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Chapter 1
Introdution
Group ommuniation is a means for providing multi-point to multi-point ommuniationamong a group of proesses. A group ommuniation abstration provides appliation writerswith reliable multiast ommuniation servies within dynamially hanging groups. It alsoprovides membership servies whih inform group members when other members rash, leave,or join the group.A group ommuniation system (GCS) allows lients to join one or several multiastgroups and informs lients about membership hanges via views. A view ontains a set ofurrently onneted lients in a given group. The views are delivered to a lient within thestream of messages multiast by lients to the group. A membership servie, whih is a partof the GCS, generates views in response to proesses joining, leaving or disonneting fromthe group. The task of this servie is to maintain and distribute the information about theurrent group membership.The ability to share ommon information in a fault-tolerant manner is what many applia-tions require. GCSs are designed to meet exatly this requirement; therefore, fault-toleraneis one of the key properties of any GCS. As a matter of fat, a great deal of distributedfault-tolerant appliations already rely on the group ommuniation abstration beause ofits useful semantis (see [4, 5, 11℄).A group ommuniation system typially provides a handful of properties [13℄. The GCSsafety properties guarantee that the system never violates ertain orret harateristis.8



Some of them speify the behavior of the GCS membership servie. That is, they statethe requirements about the membership views provided by the servie. The GCS must alsoprovide ertain multiast harateristis regarding the reliability and ordering of messages.An important safety property is Virtual Synhrony [13℄. It guarantees synhronous messagedelivery with respet to views. Spei�ally, if two lients transition from V 0 to V together,they must deliver the same set of messages in V 0.In addition to the safety properties, a GCS must provide some liveness guarantees. Theyharaterize how well a system progresses in delivering messages and views. Liveness of thesystem depends heavily on the stability of the underlying physial network. However, thisis barely a problem beause, at least temporary, network stability is a sensible onditionin pratie. The term virtual synhrony semantis (VS) refers to a ombination of theseliveness and safety properties that inludes the Virtual Synhrony property.A serious issue with whih a virtually synhronous GCS has to ope is maintaining anaeptable level of performane while the number of ommuniating lients, and the size ofthe network grow. To implement VS, a GCS needs to perform the synhronization roundsin whih the lients exhange the information about their states. As the network latenyinreases, the synhronization rounds beome very ostly. Message length and omplexityinrease with the number of lients.This thesis implementation is a building blok of the emerging Xpand GCS designed toresolve many performane issues. Spei�ally, we implement the VS algorithm by Keidarand Khazan [10℄, as a part of the arhiteture proposed by Anker et al. [2℄. The noveltyof this arhiteture is the separation of the membership servie from the multiast lientin order to parallelize the exeutions of the membership and the VS protools. Moreover,the VS protool requires only one round of synhronization messages per eah membershiphange. It uses the external membership servie of Keidar et al. [10℄. The new features allowthe system to operate eÆiently on a Wide Area Network (WAN).The Xpand system onsists of three main omponents:� Core implements reliable FIFO multiast [3℄ among lients.� The membership server provides lients with views via a TCP interfae [9℄.9



� The VS library, alled VS-wsession, provides the VS servie implemented in this projet.VS-wsession supports two types of semantis: strong and weak. The �rst one refers to theVS semantis desribed earlier while the seond type of semantis implements only a subsetof the VS properties that does not inlude Virtual Synhrony. The apability to support twosemantis makes the entire system more exible and more useful for appliations requiringdi�erent semantis. For example, an appliation an partiipate in a video onferene andedit a shared �le at the same time. Clearly, the �le onsisteny requires stronger reliabilityguarantees than the video.VS-wsession is a C++ library, whih an be linked with the user appliation. It isimplemented using approximately 9000 lines of ode. VS-wsession allows the appliationto establish new or join existing groups in order to multiast and reeive messages. Themultiast send and reeive operations are non-bloking; they return an error in ase thelower level operations would blok.VS-wsession also informs the appliation about new membership views beause a typialappliation needs to know the other parties with whih it ommuniates. The membershipviews go through VS-wsession from the membership server to the appliation. However,before VS-wsession an deliver a view to the appliation, it has to omplete one or moresynhronization rounds. To parallelize the generation of a new membership view with thesynhronization rounds, the membership server noti�es its lients, VS-wsessions, when itbegins to engage in a membership hange in a given group. Thus, the lients an startsynhronizing even before they reeive the view from the membership server. One the viewis reeived from the membership server and the synhronization are rounds omplete, theview an be delivered to the appliation.In this thesis, we present measurements of VS-wsession's performane. The results of ourmeasurements show that the omputation overhead assoiated with message delivery whileno membership hanges our is very low. It also shows that the synhronization roundsomplete faster than the membership view generation in majority of ases, and the di�erenein time is approximately 50%.The following setions desribe the system in greater detail. Chapter 2 ontains the10



