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ABSTRACT

We consider unreliable distributed learning systems wherein the
training data is kept confidential by external workers, and the
learner has to interact closely with those workers to train a model. In
particular, we assume that there exists a system adversary that can
adaptively compromise some workers; the compromised workers
deviate from their local designed specifications by sending out
arbitrarily malicious messages.

We assume in each communication round, up to g out of the m
workers suffer Byzantine faults. Each worker keeps a local sample
of size n and the total sample size is N = nm. We propose a secured
variant of the gradient descent method that can tolerate up to a
constant fraction of Byzantine workers, i.e., ¢/m = O(1). Moreover,
we show the statistical estimation error of the iterates converges
in O(log N) rounds to O(\/q/_N + Vd/N), where d is the model di-
mension. As long as g = O(d), our proposed algorithm achieves the
optimal error rate O(Vd/N). Our results are obtained under some
technical assumptions. Specifically, we assume strongly-convex
population risk. Nevertheless, the empirical risk (sample version)
is allowed to be non-convex. The core of our method is to robustly
aggregate the gradients computed by the workers based on the fil-
tering procedure proposed by Steinhardt et al. [9]. On the technical
front, deviating from the existing literature on robustly estimating
a finite-dimensional mean vector, we establish a uniform concentra-
tion of the sample covariance matrix of gradients, and show that the
aggregated gradient, as a function of model parameter, converges
uniformly to the true gradient function. To get a near-optimal uni-
form concentration bound, we develop a new matrix concentration
inequality, which might be of independent interest.
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1 INTRODUCTION

Distributed machine learning has been an attractive solution to
large-scale problems for years. At the same time, learning in the
presence of (possibly malicious) outliers has a deep root in robust
statistics [7] and has become an extremely active area recently.
However, most of the previous work implicitly assumes that the
systems used to carry out the learning task are reliable, i.e., each
computing device follows some designed specification. In this work,
we consider unreliable distributed learning systems that are prone
to system failures or even adversarial attacks. In particular, we
assume that there exists a system adversary that can adaptively
choose some computing devices to compromise; the compromised
devices deviate from their local designed specifications and behave
maliciously in an arbitrary manner.

Our consideration of unreliable distributed learning systems
is motivated by the recent trends in a new learning framework
wherein the training data is kept confidential by external computing
devices, and the learner interacts with the external computing
devices to train a model. In classical learning frameworks, data is
collected from its providers (who may or may not be voluntary)
and is stored by the learner. Such data collection immediately leads
to data providers’ serious privacy concerns, which root in not only
purely psychological reasons but also the poor real-world practice
of privacy-preserving solutions. In fact, privacy breaches occur
frequently, with recent examples including Facebook data leak
scandal, iCloud leaks of celebrity photos, and PRISM surveillance
program. Putting this privacy risk aside, data providers often benefit
from the learning outputs. For example, in medical applications,
although participants may be embarrassed about their use of drugs,
they might benefit from good learning outputs that can provide
high-accuracy predictions of developing diseases.

To resolve this dilemma of data providers, researchers and prac-
titioners have proposed an alternative learning framework wherein
the training data is kept confidential by its providers from the
learner and these providers function as workers. This framework
has been implemented in practical systems such as Google’s Feder-
ated Learning [8], wherein Google tries to learn a model with the
training data kept confidential on the users’ mobile devices. We
refer to this new learning framework as learning with external work-
ers. In contrast to the traditional learning framework under which
models are trained within data-centers, in learning with external
workers the learner faces serious security risk: (1) some external
workers may be highly unreliable or even be malicious (hacked by
the system adversary); (2) the learner lacks enough administrative
power over those external workers. In this paper, we aim to de-
velop strategies to safeguard distributed machine learning against
adversarial workers while keeping the following two key practical
constraints in mind:
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o Small local samples versus high model dimensions: While
the total volume of data over all workers may be large, in-
dividual workers may keep only small samples comparing
to model dimensions. That is, the training data is locally a
scarce resource.

e Communication constraints: Similar to other large distributed
systems, the external workers are typically highly heteroge-
neous in terms of computation powers, real-time local com-
putation environments, etc. As a result of this, each round
of communication requires synchronization; the transmis-
sion between the external workers and the learner typically
suffers from high latency and low throughout.

These two constraints together raise significant challenges for de-
signing securing strategies. Without the first constraint, a one-shot
outlier-resilient aggregation procedure suffices: each worker sep-
arately performs learning based on the local sample and sends
the local estimates to the learner who aggregates these estimates
to output a final global estimate. This procedure is straightfor-
ward to implement and is communication-efficient [6, 12]. However,
the correctness of these algorithms crucially relies on the assump-
tion that the local sample size is sufficiently large. In particular,
n = N/m > d, where m is the number of workers, n is the local
sample size, N = nm is the total sample size, and d is the model
dimension. In contrast, practical distributed learning systems often
operate in the regime where n < d. Two immediate consequences
are: (1) to learn an accurate model, the learner has to interact closely
with those external workers, and such close interaction gives the
adversary more chances to foil the learning process; (2) identifying
the adversarial workers based on abnormality is highly challenging,
as it becomes difficult to distinguish the statistical errors from the
adversarial errors when the sample sizes are small. In addition, due
to the randomness of the training data, the estimates computed at
different rounds are highly dependent on each other.

There have been attempts to robustify stochastic gradient de-
scent (SGD) [2, 3] with different focus from what we consider here.
In particular, [3] assumes all the workers can access the whole
data sample. Similar to ours, the concurrent work [2] considers
the scenario where data is generated and stored in a distributed
fashion at the workers. However, [2] assumes that in each iteration
the workers are able to use fresh data to compute the gradients.
However, fresh data in each round implies that the local sample size
grows with time, which is not necessarily true in some applications.
The fresh data assumption is crucial in their analysis: with fresh
data, conditioning on the current model parameter estimator, the
local gradients computed at different workers become independent,
and the existing analysis of robust mean estimation may suffice. In
this work, we assume that the sample size is fixed over time, and
the training data is stored in a distributed fashion [5, 11].

We propose a robust gradient descent method that tolerates up
to a constant fraction of adversarial workers (i.e., % = 0(1)) and
converges to a statistical estimation error O(\/q/_N + Vd/N) in
O(log N) communication rounds; whereas, the minimax-optimal
error rate in the failure-free and centralized setting is O(Vd/N).
As long as g = O(d), our proposed algorithm achieves the optimal
error rate O(Vd/N), matching the failure-free optimal error rate.
Our results are obtained under some technical assumptions that
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we hope to relax in the future. Specifically, we assume that the
population risk is strongly-convex. Nevertheless, we do allow the
empirical risk (sample version) to be non-convex.

On the technical front, to deal with the interplay of the random-
ness of the data and the iterative updates of the model choice 6,
we first establish the concentration of sample covariance matrix
of gradients uniformly at all possible model parameters; then we
prove that our aggregated gradient, as a function of 0, converges
uniformly to the population gradient function VF(-). Similar uni-
form concentration of sample covariance matrix has been derived
in [4, Lemma 2.1] under the assumption that the gradients are
sub-gaussian. While sub-gaussian data distribution is commonly
assumed in statistical learning literature, the resulting gradients
may be sub-exponential or even heavier tailed. Note that standard
routine to bounding the spectral norm of the sample covariance
matrix is available, see [10, Theorem 5.44] and [1, Corollary 3.8] for
example. However, it turns out that using these existing results, the
uniform concentration bound obtained is far from being optimal.
To this end, we develop a new concentration inequality for matri-
ces with i.i.d. sub-exponential column vectors. This new inequality
leads to a near-optimal uniform bound.
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