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Abstract

Winner-Take-All (WTA) refers to the neural operation that selects a

(typically small) group of neurons from a large neuron pool. It is conjec-

tured to underlie many of the brain’s fundamental computational abilities.

However, not much is known about the robustness of a spike-based WTA

network to the inherent randomness of the input spike trains. In this work,

we consider a spike-based k–WTA model wherein n randomly generated

input spike trains compete with each other based on their underlying firing

rates, and k winners are supposed to be selected. We slot the time evenly

with each time slot of length 1ms, and model the n input spike trains as n

independent Bernoulli processes. We analytically characterize the minimum

waiting time needed so that a target minimax decision accuracy (success

probability) can be reached.

We first derive an information-theoretic lower bound on the decision

time. We show that to guarantee a (minimax) decision error ≤ δ (where

δ ∈ (0, 1)), the waiting time of any WTA circuit is at least

((1− δ) log(k(n− k) + 1)− 1)TR,

where R ⊆ (0, 1) is a finite set of rates, and TR is a difficulty parameter

of a WTA task with respect to set R for independent input spike trains.

Additionally, TR is independent of δ, n, and k. We then design a simple

WTA circuit whose waiting time is

O

((
log

(
1

δ

)
+ log k(n− k)

)
TR

)
,

provided that the local memory of each output neuron is sufficiently long.

It turns out that for any fixed δ, this decision time is order-optimal (i.e., it
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matches the above lower bound up to a multiplicative constant factor) in

terms of its scaling in n, k, and TR.

1 Introduction

Humans and animals can form a stable perception and make robust judgments

under ambiguous conditions. For example, we can easily recognize a dog in a

picture regardless of its posture, hair color, and whether it stands in the shadow

or is occluded by other objects. One fundamental feature of brain computation

is its robustness to the randomness introduced at different stages, such as sen-

sory representations (Kinoshita & Komatsu, 2001; Hubel & Wiesel, 1959), feature

integration (Kourtzi, Tolias, Altmann, Augath, & Logothetis, 2003; Majaj, Caran-

dini, & Movshon, 2007), decision formation (Platt & Glimcher, 1999; Shadlen &

Newsome, 2001), and motor planning (Harris & Wolpert, 1998; N. Li, Chen, Guo,

Gerfen, & Svoboda, 2015). It has been shown that neurons encode information

in a stochastic manner in the brain (Baddeley et al., 1997; Kara, Reinagel, &

Reid, 2000; Maimon & Assad, 2009; Ferrari, Deny, Marre, & Mora, 2018); even

when the exact same sensory stimulus is presented or when the same kinematics

are achieved, no deterministic patterns in the spike trains exist. Facing envi-

ronmental ambiguity, humans and animals adaptively refine their behaviors by

incorporating prior knowledge with their current sensory measurements (Faisal,

Selen, & Wolpert, 2008; Knill & Pouget, 2004; Stocker & Simoncelli, 2006; Ernst

& Banks, 2002; Körding & Wolpert, 2004). Nevertheless, it remains relatively

unclear how neurons carry out robust computation facing ambiguity. Sparse cod-
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ing is a common strategy in brain computation; to encode a task-relevant vari-

able, often only a small group of neurons from a large neuron pool are activated

(Olshausen & Field, 2004; Perez-Orive et al., 2002; Hromádka, DeWeese, & Zador,

2008; Quiroga, Kreiman, Koch, & Fried, 2008; Karlsson & Frank, 2008; Redgrave,

Prescott, & Gurney, 1999). Understanding the underlying neuron selection mech-

anism is highly challenging.

Winner-Take-All (WTA) is a hypothesized mechanism to select proper neu-

rons from a competitive network of neurons, and is conjectured to be a funda-

mental primitive of cognitive functions such as attention and object recognition

(Riesenhuber & Poggio, 1999; Itti, Koch, & Niebur, 1998; Yuille & Geiger, 1998;

Maass, 2000; Hertz, Krogh, Palmer, & Horner, 1991; Shamir, 2006). Among these

studies, it is commonly assumed that neurons transmit information with a con-

tinuous variable such as the firing rate. This assumption, however, ignores how

temporal coding may additionally contribute to cortical computations. For ex-

ample, some neurons in the auditory cortex will respond to auditory events with

bursts at a fixed latency (Gerstner, Kempter, van Hemmen, & Wagner, 1996;

Nelken, 2004). This phase-locking property is also observed in the hippocampus

as well as the prefrontal cortex (Siapas, Lubenov, & Wilson, 2005; Hahn, Sak-

mann, & Mehta, 2006; Buzsáki & Chrobak, 1995). Another feature that has been

neglected in a rate-based model is the inherent noise in the inputs. Although some

studies used additive Gaussian noise (Kriener, Chaudhuri, & Fiete, 2017; S. Li,

Li, & Wang, 2013; Lee, Itti, Koch, & Braun, 1999; Rougier & Vitay, 2006) to

account for input randomness, such WTA circuits are very sensitive to noise and
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could not successfully select even a single winner unless extra robustness strategy

such as an additional nonlinearity is introduced into the dynamics (Kriener et al.,

2017). Last but not least, neurons have a refractory period, which prevents spikes

from back propagating in axons (Berry II & Meister, 1998), and such a feature is

usually neglected in the rate-based models. In contrast, a spike-based model may

capture these neglected features. Nevertheless, how WTA computation can be im-

plemented and its algorithmic characterization remains relatively under-explored

(Shamir, 2006, 2009).

In this paper, we study a spike-based k-WTA model wherein n randomly gener-

ated input spike trains are competing with each other with their underlying firing

rates, and the true winners are the k input spike trains whose underlying firing

rates are higher than others (Hertz et al., 1991). A desired WTA circuit should

quickly respond to these random input spike trains and should successfully select

the k true winners with high probability. We analytically characterize the mini-

mum amount of waiting time needed so that a target minimax decision accuracy

(defined in Section 3.2) can be reached. More precisely, we slot the time evenly

with each time slot of length 1ms, and assume that these n input spike trains

are generated by n independent Bernoulli processes with different rates. We use

Bernoulli processes to capture the randomness in the input spike trains rather than

using the popular Poisson processes because a Bernoulli process can be viewed as

the time-slotted version of a refractory-period-modified Poisson process. Notably,

a Bernoulli process with 1ms time slot is just a simplified approximation to the

real dynamics in the brain, given that, in the brain, the refractory period varies
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across neurons and the refractory period of some neuron could extend beyond

1ms. In our model, we implicitly assume that the absolute refractory period is

1ms, a value commonly reported in the literature (Teleńczuk, Kempter, Curio, &

Destexhe, 2017; Nicholls, Martin, Wallace, & Fuchs, 2001). 1 A WTA circuit con-

tains n output neurons, each of which is paired with an input spike train. What’s

more, the behaviors (spike patterns) of these output neurons encode which input

spike trains are declared to be the winners. For special case where k = 1, different

winner declaration strategies are considered in the literature (Shamir, 2006, 2009;

Lynch, Musco, & Parter, 2016; Kriener et al., 2017), such as the identity of output

neuron that spikes much more frequently than the other output neurons (Kriener

et al., 2017), of the neuron that fires the first spike in a population of neurons

(Shamir, 2009, 2006), and of the output neuron that fires alone for a sufficiently

long time (Lynch et al., 2016). Clearly, the minimum amount of waiting time

needed to achieve a given accuracy varies with the choice of winner declaration

strategy. Nevertheless, in order to derive a lower bound that holds for all win-

ner declaration strategies, at this point, we do not specify the winner declaration

strategy used in our circuit construction – this specification is postponed to Sec-

tion 5. In this paper, we investigate the following two closely related problems:

(1) the fundamental limits of any WTA circuit in selecting k true winners from

n independent Bernoulli input spike trains (in terms of waiting time to achieve

a target accuracy), and (2) the existence of WTA circuits that can achieve the

1We plan to investigate the impact of the heterogeneity in the refractory period on waiting

time in our future work.
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above fundamental limits.

To answer the first question, we consider a general model (formally described

in Section 2) without restricting the adopted network architectures, activation

functions, winner declaration strategies, etc. so that the derived lower bound can

provide guidance and insight for constructing a large family of WTA circuits. We

derive a lower bound on the waiting/decision time in order to achieve a given

decision accuracy. We show that no WTA circuit can have a waiting time strictly

less than

((1− δ) log(k(n− k) + 1)− 1)TR, (1)

where R ⊆ [c, C] ⊆ (0, 1) is a finite set of rates, TR is a difficulty parameter of a

WTA task with respect to setR for independent input spike trains, n is the number

of input spike trains, k is the number of winners, and (1 − δ) is the given target

decision accuracy. Here c, C are two absolute constants such that 0 < c < C < 1,

and δ ∈ (0, 1). Moreover, TR is independent of δ, n, and k. In many practical

settings we care about the sparse coding region where k � n. Not surprisingly,

the above lower bound grows with the network size n when other parameters are

fixed. This is because the larger n, the noisier the WTA competition. Similarly,

when n and k are fixed, the easier to distinguish two independent spike trains

with different rates (i.e., the smaller TR), the shorter the necessary decision time

is. Our lower-bound is obtained by an information-theoretic argument, and holds

for all WTA circuits without restricting their winner declaration strategies, circuit

architectures, and the adopted activation functions. Throughout this paper, we

are interested in the decision time’s scaling in n, k, and TR, while treating δ ∈ (0, 1)
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as a small but fixed constant.

To answer the second question, we construct a simple circuit whose decision

time is

O

((
log

(
1

δ

)
+ log k(n− k)

)
TR

)
,

provided that the local memory of each output neuron is sufficiently long 2. In

this circuit, there are n pairs of input and output neurons, and no hidden neurons.