spei�ations of VS-wsession. Chapter 3 desribes how VS-wsession interats with Core andthe membership server. Chapter 4 desribes the API. The details of the implementation ofVS-wsession follow in Chapter 5. This thesis also shows the performane harateristis ofthe system in Chapter 6.
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Chapter 2
Virtual Synhrony Spei�ations
We now present the spei�ations of the entire system as onveyed by VS-wsession to itsappliation. Here, a proess orresponds to an instane of VS-wsession on a network. Eahproess is responsible for serving its user appliation. The ommuniation between a proessand its user is de�ned in terms of a set of events. The send event refers to submitting amessages by the appliation to the proess for multiasting. Similarly, a reeive event refersto the delivery of a message by the proess, possibly from another proess, to the appliation.The stream of messages delivered to the appliation ontains views. The view onsists of aset of ommuniating proesses in a given group and an identi�er from an ordered set. Theinstallation of a view is the delivery of a message ontaining the view and a transitional setto the appliation, as explained below.Of the spei�ation properties below, VS-wsession simply preserves most of them. Theonly properties it implements itself are (1.3),(2.3) - (2.5) and (4.1.b). The properties itpreserves are guaranteed by the membership servie and Core. The details of the interationof VS-wsession with the two omponents follow in Chapter 3.VS-wsession meets the following spei�ations desribed in [13, 10℄:2.1 Membership Safety(1.1) Self Inlusion: If proess p installs view V , then p is a member of V .12



(1.2) Loal Monotoniity: If a proess p installs view V after installing view V 0, then theidenti�er of V is greater than that of of V 0.(1.3) Initial View Event: Every send and reeive event ours in some view.2.2 Multiast Safety(2.1) Delivery Integrity: For every reeive event, there is a preeding send event for thatmessage.(2.2) No Dupliation: Two di�erent reeive events with the same message annot ourat the same proess.(2.3) Sending View Delivery If a proess p reeives message m in view V , and someproess q (possibly p = q) sends m in view V 0, then V = V 0.(2.4) Virtual Synhrony If proesses p and q install the same new view V in the sameprevious view V 0, then any message reeived by p in V 0 is also reeived by q in V 0.(2.5) Transitional Set :1. If proess p installs a view V in (previous) view V 0, then the transitional set forview V at proess p is a subset of the intersetion between the member sets of Vand V 0.2. If two proesses p and q install the same view, then q is inluded in p's transitionalset for this view if and only if p's previous view was also idential to q's previousview.2.3 Ordering and Reliability(3.1) FIFO Delivery: If a proess p sends two messages, then these messages are reeivedin the order in whih they were sent at every proess that reeives both.13



(3.2) Reliable FIFO: If proess p sends message m before message m0 in the same viewV , then any proess q that reeives m0 reeives m as well.2.4 LivenessBefore speifying the liveness properties, we need to de�ne, as in [13℄, a stable omponentand an eventually perfet failure detetor used by the VS servie. The stable omponent isa group of ommuniating proesses that are eventually alive and onneted to eah other,but disonneted from all proesses not in the group. A failure detetor is a module thatprovides information about liveness of proesses on the network. An eventually perfetfailure detetor is a failure detetor that eventually reports the orret information aboutthe proesses' onnetivity. It is referred as 3P in [6, 13℄. For more more formal de�nitions,please see [13℄.Liveness is only required if eventually there exists a stable omponent S in the network(proesses eventually stop rashing or reovering), and the failure detetor behaves like 3P[6, 13℄.(4.1) Liveness: Assuming that S exists and the failure detetor behaves like 3P , then forevery stable omponent S there exists a view V with S as its members set suh thatthe following three properties hold for eah proess p in S:a. Membership Preision: p installs view V as its last view.b. Multiast Liveness: Every message p sent in V is reeived by every proess inS.. Self Delivery: p delivers every message p sent in any view unless p rashed aftersending it.
14



2.5 The Utility of Virtual Synhrony and TransitionalSetVirtual Synhrony is a very useful property for many appliations that maintain repliateddata. The appliation proesses that maintain data replias join multiast groups througha GCS with virtual synhrony semantis. The operations on the the repliated data aremultiast in messages by eah proess to the entire group. These messages are reeivedreliably and in a FIFO manner. If a proess applies the operations indiated in the reeivedmessages, the Virtual Synhrony property guarantees that the proesses remaining in a groupwill reeive the same sequenes of messages and perform the same operations on their datareplias. This implies data onsisteny among the group members.Transitional Set allows proesses to exploit Virtual Synhrony. Spei�ally, the transi-tional set tells an appliation proess whih other proesses move together with it from theirmutual urrent view into their mutual new view. This way, the proess knows whih otherdata replias remain onsistent with itself. For onrete appliations of Virtual Synhronyplease see [7, 11, 1℄.
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Chapter 3
Environment
The distintion of the new design is that it separates the membership servie from themultiast ommuniation. Sine the membership hanges are relatively infrequent omparedto the ommuniation traÆ, the new design removes the unneessary overhead from themajor part of the ommuniation traÆ and thus provides for better eÆieny. This featuremakes the system espeially suitable for suh wide area networks as the Internet. Moreover,the lient-server arhiteture, whih is shown in Figure 3-1, improves the salability of thesystem.3.1 Membership ServieA set of servers ommuniating among themselves and with their VS lients via TCP soketsimplement the membership servie [9℄. Eah server uses its TCP interfae to ommuniatetwo types of messages to its lients:1. Start-Change Message: A start-hange message ontaining an identi�er tells a lientthat the membership is hanging. It provides an approximation view of the membershipof the next view. It also arries an identi�er.2. New-View Message: A new-view message ontains a set of lients that the mem-bership servers have determined to be in the next view. The new-view message also16
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Figure 3-1: VS arhitetureontains a view identi�er and the last start-hange identi�ers reeived by eah groupmember.These messages are provided to lient's VS-wsession. The identi�ers of the start-hangeand the new-view messages are guaranteed to monotonially inrease. Moreover, the mem-bership of the new-view message is guaranteed to be a subset of set given in the last start-hange message. They also guarantee properties (1.1), (1.2) and (4.1.a).Eah VS-wsession uses the membership interfae module provided by Xpand in order toretrieve the messages from its membership server. The information available in the start-hange allows to a lient to start the synhronization round with the set of lients indiatedin the message. The new-view allows eah lient to determine the transitional set and toagree with other lients on whih message to deliver before installing the message's view.3.2 Core as Reliable FIFO LayerThe VS-wsession is linked with Core, whih provides reliable FIFO multiast hannels ontop of UDP/IP-multiast [3℄. Core maintains a onneted set. This set is a set of lientswith whom Core maintains reliable FIFO ommuniation. Core bu�ers all reeived messagesuntil it is told to dealloate them.Core's interfae provides the following operations:17



