, and thus the
condition is satisfied in the current state.

(d) Since status(T') in s, was requested, it was not committed, and thus the left
hand side was false in both the previous and current states, and thus the con-
dition is satisfied in the current state.

3. (a) In s, status(T) = requested, and we must verify that status(parent(T)) = run-
ning. By Lemma 4.1, no locally controlled action can occur when a client au-
tomaton is in the idle class, and by the first point of the fourth statement.
status(parent(T)) = running.

(b) Observing that status(T') changed from not-started to requested, it is clear that
the remaining conditions in this group hold.

4. It is clear that these conditions are still true given that they were true in the previous
state.

5. The summary class of T remains idle, and its status does not become running, so the
conditions hold for T'. The summary class of parent(T') changes from started to child-
outstanding, and in s, parent(T) has a child with status requested, so the conditions
hold for parent(T).
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request-create-child(T'), T a root node:

This action is identical to the previous one, except that T is added to precicis. Since
only four points (third through sixth) of the third statement relate to preciousness, we verify
that they hold.

1.

Since status(T) was not-started in the previous state, master # T in the previous and
hence current states, the condition holds.

. status(T') is requested after the action, so this condition holds.

. ancestors(T) is empty, and thus is trivially a subset of precious.

By client well-formedness, the schedule of super-root may only contain one request-
create-child action, and thus all other children of super-root have status = not-started
and are thus not precious, so the last point is satisfied.

request-commit(T’, results):

1.
2.

Since client automaton preserve well-formedness, o’ is well-formed.

Before this action, the summary class of client automaton T was started, and thus
status(T) was running.

(a) siatus(T') changed from running to committing, so the condition still holds for
T. For any child T” of T, no request-create-child(T”) exists in restricted-last-
blorks(a) because request-commit(T, results) exists in a. status(T') for any such
T’ is not-started, by the postconditions of request-commit, so the condition holds.

(b) status(T) is now committing, and request-commit(T, results) clearly exists in
last-blocks(a).

(c) This condition holds, by the postconditions of request-commit.

(d) This condition holds, since status(T') = committing and was running in the
previous state.

(a) Since status(T') changed from running to committing, this condition still holds
for T. By the postconditions of request-commit(T, results), every child of T has
status not-started, so the condition holds for every child of T'.

(b) status(T) = committing, so the condition still holds.
(c) Since neither the value of master nor precious changed, this condition still holds.

(d) Since the request-commit(T', results) action occurred, T must have been in the
started summary class, and therefore every child of T' had status not-started or
committed. Thus, no child was a member of precious, and no child is in precious
in 8,. Thus, this condition holds.

(e) The next two conditions hold because they held in the previous state and the
value of precious is unchanged.
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4. Observe that death-status(T) is nil, by the postconditions of the action, and that
status for each child 7" of T was not-started or committed in the previous state since
T was in summary class started. Thus, death-status(T') was nilin the previous state.

(a) death-status(T) is nil, so the condition holds for T. death-status for each child
of T was and thus still is nil. Thus, the condition holds.

(b) This obviously holds for T, and holds for each child of T', since each child had
status not-started or committed.

(c) We must show that if master = T no node has death-status dying. Assume
master = T and some other node has death-status dying. Because this condition
held in the previous state, death-status(T') = dying. We have already shown
that no child of T' has death-status dying, and no descendant of 7" has death-
status dying, since then it would have status running. Consider an ancestor T’
of T with status(T') = dying. Since master # T' and is not an ancestor of T”,
each ancestor of T/ must have death-status dying, by induction on this condition.
However, this condition cannot hold for super-root and thus no such node exists.
But this contradicts our assumption, so the condition holds.

5. The summary class of T is now idle, and its status is no longer running, so the
summary class conditions hold for T. They are unchanged for other nodes.

create(T):

1. Since status(T) was requestedin the previous state, the summary class was idle. Thus.
the last block of T either is empty or contains a request-commit(T, resuits), in which
case that action is the last action of the block. Thus, the-resulting execution is well-
formed, since create(T') may be added if the current block is empty, and will start a
block if it ends in request-commit.

2. (a) The first condition still holds, since status(T") changed from requested to running.

(b) status(T) # committing, so this condition holds.

(c) This condition held in the previous state, and holds now, since status(T') changed
from requested to running.

(d) This condition held in the previous state, and holds now, since status(T) changed
from requested to running.
3. (a) In the previous state, status(T) was requested, so status(parent(T’)) was and is
running, so this condition holds.
(b) status(T') = running, so this condition holds.
The rest of the conditions can be easily observed to hold in s,, given that they held

in 8,_1.

4. (a) status(T) = running, by the postconditions of the action, so this statement holds
for T. It holds for all other nodes because it held in the previous state.
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(b) Neither of the next two conditions are affected by the action, and thus still hold.

5. The summary class of T changes from idle to started as create(T') occurs, and status(T)
becomes running. Since status(T) was not running in the previous state, all children
of T had and have status not-started. Thus, the summary class conditions hold.

commit(T, results):

1. To show that o' is well-formed, we must show that request-create-child(T) occurs in
last-blocks(a) and that commit(T, results) does not. The preconditions of commit(T,
results) require that status(T') = committing, and therefore a request-create-child(T')
action exists in last-blocks(a). By the fourth point of the second statement, no
commit(T, results) action occurs in restricted-last-blocks(a), because status(T) # com-
mitted. Because status(T') = committing in s,_,, status(parent(T)) = running, and
thus its summary class is either started or child-outstanding, and thus no request-
commit(parent(T), results) exists in last-blocks(a). Thus, every action occurring at T
in restricted-last-blocks(a) appears in last-blocks(a), and no commit(T’, results). Thus,
o' is well-formed.

2. (a) The left half of this condition is false both before and after the action, so it
holds in s,,.
(b) The antecedent is false, so the condition holds.

(c) By the postconditions of commit(T, results), both sides of the equivalence are
false in s,,.

(d) By the postconditions of the action, status(T') = committed, and thus this cca-
dition holds.
3. (a) Since status(T) was committing in the previous state, status(parent(T)) was and

is running, and the condition holds.

(b) By the postconditions of the action, master is set to the parent of T if it was
T. Since status(T) is not not-started, status(parent(T)) is running, and the
condition is satisfied.

(c) T ¢ precious, so the next three conditions hold.
(f) Since precious now has either one fewer member or is the same, this statement

still holds.

4. These conditions hold because they held in the previous state and do not depend on
any variables changed by commit.

5. (a) status(parent(T)) was running before the action, and thus still is. The summary
class of parent(T) is now either started or child-outstanding, and thus the first
statement is satisfied.

(b) If the summary class of parent(T) is started, then every request-create-child(T’)
has a matching commit, and no request-commit(parent(T), results) appears in
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die(T):

(c)

last-blocks(a). By the last condition of the second statement, status(T') =
committed if commit(T", results) appears in last-blocks(a). If no request-create-
chiid(T") appears in last-blocks(c), then status(T') = not-started. Thus, every
child of parent(T) has status either not-started or committed.

If the summary class of parent(T) is child-outstanding, then there exists 7", T’ a
child of T, such that a request-create-child(T’) action with no matching commit
appears in restricted-last-blocks(a). Thus, status(T') may not be not-started,
and may not be committed.

1. After die(T), the last block of T is empty, and thus well-formed. The last block
of every other client automaton is unchanged, and is thus well-formed since it was
well-formed before this action.

2.

(a)

(b)
(c)

(d)

()

(b)

(c)
(d)
(e)

For T' a child of T, no request-create-child(T") exists in restricted-last-blocks(c),
since the last block of T' is empty. By the postconditions of the action, status(T")
= not-started, so the condition holds.

status(T) = dead, and status(T’) = not-started, T' a child of T, so the condition
holds. :

By the preconditions of die(T'), no child has status committing, so both sides of
the equivalence are false before the action for each child of T'. Since status of
each child is not-started after, the condition holds for all children. Since death-
status(T) = dying before the action, status(T') = running, and both sides of the
equivalence are false before the action. Thus, they are false after the action,
since then status(T) = dead.

status(T') changed from running to dead, sc the statement still holds for T
after the action. For any T’, T’ a child of T', status(T') = not-started and no
commit(T”, results) action occurs in last-blocks(a) because the last block of T is
empty, and hence does not occur in restricted-last-blocks(c).

Before the acticn, status(T) = running, and thus status(parent(T)) = running.
After the action, status(parent(T)) is still running, so the condition holds for 7.
After the action, no child of T has status running, and the condition holds for
each child.

By induction on the second condition of the fourth statement and because death-
status(T') was dying, master is either T or an ancestor of T. status(T) = dead,
and status for any ancestor of T is running, so the condition holds.

This condition holds because it held in the previous state because no node
became master or was removed from precious.

Since death-status(T) = dying, master is an ancestor of T. Since master ¢
precious, no descendant of master is in precious. Thus, T ¢ precious.

The value of precious is unchanged, so the next two statements still hold.
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4. (a) By the postconditions of the action, death-status(T) = nil, and the condition
holds for T. For any child of T, status was not running and hence death-status
was not dying. Thus, death-status is not dying, and the condition holds.

(b) death-status is not dying for any child, as shown in the previous section. Thus,
this condition still holds.

(c) Observe that master # nil in the previous state and hence the current state
because death-status(T) = dying.
If master = T, no node but T has death-status dying, since no child of T has
death-status dying, and if there existed any ancestor with death-status dying,
master would have to be an ancestor of this ancestor.
If master # T, death-status(master) = dying in the previous state and thus also
in sy.
Thus, the condition holds.

5. (a) After this action, the summary class of T is idle, and status(T) = dead, so the
condition is satisfied. For every child T’ of T, status(T') was not running, and
thus the condition still holds.

(b) Since the summary class of T is idle, the next two statements hold.
restart(T):

1. This is an internal action, and hence does not appear at any client automaton, and

thus o’ is well-formed.

2. (a) status(T) changes from dead to not-started, and thus this condition still holds.

(b) status(T') # committing, and thus this condition holds.

(c) status(T) was not committing, and thus both sides of the equivalence were false
before the action. After the action, both sides are still false.

(d) status(T) was not committed, and thus both sides of the equivalence were false
before the action. After the action, both sides are still false.

3. (a) status(T) was dead, so status(parent(T)) was and is running. Thus this condition
holds.

(b) status(T) changes from dead to requested, so the condition still holds.

(c) No node is added to precious, and the value of master does not change, so the
condition still holds.

(d) status(T') = requested, by the postconditions of the action, so the condition
holds.

(e) The value of precious does not change, so the next two conditions hold because
they held in the previous state.

4. (a) No node has death-status become dying or status stop being running, so the

condition still holds.
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5. death-status does not change for any node, nor does master. Thus the next two
conditions still hold.

6. Since restart(T) is an internal action, the summary class of every client automaton
is unchanged. Since changing the summary class of a client automaton from dead to
requested does not affect any of the conditions, they still hold.

restart-precious(T):

The postconditions of this action are identical to the restart(T') action, except that T is
added to precious. The preconditions are a superset. Thus, every condition not relating to
precious holds because it held for restart(T).

The only conditions involving precious are the last four of the third statement.

3. (c) By the preconditions of the action, master # T, so the condition holds for T.

(d) status(T') = requested, by the postconditions of the action, so the condition
holds.

(e) By the preconditions of the action, parent(T)€ precious, so ancestors(parent(T))
and therefore ancestors(T) € precious. Thus, the condition holds.

(f) By the preconditions of the action, no child of parent(T) was a member of
precious before the action, and hence at most one is after the action. Thus, the
condition holds.

become-master(T):

1. This is an internal action, and hence does not appear at any client automaton, and
thus o’ is well-formed.

2. We observe that this action has no effect on the state except that the value of master
is changed. Also, we note that it is an internal action of the deadlock recovery
automaton and thus does not occur at any client automaton. Thus all conditions in
this section still hold.

3. (a) This condition still holds since status of every node is unchanged.

(b) status(T') = running, by the preconditions of the action. Thus, the condition
still holds.

(c) T ¢ precious, by the preconditions of the action. Thus, the condition still holds.
The rest of the conditions of this section can be easily observed not to depend on the

value of master, and thus still hold.

4. Since master = nil before this action, no node had death-status dying in the previous
state, and thus no node does in the current state. Thus, the conditions hold.

5. The summary class of each client automaton is unchanged, as is status of each node.
Thus, the conditions still hold.



new-master(T'):

1

4.

This is an internal action, and hence does not appear at any client automaton, and
thus o’ is well-formed.

We observe that this action has no effect on the state except that the value of master
is changed. Also, we note that it is an internal action of the deadlock recovery
automaton and thus does not accur at any client automaton. Thus all conditions in
this section still hold. '

(a) status is unchanged for every node, so this condition still holds.

(b) By the preconditions of the action, master is a child of T', and has status dead.
Thus, status(T') = running (by the previous condition), and the condition holds.

(c) master is set to T only if T ¢ precious, so the condition holds.
(d) Since the value of precious and the value of status for each node are unchanged,
the last three conditions still hold.

Since status(master) was dead, death-status(master) was not dying. Thus no node has
death-status dying, and all three conditions hold.

The summary class of each client automaton is unchanged, as is status of each node.
Thus, the conditions still hold.

begin-die(T):

1.

2.

3.
4.

5.

This is an internal action, and hence does not appear at any client automaton, and
thus o’ is well-formed.

We observe that this action has no effect on the state except that the value of death-
status of one node is changed. Also, we note that it is an internal action of the
deadlock recovery automaton and thus does not occur at any client automaton. Thus
all conditions in this section still hold.

For the same reasons as for the previous section, all conditions still hold.

(a) By the preconditions of the action, status(T') = running, so this condition holds.

(b) By the preconditions of the action, death-status(master) = nil, so before the
action VT : death-status(T) = nil. Thus death-status(parent(T)) = nil, and since
master = T, the condition holds.

(c) death-status(master) = dying, by the postconditions, so the condition holds.

The summary class of each client automaton is unchanged, as is status of each node.
Thus, the conditions still hold.
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die-down(T'):

1.

4.

5.

This is an internal action, and hence does not appear at any client automaton, and
thus o' is well-formed.

We observe that this action has no effect on the state except that the value of death-
status of one node is changed. Also, we note that it is an internal action of the
deadlock recovery automaton and thus does not occur at any client automaton. Thus
all conditions in this section still hold.

. For the same reasons as for the previous section, all conditions still hoid.

(a) By the preconditions of the action, status(T') = running, so this condition holds.

(b) Since in the previous state death-status(parent(T)) = dying, death-status(master)
= dying, and thus master # T. Thus, master# T in the current state, and the
condition holds.

(c) Since death-status(parent(T)) = dying, the consequent was true in the previous
state, and is still true. Thus the condition holds.

The summary class of each client automaton is unchanged, as is status of each node.
Thus, the conditions still hold.

precious(T):

1.

This is an internal action, and hence does not appear at any client automaton, and
thus o’ is well-formed.

We observe that this action has no effect on the state except that the value of precious
is changed. Also, we note that it is an internal action of the deadlock recovery
automaton and thus does not occur at any client automaton. Thus all conditions in
this section still hold.

(a) Since status of every node and the value of master are unchanged, the first two
conditions still hold.
(c) By the preconditions of the action, T # master, and the condition still holds.

(d) Since T € alive-children(parent(T)), status(T) is either requested, running or
committing, and the condition holds.

(e) Since parent(T) € precious, ancestors(parent(T)) € precious. Thus, ancestors(T)
€ precious.

(f) By the preconditions of the action, children(parent(T)) N precious = @, so the
size of this set is at most one after one node is added to precious.

The values of status and death-status for each node are unchanged, as is the value of
master. Thus all the conditions in this section still hold.

The summary class of each client automaton is unchanged, as is status of each node.
Thus, the conditions still hold.
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Lemma 4.4 For any behavior of Ay, max-resources < TOTAL_RESOURCES.

Proof:

By Lemma 4.2, a client automaton occupies resources only if it is in the started or
child-outstanding summary classes. By the first condition on summary classes given in
Lemma 4.3, we see that status(T') = running iff the summary class is other than idle. Thus,
a node occupies resources iff its status is running. We show by induction that in every state
the number of nodes with status running < TOTAL_RESOURCES.

Basis:
Observe that in the initial state no node has status running.