Each input neuron is connected to the corresponding output neuron, and the n

output neurons mutually inhibit each other. Each output neuron has a local mem-

ory of length m (formally defined in Section 2.2), and adopts a simple threshold

activation function (specified in Section 5.1.3). The first k output neurons that

spike in the same time slot are declared to be the winners; the identities of such k

output neurons are the circuit’s estimate of the k true winners. The formal circuit

construction can be found in Section 5. We show that for any fixed δ ∈ (0, 1),

provided that

m >
8C2(1− c)
c2(1− C)

(
log

(
3

δ

)
+ log k(n− k)

)
TR := m∗, (2)

with probability at least 1 − δ it holds that: By time m∗, there exist exactly k

output neurons that spike in the same time slot, and the first set of such k output

2In this paper, the notations O(·) and Ω(·) are used to describe the limiting behavior of a

function when the argument tends towards a particular value or infinity. In our case the waiting

time can be viewed as a “function” of several other parameters such as δ, R, n, and k. Formally,

for any sequences {aN} and {bN}, we say aN = O(bN ) if there exists an absolute constant c > 0

such that aN ≤ c× bN . Similarly, we say aN = Ω(bN ) is there exists an absolute constant c > 0

such that aN ≥ c× bN .
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neurons are indeed the true winners. It turns out that this decision time (m∗)

is order-optimal in terms of its scaling in n, k, and TR; m∗ matches the lower-

bound in (1) up to a constant multiplicative factor. The formal argument showing

order-optimality can be found in Remark 11. In a sense, the local memory of each

output neuron plays a crucial role in “denoising” the randomness in the input spike

trains. In practice, an output neuron’s local memory might not satisfy the above

condition in (2). Nevertheless, this does not exclude the application of our WTA

circuit to the contexts where m is small. This is because the memory variable

might be implemented via some neural code near an output neuron. The detailed

implementation of the local memory only affects the circuit’s architecture; it does

not affect the order optimality of our WTA circuit. The typical dynamics of our

circuit are: The number of output neurons that spike simultaneously (i.e., spike

at the same time) increases monotonically until exactly k output neurons spike

simultaneously. The simultaneous spikes of these k output neurons cause strong

inhibition of other output neurons; in particular, no other output neuron can spike

within a sufficiently long period Ω
((

log
(
1
δ

)
+ log k(n− k)

)
TR
)
.

In addition, our results also give a set of testable hypotheses on neural record-

ings and human/animal behaviors in decision-making; detailed discussion can be

found in Section 6.
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2 Computational Model: Spiking Neuron Net-

works

In this section, we provide a general description of our computation model; there

is much freedom in choosing the detailed specification of the model. We consider

such a general model so that our derived lower bound applies to WTA circuits with

many alternative network architectures, activation functions, winner declaration

strategies (i.e., the desired behaviors of the output neurons), etc. In Section 5

we provide a circuit construction (for solving the k–WTA competition) under this

computation model but with specific choices for the adopted network architecture,

activation function, and winner declaration strategy.

2.1 Network Structure

A spiking neuron network (SNN) N = (U,E) consists of a collection of neurons U

that are connected through synapses E. We assume that a SNN can be concep-

tually partitioned into three non-overlapping layers: input layer Nin, hidden layer

Nh, and output layer Nout; the neurons in each of these layers are referred to as

input neurons, hidden neurons, and output neurons, respectively. The synapses E

are essentially directed edges, i.e, E := {(ν, ν ′) : ν, ν ′ ∈ U}. For each ν ∈ U , define

PREν := {ν ′ : (ν ′, ν) ∈ E} and POSTν := {ν ′ : (ν, ν ′) ∈ E}. Intuitively, PREν is

the collection of neurons that can directly influence neuron ν; similarly, POSTν is
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the collection of neurons that can be directly influenced by neuron ν. 3 We assume

that the input neurons cannot be influenced by other neurons in the network, i.e.,

PREν = ∅ for all ν ∈ Nin. Each edge (ν, ν ′) in E has a weight, denoted by w(ν, ν ′).

The strength of the interaction between neuron ν and neuron ν ′ is captured as

|w(ν, ν ′)|. The sign of w(ν, ν ′) indicates whether neuron ν excites or inhibits neuron

ν ′: In particular, if neuron ν excites neuron ν ′, then w(ν, ν ′) > 0; if neuron ν in-

hibits neuron ν ′, then w(ν, ν ′) < 0. The set E might contain self-loops with w(ν, ν)

capturing the self-excitatory/self-inhibitory effects. Typically, in neuroscience a

neuron is either excitatory or inhibitory, i.e., sign(w(ν, ν1)) = sign(w(ν, ν2)) for all

ν1, ν2 ∈ POSTν . Our order-optimal WTA circuit in Section 5 indeed assumes this

common sign restriction. Nevertheless, our lower bound holds even for the general

case where there exist ν1, ν2 ∈ POSTν such that sign(w(ν, ν1)) 6= sign(w(ν, ν2)).

Generic network structure for WTA circuits The family of WTA circuits

under consideration is rather generic. We only assume that |Nin| = |Nout| = n the

numbers of the input neurons and of the output neurons are equal. For ease of

exposition, denote

Nin = {u1, · · · , un} , and Nout = {v1, · · · , vn} .

The hidden neuron subset Nh can be arbitrary. The output neurons and the

hidden neurons may be connected to each other in an arbitrary manner.

3In the languages of computational neuroscience, the incoming neighbors and outgoing neigh-

bors are often referred to as pre-synaptic units and post-synaptic units.
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Input layer

Hidden layer

...

... Output layer

Figure 1: A SNN consists of three layers: the input layer, the output layer, and

the hidden layer. The hidden neurons might connect to both the input neurons

and the output neurons to assist the computation of the neuron network. Neurons

are connected through synapses. WTA circuits is a family of SNNs in which the

number of output neurons equals the number of the input neurons.

2.2 Network State

In a SNN, the communication among neurons is abstracted as spikes. We assume

each neuron ν has two local variables: spiking state variable S(ν) and memory state

variable M(ν). Nevertheless, for input neurons, we only consider their spiking

states, assuming that their memory states are not influenced by the dynamics of

the spiking neuron network under consideration. We slot the time evenly with

each time slot of length 1ms. Let t = 1, 2, · · · be the indices of the time slots.

Henceforth, by saying time t, we mean the time interval [t − 1, t)ms. For t ≥ 1,

let St(ν) ∈ {0, 1} be the spiking state of neuron ν at time t indicating whether

neuron ν spikes at time t or not. For a non-input neuron ν and for t ≥ 1, let Mt(ν)

be the memory state of neuron ν at time t summarizing the cumulative influence
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caused by the spikes of the neurons in PREi during the most recent m times, i.e.,

times t − 1, t − 2, · · · , t − m. Concretely, let Vt(ν) be the charge of (non-input)

neuron ν at time t (for t ≥ 1) defined as

Vt(ν) :=
∑

ν′∈PREν

w(ν ′, ν)St(ν
′).

Let V ν
t be the sequence of length m such that

V ν
t := [Vt(ν), · · · , Vt−m+1(ν)] ,

and let St(ν) be the sequence of length m such that

Sν
t := [St(ν), · · · , St−m+1(ν)] .

By convention, when 1 ≤ t ≤ m, let

V ν
t := [Vt(ν), · · · , V1(ν), 0, · · · , 0]

and

Sν
t := [St(ν), · · · , S1(ν), 0, · · · , 0] .

For t ≥ 2, define the memory variable Mt(ν) as a pair of vectors Sν
t−1 and V ν

t−1,

i.e.,

Mt(ν) :=
(
Sν
t−1,V

ν
t−1
)
.

By convention, let M1(ν) := (0,0), where 0 is the length m zero vector. Notably,

as can be seen from our analysis, our lower bound holds provided that M1(ν) does

not contain any information about the circuit’s dynamics for time t ≤ 0, i.e., no

information on the past t ≤ 0 is used in determining the generation of a spike at

time t ≥ 1.
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At time t + 1, the memory variable Mt+1(ν) is updated by shifting the two

sequences forwards by one time unit – fetching in St(ν) and Vt(ν), respectively,

and removing St−m(ν) and Vt−m(ν), respectively. The memory state Mt(ν) is

known to neuron ν only, and it can influence the probability of generating a spike

at time t through an activation function φν , i.e.,

St(ν) = φν (Mt(ν)) ,∀ t ≥ 1. (3)

Notably, φν might be a random function.

In most neurons, the synaptic plasticity time window is about 80 -120 msec, but

could also vary across brain regions, and vary across different time scales under

different behavioral contexts. In a sense, the synaptic plasticity time window

is closely related to m. As can be seen in Section 5, our order-optimal WTA

circuit construction requires m to be sufficiently high. Nevertheless, this does not

exclude the application of our WTA circuit to the contexts where m is small. This

is because the memory variable can be implemented by a chain of hidden neurons

near neuron ν. The detailed implementation of the local memory does not affect

the order optimality of our WTA circuit.
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3 Minimax Decision Accuracy/Success Proba-

bility

3.1 Random Input Spike Trains

We study the k–WTA model, wherein n randomly generated input spike trains

are competing with each other, and, as a result of this competition, k out of them

are selected to be the winners. In contrast, most existing works (Verzi et al., 2018;

Maass, 1997; Lynch et al., 2016) assume deterministic input spike trains.

