
A I>AR"rI"rIONI~D COMI>U"fATION MACHINE

by

Kenneth Brett Streeter

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL
ENGINEERING AND COMPUTER SCIENCE IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREES OF

BACHELOR OF SCIENCE
and

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 1990

Copyright © Kemleth Brett Streeter, 1990. All rights reserved.

The author hereby grants to MIT pennission to reproduce and to
distribute copies of this thesis in whole or in part.

Signature of Author

Certified by

Certified by

Departtnent of Electrical Engineering and COlnputer Science
August 17, 1990

/ Nancy A. Lynch
Acadelnic Thesis Supervisor

--------,--~~~-------------------------------------
,"_-_ _ .. '_', Paul C. Brown

CompanySUpervis~l:J~nmiI Ele,ctriC;CorpOrate ~search/atKl Development)

Accepted by _ =-____ ___
" L>

Arthur C. Smith
Chainnan, Departtnental Committee on Graduate Students

MASSACHUSOTS INSTITUTE
OF TECHNOLOGY

NOV 27 1990

A PARTITIONED COMPUTATION MACHINE

by

Kenneth Brett Streeter

Submitted to the Department of Electrical Engineering and Computer Science on
August 17, 1990 in partial fulfillment of the requirements for the degrees of

Bachelor of Scienceand Master of Science.

Abstract

In software design and specification, a formal, easy-to-use specification language is
desirable. Formal specification languages and easy-to-use languages already exist, but
none combine these qualities with a visual representation. The Partitioned Computation
Machine (PCM) is intended to serve as such a specification tool. It includes both a fonnal
representation for a visual model extending Harel' s statecharts, and a language which adds
visual state representation and hierarchy to Lynch's I/O Automata. This thesis proposes a
fonnal model for a PCM and explains how the PCM model relates to statecharts and I/O
Automata.

Thesis Supervisor:
Title:
Thesis Supervisor:
Title:

Nancy A. Lynch
Professor of Electrical Engineering and Computer Science
Paul C. Brown
Computer Scientist, General Electric CRD

-3-

Acknowledgements

I would like to express my sincere gratitude to Paul Brown. His patient guidance of

this work from start to fmish has made it possible. I would also like to specially thank Prof.

Nancy Lynch for her advice and supervision.

There are so many people at General Electric Corporate Research and Development

that have helped me in some way during this project that to name each one would be

impossible. I simply extend my gratitude to them all. I feel truly privileged to have worked

with such an exceptional group of people.

I would especially like to thank my wonderful wife, Nancy, for the continual

encouragement thoughout the work leading to the completion of this thesis. I would also

like to thank my son, Benjamin, for providing an outlet for childishness when work reached

feverish proportions, and my parents for the understanding, support, and love that they have

always shown me.

-4-

Table of Contents

Abstract
Acknowledgements
Table of Contents
List of Figures

1. The Motivations for the Partitioned Computational Model
1.1 Introduction
1.2 Motivations for the PCM

2. Background of the PCM
2.1 Building Blocks of the PCM
2.2 The Classical Finite State Machine
2.3 Statecharts
2.4 State Trees
2.5 Input/Output Automata

2.5.1 The I/O automata formal model
2.5.2 Composition of automata

3. The Partitioned Computational Model
3.1 The Simplest Form -- The Finite State Machine
3.2 B asic Notation
3.3 The Inclusion of a State Hierarchy

3.3.1 Transitions from a parent state
3.3.2 Transitions to a parent state
3.3.3 Consistency requirements with parent transitions

3 .4 Variables Associated with States
3.5 Concurrent States in the Hierarchy
3.6 Consistency Requirements with Concurrent Children
3.7 Composition

3.7.1 Additive composition
3.7.2 Multiplicative composition

3.8 Consistency Issues with Simultaneously Generated Events

4. The Formal Partitioned Computational Model
4.1 The Formal Representation of Pictoral Information
4.2 Constraints Imposed on the Model

4.2.1 Constraint #1: to prohibit transitions among concurrent states
4.2.2 Constraint #2: to require a deterministic choice of next state
4.2.3 Constraint #3: to require determinism in variable assignments.
4.2.4 A degenerate PCM

4.3 The Execution of the PCM
4.3.1 Expansion of concurrent cross-product states
4.3.2 Execution semantics
4.3.3 An example specifying a soda machine
4.3.4 Examples of execution of the PCM

4.3.4.1 Execution of a soda tnachine

2

3
4

6

7

7
7

11
11
12
14
16
17
17
18

19
19
20
21
21
22
24
25
27
30
32
33
35
37

40
40
44
45
46
47
49
50
50
51
54
56
56

-5-

4.4 Composition of PCMs 59
4.4.1 Additive composition 59
4.4.2 Example of additive composition to build a simple user interface 62
4.4.3 Multiplicative composition -- multiple control threads 66
4.4.4 Example of multiplicative composition to build a combination clock- 68

odometer
4.4.5 Executions of composed machines 74

4.4.5.1 Claims regarding additive composition executions 74
4.4.5.2 Claims regarding multiplicative composition executions 75

5. Future Work and Conclusions 78
5.1 Future Work 78

5 .1.1 Variable usage 78
5.1.1.1 Languages to describe variables 78

5.1.2 Simultaneous event issues 79
5.1.3 Translation to input/output automata 81

5.1.3.1 The high level translation 81
5.1.3.2 The interaction of the automata 82
5.1.3.3 The definition of the primary automaton 83

5.1.4 Implementation of the PCM 84
5.1.5 Atomic multiple-step transitions 84
5.1.6 Complexity of concurrent machines 85

5.2 Conclusion 85

-6-

List of Figures

Figure 2-1: A State Machine for a Portion of a Text Editor 13
Figure 2-2: C Code for a Portion of a Text Editor 13
Figure 2-3: A Statechart Using a State Hierarchy 14
Figure 2-4: A Statechart Featuring Cross-Product Notation 15
Figure 3-1: The basic notation of a PCM 20
Figure 3-2: Simultaneous output events in a PCM 21
Figure 3-3: Transitions from parents in a PCM hierarchy 22
Figure 3-4: Transitions to a parent state in a PCM hierarchy 23
Figure 3-5: Inconsistencies between parent and child transitions 24
Figure 3-6: A simple decade counter 26
Figure 3-7: An example of PCM concurrent notation 27
Figure 3-8: PCM vs. Statechart's notation extended to include variables 28
Figure 3-9: An example of PCM concurrent notation 29
Figure 3-10: Inconsistencies between concurrent transitions 30
Figure 3-11: Three PCMs to be additively composed as an example 33
Figure 3-12: The additive composition of the three PCMs of Figure 3-11 34
Figure 3-13: Three PCMs to be multiplicatively composed as an example 35
Figure 3-14: The multiplicative composition of the three PCMs of Figure 3-13 36
Figure 3-15: Serialization of simultaneous events could affect future behavior 38
Figure 4-1: Example of an Illegal Transition Between Concurrent States 45
Figure 4-2: Examples of Syntactic Constraint Violations in a PCM 46
Figure 4-3: Examples of Syntactic Constraint Violations in a PCM 47
Figure 4-4: Examples of Conflicting Variable Assignments in a PCM 48
Figure 4-5: Examples of Conflicting Variable Assignments in a PCM 48
Figure 4-6: A Sample Degenerate Partitioned Computation Machine 49
Figure 4-7: The Formal Representation for the One-State PCM of Figure 4-6 50
Figure 4-8: A Soda Machine as a Partitioned Computation Machine 54
Figure 4-9: The Formal Representation for the Soda Machine of Figure 4-8 55
Figure 4-10: Example ofPCM Formal Model for a Mouse Menu (Menu-One) 63
Figure 4-11: Example ofPCM Formal Model for a Mouse Menu (Menu-Two) 64
Figure 4-12: Example of PCM Additive Composition for Window-Menus 65
Figure 4-13: Formal Model for Window-Menus of Figure 4-12. 66
Figure 4-14: Example ofPCM Formal Model for a Clock 69
Figure 4-15: Example of PCM Formal Model for Odometer 70
Figure 4-16: Example ofPCM Formal Model for Visual Display 71
Figure 4-17: Example ofPCM Multiplicative Composition for Clock-Odometer 72
Figure 4-18: Formal Model for Combination Clock-Odometer of Figure 4-17. 73
Figure 5-1: A PCM generating infinite events 80
Figure 5-2: The High Level Model for I/O Automata Emulation of a PCM 82

-7-

Chapter 1

The Motivations for the Partitioned Computational Model

1.1 Introduction

The Partitioned Computational Model (PCM) is a specification tool intended to

pennit description and reasoning about systems which can be characterized by discrete

events. This thesis introduces the model, the reasons for its development and examples of

its use. The text is organized as follows: The remainder of this fIrst chapter presents the

goals the PCM seeks to fulfill. Chapter two discusses the other fonns of specifIcation from

which the PCM has been incrementally developed. Chapter three contains an infonnal

overview of the model, and chapter four presents the model fonnally with examples of

partitioned computation machines. Lastly, the fifth chapter discusses the strengths and

weaknesses of the PCM as well as some possible directions for further work with the

model.

1.2 Motivations for the peM

The Partitioned Computation Model seeks to fulfill a number of goals that were

detennined before the project was commenced. These goals all share a common interest -­

to make a specification language that is usable in real industrial examples.

One of the primary goals of the PCM is to fonn a primarily visual, state-based

specification language similar in appearance to a fmite state machine. These are really two

separate but related goals: a visual language, and a state-based specification. First of all,

the concept of a classical fmite state machine is a common, well-known fonn of behavioral

specification. Its chief advantages are that behavior is fully specified, and the state of the

-8-

machine can be encapsulated visually. The syntax of the language to describe finite state

machines is simple and easy to understand, so a layman can quickly understand the

specification's meaning. The primary advantage of the graphical language for a state

machine is that the structure of the control flow with respect to transitions, loops, and

decision branches is immediately evident. It is not necessary to track through pages of

written code to determine from where a procedure is called or to see where a loop ends.

Simply put, the visual language of the classical state machine makes its control flow easy to

view. The ease of perceiving the control flow in a state machine is a desirable goal in any

specification language. For this reason, the goal of a state-based visual specification is

sought.

Another primary goal of the PCM is that the specification be not just a set of

heuristics or guidelines for forming the program, but rather that the language have a

specific, well-defmed formal semantics. The model should have a formal meaning and a

formal representation. There should be a single formal representation for each possible

diagram, and there should be a manner to formally represent the semantics of the diagram

so that the meaning is entirely preserved in the representation.

A third goal for the PCM is that it be designed in such a manner that incremental

changes to a partially-completed specification are easy to make. The PCM is intended to be

used as a working model for developing a specification. Some formal specification

techniques are excellent for precisely indicating what is desired in a completed design.

However, modifying such a specification during development of the system is often a

difficult task. The PCM is intended to permit small incremental changes to be made easily,

without requiring massive restructuring of the entire specification to make small changes to

the behavior that is being specified.

A fourth goal is that the specification language should preserve the specifier's

problem structure throughout the specification development process. This goal essentially

-9-

means that the fonnal model should not disregard any infonnation provided by the

specifier. For instance, if a designer wishes to indicate that a certain event always be

handled in a specific way, the underlying formal model should represent that condition in

the same manner, without having to separately indicate in each possible state that the

specific event is handled in a specific way. It should be possible to specify behavior upon a

group of states without having to consider such behavior as being a summation of many

individual behaviors. On the other hand, there are occasions when group behavior is not

intended, but is simply a "coincidence" of many individual behaviors. In this instance, the

specification language should not automatically abstract group behavior, but should

preserve the specifier's intent of separate, but coincidentally the same, behaviors.

However, it may be appropriate for an implementation of the partitioned computation

machine to suggest such an abstraction to the user when many states share common

behavior behavior arises in case the system being specified really contains group behavior,

but the specifier hasn't yet realized this.

A fifth goal of the partitioned computation machine model is that it have fully general

computational power. The expressive ability of the model should not be limited to behavior

that can be defmed by only classical finite state machines, context-free grammars, or

recursive functions. Instead, the partitioned computational model should be able to express

any type of behavior that can be implemented by a fully general Turing machine -- that is,

anything that can be computed. In fact, it is possible for the PCM to describe even a larger

class of behaviors. At the same time, however, it is desirable for the partitioned

cOlnputation machine model to permit the behavior to be readily examined to see if it can

be represented solely by a fmite state machine, computational grammar, or augmented

regular expressions so that automated proving techniques could be used upon these aspects

of the model's behavior in such a case.

To permit abstraction and modularity is another goal for the PCM. It is generally

-10-

extrelnely advantageous to reason about the behavior of a system as being a combination of

other types of behavior. Modularity permits the overall behavior to be broken into modules

and to reason about the behavior of each module separately. Abstraction permits one to

determine the behavior of a module and then concern oneself only with its behavior, and

not the internal details that provide that behavior. In addition to increasing the

comprehensibility of a specification or program, the concepts of modularity and abstraction

also permit modules that are generally useful to be iInplemented once and then re-used in

many different applications. For both the iInprovement in ease of understanding and the

possibility of reusing code, modularity and abstraction are desirable goals in the PCM.

Lastly, a final goal for the PCM is that the specification model should readily permit

siInulation or execution. It would be highly desirable for a siInulator of the specified

behavior to be built directly from the PCM model. If a system were to be fully specified by

a PCM, the entire system could be siInulated to test the behavioral specification to ensure

that it is the desired specification. Then, as the system is iInplemented in a logical, modular

fashion within the overall specification, each iInplemented model could replace the

siInulated specification, leaving the remainder of the system with just the siInulation. In

this manner, each iInplementation piece can be tested easily in the entire system, permitting

both isolation and integration testing to occur naturally.

-11-

Chapter 2

Background of the PCM

2.1 Building Blocks of the PCM

The PCM is built primarily from ideas of four existing specification techniques. The

first of these specification languages is that used to describe a classical finite state machine,

a mechanism that is familiar to all computer scientists, making it an excellent starting point

for a new specification technique. The PCM also uses Harel' s statecharts [Harel 87] for

some aspects of the visual syntax and some of the features relating to the specification of

transitions. The PCM draws upon Rumbaugh's state trees [Rumbaugh 88] for the notion of

formal inheritance within a hierarchical tree-like structure of states. Lastly, the PCM relies

upon Lynch's Input/Output automata [Lynch 88] as a basis for the formal representation for

the visual language. Additionally, Lynch's model has the full generality that the PCM

desires; the fact that I/O automata can express the full generality of the PCM permits the

same behavior to be expressed by each. Furthermore, since they can express the same

behavior and have similar formal models, the PCM can theoretically be translated into an

equivalent I/O automaton which can then be used for theorem-proving -- such a process

essentially utilizes the PCM as a visual front-end for the I/O automata.

