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Research Summary: Distributed systems are ubiquitous
both in human society and in nature. In human society, due
to constraints in computation power and data accessibility,
many learning systems are distributed, such as Federated
Learning (FL), Internet of Things (IoT), and multi-agent
networks. In nature, neural circuits in the brain and so-
cial insect colonies are biological distributed systems. In
fact, the biological distributed systems and their dynamics
have inspired many influential artificial counterparts which
include deep neural networks and ant colony optimization
algorithms.

I have explored topics ranging from adversary-resilience in
Federated Learning and multi-agent networks, to decision-
making in social insect colonies, to neural networks training,
and to neural computation. My plan for the near future is to
continue this broad exploration with primary focuses on de-
veloping provably secured algorithms for unreliable learning
systems such as FL, and on understanding (both artificial
and biological) neural networks. Nevertheless, I see myself
pursuing new directions as technology evolves and opportu-
nities arise. In the long run, I plan to employ theoretically-
grounded principles to design efficient methods for attacking
real-world problems in artificial distributed systems, and to
provide testable hypotheses on the underlying mechanisms
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of some observable behaviors or phenomena of biological dis-
tributed systems.

I briefly describe the problems and summarize our results
on adversary-resilience in Federated Learning, adversary-
resilience in multi-agent networks, neural networks and neu-
ral computation, and biologically-inspired distributed algo-
rithms, respectively.
1. Adversary-Resilience in Federated Learning.

With the rapid advancements in data collection, storage,
and computation capabilities of smartphones, and with the
growing popularity of wearable devices such as Apple Watch,
one trend in machine learning is to “outsource” part of the
computation burden to edge and/or end devices. This trend
is motivated by not only computation and response speed
benefits but also privacy gains. In view of this trend, Google
proposes Federated Learning – a new learning paradigm [1,
3]. Compared with traditional learning, FL suffers serious
security issues [5, 3] and several practical constraints call for
new security strategies. For example, since the local data
volume is typically low in FL, it is hard for the cloud (i.e.,
the leaner) to distinguish errors injected by malicious work-
ers from random errors induced by honest workers based on
their message values only. Besides, the communication be-
tween the cloud and the end devices suffer low-throughput
and high-latency.

To the best of our knowledge, we are the first to study
Byzantine-resilience in FL [5], which has been attracting
more and more research attention [2, 24, 25, 10, 8]. Con-
current with our work [5], a similar problem was proposed
in [4], which, in sharp contrast to FL, considered the setting
wherein all workers operate on a common dataset. This
difference is fundamental as can be seen from the analysis
difference in [4] and [5]. In [5], we designed a Byzantine-
resilient gradient descent method in which the learner uses
geometric median of means to aggregate the gradients re-
ported by the workers. We showed that when the number
of Byzantine workers is sufficiently small, with high proba-
bility, the `2 error converges in O(logN) rounds to an esti-

mation error O(
√

dq/N), where d is the model dimension, q
is the upper bound of the tolerable Byzantine workers, and
N is the total number of data points collectively kept by
all workers. In a follow-up work by ourselves [19], under the
same set of technical assumptions, we proposed another vari-
ant of gradient descent in which, within each round of gradi-
ent descent update, the learner adopts an iterative filtering
rule to aggregate the gradients. The `2 error converges in

O(logN) rounds to O
(√

q/N +
√

d/N
)

, matching the op-



timal error rate O(
√

d/N) when q = O(d).
On the technical front, a key challenge is that Byzantine

failures might create arbitrary and unspecified dependency
among the gradient descent updates at different rounds. To
handle this issue, in both [5] and [19], we proved that the
aggregated gradient, as a function of model parameter, con-
verges uniformly to the true gradient function. In addition,
in [19], deviating from the existing literature on robustly
estimating a finite-dimensional mean vector, we establish
a uniform concentration of the sample covariance matrix
of gradients. To get a near-optimal uniform concentration
bound, we develop a new matrix concentration inequality,
which might be of independent interest.