1. Multiast messages to a given ommuniation group;2. Reeive messages delivered to a given group from lients;3. Re-multiast or re-uniast to a spei� lient messages delivered from other lients,VS-wsession uses this operations to forward messages;4. Change the onneted set;5. Inform Core when a partiular message an be dealloated.The protool implemented by Core guarantees properties (2.1), (2.2), (3.1), (3.2), and(4.1.b-).The UDP protool has been hosen for Core over TCP for performane reasons. Eventhough the TCP protool guarantees all the required properties, it an only support point-to-point ommuniation. On the other hand, the UDP protool an multiast messages viaIP-multiast. The use of multiast eliminates the need to send the same message multipletimes and thus alleviates the network load.Core ompensates for UDP's unreliability and reordering. It provides FIFO message or-dering between any pair of lients in a group. Core uses an ACK/NACK algorithm withtimeouts. It bu�ers all in-bound and out-bound messages, aknowledges reeived messages,sends negative aknowledgments in ase it detets missing messages, and retransmits a mes-sage after reeiving a NACK for it.Core allows VS-wsession to use its message bu�er spae to avoid multiple message opy-ing. When VS-wsession informs Core about a message dealloation, Core will \garbage-ollet" all the messages up to and inluding the indiated one aording to the messagesequene numbers. A more detailed disussion of Core an be found in [3℄.3.3 Support for Multiple GroupsThe VS-wsession also uses the membership interfae module for group multiplexing [3℄.VS-wsession reates and manages strong and weak groups. VS-wsession guarantees virtualsynhrony semantis in eah strong group. The appliation an be a member of any number of18



groups limited by a on�gurable onstant MAX GROUP NUM. The groups are referenedby names, whih are harater strings with maximum length of MAXGRPNAME. Coreresolves the group names into group identi�ers and network addresses internally [3℄ whileVS-wsession uses the string representation.
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Chapter 4
Virtually Synhronous ClientInterfae
As mentioned above, the objetive of VS-wsession is to provide the appliation with thevirtually synhronous semantis using the membership and Core. As for the appliationinterfae, VS-wsession allows the appliation to join and leave existing groups (known to thelient's server). If the appliation attempts to join a non-existent group, the group will beestablished with a single member. One the appliation has hosen to join one or more stronggroups, the VS-wsession joins these groups at the membership server and starts deliveringappliation messages in a manner that is synhronous with respet to the membership events.VS-wsession also generates blok events with speial bloking messages injeted into theappliation message stream. A blok event noti�es the appliation about a pending viewinstallation. The appliation must �nish sending its messages in the urrent view and subse-quently respond with a blok-OK message generating a blok-OK event at VS-wsession. Theblok-OK event allows VS-wsession to run the synhronization round for the pending viewinstallation. The appliation will be unbloked when VS-wsession delivers the new view [10℄.The urrent implementation of the VS lient is single-threaded; it relies on Xpand'sevents library. The thread of ontrol is shared among the user appliation, the VS lient,the membership interfae module, and Core based on demand and priority. Every moduleregisters its event handlers as all-bak routines with the events library, whih is responsible20



for sheduling these all-baks.In order to reeive information from VS-wsession, the appliation must provide deliveryand unblok all-baks upon join. These routines will be alled to deliver a message or anunblok event. In ase of the weak servie group, the user also needs to supply a membershiphange all-bak. For the strong groups, the third all-bak is not needed beause the VS-wsession will notify the user about a new view through the delivery all-bak using a speialnew-view message.VS-wsession uses the following messages to ommuniate with its appliation:1. Appliation Message, APP MSG: This message is the appliation data treated asa byte bu�er sent and delivered among group members.2. New ViewMessage, NVIEW MSG: The new view message ontains a membershipand a view identi�er. It also ontains a transitional set. After reeiving this message,the appliation an ontinue multiasting messages in the new view.3. Blok Message, BLOCK MSG: The blok message is used to notify the appliationabout the start of a view reon�guration.4. Blok-OK Message, BOK MSG Upon reeiving the blok message, the user appli-ation must send any relevant messages in the urrent view and terminate them witha blok-OK message. The blok-OK message tells the lient that the appliation willnot send any more messages in the urrent view.The VS-wsession library provides only per group semantis and an support the weakgroups as well as strong ones. It has the following user API.4.1 VS-wsession User APIW Init()arguments: har string lient namehar string server addressunsigned short server port 21