This section will examine, in greater detail, the aspects of the PCM that have directly

evolved from each of these other specification models.

-12-

2.2 The Classical Finite State Machine

There are two primary ideas in the Partitioned Computation Machine that have

evolved from ideas in the classical finite state machine. The frrst of these ideas is the

notion of describing the behavior of the system as separate modes of behavior that can

occur, depending on the current "state" of the system. The second is the concept of

representing the states, input events, and output actions in a visual format.

The idea of describing the behavior of a system by frrst specifying the behavior in a

nUlnber of modes and then specifying the transition behavior between the possible modes of

the system is a very important concept in the state machine. The primary importance of this

is that the only thing that matters to determine current or future behavior is knowing the

current state. The specific sequence of events that have led to the current state is not

important in determining behavior. This idea permits the entire concept of partitioning the

behavioral specification of a system into equivalence classes (states), where each class

shares common behavior.

The second idea of describing the state, input events, and output actions visually is

also important. The primary advantage of a visual language is that the control flow of the

system is more readily evident than in most textual languages. In a typical computer

language, state changes are made haphazardly throughout the code, without a special way

to indicate when a significant change in the behavior of the system will result. In a state

machine, however, transitions that make significant changes in behavior are easily

recognized. As an example of this, consider Figures 2-1 and 2-2.

The state machine in the figure and in the code both represent similar behavior for a

simple text editor with the ability to handle text characters and two special function keys,

escape and insert. The text characters are added to the document by the Process_Keypress

procedure. The escape key is used to exit the program, and the insert key is used to toggle

-13-

KeyPress / Process_Keypress

Figure 2-1: A State Machine for a Portion of a Text Editor

Get_Input (Standard_Input, Input_Character);

While (Input Character != Escape) Do
{If (Insert Mode) then

{If (Input Character == Insert) then
{ -

Insert Mode := False;
Replace_Mode := True;

else Process Keypress;}
elseIf (Replace Mode) then

} ;

{If (Input Character == Insert) then
{ -

Insert Mode := True;
Replac;_Mode := False;

else Process_Keypress;}

Exit_Routine;

Figure 2-2: C Code for a Portion of a Text Editor

between insert and replace modes. Although both specifications give similar behavior, in

the state machine it is readily apparent what input events cause the transition to the new

state (and new resultant behavior.) The equivalent C code, however does not make this

obvious. The partitioned computation machine is built under the presumption that the input

events that cause primary changes in behavior should be as evident from the PCM graphic

specification as they are in the state machine specification of this example.

-14-

2.3 Statecharts

Statecharts are an extension of standard state-transition diagrams but are still

isomorphic to finite state machines. [Harel 88] The primary advantage of statecharts is that

they give notational shorthands for expressing traditional state machines. The innovative

forms of shorthand employed in statecharts include a hierarchical depth structure and a

cross-product notation to address the exponential growth in the number of states for linear

systeln growth. (The exponential growth problem comes from needing a separate state for

each possible combination of conditions represented. For example, if there are n conditions

for which state information needs to be maintained, and each has a binary result, then there

will be 2n states needed. [Davis 88, p. 1102]) Additionally, statecharts begin exploration of

state-based techniques for modeling a concurrent system with the cross-product notation.

These primary statechart extensions to the visual language used for state machine

description are also adopted in the partitioned computation machine.

L

Figure 2-3: A Statechart Using a State Hierarchy

The ftrst significant feature of statecharts that is utilized in the partitioned

computation machine is the notation for representing a state hierarchy. The statechart

-15-

represents the hierarchy of states by graphically placing substates physically within

superstates as is shown in Figure 2-3. Transitions may originate or fmish at either a

substate or a superstate. A transition to a superstate has the identical semantics as a

transition to the "default" substate of that superstate. A transition originating from a

superstate has exactly the same semantics as arcs originating from each and every one of

the substates of that superstate. In this way, a single arc drawn from a superstate

demonstrates that the behavior indicated on that arc is commonly shared among all of its

substates. The ability to represent common behavior by parent states reduces the number of

transitions which need to be drawn in large specifications. For example, in Figure 2-3, if

transitions from parent states were not permitted, each of the states V, W, and X would have

transitions going to state R for input a. Also, states R and S would both need transitions

going to state W for input a.

Figure 2-4: A Statechart Featuring Cross-Product Notation

The second major feature of statecharts is the manner in which a large number of

-16-

states can be represented with a cross-product notation. Figure 2-4 gives an example of a

state chart that has concurrently operating substates. The two halves of the statechart

divided by the dotted line indicate concurrently-operating portions of the statechart. The

current state within the superstate is the cross-product of the states of each concurrent

substate. Transitions in response to an event occur simultaneously in all concurrent

substates. This type of notation helps the user understand a large system more easily as the

number of states which are represented in the visual language is much less then the number

of states into which the cross-product expands. The complexity in the number of states is

still present in the underlying model, but is hidden from the user.

2.4 State Trees

Rumbaugh's state trees are a state-based specification tool intended for the design

and specification of user interfaces. The model presents a number of innovations, including

entry and exit routines with states and inheritance of behavior from parent states to their

descendants. Of these innovations, the only one which is used in the partitioned

computation model is the ability to inherit behavior from parent states.

Inheritance of behavior from a parent state is permitted in Harers statecharts,

however in a statechart, such inheritance requires consistency between transitions defmed

upon parents and their children. State trees, however, permit the children to take exception

to the behavior which is defined at the level of the parents. In this way, the parent provides

a default behavior that the child may use without change, or modify to suit its own needs.

The behavior present at the level of the parent may be viewed in one of two ways: as

a requirement for the child to have a certain form of behavior, or as a default behavior that

the child may follow or may override. Statecharts use the former view, while state trees

view the behavior in the latter manner. Both languages can describe the same behavior, but

the abstraction methods differ. In the partitioned computational model, the type of

-17-

inheritance defined in the statechart has been used because it provides a simpler model

since child and parent behavior is required to be consistent.

2.5 Input/()utput Automata

The Input/Output Automaton is a modeling tool intended for describing and

reasoning about concurrent and distributed discrete event systems. The notable strengths of

the I/O automaton are that the model is defmed formally, that the model is executable and

simulable (largely due to its formality), and that the model readily lends itself to proving

fairness and liveness properties for a system. In addition, the model of I/O Automata

permits distinct I/O Automata to be composed into a single automaton to express

concurrent interaction between the separate component automata. All of these ideas are

used in the partitioned computational model.

2.5.1 The I/() automata formal model

The fonnal model for I/O automata gives the specification technique two significant

advantages. First, the precision of meaning which is provided by the formal model permits

the execution of I/O Automata by a computer simulator. In this way, the behavior that is

specified by the I/O Automata can be tested by running a computer simulation. Such a

simulation technique provides an important method for checking that a specification may

provide the desired results -- the results can be demonstrated directly.

A second advantage of the I/O automata formal model is that it has been built with

the intention of carrying out algorithm correctness proofs. In fact, one of the primary goals

for the construction of the I/O automata is to produce correctness proofs for large, complex

concurrent algorithms. Without a formal model upon which to build such proofs, creating

valid proofs would be nearly impossible. An added bonus for using the formal model to

prove properties about the specified behavior is that lnany of the proofs could be machine­

checked when automatic proof technology develops.

-18-

2.5.2 Composition of automata

Another special feature of the I/O automata is that many automata can be composed

to yield other I/O automata. This composition permits one to describe a algorithm or

behavioral specification in a modular manner. The process of composition maintains some

properties of component behavior for the result of the composition. The modularity permits

complex behavior to be represented easily as well as permitting the user to reason about the

behavior of the whole as the sum of its parts, instead of attempting to understand an entire

cOlnplex system at once.

One shortcoming of the I/O automata composition, however, is that the formal model

does not maintain the modularity of the component specifications in its formal model. The

composition process for I/O automata compresses a number of automata into a single one,

but does not maintain the distinction between the component automata within the formal

model. The only difficulty with this is that the specifier's view of the composition is

organized around the individual components, but the structure of the components

disappears in the composition process. This restructuring is acceptable for the primary

applications of I/O Automata, proving algorithm correctness, since the I/O automata

manner of composition guarantees that some types of properties proven for the component

parts of a composition are still guaranteed for the whole. However, for the application

domain of the partitioned computation machine, program specification, preservation of the

specifier's intent at each level of specification is important.

-19-

Chapter 3

The Partitioned Computational Model

This chapter presents the partitioned computational model informally. First the basic

building block, the finite state machine, is presented. Then, the expansions to the basic

state machine, namely, a state hierarchy, variables associated with states, and the ability to

represent concurrent substates are presented. Finally, the concepts of additive and

multiplicative composition of partitioned computation machines are discussed.

3.1 The Simplest Form -- The Finite State Machine

The partitioned computation machine has evolved by adding a number of extensions

to the basic finite state machine. In its simplest form, a partitioned computation machine

has no more complexity than a simple state machine. The classical finite state machine has

a set of states and transitions between states as its primary elements. Each transition

between states is enabled when the event associated with the transition occurs. The

classical FSM model requires that every input must pennit some transition, even if it is only

a self-transition back to the current state. Such a simple state machine is considered to be a

partitioned computation machine, albeit a very simple one.

The Mealy modification to the language for the state machine is one of the oldest

state machine modifications. It augments the state machine to generate output events by

placing output events on the transition arcs between states. The Mealy model pennits the

state machine to respond to input by performing a transition to a new state, and also to

produce output in response to input. As an example of a Mealy fmite state machine, see

Figure 2-1 on page 13. The extensions made by the Mealy FSM are the first extensions that

make the state machine a useful computer specification tool, as it can describe the input /

-20-

output behavior of a computer system or any other type of machine. This simple model is

sufficient to describe many types of behavior; in fact, it can describe any type of behavior

by a "real" computer, since all computers have, in reality, a fmite number of states.

However, such a description is unwieldy for specifying large systems.

3.2 Basic Notation

The basic notation for the partitioned computation machine gives a unique name to

every state. The pictoral representation for a state consists of a rectangle with rounded

corners with a "flag" on one of the upper corners that indicates the name of the state. (See

Figure 3-1.) In the figure are two states, state A and state B. Transitions from one state to

another state are indicated with an arrow. All transitions are enabled by an input event; the

input event enabling a transition is indicated next to the arrow for the transition in the

pictoral notation. Output events, if any, are indicated next to the arc, preceded by a slash

(/). In the figure are transitions from A to A for input m and from B to A for input m,

producing an output of n.

Figure 3-1: The basic notation of a PCM

The partitioned computation machine permits a single arc to contain any number of

output events. All of the output events on a single arc are considered to occur

simultaneously. As an example of this, see Figure 3-2. In the example there is a transition

from state D to state C for input g that produces outputs of x and w. The PCM will produce

output events for x and w in some order, determined non-deterministically. The ordering of

these events affects the externally observable behavior of the machine. Furthermore, if

these outputs are also inputs to the partitioned computation machine, the order in which

-21-

they are generated could affect the future behavior of the machine. The implications of the

different possible orderings will be discussed further in section 3.8 on page 37.

Figure 3-2: Simultaneous output events in a PCM

3.3 The Inclusion of a State Hierarchy

The next extension to the visual language for the Mealy state machine that is utilized

in the partitioned computation machine is Harel's extension of adding a state hierarchy to

the machine. The basic notation for representing a hierarchy of states in the partitioned

computation machine is adopted from Harel's notation for statecharts. [Harel 87] In this

extension, a tree hierarchy of states may be built, with each state, excepting a root state,

being given a unique parent. The tree of states is represented by nesting contours

representing the states. The contours for child states are drawn within the contour of their

parent as in Figure 3-3. Parent states differ from leaf states in one manner: they may not be

considered the current state of the machine. The current state of the machine must always

be a leaf state of the tree. However, transitions may be defmed as beginning or ending at a

parent state.

3.3.1 Transitions from a parent state

The semantics of transition arcs from a parent state is that an arc emanating from a

parent is exactly the same as if the arc were a set of arcs emanating directly from each of

the child states of the parent. For an example of this, let us consider a simple hierarchical

PCM with three child states, A, B, and C, and one parent state, Y. (See Figure 3-3a.) In this

simple PCM, there is a transition for input x that starts from parent Y and ends at child C.

-22-

a) b)

Figure 3-3: Transitions from parents in a PCM hierarchy

The transition from the parent Y is considered to have exactly the same meaning as three

separate transition arcs for input x -- one that traverses from A to C, one that traverses from

B to C, and one that traverses from C to C. (See Figure 3-3b.) In this manner, the arc

defined at parent Y expresses the desired behavior that the input x always results in a

transition to state C. Such notation permits behavior that is common to a number of states

to be represented at a single parent state. Such an abstraction makes the behavior of the

system easier to reason about, and also reduces the complexity of the pictoral representation

of the machine.

3.3.2 Transitions to a parent state

The other form of transition involving a parent state is a transition to a parent state.

Each parent state has a unique child state which is considered to be the default state for that

parent. A parent's default state is indicated in the PCM notation by a transition emanating

from a small black dot within the parent state. A transition arc which ends at a parent state

is interpreted as being a transition to the default child of the parent state. The semantics

-23-

z

Figure 3-4: Transitions to a parent state in a PCM hierarchy

provided by this notation is that a transition which has a parent state as its destination is

exactly the same as a transition directly to the default state of the parent. The reason for

permitting transitions to a parent state when they are exactly the same as transitions to the

default child of the parent state is that such a transition permits the parent state to

encapsulate the default state -- this allows the state from which the transition emanates to

abstract away from the internal state of the transition destination. As an example of such a

transition, see Figure 3-4. This figure is an extension of Figure 3-3a with the additions of

another level in the hierarchy and a transition from state D to parent state Y for input w.

The diagram also indicates that state B is the default child of state Y. In this diagram, the

transition from D to Y for input w gives the same behavior as a direct transition from D to B

for input w. The distinction, however, is important to maintain in case future changes are

made to the diagram.