Recall that time is slotted into intervals of length 1ms. We assume that the

n input spike trains are generated from n independent Bernoulli processes with

unknown parameters p1, · · · , pn, respectively. We refer to p = [p1, · · · , pn] as a rate

assignment of the WTA competition for a given external stimulus. For example,

suppose an external stimulus induces 2 input spike trains with rates 0.6 and 0.8,

respectively, i.e., n = 2 and p = [0.6, 0.8]. In each time, with probability 0.6 the

first input spike train has a spike independently from whether the second input

spike train has a spike or not; similarly for the second input spike train. Notably,

different external stimuli induce different rate assignment vectors p’s. Henceforth,

we use the terms “rate assignment” and “external stimulus” interchangeably.

Note that in the most general scenario the spikes of the input neurons might

be correlated; see Section 6 for detailed comments. We would like to explore the

more general input spikes in our future work.
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3.2 Minimax Performance Metric

We adopt the minimax framework (Wu, 2017) of a WTA circuit.

Let R ⊆ [c, C] be an arbitrary but finite set of rates where c and C are two

absolute constants such that 0 < c < C < 1. A rate assignment p (i.e., an

external stimulus) is chosen by nature from Rn for which there exists a subset of

[n] := {1, · · · , n}, denoted by W(p), such that

|W(p)| = k, and pi > pj ∀ i ∈ W(p), j /∈ W(p) (4)

– recall that |·| is the cardinality of a set. That is, W(p) is the set of true winners

that should be selected when the external stimulus that induces p is presented.

We refer to set W(p) as the true winners with respect to the rate assignment p.

For example, suppose n = 5, k = 2, and

p = [p1 = 0.2, p2 = 0.1, p3 = 0.2, p4 = 0.8, p5 = 0.85] .

Here the true winners are 4 and 5, i.e., W(p) = {4, 5}. In this paper, we consider

the following collection of rate assignments, denoted by AR ⊂ Rn:

AR := {p : ∃W(p) ⊆ [n] s.t. |W(p)| = k, and pi > pj ∀ i ∈ W(p), j /∈ W(p)} .

(5)

Intuitively, AR corresponds to the collection of external stimuli considered. For

ease of reference, we refer to an element in AR as an admissible rate assignment.

Recall that the input of a WTA circuit is a collection of n independent spike trains.

For a given rate assignment p, let {St(ui)}Tt=1 denote the spike train of length T at

input neuron ui. The circuit designer wants to design a WTA circuit that outputs
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a good guess/estimate ŵin of W(p) for any choice of rate assignment p in AR.

Note that conditioning on

S :=
[
{St(u1)}Tt=1 , · · · , {St(un)}Tt=1

]
,

the estimate ŵin is independent of p. Here S is used with a little abuse of

notation as this notation hides its connection with T and the rate parameter

p.4 Later, we use the same notation to denote the n spike trains with random

rate assignment, i.e., where p is randomly generated. Nevertheless, this abuse of

notation significantly simplifies the exposition without sacrificing clarity.

Under minimax framework, we are interested in the minimax error probability

min
ŵin

max
p∈AR

P
{
ŵin (S) 6=W(p)

}
. (6)

For a given deterministic WTA circuit ŵin (i.e., the activation functions used are

deterministic), the probability in P
{
ŵin (S) 6=W(p)

}
is taken w.r.t. the ran-

domness in the stochastic spikes of each input neuron; for a randomized WTA

circuit ŵin (i.e., the activation functions are stochastic), in addition to the afore-

mentioned source of randomness, the probability in P
{
ŵin (S) 6=W(p)

}
is also

taken w.r.t. the randomness in the activation functions. In (6), the performance

metric of a WTA circuit is the worst-case error probability

max
p∈AR

P
{
ŵin (S) 6=W(p)

}
.

4A more rigorous notation should be S(T,p) :=
[
{St(u1)}Tt=1 , · · · , {St(un)}Tt=1

]
. We use S

for S(T,p) for ease of exposition.
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4 Information-Theoretic Lower Bound on Deci-

sion Time

In this section, we provide a lower bound on the decision time for a given decision

accuracy. The lower bounds derived in this section hold universally for all pos-

sible network structures (including the hidden layer), synapse weights, activation

functions, and winner declaration strategies.

One observation is that the decision time is naturally lower bounded by the

sample complexity, which is closely related to the Kullback-Leibler (KL) diver-

gence5 between two Bernoulli distributions. The KL divergence between Bernoulli

random variables with parameters r and r′, respectively, is defined as

d(r ‖ r′) := r log
( r
r′

)
+ (1− r) log

(
1− r
1− r′

)
, (7)

where, by convention, 0 log 0
0

:= 0. Notably, d(· ‖ ·) is not symmetric in r and r′.

In addition, if r ∈ (0, 1) and r′ ∈ {0, 1}, then d(r ‖ r′) =∞. Recall that setR is an

arbitrary but finite set that are contained in the interval [c, C], where c, C ∈ (0, 1)

are two constants. It holds that d(r ‖ r′) < ∞ for all r, r′ ∈ R. For the more

general distributions over a common discrete alphabet A, say distributions P and

Q, the Kullback-Leibler (KL) divergence between P and Q is defined as follows.

Definition 1 (KL-divergence). Let A be a discrete alphabet (finite or countably

infinite), and P and Q be two distributions over A. Then define

D(P ‖ Q) :=
∑
a∈A

P (a) log

(
P (a)

Q(a)

)
,

5The Kullback-Leibler (KL) divergence gauges the dissimilarity between two distributions.

18



where 0 · log
(
0
0

)
= 0 by convention.

Note that D(P ‖ Q) ≥ 0 and D(P ‖ Q) = 0 if and only if P = Q except

for measure 0. Similar to d(· ‖ ·), D(P ‖ Q) is not symmetric in P and Q. In

this paper, we choose the base to be 2. 6 Recall that the set of admissible rate

assignments AR is defined in (5).

Lemma 2. Fix a finite set R of rates. Let p = [p1, · · · , pn] and q = [q1, · · · , qn]

be two rate assignments in AR. Let PS and QS be the distributions of the n

spike sequences of the input neurons under rate assignments p and q, respectively.

Then,

D(PS ‖ QS) = T
n∑
i=1

d(pi ‖ qi).

The two different rate assignments p and q correspond to two different external

stimuli, and D(PS ‖ QS) is the “distance” between the n input spike trains of

length T induced by the first external stimulus and those induced by the second

external stimulus. Lemma 2 is proved in Appendix B.

For a given R, define task complexity TR as

TR := max
r1,r2∈R s.t. r1 6=r2

1

d(r2 ‖ r1) + d(r1 ‖ r2)
. (8)

It is closely related to the smallest KL divergence between two distinct rates

in R. The task complexity TR kicks in due to the adoption of minimax decision

framework (6). It turns out that if the input spike train length T is not sufficiently

large (specified in Theorem 3), no matter how elegant the design of a WTA circuit

is (no matter which activation function we choose, how many hidden neurons we

6Note that any base would work, see (Polyanskiy & Wu, 2014, Chapter 1.1).
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use, and how we connect the hidden neurons and output neurons), its minimax

decision accuracy is always lower than the target decision accuracy (1− δ).

Theorem 3. For any 1 ≤ k ≤ n− 1 and any set R and any δ ∈ (0, 1), if

T ≤ ((1− δ) log(k(n− k) + 1)− 1)TR,

then

min
ŵin

max
p∈AR

P
{
ŵin (S) 6=W(p)

}
≥ δ,

where the min is taken over all possible WTA circuits with different choices of

activation functions and circuit architectures.

Theorem 3 says that if T < ((1− δ) log(k(n− k) + 1)− 1)TR, the worst case

probability error of any WTA circuit is greater than δ, i.e.,

max
p∈AR

P
{
ŵin (S) 6=W(p)

}
> δ.

Theorem 3 is proved in Appendix C.

Remark 4 (Tightness of the lower bound in Theorem 3). The proof of Theorem 3

uses a technical supporting lemma – Lemma 16 (presented in Appendix C). Follow-

ing our line of argument, by considering a richer family of critical rate assignments

in Lemma 16, we might be able to obtain a tighter lower bound. Nevertheless, the

constructed WTA circuit in Section 5 turn out to be order-optimal – its decision

time matches the lower bound in Theorem 3 up to a multiplicative constant factor.

This immediately implies that the lower bound obtained in Theorem 3 is tight up

to a multiplicative constant factor.
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5 Order-Optimal WTA Circuits

In Section 2, we provided a general description of the computation model we are

interested in. In this section, we construct a specific WTA circuit whose decision

time is order-optimal among the WTA circuits under the general computation

model. To do that, we need to specify (1) the network structure, including the

number of hidden neurons, the collection of synapses (directed communication

links) between neurons, and the weights of these synapses; (2) the memorization

capability of each neuron, i.e., the magnitude of m; and (3) φν – the activation

function used by neuron ν. In the constructed circuit, we declare the first k output

neurons that spike simultaneously as winners.

5.1 Circuit Design

In our designed circuit, there are four parameters R, m, b, and δ, where R ⊆

[c, C] 7 is a finite set of rates from which the pi’s of the input spike trains are chosen,

m is the memory range and b is the bias at the non-input neurons, and (1 − δ)

is the target decision accuracy (i.e., success probability). Here, we assume that

every non-input neuron has the same bias, i.e., bν = b for all non-input neurons ν.

The four parameters R, m, b, and δ can be viewed as some prior knowledge of the

WTA circuit; they might be learned through some unknown network development

procedure which is outside the scope of this work. In Sections 5.1.1, 5.1.3, and

5.1.4, we present the network structure and the activation functions adopted, and

7Recall that c, C ∈ (0, 1) are two absolute constants, i.e., they do not change with other

parameters of the WTA circuit such as n, k, and δ.
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the requirement on m. For completeness, we specify the local memory update (in

particular the vector V ) separately in Section 5.1.2. The dynamics of our WTA

circuit is summarized in Section 5.1.5.