membership type typeheks: if type 2 {WEAK, STRONG}.effets: instantiates and initializes the VS-wsession abstrationfor a new lient;if type = STRONG, VS-wsession will allow to reateonly STRONG groups.returns: a new wsession handle.W Close()arguments: wsession handle wephheks:effets: disonnets from the membership server and dealloates allthe data strutures for this lient.returns:W Join()arguments: wsession handle wephhar string group namefuntion pointer unblok allbakgeneri pointer unblok parameterfuntion pointer delivery allbakgeneri pointer delivery parameterfuntion pointer membership allbak (NULL for STRONG (VS) groups)generi pointer membership parameter (NULL for STRONG (VS) groups)membership type typeheks: if this lient is already a member of the requested group;if type 2 {WEAK,STRONG};if type 6= WEAK in ase of the STRONG wsession type.effets: instantiates and initializes a new group objet;issues a join event for the appropriate group tothe membership server;notifies Core.returns: new group handle. 22



W Leave()arguments: wsession handle wephgroup handle group IDheks:effets: issues a leave event to the membership server;notifies Core;dealloates the group instane and removes all-baks.returns:W Send()arguments: wsession handle wephgroup handle group IDunsigned short bu�er lengthhar buffer bu�erheks: if bu�er length � MAX VS USER MSG SIZE.effets: sends an APP MSG ontaining bu�erto the group with group ID.returns: 0 if message is sent;-1 if message annot be sent presently.W Group Poll()arguments: wsession handle wephgroup handle group IDheks:effets: polls Core for available messages to reeive inthe group speified by group ID.returns: number of deliverable messages.W Group Reeive()arguments: wsession handle wephmessage pointer msg pointergroup handle group ID23



heks:effets: performs non-bloking reeive;if there is a message to deliver, msg pointer pointsto the message;else msg pointer is set to NULL;returns: number of bytes in msg bu�er if message is APP MSG;number of lients if message is NVIEW MSG;0 if message is BLOCK MSG;-1 if no messages available.The ontents of msg pointer are dealloated one ontrol returns from appliation to VS-wsession.W Copy Group Reeive()arguments: wsession handle wephmessage pointer msg pinterunsigned short maximum lengthgroup handle group IDuser message info pointer info pointerheks:effets: same as above, exept that message ontentsare opied to msg pointer;returns: same as above;W Blok Ak()arguments: wsession handle wephgroup handle group IDheks:effets: aknowledges BLOCK MSG and agrees notto send messages until next view.returns:
24



Chapter 5
VS-wsession Implementation
5.1 RoadmapThis Chapter is strutured as follows: Setion 5.2 desribes how VS-wsession works withother Xpand modules. Setion 5.3 explains the advantages of the event-driven design ofVS-wsession. Setion 5.5 presents an overview of the VS servie algorithm [10℄. Setion 5.6desribes the main data strutures of VS-wsession and how they are used by the algorithm.Setion 5.8 elaborates on the forwarding strategy employed by the algorithm [10℄. Setion 5.9explains the stability traking mehanism of VS-wsession. Finally, Setion 5.10 exposes thelimitations of VS-wsession.5.2 Interonnetion with Other ModulesThe all-baks provided by the appliation to VS-wsession for a weak group are registereddiretly with Core and the membership interfae module. For the strong groups, the twoappliation all-baks are registered with the VS-wsession instead.In order to reeive messages from the network, VS-wsession registers its own deliveryand unblok all-baks with Core. In addition, VS-wsession registers a all-baks with themembership interfae module to handle the messages arriving from the membership server.All the all-baks are invoked in a ontext of a group.25



5.3 Event-Driven DesignA single-threaded ontrol managed by the events library has been preferred beause theentire system is inherently event-driven. Namely, all omputations are triggered either bynetwork events, or by the user appliation.Another natural reason to adhere to the single-threaded event-driven paradigm is theomplexity and the performane overhead assoiated with data synhronization. With dataheavily shared among all groups on the level of the Core layer, it is not lear how to distributethe work among multiple threads.Although less signi�ant, portability is still another reason to avoid multiple threads.Di�erent platforms are optimized for di�erent thread pakages. Even though POSIX seemsto be standard for the Unix platforms, Mirosoft Windows systems perform notieably betterwith their native threads libraries.5.4 Communiation MessagesThe lient manipulates a set of messages to ommuniate with the membership server, otherVS lients in its groups, and the user appliation. The ommuniation with the user appli-ations, whih has been desribed in Chapter 4, is loal. That is, the appliation is linkedwith an instane of VS-wsession. The desriptions and formats of the remaining messagesare presented below.Membership server to VS lient ommuniation:1. Start-Change Message: The start-hange message is sent by the membership serverto its lients whenever the server engages in a membership hange. This messageprovides an approximation of the new membership. Eah start-hange message alsoontains an identi�er, whih inreases monotonially with respet to eah server. Thepurpose of this identi�er will be mentioned during the desription of the synhroniza-tion message. 26