Default states of a parent are also used to determine the starting state of the

partitioned computation machine. When a machine first begins execution, it begins as if

-24-

there were a transition to the root state. This root state would provide a default state which

would actually be the starting state. (Of course, the default state of the root state could

itself be a parent state with a default state, and etc.)

3.3.3 Consistency requirements with parent transitions

Figure 3-5: Inconsistencies between parent and child transitions

The ability to define transitions at the level of parent states as well as at the level of

the child states pennits inconsistencies to arise if transitions are defined at both levels for

the same inputs. Figure 3-5 shows a case where the transition a is defmed both at the child

state X and the parent state W. The two transitions for a from X and W give different

destination states. The primitive set elements of the PCM fonnal model are capable of

representing such an inconsistency (see section 4.1); however, in order to provide

detenninistic behavior, the PCM imposes constraints to prohibit these inconsistencies.

(Ensuring consistency for transitions defmed for the Sanle inputs is discussed further in

section 4.2. If the transitions have the same destinations, having the redundant definition of

the transition would be acceptable. An example of such a redundant defmition exists with

the transitions labeled c in the same figure.

-25-

In an implementation of the PCM, inconsistencies of this type can be easily detected

by examining the ancestors and descendants of the state for other transitions defined for the

same input; an error message indicating that such an inconsistency is present could be

provided to the user. (See section 4.2 for a constraint forbidding this type of inconsistency.)

Some specification languages permit such inconsistencies, either by non-deterministically

choosing which of the transitions to consider [Lynch 88], or by having some deterministic

technique for determining which transition overrides the other [Rumbaugh 88]. In the

partitioned computation machine, we choose to avoid such inconsistencies, however, to

permit deterministic behavior and also to view behavior defined at the level of a parent as a

required behavior for all children, as discussed in section 2.4, beginning on page 16.

3.4 Variables Associated with States

The next extension to the hierarchical partitioned computation machine is to associate

variables with the states. This extension is similar to an extension for parameterizing states

in statecharts suggested by Hare!. [Harel 87] However, the partitioned computation

machine includes this feature as part of the language and formal model, using an entirely

different syntax than the one Harel suggests.

Each state can have variables associated with it. These variables maintain state

information that the designer has chosen not to represent as a grouping of separate states.

The use of variables associated with states can greatly simplify the state diagram if most of

the variable values result in the same control flow characteristics. Each variable has a

scope limiting the visibility of the variable to the state to which it is associated and any

descendants of that state. In the pictorial representation for partitioned computation

machines, variables are listed in the state below the flag giving the name for the state, a

range or list of values which each variable can assume, and an initial value for the variable.

Variables that have not yet been explicitly assigned will have their initial value. Variables

-26-

are accessed and modified by the transition arcs. In addition to responding to input events

and possibly generating output events, each transition arc can have a predicate clause which

checks the value of any visible variables, enabling the transition only when the predicate is

true. Each arc can also have variable assignments that are performed when the transition is

followed during execution. The only requirements upon transition arcs is that they have a

source state, an input event, and a destination state.

I decade-counter

Current-count:O ..

Figure 3-6: A simple decade counter

Figure 3-6 provides an example where a simple hierarchical partitioned computation

machine represents a counter which repeatedly increments the value of the count variable

upon each occurrence of the increment input event. The counter commences at the initial

value of zero, and whenever the count increments from a value of nine, a carry-out output

event is generated and the counter restarts at the initial value of zero. This example

demonstrates how the use of variables can greatly simplify the state diagram. In this case,

although the variable count can take on ten different values, the only criterion affecting the

control flow of the partitoned computation machine is whether or not the variable has a

-27-

value of exactly nine. If this condensed fonn of variable representation were not available,

it would be necessary to pictorally depict ten different states for each of the ten possible

values of the counter. The many states required to represent variable values would serve to

clutter the diagram and obscure the control flow which the partitioned computation machine

seeks to make evident; the condensed representation of variables, however, permits the

specification to depict the control-affecting aspects of the variable pictorally without

necessitating a distinct pictoral state for each possible value.

3.5 Concurrent States in the Hierarchy

.......
• A • .i.···· I ••••••• · . · . · . · . · . · . · . · . · . · . ~ . . ." •.....•..••••

:W. B •• : . .•..............
· . · . · . · . · . . · . · . :: . •.•......•.•

• c • .i 1 •• ••••• · . · . · . · . · . · . · . · . · . · . ·

a) b)

Figure 3-7: An example of PCM concurrent notation

Another significant feature in the partitioned computation machine is the ability to

express the concurrent operation of states in a manner similar to Harel' s cross-product

notation. The partitioned computation machine permits the children of a parent state to be

operating concurrently. The notation for describing concurrency is to outline the

concurrent child states with dashed lines as in Figure 3-7 a instead of enclosing them in the

-28-

nonnal solid lines as would be the case for the non-concurrent children in Figure 3-7b.

This notation is used instead of that of statecharts to pennit the parent and each of the

concurrent children to have local variables without requiring both a dashed line separating

children and a box around each child as in figure 3-8. [Harel87]

.......
: A :

: B :

. 1.······
! a-var: 0 .~

.1.·····
! b-var: 0 .~

· . . · · · · · · . · . · . · . · . · . · . ·
· . ·

.......
• c • .i 1 • ••••••

! c-var: 0 •• · . · . · . · . · . · . · . · . ~ . . ." •.........•••

PCM notation Extended Statechart notation

Figure 3-8: PCM vs. Statechart's notation extended to include variables

In a state with concurrent children, the current state of the system actually consists of

a set of states that are active concurrently. In figure 3-9, the current state would be

considered to be a set of states such as {A, M, X}, or {B, N, X}. The semantics of transition

behavior when the current state is a tuple of states is that an arc from each element of the

tuple may be enabled. Transitions in all concurrent states for the same input events appear

to occur simultaneously. The simultaneous execution of such transitions will lead from one

tuple of states to another tuple of states. As an example of this behavior, consider a case

where the current state of Figure 3-9 is {A, M, X}. When an input event / is received, the

next state will be {B, M, Y} because the transitions from A to B, M to M, and X to Y will all

occur simultaneously when input event/is received.

One advantage of the concurrent notation is that many fewer states need to be

concurrent
example

r;hlld::i"~

. ;. ' .. ~
: ~

. . · . · . ·
I················,
: child-3 : . .

-29-

..............
: child-2 : ,. : .

· · · · · · · · · · · · . · . · . . :•........

~ ,•.....•......................•••............
• y •• : .

! : · . · . · . · . · . · . · . · . · . · . · . · . · . · ~ •••..•.•..•...•..............•....•••..••.....•...•...•

Figure 3-9: An example of PCM concurrent notation

depicted in order to describe the actual control flow than would be depicted in a fully-

expanded notation. In addition, the concurrency aspect of the notation pennits the designer

to use the natural idea of parallel execution to describe the system. This is especially useful

if a system has multiple modes or values that could be either on or off simultaneously.

Consider an editor which has a insert mode, a caps-lock mode, a control-character mode,

and an automatic justification mode. Depending on whether or not these modes are active,

different behavior will be provided by the system. The cross-product notation pennits the

user to think about the modes as being separate, but active concurrently. This is an

advantage in reasoning about the systems, and in preventing the enumeration of all sixteen

possible combinations of the modes.

-30-

3.6 Consistency Requirements with Concurrent Children

......... .
: s : . ~ ..•.....•.•......•.•...•.••••

~. ~ : . . .

............
: T :
: : . · ·

· · · · · · . · . · . ·

Figure 3-10: Inconsistencies between concurrent transitions

The ability to define transitions for the same inputs on each of the concurrent children

in a partitioned compuation machine permits inconsistencies to arise if such transitions have

different destination states or modify the same variables. Figure 3-10 shows a case where

the transition a is defined on two concurrent states, W and Y. These two transitions are

consistent because they both give transitions that maintain the concurrency. Assuming the

current state is (W, Y) and a is recieved as input, the next state will be (X, 2). However, the

transition for b from the state W is disallowed as it violates the concurrency of the states S

-31-

and T, by starting and finishing in states which are concurrent. Such transitions are

prohibited in the PCM. As another example of an inconsistent transition, the two

transitions for c from X and Z conflict because the transition from X indicates that the

concurrent states should be exited, with the new state being simply Q, while the transition

from Z would maintain the concurrent pairings with the next state being (*, Y). As with

inconsistencies with parent and child states mentioned in section 3.3.3 on page 24, the sets

used in the formal model for the PCM are capable of representing such an inconsistency,

but constraints are imposed on the model to forbid this case.

An implementation for the PCM will prohibit the existence of the inconsistencies

outline above. A more subtle inconsistency exists in the same figure where the transitions

from a current state of (X, Z) for input d give conflicting variable assignments for the index

variable. One way to require this form of consistency is to prohibit arcs which could be

simultaneously enabled from making assignments that reference the same variable. The

more general problem of ensuring that multiple assignments resolve to the same value

could be very difficult. The possibility of including such a consistency check is discussed

in section 5.1.1.1. None of these inconsistencies are allowed in a well-formed partitioned

computation machine. In an implementation of the PCM, all of these inconsistencies could

be detected by examining the other concurrent states for conflicting transitions that are

simultaneously enabled; an error message indicating that such an inconsistency is present

could be provided to the user. (See section 4.2 for a constraint forbidding this type of

inconsistency.) As with inconsistencies between parents and children, the partitioned

computation machine chooses to prohibit such potential problems and require deterministic

behavior.

-32-

3.7 Composition

A primary strength of the partitioned computation machine model is the ability to

combine several partitioned computation machines into a single new machine. The

resulting machine permits the behavior of the composition to be reasoned about as a

combination of separate parts instead of requiring the entire machine to be considered as a

whole. Additionally, composition permits general-purpose PCMs to be developed for use

as building blocks for the construction of other PCMs. For example, a specification for

data input from a keyboard device could be developed once, to be used by any application

which needed to specify behavior for data input.

The partitioned computation machine permits two types of composition, additive

composition and multiplicative composition. Additive composition takes two or more

partitioned computation machines and produces a new PCM by giving all of the

components a common parent. This form of composition permits the behavior of the

resultant machine to take on the behavior of any of the composed elements one at a time.

Multiplicative composition produces a new PCM from two or more PCMs by making each

component a concurrent child of a common parent. The essential difference between the

two composition techniques is in the number of control threads maintained in the

composition. Additive composition keeps one control thread, permitting transitions from

each component machine to the others, but permitting only one component to be active at

any time. Multiplicative composition, however, lets each component child operate

concurrently, permitting multiple control threads. This corresponds to grouping the

component PCMs as concurrent children of a common parent.

-33-

3.7.1 Additive composition

Additive composition is a function that accepts some number of partitioned

computation machines and produces a new PCM from them. The resultant PCM consists of

a parent state with each of the given machines as a child state. In addition to requiring

some number of PCMs as arguments, the additive composition function also requires a

name for the new parent state and an indication as to which of the argument PCMs will be

the default child for the composition. Furthermore, the composition function can accept

optional arguments which associate variables with the new parent state, new input events,

new output events, and new transitions describing how the current state can change from

one of the children to another. The only restrictions upon the composition is that all the

new events are disjoint from ones already defmed in the components, and that the names of

states and variables are unique across all the components. Further constraints can be

Figure 3-11: Three PCMs to be additively composed as an example

-34-

imposed to prohibit the possibility of inconsistencies arising between child and parent

transitions as discussed in section 3.3.3 on page 24. These further constraints are also

discussed in section 4.2.

As an example of composition, consider a composition of the three partitioned

computation machines shown in Figure 3-11. These three machines will be given as

arguments to the additive composition function, along with Additive-Composition-Example

as the name for the new parent state. Also, PCM A is chosen to be the default child for the

composition. No new variables are indicated in this composition, but new transitions are

given for input h from A to B, from B to C, and from C to A. The resultant PCM from this

composition is shown in Figure 3-12.

additive
composition

example

Figure 3-12: The additive composition of the three PCMs of Figure 3-11

-35-

3.7.2 Multiplicative composition

Multiplicative composition is a function that accepts some number of partitioned

computation machines and produces a new machine from them. The resultant PCM

consists of a parent state with each of the given PCMs as a concurrent child state. In

addition to requiring some number of PCMs as arguments, the multiplicative composition

function also requires a name for the new parent state. Furthermore, the composition

function can accept optional arguments which associate variables with the new parent state,

new input events, new output events, and new transitions that handle behavior at level of

the new parent. The only required restriction upon the composition is that all the variables,

and statenames for the components and new definitions be unique. As with additive

composition, additional constraints may be placed on the arguments of the multiplicative

Figure 3-13: Three PCMs to be multiplicatively composed as an example

-36-

composition to prevent inconsistent transition behavior both between a parent and children

and between concurrent childen. These constraints are discussed in section 4.2. Another

potential problem with multiplicative composition is that the composition may produce

simultaneous outputs for some inputs where the original components do not. The

consistency problem which may result from such simultaneous outputs is discussed in

section 3.8 on page 37. Resolution of this consistency problem is left as a topic for future

work in section 5.1.2.

As an example of composition, consider a composition of the three partitioned

multiplicative
composition

example

integer

....••....••
: A : : · . · .

· · . · .
~ :•..••..............

:
: c : . . .: · . : ~

: : · . : : · . · . · · . · . · . · . : : · . ·

j / k h / 1

.............
: B : .:.

~. .~ . . · . · . · . · . ·

· · · · · · · · · · · · · · . · . : :

Figure 3-14: The multiplicative composition of the three PCMs of Figure 3-13

-37-

computation machines shown in Figure 3-13. These three machines will be given as

arguments to the multiplicative composition function, along with

Multiplicative-Composition-Example as the name for the new parent state. Also, a new

variable, comp-var, which can contain any integer value, is added to the parent state. New

transitions are also given to the composition function indicating transitions just on the

parent state for input j producing k as an output, and for input h producing I as an output.

The resultant PCM from this composition is shown in Figure 3-14.

3.8 Consistency Issues with Simultaneously Generated Events

The partitioned computation machine generates simultaneous events in a number of

cases, as has been pointed out in sections 3.2 and 3.7.2. If a partitioned computation

machine is responding to simultaneous events, however, the events are considered in some

serial order, chosen non-deterministically. It is possible that the chosen order of

serialization could affect future behavior of the machine.

To demonstrate this point, consider the example PCM in Figure 3-15. Assuming that

the current state is state A, and the transition x is received, what would be the sequence of

states followed? Both possible input serializations of y and z generated by the transition

from A to B for input x must be considered. If the non-deterministic serialization is the

ordering (y, z), then the transition from B to A will be taken for input y and then the

transition from A to D will be taken for input z, resulting in D being the current state after

the transitions are considered.