5.1.1 Network structure:

We propose a WTA circuit with the following network structure:

• All output neurons are connected to each other by a complete graph. That

is, (vi, vj) ∈ E for all vi, vj ∈ Nout such that vi 6= vj;

• Each edge from an input neuron to an output neuron has weight 1, i.e.,

w(ui, vi) = 1 for all ui ∈ Nin, vi ∈ Nout.

• All edges among the output neurons have weights − 1
k
. That is, w(vi, vj) =

− 1
k

for all vi, vj ∈ Nout such that vi 6= vj.

• There are no hidden neurons, i.e., Nh = ∅;

5.1.2 Update local charge vector:

With the above choice of network structure, the charge Vt−1(vi) at the output

neuron vi at time t− 1 is

Vt−1(vi) = St−1(ui)−
1

k

∑
j:1≤j≤n,& j 6=i

St−1(vj). (9)

When k = 1, the above update becomes

Vt−1(vi) = St−1(ui)−
∑

j:1≤j≤n,& j 6=i

St−1(vj).
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which can be viewed as a spike model counterpart of the potential update under

the traditional continuous rate model (Kriener et al., 2017; Mao & Massaquoi,

2007) with lateral inhibition.

It is easy to see the following claims hold. For brevity, their proofs are omitted.

Claim 5. For t ≥ 1 and for i = 1, · · · , n, Vt−1(vi) > 0 if and only if St−1(ui) = 1

and
∑

j:1≤j≤n,& j 6=i St−1(vj) ≤ k− 1, i.e., at time t− 1, input neuron ui spikes, and

fewer than k − 1 other output neurons spike.

Claim 6. For t ≥ 1 and for i = 1, · · · , n, Vt−1(vi) ≤ −1 only if
∑

j:1≤j≤n,& j 6=i St−1(vj) ≥

k, i.e., at time t− 1, more than k other output neurons spike.

Note that
∑

j:1≤j≤n,& j 6=i St−1(vj) ≥ k is not a sufficient condition to have

Vt−1(vi) ≤ −1. To see this, suppose
∑

j:1≤j≤n,& j 6=i St−1(vj) = k and St−1(ui) = 1.

In this case it holds that Vt−1(vi) = 0.

Claim 7. For t ≥ 1 and for i = 1, · · · , n, if Vt−1(vi) = 0, one of the following

holds:

(1) St−1(ui) = 1 and
∑

j:1≤j≤n,& j 6=i St−1(vj) = k, i.e., at time t− 1, input neuron

ui spikes, and exactly k other output neurons spike;

(2) St−1(ui) = 0 and
∑

j:1≤j≤n,& j 6=i St−1(vj) = 0, i.e., at time t− 1, input neuron

ui does not spike, and no other output neurons spike.

5.1.3 Activation functions:

There are many different choices of activation functions; see (Activation function,

n.d.) for a detailed list. In our construction, we use a simple threshold activation
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function, i.e.,

St(vi) =


1, if (b− 1)1{St−1(vi)=1} +

[∑m
r=1 1{Vt−r(vi)>0} −m

∑m
r=1 1{Vt−r(vi)≤−1}

]
+
≥ b;

0, otherwise,

where [·]+ = max [·, 0], and b ≥ 1 is the bias at the output neuron vi for i =

1, · · · , n. It is easy to see that this activation function falls under the general form

given by (3).

Remark 8. If the output neuron vi does not spike at time t−1, i.e., St−1(vi) = 0,

then in order for vi to spike at time t, the following needs to hold:[
m∑
r=1

1{Vt−r(vi)>0} −m
m∑
r=1

1{Vt−r(vi)≤−1}

]
+

≥ b.

In contrast, if the output neuron vi does spike at time t − 1, i.e., St−1(vi) = 1,

then [
m∑
r=1

1{Vt−r(vi)>0} −m
m∑
r=1

1{Vt−r(vi)≤−1}

]
+

≥ 1

is enough for vi to spike at time t. That is, under our activation rule, St−1(vi) = 1

makes the activation of vi much easier in the next round. However, if there exists

r ∈ {1, 2, · · · ,m} such that

1{Vt−r(vi)≤−1} = 1,

then

m∑
r=1

1{Vt−r(vi)>0} −m
m∑
r=1

1{Vt−r(vi)≤−1} ≤
m∑
r=1

1{Vt−r(vi)>0} −m

≤ m−m = 0.
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Thus,

(b− 1)1{St−1(vi)=1} +

[
m∑
r=1

1{Vt−r(vi)>0} −m
m∑
r=1

1{Vt−r(vi)≤−1}

]
+

= (b− 1)1{St−1(vi)=1} + 0

≤ b− 1 < b,

i.e., the output neuron vi does not spike at time t. In other words, provided that

there exists r ∈ {1, 2, · · · ,m} such that 1{Vt−r(vi)≤−1} = 1, the activation of vi is

inhibited at time t.

5.1.4 Local memorization capability:

In our proposed circuit, we require that m satisfies the following:

m ≥ 8C2(1− c)
c2(1− C)

(
log

(
3

δ

)
+ log k(n− k)

)
TR := m∗ (10)

for target decision accuracy 1 − δ ∈ (0, 1). In addition, we set b = cm∗. Recall

that c, C ∈ (0, 1) are two absolute constants that are lower and upper bounds,

respectively, of any R.

Intuitively, when other parameters are fixed, the higher the desired accuracy

(i.e., the smaller δ) , the larger the required minimum memory m∗, i.e., the more

memory is needed for selecting the winners in our WTA circuit. Similarly, the

easier to distinguish two independent spike trains with different rates (i.e., the

lower TR), the smaller m∗. Interesting, with other parameters fixed, m∗ depends

on k as follows: m∗ is increasing in k when k ∈
{

1, · · · , bn
2
c
}

, and m∗ is decreasing

in k when k ∈
{
dn
2
e, · · · , n− 1

}
. In many practical settings we care about the

region where k � n. Besides, with the choice of bias b = cm∗, the larger m∗ also
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implies longer time is needed for our WTA circuit to declare k winners; details

can be found (1) in Theorem 9.

On the other hand, in most neurons the synaptic plasticity time window is

about 80-120 ms, and it is unclear whether (10) can be immediately satisfied or

not. Fortunately, even if (10) is not immediately satisfied by a neuron due to

its local bio-plausibility, it is possible that its local memory might be realized via

some population codes such as a chain of hidden neurons.

5.1.5 Algorithm 1

The dynamics of our WTA circuit is summarized in Algorithm 1, which is fully

determined by what has been described in Sections 5.1.1, 5.1.2, 5.1.3, and 5.1.4.

For Algorithm 1, we declare the first k output neurons that spike simultaneously

as winners.

5.2 Circuit Performance

Recall that W(p) and m∗ are defined in (4) and (10), respectively.

Theorem 9. Fix δ ∈ (0, 1], and 1 ≤ k ≤ n − 1. Choose m ≥ m∗ and b =

max {cm∗, 2}. Then for any admissible rate assignment p, with probability at least

1− δ, the following hold:

(1) There exist k output neurons that spike simultaneously by time m∗.

(2) The first set of such k output neurons are the true winners W(p).

(3) From the first time in which these k output neurons spike simultaneously,
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Algorithm 1: k–WTA

1 Input: R, m, b, and δ.

2 for t ≥ 1 do

3 At output neuron vi for i = 1, · · · , n:

Vt−1(vi)← St−1(ui)− 1
k

∑
j:1≤j≤n,&j 6=i St−1(vj);

4 Vt−1(vi)← [Vt−1(vi), Vt−2(vi), · · · , Vt−m(vi)];

5 St−1(vi)← [St−1(vi), St−2(vi), · · · , St−m(vi)];

6 Mt(vi)← (Vt−1(vi),St−1(vi));

7 if

(b− 1)1{St−1(vi)=1} +
[∑m

r=1 1{Vt−r(vi)>0} −m
∑m

r=1 1{Vt−r(vi)≤−1}
]
+
≥ b

then

8 St(vi)← 1.

9 else

10 St(vi)← 0.
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these k output neurons spike consecutively for at least b times, and no other

output neurons can spike within b times.

The proof of Theorem 9 can be found in Appendix D. The first bullet in

Theorem 9 implies that our WTA circuit can provide an output (a selection of

k output neurons) by time m∗; the second bullet in Theorem 9 says that the

circuit’s output indeed corresponds to the k true winners; and the third bullet

says that the k simultaneous spikes of the selected winners are stable – the k

selected winners continue to spike consecutively for at least b times. The proof

of Theorem 9 essentially says that with high probability, under Algorithm 1, the

number of output neurons that spike simultaneously is monotonically increasing

until it reaches k. Upon the simultaneous spike of k output neurons, by our

threshold activation rule, we know that the other output neurons are likely to be

inhibited. In particular, if these k output neurons are the first k output neurons

that spike simultaneously, then the activation of the other output neurons are

likely to be inhibited for at least b times.

Remark 10 (Controlling stability). As can be seen from the proof of Theorem 9,

in the activation function of Algorithm 1

(b− 1)1{St−1(vi)=1} +

[
m∑
r=1

1{Vt−r(vi)>0} −m
m∑
r=1

1{Vt−r(vi)≤−1}

]
+

≥ b

the first term (b − 1)1{St−r(vi)=1} is crucial in achieving (3) in Theorem 9. In

fact, we can increase the stability period by introducing a stability parameter s

such that 1 < s ≤ m and modifying the activation rule. Details can be found in

Algorithm 2. It is easy to see that the activation function falls under the general
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form in (3). In the new activation function in Algorithm 2, for output neuron

vi, once it spikes, it continues to spike for at least s times. Following our line of

analysis in the proof of Theorem 9, it can be seen that the declared k winners,

from the first time they spike simultaneously, continue to spike consecutively for

at least s times.