Inductive Step:

Examine all the actions, and notice that only create increases the number of nodes
with status running, and only does so to one node. Examine its precondition, and see
that it is required that the number of nodes with status running must be strictly less than
TOTAL_.RESOURCES, and that, therefore, the number of nodes with status running must
be less than or equal to TOTAL_RESOURCES.

Thus, in every state the number of nodes with status running < TOTAL_RESOURCES
and, therefore, maz-resources < TOTAL_RESOURCES

O

4.3 Auxiliary properties used for liveness proof

Lemma 4.5 The set of precious nodes contains at most one node at each level of the
tree.

Proof:

Assume this is not the case. Call the two precious nodes at the same level n; and n,.
Consider the lowest-level node that is an ancestor of both n; and ny. It must have two
precious children, one of which is an ancestor of n; and one of which is an ancestor of n..
By subpoint (f) of point 3 of Lemma 4.3, this cannot be. m]

Lemma 4.6 The set of precious nodes forms a simple path from the root.

Proof:

We know from the previous lemma that there is at most one precious node at each level.
Consider the lowest-level precious node. Its parent must be precious, and so on, since the
parent of every precious node is precious. Thus, the precious nodes form a simple path from
the root. a
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4.4 A, meets safety part of correctness conditions

We show that every finite behavior of A satisfies the first five conditions for
membership in alt-beh.

The first requirement, that the behavior is finite, is trivially satisfied.

The second requirement, that the subsequence of the behavior at each client au-
tomaton be well-formed, is satisfied, by the first point of Lemma 4.3.

The third requirement is a restriction on the amount of resources used at any
one time; or, more formally, that for any behavior 8 of ah, maz-resources(8) <
TOTAL_RESOURCES. We know this is satisfied by Lemma 4.4.

The fourth requirement states that every create(T') action must be preceded by
a request-create-child(T') action with no intervening die(parent(T)). Observing the
automaton code, we note that a precondition for create(T) is status(T') = requested.
By Lemma 4.3, this implies the desired condition.

The fifth requirement states that every commit(T', results) action is preceded by
a request-commit(T, results) action with no intervening die(T) action. Observing
the automaton code, we note that the preconditions for commit(T, results) include
status(T') = committing and (T, results) € saved-results. By Lemma 4.3, this implies
the desired condition.




Chapter 5
Liveness Properties

This chapter presents a proof that a modified version of A presented here satisfies
the correctness conditions, and that therefore this modified version of the algorithm
is correct. ’ ‘

5.1 Liveness version of algorithm

We present a modified version of the deadlock recovery automaton, and show
that all safety properties shown in Chapter 4 for the version of the deadlock recovery
automaton presented there hold for the modified version. The modified version will
be referred to as the “liveness” version; the previous version will now be referred to
as the “safety” version. The composition of this modified automaton and the client
automata will be referred to as A;,, and the composition of the safety version (on
page 34) and the clients, previously named A, will henceforth be referred to as Aj,.

Ay, differs from Aj; only in that additional preconditions have been added. From
this, we will argue that all safety properties that hold for the safety version of the
algorithm hold for the liveness version as well.

5.1.1 Safety properties still hold

The complete automaton description (given on page 58) is used for the proof
of liveness properties. Lines in the “liveness” version that differ from those in the
“safety” version are marked with a .

For the liveness proof, we add preconditions to the actions of the automata, and
only consider fair executions.

Every execution of the new automaton is an execution of the old, since “adding
preconditions” has the effect of removing transitions from the automaton, because the
preconditions/effects notation is merely shorthand for explicitly listing the transition
function of the automaton called for by the model.

Lemma 5.1 execs(Ap,) C execs(Asg).
Proof:
Consider any execution of A,,. Every action taken in this execution is possible ac-

cording to the definition of A, since it is identical, except that some actions have fewer
preconditions. Thus, this execution is a execution of Ayg. 0

Lemma 5.2 All properties true of all executions of Ang are true of all executions of
Ay, .
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Proof:

Obviously, since every execution of Ay, is an execution of Aj. a

Thus, all safety properties shown for the automaton given for the safety proof will
hold for the new automaton.

Lemma 5.3 fairbehs(A;,) C behs(Ag,)

Proof:

Since the executions of the liveness version are a subset of those of the safety version, the
behaviors (subsequences of schedules consisting of external actions!) of Ay ., are contained
in the behaviors of As,. Since the fair behaviors are a subset of the behaviors of a given
automaton, the fair behaviors of the liveness version are contained in the behaviors of the
safety version. 0

5.2 Underspecified predicates

At some points in an execution of the deadlock recovery algorithm there are cer-
tain actions which could occur but are not required to occur for proper functioning.
We wish in some cases to leave this choice unspecified in the high-level algorithm,
leaving it to the low-level description or even to the actual implementation, to decide.
Representing this in the IOA language at the high-level poses a problem, however,
since if the action is enabled, it (or some other action) must eventually occur (by
fairness), and if the action is not enabled it must not occur.

This underspecification allows modifications to the algorithm driven by efficiency
conditions to be made after the proof is completed. For example, in this algorithm
it may be found (experimentally, perhaps) desirable to kill a node only if the system
is in deadlock. However, it seems that determining that the system actually is in
deadlock (rather than “is probably close to”) is expensive (it might require taking a
global snapshot). Alternatively, experimental results might indicate that one should
kill a node as soon as congestion occurs. Thus, underspecifying the conditions under
which a node may be killed in the algorithm used for the proof increases the utility
of the proof, since a wider range of implementations are then covered.

It may difficult be to specify the mapping between states of the low and high-
levels because, for example, a low-level action may be enabled or not depending on a
state component that is abstracted away. The use of underspecified predicates in the
high-level automaton description allows one to specify the mapping more easily.

5.2.1 Use of underspecified predicates

In the next section we will define some underspecified predicates for use in the
algorithm description for Aj,. Since our definitions differ from that of a normal

1[LT88], p. 3
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predicate (i.e., a set of states in which the predicate is true), we must give meaning
to algorithm descriptions written with these predicates.

Definition:

By an algorithm whose description contains a underspecified predicate, we mean the
set of algorithms obtained by arbitrarily replacing each underspecified predicate with a
standard predicate that meets the given conditions.

Throughout the rest of this thesis we will use A4, as shorthand for “any algorithm
that is a member of the set defined by A4,.” Given the definition of an underspecified
predicate, we will be able to infer that, in certain states, no possible predicate that
could replace the underspecified predicate could be true. Arguments about what
actions cannot happen will be made on this basis. Similarly, we will be able to infer
that, in certain states, all possible predicates that could replace the underspecified
predicate must be true. Arguments about what actions must happen will be made
on this basis.

5.3 Deadlock recovery automaton

Here, we add preconditions to many actions to make it possible to prove liveness
properties for the algorithm. In A, many preconditions were intentionally left out
to make the proof of safety properties simpler.

5.3.1 Underspecified predicates

In this section several underspecified predicates are defined. The definitions gen-

erally take the form of implications between standard predicates and a representative
choice for the underspecified predicate. However, one of the critical requirements on
the choice of underspecified predicates for this algorithm is that we require some un-
derspecified predicate to be true if another is false. To express this, we must use the
example member of a previously defined underspecified predicate in the definition of
a succeeding underspecified predicate. This is necessary because there will be states
in which two predicates may be either true or false, and we must restrict them so
that it will not be the case that they are both false.

Definition:
By ezample-predicate-choice, we will refer to the standard predicate chosen to replace
ezample-predicate. Obviously, it must satisfy the conditions for the underspecified predicate.

For example, in some states the underspecified predicate create-ok may be either
true or false. However, if it is false, certain other predicates (pertaining to deadlock
recovery) must be true. In addition to this scheme making the proof go nicely, it is
intuitively satisfying because in writing code to implement the algorithm, the pro-
grammer may implement whatever convenient test he chooses for create-ok, as long as
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it satisfies the constraints given. Given this implementation of create-ok, it is trivial
to implement predicates that must be true when create-ok is false; after create-ok
is evaluated, then either the action it regulates should be taken, or else one of the
actions pertaining to deadlock recovery.

An attempt is made here to give intuitive justifications for these definitions. This
is merely to help the reader understand the motivation for them, and is in no way a
proof of any properties.

We will write predicates with the argument tree to indicate that the predicate is
a function of the entire state. We will use the parameter T to indicate that we are
defining a family of predicates, parameterized on nodes of the tree.

5.3.2 Create and initiation of deadlock recovery

In general, the create action should be able to occur when space is available; it
obviously cannot occur when there is no space. However, if the create action is not
enabled due to lack of space, we wish some action concerned with deadlock recovery
(either become-master or begin-die) to be enabled so that recovery may proceed. In
fact, we may wish these situations to be mutually exclusive, in addition to being
jointly exhaustive, with deadlock recovery proceeding exactly when create cannot
occur. We wish to leave these conditions unspecified as far as is reasonably convenient.

Conditions for create

The predicate create-ok(tree) must be true whenever all occupied nodes are pre-
cious and a free node exists. Note that this does not imply that this action must
immediately happen, but merely that it eventually happen or become no longer en-
abled.

Definition:
Let create-ok(tree) be an underspecified predicate such that

( (VT : status(T) = running => T € precious) A

(l|using-resources|| < TOTAL_RESOURCES) ) => create-ok-choice(tree)

and
create-ok-choice(tree) => || using-resources|| < TOTAL_.RESOURCES.

Thus, create-ok must be true if all running nodes are precious, and must be false
if there are no more unoccupied resources.

Observing the existing preconditions for create(T’), we see that the precondition
[lusing-resources|| < TOTAL_RESOURCES is already present. From this, it might at
first seem that the second constraint create-ok(tree) is unnecessary, since if the existing
precondition is false it matters not whether an additional one is as well. However,
we also use the negation of create-ok-choice as a precondition for actions associated
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with deadlock recovery, namely become-master and begin-die. Thus, the property that
create-ok is always false when ||using-resources|| < TOTAL_RESOURCES does not
hold is important. ' -

Conditions for become-master

If there is a node T with status(T) = requested, but create(T) is not enabled, we
wish become-master(T”) to be enabled (for some T”) so that deadlock recovery may
begin. However, it is also acceptable for become-master to happen at other times.

Definition:
Let become-master-ok(tree) be an underspecified predicate such that

~create-ok-choice(tree) = become-master-ok-choice(tree).

This ensures that if create-ok is false become-master-ok is true, but does not oth-
erwise constrain become-master-ok.

We wish to allow the implementor to restrict the become-master action to “ap-
propriate” nodes, without making the decision now (at proof time) of exactly what
“appropriate” means. Thus, we attempt to identify the smallest set of states in which
the action must be enabled for which we can reasonably easily complete the proof.

The become-master(T) action must be enabled if each of the following is true.

o status(T) is running.

2 I has requested a child that has not been assigned space.
e no child has status running.

If the become-master(T) action is enabled in only these cases, the choice of dead- -
lock master is confined to nodes that are leaf nodes in the tree of processes that are
actually executing and for which there is some reason to believe the node will not
return (having an outstanding chi’/! with no space assigned to it).

Of course, due to the inherent nondeterminism of I/0 automata, an implementa-
tion is free to choose arbitrarily among all nodes for which the become-master action
is enabled. The point here is to show that only considering nodes that meet the above
conditions for deadlock mastership can still result in a correct algorithm.

Definition:
Let master-candidate(T, tree) be an underspecified predicate such that

status(T) = runningA
requested — count(T) > 0 A = naster-candidate-choice(T, tree).
VT’ € children(node) : status(T’) # running
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Conditions for begin-die

Definition:
Let begin-die-ok(T, tree) be an underspecified predicate such that

(requested-couny(T) > 0 A —create-ol(tree)) = begin-die-ok-choice(T, tree).

Observing that it is already a precondition of begin-die(T') that T be the deadlock
master, we see that if T has children that have been requested but not created and
the create action is not enabled, then begin-die(T') must be enabled.

This is very natural from an implementation standpoint, as 7' may simply attempt
to secure space for a child, and take the begin-die(T") action if this fails.

Conditions for precious

Definition:

Let precious-ok(T, tree) be an underspecified predicate, with no conditions, or more
explicitly
- false() == precious-ok-choice(T, tree) = true().

Thus, precious-ok can be replaced with any predicate.

This means that an implementation of this algorithm is free to have this action
happen at any time that the other preconditions are satisfied, and is also free to have
it never happen.

5.3.3 Liveuess version of algorithm

The following is the new algorithm with the added preconditions. Note that
while some of the new preconditions use underspecified predicates, some are ordinary
preconditions. New preconditions using underspecified predicates are marked with a
1, while new ordinary preconditions are marked with f.

Input Actions:

request-create-child(T"), T not a root node:

Effects:
status(T’) := requested

request-create-child(T’), T a root node:

Effects:
status(T) := requested
precious := precious U T
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request-commit{T’, results):
Effects: ‘
status(T') := committing
saved-results := saved-results U (T, results)
death-status(T) := nil
VT’ € children(T'), status(T") := not-started

QOutput Actions:

create(T'):
Preconditions:
status(T') = requested
||using-resources]] < TOTAL.RESOURCES
create-ok(tree) }

Effects:

status(T') := running

commit(T", results):
Preconditions:
status(7”) = committing
(T, results) € saved-results

Effects:
status(T") := committed
saved-results := saved-results — (T”, results)
precious := precious — {T"}
if master = T"
if parent(T") € precious
master := nil
else
master := parent(T")

die(T):

Preconditions:
all children of T have status € { not-started, requested, committed, dead }
death-status(T') := dying

Effects:
status(T’) := dead
death-status(T') := nil
VT',T" € children(T), status(T’) := not-started
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Internal Actions:

restart(T'):
Preconditions:
T = parent(T)
T € dead-children(T")
status(7") = running
death-status(T”) = nil
—(T" € precious A children(T’) N precious = @) t
alive-children-count(7T’) = 0 {

Effects:
status(T") := requested

restart-precious(T'):

Preconditions:

T' = parent(T)
T € dead-children(T")
status(7”) = running
death-status(7T’) = nil
T’ € precious A children(T”) N precious =
alive-children-count(T") = 0 {

 Effects:

status(T') := requested
precious := precious U {T'}

become-master(T'):
Preconditions:
master = nil
T ¢ precious
status = running
master-candidate(T’, tree) }
become-master-ok(tree) §

Effects:
master ;.= T

new-master(T):

Preconditions:
master € children(T)
status(master) = dead
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Effects:
if T € precious then
master := nil
else
master ;=T

begin-die(T'):
Preconditions:
status = running
death-status(T') = nil
master = T
begin-die-ok(T", tree) {

Effects:
death-status(T") = dying

die-down(T'):
Preconditions:
status(T) = running
death-status(parent(T)) = dying
death-status(T') = nil

Effects:
death-status(T') := dying

precious(T):
Preconditions:
T’ € precious
T € alive-children(T")
T # master
children(T") N precious =
precious-ok(T', tree) }

Effects:
precious := precious U {T'}

Partition of locally-controlled actions

We place all of the locally-controlled actions of the deadlock recovery automaton in
.one equivalence class for the purposes of fairness. Thus, any execution of the deadlock
recovery automaton in which a locally-controlled action happens infinitely often is fair.
Then, when we show that every fair behavior of the distributed algorithm maps to
a fair behavior of the high-level automaton, we need only show that some locally-
controlled action at the high level happens infinitely often. This makes showing the
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mapping from the low-level algorithm easier, since we must be fair to only one class.

5.4 Liveness properties

Here, we claim that all fair behaviors of Aj, are contained in alt-beh. We use
the definition of fair executions from [LT87], which is the set of executions of the
result of the composition of the deadlock recovery algorithm automaton and the
client automata in which an action of every class of the partition of locally-controlled
actions is given a chance to occur infinitely often.

We define a metric on states of A, , and show that every locally-controlled action
decreases the metric. We then argue that the subset of metric values present in any
execution is a well-founded set. We show that every fair execution is finite, and finally
that every finite fair execution satisfies the correctness conditions.

5.4.1 Metric on the tree

We define a metric M on the states of the automaton Ay, which maps each state
to an n-tuple. The n-tuple is lexicographically ordered, e.g. (23, 459, 345) is less than
(24, 1, 34) is less than (24, 2, 1).

In this section we do not attempt to prove that the metric does not increase, but
merely to motivate the selection of the components. The components are listed below
in order, with the first one presented being the most significant.