2. Membership View Message: The membership view message from the server on-tains a set of lients that the membership servers have determined to be in the nextview. This set of lients is guaranteed to be a subset of the view provided in thepreeding start-hange message. The membership view message also ontains a viewidenti�er and a mapping from view members to the last start-hange identi�ers re-eived by eah of them. The monotoniity of the view identi�ers is also guaranteed bythe server.Client to lient ommuniation:1. Appliation Message: This is the message sent and reeived by appliation as de-sribed in Chapter 4. The appliation message must not exeed MAX VS USER SIZEbytes in order to be suessfully multiast. It is the responsibility of the appliationto make sure that the messages it tries to ommuniate via the VS-wsession do notexeed this limit. The appliation messages arry sequene numbers when sent amonglients.2. Synhronization Message, also Cut, CUT MSG: VS-wsession multiasts a utmessage every time it reeives a start-hange message from the server. The ut inludesthe urrent view, inluding the start-hange mapping, and the view identi�er. It alsoontains the sequene numbers of the last messages it an potentially deliver to theappliation from eah view member at the moment of sending this ut. These arethe messages reeived from Core. It also has a ut identi�er, whih is equal to thestart-hange identi�er in the start-hange message reeived before the ut.3. Stability Message, also Stable Cut, STBL MSG: VS-wsession uses the stableut message to ommuniate the message stability information urrently available toit to other VS-wsesion instanes. The stable ut spei�es the last message delivered tothe appliation from eah sender in the group.4. View-Start Message, also VSTRT MSG: The view-start message is idential tothe membership view message in ontent, but is multiast within the group rather than27



sent from the server to its lients. It identi�es the end of the appliation message streamin the old view and noti�es other group members about this member's transition tothe new view.5.5 The Algorithm OverviewWhile the network is stable and the lient has installed at least one view in the group,VS-wsession immediately delivers all the messages from Core to the appliation through thedelivery all-bak registered by the user when it joins. When a view reon�guration ours,the VS algorithm is triggered.When the membership server informs VS-wsession (via the appropriate all-bak) abouta pending view with a start-hange message, VS-wsesion bloks the user appliation fromsending further messages. Then, after the appliation replies with a blok-OK message, VS-wsession multiasts a synhronization message tagged with the identi�er provided in the laststart-hange message. That is, the identi�er of the synhronization message is equal to theidenti�er of the start-hange message.To keep trak of the appliation messages reeived from Core, VS-wsession assigns VSsequene numbers to them; these sequene numbers are di�erent from those used by Core.The synhronization message desribes whih appliation messages VS-wsession is apableof delivering by speifying the VS sequene number of the last message reeived from Corefrom eah member. In order to guarantee Property (2.3), all the VS-wsessions in the grouphave to agree on the set of messages they deliver to the appliation. After olleting all thesynhronization messages and reeiving the view from the membership server, eah instaneof VS-wsession an determine the appropriate set, as explained below.Beause VS lients operate ompletely asynhronously and beause multiple membershiphanges may our, VS-wsession an reeive multiple start-hange and synhronization mes-sages before the membership view arrives. The start-hange identi�ers mapping inluded inthe membership view tells VS-wsession whih synhronization messages from other membersto onsider. Using the information ontained in these synhronization messages, this VS-wsession deides on the set of appliation messages it must deliver in its urrent view. Sine28



the same view sent to all VS-wsessions ontains the same start-hange identi�ers mapping,VS-wsessions use the same synhronization messages to agree on the orret set of messages.One VS-wsession reeives a new view V from the membership server, it an determinethe intersetion of the urrent view V 0 and V . After VS-wsession ollets a synhronizationmessage whose identi�er is equal to the respetive start-hange identi�er given in V fromeah member of the intersetion, it omputes the transitional set of views V and V 0 toinlude every member of the intersetion whose synhronization messages orresponding toV ontain the same view V 0.VS-wsession delivers the maximum number of messages with respet to the transitionalset. That is, for eah sender, VS-wsession delivers the maximum number of messages indi-ated in the ut messages of the members of the transitional set.VS-wsession may not have all the messages it has to deliver before transitioning to thenew view beause some members of the transitional set may have delivered more messagesfrom already disonneted lients than this VS-wsession. In this ase, aording to theforwarding strategy explained below, some members of the transitional set must forward theneessary messages to this VS-wsession. This way, the loal VS-wsession an satisfy the VSonditions and install a new view.This algorithm operates in parallel with the membership servie algorithm and requiresa single round of synhronization messages per every start-hange event. Assuming the lowfrequeny of the membership hanges, the algorithm minimizes the reon�guration periodduring whih the appliation is bloked from sending and makes the high latenies of thewide area networks tolerable.5.6 Data Strutures and Algorithmi DetailsThis setion desribes how VS-wsession data strutures are used by the algorithm. Most ofthe VS-wsession data strutures implement the VS state desribed in [10℄.� WEPID: Every lient in a group has a WAN end-point identi�ation ontaining lient'sname, membership server IP, lient's IP, UDP port number and some other information29