Algorithm 2: k–WTA

1 Input: R, m, b, δ, and s where 1 < s ≤ m.

2 for t ≥ 1 do

3 At output neuron vi for i = 1, · · · , n:

4 Vt−1(vi)← St−1(ui)− 1
k

∑
j:1≤j≤n,&j 6=i St−1(vj);

5 Vt−1(vi)← [Vt−1(vi), Vt−2(vi), · · · , Vt−m(vi)];

6 St−1(vi)← [St−1(vi), St−2(vi), · · · , St−m(vi)] ;

7 Mt(vi)← (Vt−1(vi),St−1(vi)).

8 if
[∑m

r=1 1{Vt−r(vi)>0} −m
∑m

r=1 1{Vt−r(vi)≤−1}
]
+
≥ b then

9 St(vi)← 1.

10 else

11 if St−1(vi) = 1 and ∃ r ∈ {2, · · · , s} such that St−r(vi) = 0 then

12 St(vi)← 1.

13 else

14 St(vi)← 0.

Remark 11 (Order-optimality). The decision time performance stated in (1) of
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Theorem 9 matches the information-theoretical lower bound in Theorem 3 up to

a multiplicative constant factor both (a) when δ is sufficiently small and does

not depend on n, k, TR, c, and C, and (b) when δ decays to zero at a speed at

most 1
(k(n−k))c0 where c0 > 0 is some fixed constant. The detailed order-optimality

argument is given next.

Suppose that δ is sufficiently small and does not depend on n, k, TR,

c, and C Here, for ease of exposition, we illustrate the order-optimality with

a specific choice of δ. In fact, the order-optimality holds generally for constant

δ ∈ (0, 1) provided that it does not depend on n, k, TR, c, and C.

Suppose the target decision accuracy is 1−δ = 0.9, i.e., δ = 0.1. Then provided

that n ≥ 31, for any 1 ≤ k ≤ n− 1,

m∗ =
8C2(1− c)
c2(1− C)

(
log

3

0.1
+ log k(n− k)

)
TR ≤

16C2(1− c)
c2(1− C)

log k(n− k)TR.

On the other hand, recall from Theorem 3 that to have δ = 0.1, the decision time

is no less than

((1− δ) log(k(n− k) + 1)− 1)TR ≥
1

2
log(k(n− k) + 1)TR ≥

1

2
log k(n− k)TR

where the first inequality holds provided that n ≥ 8. Thus, when n ≥ 31, in order

to achieve the decision accuracy 1− δ = 0.9, the decision time of our WTA circuit

is on the same order of the information-theoretic lower bound in Theorem 3.

Suppose δ decays to zero at a moderate speed The decision time of our

WTA circuit is order-optimal even for diminishing decision error δ provided that

δ = Ω( 3
(k(n−k))c0 ) where c0 > 0 – it does not decay to zero “too fast” in k(n− k).
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To see this, let δ = 3
(k(n−k))c0 for some constant c0 > 0. We have

8C2(1− c)
c2(1− C)

(
log

(
3
3

(k(n−k))c0

)
+ log k(n− k)

)
TR

=
8C2(1− c)(c0 + 1)

c2(1− C)
log k(n− k)TR. (11)

Resetting circuit when the input spike trains become quiescent In Algo-

rithm 1, if the input spike trains become quiescent, then the corresponding circuits

also become quiescent despite some delay in this response.

Lemma 12. If all input neurons are quiescent at time t0, and remain to be qui-

escent for all t ≥ t0, then Vt(vi) = 0 and St(vi) = 0 for any t > t0 +m.

Lemma 12 is proved in Appendix E.

6 Discussion

In this paper, we investigated how k-WTA computation is robustly achieved in the

presence of inherent noise in the input spike trains. In a spike-based k-WTA model,

n randomly generated input spike trains are competing with each other, and the

neurons with the top k highest underlying firing rates are the true winners. Given

the stochastic nature of the spike trains, it is not trivial to properly select winners

among a group of neurons. We derived an information-theoretic lower bound on

the decision time for a given decision accuracy. Notably, this lower bound holds

universally for any WTA circuit that falls within our model framework, regardless

of their circuit architectures or their adopted activation functions. Furthermore,

we constructed a circuit whose decision time matches this lower bound up to a
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constant multiplicative factor, suggesting that our derived lower bound is order-

optimal. Here the order-optimality is stated in terms of its scaling in n, k, and TR.

In addition, our results also give a set of testable hypotheses on neural recordings

and humans’/animals’ behaviors in decision-making.

6.1 Comparison to previous WTA models

Randomness is introduced at different stages of brain computation and the stochas-

tic nature of the spike trains are well observed (Baddeley et al., 1997; Kara et al.,

2000; Maimon & Assad, 2009; Shamir, 2009, 2006; Hertz et al., 1991; Ferrari et

al., 2018). In our work, we focused on how to robustly achieve k-WTA compu-

tation in face of the intrinsic randomness in the spike trains. A common WTA

model assumes that neurons transmit information by a continuous variable such

as firing rate (Dayan & Abbott, 2001; Hertz et al., 1991), which often ignores

the intrinsic randomness in spiking trains. Although some studies used additive

Gaussian noise (Kriener et al., 2017; S. Li et al., 2013; Lee et al., 1999; Rougier &

Vitay, 2006) in their rate-based WTA circuits to account for input randomness,

these circuits are usually very sensitive to noise and could not successfully select

even a single winner unless additional non-linearity is added (Kriener et al., 2017).

In fact, a neuron with a second non-linearity is similar to an output neuron in our

constructed WTA circuit in that they both integrate their local inputs. Unfortu-

nately, only simulation results were provided in (Kriener et al., 2017); a theoretical

justification of why such second non-linearity makes their WTA circuit robust to

input noise is lacking. Random response of rate-based WTA is also considered in
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(Shamir, 2006) with a focus on characterizing the scaling of WTA accuracy with

the population size for a two-interval, two-alternative forced choice (2I2AFC) dis-

crimination task. Though we focused on spike-based model, we hope our results

can provide some insight for the rate-based model as well. On top of that, a rate-

based model would require a high communication bandwidth, yet communication

bandwidth is limited in the brain. Our spiking neural network model captures this

feature by having a low communication cost, since it broadcasts 1 bit only. How-

ever, we did not try to model every biologically relevant feature. In several studies

using spiking network models, individual units are often modeled with details like

ion channels and specific synaptic connectivity. Though more biologically relevant

than our spiking neuron network model, those details significantly complicate the

analysis. In fact, it could be challenging and intricate to move beyond computer

simulation to characterize the model dynamics (such as the spiking nature of each

unit, the time it takes to stabilize, etc.) analytically.

Spike-based WTA is also considered in the insightful work (Shamir, 2009) un-

der a statistical model for a two-alternative forced choice (2AFC) discrimination

task. In particular, Shamir (Shamir, 2009) undertook an elegant study on the

accuracy of his WTA mechanism focusing on the effects of population size, noise

correlations, and baseline firing. Compared to (Shamir, 2009), our model is more

restrictive in the sense that we do not consider the effects of population size, noise

correlations, and baseline firing, yet is more general in the sense that we consider

n ≥ 2 alternatives. Additionally, we take a slightly different but closely related

angle; instead of focusing on characterizing the accuracy w. r. t. a particular WTA
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circuit, we provide a general lower bound that provides insights on the fundamen-

tal limits of a WTA circuit on the waiting time in deciding among independent

Bernoulli input spike trains. Nevertheless, all of the features studied in (Shamir,

2009) (i.e., population size, noise correlations, and baseline firing) are interest-

ing, and we definitely would like to try to extend our results to incorporate these

features in our future work.

6.2 Potential applications for physiological experiments

Our work might further provide hypotheses on inferring the changes of the net-

work sizes, of the similarities between input spike trains, and of the synaptic

memory capacities base on the changes of the performance accuracy. For exam-

ple, in behavioral experiments using electrolytic lesions or pharmacological inhi-

bition (Clark, Manes, Antoun, Sahakian, & Robbins, 2003; Hanks, Ditterich, &

Shadlen, 2006; Yttri, Liu, & Snyder, 2013; Katz, Yates, Pillow, & Huk, 2016), the

changes in performance are often highly variable and nonlinear. Such variability

and nonlinearity might arise from the experimental difficulties in precisely manip-

ulating network size and in disentangling sensory perception and motor planning

from a core decision-making (winner-selecting) process. With an analytical char-

acterization, one might be able to estimate changes in the network size given its

performance changes. Several pioneering works studied the impact of the network

size on accuracy (Seung & Sompolinsky, 1993; Shamir, 2009, 2006). While these

works characterized this trade-off based on investigating specific WTA circuits,

our work provides a complementary viewpoint by characterizing a lower bound on
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a large family of WTA circuits.

Besides the effect of network size, the distribution of feature representations

(i.e., different set Rs of different individual animals) could be used to account for

between-subject variability in decision making. Consider a random-dot coherent

motion task where animals need to decide which of two directions the majority of

dots are moving (Shadlen & Newsome, 2001). In this task, performance accuracy

and reaction time vary across animals. If we perform neural recordings in their

visual cortex (i.e., to record their Rs), we might be able to decode their reaction

time or accuracy, given population representations of dot motion in these cortical

neurons (Shadlen & Newsome, 1996; Jazayeri & Movshon, 2006). For example,

an animal whose stimulus-evoked responses are more heterogeneous in the visual

cortex might be able to react faster given the same accuracy, governed by our

derived lower-bound.