The components are presented in order, with the most significant being presented
first. Several “components” of the metric are really several components, one for each
level of the tree. This does not pose a problem, however, since the number of levels
is a constant.

5.4.1.1 Number of permanently committed nodes

This component reflects the amount of “unabortable” work that has been com-
pleted. As stated in section 3.1.2 (page 31), nodes that commit to precious parents
can never be killed. Thus, we refer to these nodes as permanently committed.

Definition:

A node T is permanently committed if status(T) is either committing or committed
and parent(T) is precious.

We must separate the permanently committed nodes into those which are commit-
ting and those which are committed in order to make the proof work, however (because
the request-commit action makes a node have status committing while changing the
status of children from committed to not-started).

This component has two subcomponents for every level of the tree, with the sub-
components for the highest level (that of super-root) being the most significant. For



each level, the higher-order subcomponent is the negative of the number of perma-
nently committed nodes at that level with status committed; the lower-order subcom-
ponent is the negative of the number of permanently committed nodes with status
committling.

5.4.1.2 Number of precious nodes

This component ‘s defined as the maximum possible height of the tree minus the
number of precious nodes, or

TOTAL_RESOURCES — |precious|.

5.4.1.3 Number of dead children of precious nodes

This component is the negative of the number of dead children of precious nodes.
Recalling that precious is the set of precious nodes, and dead-children(n) the set of
dead children of node n, we may write this component as

— Y |dead-children(n)|.
neprectous

The motivation for this is that when the number of dead children of precious
nodes reaches its maximum (and therefore this component reaches its minimum),
each precious node will have one child (also precious), except for the lowest-level
precious node, which will have none. Then, a child of this lowest-level precious node
will be restarted, and made precious.

5.4.1.4 Deadlock master is about to abdicate

This component is 1 if the deadlock master is permanently committed or is dead
and its parent is precious, and 0 otherwise.

It is therefore 0 if there is no deadlock master. This component is needed be-
cause the deadlock master dying or permanently committing decreases a previous
component (either the number of dead children of precious nodes or the number of
permanently committed nodes), and this is not synchronous with the soon-following
increase in the next (distance of deadlock master from precious process) component
when the new-master action occurs, causing there to be no deadlock master.

5.4.1.5 Distance of deadlock master from precious process

If there is a deadlock master, the value of this component is the number of an-
cestors of the deadlock master (ancestors of a node includes the node) that are not
precious, or

|ancestors(master) — precious|.
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If there is no deadlock master, the value of this component is TOTAL_RESOURCES+
1.

For example, if the parent of the deadlock master is not precious, but that node’s
parent is, then the value of this component of the metric is 1.

5.4.1.6 Deadlock master is alive

This component is 0 if the deadlock master is defined and has status dead or
committing and is 1 otherwise. The deadlock master dying or requesting to commit
decreases this, and a subsequent transfer of mastership will decrease the previous
component.

5.4.1.7 Death convergecast progress

This component is designed to measure the progress of the death convergecast.
In the simple case, nodes is the subtree rooted at the deadlock master have their
death-status changed to dying, and later take the die action. This is complicated,
however, by the possibility that nodes in this subtree may already be dead when the
convergecast starts, and that nodes may request to commit or be committed while
the convergecast is in progress. None of this detracts from the central point that the
deadlock master will eventually die, but careful metric design is required in order that
it may be shown that progress always does occur.

This component consists of two subcomponents for each level of the tree, with
the one corresponding to the level closest to the root being the most significant. The
more significant of the two subcomponents is the number of nodes at that level with
a parent with death-status dying and status running. The less significant of the two
subcomponents for each level is the negative of the number 6f nodes at that level with
death-status dying.

The less significant of the two components at each level will decrease as the con-
vergecast propagates down the tree, and the more significant will decrease as it prop-
agates up. They are intertwined because the upward propagation causes the compo-
nents that measure downward propagation to increase.

5.4.1.8 Number of nodes that have committed

This component is similar to the number of nodes that have permanently com-
mitted, except that there is no restriction on committing to precious nodes.

This component has two subcomponents for every level of the tree, with the sub-
components for the highest level (that of super-root) being the most significant. For
each level, the higher-order subcomponent is the negative of the number of nodes at
that level with status coinmitted; the lower-order subcomponent is the negative of the
number of nodes with status committing.
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This component decreasing represents progress as long as no node dies. In this
case, however, one of the higher-order components will decrease, as will be shown
later.

5.4.1.9 Number of free processes

This component is the number of processes minus the number that are occupied,
or the number of free processes, stated formally as

TOTAL_RESOURCES — |using-resources|.

5.4.1.10 Number of nodes with children needing restart

This component is the number of nodes with children that should be restarted.
Let need-restart(T) be 1 if

death-status(T) = nil A alive-children-count(T ) = 0 A |dead-children(T)| > 0.

Then, this component is:

)" need-restart(T).

Tetree

Every restart action decreases this component.

5.4.2 Metric never increases and always decreases

We show that no action ever increases the metric, and that every locally-controlled
action decreases the metric.

Formally, if in any execution of the composition, the metric has a given value in
a state, then the metric never has a higher value in a succeeding state. Further, if a
locally-controlled action occurs, the metric has a lower value in the succeeding state
than in the preceding state.

Lemma 5.4 In any ezecution agmoa)m ... @pTaanyy of the composition of the dead-
lock recovery automaton and client automata, the value of the metric in state any,
is not greater than the value in state a,. If m, is a locally-controlled action of the
deadlock recovery automaton, the value of the metric in anyy is less than the value in
state a,,.

Proof:
Consider each action, and for each consider all possible states. Then, argue that the
action decreases or does not change the metric, the latter only for locally-controlled actions.

request-create-child(T'): By examining the safety proof, we see that the status of T' must
have been not-started. This action changes the status of T to requested, and thus does
not affect any component the metric.
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request-commit(T, results): Before this action, the status of T' was running, by the proper-
ties shown in Chapter 4. This action changes the status of T to committing, decreasing
the component measuring the number of nodes that have committed (specifically the
subcomponent for that level measuring the number of nodes at that level that have
status committing).

If the parent of T is precious, the highest-order component is decreased, since the
number of permanently committed nodes is increased.

Otherwise, if T is the deadlock master, the “deadlock master is alive” component is
decreased.

Otherwise, if T has death-status dying, the component measuring the number of alive
nodes with death-status dying is decreased.

Otherwise, (since T is neither precious, the deadlock master, nor has death-status dy-
ing), it can be seen that no components more significant than the one measuring the
number of nodes that have committed change.

create(T'): This action changes the status of T from requested to running. This decreases
the component that measures the number of free processes, and does not affect any
others, so the metric decreases.

commit(T, results): If the parent of T is precious, the first component of the metric
decreases, since after the action T is permanently committed.

Otherwise, if T was the deadlock master, then the parent of T becomes the deadlock
master, and the component measuring the distance of the deadlock master from the
lowest-level precious process decreases.

Otherwise, the number of nodes that have committed increases, decreasing that com-
ponent of the metric, and no other components change.

die(T'): Observe that status(T) must be running, by Lemma 4.3.

If T is the deadlock master and paren?(T') is not precious, the “deadlock master is alive”
component is decreased, and no more significant components increase. If parent(T) is
precious, then the component measuring the number of dead children of precious nodes
decreases, and no more significant components increase.

If T is not the deadlock master, then the subcomponent of the convergecast component
measuring the number of dead nodes with a dying parent at the level of T decreases,
and no higher-order components change (although the corresponding subcomponent
one level deeper increases).

restart(T'): This action decreases the component measuring the number of free processes,
and does not affect any higher-order components.

restart-precious(T’): This action decreases the component measuring the number of pre-
cious nodes, and does not affect any higher-order components.
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become-master(T'): Observe that if this action occurs, then there was no deadlock mas-
ter before it occurred (by the preconditions of the action). Thus, the value of the
component measuring the number of non-precious ancestors of the deadlock master
was TOTAL_.RESOURCES + 1. After this action, it must have a lower value, since
the deadlock master can have at most TOTAL_.RESOURCES ancestors. No other
component is affected, and thus this action always decreases the metric.

new-master(T'): If there is a deadlock master after this action, it is the parent of the
current one, and therefore the distance of the deadlock master from the nearest precious
node has decreased, and no higher-order components change.

If there is no deadlock master after this action, then the “deadlock master is about
to abdicate” component was 1 before this action, and becomes 0, and no higher-order
components change.

Thus, the metric is decreased.

begin-die(T'): By the preconditions of this action, T is the deadlock master and has
death-status nil. By Lemma 4.3, no node has death-status dying.

This causes a node to have death-status dying, decreasing the subcomponent measuring
the number of nodes with death-status dying in the component measuring convergecast
progress. No higher-order components change, and the metric therefore decreases.

die-down(T'): This action decreases the subcomponent for the convergecast component
measuring the number of dying nodes at the level of T, and does not change any
higher-order components.

precious(T'): This action decreases the component of the metric that measures the number
of precious nodes, and does not affect any others.

5.4.3 Maetric is well-founded

We wish to show that there are no infinite decreasing chains in the subset of metric
values corresponding to an execution of As,. Examining the definition of the metric.
we note that all components are easily observed to be finite (and bounded), except
the number of permanently committed nodes, death convergecast progress, and the
number of committed nodes. We can see that any node counted in one of these three
components must have status other than not-started, and thus the request-create-child
action must have occurred for that node.

At first it would seem that these components must therefore be finite, since each
client automaton may only request finitely many children in a particular execution.
and the depth of the tree is finite. However, consider a client automaton that requests
one child when first invoked, two children when created after the first die action, three
children the next time, and so on. Even though the client automaton requests a finite
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number of children in any block, the maximum number of children it requests after
an infinite number of such blocks is not finite.

The strategy used here will be to show that there are no infinite decreasing chains
in the first six components of the metric, and that there are no infinite decreasing
chains in the rest of the metric given that the first six components do not change.

Lemma 5.5 There are no infinite decreasing chains in first sir components of metric
values in the subset of metric values corresponding to an execution of A, .

Proof:

We examine the first six components, and show that the first component has no infinite
decreasing chains, and that the others are bounded. Thus, there can be no infinite decreasing
chains in the first six components of the metric.

¢ Number of permanently committed nodes

Observe that every node counted by this component has a precious parent, and that
therefore all ancestors are precious. Thus, no begin-die or die action can occur at any
ancestor. Since status is committing or committed, begin-die cannot happen. After
commit, status is not-started, and again begin-die cannot happen. Because this child
has been requested already, it can never be requested again by its parent. Since the
argument holds for the root node down the chain of ancestors to the node in question,
no additional actions will occur at any node ever counted by this component. Thus,
for all counted T, last-block(T) ends in request-commit, and will continue to end in
request-commit, since no more actions are ever added.

Now, consider an infinite decreasing chain, and consider the subset of nodes that were
ever counted. Since the chain is infinite, there must be an infinite number of nodes in
this subset (since each decrease of the metric must add a node). Next, observe that
every node in the subset induced by the chain has request-commit as the last action.
Further, we know that the parent of every such node has not performed a die action
after any state in which the node was counted. Thus, there is a request-create action
in the last block of the parent of every node that has ever been counted.

We have already shown that there are an infinite number of nodes in the subset. Now,
consider the tree consisting of all nodes in the above subset and all their ancestors.
It must also have an infinite number of nodes, since every node in the subset is a
node in this new tree. Since the induced tree has finite depth, some node must have
an infinite number of children (by Ko6nig’s Lemma). Choose such a node arbitrarily.
There must be a request-create in the last block for every child. But this cannot be,
since it violates the definition of client automata, as client automata only request a
finite number of children in any given block.

Thus, there must not be an infinite decreasing chain.

o Number of precious nodes

Since the set of precious nodes forms a simple path from the root (Lemma 4.6), there
may be at most TOTAL_RESOURCES precious nodes. Thus this component is at
least zero, and at most TOTAL_.RESOURCES.
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e Number of dead children of precious nodes
There are at most TOTAL_RESOURCES precious nodes, and each has finitely many
children, by client well-formedness.

¢ Deadlock master is about to abdicate

This component has only two values.

e Distance of deadlock master from precious process

The number of nodes that are ancestors of a given node is finite. Thus, this component
is finite.

o Deadlock master is alive

This component has only two values.

O

Lemma 5.8 There are no infinite decreasing chains in the subset of metric values
corresponding to an execution of Ay, .

Proof:

We have already shown in the previous lemma that there are no infinite decreasing
chains in the first six components. Assuming these components do not change, we show
that there are no infinite decreasing chains in the rest of the components.

Note that since one of the six higher-order components of the metric is decreased if the
deadlock master dies that we may assume that the deadlock master does not die.

1. Death convergecast progress

Observe that any node that dies either has a parent with death-status dying or is the
deadlock master (Lemma 4.3). Examining the restart action, we observe that it will
not be enabled on any node the parent of which has death-status dying. Thus, the
die action can happen at most once for each outstanding descendant of the deadlock
master. Consider the subtree of nodes rooted at the deadlock master. By the same
Konig’s Lemma argument used for permanently committed nodes, we know that there
cannot be an infinite number of nodes counted by this component.

2. Number of nodes that have committed
Given that no node dies, this component takes on finitely many values for the same
reasons as for the component counting permanently committed nodes.

3. Number of free processes
This is at most TOTAL_RESOURCES and at least zero.

4. Number of nodes with children needing restart

Every node counted by this component has taken a die action, and thus this compo-
nent remains finite.
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Thus, since the rest of the components may take on only finitely many values for each
change of the higher-order components, which we have already (in Lemma 5.5) shown may
take on only finitely many values, there are no infinite decreasing chains in metric values
corresponding to any execution of A, . |

5.4.4 A, satisfies correctness conditions

We must show that every fair behavior of A, is contained in correct-beh. We
do this by arguing that every execution of A, is finité and that therefore all fair
executions are finite. We then consider the final state of a fair execution execution
and argue that if the liveness conditions are not satisfied that an action is enabled in
the final state, and thus the execution is not fair.

Lemma 5.7 Every ezecution of An, contains a finite number of actions.

Proof:

Since the subset of metric values possible in any execution is a well-founded set and
because every locally-controlled action decreases the metric, there can only be finitely many
locally-controlled actions in an execution. Thus, there are finitely many die actions. Since
there are a finite number of client automata that take a non-zero number of steps, and each
may take only finitely many steps for each die action, the total number of actions of client
automata is finite. Since the number of both locally-controlled and input actions is finite,
the total number of actions is finite. 0

Lemma 5.8 Every fair behavior of A, contains a finite number of actions.

Proof:
Since every fair behavior has no more actions than the corresponding fair execution, it
is finite. O

Lemma 5.9 Every fair behavior of As, satisfies the first five conditions for member-
ship in alt-beh.

Proof:
By Lemma 5.3, all fair behaviors of A,, are behaviors of Ap;. By Section 4.4, all
behaviors of A, satisfy these conditions. O

Theorem 5.10 Every fair behavior of A, is contained in alt-beh.

Proof:

Assume there exists a fair behavior 3 not in alt-beh. Note that B is necessarily finite.
by Lemma 5.8.

By the previous lemma, every fair behavior of Ay, satisfies the first five conditions for
membership in alt-beh. Because 3 is a fair behavior of the composition, we know that for
all T, B|T is a fair behavior of T, and thus the eighth condition for membership in alt-beh
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is satisfied. Thus, either or both of the sixth and seventh conditions must not be satisfied
by B. .

Consider the last state of this fair finite behavior 8. Since it is fair and finite, no
locally-controlled actions are enabled.

By hypothesis, we know that the one or more of the correctness conditions for A, are
not met. From this, we reach a contradiction by showing that an action is enabled.

First, we observe that certain state relationships cannot hold, since otherwise an action
would be enabled.

No node may have status committing, since then request-commit for that node would be
enabled.

No node T may have death-stutus dying, since then die(T') or begin-die(T"), for some
child T of T would be enabled.

If master # nil, then status(master) = running, since otherwise new-master would be
enabled.

Assume that the second condition, requiring that a commit(T, results) action follow a
request-commit(T’, results) action not followed by a die(parent(T)), is not met, and con-
sider the node T for which it is not met. By Lemma 4.3, status(T) = commiiting, and
(T, results) € saved-results. Thus, the commit(T, results) action is enabled and 8 is not fair.