used by Core. Thus, the lients are referened by their WEPIDs in all loal datastrutures.� Reliable Set: The VS-wsession maintains a reliable set, the set of lients to whom Corehas to maintain reliable ommuniation. This reliable set is equal to the urrentlyinstalled membership view during normal operation. One a start-hange message isreeived, the reliable-set beomes the union of the start-hange set and the urrentreliable set. Ultimately, when a new membership view is installed, the reliable set isreset bak to normal, that is, to the view's membership.� Message Data Strutures: In addition, VS-wsession needs to keep trak of the urrentview, the last start-hange message from the membership server, and the last syn-hronization messages from all other VS-wsession instanes. The VS-wsession storesonly the last start-hange and orresponding synhronization messages beause thesystem does not deliver obsolete views. (This is di�erent from the algorithm desrip-tion in [10℄). In other words, if this VS-wsession reeives a new start-hange message,it will deliver a view no older than the one orresponding to this message { all theintermediate views will be skipped. Similarly, if this VS-wsession reeives a new syn-hronization message from another group member, it will deliver a view no older thanthe one orresponding to this synhronization message, whih in turn orresponds tothe start-hange reeived by the other member. As mentioned in Chapter 5.4, theorrespondene between the start-hange and synhronization messages is establishedthrough their identi�ers.Analogously to the synhronization messages, VS-wsession stores the last view-startmessage from eah. Sine the VS-wsession instanes operate asynhronously with dif-ferent speeds, eah instane needs to know the view of eah other one in order toguarantee property (2.3). Thus, eah message reeived from Core is assoiated withthe orret view.� Send and Reeive queues: VS-wsession also maintains a send queue and a reeivequeue. The reeive queue is leared after the appliation delivery all-bak is invoked30



foring the appliation to dequeue every message delivered to it. The send queue isnot used for appliation messages, but only for internal messages suh as uts, stableuts, and view-start messages. These are put on the queue until the Core is ready tomultiast them. VS-wsession tries to ush the send queue before every send operation.� Appliation and Forward Set Message Bu�ers: The most omplex data struturesof VS-wsession are the message bu�ers. Both the appliation message and the forwardset bu�ers are multi-dimensional data strutures that are indexed by a view, a messagesoure WEPID, and a message VS sequene number.While in normal mode, that is, no membership events are pending, the messages fromthe network are put on the reeive queue and delivered to the appliation. However,before invoking the appliation delivery all-bak, VS-wsession saves eah message inthe forward set message bu�er. The forward set ontains all the messages that mayhave to be forwarded to other members during the next view hange. The messagesin this bu�er are \garbage olleted" either by the stability traking mehanism afterthey have been universally delivered, or during view reon�gurations along with allother data strutures.If a view hange is taking plae, VS-wsession will �rst verify if the appliation messageis delivery-safe aording to the VS semantis. A message is is delivery-safe if: VS-wsession has no urrent start-hange message, or VS-wsession has not send a synhro-nization message orresponding to the urrent start-hange, or VS-wsession ontainsa synhronization message from a member of the urrent transitional set and whihhas ommitted to deliver this message. If not, the message will be put into the appli-ation message bu�er for potential later delivery. The lient attempts to empty theappliation message bu�er every time it reeives a membership view, a synhronizationmessage, or another appliation message.Ultimately, the messages stored in the appliation message bu�er either beome safeto deliver before the new view is installed, or they are disarded, and the storage is\garbage olleted". The safe messages will be delivered to the appliation and bu�eredin the forward set as desribed above. 31



5.7 Garbage ColletionEventually, if the network stabilizes (no membership events are generated),VS-wsession willreeive the last membership view message from its membership server. This will allow the VSalgorithm to determine the transitional set and the set of messages to be delivered from andforwarded to all other group members. Before delivering the new view to the appliation andmultiasting a new view-start message, VS-wsession relaims the spae of all data pertainingto the old views. This inludes all types of messages sent and reeived in the previous viewsplus some bookkeeping data. The subsequent new view delivery will also unblok the userappliation, and the lient will resume its normal operation.5.8 Forwarding StrategyVS-wsession relies on a forwarding strategy that uses the transitional set information inorder to minimize the number of the forwarded messages. One the transitional set has beendetermined and all the synhronization messages have been olleted, VS-wsession an �ndout whih lients miss whih messages. They determine whih messages eah VS-wsessionmust forward. If more than one instane of VS-wsession is apable of retransmitting a ertainmessage, the one with the minimumWEPID will retransmit. The missing messages from themembers of the transitional set will not be forwarded beause these members must still beonneted through the Core, whih must eventually deliver the messages. Before VS-wsessioninstalls a new membership view, it forwards all the neessary messages in the urrent viewfrom its forward set bu�er, using Core's re-multiast/re-uniast operation. Sine the urrentview may stay unhanged for a long time, in order to avoid forward set bu�er overow,VS-wsession employs stability traking as explained in the next setion.5.9 Stability TrakingVS-wsession maintains a stability matrix that is a set of stability ut message, one from eahmember of the urrent view. While the view is stable (no membership reon�guration in32