Considering the other case where the input serialization in this example is the

ordering (z, y), the transitions from B to C for input z will be taken, and then the transition

from C to C will be followed for input y, resulting in C being the current state after the

transitions are considered. In this case, the external input of x results in two different states

for the partitioned computation machine after both possible input orderings of the resultant

simultaneous
consistency
example

-38-

Figure 3-15: Serialization of simultaneous events could affect future behavior

events y and z are considered. A discrepancy such as this could lead to non-detenninistic

results for a fixed simultaneous input, something which would be highly undesirable in an

environment requiring detenninistic results. The non-detenninistic ordering of

simultaneous events does not always result in non-detenninistic results, however. Consider

the situation if the current state is B when the external input x is received. In such a case,

state D will be reached after y and z are handled, regardless of the chosen order of

serialization of the events. This second case would pose no problems for a detenninistic

system, provided that the ordering of y and z is insignificant outside the machine. However,

if this machine were to be multiplicatively composed with another machine which used y

and z as inputs, the other machine may provide inconsistent behavior for different orderings

of the y and z events.

The fundamental question regarding the possibility of inconsistent behavior resulting

from the generation of simultaneous events concerns the restrictions, if any, that should be

placed on the partitioned computation machine to guarantee consistency. Preventing the

model from generating simultaneous events would significantly decrease the usefulness of

-39-

multiplicative composition in the model, as machines which produced output depending on

the same inputs would require the user to serialize all events, even if no inconsistency were

to result. The proposed solution in the partitioned computation machine, however, is to

permit the model to represent the fact that the possibility for inconsistency is present so that

an implementation of the partitioned computation machine could warn the user of the

potential problem. The user could then ignore the warning if consistency is unnecessary for

his application, or take steps to correct the inconsistency. An implementation could search

the partitioned computation machine to check if all possible orderings of simultaneously

generated events result in the same state of the machine and perform the same operations on

all variables. Such a search could consider only the handling of the initially generated

simultaneous events, or could consider the effects of events generated in response to the

initial events before requiring a consistent state for all possible serializations of the

simultaneous events. A search of this form is made more difficult where predicates for

variables exist. Different levels of consistency could be determined depending on the

degree of consistency required by the user; this issue is discussed further in section 5.1.2 as

a topic for future work.

-40-

Chapter 4

The Formal Partitioned Computational Model

The partitioned computational machine's most important quality is the fact that it is

supported by a fonnal model. The visual representation has been designed with the goal of

developing a corresponding fonnal model that provides a meaning for every visual

construct. The fonnal representation of the PCM describes the structure of the state

hierarchy and associated variables, groups the partitioned computation machine's events

into input and output events, and defines the execution semantics for the partitioned

computation machine. The first section of this chapter describes the fonnal representation

of the pictoral information contained in the PCM diagram. The second section places

constraints on the model to enforce consistency; the third section formally describes the

execution semantics of the machine, and the fourth section provides the fonnal descriptions

of composition.

4.1 The Formal Representation of Pictoral Information

The fonnal model for the partitioned computation machine's pictoral information

consists of a collection of sets and mappings. Each set or mapping represents a portion of

the infonnation provided by a PCM diagram. The fonnal representation must maintain

information regarding the state hierarchy, the input and output events, the usage of

variables, and the transitions indicated in the diagram.

The fIrst four elements in the formal model serve to encapsulate the hierarchy of

states. The fifth and sixth elements group the possible events of the PCM as input and

output events. Elements seven through nine represent the variables which are associated

with states. The tenth and fmal element of the formal model describes the arcs that are

present in the PCM diagram.

-41-

The representation of the hierarchy of states consists of sets and mappings which

signify the states in the hierarchy, and the parent relationships among them. The events

recognized by the PCM are simply grouped into events that can be used as input or as

output. The usage of variables is slightly more complex, however. The model assumes that

a language exists to describe the type, conditional predicate, and variable assignment of

variables, yet does not restrict the language used for this description. To avoid restricting

the PCM's expressive capabilities by a specific language, the general concepts of values,

variable names, types (where a type is a set of values), conditionals, and variable

assignments are used. For a partitioned computation machine, X, the following would be

defined:

• V(X) : the set of variables used by the PCM X,

• Val (X) : the set of possible values for variables,

• Type(X) : 2Val(X)(the power set ofVal(X»,

• Env(X) : V(X) ~ Val(X) ,

• Pred(X) : 2Env(X) (the power set of Env(X»),

• VAsg(X): Env(X) ~ Env(X).

The above definitions warrant some additional explanation. Each element of

Type(X) is a valid type for a variable. In this context, a type is simply a subset of the values

in Val (X) which a particular variable can assume. An element of Env(X) is an

environment, which maps each of the variables of the PCM into a value. An element of

Pred(X) is referred to as a predicate and consists of a set of environments. An environment

that is an element of a predicate is said to satisfy the predicate. This set of environments

contains all environments that satisfy the predicate. Finally, an element of V Asg(X) is a

variable assignment which produces a new environment, given an initial environment.

Conceptually, a variable assigrunent assigns new values to variables.

Also, to permit the usage of these sets, an additional function, Variables(asg) where

-42-

asg E V Asg(X), is defmed as the set of variables in asg which either have a different new

value assigned to them, or can affect the new values assigned to other variables. (If asg

were a set of assignment statements in a language, Variables(asg) would be the set of

variables referenced on either the right- or left-hand-sides of the equation.) Finally, for two

predicates to be Overlapping(pred1, pred2) means that [pred1 n pred2 *- 0]. To state this

simply, two predicates are overlapping if there are any environments for which they are

both satisfied.

The specific use of these sets and mappings for variable usage is defmed as part of

the PCM. The sets and mappings make the formal model more complex, but permit any

language to be used to describe the use of variables. In the examples presented in this

document, simple C-like syntax has been used for variable access and assignments,

however, the model does not require such a syntax. Definitions of specific languages for

variable manipulation and issues accompanied with their use are left as topics for future

work as discussed in section 5 .1.

Once the state hierarchy, events, and variable usage are defined, the only remaining

element of the formal model is a transition relation which contains the information present

on the transition arcs of the pictoral diagram.

The formal model for a partitioned computation machine X consists of the ten

following elements (continued onto the next page):

1. A set of states, S(X), with the distinguished root element, so(X) E S(X)

2. A parent mapping, P(X) = S(X) - {so(X)} ~ S(X) which configures the set
of states into a tree, with sO(X) as the root.

Define the set of leaf states, LS(X), the elements of S(X) that have no children
as indicated by P(X).

Define the set of internal states, IS(X), the elements of S(X) with both parents
and children as indicated by P(X).

Define the set of child states, CS(X) = LS(X) u IS(X)

Defme the set of parent states, PS(X) = IS(X) u {so(X)}

-43-

3. A partition of PS(X) into AP(X) and MP(X), the parent states with additively
composed and multiplicatively composed children, respectively.

4. A default-child relation, DC(X) c PS(X) x CS(X), relating each additive
parent state with one of its children and each multiplicative state to all of its
children. (Each default child state must be one of the parent's children;
formally, 'V (p, c) E DC(X), (c, p) E P(X).)

Define the set of default leaf states, DLS(X), the elements of LS(X) that are
default children of some state as indicated by DC(X).

Derme Default-Leaves-of-Subtree(s) as the elements of DLS(X) that are
descendants of the state s E S(X) including s if s E S(X).

5. A set of input events: IE(X)

6. A set of output events: OE(X)

7. A set of variables: V(X)

8. A variable-state mapping, VS(X): V(X) ~ S(X) (This indicates the state with
which the variable is associated.)

9. A variable-type mapping, VT(X): V(X) ~ Type(X) (This indicates the type
of the variable.)

10. A transition relation: TR(X) c S(X) x IE(X) x Pred(X) x 20E(X) x
V Asg(X) x S(X)

(There is one element of the transition relation for each arc in the PCM
diagram.)

The preceding ten elements serve to contain all the information present in the PCM

pictoral representation. The formal model given above serves to represent all partitioned

computation machines, including additively or multiplicatively composed machines.

Further notation is introduced to permit discussion of the elements of the transition

relation of the PCM. For an element t of a transition relation TR(X), "dot" notation will be

used to refer to the components of the transition. The starting state of a transition (position

1) is referred as t.s. The input event for a transition (position 2) is t.1t. Similarly, the

remaining components are t.pred, t.oe, t.asg, and t.s'.

-44-

4.2 Constraints Imposed on the Model

There are a number of constraints that must be imposed upon the PCM model in

order to limit the forms of transitions that may be included in the diagram. These

constraints serve to ensure that all transitions present in the PCM can be handled by the

execution semantics, as will be defmed in the next section. There are three forms of

transitions that are avoided. These three forms of transitions are transitions which start and

end at states that can be active concurrently, transitions that give conflicting destination

states, and transitions that give conflicting variable assignments.

In order to defme these constraints, some further defmitions are needed:

• For two states, members of S(X), to be Parent-Related(sl' s2) means that sl =
s2' or sl is an ancestor of s2' or s2 is an ancestor of sl for P(X).

• For two states, members of S(X), to be Concurrent-Related(sl' s2) means that
sl and s2 are not parent-related and the least-conunon-ancestor of sl and s2 in
P(X) is a member of MP(X).

The first defmition indicates that two states are considered to be parent-related if one is an

ancestor of the other, or if they are the same state. (A state is always parent-related to

itself.) The second defmition indicates that states are concurrent-related if they are distinct

states that can be active concurrently.

The formal definitions (further explanation to follow) for the constraints are:

Constraint #1:

If it is the case that t E TR(X) then it is not the case that Concurrent-Related(t.s, t.s').

Constraint #2:

If it is the case that t1 E TR(X), and t2 E TR(X), such that t1.1t = t2.1t, and such that
Overlapping(t1.pred, t2.pred), where either Parent-Related(t1.s, t2.s) or
Concurrent-Related(tl's, t2's), then it must be the case that Concurrent-Related(t1.s', t2's') or
(t1·s' = t2·s').

Constraint #3:

If it is the case that tl E TR(X), and t2 E TR(X), such that t1.1t = t2.1t, and such that

-45-

Overlapping(t.1.pred, t2.pred), where either Concurrent-Related(t1.s, t2.s), or
Parent-Related(t1.s, t2's), then it must be the case that [Variables (t1.asg) (l Variables
(t2.asg) = 0].

The first constraint is used to prohibit transitions among concurrent substates. The

second constraint serves to prohibit transitions which are defined for the same state and

input event with overlapping predicates from giving different non-concurrent destinations,

while the third constraint prohibits such transitions from referencing the same variables.

4.2.1 Constraint #1: to prohibit transitions among concurrent states

lIegal-Transitions

:c~;~~;;~~t~~t~·t;~··~

..................... -"
:Concurrent-statel •

; ••••••••••••••••••••• 1 ••••••••••••••••

~••
~ ~ : .

: .

. ~-~
+ ••••••••••••••••••••••••••••••••••••••

a

Figure 4-1: Example of an Illegal Transition Between Concurrent States

Constraint #1 simply prohibits transitions that have a source and destination state that

could potentially be active concurrently. As an example of a transition that would be

disallowed by this constraint, consider a transition as for input a from state State-l in Figure

4-1. This transition does not maintain the concurrency between the two components and

would not be permitted.

-46-

4.2.2 Constraint #2: to require a deterministic choice of next state

In order to prevent some cases that give rise to a non-detenninistic choice of a

destination state during the execution of the PCM (see section 4.3.2), constraint #2 is

imposed upon the fonna! model. Fulfilling such a detenninism requirement would be

desirable for implementations of the PCM that are used for real-world systems.

The first "or" case of constraint #2 prevents two states that are parent-related from

having transitions with the same input and overlapping predicates but different non­

concurrent destination states. The constraint does not rule out multiple arcs from a single

Constraint2a-Example-A

a) b)

Figure 4-2: Examples of Syntactic Constraint Violations in a PCM

state for the same input and overlapping predicates, as long as the arcs have the same

destination or concurrent destinations. As an example of an arc forbidden by this

constraint, in Figures 4-2a and 4-2b, respectively, the pairs of transitions for inputs a and b

both violate this constraint since each pair is enabled from state-l, giving conflicting

destination states.

The second "or" case of constraint #2 prevents concurrent states from having

transitions with the same input and overlapping predicates but distinct destination states

that are non-concurrent. For example, in Figure 4-3, the pair of transitions for input d

Constraint2b-Example

•.................... I,
: Concurrent-state! •
• !! .,.

~ . : .

. ~ -..........................

-47-

. .

.
: Concurrent-state2 :

". (~

~ : . .
••••••••••• II •••••••••••••••••••••••••••

Figure 4-3: Examples of Syntactic Constraint Violations in a PCM

starting from state-l and state-2 violate this constraint since the source states are

concurrently active, but give different destinations which are not concurrently related. On

the other hand, the pair of transitions for input e satisfies the constraint since the two

destination states are still concurrent.

4.2.3 Constraint #3: to require determinism in variable assignments.

In order to prevent some cases that permit multiple assignments to a single variable

or circular variable assignments, constraints #3 is imposed upon the formal model.

guarantee that multiple or circular variable assignments do not occur in the PCM.) As with

the determinism requirement upon destination states, the requirement that variable

assignments occur deterministically is desirable for implementations of the PCM that are

used for real-world systems.

The first "or" clause of constraint #3 prevents two states which are parent-related

from having transitions with the same input, overlapping predicates, and assignments

referring to the same variables. The constraint permits multiple arcs from a single state for

the same input and overlapping predicates, as long as all arcs have no assignments

-48-

Figure 4-4: Examples of Conflicting Variable Assignments in a PCM

referencing the same variables. As an example of an arc forbidden by this constraint, in

Figures 4-4a and 4-4b, the pairs of transitions for inputs a and b both violate this constraint

since each pair is enabled from state-I, giving assignments referencing the same variables.

The second "or" clause of constraint #3 prevents concurrent states from having

transitions with the same input, overlapping predicates, and assignments referring to the

same variables. For example, in Figure 4-5, the pair of transitions for input d starting from

Constrai nt3b-Example

x 0, 1, 2, 3
Y : 0, 1, 2, 3

:
: Concurrent-state! ;

".
I· ~ .

.
...