Assume the first condition, requiring that a create(T') action follow a request-create(T')
action, is not met. Since the request-create(T') action occurred after the most recent die(T)
or die(pareny(T)), we know that status(T) is requested, by Lemma 4.3. Examining the
create(T'} action, we find that the only other precondition is that create-ok(tree) be true (it
includes the other condition). If this action is enabled, the execution is not fair. If it is not,
then create-ok(tree) must be false.

If master has a non-nil value, the begin-die(master) action is enabled (since we know
that status(master) = running and that no node has death-status dying).

If master is nil, then bécome-master(T ) must be enabled for some T'. Consider the set of
nodes that occupy resources. There must be one that is not precious, for otherwise create-
ok(tree) would be true. Since create-ok(tree) is false, become-master-ok(tree) must be true.
Consider the value of master-candidate(T, tree). If true, this action is enabled. If false,
shift the focus to a child of T with status running. Such a child must exist because master-
candidate(T, tree) was false, and it must also be non-precious. Iterating this process, we
eventually come to a node with no running children, and master-candidate is true for this
node, and hence become-master is enabled for this node.

a
Corollary 5.11 Every fair behavior of A, is contained in correct-beh.
Proof:
Every fair behavior is in alt-beh, and alt-beh is a subset of correct-beh. 0



Chapter 6
Distributed Deadlock Recovery Algorithm

In this chapter we define distributed client automata, and model the communica-
tions network and space allocation. We present the distributed version of the deadlock
recovery algorithm. We prove safety prope:ties about the distributed algorithm, and
show that it solves! A;,, and finally that the distributed deadlock recovery algorithm
is correct.

Both the communications network and the space allocation function are modeled,
but we give no implementation of these functions because they are beyond the scope
of this thesis. Each is assumed to be distributed in nature, and is required to have
shared actions at each processor. We give constraints on those actions, and do not
further constrain the implementation of these functions. The overall architecture thus
consists of a number of processors, with a deadlock recovery automaton at each, all
the client automata, which have shared actions at each processor, and the network
and space allocation automata, which have shared actions at each processor. The
space allocation automaton also shares input actions with client automata.

6.1 Modeling distributed computation

In this section we present some of the design goals of the FTPP network. We also
present the naming scheme for processes used in this chapter.

6.1.1 Properties guaranteed by the FTPP network

We make several assumptions about the network communication system on which
the RPC system is built. In Section 6.3, we present an automaton that models the
network; this automaton is the definitive statement of the network properties. The
following are some of the design goals of the communications network of the FTPP:?

Reliability: Exactly those messages sent are delivered, and they are delivered after
being sent.

Broadcast capability: Each message sent may be sent to any subset of the set of
processors.

Serialization: A consistent total ordering is imposed upon all messages sent. Mes-
sages received at each particular processor are consistent with this ordering.

1[LT88], p. 11
%I was involved in several design discussions for the network. Also, see [Har85]
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Bus semantics: If processor A sends message Ap to processor B, and subsequently
sends message A¢ to processor C, message Ap will be delivered first. Most
importantly, this implies that any message Cp causally generated by C because
of Ac, and then sent to B, will arrive after Ag (because Ag must already have
been delivered before Ac arrived at C).

The broadcast and serialization properties imply that atomic broadcast is possi-
ble. In the FTPP hardware design, transmitted messages are actually serialized and
distributed to the communications hardware at each processor; messages to fewer
than all processors are simply only delivered by the communications hardware to the
actual processor for the proper subset of processors.

6.1.2 Modeling of processes

As explained in Section 2.1.2, we concern ourselves with processes only, and do not
address issues of supporting several processes on a single physical processor. Instead,
we consider there to be one logical processor per process.

The symbol p represents a process; it ranges over the set

P' = {p; : 0 <i < TOTAL_.RESOURCES}

of all processes. The set P is P’ without po. The process py is special; it is the
process that evaluates super-root. It is not included in resource counts or broadcasts,
and exists merely to make it simple to model the initial request from super-root.

6.2 Distributed client automata Cy

We would like the version of the client automata used with the distributed version
of the algorithm, called distributed client automata, to be the same as the high-level
client automata. However, we do not wish to clutter the high-level version of client
automata with processor identifiers, since we have no notion of processors there.
Thus, we form a distributed client automaton from a client automaton by adding
one additional argument, a processor identifier ranging over the set of processors,
to each action of every client . This models the way in which the client automata
communicate with the part of the deadlock recovery algorithm running on the local
processor. We could have added this argument to each action of every high-level client
automaton, and not constrained its value, but instead do it here and avoid cluttering
the high-level definition.

A notion of well-formedness is given for distributed client automata. This defini-
tion is similar to that for the high-level client automata, and is different only in that
it enforces the notion that each “run” of a client should be on the same process.

The following is the external action signature for distributed client automata.



Input Actions:
create(T, p)
die(T, p)
commit(7”, results, p), T a child of T

Output Actions:
request-create-child(7”, p), T" a child of T

request-commit(T’, results, p)

6.2.0.1 Well-formedness for distributed client automata

The definition of well-formedness for distributed client automata is based on the
definition for high-level client automata.

Definition:

Let M. be a mapping from sequences of actions of distributed client automata to se-
quences of actions of high-level client automata. M, applied to a sequence of one action
is the action with the process specifier p removed. M, applied to a sequence mom;...7, is
M (7o) M (71)... M (7y,).

Definition:

We extend the notion of “blocks” of actions defined for high-level client automata (sec-
tion 2.2.3, page 17) to distributed client automata. To divide an sequence of actions of Cy
into blocks, apply the mapping, divide the high-level client sequence into blocks, and then
consider a block of the distributed client automaton to be those actions corresponding to a
high-level block.

Definition:
A sequence of external actions a of a distributed client automaton is well-formed iff

o M_.(a) is a well-formed sequence of external actions of a high-level client automaton.

e The value of p for all actions in each block of a is the same.

The first condition extends the obvious properties of high-level client automata
to distributed client automata. The second imposes the condition that a distributed
client automaton may only communicate with the part of the deadlock recovery au-
tomaton resident on the process on which it is executing.

6.2.1 Fair behaviors of distributed client automata
Definition:

A distributed client automaton Cy is an automaton with the external action signature
given earlier such that:
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e Cg4 preserves well-formedness.

e For every fair behavior 8 of Cy, M. (f) is a fair behavior of some high-level client
automaton C.

6.3 Communication network

We present an automaton Ay that models communication within the FTPP; it
is intended to be an accurate abstraction of the actual functioning of the FTPP
network. The transition function for the automaton is given below. The expression
from represents an element of P, the set of processors. Thus, the expression Ufrom
represents one of |P| separate input queues, one per process. The expression fo
represents an element of the power set of P; we shall consider writing p;, an element
of P, in this place to be syntactic sugar for the singleton set {p;}. The expression
to-proc represents an element of P. The expression m is an element of My, the set
of messages that can be sent.

The automaton code for Ay follows. For purposes of fairness, each locally-
controlled action is in a separate equivalence class.

Input Actions:

send(from, to, m):

Effects:
enqueue(ggom, (from, to, m))

Output Actions:

recv(from, to-proc, m):

Preconditions:

to-proc € to

head(go) = (from, to, m)
Effects:

to = to - { to-proc }

if to - { to-proc } = 0 then

dequeue(qo)

Internal Actions:

choose-proc(from):

. Preconditions:
head(gom) = (from, to, m)



Effects:

dequeue(gfrom)
enqueue(qo, (from, to, m))

There is one input queue for each processor; the choose-proc action selects a wait-
ing message to be next in the serialized order.
One can see that in any fair behavior of this automaton:

e The actions recv(from, to-proc, m), for each to-proc € to appear iff the action
send(from, to, m) does.
e If send(from, to;, m,) precedes send(from, to,, m,),
recv(from, to-proc,, m;) precedes recv(from, to-proc,, m,),
for to-proc, € to, and to-proc, € to,.
Thus, all messages sent are received, no message is received that was not sent,
and messages are received after they are sent. Messages sent to (possibly different)

processes from a given process are received in the order sent. This realizes the “bus”
design goal given in section 6.1.1.

6.4 Space allocation

When a deadlock recovery automaton has a child of the current client marked
as requested, it must locate a process to execute the child. We give here correctness
conditions for an automaton that solves this problem. It should be clear that a simple
implementation of a space allocation automaton using a central controller could be
constructed that would satisfy these conditions. However, a specification is given,
rather than presenting a simple implementation, so that more efficient algorithms
may be used.

The external action signature of such an automaton is given below.

Input Actions:
create(T, p)
die(T, p)
request-commit(7T’, results, p)

request-space(p)

QOutput Actions:
can-do-work(p, p')

no-space(p)
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In order to define correctness for a space allocator, we first need a few definitions.

Definition:

Let occupied be a predicate on ordered pairs consisting of a sequence of external actions
of client automata 3 and a process identifier p. The predicate has value irue if 8 contains
a create action occurring at process p that is not followed by a die or request-commit action
at process p, and value false otherwise.

Definition:

Let allocated also be a predicate on ordered pairs consisting of a sequence of external
actions of the space allocation automaton # and a process identifier p. Let allocated have
value true if occupied(B|p, p) or if 3 contains a can-do-work(p’, p) action not followed by a
die or request-commit action occurring at p or p’, and false otherwise.

The predicate allocated can be seen to be a natural and simple mrodel of availability
for allocation. No process that is evaluating a client automaton is available, nor is
any process that has been assigned if the process to which it was allocated is still
occupied. This requirement allocateds the deadlock recovery algorithm from having
to notify the space allocator if an allocation is not used in the event of a node being
aborted.

Definition:
A space allocating automaton is an automaton such that the following are true of every
fair schedule 8 of the automaton:

1. vcan-do-work(p, p’)é implies — allocated(7, p’).

2. Neither can-do-work(p, p') nor no-space(p) occurs in 8 unless it is preceded by request-
space(p) without any of the following actions intervening: die(T, p), request-commit(T’,
results, p), can-do-work(p, p”), or no-space(p).

3. Every request-space(p) not followed by either die(T, p) or request-commit(T, results,
p) is followed by either can-do-work(p, p’) or no-space(p).

4. If B is yrequest-space(p)éno-space(p), then if 3p'|-allocated(y, p'), a can-do-work(p",
p""") action occurs in 4.

In other words, the space allocator only allocates processes that are not occupied
and for which allocations were not previously given, and answers exactly once requests
that were made and not superceded. In addition, it a request is made when there is
a free process, some request is satisfied before any is denied.

6.5 Distributed algorithm

This section explains how the distributed version of the algorithm works. It is
assumed that the reader already understands the high-level algorithm. As before. the



normal case will be explained first, and then selection of the deadlock master and
killing nodes will be explained.

In the distributed version, there is one deadlock recovery automaton per processor,
and these automata communicate by sending messages using the network automaton.

In the high-level algorithm, the creation of a child is straightforward. The parent
client automaton performs a request-create-child action, and then the deadlock recov-
ery automaton takes a create action. In the distributed case, the request-create-child
action causes the deadlock recovery automaton associated with the parent client au-
tomaton to mark the child as requested. Then, it asks the space allocation automaton
for space by taking the request-space action. If the space allocation automaton takes
the can-do-work action, the automaton associated with the parent sends a <DO-WORK>
message to the specified automaton, which then takes a create action.

When a client automaton is finished, it takes the request-commit action. This
causes the deadlock recovery automaton associated with that client to send a <DONE>
message to the deadlock recovery automaton associated with the parent, which then
takes the commit action.

When the no-space action occurs at a deadlock recovery automaton (under the
control of the space allocator) instead of the can-do-work action, the deadlock recovery
automaton takes action to resolve deadlock. If the deadlock recovery automaton does
not have recorded that a deadlock master exists, it broadcasts a <WANT-MASTERSHIP>
message indicating that it is a candidate for deadlock mastership. If it does have
recorded that there is a deadlock master, it sends an <AM-BLOCKED> message to the
deadlock master.

When a <WANT-MASTERSHIP> message is received and the local process has no
deadlock master recorded, the process named in the message is recorded as the dead-
lock master by the receiving process, unless the receiving process originally sent the
message and it is no longer eligible to become the deadlock master. Because of the
properties of the communication network, we will be able to show that at most one
process will think itself to be the deadlock master at any time.

When a process that is the deadlock master receives an <AM-BLOCKED> message,
it begins to abort the subtree rooted at itself. It does this by sending <DIE-DOWN>
messages to all of its children, which then send such messages to their children. When
a node has received such a message and finds it has no children left, it executes the
die action and then sends a <DIE-ACK> message to its parent. When the parent
of the deadlock master receives a <DIE-ACK> message, it can tell that the child
was the master, since the information is contained in the <DIE-ACK> message. If
the child was the deadlock master, the parent broadcasts a <NEW-MASTER> message.
announcing either that it is the new deadlock master, or that there is no longer a
deadlock master, the latter in the case that it is precious.



6.6 State of a deadlock recovery automaton A,

A description of the state of a distributed deadlock recovery automaton is given.
Also, notation and derived variables are presented.

6.6.1 Description of the state

The following is a list of components of the state of each deadlock recovery au-
tomaton. Also given is a brief explanation of their “meaning”, which is intended to
belp the reader follow the presentation of the algorithm code.

6.6.1.1 The variable curT

The variable curT either has value nil or a client automaton name (section 2.1.1).
This indicates which remote procedure call is assigned to the process.
6.6.1.2 The variable status

The variable status has value nil, requested or running.

6.6.1.3 The variable death-status

The variable death-status has value nil or dying.

6.6.1.4 The variable parent-process

This variable is the process that requested the computation of the client denoted
by curT. Its value is nil if curT = nil.

6.6.1.5 The variable preciousp

This variable is true if the process denoted by curT is precious, and nil otherwise.

6.6.1.6 The variable work-requested

This variable contains the identity of the remote procedure call for which the
deadlock recovery automaton has selected to request space for creation. Its value is
nil if no such request is outstanding,.

6.6.1.7 The variable master-attempted

This variable is set to true if a message requesting deadlock mastership has been
sent, the node is still eligible to become deadlock master, and the outcome has not
been resolved; otherwise it is nil.
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6.6.1.8 The variables master and master-process

~ - The former is name of the client that -is the deadlock master, or one of nil or
void, and the latter is the process running the master, or nil. These variables will not
necessarily have consistent values across the different automata.

6.6.1.9 The set child-status

This set contains 4-tuples for children of curT. Each element is of the form (T,
status, p, preciousp). The elements are the child in question, its status, the process
on which it is running (or nil), and whether it is precious. The status field for the
child is similar in spirit to the status variable in the high-level automaton, has one of
the following values:

requested: The parent of this node has requested that it be created, but no
resources have yet been allocated.

running: The node is executing and has been assigned a process.

dead: The node has died.

6.6.1.10 The queues inqueue and outqueue

These queues are buffers for incoming and outgoing messages. The elements in
each queue are 3-tuples of the form (from, to, m).

6.6.2 Initial value of the state
In the initial state of each deadlock recovery automata, the state variables have
the following values:
curT: nil
status: nil
death-status: nil
parent-process: nil
preciousp: nil
work-requested: nil
master-attempted: nil
master: nil
master-process: nil
child-status:
inqueue: empty

outqueue: empty
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6.6.3 Notation for the state

Let child-status(T') represent the tuple element pertaining to T', or nil if none
exists. Let child-status(T ).status represent the status field, and similarly for child-
status(T ).p and child-status(T ).preciousp.

Let head(q) represent the element at the head of q, or nil if ¢ is empty.

Let enqueue(q, ) represent the operation of adding z to the tail of q.

Let dequeue(q) represent the operation of removing the element at the head of q.

6.7 Automaton description for A,

6.7.1 Description of messages used

These descriptions are meant to be informative; they describe the form of messages
and do not specify formal meanings, but instead attempt to provide intuition about
what purposes they serve. The semantics of the messages is defined implicitly in the
automaton code by what actions they cause.

<DO-WORK, T', preciousp>: This message is sent by the process running the
parent of T to the process selected (by the space allocator) to evaluate T. The
last component, preciousp, indicates that the remote procedure call should be
considered precious on arrival.

<DONE, T, results, masterp>: This message is sent from the process evalu-
ating 7" to the process running parent(T) to indicate that it has requested to
commit with value results; masterp is true iff T was the deadlock master when
the message was sent.