Last but not least, our work also offer predictions on how local memory capacity

could affect performance in decision-making. For example, when there is more am-

biguity in input representations, to achieve the same accuracy, a larger minimum

time window for memory storage in synapses (Knoblauch, Palm, & Sommer, 2010)

is required. From previous experimental work (Bittner, Milstein, Grienberger, Ro-

mani, & Magee, 2017), we know that synaptic plasticity has time scale ranging

from milliseconds to seconds across different brain regions, and such plasticity

could efficiently store entire behavioral sequences within synaptic weights. Com-

bining with our analytical characterization, when performance accuracy changes

over time, assuming other parameters such as input rates, decision time and net-
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work size are fixed, one might be able to predict how synaptic plasticity changes.

6.3 Limitations and extensions

When δ is a constant, our lower bound is order-optimal in terms of its scaling in

n, k, and TR. Nevertheless, the scaling of the derived lower bound in terms of δ

is not tight. It would be interesting to know the optimal scaling in δ when other

parameters (n, k, and TR) are fixed. We leave it as one future direction.

To simplify complexity, our model poses a few assumptions that ignored some

features in the brain (Shamir, 2009). One of these assumptions is that each in-

put neuron is independent. However, various degrees of average noise correlations

between cortical neurons have been reported. For example, average noise correla-

tions in primary visual cortex could be close to 0.1 (Schölvinck, Saleem, Benucci,

Harris, & Carandini, 2015), 0.18 (Smith & Kohn, 2008), or even much larger as

0.35 (Gutnisky & Dragoi, 2008). Similarly, noise correlations have been observed

in other sensory brain regions (Cohen & Kohn, 2011). In our work, we ignore cor-

relations between these neurons, but it would be interesting as a future direction

to extend in our spiking network model. Unfortunately, the impact of the noise-

correlation on the lower bound is unclear at first glance. One of the challenges in

answering such question is, in general, the details of correlations might matter –

especially when there is more than one true winner, and it is unclear whether gen-

eral statements such as “correlations always hurt” or “correlations always help”

can be concluded in the end. Specifically, on the one hand, the insightful work

(Shamir, 2009) showed that, similar to the effect of noise-correlation that has been
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observed in population coding theory, noise correlations in their proposed temporal

Winner-Take-All (tWTA) limits and harms the accuracy of the tWTA readout. In

fact, in population coding theory, it is commonly reported that noise correlation

harms decoding accuracy (Eyherabide & Samengo, 2013). On the other hand,

correlations in the variabilities of neuronal firing rates do not, in general, limit

the increase in coding accuracy; in some cases, but not all, correlations improve

the accuracy of a population code (Abbott & Dayan, 1999; Averbeck, Latham, &

Pouget, 2006). Additionally, for the problem of k-WTA where k ≥ 2, it could be

possible that the noise correlation is neither purely positively corrected nor purely

negatively corrected. In particular, it could be possible that one true winner is

positively correlated with other true winners and is negatively correlated with non-

winners, and another true winner is negatively correlated with other true winners

and is positively correlated with non-winners. Thus, extra care is needed when one

is trying to make claims on the impact of noise-correlation on a WTA circuit.

Second, our model uses a threshold activation function by assuming the synap-

tic transmission is basically noise-free and that the only noise source comes from

the input in this paper. However, synaptic transmission is highly unreliable in

biological networks (Allen & Stevens, 1994; Faisal et al., 2008; Borst, 2010), and

a deterministic activation function would fail to capture this feature compared

to a stochastic activation function. Nevertheless, our lower bound in Theorem 3

holds even if the activation functions are random. This is because the probability

in P
{
ŵin (S) 6=W(p)

}
incorporates the possible randomness in the activation

functions, and our lower bound characterization is independent of the activation
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functions used.

Another assumption in our circuit is that the output neurons can inhibit each

other. In common scenarios, an output neuron is usually excitatory, and does not

inhibit other neurons directly without recruiting inhibitory cells. We incorporate

stability in these output neurons by assuming they can inhibit each other in our

circuit implementation. For a model where an output neuron is limited to be

excitatory only, we can add a chain of inhibitory neurons to achieve stability

WTA computation.

Additionally, for our lower bound to hold we need that the initial memory

of each neuron, i.e., M1(ν), contain no information about the system’s state in

the past t ≤ 0. That is, except for the input spike trains, no side information

(especially the one on previous network dynamics) is available at a WTA circuit,

and nothing happens before the start of WTA competition to affect the WTA

dynamics. We impose this assumption on M1(ν) in order to derive an information-

theoretic lower bound on the observation time. On the other hand, spontaneous

firings before the presence of an external stimulus might affect the initial states

of neurons’ local memory. For those scenarios, our results are applicable provided

that the spontaneous firings are very sparse or even negligible. Nevertheless, it

would be interesting to relax this assumption, and study how the spontaneous

firings of the neurons in the past (i.e., t ≤ 0) could affect M1(ν) in general.

Last but not least, in our k-WTA circuit, the number of output neurons that

spike simultaneously increases monotonically until there are exactly k output neu-

rons that spike simultaneously. We acknowledge that this might not be biologically
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plausible in most cases in the brain – especially considering the possibility of spon-

taneous firings. From large-scale neural recordings, we know that the number of

neurons that spike simultaneously is usually variable, so this could be a future

direction to construct a circuit that better matches experimental observations.
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Appendices

A Preliminaries

In this section, we present some preliminaries on information measures and Fano’s

inequality. Interested readers are referred to (Polyanskiy & Wu, 2014) for com-

prehensive background.

A.1 Information Measures

Let X and Y be two random variables. The mutual information between X

and Y , denoted by I(X;Y ), measures the dependence between X and Y , or, the

information about X (resp. T ) provided by Y (resp. X).

47



Definition 13 (Mutual information). Let X and Y be two random variables.

I(X;Y ) := D(PXY ‖ PXPY ), D(P ‖ Q) :=
∑
a∈A

P (a) log
P (a)

Q(a)
,

where PXY denotes the joint distribution of X and Y , and PXPY denotes the

product of the marginal distributions of X and Y .

In the following, we use the notation X → Y to denote that Y is a (possibly

random) function of X. Thus, W → X → Y → Ŵ means that X is a (possibly

random) function of W ; Y is a (possibly random) function of X; and Ŵ is a

(possibly random) function of Y . Fano’s inequality:

Theorem 14. (Polyanskiy & Wu, 2014, Corollary 5.1) Let T : Θ→ [M ], and let

θ → X → Y → T̂ (θ) be an arbitrary Markov chain. Suppose both θ and T (θ) are

uniformly distributed over a set of size M . Then

Pe := P
{
T (θ) 6= T̂ (θ)

}
≥ 1− I(X;Y ) + 1

logM
.

Theorem 15 (Chernoff Bound). Let X1, · · · , Xn be i.i.d. with Xi ∈ {0, 1} and

P {X1 = 1} = p. Set X =
∑n

i=1Xi. Then

• for any t ∈ [0, 1− p], we have P {X ≥ (p+ t)n} ≤ exp (−nd(p+ t ‖ p)).

• for any t ∈ [0, p], we have P {X ≤ (p− t)n} ≤ exp (−nd(p− t ‖ p)).

B Proof of Lemma 2

Proof of Lemma 2. Lemma 2 follows easily from the independence between input

spike trains and the assumption that the spikes in each input spike train are i.i.d..

For completeness, we present the proof as follows.

48



Recall that

S :=
[
{St(u1)}Tt=1 , · · · , {St(un)}Tt=1

]
.

Denote s = [s1, · · · , sn] as one realization of S, wherein each component si is

a binary sequence of length T , i.e.,

si =
[
bi1, · · · , biT

]
∈ {0, 1}T .

For each i = 1, · · · , n, let PS({St(ui)}Tt=1) and QS({St(ui)}Tt=1) be the marginal

distributions of the i–th length T input spike train {St(ui)}Tt=1 under joint distri-

butions PS and QS respectively. Similarly, PS(St(ui)) and QS(St(ui)) are the

corresponding two marginal distributions of St(ui) – the spiking state of input

neuron ui at time t. Thus, we have

D
(
PS({St(ui)}Tt=1) ‖ QS({St(ui)}Tt=1)

)
(a)
=

∑
[bi1,··· ,biT ]

PS({St(ui)}Tt=1 =
[
bi1, · · · , biT

]
) log

PS({St(ui)}Tt=1 = [bi1, · · · , biT ])

QS({St(ui)}Tt=1 = [bi1, · · · , biT ])

(b)
=

∑
[bi1,··· ,biT ]

(
T−1∏
t′=0

PS(St′(ui) = bit′)

)
log

∏T
t=1 PS(St(ui) = bit)∏T
t=1QS(St(ui) = bit)

=
T∑
t=1

∑
[bi1,··· ,biT ]

(
T−1∏
t′=0

PS(St′(ui) = bit′)

)
log

PS(St(ui) = bit)

QS(St(ui) = bit)

=
T∑
t=1

∑
[bi1,··· ,biT ]

(
T−1∏

t′=0&t′ 6=t

PS(St′(ui) = bit′)

)
PS(St(ui) = bt) log

PS(St(ui) = bit)

QS(St(ui) = bit)

(c)
=

T∑
t=1

∑
bit

PS(St(ui) = bit) log
PS(St(ui) = bit)

QS(St(ui) = bit)

=
T∑
t=1

(
pi log

pi
qi

+ (1− pi) log
1− pi
1− qi

)

=
T∑
t=1

d(pi ‖ qi) = T · d(pi ‖ qi).
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where
∑

[bi1,··· ,biT ] is the summation over all binary sequences of length T . In the

last displayed equation, equality (a) follows from the definition of KL divergence;

equality (b) is true because of independence of spikes; equality (c) follows from

the fact that for any fixed bit,

∑
[bi1,··· ,biT ]\{t}

(
T∏

t′=1&t′ 6=t

PS(St′(ui) = bit′)

)
= 1,

where we use
∑

[bi1,··· ,biT ]\{t} to denote the summation over all binary sequences of

length T with the t–th entry fixed.