.
: Concurrent-state2 :

: . .

. .
+"' ••••••••••••••••••••••••••••••••••••••

Figure 4-5: Examples of Conflicting Variable Assignments in a PCM

state-l and state-2 violate this constraint since the source states are concurrently active, but

reference the same variables in their assignments.

-49-

4.2.4 A degenerate PCM

The correspondence between the pictoral representation of the PCM and the fonnal

model is best described by an example. The simplest partitioned computation machine to

consider is a degenerate PCM which consists of only one state. With such a machine,

LS(X) is identical to {so(X)}. This specific case, however, is the only time that LS(X),

IS(X), and {so(X)} are not all disjoint.

The-state

a / x

b / x

Figure 4-6: A Sample Degenerate Partitioned Computation Machine

A sample one-state PCM is shown in Figure 4-6. The fonnal representation for this

PCM is given in Figure 4-7. This machine is intended to produce an output x, whenever the

inputs a, or b are received. No output results from the input c. The set of states for the

degenerate PCM contains only one element, which is also the distinguished root element:

The-State. This degenerate PCM has no hierarchy or variables, so the sets and mappings

describing these are all empty. The three transitions in this PCM are described in the

transition relation. Each element in the transition relation corresponds exactly to one of the

arcs in the diagram. For example, the arc for a in the diagram produces an element of the

transition relation which starts and ends at The-State, has a as an input, and produces x as

an output. This information is represented by building the element of the transition relation

appropriately.

-50-

1. S (X) = {The-State}, So The-State

2. P (X) = { }

3. AP (X) { }

MP (X) { }

4. DC (X) { }

5. IE(X) {a, b, c}

6. OE (X) {x}

7. V (X) { }

8. VS (X) { }

9. VT (X) { }

10. TR(X) { (The-State, a, True, {x} , 0, The-State),
(The-State, b, True, {x} , 0, The-State),
(The-State, c, True, 0, 0, The-State) }

Figure 4-7: The Fonnal Representation for the One-State PCM of Figure 4-6

4.3 The Execution of the PCM

In addition to the fonnal representation for the pictoral infonnation, the PCM fonnal

model includes a fonnal semantics of execution. The execution semantics relies upon

expanding the set of states, S(X), into a set of all possible maximal sets of concurrent states.

This expansion makes an execution state of a partitioned computation machine just one of

the members of the expanded state set; a single execution state consists of a set of states

from S(X).

4.3.1 Expansion of concurrent cross-product states

The partitioned computation machine permits concurrency in states with

multiplicative parents. The execution model for the partitioned computation machine, as

will be presented in section 4.3.2, actually operates upon a set containing all possible

concurrently active states. Before presenting the execution of the PCM, this expanded state

set, ES(X), will be defined.

-51-

The expanded state set, ES(X), is defmed by fust defining a set, IES(X), then

creating ES(X) to include only the elements of IES(X) which have no proper superset in

IES(X). IES(X) is conceptually all sets consisting of leaf states of S(X) where all elements

of the set are concurrent-related with one another.

IES(X) = (Is lIs E 2LS(X) and T;f sl' s2 E Is, Concurrent-Related(sl' s2)}

ES(X) = (es I es E IES(X) and T;f Is E IES(X), -,(es cIs)}

Conceptually, ES(X) is a set containing all maximal sets of concurrently active states.

The elements of ES(X) are the possible execution states of the PCM X.

In order to formally determine the semantics of transition arrows, it is necessary to

define two more constructs:

• Expanded-Parent-Related(es, sl)' for an expanded state es E ES(X), and a
state sl E S(X), is defined as 3 SEes where Parent-Related(s, sl)'

• Concurrent-De!ault-Related(sl' s2)' for states sl E DLS(X) and s2 E S(X) is
defined as Concurrent-Related(sl' s2) where the least common ancestor of sl
and s2 according to P(X) is also an ancestor of sl according to DC(X).

Finally, the set of Compatible-States(Sj, S2)' where SI and S2 are sets of states, is the

set of states in SI that are Concurrent-Related to all elements of S2'

4.3.2 Execution semantics

The PCM always has an execution state which is one of the members of the expanded

state set, ES(X). Since concurrent children have been expanded into a single state in

ES(X), a single element of this set can represent the concurrent operation of many states.

Each element in the formal model's transition relation represents an arc in the

pictoral representation for the PCM. The partitioned computation machine operates under

the assumption that only one input event is received at any time. This is an acceptable

assumption to make as "simultaneous" input events can simply be serialized in some order

before being received by the partitioned computation machine.

-52-

An element t of TR(X) is said to be enabled with respect to an expanded state es e

ES(X), an input event 1t E IE(X), and a environment env mapping variables to values, if

Expanded-Parent-Related(es, t.s), and 1t = t1t, such that env satisfies t.pred. The

enabled-transition-set(X, es, 1t, env) is defined for a given state es E ES(X), an input event

1t E IE(X) and an environment env, as the set of all t E TR(X) that are enabled with

respect to es, 1t, and v. Lastly, before defining a step in the execution of the PCM, it is

convenient to define the Default-Leaves-of-Subtree(s) as the set of states which are leaves

of the subtree determined by DC(X) with s as the root of the subtree.

The basic unit of execution in a partitioned computation machine is a step. A step

takes a machine from a current expanded state set and environment to a "next" expanded

state set and environment when a specific input event is enabled. In this way, the complete

execution of a PCM is composed of many individual steps. A step of the execution of a

PCM X has a defmition contingent upon the contents of the enabled-transition-set(X, es, 1t,

v), and as such will be written step(X, es, 1t, v). A single step is a six-tuple of the form (esl'

envl' 1t2' oes2' s2' env2)· The formal definition of a step(X, es, 1t, v) is divided into two

primary cases as follows:

• If enabled-transition-set(X, es, 1t, env) = 0 then step(X, es 1t, env) is defined
as (es, env, 1t, { }, es, env).

(Conceptually, this means that if the transition for input 1t is not explicitly
handled, assume that a self-transition with no output events or variable changes
should take place.)

• If enabled-transition-set(X, es, 1t, env) '#- 0, then step(X, es, 1t, env) is defined
as (es, env, 1t, oes, es', env') where

oes = Union (t.oe) for all t E enabled-transition-set(X, es, 1t, env), and

Define explicit-destinations = Union (Default-Leaves-of-Subtree(t.s'»») for all
t E enabled-transition-set(X, es, 1t, env).

Define unchanged-destinations = compatible-states(es, explicit-destinations).

Define implicit-destinations = the elements of Compatible(DLS(X), explicit­
destinations u unchanged-destinations) that are Concurrent-Default -Related to
at least one element of es.

-53-

es' = explicit-destinations u unchanged-destinations U implicit-destinations

env' = the functional composition of Variable-Assignmentsj applied to the
argument env where Variable-Assignmentsj E Union({ t.asg}) for all t e
enabled-transition-set(X, es, 1t, env).

Essentially, the first three elements of a step are composed of the starting expanded

state and environment with the appropriate input event. The output event set in a step is the

union of the output events from all enabled transitions. The new expanded state consists of

the union of states to which arcs are explicity given, with any of the original states that are

still active, and any states which are entered implicitly. Lastly, the new environment is

simply the application of the composition of any variable assignments to the original

environment.

The set steps(X) is defmed as the set of all possible values for step(X, es, 1t, env). An

element of steps(X) is said to be a step of X.

An execution fragment of X is a finite sequence sl' envl' 1t2' oes2' s2' env2' ... , so'

envo' or an infinite sequence sl' envl' ~, oes2' s2' env2' ... such that (Sj' envj, 1tj+l' oesj+l'

si+l' envi+l) is a step of X. The set of all possible execution fragments of X is called

efrags(X). An execution fragment of X beginning with the expanded state

Default-Leaves-of-Subtree(so(X» is called an execution of X. The set of all possible

executions of X is called execs(X). A state is said to be reachable if it is the fmal state of a

finite execution. The special case of a sequence with no input events, (sl' envl)' is also

considered a valid exection and will be referred to as a null execution.

An execution string represents a "run" of the partitioned computation machine. In

most situations, one is only concerned with the sequence of input and output events that

occur during the execution and not with the sequence of states involved with the

computation. A behavior of an execution fragment for X is the subsequence consisting of

the events defmed for X, denoted by behav(X). The set of all possible behaviors of X is

denoted by behavs(X).

-54-

4.3.3 An example specifying a soda machine

Soda-Machine

Credit: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 : 0

Nick/Continue,
Credit +- 5

Dime/Continue,
Credit +-10

Quar/Continue,
Credit+-25

Continue,

Orange/
Continue
Disp-Orange
Credit --35

5 <- Credit < 10/ D-Nick
Continue, Credit --5

Continue,
10 <- Credit < 25/ D-Dime
Continue, Credit --10

Continue,
25 <- Credit/ D-Quar,
Continue, Credit --25

Figure 4-8: A Soda Machine as a Partitioned Computation Machine

Figure 4-8 provides the PCM pictoral representation for a soda machine. The soda

machine accepts nickels, dimes and quarters as input, and dispenses cola, grape, and orange

sodas after thirty-five cents worth of change have been inserted. The soda machine has four

primary states under its root state. Each state represents the primary modes of the soda

machine: a startup state, a state where it allows a person to insert coins, a state where it will

dispense soda, and a state where it will return coins as change.

The soda machine starts in the startup state where the machine accepts inputs of nick,

dime, and quar. When one of these inputs is received, the credit is set appropriately and the

insert-coin state is made the new current state. The insert-coin state accepts inputs of nick,

1. S (X)

2. P (X)

3. AP (X)

MP (X)

4. DC (X)

5. IE (X)

6. OE(X)

-55-

{Startup, Insert-Coin, Dispense, Return-Coin,
Soda-Machine}, so(X) = Soda-Machine

{(Startup, Soda-Machine),
(Insert-Coin, Soda-Machine),
(Dispense, Soda-Machine),
(Return-Coin, Soda-Machine)}

{Soda-Machine}

{ }

{(Soda-Machine, Startup)}

{Nick, Dime, Quar, Cola, Grape, Orange,
Change-Return, Continue}

{Disp-Cola, Disp-Grape, Disp-Orange, D-Nick, D-Dime,
D-Quar, Continue}

7. V(X) = {Credit}

8. VS(X)

9. VT(X)

10. TR(X) =

{(Credit, Soda-Machine)}

{(Credit, (0, 5, 10, 15, 20, 25, 30,
35, 40, 45, 50, 55»}

(Startup, Nick, True, {I, Credit 5, Insert-Coin),
(Startup, Dime, True, {I, Credit 10, Insert-Coin),
(Startup, Quar, True, {I, Credit 25, Insert-Coin),
(Insert-Coin, Nick, True, {Continue},

Credit += 5, Insert-Coin),
(Insert-Coin, Dime, True, {Continue},

Credit += 10, Insert-Coin),
(Insert-Coin, Quar, True, {Continue},

Credit += 25, Insert-Coin),
(Insert-Coin, Continue, Credit >= 35, {I, 0, Dispense),
(Dispense, Cola, True, {Disp-Cola, Continue},

Credit -= 35, Return-Coin),
(Dispense, Grape, True, {Disp-Grape, Continue},

Credit -= 35, Return-Coin),
(Dispense, Orange, True, {Disp-Orange, Continue},

Credit -= 35, Return-Coin),
(Return-Coin, Continue,S <= Credit < 10, {D-Nick, Continue},

Credit -= 5, Return-Coin),
(Return-Coin, Continue, 10 <= Credit < 25, {D-Dime, Continue},

Credit -= 10, Return-Coin),
(Return-Coin, Continue, 25 <= Credit, {D-Quar, Continue},

Credit -= 25, Return-Coin),
(Return-Coin, Continue, Credit == 0, {I, 0, Insert-Coin),
(Soda-Machine, Change-Return, True, {Continue}, 0,

Return-Coin) }

Figure 4-9: The Fonnal Representation for the Soda Machine of Figure 4-8

-56-

dime, and quar, representing nickels, dimes, and quarters until thirty-five or more cents

have been inserted. When sufficient funds have been inserted, the current state will become

the dispense state. In the dispense state, the machine responds to inputs corresponding to a

selection of the type of soda desired, generates the appropriate output to dispense the soda,

and subtracts thirty-five cents from the credit inserted before proceeding to the return-coin

state. The return-coin state returns all remaining credit and then returns to the insert-coin

state to begin the cycle again. If the change-return input is received at any point duing this

process, the return-coin state is entered and any remaining credit is returned. Note that the

continue event is used both as an input and an output to permit a sequence of transitions to

be enabled in response to an external input.

The formal representation of the pictoral information appears in figure 4-9. This

example demonstrates the use of variable predicates, variable assignments, and multiple

events all on the same arc.

4.3.4 Examples of execution of the PCM

To illustrate the definition of execution, this section presents sample executions for

the soda machine presented in Figures 4-8 and 4-9 in section 4.3.3. The execution of this

example is presented for a variety of different inputs.

4.3.4.1 Execution of a soda machine

Let us consider the execution of the soda machine of Figure 4-8 for the following

sequence of inputs: Nick, Grape, Nick, Orange, Quar, Orange, Dune, Nick, Nick, Change­

Return

To simplify the listing of the execution string, the starting state of a step will always

be listed at the beginning of the line; the current value of the credit variable is given as the

second element on the line. The third element on the line is the input event for the

transition, and the fourth element is the set of output events from the transition. The fifth

-57-

and sixth elements of a step (the destination state and environment) are listed on the next

line as the first two elements, as they will be the starting state and environment for the next

transition. Also, to increase the readability of an execution, the first letters of any pending

input events are shown on the extreme right of the line.

When examining the execution for the soda machine, note that the Continue event

appears both as an output and as an input of the machine. Each occurrence of the Continue

event appears twice in the execution -- once when it is an output, and once when it is used

as input.