progress), the VS-wsession periodially multiasts stability traking information. Spei�-ally, whenever the loal message ount exeeds BUFFER LIMIT, VS-wsession multiasts astable ut. Upon reeiving a stable ut message, VS-wsession an determine if this ut be-longs to the urrent view using the saved view-start message of the soure. If so, VS-wsessionwill add this ut to its stability matrix and will attempt to \garbage ollet" appliationmessages relying on the information in the updated matrix as explained below.If the matrix ontains stable uts from all the members of the urrent view, VS-wsessiondetermines the minimum entry of all the stable uts orresponding to a ertain sender,and \garbage ollets" all the messages in its own forward set bu�er up to this minimum.VS-wsession repeats the proedure for all the members of the urrent view. This type ofstability traking has been hosen beause of its simpliity; it an be �ne-tuned by adjustingBUFFER LIMIT, whih is the minimum number of bu�ered messages before the next stableut is sent. The stability matrix size is �(#lients2). For groups of several hundred members,this is a tolerable memory overhead.5.10 VS-wsession LimitationsThe maximum message size is limited by the UDP paket size, 64 Kbytes, beause the ur-rent implementation is not apable of message fragmentation and reassembly.MAX VS USER MSG SIZE (see Setion 4.1) is somewhat smaller due to headers. Con-sequently, the system is urrently restrited in two ways. First, the user appliation mustfragment and reassemble its own messages if it wants to send longer messages. Seond, thegroup size must not exeed � 450 members; otherwise, some internal VS messages like utswould not �t into a single message.More importantly, the system's salability is limited as a result of the linear message sizegrowth with respet to the number of members in a group. The sizes of the start-hange, newview, view-start, and the synhronization messages are diretly proportional to the groupsize. Thus, the number and the size of the messages required to guarantee VS grow linearly.The salability an be improved by adding hierarhy to the system as in Strutured VirtualSynhrony [8℄, whih is explained in Chapter 7.1.33



Chapter 6
Performane Measurements
The system performane was measured on a LAN. The goal was to measure two harater-istis:1. The time overhead assoiated with the delivery of an appliationmessage fromXpand'sCore to the user appliation at normal times.2. The time required to satisfy Virtual Synhrony during a view reon�guration.The next setion desribes the group on�guration used for the measurements. Setion 6.2explains the overhead assoiated with normal message delivery. Setion 6.3 desribes theoverhead of the VS algorithm during a view reon�guration.6.1 Measurement SetupThe measurements were onduted on three mahines: Pentium III(850 MHz, 512 MB RAM),Pentium II(400 MHz, 128 MB RAM), and Pentium Pro (200 MHz, 256 MB RAM). All threemahines ran Red Hat Linux (Version 2.2.14-5), and all three were onneted to a LANwhose round-trip times for 8 Kbytes and 500 bytes were 17 mse and 2.5 mse respetively.All three mahines did not run any user proesses exept for a lient running VS-wsession, amembership server, and an X-server. The data presented on the �gures below were olletedon the fastest mahine. 34
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Figure 6-1: Distribution of VS message overhead, �.6.2 Overhead at Normal DeliveryWe denote by � the time sine an appliation message is available from Core until its deliveryby VS-wsession to appliation. Figure 6-1 shows the distribution of � on the fastest mahinefor the desribed group on�guration of 3 membership servers and 3 VS lients, one lientper eah server. In this on�guration, eah lient sends an 8 Kbyte message every seond.The average and the median of 8900 samples are 98.5 �se and 94 �se, respetively on thefastest mahine.During normal operation, that is, when no membership events are generated, the messageoverhead is well below 1 mse on all mahines. On the fastest mahine of those three, shownin the �gure, the numbers are very lose to 100 �se. The numbers for the other two mahinesare proportional to their omputer speeds:� avg/median = 221.7/210 �se for Pentium II;� avg/median = 419.2/406 �se for Pentium Pro;These results show that the message delivery overhead is negligible. It is smaller than thenetwork delay of a message delivery even on a LAN by more than one order of magnitude.35
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Figure 6-2: Distribution of time to reeive a membership view, Æ1.6.3 Virtual Synhrony Algorithm DurationThe following de�nitions explain the notation used for the �gures in this Setion:� Æ1 = the time sine the start-hange message until the following new view message;� Æ2 = the time sine the �rst start-hange message until all synhronization messages areolleted for the subsequent view;� Æ3 = the time sine the �rst start-hange message until new view is delivered to appliation,This is equal to max(Æ1; Æ2)+ omputation time.Figures 6-2 , 6-3 , and 6-4 display the distributions of Æ1, Æ2, and Æ3 respetively. Theyhave been omputed for the aforementioned on�guration with a fourth lient joining andleaving every 5 se. The number of membership events registered on eah mahine is 8900.No notieable di�erene between join and leave events has been observed. The messages usedin the synhronization algorithm are of size � 500 bytes. The fourth lient that generatesthe membership events joins and leaves the group via the membership server running on thePentium II mahine. 36
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Figure 6-3: Distribution of time to ollet all synhronization messages, Æ2.
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Figure 6-4: Distribution of the total view reon�guration time, Æ3.
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Figure 6-5: Distribution of the di�erene between Æ1 and Æ2.
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Figure 6-6: Distribution of the di�erene between Æ3 and Æ1.
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Table 6.1: Average and median times for the VS algorithm duration.Æ1 Æ2 Æ3 Æ1 � Æ2 Æ3 � Æ1Pentium III avg (mse) 50 13 52 38 1.9median (mse) 40 5 41 30 1.6Pentium II avg (mse) 116 67 120 49 4.0median (mse) 80 47 84 38 3.4Pentium Pro avg (mse) 76 30 83 48 7.2median (mse) 50 10 56 37 6.6Figure 6-5 shows the distribution of the di�erene between Æ1 and Æ2. The di�erene isonsistently positive and � 50% of Æ1 in magnitude. This indiates that the VS synhro-nization ompletes by 30 mse on average faster than the membership algorithm.Sine Æ1 is onsistently greater than Æ2, Figure 6-6 shows the omputation overhead ofthe VS algorithm after all the synhronization and the membership messages are reeived.The averages and the medians of the six quantities on all three omputers are presentedin Table 6.1.The distributions of Æ1 and Æ2 on�rm that the membership and the VS algorithms indeedrun in parallel. The VS algorithm, implemented in the projet for this thesis, is more eÆient(at least by � 50%). In fat, Æ2 is omparable with the network round-trip time.Although the absolute values of Æ1 are higher. This time is not in the sope of this thesisimplementation, rather it is the time the membership servie requires. The membershipmessages and VS-wsession messages propagate simultaneously as they should. The largevalues of Æ2 on Pentium II are due to the membership events generated on this mahine. VS-wsession on Pentium II reeives a start-hange message from the loal membership serverright after a membership event is generated. However, in order to ollet all synhronizationmessages, the Pentium II VS-wsession has to wait for: the membership information to prop-agate to other servers, the servers to send the start-hange messages to their lients, and forthe synhronization messages from other VS-wsessions to reah the Pentium II VS-wsession.Therefore, it takes longer.The results on�rm that the major overhead of the VS lient is assoiated with the viewtransition. However, the synhronization algorithm is faster than the membership protool.39