Similarly, we get

D(PS ‖ QS) =
∑

s=[s1,··· ,sn]

PS(S = s) log
PS(S = s)

QS(S = s)

=
n∑
i=1

D
(
PS({St(ui)}Tt=1) ‖ QS({St(ui)}Tt=1)

)
=

n∑
i=1

Td(pi ‖ qi) = T
n∑
i=1

d(pi ‖ qi),

proving the lemma.

C Proof of Theorem 3

The following lemma is used in the proof of our information-theoretic lower bound.

This is a technical supporting lemma, and the choice of the specific rate assign-

ments is due to some technical convenience in proving Theorem 3. See Appendix

A for definition of I(· ; ·).

Lemma 16. For any finite set R, let r1, r2 ∈ R such that r1 6= r2. Let p0 =
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[p01, · · · , p0n] be

p0` =


r1, if ` = 1, · · · , k;

r2, otherwise.

(12)

For i = 1, · · · , k and j = k + 1, · · · , n, define rate assignment pij as

pij` =



p0` , if ` 6= i, 6= j;

p0j , if ` = i;

p0i , if ` = j.

Let Xp be a random rate assignment. If Xp is uniformly distributed over

{p0} ∪
{
pij : i = 1, · · · , k,& j = k + 1, · · · , n

}
,

then the mutual information I(Xp;S) satisfies the following:

I(Xp;S) ≤ T (d(r2 ‖ r1) + d(r1 ‖ r2)) .

Proof. Since mutual information can be viewed as distance to product distribu-

tions, by (Polyanskiy & Wu, 2014, Theorem 3.4), we have

I(Xp;S) = min
QXpQS

D
(
PXp,S ‖ QXpQS

)
.

where PXp,S is the joint distribution of Xp and S, and QXp and QS are any

distributions of Xp and S, respectively.

For any fixed QS, it holds that

min
QXp

D
(
PXp,S ‖ QXpQS

)
= min

QXp

D
(
PS|XpPXp ‖ QXpQS

)
≤ D

(
PS|XpPXp ‖ PXpQS

)
,
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where the equality follows from conditioning, and the inequality is true because

the best choice over all QXp cannot be worse than any specific choice of QXp .

Here S | Xp denotes the n input spike trains conditioning on the choice of rate

assignment.

For any fixed QS, we have

D
(
PS|XpPXp ‖ PXpQS

)
= PXp(Xp = p0)

∑
s

PS|Xp=p0(S = s)

[
log

PS|Xp=p0(S = s)PXp(Xp = p0)

QS(S = s)PXp(Xp = p0)

]

+
k∑
i=1

n∑
j=k+1

PXp(Xp = pij)
∑
s

PS|Xp=pij(S = s)

[
log

PS|Xp=pij(S = s)PXp(Xp = pij)

QS(S = s)PXp(Xp = pij)

]

=
1

k(n− k) + 1

∑
s

PS|Xp=p0(S = s)

[
log

PS|Xp=p0(S = s)

QS(S = s)

]

+
1

k(n− k) + 1

k∑
i=1

n∑
j=k+1

∑
s

PS|Xp=pij(S = s)

[
log

PS|Xp=pij(S = s)

QS(S = s)

]

=
1

k(n− k) + 1
D
(
PS|Xp=p0 ‖ QS

)
+

1

k(n− k) + 1

k∑
i=1

n∑
j=k+1

D
(
PS|Xp=pij ‖ QS

)
,

where
∑

s is summation over all possible n binary sequences of length T . Here

PS|Xp=p0 is the distribution of S with the rate assignment p0, and PS|Xp=pij is the

distribution of S with the rate assignment pij. Choosing QS to be the distribution

of S with rate assignment p0 defined in (12), then for any i = 1, · · · , k and

j = k + 1, · · · , n, we have

D
(
PS|X

pij
‖ QS

)
= T (d(r2 ‖ r1) + d(r1 ‖ r2)).

Therefore,

I (Xp ‖ S) ≤ 1

k(n− k) + 1

k∑
i=1

n∑
j=k+1

T (d(r2 ‖ r1) + d(r1 ‖ r2))

≤ T (d(r2 ‖ r1) + d(r1 ‖ r2)).
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Proof of Theorem 3. We prove this via a genie-aided argument (Jacobs & Berlekamp,

1967) by assuming that there is a genie that can access the firing sequences of all

the n input neurons. By assuming the existence of a genie, we are essentially

considering the centralized setting. Clearly, if the error probability is high even

in the centralized setting, then no SNNs (which are distributed algorithms) can

achieve lower error probability.

Suppose that T ≤ ((1− δ) log(k(n− k) + 1)− 1)TR. By (8) there exists r1, r2

such that r1 6= r2 and

T ≤ ((1− δ) log(k(n− k) + 1)− 1)
1

d(r2 ‖ r1) + d(r1 ‖ r2)
.

Without loss of generality, assume that r1 > r2.

Consider the k(n− k) + 1 possible rate assignments defined in Lemma 16. Let

P be the set of such rate assignments. By Yao’s minimax principle, we know the

minimax probability of error is always lower bounded by Bayes probability of error

with any prior distribution:

max
p∈ARk

P
{
ŵin (S) 6=W(p)

}
≥ EXp∼Unif(P)

[
P
{
ŵin (S) 6=W(Xp)

}]
,

where Xp ∼ Unif(P) is uniformly distributed over set P . In addition, by Fano’s

inequality (see Theorem 14), we have

EXp∼Unif(P)

[
P
{
ŵin (S) 6=W(Xp)

}]
≥ 1− I(Xp;S) + 1

log(k(n− k) + 1)
. (13)
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Applying Lemma 16, we get

max
p∈ARk

P
{
ŵin (S) 6=W(p)

}
≥ 1− I(Xp;S) + 1

log(k(n− k) + 1)

≥ 1− T (d(r2 ‖ r1) + d(r1 ‖ r2)) + 1

log(k(n− k) + 1)

≥ δ.

The last inequality holds as T ≤ ((1− δ) log(k(n− k) + 1)− 1)TR.

D Proof of Theorem 9

The proof of Theorem 9 uses the following technical fact and lemma.

Fact 17. For any given p ∈ (0, 1) and b > 0, let fp,b : R → R, defined as: for all

t > 0,

fp,b(t) := exp

(
−td

(
b

t
‖ p
))

.

Function fp,b(·) is increasing when t ∈ (0, b
p
) and decreasing when t ≥ b

p
.

This fact follows immediately from a simple algebra.

Lemma 18. Assume u, v ∈ [c, C] ⊆ (0, 1). Then for any α ∈ (0, 1),

d ((1− α)u+ αv ‖ u) ≥ α2c(1− C)

2C(1− c)
(d (u ‖ v) + d (v ‖ u)) .

Proof. Note that for any fixed q ∈ [c, C], d (x ‖ q) is a function of x, where x ∈

[c, C]. In addition, by simple algebra, we have

d′ (x ‖ q) = log
(1− q)x
q(1− x)

, and d′′ (x ‖ q) =
1

x(1− x)
. (14)
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By Taylor expansion, we have

d ((1− α)u+ αv ‖ u) = d (u ‖ u) + ((1− α)u+ αv − u) d′ (u ‖ u)

+
((1− α)u+ αv − u)2

2
d′′ (ξ ‖ u) ,

where ξ ∈ [min{u, (1− α)u+ αv}, max{u, (1− α)u+ αv}]. By (14),

d ((1− α)u+ αv ‖ u) = 0 + 0 +
1

ξ(1− ξ)
α2(u− v)2

2
≥ α2(u− v)2

2C(1− c)
.

On the other hand, since d (u ‖ v) + d (u ‖ v) is symmetric in u and v, without

loss of generality, assume that u ≥ v. We have

d (u ‖ v) + d (u ‖ v) = (u− v) log
u(1− v)

v(1− u)

= (u− v) log

(
1 +

u− v
v(1− u)

)
≤ (u− v)

u− v
v(1− u)

=
(u− v)2

v(1− u)
≤ (u− v)2

c(1− C)

≤ 2C(1− c)
c(1− C)α2

d ((1− α)u+ αv ‖ u) ,

proving the lemma.

Now we are ready to prove Theorem 9.

Proof of Theorem 9. Without loss of generality, assume that

p1 ≥ · · · ≥ pk > pk+1 ≥ · · · ≥ pn.

For a given rate assignment p ∈ AR, define τ1, τ2, · · · , τn as

τi := inf
t

t :

min{t,m∗}∑
r=1

Sr(ui) ≥ b

 , ∀ i = 1, · · · , n.
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Notably, in the above definition
{
t :

∑min{t,m∗}
r=1 Sr(ui) ≥ b

}
could be empty. In

that case, we define τi := ∞ by convention. To show Theorem 9, it is enough to

show that with probability 1− δ,

τi < τj ∀ i = 1, · · · , k, and j = k + 1, · · · , n; (15)

and τi ≤ m∗ ∀ i = 1, · · · , k.. (16)

Before diving into proving (15) and (16) hold with high probability, let’s check the

sufficiency of (15) and (16). Let t0 := max1≤i≤k τi. Let E be the event on which

(15) and (16) hold. Clearly, conditioning on event E , we have(
max
1≤i≤k

τi | E
)

= t0 | E ≤ m∗ − 1 ≤ m− 1,

where the last inequality follows from the assumption in Theorem 9, and(
max
1≤i≤k

τi | E
)

= t0 | E < τj | E ∀j = k + 1, · · · , n.