Significant progress has been made [2, 24, 25, 19, 10,
8]. Nevertheless, many interesting and practically impor-
tant problems remain unsolved. I plan to continue working
intensively in this area in the future.
2. Adversary-Resilience in Multi-Agent Networks.

Many multi-agent networks such as IoT and micro-grids
are also vulnerable to unstructured faults. This is because in
large distributed systems, due to unreliable devices and com-
munication channels, and even external adversarial attacks,
individual computing devices/sensors might exhibit abnor-
mal behaviors. Such abnormal behaviors are often unstruc-
tured because of the heterogeneity in hardwares, softwares,
implementation environments, and the unpredictability of
external adversarial attacks. Adversary-resilient distributed
computing dates back to the Byzantine General Problem
in computer science [9], and is getting more and more re-
search attention in communication and control communi-
ties [6, 22]. In contrast to fault-free networks, dealing with
Byzantine faults is very challenging. It is well-known that
in complete graphs, no consensus algorithms can tolerate
more than 1/3 of the agents to be Byzantine [9]. In addi-
tion, Byzantine consensus with multi-dimensional inputs in
the complete graphs had not been solved until recently [11,
23].

(1) Multi-Agent Optimization: In [15, 17] and a series of
technical reports, we considered the problem of multi-agent
optimization wherein an unknown subset of agents suffer
Byzantine faults. Specifically, each agent i has a local cost
function fi, and the overarching goal of the good agents is to
collaboratively minimize a global objective that properly ag-
gregates these local cost functions. To the best of our knowl-
edge, we are among the first to study Byzantine-resilient op-
timization where no central coordinating agent exists, and
we are the first to characterize the structures of the convex
coefficients of the achievable global objectives. Recently, we
organized the results scattered in our unpublished techni-
cal reports and the preliminary conference works [15, 17],
and combined them into one writeup [16]. In contrast to
[15, 17], in [16], we focused on the general networks which
include complete networks as special cases.

(2) Non-Bayesian Learning: To avoid the complexity of
Bayesian learning, an approximate Bayesian learning frame-
work in networks, referred to as Non-Bayesian Learning,
was proposed [7]. The prior work implicitly assumes that
the networked agents are reliable in the sense that they cor-
rectly follow the specified distributed algorithm. However,
in some practical multi-agent networks, this assumption may
not hold. We proposed and analyzed a learning rule [18]
wherein each agent updates its local pseudo beliefs as (up
to normalization) the product of (A) the likelihood of the

cumulative private signals and (B) the weighted geometric
average of the beliefs of its incoming neighbors and itself (us-
ing Byzantine consensus). I was the runner-up for the Best
Student Paper Award at DISC 2016 for my work [18].

Under the above two themes, there are many interest-
ing future directions such as the tradeoff between network
redundancy and information redundancy, and communica-
tion/computation efficient algorithms. Beyond these two
themes, there are many interesting applications such as dis-
tributed state estimation problem, as we studied in [14], and
autocar security.
3. Neural Networks and Neural Computation.

Despite intensive research efforts, a thorough understand-
ing of the theory behind the practical success of artificial
neural networks, even for two-layer neural networks, is still
lacking. For example, in sharp contrast to traditional learn-
ing theory, over-parameterized neural networks are observed
to enjoy smaller training and even smaller generalization er-
rors [26], i.e., they do not overfit. It has been shown that
with proper random network initialization, (S)GD converges
to a (nearly) global minimum provided that the width of the
network is polynomially over-parameterized. However, neu-
ral networks seem to interpolate the training data as soon
as the number of parameters exceeds the size of the train-
ing dataset by a constant factor [26]. In our recent work
[20], we showed that nearly-linear over-parameterization is
sufficient for two-layer network training. To the best of our
knowledge, this is the first result showing the sufficiency
of nearly-linear over-parameterization. Moreover, in con-
trast to existing convergence rates which approach 0 as the
dataset size grows, we characterized a constant convergence
rate (w. r. t. the size of the dataset). Such rate characteriza-
tion is important as in many applications the dataset vol-
umes are huge – the ImageNet dataset has 14 million im-
ages. Nevertheless, we only considered the setting wherein
the dimension of the input feature is fixed, leaving the high
dimensional region as one future direction.