<WANT-MASTERSHIP, T, p>: This message is broadcast by p, the process evalu-
ating T, to indicate that T is a candidate for deadlock mastership.

<NEW-MASTER, T, p>: This message is broadcast by p, the process evaluating T,
to indicate that T is the new deadlock master. If T is nil, it indicates that there
is now no master.

<AM-BLOCKED, T', T'>: This message is sent to the process of the deadlock mas- °
ter by a node that cannot create children when there is a deadlock master. Here,
T is the blocked node and 7" the deadlock master.

<DIE-DOWN, T>: This message is sent by T to each of its children to indicate
that a death convergecast is in progress. T is specified rather than the child so
that a multicast scheme could be used to send this.

<DIE-ACK, T, masterp>: This message is sent by T to its parent, indicating
that it has died; masterp has value true if T was the deadlock master, and nil
otherwise.




6.7.2 Description of actions

The following action description defines the transition relation for each distributed
deadlock recovery automaton. The automaton for py (which evaluates super-root)
differs from this in that it only has the actions recv, can-do-work, send, request-work,
request-create-child and commit.

Input Actions:

recv(from, p, m):

Effects:
enqueue(inqueue, (from, p, m))

can-do-work(p, p'):
Effects:

if death-status = nil

enqueue(outqueue, (p, P/,
<DO-WORK, work-requested,
child-status(work-requested) . preciousp>))

child-status(work-requested).status = running
child-status(work-requested).p = p’

work-requested = nil

no-space(p):
Effects:
work-requested := nil
if no element of child-status has status = running
if master = nil
if preciousp = nil and master-attempted = nil
enqueue(outqueue, (p, P, <WANT-MASTERSHIP, T', p>))
master-attempted = true
else if master # nil
enqueue(outqueue, (p, masterp,
<AM-BLOCKED, curT, master>))

request-create-child(7”, p), T’ not a root node:

Effects:
child-status := child-status U (T”, requested, nil, nil)

request-create-child(7”, p), 7" a root node:

Effects:
child-status := child-status U (T”, requested, nil, true)



request-commit(7T’, results, p):
Effects:

if master = curT
enqueue(outqueue, (p, parent-process, <DONE, curT, results, true>))
master := void
master-process ;= nil

else
enqueue(outqueue, (p, parent-process, <DONE, curT, results, nil>))

Call procedure reset-local-state

Output Actions:

send(p, to, m):
Preconditions:
head(outqueuve) = (p, to, m)
Effects:

dequeue(outqueue)

request-space(p):
Preconditions:
death-status = nil
work-requested = nil
3 (T, requested, nil, preciousp) € child-status

Effects:
work-requested := T

create(T, p):

Preconditions:
curT=T
status := requested
Effects:

status := running

commit(T", results, p):
Preconditions:
head(inqueue) = (p’, p, <DONE, T”, results, masterp>)
Effects:
dequeue(inqueue)
child-status(T"”).status = committed
child-status(T").preciousp = nil
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if masterp

if preciousp
enqueue(outqueue, (p, P, <NEW-MASTER, nil, nil>))
master := void
masterp := nil

else
enqueue(outqueue, (p, P, <NEW-MASTER, curT, p>))
master := curT
masterp := p

die(T, p):
Preconditions:
T = curT
death-status = dying
work-requested = nil
VT' € chilren(T) :
child-status(T").status € { not-started, requested, committed, dead }

Effects:
if master = curT
enqueue(outqueue, (p, parent-process, <DIE-ACK, curT, true>))
master := void
master-process := nil
else
enqueue(outqueuve, (p, parent-process, <DIE- ACK, curT, nil>))
Call procedure reset-local-state

Internal Actions:

receive-do-work(T, p):

Preconditions:
head(inqueue) = (p', p, <DO-WORK, T', incoming-preciousp>)

Effects:
dequeue(inqueue)
curT =T
status := requested
death-status := nil
parent-process := p’
preciousp := incoming-preciousp
master-attempted := nil
child-status := 0
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restart(7, p):
Preconditions:
curT = parent(T)
status = running
death-status = nil
3 (T, dead, nil, is-precious) € child-status
alive-children-count(child-status) = 0

Effects:
child-status(T').status := requested
if preciousp then
child-status(T).preciousp := true
else _
child-status(T').preciousp := nil

become-master(T, p):

Preconditions:
_head(inqueue) = (p', p, <WANT-MASTERSHIP, T, p'>)
Effects:
if master = nil then
ifp=p
if curT = T A master-attempted = true
master ;=T
master-process := p’
else

master := void
master-process := p’
enqueue(outqueue, (p, P, <NEW-MASTER, nil, nil>))
else
master .= T
master-process := p’
master-attempted := nil

new-master(T’, p):

Preconditions:
head(inqueue) = (p, P, <NEW-MASTER, T, p'>)
Effects:
if curT # master then
master .= T

master-process := p’
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receive-am-blocked(T', T, p):

Preconditions:
head(inqueue) = (p', p, <AM-BLOCKED, T, T'>)

Effects:
dequeue(inqueue)
if master = T" = curT and death-status = nil then
death-status := dying
Call procedure do-die-down(T', p)

receive-die-down(T', T, p):
Preconditions:
head(inqueue) = (p’, p, <DIE-DOWN, T'>)
status # requested

Effects:
if T' = parent(curT) then
death-status := dying
Call procedure do-die-down(T', p)

receive-die-ack(7”, masterp, p):
Preconditions:
head(inqueue) = (p', p, <DIE-ACK, T, masterp>)

Effects: ,
child-status(7").status := dead
if masterp = true
if preciousp = nil
enqueue(outqueue, (p, P, <NEW-MASTER, curT, p>))
master := curT
masterp := p
else
enqueue(outqueue, (p, P, <NEW-MASTER, nil, nil>))
master := void
masterp := nil

Procedures:

reset-local-state:
curT := nil
status := nil
death-status := nil
parent-process := nil
preciousp := nil
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master-attempted := nil
child-status := 0

do-die-down(T', p):
VT € child-status | child-status(T').status = running
enqueue(outqueue, (p, child-status(T).p, <DIE-DOWN, curT>))

The partition of locally-controlled actions has each in a separate class.

6.8 Automaton Ap

Definition:
Automaton Ap is the composition of the deadlock recovery automata Ay, the distributed
client automata Cy, a network automaton Ay, and a space allocation automaton Aspace.

These automata are clearly compatible, since they have no conflicting output or
(by renaming if necessary) internal actions. Since no action occurs at more than two
automata, they are strongly compatible.

Definition:
A deadlock recovery automaton Ay is correct if the fair behaviors of the corresponding
automaton Ap are contained in correct-beh and Ap preserves client well-formedness.

The first part of this definition is straightforward. The last is needed to enforce
the constraint that a client may be run on only one processor at a given time.

Lemma 6.1 If Ap solves Ay, and Ap preserves client well-formedness, Ay is cor-
rect.

Proof:

Since Ap solves Ay, , the fair behaviors of Ap are contained in the fair behaviors of
Ap, . Since the fair behaviors of A, are contained in correct-beh (Corollary 5.11), the fair
behaviors of Ap are also contained in correct-beh. By hypothesis, Ap preserves client well-
formedness, and thus A4 is correct, according to the definition above. o

6.9 Safety properties of deadlock mastership

We introduce the notion of a virtual token for deadlock mastership, argue prop-
erties of this token, and argue from this that two nodes never both think themselves
to be the deadlock master.

Definition:
We say that a process p has the mastership token in a given state if master(p) = curT(p).
Additionally, we say that the token exists and is in transit if one of the following holds

e a <DONE, T, results, true> message exists in any queue
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e a <DIE-ACK, T', true> message exists in any queue

In the proof of the lemma that follows, we rely heavily on the serialization property
of the communications network. Given this property, we can talk about the sequence
of messages concerned with mastership.

Definition:
A message is a deadlock message if it is a <WANT-MASTERSHIP> message or if it is a
<DONE> or <DIE-ACK> message with masterp = true.

Definition:

Divide the sequence of messages delivered by the communications network automaton
into rounds (and messages not part of any round) as follows. All messages before the
first deadlock message are not part of any round. The first deadlock message and all
succeeding messages up to and including a <NEW-MASTER(nil, nil)> message constitute
a round. Messages after this <NEW-MASTER> message up to but not including the next
deadlock message are not part of a round. The next deadlock message begins the next
round, and so on.

Lemima 6.2 In any state of an ezecution of Ap, either no process has the token and
no token is in transit, one process has the token, or one token is in transit.

Proof:
The proof is by induction on the length of executions.

Basis: .
In the initial state, no process has the token because master is everywhere nil. There
are no messages in any of the queues, so no tokens are in transit.

Inductive Step:
From examining the automaton code, we see that only the following actions can possibly
affect a token: request-commit, commit, die, receive-die-ack, new-master, become-master.

request-commit(T', results, p): If before this action p does not have the token, then after
this state it still does not and no token is introduced into transit. If before this action
p has the token, then after this action it does not (because master(p) is set to nil), and
one token is introduced into transit. Thus, the condition still holds.

commit(T, rasults, p): If the <DONE> message removed from the input queue of p by this
action does not have masterp true, no change in token ownership of tokens in transit
occurs. If the message has masterp true, then there is a token in transit in the previous
state, and thus no process has the token in that state. After the action, there is no
token in transit and p may have the token, or may not (depending on the value of
precious at p). Thus, the condition holds after this action.



die(T, p): If p does not have the token in the state before this action, the <DIE-ACK>
message placed into p’s output queue does not have masterp true, and no token is
generated. If p does have the token in the previous state, then no token can be in
transit in that state. Then, the masterp component of the <DIE-ACK> message has
value lrue, and there is one token in transit after the action. Also, master at p is set
to nil, so p does not have the token in the state after this action.

receive-die-ack(T', p): If the <DIE-ACK> message removed from the input queue of p by
this action does not have masterp true, no change in token ownership of tokens in
transit occurs. If the message has masterp true, then there is a token in transit in the
previous state, and thus no process has the token in that state. After the action, there
is no token in transit and p may have the token, or may not (depending on the value
of precious at p). Thus, the condition holds after this action.

new-master(T, p): Examining the automaton code for this action, we see that it can
never cause p to have the token because it does not change the state at all if curT =
T.

become-master(T, p): If the message at the head of p’s input queue is not <WANT-MASTER-
SHIP, T, p>, p does not acquire a token and none is placed in transit.

Otherwise, if this action begins a round, then the preceding message in the global order
pertaining to deadlock mastership is <NEW-MASTER, nil, nil>. The deadlock recovery
automaton that sent this message set master (locally) to void when it was sent, and
had the token at the time (by examination of the deadlock recovery automaton code).
Thus, just after this message was sent, no process had the token and none were in
transit. Thus, just before the become-master action this is still the case (because no
action except become-master can cause a token to exist where none did previously).
By examining the code for become-master, we see that only one process can possibly
acquire a token in processing a given message (because the process identifier in the
message must match that of the process, and process identifiers are unique). Thus at
most one process has a token after this action in this case.

Otherwise; if this action does not begin a round, then it is in a round, and there is a
<WANT-MASTERSHIP> message before the current message in the global ordering which
begins this round, and that message has already been received by p. We examine
the code for become-master, and see that if master was nil when this message was
processed, then master was set to a non-1.il value. Examining the rest of the code.
we observe that master is never set to nil except on receiving a <NEW-MASTER, nil,
nil> message. But no such message is part of the global message ordering after the
<WANT-MASTERSHIP> message that begins this round, because otherwise the message
beginning this round and the <WANT-MASTERSHIP> message at the head of p’s input
queue would be in different rounds. Thus, master is still non-nil, and its value is not
changed. Thus, p does not acquire a token by this action and the condition holds if it
held in the previous state.



6.10 Ap implements A,

In this section, we show that the low-level automaton implements the high-level
one, which means that the finite behaviors of Ap are contained in the finite behaviors
of As,.% To do this, we give a possibilities mapping* from Ap to A, .

6.10.1 Possibilities mapping

A possibilities mapping S consists of a mapping of states of the low-level to the
power set of states of the high-level, such that the following conditions hold®:

1. For every start state so of Ap, there is a start state to of Ay, such that tg € S(sq).

2. If ' is a reachable state of Ap, t' € S(s') is a reachable state of Aj,, and
(s',m,8) is a step of Ap, then there is an extended step® (t',7,t) of Ay, such
that

(a) ylext(An,) = m|ext(Ap), and
(b) t € S(s).

We, however, will only use s and s'rs (no actions or a single action) as extended
steps.

In giving possibilities mapping, we are required to exhibit a state mapping, and
prove the existence of appropriate extended steps. We present a mapping from states
of Ap to states of A, (rather than to the power set of states of Ay, ); this simply
allows us to write t = S(s) rather than t € S(s).

We then present a mapping of pairs of states of Ap and actions of Ap to either an
action of A, or the null action. This allows us to prove the existence of the required
extended steps. This method is inspired by the definition of abstraction mappings in
[WLLS88], p. 111.

6.10.1.1 State mapping

We present a mapping from states of Ap to states of Ay, .
To obtain the state of A;, corresponding to a state of Ap, apply the rules below.
In cases of conflict, the higher-numbered rule prevails.

3[LT88§], p. 11

4[LTS88), p. 15

5This definition is taken from [LT88], p. 15, with Ap substituted for the low-level automaton,
and Ay, for the high-level.

60n page 15 of [LT88] Lynch and Tuttle define an extended step of an automaton A as “a triple
of the form (&', 3, s), where s’ and s are steps of A, 3 is a finite sequence of actions of A, and there
is an execution fragment of A having s’ as its first state, s as its last state, and § as its schedule.”
They note that the “execution fragment might consist of a single state, in the case that 3 is the
empty sequence.”
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10.
11.
12.

. status(T) = not-started

status(T) = committing and (T, results) € saved-results if and only if a <DONE,
T, results, masterp> message exists in any queue.

status(T') = committed if 3A, with curT = parent(T) and child-status(T).status
= committed

status(T') = requested if one of the following hold

e JAy with curT = parent(T) and child-status(T').status = requested
e a <DO-WORK, T, preciousp> exists in any queue
o JA; with curT = T and status = requested

. status(T') = running iff 3A; with curT = T and status = running

status(T) = dead if either of the following hold

e a <DIE-ACK, T, masterp> exists in any queue.
e JA; with curT = parent(T) and child-status(T').status = dead.

T € precious iff either of the following hold

o JA; with curT = T and preciousp = true
e JAy with curT = parent(T)and child-status(T).preciousp = true

. master = nil

master = T if a <DIE-ACK, T, true> or <DONE, T, results, frue> mes-
sage exists in any queue

master = T if 3A,; with master = T = curT
death-status(T) = nil

death-status(T') = dying if A, with curT = T A death-status = dying
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6.10.1.2 Action mapping

Here, we present a mapping from pairs (s, ) of states and actions of Ap to
actions of A, or the empty sequence. Since some actions map to the empty sequence
regardless of the state, the state is only mentioned when it matters. In other cases,
the states that produce the various outcomes are listed.

recv, can-do-work, no-space: These action maps to the empty sequence.
request-create-child(T", p): This maps to request-create-child(T).
request-commit(T, results, p): This maps to request-commit(T, results).
send: This maps to the empty sequence.

request-space: This maps to the empty sequence.

create(T', p): This maps to create(T).

commit(7”, results, p): This maps to commit(T”, results).

dfe(T, p): This maps to die(T).

receive-do-work: This maps to the empty sequence.

restart(T", p): This maps to restart(T)) or restart-precious(T"). The latter is chosen
whenever parent(T) is precious.

become-master(T, p): If master(p) = nil, the processor named in the message at
the head of p’s input queue is p, master-attempted(p) is true, and curT(p) = T.
this maps to become-master(T). Otherwise it maps to the empty sequence.

new-master(T, p): This maps to the empty sequence.

receive-am-blocked(T', 7", p): If curT(p) = T", death-status(p) = nil and master{p)
= T, this maps to begin-die(7”), and the empty sequence otherwise. In other
words, if the processor receiving the message has 7", is the deadlock master and
has not already taken this action, then the low-level action maps to begin-die.

receive-die-down(T', T", p): If parent(curT(p)) = T", this maps to die-down(T), and
otherwise to the empty sequence. In other words, for the output to be non-empty.
T’ is the parent of the process running on p.

receive-die-ack(T", masterp, p): If masterp is true and preciousp(p) is nil, this maps
to new-master(parent(T"')). If masterp is true and preciousp(p) is true, this maps
to new-master(nil). Otherwise, it maps to the empty sequence.