Notably, for any t ≤ t0 ≤ m− 1 and for i = 1, · · · , n,[
t∑

r=1

1{Vr(vi)>0} −m
t∑

r=1

1{Vr(vi)≤−1}

]
+

≤
t∑

r=1

1{Vr(vi)>0} ≤
t∑

r=1

Sr(ui)

– recalling that Vr(vi) is defined in (9). Thus, conditioning on E , at most k − 1

output neurons ever spike by time t0. So we have (1) 1{Vt(vi)≤−1} = 0, and (2)

1{Vt(vi)>0} = St(ui), for all i = 1, · · · , n and for all t ≤ t0. In addition, we have for

all t ≤ t0,

(b− 1)1{St(vi)=1} +

[
t∑

r=1

1{Vr(vi)>0} −m
t∑

r=1

1{Vr(vi)≤−1}

]
+

= (b− 1)1{St(vi)=1} +
t∑

r=1

1{Vr(vi)>0}

= (b− 1)1{St(vi)=1} +
t∑

r=1

Sr(ui).
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By the activation rules in Algorithm 1, we know, conditioning on E , at time

t0 + 1 ≤ m∗, output neurons v1, · · · , vk spike simultaneously, and output neurons

vk+1, · · · , vn do not spike, proving (1) in Theorem 9. By the choice of t0, we know

that, on E , t0 + 1 is the first time that k output neurons spike simultaneously, and

no other k output neurons ever spike simultaneously, proving (2) in Theorem 9.

By a simple induction argument, it can be shown that conditioning on E , in

each of the time slot t such that t0 + 1 ≤ t ≤ m + 1, output neurons v1, · · · , vk

spike, and no other output neurons (i.e., output neurons vk+1, · · · , vn do not spike).

Let’s consider the case when t = (m + 1) + 1. As among output neurons, only

v1, · · · , vk spike, and no other output neurons spike for any t′ ≤ m+ 1, it follows

that

m
m∑
r=1

1{Vt−r(vi)≤−1} = 0, ∀ v1, · · · , vk.

Thus, for these k output neurons,

(b− 1)1{St−1(vi)=1} +

[
m∑
r=1

1{Vt−r(vi)>0} −m
m∑
r=1

1{Vt−r(vi)≤−1}

]
+

= (b− 1) +
m∑
r=1

1{Vt−r(vi)>0}

= (b− 1) +
m∑
r=1

1{Vt−1−r(vi)>0} + 1{Vt−1(vi)>0} − 1{Vt−1−m(vi)>0}

≥ b− 2 +
m∑
r=1

1{Vt−1−r(vi)>0}

= b− 2 +
m∑
r=1

Sr(ui) ≥ 2b− 2 ≥ b,

where the last inequality holds provided that b ≥ 2. For output neurons vk+1, · · · , vn,
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we have

(b− 1)1{St−1(vi)=1} +

[
m∑
r=1

1{Vt−r(vi)>0} −m
m∑
r=1

1{Vt−r(vi)≤−1}

]
+

≤
m∑
r=1

1{Vt−r(vi)>0}

(a)
=

m∑
r=1

1{Vt−1−r(vi)>0} + 1{Vt−1(vi)>0} − 1{Vt−1−m(vi)>0}

=
m∑
r=1

1{Vt−1−r(vi)>0} − 1{Vt−1−m(vi)>0}

≤
m∑
r=1

1{Vt−1−r(vi)>0} =
m∑
r=1

1{Vr(vi)>0} < b.

Equality (a) follows because at time t−1, output neurons v1, · · · , vk spike, resulting

in 1{Vt−1−r(vi)>0} = 0 for i 6= 1, · · · , k. Thus, we know conditioning on event E ,

at time (m + 1) + 1, the output neurons v1, · · · , vk spike, and no other output

neuron spike. It can be shown by a simple induction that at each time t such that

t0 + 1 ≤ t ≤ m + b, the output neurons v1, · · · , vk spike, and no other output

neurons spike. This proves (3) in Theorem 9.

Next we prove (15) and (16). By definition of τj, we know that τj ≤ m∗ for all

j = 1, · · · , n. Thus, we only need to show that with probability 1− δ,

τi < τj ∀ i = 1, · · · , k, and j = k + 1, · · · , n,

which is the focus of the remainder of our proof.
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Note that

P {τi < τj, ∀i ∈ {1, · · · , k},∀j ∈ {k + 1, · · · , n}}

= P {τi < τj,& τi < m∗, ∀i ∈ {1, · · · , k},∀j ∈ {k + 1, · · · , n}}

≥ 1−
k∑
i=1

n∑
j=k+1

P {τi ≥ τj, or τi = m∗} . (17)

For each term in the summation of (17), we have

P {τi ≥ τj, or τi = m∗} = P {τi = m∗}+ P {τi ≥ τj,& τi < m∗} , (18)

which follows from the fact that P {A ∪B} = P {A} + P {B − A} for any sets A

and B. Note that m∗pi ≥ b. By Chernoff bound (see Theorem 15), the first term

in (18) is bounded as

P {τi = m∗} = P

{
m∗∑
r=0

Sr(ui) ≤ b

}
≤ exp

(
−m∗ · d

(
b

m∗
‖ pi
))

. (19)

For the second term in (18), we have

P {τi ≥ τj and τi < m∗} = P

{
τi∑
r=0

Sr(uj) ≥ b, and τi < m∗

}

≤ exp

(
−t∗ · d

(
b

t∗
‖ pk+1

))
+ exp

(
−t∗ · d

(
b

t∗
‖ pk

))
,

where t∗ ∈
(

b
pk+1

, b
pk

)
. Thus, (18) is upper bounded as

P {τi ≥ τj, or τi = m∗} ≤ exp

(
−m∗ · d

(
b

m∗
‖ pk+1

))
+ exp

(
−t∗ · d

(
b

t∗
‖ pk+1

))
+ exp

(
−t∗ · d

(
b

t∗
‖ pk

))
≤ exp

(
−t∗ · d

(
b

t∗
‖ pk+1

))
+ 2 exp

(
−t∗ · d

(
b

t∗
‖ pk

))
.
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Eq (17) is bounded as

P {τi < τj, ∀i ∈ {1, · · · , k},∀j ∈ {k + 1, · · · , n}}

≥ 1−
k∑
i=1

n∑
j=k+1

P {τi ≥ τj, or τi = m∗}

≥ 1−
k∑
i=1

n∑
j=k+1

(
exp

(
−t∗ · d

(
b

t∗
‖ pk+1

))
+ 2 exp

(
−t∗ · d

(
b

t∗
‖ pk

)))

= 1− k(n− k)

(
exp

(
−t∗ · d

(
b

t∗
‖ pk+1

))
+ 2 exp

(
−t∗ · d

(
b

t∗
‖ pk

)))
.

Let t∗ = b
(pk+pk+1)/2

, it holds that

exp

(
−t∗ · d

(
b

t∗
‖ pk+1

))
= exp

(
− b

(pk + pk+1)/2
· d
(
pk + pk+1

2
‖ pk+1

))
,

2 exp

(
−t∗ · d

(
b

t∗
‖ pk

))
= 2 exp

(
− b

(pk + pk+1)/2
· d
(
pk + pk+1

2
‖ pk

))
.

By Lemma 18, we know

d

(
pk + pk+1

2
‖ pk+1

)
≥ c(1− C)

8C(1− c)
(d(pk+1 ‖ pk) + d(pk ‖ pk+1)) ,

and,

d

(
pk + pk+1

2
‖ pk

)
≥ c(1− C)

8C(1− c)
(d(pk+1 ‖ pk) + d(pk ‖ pk+1)) .

Thus, we get

P {τi < τj, ∀i ∈ {1, · · · , k},∀j ∈ {k + 1, · · · , n}}

≥ 1− 3k(n− k) exp

(
− 2b

pk + pk+1

c(1− C)

8C(1− c)
(d(pk ‖ pk+1) + d(pk+1 ‖ pk))

)

Since b = 8C2(1−c)
c(1−C)

(
log 3

δ
+ log k(n− k)

)
TR, we have

3k(n− k) exp

(
− 2b

pk + pk+1

c(1− C)

8C(1− c)
(d(pk ‖ pk+1) + d(pk+1 ‖ pk))

)
≤ δ.

Thus, P {τi < τj, ∀i ∈ {1, · · · , k},∀j ∈ {k + 1, · · · , n}} ≤ 1− δ.
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In addition,

t∗ =
2b

pk + pk+1

≤ 1

c
b = m∗ ≤ m,

completing the proof of Theorem 9.

E Proof of Lemma 12

By the activation rules in Algorithm 1, we know that

St0+m =


1, if (b− 1)1{St0+m−1(vi)=1} +

∑m
r=1

(
1{Vt0+m−r>0} −m1{Vt0+m−r≤−1}

)
> b;

0, otherwise.

As all input neurons are quiescent at time t0 and remain to be quiescent for all

t ≥ t0, it follows that

(b− 1)1{St0+m−1(vi)=1} +
m∑
r=1

(
1{Vt0+m−r>0} −m1{Vt0+m−r≤−1}

)
= (b− 1)1{St0+m−1(vi)=1} −m

m∑
r=1

1{Vt0+m−r≤−1}

≤ b− 1 < b.

Thus, St0+m(vi) = 0 for all i = 1, · · · , n. So we have Vt0+m+1(vi) = 0 for all

i = 1, · · · , n, which again implies that St0+m+1(vi) = 0 for all i = 1, · · · , n.

Therefore, we conclude that St(vi) = 0 and Vt(vi) = 0 for all t > t0 +m.
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