In addition to artificial neural networks, I have also worked
on neural computation in the brain [13]. We presented a
framework for studying a noisy Winner-Take-All computa-
tion in a spiking neural network. Winner-Take-All (WTA)
is a hypothesized mechanism in the brain to select proper
neurons from a competitive network of neurons, and is con-
jectured to be a fundamental primitive of cognitive func-
tions such as attention and object recognition. In our work,
time is slotted into intervals of 1ms. The inputs are mod-
eled by independent Bernoulli processes in time with fixed
rates; here Bernoulli processes are assumed in order to cap-
ture the fact that biological neurons have a refractory pe-
riod, i.e., typically, a neuron cannot spike twice within 1ms.
Spiking neural networks are getting more and more research
attention in computational neuroscience due to both its bio-
relevance and its energy efficiency. In [13], we obtained an
information-theoretic lower bound on the waiting-time to
obtain a given accuracy, and constructed a simple neural
circuit that turns out to be order-optimal for a given accu-
racy (fixed).

Both [20] and [13] are my first attempt towards under-
standing artificial and biological neural networks, respec-
tively. In the future, I would like to further study artificial
and biological neural networks, respectively, yet with the
hope of drawing inspirations and insights from one another



to arrive at better understanding of both of them.
4. Biologically-Inspired Distributed Algorithms.

Social insect colonies like ants have been existed for about
140 million years. However, we human beings do not know
much about ants. Understanding ant colonies is very chal-
lenging – the estimated number of ant species is 22,000, each
of them could have different behaviors and underlying mech-
anisms in generating certain observable behaviors. Though
each ant is simple, a collection of ants can collaboratively
perform complex tasks such as house-hunting and task allo-
cation.

In [21], we provided some insights for the underlying mech-
anism for house-hunting in ant colonies. House-hunting refers
to the collective decision process in which the entire social
group collectively identifies a high-quality site to immigrate
to. For the success of house-hunting, individuals repeatedly
scout and evaluate multiple candidate sites, and exchange
information with each other to reach a collective decision.
House-hunting can be viewed as sequential decision prob-
lems, and can be naturally modeled as multi-armed bandits
problem, but the classical algorithms such as upper con-
fidence bound (UCB) algorithm are not applicable to ant
colonies. This is because in ant colonies, during house-
hunting, an ant can memorize only a few recently visited
sites/places. In [21], we analyzed a type of learning dynam-
ics which are well-observed in social groups like ant colonies.
Specifically, under the learning dynamics of interest, an indi-
vidual sequentially decides on which arm to pull next based
on not only its private reward feedback but also the sug-
gestion provided by a randomly chosen neighbor. To deal
with the interplay between the randomness in the rewards
and in the social interaction, we employ the mean-field ap-
proximation method. Considering the possibility that the
individuals in the networks may not be exchangeable when
the communication networks are not cliques, we go beyond
the classic mean-field techniques and apply a refined version
of mean-field approximation:
(i) Using coupling we showed that, if the communication
graph is connected and is either regular or has doubly-stochastic
degree-weighted adjacency matrix, with probability → 1 as
the social group size N → ∞, every individual in the social
group learns the best option.
(ii) If the minimum degree of the graph diverges as N → ∞,
over an arbitrary but given finite time horizon, the sample
paths describing the opinion evolutions of the individuals
are asymptotically independent. In addition, the propor-
tions of the population with different opinions converge to
the unique solution of a system of ODEs. Interestingly, the
obtained system of ODEs are invariant to the structures of
the communication graphs. In the solution of the obtained
ODEs, the proportion of the population holding the correct
opinion converges to 1 exponentially fast in time.

In addition to house-hunting, I have also worked on dis-
tributed task allocation problem in multi-agent systems, where
each agent selects a task in such a way that, collectively,
they achieve a proper global task allocation. Inspired by
ant colonies, we proposed several scalable and efficient al-
gorithms to dynamically allocate the agents as the task de-
mands vary [12].
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