One possible execution for the machine given the above inputs would be:

Startup, 0, Nick, {},
Insert-Coin, 5, Grape,{},
Insert-Coin, 5, Nick, {Continue},
Insert-Coin, 10, Continue, {},
Insert-Coin, 10, Orange, {},
Insert-Coin, 10, Quar, {Continue} ,
Insert-Coin, 35, Continue, {},
Dispense, 35, Orange, {Disp-Orange, Continue},
Return-Coin, 0, Continue, {},
Insert-Coin, 0, Dime, {Continue},
Insert-Coin, 10, Continue, {},
Insert-Coin, 10, Nick, {Continue},
Insert-Coin, 15, Continue, {},
Insert-Coin, 15, Nick, {Continue},
Insert -Coin, 20, Continue, {},
Insert-Coin, 20, Change-Return, {Continue},
Return-Coin, 20, Continue, {D-Dime, Continue},
Return-Coin, 10, Continue, {D-Dime, Continue},
Return-Coin, 0, Continue, {},
Insert-Coin, 0

G
N
C 0
o
Q
C
o
C
D
C
N
C
N
C
CR
C
C
C

The above execution does essentially what one would expect; one inserts a total of 55

cents, and receives one orange soda, and twenty cents in change by the end of the

execution. The above execution assumes that the PCM has an opportunity to consider the

transitions with no input event before the next input event has been received. However, the

model does not require that the PCM has these transitions before new input is received.

Consider the case when the entire above input sequence reached the machine in the exact

order above, before the machine had an opportunity to handle even one of its own output

events. This would give the following behavior:

-58-

Startup, 0, Nick, { } , N G N 0 Q 0 0 N NCR'
Insert-Coin, 5, Grape, { } , G N 0 Q 0 0 N N CR
Insert-Coin, 10, Nick, {Continue} , N 0 Q 0 D N N CR C
Insert-Coin, 10, Orange, { } , Q 0 D N N CR C
Insert-Coin, 35, Quar, {Continue}, 0 D N N CR C C
Insert-Coin, 35, Orange, { } , D N N CR C C
Insert-Coin, 45, Dime, {Continue}, N N CR C C C
Insert-Coin, 50 Nick, {Continue}, N CR C C C C
Insert-Coin, 55, Nick, {Continue}, CR C C C C C
Insert-Coin, 55, Change-Return, {Continue}, C C C C C C
Return-Coin, 55, Continue, {D-Quar, Continue}, C C C C C C
Return-Coin, 20, Continue, {D-Quar, Continue}, C C C C C C
Return-Coin, 10, Continue, {D-Nick, Continue} , C C C C C C
Return-Coin, 0, Continue, { } , C C C C C
Insert-Coin, 0, Continue, { } , C C C C
Insert-Coin, 0, Continue, { } , C C C
Insert-Coin, 0, Continue, { } , C C
Insert-Coin, 0, Continue, { } , C
Insert-Coin, 0, Continue, {},
Insert-Coin, 0

In the second execution, the PCM is never given an opportunity to perfonn any of its

Continue transitions until the input sequence has ended. It still ends up processing the same

nine Continue events it did in the first scenario. The net effect here, however, is that 55

cents were inserted, and 55 cents were given back in change.

This example demonstrates that if inputs are coming into the machine in a manner

that is not pennitting the machine to handle its own generated events, the behavior received

by the specification may not be exactly what the specifier may have expected. The above

examples are both valid executions for the system. An interesting possibility for future

work, however, would be to modify the model to pennit the user to specify a response to an

input, and then handle the generated events before additional input is processed. Such a

technique would essentially permit multiple transitions in the machine to be treated as a

single, atomic transition. Exploring this direction of research could be an area of future

work. (See section 5.1.5.)

-59-

4.4 Composition of PCMs

The fonnal model for the PCM also includes a fonnal mechanism for composing a

number of machines. Composition is a valuable operation as it pennits a number of

machines, each providing a distinct behavior, to be combined into a machine which behaves

in a manner which can be predicted by examining only the behaviors of the component

machines. (See Section 4.4.5.) Partitioned computation machines may be composed in one

of two ways: additive composition or multiplicative composition. The primary distinction

between the two fonns of composition is that an additive composition maintains one control

thread (i.e. the tnachines interact sequentially) and a multiplicative composition maintains

multiple control threads (i.e. the machines appear to interact concurrently). The manner of

each type of composition is discussed in further detail below.

4.4.1 Additive composition

As described infonnally in section 3.7.1, additive composition produces a new PCM

from a number of other partitioned computation machines. A new PCM, Y, is produced out

of n existing PCMs. The parameters of the additive composition process are:

1. Each of the n PCMs to be composed. (Call these ~).

2. Default-~: The name for the ~ which is to be the default child of the
composition.

3. New-Root: The name for the root state of the composition.

4. New-Variables: Set of variables to be associated with New-Root (optional).

5. New-Variable-Types: Mapping of New-Variables ~ Types(Y) (optional).

6. New-Input-Events: Set of new input events (optional).

7. New-Output-Events: Set of new output events (optional).

8. New-Transitions: Set of new relations for the Transition Relation (optional).

The parameters provided for the additive composition are restricted syntactically to

prevent the composition of the machines from creating duplicate names for states or

-60-

variables. The first restriction is that all of the state names in the components and the new

root name must be unique. An actual implementation of the partitioned computation

machine could generate unique names for the component states which overlap, but the

formal model simply requires that the all state names are unique. Similarly, all variables

must also have unique identifiers.

In order to guarantee that the result of an additive composition satisfies the

constraints given in section 4.2, it is sufficient that all component PCMs satisfy the

constraints on a PCM, and furthennore, that the parameters to the composition satisfy the

following constraints: (the multiplicative composition will have the same constraints upon

its parameters)

Composition Constraint #1:

If it is the case that t E Union: l (TR(~) U New-Transitions), then it must not be the
case that Concurrent-Related(t.s, t.s')

Composition Constraint #2:

If it is the case that tl E (Union:) (TR(~» U New-Transitions), and t2 e New­
Transitions, such that tl .1t = t2.1t, and such that Overlapping(tl.pred, t2.pred), where either

Parent-Related(tl's, t2's) or Concurrent-Related(tl's, t2's), then it must be the case that
Concurrent-Related(tl·s', t2·s') or (tl.s' = t2.s').

Composition Constraint #3:

If it is the case that tl E (Union: 1 (TR(~» U New-Transitions), and t2 e New­
Transitions, such that tl .1t = t2 .1t, and such that Overlapping(t.l.pred, t2.pred), where either
Concurrent-Related(tl.s, t2's), or Parent-Related(tl.s, t2.s), then it must be the case that [
Variables (tl.asg) rI Variables (t2.asg) = 0].

Parameters which satisfy the above constraints are used to construct a new PCM.

Additive composition creates a new PCM, Y, from the above parameters:

-61-

1. S(Y) = Union:l S(~) U {New-Root}, sO(X) = New-Root

2. CP(Y) = Union: l CP(~) U Union~=l ((RS(~), New-Root)}

3. AP(Y) = Union:l AP(~) U {New-Root}

MP(Y) = Union7= 1 MP(~)

4. DC(Y) = Union:l DC(~) U {(New-Root, Default-~)}

5. IE(Y) = Union:. IE(~) U New-Input-Events

6. OE(Y) = Union:l OE(~) U New-Output-Events

7. V(Y) = Union: l V(~) U New-Variables

8. VS(Y) = Union:. VS(~) U {(New-Variablej' New-Root) I New-Variablej E

New-Variables}

9. VT(Y) = Union:. VT(~) U New-Variable-Types

10. TR(Y) = Union:1 TR(~) U New-Transitions

LS(Y), R(Y), and IS(Y) are still defmed as they are in the basic fonnal model

presented in section 4.1.

Clearly, the result of the additive composition is also a partitioned computation

machine, by construction. The satisfaction of the three composition constraints guarantees

that the resultant machine satisfies the three constraints upon all PCMs given in section 4.2.

Conceptually, additive composition takes all of the components and gives them a

common parent to fonn a single partitioned computation machine. The new PCM is

constructed from the components by defming its elements to be the union of the elements of

the components, with the addition of new set elements indicated in the parameters of the

composition. The set of new states, S, becomes the union of the state sets of the

components and the New-Root for the composition. The tree structure, CP, is amended to

indicate that the root states of the components,~, now have the New-Root as a parent. The

New-Root is made a melnber of the additive-parent set, PA to indicate that its children have

been additively composed. The default child mapping, DC, is expanded to indicate the

default child for the New-Root. New events may be added to the sets of input and output

events; new variables can be associated with the new root state. The set V, and mappings

-62-

VS and VT are all updated appropriately if New-Variables are defined. Finally, new

transitions may be added to the composition as well.

4.4.2 Example of additive composition to build a simple user interface

This section provides an example to demonstrate the procedure of additive

composition. The machines to be composed each specify simple menus to map

buttonpresses generating the events button-I, button-2, and button-3 into output events that

would execute the correct program for that menu choice. The composition takes two such

machines and additively combines them; the desired behavior of the composition is that the

escape event toggles between the two menus. Figures 4-10 and 4-11 present the graphical

and formal representations of the component partitioned computation machines. The

arguments to the additive composition are listed at the top of page 65. Figures 4-12 and

4-13, respectively, provide the graphical and formal representations of the result of the

composition.

-63-

1. s (X) {Menu-One}

2. P (X) { }

3. AP (X) { }

MP (X) { }

4. DC (X) { }

5. IE (X) {Button-I, Button-2, Button-3}

6. OE (X) {Move, Iconify, Resize}

7. V (X) = { }

8. vs (X) {}

9. VT (X) { }

10. TR (X) {(Menu-One, Button-I, True, {Move}, 0, Menu-One),
(Menu-One, Button-2, True, {Iconify}, 0, Menu-One),
(Menu-One, Button-3, True, {Resize}, 0, Menu-One)}

Menu-One

Button-l / Move

Button-2 / Iconify

Button-3 / Resize

Figure 4-10: Example ofPCM Fonnal Model for a Mouse Menu (Menu-One)

-64-

1. S (X) {Menu-Two}

2. P (X) { }

3. AP (X) { }

MP (X) { }

4. DC (X) {}

5. IE (X) {Button-1, Button-2, Button-3}

6. OE (X) {Kill, Raise, Lower}

7. V (X) = {}

8. VS (X) { }

9. VT (X) { }

10. TR (X) { (Menu-Two, Button-1, True, {Kill}, 0, Menu-Two),
(Menu-Two, Button-2, True, {Raise}, 0, Menu-Two),
(Menu-Two, Button-3, True, {Lower}, 0, Menu-Two) }

Menu-Two

Button-l / Kill

Button-2 / Raise

Button-3 / Lower

Figure 4-11: Example of PCM Fonnal Model for a Mouse Menu (Menu-Two)

-65-

The arguments to the additive composition are:

1. Components: PCM(Menu-One), PCM(Menu-Two)

2. Defau1t-~: Menu-One

3. New-Root: Window-Menus

6. New-Input-Events: {Escape}

8. New-Transitions: {(Menu-One, Escape, True, { }, 0, Menu-Two),
(Menu-Two, Escape, True, {}, 0, Menu-One)}

The resulting Window-Menus is represented by:

Window-Menus

Menu-One Menu-Two

Button-l / Move Button-l / Kill

Button-2 / Button-2 / Raise

Button-3 / Resize Button-3 / Lower

Figure 4-12: Example of PCM Additive Composition for Window-Menus

1. S (X)

2. P (X)

3. AP (X)

MP (X)

4. DC (X)

5. IE(X)

6. OE (X)

-66-

{Menu-One, Menu-Two, Window-Menus}

{(Menu-One, Window-Menus),
(Menu-Two, Window-Menus)}

{Window-Menus}

{ }

{(Window-Menus, Menu-One)}

{Button-I, Button-2, Button-3, Escape}

{Move, Iconify, Resize, Kill, Raise, Lower}

7. V (X) = {}

8. VS (X) { }

9. VT (X) { }

10. TR (X) {(Menu-One, Button-I, True, {Move}, 0, Menu-One),
(Menu-One, Button-2, True, {Iconify}, 0, Menu-One),
(Menu-One, Button-3, True, {Resize}, 0, Menu-One),
(Menu-Two, Button-I, True, {Kill}, 0, Menu-Two),
(Menu-Two, Button-2, True, {Raise}, 0, Menu-Two),
(Menu-Two, Button-3, True, {Lower}, 0, Menu-Two),
(Menu-One, Escape, True, {}, 0, Menu-Two),
(Menu-Two, Escape, True, {}, 0, Menu-One)}

Figure 4-13: Formal Model for Window-Menus of Figure 4-12.

4.4.3 Multiplicative composition -- multiple control threads

As described informally in section 3.7.2, multiplicative composition produces a new

PCM from a number of other partitioned computation machines. The formal procedure for

multiplicative composition creates a new PCM, Y, out of n existing PCMs by supplying the

necessary parameters for multiplicative compositions. The parameters are:

1. Each of the n PCMs to be composed. (Call these ~).

2. New-Root: The name for the root state of the Composition.

3. New-Variables: Set of variables to be associated with New-Root (optional).

4. New-Variable-Types: Map of New-Variables ~ Types(Y) (optional).

5. New-Input-Events: Set of new input events (optional).

6. New-Output-Events: Set of new output events (optional).

7. New-Transitions: Set of new relations for the Transition Relation (optional).

-67-

As with the additive composition, there are some syntactic restrictions on these

parameters to prevent the composition of the machines from creating duplicate names for

states or variables. The syntactic restrictions are the same as those for additive

composition, namely, that all of the state names and new root name be unique, in addition

to all variables having unique identifiers.

The composition constraints which are placed upon the multiplicative composition

parameters in order to guarentee that the result of the composition satisfies the constraints

for a PCM are the same as the constraints placed upon the additive composition parameters

as given in section 4.4.1.

Multiplicative composition constructs a single new PCM from the components in

much the same manner as the additive composition. As with the additive composition, the

new PCM is constructed from the components by having its elements be the union of the

components' elements, with the addition of new set elements indicated as parameters to the

composition. The only differences between the representations for an additive and

multiplicative composition is that the multiplicative composition makes the New-Root an

element of the multiplicative-parent set, PM, instead of P A, and that the multiplicative

composition does not expand the default child mapping, as multiplicative compositions do

not have a default child -- all children appear to act concurrently.

The formal construction of the multiplicative composition of n PCMs, ~, into a

single PCM, Y, is the same as the additive composition presented in section 4.4.1 on page

60 with the following exceptions:

3. AP(Y) = Union:1 AP(~)

MP(Y) = Union:1 MP(~) U {New-Root}

4. DC(Y) = Union:1 DC(~) u Union:. {(New-Root,R(~))}

LS(Y), R(Y), and IS(Y) are still defmed as they are in the basic formal model

presented in section 4.1.