6.10.2 Safety properties of the low-level algorithm

We must show several safety properties of Ap in order to show that the action
mapping is valid.

Lemma 6.3 death-status(p) = dying if there ezists a (T”, running, p’, preciousp) in
child-status(p) for which the first statement holds, and death-status(p) = dying only
if for each (T', running, p', preciousp) in child-status(p) ezactly one of the following
hold:

1. One (p, p/, <DIE-DOWN, parent(T’)>) tuple erists in some queue.

2. death-status(p’) = dying and curT(p’) = T".

3. One tuple (p/, p, <DIE-ACK, T’, masterp>) ezists in some queue.

4. One tuple (p/, p, <DONE, T’, results, masterp>) ezists in some queue.

Proof:
The proof is by induction on the length of executions.

Basis:

Examine the shortest execution, consisting of only the start state, and observe that all
queues are empty and that no deadlock recovery automaton has death-status dying, and
that therefore the antecedent is false and the statement holds.

Inductive Step:

Given an execution for which the property holds, we show that each of the executions
formed by adding an action satisfy the property. We do this by enumerating the actions.
Actions for which the argument is trivial are omitted.

recv(from, p, m): This action merely moves tuples between queues, and thus the state-
ment is still true.

request-commit(T', results, p): After this action, child-status(p) is 0, and death-status(p)
is nil. Thus, the statement holds.

send(p, to, m): This action merely moves tuples between queues, and thus the statement
is still true.

commit(T", results, p): If death-status(p) is not dying before this action, then it is not
so after the action, and the statement holds. If death-status(p) = dying before this
action, then the fourth statement (that (p’, p, <DONE, T, results, masterp>) ex-
ists in some queue) holds for T/, and none of the others do. After the action, child-
status(T').status is committed, and the child-status entry for T’ is no longer relevant
since it is not selected by the universal quantifier.

die(T, p): After this action, child-status(p) is 0, and death-status(p) is nil. Thus, the
statement holds.
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receive-am-blocked(T, T, p): By the postconditions of this action, for every T’ for which
child-status(T’).status = running, there is a (p, p’, <DIE-DOWN, T>) tuple in the out-
put queue of p. Also, death-status(p) = dying. Thus, the statement holds after this
action.

receive-die-down(T, T’, p): If T' # parent(curT), the condition holds after the action
because the state is unchanged. Since the first condition of the consequent of the
lemma held before the action, the second did not (because death-status(p) is dying only
if exactly one of the four conditions hold). Thus, death-status(p) was nil before this
action. Thus, no <DIE-DOWN, curT(p)> messages existed in any queues before this
action. After the action, one such message exists for every child of curT(p) = T, and
death-status(p) = dying.

Otherwise, there is no change in any of the components of the state.

receive-die-ack(T”’, masterp, p): If death-status(p) is not dying before this action, then it
is not so after the action, and the statement holds. If death-status(p) = dying before this
action, then the third statement (that (p’, p, <DIE-ACK, T’, masterp>) exists in some
queue) holds for T”, and none of the others do. After the action, child-status(T").status
is dead, and the child-status entry for T’ is no longer relevant since it is not selected by
the universal quantifier.

0

Lemma 6.4 For any ezecution a of Ap, if in the last state child-status(T) at p #
nil, then curT (p) is parent(T) and status(p) is running.

Proof:
The proof is by induction on the length of executions.

Basis:
Examine the shortest execution, consisting of only the start state, and observe that
child-status is everywhere the empty set, and thus the statement holds.

Inductive Step:

Given an execution A for which the property holds, we show that each of the executions
Ar formed by adding an action satisfy the property. We do this by enumerating the actions,
omitting the argument for actions which obviously or trivially preserve the statement.

request-create-child(T”, p): By client automata well-formedness, this action can only oc-
cur if the create(T, p) action, 7' = parent(T’), occurs in restricted-last-blocks(A). Thus.
curT(p) is parent(T’), and the condition holds.

request-commit(T, results, p): This action sets child-status to the empty set, so the con-
dition holds after it.

die(T, p): This action sets child-status to the empty set, so the condition holds after it.

receive-do-work(T', p): This action sets child-status to the empty set, so the condition
holds after it.
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We present three claims. Unfortunately to prove that each claim holds for a given
state, we need to assume not only that that claim holds in the previous state, but
that the others do as well. So, instead of giving an inductive proof for each claim, we
show instead that

e The claim holds in the initial state.

o If this claim and the other two claims hold in state n, this claim holds in
state n + 1.

Then, we argue that the collection of these three proofs simultaneously prove the
validity of the three claims.

Claim 6.5 For any execution a of deadlock recovery automaton p, in the last state,
child-status(T").status = running if and only if in the last state exactly one of the
following hold:

1. a (p, p/, <DO-WORK, T, is-precious>) tuple ezists in any queue,

2. some deadlock recovery automaton p’ has curT = T", parent-process = p, and
status # nil,

3. a (P, p, <DONE, T’, results, masterp>) tuple erists in any queue, and
4. a (P, p, <DIE-ACK, T’, masterp>) tuple ezists in any queue,

Proof:
The proof is by induction on the length of executions.

Basis: '
Examine the shortest execution, consisting of only the start state, and observe that each
of the branches of the antecedent is false, and thus the statement holds.

Inductive Step:
Given an execution for which the property holds, we show that each of the executions
formed by adding an action satisfy the property. We do this by enumerating the actions.

recv(from, p, m): This moves messages between queues, and does not affect any condi-
tions of the statement.

can-do-work(p, p'): If death-status(p) is dying, this action has no effect and the statement
still holds after it. By the definition of a space allocation automaton, there was a
request-space(p) action in a not followed by any of the following actions: die(T, p),
request-commit(T, results, p), can-do-work(p, p”), or no-space(p). By Claim 6.6 child-
status( work-requested).status at p was requested, and was thus not running. Therefore,
none of the four conditions held in the previous state, and thus exactly one holds after
this action if a message is enqueued by this action and the appropriate status field of
child-status is set to running. If no message is enqueued, then the statement still holds
because it held in the previous state.
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no-space(p): The statement holds because it held in the previous state.
request-create-child(7”, p): The statement holds because it held in the previous state.

request-commit(T’, results, p): By client well-formedness, a create(T, p) action previously
occurred. Thus, status(p) is non-nil. Thus, by the second statement of the lemma,
child-status(T) at parent-process(p) is running. Examining the effects of the action, we
see that after the action status(p) is nil, and that the <DONE> message referenced in
the third statement is enqueued.

send(p, to, m): The statement still holds because this action only moves messages be-
tween queues.

request-space(p): The statement still holds because the only change in the state is the
value of work-requested, and this variable does not appear in the statement.

create(T, p): The statement still holds because the only change in the state is the value
of status, and it is changed from requested to running, neither of which is nil.

commit(T”, results, p): In the state before this action, there was a <DONE, T’, results,
masterp> message in the input queue of p, and thus child-status(T').status is running,
and none of the other 3 subconditions hold (because exactly one must hold if child-
status(T').status is running). In the state after this action, none of the four subcondi-
tions hold, and child-status(T").status # running. Thus, the statement still holds.

die(T, p): Observing the effects of this action, we can see that a <DIE-ACK ,» curT,
masterp> message is sent to the process parent-process, and the values of curT and
parent-process are reset to nil. Thus, for the process parent-process, the fourth sub-
condition is substituted for the second, and for any other process, the state of any
subcondition is unchanged. Also, observe that a precondition is that no child has a
recorded state running, so the resetting of the local state (which sets child-status to ()
does not change the state of a child to or from running.

receive-do-work(T, p): This action removes the <DO-WORK, T, incoming-preciousp>
message from the input queue of p, and sets curT to T, parent-process to the process
sending the message, and status to requested. Thus, the property still holds for parent-
process.

By Claim 6.7, we know that p is unoccupied and allocated. Thus, no create(T, p)
action has occurred that is not followed by request-commit(T, results, p) or die(T, p),
and by examining the initial state and the postconditions of request-commit and die,
we see that curT(p) is nilin the previous state. Thus, changing it does not cause the
statement to be violated.

restart(T, p): This action merely changes the status of T as recorded at parent(T) from
dead to requested, so the condition holds after the action because it holds before.

become-master(T', p): This action does not enter into or remove from any queue any
message referenced in the statement. and does not change the value of any referenced
state components. Thus, the condition still holds.
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new-master(T', p): The condition still holds, for the same reasons as the previous action.

receive-am-blocked(T', T’, p): The condition still holds, for the same reasons as the pre-
vious action.

receive-die-down(T, T’, p): The condition still holds, for the same reasons as the previous
action.

receive-die-ack(7”, masterp, p): Before this action, there is a <DIE~ACK, T’, masterp>
action in the input queue of p, so child-status(T").status = running at p. Thus, none
of other four subconditions holds in the state before the action, since exactly one
must hold. After this action, child-status(T’).status is dead, and none of the four
subconditions hold (since the message is removed from the queue). Thus, the statement
still holds.

a

Claim 6.8 For any ezecution a of deadlock recovery automaton p, the last state of
a has child-status(work-requested ).status = requested if there is a request-space(p)
action in o not followed by any of the following actions: die(T, p), request-commit(T,
results, p), can-do-work(p, p”), or no-space(p).

Proof: ‘
The proof is by induction on the length of executions.

Basis:

Examine the shortest execution, consisting of only the start state, and observe that there
is no request-space(p) action, and therefore that the antecedent is false and the statement
holds.

Inductive Step:

Given an execution for which the property holds, we show that each of the executions
formed by adding an action satisfy the property. We do this by enumerating the actions.

First, we observe that many actions are not mentioned in the statement of the property
and that therefore their occurrence in and of itself can not cause the statement to become
false. Also, the effects clauses of many of these actions do not alter the value of child-status.
and thus also may not cause the statement to become false. The following actions fall into
this category:

recv(from, p, m):
send(p, to, m):
create(T, p):
receive-do-work(T', p):
become-master(T', p):

new-master(T, p):
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receive-am-blocked(T', T’, p):

receive-die-down(7", T', p):

We enumerate the other actions, and show thiat an execution formed by adding each to
an execution satisfying the statement satisfies the statement.

can-do-work(p, p'): After this action, the antecedent is false, so the condition holds.
no-space(p): After this action, the antecedent is false, so the condition holds.

request-create-child(7’, p): After this acticn, child-status(T").status is requested, and thus
~ the condition is satisfied if work-requested = T'. If work-requested has some other value,
the condition is satisfied because it held in the previous state.

request-commit(T, results, p): After this action, the antecedent is false, so the condition
holds.

request-space(p): After this action, the consequent of the statement holds.

commit(T”, results, p): child-status(T').status is running, since a <DONE, T", results,
masterp> message exists in the input queue, by Claim 6.5. Thus if the request-space
action has occurred and not been canceled as specified in the statement of the lemma.
child-status(T").status is requested for some other child T”, and still has this value after
the action, and the condition still holds.

die(T, p): After this action, the antecedent is false, so the condition holds.

restart(T, p): Since the condition was true before and child-status(T).status was dead.,
work-requested could not have been T. Thus, the condition still holds.

receive-die-ack(7’, masterp, p): child-status(T").statusis running, since a <DIE-ACK, T,
masterp> message exists in the input queue, by Claim 6.5. Thus if the request-space
action has occurred and not been canceled as specified in the statement of the lemma.
child-status(work-requested).status is requested and thus work-requested # T', and thus
condition still holds.

Claim 8.7 For any ezecution a of Ap, in the last state the following are true:

1. There is at most one (p', p, <DO-WORK, T, preciousp>) tuple in any queuc.

2. If deadlock recovery automaton p has status requested, no such tuple erists in
any queue.

3. A (p', p, <DO-WORK, T, preciousp>) tuple exists in some queue or deadlock
recovery automaton p has status requested if and only if process p is unoccupied
and allocated.



Proof:
The proof is by induction on the length of executions.

Basis:
In the initial state, all queues are empty, status is nil at every deadlock recovery au-
tomaton, and no process is allocated. Thus, the statement holds.

Inductive Step:

Given an execution for which the property holds, we show that each of the executions
formed by adding an action satisfy the property. We do this by enumerating the actions.
Many actions for which the claim is that the statement holds after because it held before
and no effect of the action changed any state components listed in the condition are omitted.

recv(from, p, m): This action merely moves messages between queues, and thus the state-
ment still holds.

can-do-work(p’, p): By the first condition on schedules of the space allocation automaton.
pis unallocated (and thus unoccupied) in the previous state. Thus no appropriate tuple
exists in the previous state, nor does status(p) = requested, since the statement was
true in the previous state. After this action, p is allocated, but still unoccupied, by
inspection of the definitions of allocated and occupied. Also, a (p, p, <DO-WORK, T,
preciousp>) tuple is added to the output queue of deadlock recovery automaton p.
Since there was no such tuple before, there is exactly one after. Thus, the statement
holds after this action.

request-commit(T, results, p): Eefore this action, p was occupied (by client well-formed-
ness, a create(T', p) action must exists in last-block(a)), and therefore allocated. Be-
cause the statement held in the previous state, no appropriate tuple existed in any
queue, and p did not have status requested. After the action, p is not occupied, and
not allocated, by the definitions of occupied and allocated. Since no appropriate tu-
ple exists in any queue (because it did not in the previous state), and status(p) #
requested(by the postconditions of the action), the statement holds after the action.

send(p, to, m): This action merely moves messages between queues, and thus the state-
ment still holds.

create(T, p): Before this action, status(p) = requested. Thus, no appropriate tuple exists
in any queue. After the action p is occupied (therefore allocated). After the action
status(p) = running, by the postconditions of the action, and no appropriate tuple
exists in any queue, because it did not before. Thus, the statement holds in the state
after the action.

die(T, p): Before this action, p is occupied and allocated, and after it is unoccupied and
unallocated. Thus, no (p/, p, <DO-WORK, T, preciousp>) tuple exists in any queue
nor does p have status requested in either the state before or after this action.

We must also verify that these conditions hold for all children of client automaton being
run on p. The first two hold because they held in the previous state.
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By the preconditions of this action, child-status(T').status # running. By Claim 6.5,
no (p, p’, <DO-WORK, 7', preciousp>) tuple exists in any queue, for any p’ and 7"
a child of T. Thus, there does not exist in the state before this action a child process
that is uncccupied and allocated. Thus, after the action there does not exist a child
process that is unoccupied and allocated, by the definition of allocated.

receive-do-work(T', p): Before this action, a (p’, p, <DO-WORK, T, preciousp>)message
exists in the input queue of deadlock recovery automaton p, by the precondition of the
action. Thus, there is no other appropriate tuple in any queue. After the action.
status(p) = requested and the above tuple no longer exists. As before, p is unoccupied
and allocated. Thus, the condition still holds.

Lemma 6.8 Claims 6.5, 6.6, 6.7 are true.

Proof:
The proof is by induction on the length of executions.

Basis:
We already showed that each claim holds in the initial state.

Inductive Step:
Assume that all claims hold in a given state. By the proofs given with each claim, each
claim holds in the next state.
0

Lemma 6.9 In the last state of an execution, curT # nil iff status # nil.

Proof:
The proof is by induction on the length of executions.

Basis:
Examine the shortest execution, consisting of only the start state, and observe that
everywhere curT and status both have the value nil.

Inductive Step:
Given an executions satisfying the property, consider adding each action to the existing
execution to form a new execution.

request-commit(T', results, p): After this action status(p) is nil, as is curT(p). Thus the
condition holds after this action.

create(T, p): By the preconditions of this action, status(p) is non-nil, and thus curT(p)
is non-nil, by the induct've hypothesis. Thus, after the action curT(p) is non-nil, and
status(p) is running. Thus the condition holds after this action.

die(T, p): After this action status(p) is nil, as is curT(p). Thus the condition holds after
this action.
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receive-do-work(T', p): After this action. status(p) is requested, and curT contains the
value that was in the message. Examining the automaton code, we see that only
the can-do-work action creates <DO-WORK> messages. and by Claim 6.6, the second
component of the message (the one assigned to curT) is never nil.

O

Lemma 6.10 For any erecution a of Ap, if in the last state master(p) = nil, and
master-attempted (p) = true, then preciousp(T) is nil and status(p) is running.