The synhronization time is lose to the network round-trip time, and it is not the limitingfator in the ombined algorithm. If the network is stable, the message delivery overhead isnegligible on a LAN { it is even less signi�ant on a WAN. For a long stable ommuniationperiods, the ost of the view synhronization an be signi�antly amortized.
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Chapter 7
Conlusion
The group ommuniation system developed in this projet is a useful tool in distributedfault-tolerant system development. The semantis that the VS lient supports have provento be useful. The performane is mainly onstrained by the underlying network. Therefore,the salability of the entire system in large depends on the message size and omplexity.The urrent system has improved a fair amount of the GCS salability harateristis dueto the separation and parallelization of the membership and the VS algorithms. It has alsoimplemented a more eÆient VS algorithm, whih minimizes the number of ommuniationrounds. The omplete Xpand system an now serve as a powerful appliation developmentinfrastruture and as a base for further improvements and optimizations.7.1 Future DevelopmentsSeveral future enhanements are planned. The VS lient an be extended to support theOptimisti Virtual Synhrony semantis (OVS) [12℄. OVS allows the user appliation to sendmessages while in a reon�guration state, where the urrent implementation bloks. Thiswould improve network utilization and performane. Based on the information providedin the start-hange message, the OVS lient an send messages optimistially before thenext view is determined by the membership servie. If the start-hange information is notompletely aurate, the optimisti messages will be dealt with aording to the poliy41



spei�ed by an appliation.Strutured Virtual Synhrony[8℄ is a way to improve salability of the urrent VS system.The Strutured Virtual Synhrony, just like the membership servie, exploits the hierarhialapproah.There are two main omponents in this hierarhial implementation: ontrollers andlients. Eah lient runs a simple algorithm that sends and reeives messages from the lient'sontroller. Eah ontroller is responsible for a group of hildren lients; the ontrollers inturn ommuniate among themselves to share stability and lient liveness information. Inother words, the ontroller group implements a full-power virtually synhronous algorithmseparately from the loal lients, just as the membership servers run the membership algo-rithm in the membership group. Sine the ontrollers are synhronized and ommuniatewith their hildren lients via an RFIFO network layer, the loal lients also provide the VSsemantis to the appliation layer. Possibly, Xpand'sThe membership servie relays both the ontroller and the lient membership informationto the ontrollers, whih use it to implement virtual synhrony and in turn to inform thelients of their new views. The SVS arhiteture suggests the membership servie be splitin two groups. The �rst group will play its usual role in the ontroller group, whereas theseond membership group will be distributed among the ontrollers in order to trak themembership events within ontrollers' loal groups.The SVS approah inreases salability dramatially [8℄. Sine the ontroller group doesnot have to grow very fast with the number of lients, the network load also remains lowompared to the standard VS algorithm. This means that the same physial networksan support a larger number of lients. Moreover, the number of the SVS levels an beinreased. For example, some appliations may need a higher degree of salability and havemore than two levels: ontrollers, sub-ontrollers and loal lients. However, as the hierarhyinreases it requires more omplex ontrollers and more sophistiated membership servie.A performane gain is still ahievable with a moderate inrease in omplexity. Therefore,SVS is onsidered the next step in the development of the VS systems.
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