-68-

4.4.4 Example of multiplicative composition to build a combination clock-odometer

This section provides an example of multiplicative composition to demonstrate the

procedure. The multiplicative components to be composed consists of simple controllers

for a clock, odometer, and a visual display. These components are being combined to

create a monolithic system which provides the functions of a clock and odometer on a

simple display. Figures 4-14, 4-15, 4-16 present the graphical and fonnal representations of

the component partitioned computation machines. The arguments to the multiplicative

composition are listed at the top of page 72. Figures 4-17 and 4-18, respectively, provide

the graphical and fonnal representations of the result of the composition.

-69-

1. S (X) {Clock-Run, Clock-Stop, Clock}

2. P (X) { (Clock-Run, Clock) , (Clock-Stop, Clock) }

3. AP (X) {Clock}

MP (X) { }

4. DC (X) { (Clock, Clock-Stop) }

5. IE (X) {clock-start, clock-stop, clock-tick}

6. OE (X) { }

7. V(X) = {Time}

8. VS(X)

9. VT (X)

10. TR (X)

{(Time, Clock)}

{ (Time, Integer)}

{(Clock-Run, clock-stop, True, {},
0, Clock-Stop),

(Clock-Run, clock-tick, True, {},
Time +=1, Clock-Run),

(Clock-Stop, clock-start, True, {},
0, Clock-Run)}

Clock

Tine:Integar : 0

o
~
o
o
;.r ,
to
rt .g

Figure 4-14: Example ofPCM Fonna! Model for a Clock

-70-

1. S (X) {Odo-Run, Odo-Stop, Odo}

2. P (X) { (Odo-Run, Odo) , (Odo-Stop, Odo) }

3. AP (X) {Odo}

MP (X) { }

4. DC (X) { (Odo, Odo-Stop) }

5. IE (X) {odo-start, odo-stop, odo-tick}

6. OE (X) { }

7. V(X) = {Dist}

8. VS (X)

9. VT (X)

10. TR (X)

{(Dist, Odo)}

{(Dist, Integer)}

{(Odo-Run, odo-stop, True, {}, 0, Odo-Stop),
(Odo-Run, odo-tick, True, {}, Dist += 1, Odo-Run),
(Odo-Stop, odo-start, True, {}, 0, Odo-Run)}

Odo

Dist:lnteger : 0

+'
I-l
1\1
+'

" I .g
o

o g.
I

1/1
rt .g

Figure 4-15: Example ofPCM Fonnal Model for Odometer

1. s (X)

2. P (X)

3. AP (X)

MP (X)

4. DC (X)

5. IE (X)

6. OE (X)

-71-

{Disp-Latched, Disp-Unlatched, Display-Control}

{(Disp-Latched, Display-Control),
(Disp-Unlatched, Display-Control)}

{ }

{Display-Control}

{(Display-Control, Disp-Unlatched)}

{lap-on, lap-off}

{latch-display, unlatch-display}

7. V (X) = {}

8. VS (X)

9. VT(X)

10. TR (X)

{ }

{ }

{(Disp-Latched, lap-off, True, {unlatch-display},
0, Disp-Unlatched),

(Disp-Unlatched, lap-on, True, {latch-display},
0, Disp-Latched)}

Display-Control

Disp-Latched

lap-off/
unlatch-display

lap-on/
latch-display

Figure 4-16: Example of PCM Fonnal Model for Visual Display

-72-

The arguments to the multiplicative composition are:

1. Components: PCM(Clock), PCM(Odo), PCM(Display-Control)

2. New-Root: Clock-Odometer

The resulting Clock-Odometer is represented by:

Clock-Odometer

..................... \ · . : Clock •
•••••••••••••••••••••• w.
: Odo : . . ~ ••.................. '•.••••

! Tine:lnteger : 0 +~
. :.

: Dist:lnteger : 0 ~
: .

~
"\.l
"1\1

:~
• I '.l4
• 0 :~
: 0 · " " · · · · · · · · · " " " · · · " · · · · ·

· · · · "

o g.
I

III
rt. .g.

· · · \ .: . .
+ • - ..

~•.•........... \
: Display-Control

" " :
:+ +~ · .

· · ·

Disp-Latched

lap-off/
unlatch-display

lap-on/
latch-display . · . · . · . · . · . · . ·

............. III .. ••

Figure 4-17: Example ofPCM Multiplicative Composition for Clock-Odometer

-73-

1. S(X)= {Clock-Run, Clock-Stop, Odo-Run,
Odo-Stop, Disp-Latched, Disp-Unlatched,
Clock, Odo, Display-Control,
Clock-Odometer}

2. P (X) {(Clock, Clock-Odometer),
(Odo, Clock-Odometer),
(Display-Control, Clock-Odometer),
(Clock-Run, Clock),
(Clock-Stop, Clock),
(Odo-Run, Odo),
(Odo-Stop, Odo),
(Disp-Latched, Display-Control),
(Disp-Unlatched, Display-Control)}

3. AP(X) {Clock, Odo, Display-Control}

MP(X) {Clock-Odometer}

4. DC(X) {(Clock-Odometer, Clock),
(Clock-Odometer, Odo),
(Clock-Odometer, Display-Control),
(Clock, Clock-Stop),
(Odo, Odo-Stop),
(Display-Control, Disp-Unlatched)}

5. IE(X) {clock-start, clock-stop, clock-tick, odo-start,
odo-stop, odo-tick, lap-on, lap-off}

6. OE(X) = {latch-display, unlatch-display}

7. V(X) = {Time, Dist}

8. VS(X) = {(Time, Clock),
(Dist, Odo)}

9. VT (X)

10. TR(X)

{ (Time, Integer),
(Dist, Integer)}

(Clock-Run, clock-stop, True, {}, 0, Clock-Stop),
(Clock-Run, clock-tick, True, {},

Time +=1, Clock-Run),
(Clock-Stop, clock-start, True, {}, 0, Clock-Run),
(Odo-Run, odo-stop, True, {}, 0, Odo-Stop),
(Odo-Run, odo-tick, True, {},

Dist += 1, Odo-Run),
(Odo-Stop, odo-start, True, {}, 0, Odo-Run),
(Disp-Latched, lap-off, True, {unlatch-display},

0, Disp-Unlatched),
(Disp-Unlatched, lap-on, True, {latch-display},

0, Disp-Latched)}

Figure 4-18: Fonnal Model for Combination Clock-Odometer of Figure
4-17.

-74-

4.4.5 Executions of composed machines

With certain restrictions imposed upon the parameters for composition, additive and

multiplicative composition, the possible behaviors of a composed machine can be built

simply from the executions of the component machines. These restrictions can greatly

simplify proofs regarding the executions of partitioned computation machines. Even when

these restrictions do not apply, however, the structure of the composed machine makes the

resultant behavior easir to understand.

The restrictions that are imposed serve to prevent inconsistencies between the

transitions among the component machines and their internal behavior as discussed in

section 3.3.3 on page 24. Furthermore, the restrictions prevent the component machines

from interfering with each other's behavior.

4.4.5.1 Claims regarding additive composition executions

Additive Composition Claim #1:

Given that the following constraints are imposed on the parameters of an additive

composition, (see section 4.4.1.)

• [(New-Input-Events U New-Output-Events) n (Union: 1 IE(~) U Union: 1

OE(~»] = 0

(This constraint requires that the composition parameters are restricted so that
all new input or output events are disjoint from events used in any of the
components.)

• For all t E New-Transitions, t.1t E New-Input-Events

(This constraint requires that all new transitions are enabled by new inputs.)

• For all t E New-Transitions, t.oe c New-Output-Events

(This constraint requires that all new transitions only produce new outputs.)

then the following assertion is claimed to be true:

An execution fragment of the additive composition consists of execution fragments

of one of the component machines, separated by new input events and output events

defined in the composition.

-75-

Fonnally, the execution fragment, €y of the PCM Y, produced from the additive

composition of machines ~ can be expressed as a sequence €a' 1ta, oea, €b' 1tb' oeb' ... where

each € E efrags(TR(Xh),1t E New-Input-Events, and oe c New-Output-Events.

Proof: Let Y = the additive composition of ~, and suppose that €y =

sl,envl,1t2,oe2,s2,env2 ... By the definition of an execution fragment, sl is an element of

ES(Y), and every six-tuple (sk_l,envk_l,1tk,oek,sk,envk) is a step of Y. Two facts follow

from the definition of the additive composition Y. First, sl E ES(~) for some i. Second, if

sk_l is an expanded state of ES(Xi) and 1tk E New-Input-Events, then

(sk_l,envk_l,1tk,oek,sk,envk) is a step of the same Xi. If sk_l is an expanded state of ES(~)

and 1tk E New-Input-Events, then the six-tuple (sk_l,envk_l,1tk,oek,sk,envk) can be broken

into four portions, where sk_l,envk_l is a null execution of an Xi' 1tk E

New-Input-Events,oek c New-Output-Events, and sk,envk is a null execution of an ~.

Therefore, an execution fragment, €y of the PCM Y, produced from the additive

composition of machines ~ can be expressed as a sequence €a' 1ta, oea, €b' 1tb' oeb' ... where

each € E efrags(TR(Xh),1t E New-Input-Events, and oe c New-Output-Events.

4.4.5.2 Claims regarding multiplicative composition executions

As with the additive composition, a number of claims regarding the execution of

lnultiplicatively cOlnposed machines can be made. The results of these claims can be used

to reason about the execution of a composed machine as the "sum" of the executions of the

component machines. When examining the executions of multiplicatively composed

machines, the concept of a projection is useful.

A projection of an execution fragment, € (or a portion of an execution fragment) for a

partitioned computation machine, X, is defined as the same sequence as € (or the portion of

the fragment), but including only states in S(X), input events in IE(X), and output events

that are in OE(X). The projection of an execution fragment € for a PCM X can be written

as€IX.

-76-

Multiplicative Composition Claim #1:

For a multiplicative composition producing a PCM, Y, if New-Transitions = 0 and

all OE(~) are disjoint, the following assertion is claimed to be true:

If €y E efrags(Y) where Y is the multiplicative composition of some Xi' €yl~ e

efrags(Xi)·

Proof: Let Y = the multiplicative composition of ~, and suppose that €y =
sl,envl,1t2,oe2,s2,env2'" By the definition of an execution fragment, sl is an element of

ES(Y), and every six-tuple (sk_l,envk_l,1tk,oek,sk,envk) is a step of Y. Two facts follow

from the defmition of the multiplicative composition Y. First, sll~ E ES(~) for some i.

Second, (sk_l,envk_l,1tk,oek,sk,envk)l~ is a step of the same~. Thus, for €yl~, every six­

tuple (sk_l,envk_l,1tk,oek,sk,envk) is a step of~. Therefore, €yl~ E efrags(~).

Multiplicative Composition Claim #2:

Furthermore, if the following constraints are imposed on the parameters of the

multiplicative composition,

• [(New-Input-Events U New-Output-Events) n (Union: 1 IE(~) U Union: l

OE(~»] = 0

(This constraint requires that the composition parameters are restricted so that
all new input or output events are disjoint from events used in any of the
components.)

• For all j, OE(Xj) n Union:1,i~j OE(~) = 0

(This constraint requires that the composition parameters are restricted so that
the output events of each component are disjoint from output events of the
other components.)

• For all t E New-Transitions, t.1t E New-Input-Events

(This constraint requires that all new transitions are enabled by new inputs.)

• For all t E New-Transitions, t.oe C New-Output-Events

(This constraint requires that all new transitions only produce new outputs.)

then, the following assertion is claimed to be true:

-77-

The projection of an execution fragment of the multiplicative composition for a

component ~ consists of execution fragments of Xi' separated by new input events and

output events defmed in the composition.

Fonnally, if Ey E efrags(Y) where Y is the multiplicative composition of some Xi'

Eyl~ can be expressed as a sequence Ea, 7ta, oea, Eb' 7tb' oeb'''' where each E e

efrags(TR(X)i),7t e New-Input-Events, and oe c New-Output-Events.

Proof: Let Y = the multiplicative composition of ~, and suppose that Ey =

sl,envl,7t2,oe2,s2,env2'" By the definition of an execution fragment, sl is an element of

ES(Y), and every six-tuple (sk_l,envk_l,7tk,oek,sk,envk) is a step of Y. Two facts follow

from the definition of the multiplicative composition Y. First, sll~ e ES(~) for some i.

Second, if 7t E New-Input-Events, (sk-l ,envk_l ,7tk,oek,sk,envk)l~ is a step of the same ~.

If 7t E New-Input-Events, then the six-tuple (sk_l,envk_l,7tk,oek,sk,envk) can be broken into

four portions, where sk_l,envk_ll~ is a null execution of Xi' 7tk e New-Input-Events, oek

c New-Output-Events, and sk,envkl~ is a null execution of~. Therefore, if Ey E

efrags(Y) where Y is the multiplicative composition of some Xi' EylXi can be expressed as a

sequence Ea, 7ta, oea, Eb' 7tb' oeb'''' where each E e efrags(TR(X)i)' 7t e New-Input­

Events, and oe c New-Output-Events.

-78-

Chapter 5

Future Work and Conclusions

The visual language and fonnal representation of the partitioned computation

Inachine presented in this thesis reach the goals that were set for this work. The partitioned

computation machine uses a primarily visual, state-based langauge and a fonnal

representation for describing the execution of this language. The representation pennits

incremental changes to be made and describes the fonnal semantics without losing

infonnation provided by the specifier. Furthennore, modularity and abstraction are

encouraged by the PCM without restricting the computational power of the model to less

than that of a Turing machine. However, there are some aspects of the partitioned

computation machine model and its usage that would benefit from further research.

5.1 Future Work

Future work with the fonnal model of the partitioned computation machine could

provide additional fonnality to the issues of variable usage and consistency with

simultaneous events. Additional future work could also implement both the visual

language and the fonnal representation in a single system to permit easy, rapid development

of PCM specifications. Finally, the model could be extended to incorporate the ideas of

multiple transitions occurring atomically.

5.1.1 Variable usage

5.1.1.1 Languages to describe variables

One area of future work with the partitioned computation machine is to fonnalize the

language used to describe variable usage. The elements of the fonnal model which are used

-79-

to describe the type, conditional predicate, and variable assignment of variables are

extremely formal and need a language to describe them to make the model readily useful.

A specific language should be developed to describe the different types a variable can

assume and the valid predicates and assignments for that type. This language would need

to provide a way for translating expressions in the language into all the sets used for

variable description as described in section 4.3 .2.