Proof:
The proof is by induction on the length of executions.

Basis:
Examine the shortest execution. consisting of only the start state, and observe that
master-attempted is everywhere false. Therefore, the statement holds.

Inductive Step:

Given an execution for which the property holds, we show that each of the executions
formed by adding an action satisfy the property. We do this by enumerating the actions.
Actions for which the argument is trivial are omitted.

no-space(p): Since no-space occurs, child-status(work-requested).status = requested, by
Claim 6.6. Thus, status(p) is running, by Lemma 6.4, and the statement is true after
this action.

request-commit(T, results, p): By the postconditions of the action, the antecedent of the
statement is false, and thus the statement holds.

create(T, p): Since statusis requested in the previous state, the antecedent must have be
false. Thus it must be false in this state as well, since neither preciousp nor master-
attempted is changed.

die(T, p): By the postconditions of the action, the antecedent of the statement is false.
and thus the statement holds.

receive-do-work(T', p): By the postconditions of the action, the antecedent of the state-
ment is false, and thus the statement holds.

become-master(T, p): The value of master-attempted is nil after this action, so the state-
ment holds.
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6.10.3 S is a possibilities mapping

Here we show, using the action mapping defined in Section 6.10.1.2, that S is a
possibilities mapping from Ap to A, .

Lemma 6.11 S applied to every start state of Ap yields a state state of Ap, .

Proof:
Consider s, the sole start state of Ap. Clearly P(s), since s is reachable. Finding S(s),
as described in section 6.10.1.1, we see that it is exactly the start state of An, . O

The definition of possibilities mapping requires that an extended step of A, exist
for each step of Ap. For any step (s', 7,s) of Ap, we claim that (S(s"), A(s', ), S(s))
is a step of A,, (or else merely a state of An,, in the case when A(s ) is null).

Lemma 6.12 For any (s',x,s) a step of Ap, mjext(Ap) = A(s',m)|ext(An,).

It is easily observed that each external action of Ap maps into the same action of
An, (dropping the p argument) and that no other action of Ap has such actions in
the range of the mapping function.

Lemma 6.13 If s is a reachable state of Ap and (s',7,s) is a step of Ap, then
s'A(s',m)s is an extended step of Ay, .

Proof:
We enumerate the actions of Ap, and consider (s, 7, s) for arbitrary s’ and s.

recv(from, p, m): This action maps to the empty sequence. Note that it merely moves
messages between queues, and thus does not change the high-lev-l state.

can-do-work(p, p’): This action maps to the empty sequence. This action causes the
recorded state of one of the children of T', the node at p to be changed from requested
to running, and a <DO-WORK, T’, preciousp> message to be enqueued. On examining
the state mapping, one sees that status(T’) remains requested, since either the state
being recorded as requested at the parent or the existence of such a message suffices to
make the high-level state requested.

no-space(p): This action maps to the empty sequence. It causes no high-level state
change, as can be seen from examining the state mapping and noting that neither of
the two messages this action can enqueue are mentioned.

request-create-child(T', p): This maps to request-create-child(T'), which is an input action
and therefore always enabled. Consider the difference between s’ and s. The only
change is that a new node has been added to the child-status field of the process witl
parent(T), with status requested. Examining the state mapping, one sees that this
causes S(s) to also change by T having status requested. Examining the code for Ay
one sees that the effect of the request-create-child(T') action is to change the status of
T to requested.




request-commit(T, results, p): This maps to request-commit(T, results), which is an input
action and therefore always enabled. The action of Ap modifies the state by enqueueing
a <DONE> message. By examining the state mapping, one can see that status(T) of
An, changes to committing, just as the request-commit action of A,, requires. The
state of any children changes to not-started, as the high-level action requires. The (T,
results) pair is added to saved-results as required hecause the state mapping stipulates
that such a pair belongs to saved-results if an appropriate <DONE> message exists.
We also observe that if the node that requests to commit is the deadlock master, the
<DONE> message encodes this, and the existence of this message causes the value of
the deadlock master at the high level to be unchanged. Thus, §(s) is the state of Ay,
after this action.

send(p, to, m): This maps to the empty sequence. It merely moves a message between
queues, and no part of the state mapping is affected by this. Thus, the high-level state
is unchanged.

request-space(p): This maps to the empty sequence. The value of work-requested (the
only state component changed) does not affect the state mapping. Thus, the high-level
state is unchanged.

create(T, p): This maps to create(T). Examining the preconditions for create(T) in Ay,
we see that status(T) is requested because curT(p) = T and status(p) = requested.
We know that ||using-resources] < TOTAL_.RESOURCES because for a node T of
An, to be in using-resources it must have status running, and thus there must be
a distributed client automaton with curT = T and status running. Since there are
TOTAL_RESOURCES distributed client automata and p has status requested, there
are at most TOTAL_.RESOURCES - 1 nodes of Ay, in using-resources and this precon-
dition is satisfied. The last precondition is an underspecified predicate, and we see that
it has as its upper bound the previous precondition (that is, the previous precondition
must be true if create-ok is true). Thus, we choose that it be enabled in the state S(s').
Note that this is the only place were we so choose a value for create-ok, so no conflicts
are possible. Thus, create(T) is enabled in Ay, .

The value of status(p) changes from requested to running, and this causes status(T) to
become running at the high level. Thus, S(s) is §(s') with this one change, and this is
exactly the postcondition of create(T) in Ay, .

commit(T”, results, p): This maps to commit(7”, results). Since the precondition for this
action is met, status(T') in Ap, is committing, and (1", results) € saved-results, by the
second point of the state mapping. Thus. commit(T”, results) is enabled in Ay, .

At Ap, the <DONE> is removed from the queue, the recorded status of 7" is changed
to committed, and the precious variable in T''s recorded status is set to nil. If the
masterp component of the message is set, master is set to parent(T) or void (the latter
if parent(T) € precious). The effect of these changes on the high-level state are that
status(T') is committed, (T, results) is no longer in saved-results, T is no longer in
precious. If the masterp component of the message was set, then that message contains
a deadlock master token, and therefore there are no other tokens in transit, and no
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process has curT = master. Thus, master = T' in 5(s’) of Ap,. If preciousp(p), then
parent(T’) € preciousin Ay, , and masteris set to nilin A, . Examining the distributed
client automaton code, we see that master(p) is set to nil, and thus master is nil in
S(s) of A,. Otherwise (parent(T') is not precious), master is set to parent(T’) in
An,. Examining the distributed client automaton code, we see that master(p) is set to
parent(T'), and thus the value of master of Ay, becomes parent(T’) in S(s).

die(T', p): This maps to die(T).

Examining the preconditions for die(T, p), we see that they map straightforwardly to
the preconditions of die(T) in Ay, .

At distributed deadlock recovery automaton p, the state is changed by resetting the
local state (basically everything but the recorded identity «f the deadlock master and
message queues), and enqueueing a <DIE-ACK>. This causes status(T) at A;, to
become dead and death-status to become nil. Also, it causes status(T'), for all children
T' of T, to become not-started, since that is the default state and child-status of p was
set to 0.

receive-do-work(T', p): This maps to the empty sequence. It changes the low-level state
by removing the <DO-WORK> message, and setting the local variables appropriately.
Node T still has status requested at the high level, because this merely replaces the
second reason for this with the third in the state mapping (a <DO-WORK> existing
turns into a process having the node with status requested). Thus, the high-level state
is unchanged.

restart(T, p): If preciousp(p) is true, this maps to restart-precious(T, T'), and restart(T’
T’) if not. All of the preconditions of the high-level action except the penultimate
can straightforwardly seen to be satisfied. If preciousp(p) is nil, this precondition is
satisfied for restart(T'). Otherwise, we observe that no entry in child-status can have
preciousp true, because none has status running, since alive-children-count(child-status)
is 0. If one did, then that node would be in preciousin A, and have status other than
running. But this cannot be, by Lemma 4.3. Thus, children(parent(T)) N precious is
the empty set, and the penultimate precondition is also satisfied in this case. Thus,
the corresponding action of A, is enabled.

Consider the case in which parent(T) is not precious. Then the effect of the low-level
action on the low-level state is to change the status of the selected child to requested
from dead. By inspecting the code for the high-level action, one can see that the pre-
conditions are satisfied in all image states of states in which the low-level preconditions
are satisfied, and the effect of the action at the high-level is to change the status of
the child from dead to requested. If parent(T) is precious (that is, if preciousp(p) is
true), since curT = parent(T). by the preconditions of the action, T is additionally
made precious at the low-level. so 5(s) is also the state of Ay, obtained by taking the
mapped action from S(s’).

become-master(T, p): If master(p) = nil, the processor named in the message at the head
of p's input queue is p, master-attempted(p) is true, and curT(p) = T, this maps to
become-master(T'). Otherwise it maps to the empty sequence.
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If the action does not map to the empty sequence, then by Lemma 6.10, status(p) =
running and preciousp(p) = nil, and thus the first three preconditions (the truth of the
first one follows directly those of the distributed client automaton) of become-master(T)
of Ap, are satisfied. Because the last two preconditions are underspecified predicates
with upper bound true, we decide that they are enabled in S(s'). As for create, this is
the only place where we make such a decision, and therefore we have not overspecified
these underspecified predicates.

The state of distriouted deadlock recovery automaton p is changed so that master
becomes T. Since T = curT, this causes the value of master of Ap, to become T'. We
must, however, make sure that the state mapping is not overconstrained, and verify
that there is only one distributed deadlock recovery automaton p with master = T =
curT. By Lemma 6.2, this cannot be.

new-master(T, p): This maps to the empty sequence.

By observing the distributed deadlock recovery automaton code, we see that the value
of master is not changed if master = curT. Thus, this action has no effect on the value
of master at Ay, , and no other effects. Thus, the high-level state is unchanged.

receive-am-blocked(T, T’, p): If curT(p) = T', death-status(p) = nil and master(p) =
7', this maps to begin-die(T’), and the empty sequence otherwise. These conditions
straightforwardly imply that the preconditions for begin-die(T”) are true in S(s’).

If the conditions above are met, death-status(p) is set to dying. Thus, §(s) also changes
from S(s') by having death-status(T') set to dying. The begin-die(T') action of A,
changes death-status(T) to dying as well.

receive-die-down(T', T", p): If parent(curT(p)) = T, this maps to die-down(T'), and oth-
erwise to the empty sequence.

By examining the automaton code, we see that this action maps to the empty sequence
exactly when the if clause is false and no changes to the state variables occur. In this
case it is clear that the high-level state does not change.

When this action maps to die-down(T), we must verify that the high-level action is en-
abled. More precisely, we must show that the following hold, which then imply directly
(through the state mapping) that the high-level action (die-down(T')) is enabled.

curT(p') = T'
death-status(p’) = dying
status(p) = running
death-status(p) = nil

Lol

Since curT(p) # nil (by the low-level conditions on this action mapping to 2 non-null
sequence at the high level), by Lemma 6.9 status # nil. By the preconditions of thix
action, status # requested. Thus, status(p) = running.

Since this action maps to die-down(T) at the high level. we know that parent(curT(p)) =
T'. By Claim 6.5, since curT(p) = T and status(p) = running, child-status(T).status =
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running at parent-process(p). Thus, by Lemmma 6.3, curT(p’) = T’ and death-status(p')
= dying.

Since the <DIE-DOWN> is in the queue and death-status(p') is dying, death-status(p)
carnot be dying, since the four conditions of Lemma 6.3 are mutuaily exclusive.

Thus, the high-level action is enabled.

This action changes death-status(T) to dying, as does the high-level die-down action.

receive-die-ack(T"’, masterp, p): If masterp is true and preciousp(p) is nil, this maps to
new-master(parent(T’)). If masterp is true and preciousp(p) is true, this maps to new-
master(nil). Otherwise, it maps to the empty sequence.

Consider first the case of mapping to the empty sequence. The child is marked dead.
This does not change the high-level state, as the child is dead there before (due to the
message existing) and it is afterwards as well, due to it being so marked at its parent.

If, on the other hand, masterp is true and this action maps to new-master(parent(T")),
a <NEW-MASTER> is enqueued. Inspection of the state mapping shows that this does
not change the high-level state.

The value of master is set to either curT or nil, If it is set to curT, the value of master
in Ap, becomes curT. Since the (p’, p<DIE~ACK, 7', masterp>) tuple exists in a
queue in the previous state, child-status(T').status = running at p, by Claim 6.5. By
Lemma 6.4, curT(p) = parent(T’), and this is the effect of the action of A;,. If set
to nil, the value of master in Ay, becomes nil, because the message previously in the
input queue of p was the reason it was T’ (there could be no other reasons, since then
there would be more than one mastership token, and by Lemma 6.2 there cannot be).

0
Lemma 6.14 S is a possibilities mapping from Ap to A, .
Proof:
By Lemmas 6.11, 6.12 and 6.13, S satisfies the definition of a possibilities mapping from
Ap to AhL- )

Lemma 6.15 Ap implements A, .

Proof:

By the previous lemma and Proposition 12 from pages 15-16 of [LT88], which states
that A implements B if there exists a possibilities mapping from A to B, Ap implements
Apg. 0

Thus, we have shown that every finite behavior of Ap is a finite behavior of A, .
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6.11 Ap solves Ay,

Before showing that Ap solves A;,, we will first need to define an intermediate
notion of progress — leads to.

Definition:

A predicate on the state of Ap being true leads to, written —, an action of Ay, if for
all fair executions of Ap starting with any reachable state in which the predicate holds, an
action that maps to an action of A, occurs after finitely many actions. We will write both
P — 74, , meaning some action of A, , and P — die(T) means the specific action die(T").
- Additionally, a predicate on the state of Ap being true leads to another predicate on the
state of Ap if for all fair executions of Ap starting with any reachable state in which the
predicate holds, a state is entered in which the second predicate holds after finitely many
actions.

The overall proof strategy will be to show that certain predicates lead to an action
of Ay, (e.g., the existence of a deadlock recovery automaton with a dead child and no
live children leads to the restart action), and that other predicates lead to still other
predicates (e.g., a message is present in some queue leads to a state in which that
message is no longer present in any queue).

Lemma 6.16 Ap solves Ay, .

Proof:

We must show that every fair behavior of Ap is a fair behavior of Ay, . First, we observe
that for every fair behavior 3 of Ap, there exists a fair execution 4 of Ap. Because we have
exhibited a possibilities mapping from Ap to As,, we know that there is a corresponding
execution & of Ax, such that beh(é6) = 3 (given § and A, we can trivially construct it).

Now, we must show that § is fair. We know that § is finite, as we have already shown
‘that every execution of A, is finite (Lemma 5.7).

Thus, 6 is fair if no action is enabled in the last state. We show that from every state
of Ap, either some action occurs that maps to an action of An,, or that no action of A,
is enabled.

Claim 6.17 3Jp|status(p) = requested — create.

Proof:

Assume p has status = requested and curT = T. Then create(T, p) is enabled. By
examining the automaton code, it can be seen that this action remains enabled until it
occurs. When it occurs, create(T) occurs in 6. 0

Claim 6.18 A given message m being present in some queue leads to a state in which m
is no longer in any queue. Additionally, a state in which either a <DO-WORK> or <DONE>
message is present in some queue leads to an action of Ay, .
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Proof:

Any message in an output queue will eventually be sent to the network automaton,
since the only precondition of the send action is that a message is in the output queue. Any
message in the network will eventually be delivered to an input queue. Thus, a state will
eventually occur in which some message currently in a queue is in an input queue.

Consider some input queue that is nonempty (call it the input queue of deadlock recovery
automaton p). First, we note that for each type of message, only one action can remove it
from the input queue. Further, we note that the sole precondition of each of these actions
is the existence of the message at the head of the input queue, with the exception of receive-
die-down. The other precondition of this action is that status # requested, and we have
already shown that this holds. Thus, once we show that an action removing a message from
an input queue is enabled, we know that it remains enabled until it occurs. We consider
the possible values of the message:

<DO-WORK, T, preciousp>: The receive-do-work action is enabled. After this action
occurs, status(p) will be requested, and we have already shown that this cannot be.

<DONE, T, results, masterp>: The commit(T”, results, p) action is enabled. When
it occurs commit occurs in 6. But we assumed earlier that no more actions occur in é.

<WANT-MASTERSHIP, T, p’>: The become-master(T, p) is enabled. When it occurs an
action may occur in §, or the message may merely be removed from the queue. Either
another message exists in a queue, or no message does. In the former case, examine
that message, and in the latter the claim is proved.

<NEW-MASTER, T, p'>: The new-master(T, p) action is enabled. When it occurs, the
message is removed from the queue.

<AM-BLOCKED, T, T'>: The receive-am-blocked(T, T, p) action is enabled. When it
occurs, the message is removed from the queue.

<DIE-DOWN, T>: The receive-die-down(T, T’, p) action is enabled. When it occurs, the
message is removed from the queue.

<DIE-ACK, T, masterp>: The receive-die-ack(7”’, masterp, p) action is enabled. When
it occurs, the message is removed from the queue.

Observing that the case analysis for <DO-WORK> and <DONE> showed that an action of
An, must occur, the second statement of the claim is easily seen to be true.
O

Claim 6.19 work-requested # nil — work-requested = nil.
Proof:
Examining the automaton code. we observe that only the request-space action ever sets

work-requested to any non-nil value. and further that each of the following actions set work-
requested to nil: die(T, p), request-commit(T, results, p), can-do-work(p, p"), or no-space(p).
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Thus, request-space must occur in J (the execution of Ap under consideration), and further
must not be followed by any of the other actions mentioned above.

Recalling the definition of a space allocating automaton given on page 77, we see that
in any fair schedule of the automaton every request-space(p) not followed by either die(T,
p) or request-commit(T, results, p) is followed by either can-do-work(p, p') or no-space(p).

Thus, one of these actions must occur, and the state following whichever one occurs has
work-requested = nil. 8]

Claim 6.20 death-status(p) # nil — TAn, -

Proof:

First, we observe that if death-status(p) is non-nil, it must remain so until either die.
request-commit, or receive-do-work occurs at p. The former case, die, induces a die action in
An,, and the next enqueues a <DONE>. and we have already shown that this leads to an
action of A,,. The last case sets status to requested, and we have already shown that this
leads to the create of A;,. Thus, we will assume that death-status(p) remains non-nil once
non-nil for the duration of the proof of this claim (if not, an action of A, has occurred
and the claim holds).

Examine the value of child-status(p). There are two cases:

3T'|child-status(T’).status = running By Lemma 6.3, either a <DIE-DOWN> is en route to
the child, the child has death-status = dying, or either a <DIE-ACK> or <DONE> is
returning. In the case that a <DIE-DOWN> message is en route to the child, we can
see that when it is removed from the input queue a die-down action will occur in
An,. In the second case, we shift the focus to the child and begin the case analysis
again. This process must terminate, as we know that the tree is no more than
TOTAL_RESOURCES deep. Iu the case of a returning <DIE-ACK> message, we wait
for it to be received, and again begin the case analysis. Since a client automaton can
request only finitely many children, we know that this process must also terminate.
In the case of a <DONE> message, we have already shown that a commit action will
occur.

AT'|child-status(T’).status = running If work-requested # nil, wait untii it becomes nil(this
will occur, by Claim 6.19). Now, the die action for this automaton is enabled, and
thus must happen, and thus an action of A, occurs.

0

Claim 8.21 All deadlock recovery automata with curT non-nil have an outstanding re-
quested child (that is, a non-nilvalue of child-status).

Proof:
Consider one that does not. Then the behavior of the associated client is not fair.
because the liveness conditions on client automata are not met. 0

Claim 6.22 A state in which a deadlock recovery automaton p has a non-nil value cf child-
status leads to a state in which some clement of child-status has status either requested or
running, or else some action of Ay, happens.
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Proof:

If 3T € child-status : child-status(T).status € {requested, running}, the condition already
holds. If not, every member has status dead, and in particular there exists some T such
that child-status(T).status= dead. Since child-status(T) is non-nil, status(p) = running and
curT(p) = paren(T), by Lemma 6.4. Also, we have already showed that death-status(p)
must be nil (or else an action of Ap, will occur). Thus, the restart(T, p) action is enabled,
and will remain enabled until some element of child-status has status other than dead. 0O

Claim 8.23 A processor p erists that is unoccupied and allocated leads to an action of Ay, .

Proof:

Since p is allocated and unoccupied, the schedule of the space allocation automaton
must contain a can-do-work(p’, p) not followed by a die or request-commit action occurring
at either p’ or p. Thus, either a <DO-WORK> is en route to p, or has arrived. In either case.
we have already shown that the create action must occur at p. 8]

Claim 6.24 A deadlock recovery automaton p exists such that child-status(T).status =
requested leads to an action of A,, or the request-space(p) action of Ap.

Proof:

Observing the automaton code, we see that only the can-do-work, die and commit actions
can change the status of a child away from requested (restart is not enabled because a child
has status requested. The latter two actions induce an action of Ay, .

Consider the value of work-requested(p). If it is not nil, wait until it becomes nil, since
we have already shown that this must happen. If nil, the request-space(p) action is enabled
(unless death-status(p) is non-nil, in which case an action of A5, must occur), and must
remain so unless either death-status becomes non-nilor an action of Ay, is induced. Thus.
either request-space(p) occurs or an action if Ay, is induced. O

Claim 6.25 A deadlock recovery automaton p erxists such that child-status(T).status =
requested and there erists an unallocated process p’ leads to an action of Ay, .

Proof:

First, observe that by the definition of allocated, p’ will remain unallocated until either
a can-do-work(p”, p’) action occurs or create(7”, p’) occurs. After the former occurs. p’
is unoccupied and allocated, and by the previous claim create will occur. Thus, for the
remainder of the proof of this claim. we can assume p’ remains unallocated (since if it does
not, the consequent holds). We further assume that can-do-work does not occur, since if it
does a <DO-WORK> message is enqueued, causing a create.

By the previous claim, a request-space(p) action must occur. Then, the space allocation
automaton must take a can-do-work action, by the definition of a space allocation automaton.
since p/ is still unallocated. This in turn will induce a create action, since a <DO-WORK:»

~—~

message will be enqueued. c

Claim 6.268 A state in which all nodes are allocated leads to either an action of Ay, or a
state in which all nodes are occupied.
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Proof:

Consider a node p which is unoccupied and allocated. By the definitions of occupied and
allocated and space allocating automata, p was unoccupied when the can-do-work action
making it allocated occurred. At this point a <DO-WORK> was enqueued, and we have
already showed that the existence of this message in a queue leads to the create action.

If no such node can be found. then all nodes must be occupied. a

Claim 6.27 A state in which all nodes are occupied and some node has an element of
child-status with status requested leads to an action of A, .

Proof:

If a state is entered in which some node is no longer occupied, then the request-commit
or die action must have occurred at that node, by the definition of occupied. In the former
case, a <DONE> action is enqueued. which will induce a commit action, and in the latter an
action of Ap, has occurred. Thus, we may assume that all nodes remain occupied.

Choose a deadlock recovery automaton p such that child-status(p)(T).status = requested,
/3T |child-status(p)(T').status = running and preciousp(p) = nil. To see that such an
automaton exists, first observe that there are at most TOTAL_RESOURCES - 1 automata
with preciousp = true, since if there were TOTAL_.RESOURCES the lowest-level one could
not have child-status non-nil (by the definition of client automata, the definitions of S and
A, the high-level safety properties already shown about preciousness, and the observation
that only the request-create-child action adds elements to the initially empty child-status
set). Now, consider any non-precious automaton with an element of child-status with status
running. If none exists there must be at most one non-precious automaton with an element
of child-status with status requested (or else the behavior of the associated client is not fair,
by Claim 6.21). If one exists, either a <DO-WORK> is en route to some automaton or some
automaton has curT the value of the running child of the parent under consideration. The
former case cannot occur, however, since it would imply that an automaton is unoccupied,
and by hypothesis this is not so. Now, shift the focus to the running child that has just
been found. In this way, we will eventually come to an automaton with no elements of
child-status with status running, and some element with status requested. In addition, this
node will not be precious.

Since some node p has an element of child-status with status requested, either an action
of Ap, occurs or the request-work(p) action occurs, by Claim 6.24.

The space allocation automaton must perform the no-space(p) action, since it may not
perform a can-do-work action, and must perform one of the two actions. Now, we do a case
analysis:

master-process(p) = nil Examining the automaton code for the no-space action, we see that
either a <WANT-MASTERSHIP> message is enqueued, or master-attempted(p) is non-
nil. Examining the automaton code. we see that master-attempted(p) is only set to
a non-nil value when a WANT-MASTERSHIP message is sent, and is cleared by
exactly the following actions: request-commit (which leads to an action of Ay, ), die
(which directly induces an action of Ay, ), and become-master(p).

Thus, if master-attempted(p) is non-nil, there is a <WANT-MASTERSHIP, T, p> mes-
sage sent by p that has not yet been received by p. If this message is received by
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p before any other <WANT-MASTERSHIP> messages, p will become deadlock master,
since in that case master-attempted will still be non-nil, and the curT = T condition
must still be satisfied (or else a request-commit must have occurred). Otherwise, some
other node will become deadlock master on receiving its own <WANT-MASTERSHIP>
message. If for some reason the receipt of the first such message causes the originat-
ing node to send a <NEW-MASTER, nil, nil> message instead, we can then begin the
analysis from the beginning, except that this time no <NEW-MASTER, nil, nil> mes-
sages can be sent, since they require that a request-commit action occur at p between
the sending and receiving of the <NEW-MASTER, T', p> at p.

Since the <WANT-MASTERSHIP> message that was first in the serialized ordering of
messages was broadcast, it will eventually be received at all processes. Wait until
this occurs. At this point, all processes have the correct notion of the identity of the
deadlock master, because no request-commit or die actions have occurred (or else an
action of A, would be induced).

masterp(p) = p', and masterp(p’) # p’ Wait until all <WANT-MASTERSHIP> messages ex-

tant, if any, are delivered. If this case no longer applies, restart the case analysis.
Now, process p has recorded that the deadlock master is p’, but p’ does not have
recorded that it is master. Since p’ must also have received the <WANT-MASTERSHIP>
message containing p’ as a processor identifier, but is no master, it must have either
enqueued a <NEW-MASTER, nil, nil>, or a request-commit or die action must have
occurred. Either action occurring would lead to an action of A, occurring, so we
must assume the <NEW-MASTER, nil, nil> message was sent. Wait until this mes-
sage is received at all processors, and restart the case analysis. We know that this
situation cannot recur because no automaton may perform the request-commit or die
actions, and once a process sands a <WANT-MASTERSHIP> message, it will never send
<NEW-MASTER> unless the client automaton running at it requests to commit or dies
(since otherwise the value of curT will be unchanging).

.masterp(p) = p’, and masterp(p’) = p’ Process psends a <AM-BLOCKED> message to the

process denoted by masterp(p). This process must still think itself to be dead-
lock master, and still have the same associated client automaton (since otherwise
an request-commit or die action must have occurred). On receipt, the process sets
death-status(masterp) to dying, and we have already shown that this induces an ac-
tion of Ay, .

O

- Claim 8.28 Any state leads to an action of Ay, unless the behavior of some client au-
tomaton is not fair.

Assume that the behavior of every client automaton is fair. Then, by Claims 6.21
and 6.22, some automaton has a value of child-status with status requested. Now, either all
nodes are occupied, or all nodes are not occupied. By Claim 6.25 and the previous claim.
some action of A, must occur. C

Thus, every fair behavior of Ap is a fair behavior of Ay, . C
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6.12 Ap preserves client well-formedness

Lemma 6.29 FEvery erecution of Ap is well-formed.

Proof:
The proof is by induction on the length of executions.

Basis:
Examine the shortest execution, consisting of only the start state, and observe that
every block of every client automaton is empty, and that it is therefore well-formed.

Inductive Step:

Given an execution a of Ap that is well-formed, we show that ar is well-formed if ar
is an execution of Ap, by enumeration of possible values of «.

Because of the definition of well-formedness (page 74) for distributed client automata,
we need only consider values of 7 which are external actions of client automata. Further,
because distributed client automata preserve well-formedness, we need not consider output
actions of client automata.

Because we have given a mapping of executions of Ap to executions of A, and all
executions are A, are well-formed, we need only show that the additional constraint that
the value of p is the same for all actions within a block of a client automaton is satisfied.

create(T, p): This action begins a block, and thus the new execution is well-formed if
the old one is.

commit(T”, results, p): Since the action occurred, there was a <DONE, T', results,
masterp> message in the input queue of pi-By Claim 6.5;-¢hild-status(p)(T’).status =
running. Thus, curT(p) is parent(T') and status(p) is running, by Lemma 6.4.

Thus, the create(parent(T’), p) action must have occurred more recently than any
die(parent(T’), p) or request-commit(parent(T’), results, p), or else curT(p) would be
nil. Thus, the current block of client parent(T’) already has value p associated with it.

die(T, p): By the definition of well-formedness of client automata, a die action does not
belong to any block. Thus, adding this action to a well-formed execution produces a
well-formed execution.

O
6.13 Ap is correct
Theorem 6.30 Ap is correct.
Proof:
Since Ap solves Ay, and Ap preserves client well-formedness, the distributed version
of the deadlock recovery algorithm, A4, is correct, by Lemma 6.1. O
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Chapter 7
Conclusion

This chapter contains a summary of the thesis and suggests topics for future
research.

7.1 Summary

We started with a problem that arose naturally during the process of designing
a system for highly-reliable high-throughput computing. Then, we gave formal cor-
rectness conditions for the problem in terms of I/O Automata. This required the
introduction of client automata, which model the behavior of the user’s program for
which the deadlock recovery algorithm functions as a scheduler. We placed condi-
tions, both safety and liveness, on client automata in order to be able to show that
the combined system was correct. The use of I/O Automata helped greatly in being
sure that the conditions were clearly expressed, and allowed the intuition of what
was “reasonable” for a client automaton to do to be expressed both formally and
reasonably easily in a way that can be precisely understood by the reader.

After presenting a high-level algorithm to solve the problem, we proved safety
properties about the algorithm. Then, we showed liveness properties of the algorithm.
In the liveness proof, we used a modified version of the standard variant function
technique; instead of presenting a metric on states with no infinite decreasing chains.
we show that no execution of the algorithm contains an infinite decreasing chain. Also.
we show that every locally-controlled action of the algorithm decreases the metric.
rather than showing that some action decreasing the metric occurs infinitely often.

Then, a distributed version of the algorithm and a possibilities mapping from the
distributed version to the high-level version was presented. Finally, we showed liveness
properties of the distributed version, completing the proof that the distributed version
of the algorithm is correct.

7.2 Future work

This section suggests some areas for future work.

7.2.1 Proofs oi time bounds

We showed that an algorithm had certain liveness properties, meaning that there
were no infinite executions that did not solve the problem. We did not attempt to
give time bounds on how long the algorithm took to solve the probiem; this seems to
be a much harder problem.
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Also, in the current proof we did not place a bound on the number of requests
each client automaton may make; Proving time bounds without such a limit will
require defining just how the running time of an algorithm that must respond to an
unbounded but finite number of requests should be measured.

7.2.2 Issues in liveness proofs

We chose the modified variant function strategy for the liveness proof; this seemed
to place the fewest constraints on the client automata. For example, a nondeterminis-
tic client automaton that requests one child the first time it is started, two the second
time, and so on, is acceptable under the current set of definitions. One might instead
require that the algorithm satisfy requests within a finite time of the cessation of
requests by each client, or some other conditions.

One could further explore the variant technique; one idea that was considered in
this thesis was to have each request made by a client automaton increment the variant
function. Then, one could show that the algorithm would terminate as long as the
number of requests made by client automata were finite.

7.2.3 Automation of proofs

Many of the arguments in the safety proofs are trivial, but one must write them all
out to be sure that the proof is really a proof. One could investigate using automated
theorem proving techniques to verify invariants, having the automated prover attempt
to show the inductive step after the human doing the proof provided a set of invariants
(such as those in Lemma 4.3). The prover could probably be able to show some of the
components of the large invariant, and not others. The human could then examine
each place where the proof did not go through, and determine (as I often did when
doing the proof in Chapter 4) that another invariant is needed. Alternatively, it could
be determined that that component can indeed be shown from the others already
there, but that the theorem prover could not do it — these are often the interesting
cases anyway — and that part of the proof could be done by hand.

The same techniques could be applied to the problem of showing that a given
mapping is a possibilities mapping.
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