A significant area for research with variable usage concerns issues which arise with

the use of arbitrary predicates to determine the enabling of arcs in a language. The general

problem of determining if two arcs are ever enabled for the same input (in specific, this is

the determination of overlapping(pred1, pred2) at the language level) is potentially

undecidable with arbitrary predicates on infinite variables. In order to guarantee the

satisfaction of the constraints given in section 4.2, restrictions on the language of predicates

could be imposed. In addition, it may be desirable to relax the requirment that all

assignments reference different variables to the less strict requirement that all variable

assignments occuring on simultaneous transitions provide the same final values for the

variables in all sequentializations of simultaneous assignments. Exploring the issues

involved with relaxing the constraints on the PCM by use of a specific variable description

language is an interesting future area of work.

5.1.2 Simultaneous event issues

A second area of potential future work with the partitioned computation machine is

the development of algorithms for detecting the inconsistencies introduced by simultaneous

events. As discussed in section 3.8, the model requires that valid specifications provide

consistent behavior from the generation of simultaneous output events. The required

consistency can be at varying levels of strictness. The strictest sense of consistency

requirements is that the machine must have the exact same state and assignments to

-80-

b)

Figure 5-1: A PCM generating infinite events

variables immediately after perfonning the simultaneous output events in any order. This

strictest fonn of consistency is the one suggested here, as it seems to be less difficult to

verify than slightly looser requirements. Looser consistency could be pennitted by instead

requiring that the machine have the exact same state and variable assignments after

perfonning the simultaneous output events in any order and handling any events that are

generated by transitions resulting from the original simultaneous events. This type of

consistency, however, could be much more difficult to verify as the original simultaneous

transitions may generate events which generate other transitions, etc. Indeed, a machine

could be envisioned which has a single input event which generates another event, which

then generates another event, etc., as in Figure 5-1. An execution of such a machine could

never process all of the pending events. Alternatively, consistency does not have to be

required by the computational model at all. It is mentioned as a requirement in this thesis

because the partitioned computation machine is intended to serve as an application for

-81-

program development. In a program development environment, detenninism of executions

is desirable so that bugs in specifications or implementations can be detected readily. Non­

deterministic executions such as PCM executions that depend on ordering of simultaneous

events are exceedingly difficult to debug.

5.1.3 Translation to input/output automata

It is desirable to consider the possibility of translating the PCM into an I/O automata.

Such a translation would permit the PCM to take advantage of existing proof techniques

developed for I/O automata. This translation involves building two input/output automata

which interact to simulate the PCM. This section proposes one way that such automata

could be built. Detennining the details of the construction would be a future research topic.

5.1.3.1 The high level translation

The partitioned computation machine cannot be directly translated into an equivalent

input/output automaton. One reason for the inability to perform a direct translation is the

fact that the PCM and I/O automaton have different restrictions on the input and output

events which they accept. The PCM permits the same event to be both an input and output

of the machine. The I/O automaton, however, requires that the input and output action sets

be disjoint for a single automaton. A second distinction between the two specification

models is that the PCM permits an input and possibly multiple outputs to appear on a single

transition arc while the I/O automaton requires that each step have a single action

associated with it. Thus, the transitions taken by the partitioned computation machine in a

single step may require multiple steps in an I/O automaton. Providing exactly the same

behavior as the PCM requires that an I/O Automaton takes several steps atomically. Since

the I/O automaton is always input-enabled, it is necessary to have a second I/O automaton

act as a queue automaton to permit the first automaton to take multiple steps consisting of

locally-controlled actions without being interuppted by new input. Finally, the I/O

-82-

automaton acting as a queue automaton can also serialize the input events as the PCM

expects. This serialization is important so that the I/O automaton does not make non-

detenninistic choices about which input event to handle -- the PCM considers all input

events serially.

-- I/O Automata -
Queue
Machine

External
Inputs
(Ser~al)

Request

~ I/O Automata
Emulating PCM

Input Behavior
for PCM

•
Ext
Out
(Se

ernal
puts
rial)

Figure 5-2: The High Level Model for I/O Automata Emulation of a PCM

Figure 5-2 shows how two I/O Automata can interact to simulate a PCM. The left

I/O Automaton acts as the queue automaton, while the right I/O Automaton directly

corresponds to the PCM which is being emulated. The queue automaton receives all

external inputs, and also receives all output events from the primary automaton. The

primary automaton only receives inputs from the queue automaton when it requests them.

Additionally, the primary automaton can indicate if its output events are to be considered as

simultaneous.

5.1.3.2 The interaction of the automata

The way that the pair of automata work at a high level is as follows:

1. The primary automaton requests an input from the queue automaton.

2. The queue automaton provides the primary automaton with the input from the

front of the queue. Meanwhile, the queue automaton may be queueing

external inputs that are received. If the queue is currently e,mpty, the queue

automaton will send the next input received to the primary automaton.

3. When the queue automaton provides the primary automaton with an input, the

primary automaton perfonns a sequence of steps corresponding to what the

emulated PCM would do with such an input in one of its steps. Any outputs

-83-

that are produced by the primary automaton during this sequence of steps are

queued by the queue automaton with no external inputs separating them. This

queueing behavior occurs since any outputs produced would be simultaneous

in the emulated PCM since they are the result of a single PCM step.

4. After the equivalent of a single PCM step, the primary automaton requests

another input. The queue automaton queues up any external inputs received

since the last request, and then queues up any feedback inputs from the

primary automaton. This process then returns to step 2 above.

The actual translation of a partitioned computation machine into input/output

automata requires the construction of the appropriate input/output automata to serve as the

queue automaton and as the primary automaton. The two automata are then composed in

the manner of input/output automata to emulate the partitioned computation machine. The

definition of the queue automaton should be relatively straightforward as it is similar to

other work already done with I/O Automata. [Lynch 88]

5.1.3.3 The definition of the primary automaton

The input/output automaton specifying the primary automaton contains the real

behavioral information present in the partitioned computation machine being emulated.

There are a number of issues to be considered in specifying the primary automaton. First,

there is no explicit tree hierarchy dividing states into leaf, internal, and root states in an I/O

automata. Thus, the hierarchy of the partitioned computation machine must be "flattened"

in the construction of an equivalent input/output automaton. The PCM fonnal model

already creates such a set, ES(X) for the fonnal execution. However, the existence of

multiple outputs and variable assignments occuring on a single transiton arc in the PCM

will require such transitions to be broken into a short sequence of input/output automaton

steps. The major work to be done here would specify what modifications to the extended

set of states, ES(X), are needed and to determine how the transition relation for the primary

autolnaton is defIned from the PCM.

-84-

5.1.4 Implementation of the PCM

A large area for future work with the partitioned computation machine would be an

implementation of both the visual language and the execution of the formal representation.

A graphical interface specifically intended for the development of PCMs would make the

visual specification of a machine more precise than a pencil and paper drawing. The pencil

and paper drawings, however, would still have usefulness as a preliminary method of

designing a specification due to the ease of which they can be drawn while a specifier is in

a creative frame of mind. An implementation of the visual language would permit the

formal representation to be created directly from the graphical representation. The formal

representation can be executed directly. Thus, a user could create a specification of an

entire system in the partitioned computation machine's visual language. The computer

could then simulate the execution of the PCM, producing an execution string. This

execution string could be compared to the specifier's desired behavior of the system. This

process would give immediate feedback to the specifier as to whether the actual behavior

corresponds to what is desired.

5.1.5 Atomic multiple-step transitions

The partitioned computation machine relies on a continual stream of inputs to

continue processing. This stream of inputs can either come from outside the machine, or be

generated by the machine itself. A current limitation of the machine is that it handles input

events and output events with a strict queueing mechanism. It may be desirable at times to

have a multiple-step transition within the machine take place before any external input is

examined. An extension to provide this capability could be done by defining multiple

transitions to occur as a atomic transition. The definition of such atomic transitions may be

an area for future work.

-85-

5.1.6 Complexity of concurrent machines

The partitioned computation machine makes concurrent computation easier to

consider through the use of concurrent children in the hierarchy. However, the complexity

of simulating concurrent machines is not addressed by the formal model for the PCM. The

formal model represents concurrency as the cross-product of all possible states in

concurrent children. The notation reduces the conceptual complexity of the concurrent

computation, but the formal model attacks the issue by brute-force cross-product expansion.

Future research with the PCM could consider the possibility of permitting the

simulation of a formal model with concurrent children by using concurrent processes in a

machine. The model may need to be extended to deal with temporal issues in a concurrent

system.

5.2 Conclusion

The partitioned computation machine does, to a significant extent, satisfy the goals

for which it has been constructed. The PCM defmitely provides a visual language that

helps to make apparent the control flow of the specified system. The hierarchy and

modularity of the visual language make the language easier to understand as common

behavior can be viewed as such. The representation for the visuallanguge is sufficiently

formal to permit a precise semantics for the execution of a partitioned computation machine

and also maintains all of the information regarding the visual language excepting the

physical placement of graphical items. The information regarding the state hierarchy,

interconnections of transition arcs, and variable types, predicates and assignments are all

maintained in the formal representation. The PCM also maintains at least the

computational power to model all computable behaviors.

[Allworth 81]

-86-

References

S.T. Allworth.
The Process Virtual Machine.
Introduction to Real-Time Software Design.
Springer-Verlag, 1981, pages 95, 100-109, Chapter 7, "The Process

Virtual Machine" .

[AlpernSchneider 85]

[Buhr 84]

[Buhr 88]

[Cardelli 84]

B. Alpern and F.B. Schneider.
Defining Liveness.
Information Processing Letters 21(4):181-186, October, 1985.

R.J.A. Buhr.
System Design with Ada.
Prentice-Hall, Englewood Cliffs, NJ, 1984.

R.J.A. Buhr.
Machine Charts for Visual Prototyping in System Design.
SCE-88 2, Carleton University, August, 1988.

L.A. Cardelli.
Semantics of Multiple Inheritance in Semantics of Data Types.
Lecture Notes in Computer Science. Volume 173. Semantics of Data

Types.
Springer-Verlag, 1984, pages 51-67.

[ChandyMisra 88] K.M. Chandy and J. Misra.

[Davis 88]

[Green 86]

[Hare187]

[Hare188]

[Hare189]

Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

A.M. Davis.
A Comparison of Techniques for the Specification of External System

Behavior.
Communications of the ACM 31(9):1098-1115, Sept, 1988.

M. Green.
A Survey of Three Dialogue Models.
ACM Transactions on Graphics 5(3):244-275, July, 1986.

D. Harel.
Statecharts: A Visual Fonnalism for Complex Systems.
Science of Computer Programming 8:231-274, 1987.

D. Harel.
On Visual Formalisms.
Communications of the ACM 31(5):514-530, May, 1988.

D. Harel.
The Semantics of Statecharts.
Technical Report, i-Logix, August, 1989.

-87-

[Harel et al87] D. Harel, A. Pnueli, J.P. Sclunidt, and R. Shwennan.
On the Fonnal Semantics of Statecharts.
In Proceedings of the 2nd IEEE Symposium on Logic in Computer

Science, pages 54-64. Ithaca, NY, 1987.

[Harel et al88] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Shennan,
and A. Shtul-Trauring.
ST ATEMA TE: A Working Environment for the Development of

Complex Reactive Systems.
In Proceedings of the 10th IEEE International Conference on Software

Engineering, pages 396-406. Singapore, April, 1988.

[Hoare 78] C.A.R. Hoare.
Communicating Sequential Processes.
Communications of the ACM 21(8):666-677, August, 1978.

[Jacob 83] R.J.K. Jacob.
Using Fonnal Specifications in the Design of a Human-Computer

Interface.
Communications of the ACM 26(4):259-264, April, 1983.

[KaramBuhr 87a] O.M. Karam and R.J.A. Buhr.
A Temporal Logic-Based Operational Specification Language,

Interpreter, and Deadlock Analyzer for Ada.
SCE-87 7, Carleton University, August, 1987.

[KaramBuhr 87b] O.M. Karam and R.J.A. Buhr.
Starvation and Critical Race Analyzers for Ada.
SCE-87 8, Carleton University, August, 1987.

[Lamport 89] L. Lamport.
A Simple Approach to Specifying Concurrent Systems.
Communications of the ACM 32(1):32-45, January, 1989.

[LewisPapa 81] H.R. Lewis and C.H. Papadimitriou.
Elements of the Theory of Computation.
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[Lynch 88] N.A. Lynch.
I/O Automata: A Model for Discrete Event Systems.
MIT/LCS/fM 351, MIT, March, 1988.

[LynchTuttle 88] N.A. Lynch and M.R. Tuttle.
An Introduction to Input/Output Automata.
MIT/LCS/fM 373, MIT, November, 1988.
(TM-351 Revised).

-88-

[Pnueli 86] A. Pnueli.
Applications of Temporal Logic to the Specification and Verification of

Reactive Systems: A Survey of Current Trends.
Lecture Notes in Computer Science. Volume 224.Current Trends in

Concurrency.
Springer-Verlag, 1986, pages 510-584.

[Reiss 86] S.P. Reiss.
Visual Languages and the GARDEN System.
Lecture Notes in Computer Science. Volume 282.Visualization in

Programming.
Springer-Verlag, 1986, pages 178-198.

[Rumbaugh 88] J.E. Rumbaugh.
State Trees as Structured Finite State Machines for User Interfaces.
InACM SIGGRAPH Symposium on User Interface Software. Banff,

Alberta, 1988.

[Ward 86] P . Ward.
The Transformation Schema: An Extension of the Data Flow Diagram

to Represent Control and Timing.
IEEE Transactions of Software Engineering 12:198-210, 1986.

[WardMellor 86] P. Ward and S.J. Mellor.
Structured Deleopment for Real-Time Systems.
Specifying Control Transformations.
Yourdon Press, New York, NY, 1986, pages 64-80, Chapter 7.

[Wasserman 85] A.I. Wasserman.
Extending State Transition Diagrams for the Specification of Human­

Computer Interactions.
IEEE Transactions on Software Engineering SE-11(8):699-713, August,

1985.

[Yourdon 89] E. Yourdon.
State-Transition Diagrams.
Modern Structured Analysis.
Yourdon Press, Englewood Cliffs, NJ, 1989, pages 259-274, Chapter 13.

[Zave 85] P.A Zave.
A Distributed Alternative, to Finite-State-Machine Specifications.
ACM Transactions on Programming Languages and Systems 7(1):10-36,

January, 1985.

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088

