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Abstract 

In software design and specification, a formal, easy-to-use specification language is 
desirable. Formal specification languages and easy-to-use languages already exist, but 
none combine these qualities with a visual representation. The Partitioned Computation 
Machine (PCM) is intended to serve as such a specification tool. It includes both a fonnal 
representation for a visual model extending Harel' s statecharts, and a language which adds 
visual state representation and hierarchy to Lynch's I/O Automata. This thesis proposes a 
fonnal model for a PCM and explains how the PCM model relates to statecharts and I/O 
Automata. 
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Chapter 1 

The Motivations for the Partitioned Computational Model 

1.1 Introduction 

The Partitioned Computational Model (PCM) is a specification tool intended to 

pennit description and reasoning about systems which can be characterized by discrete 

events. This thesis introduces the model, the reasons for its development and examples of 

its use. The text is organized as follows: The remainder of this fIrst chapter presents the 

goals the PCM seeks to fulfill. Chapter two discusses the other fonns of specifIcation from 

which the PCM has been incrementally developed. Chapter three contains an infonnal 

overview of the model, and chapter four presents the model fonnally with examples of 

partitioned computation machines. Lastly, the fifth chapter discusses the strengths and 

weaknesses of the PCM as well as some possible directions for further work with the 

model. 

1.2 Motivations for the peM 

The Partitioned Computation Model seeks to fulfill a number of goals that were 

detennined before the project was commenced. These goals all share a common interest -­

to make a specification language that is usable in real industrial examples. 

One of the primary goals of the PCM is to fonn a primarily visual, state-based 

specification language similar in appearance to a fmite state machine. These are really two 

separate but related goals: a visual language, and a state-based specification. First of all, 

the concept of a classical fmite state machine is a common, well-known fonn of behavioral 

specification. Its chief advantages are that behavior is fully specified, and the state of the 
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machine can be encapsulated visually. The syntax of the language to describe finite state 

machines is simple and easy to understand, so a layman can quickly understand the 

specification's meaning. The primary advantage of the graphical language for a state 

machine is that the structure of the control flow with respect to transitions, loops, and 

decision branches is immediately evident. It is not necessary to track through pages of 

written code to determine from where a procedure is called or to see where a loop ends. 

Simply put, the visual language of the classical state machine makes its control flow easy to 

view. The ease of perceiving the control flow in a state machine is a desirable goal in any 

specification language. For this reason, the goal of a state-based visual specification is 

sought. 

Another primary goal of the PCM is that the specification be not just a set of 

heuristics or guidelines for forming the program, but rather that the language have a 

specific, well-defmed formal semantics. The model should have a formal meaning and a 

formal representation. There should be a single formal representation for each possible 

diagram, and there should be a manner to formally represent the semantics of the diagram 

so that the meaning is entirely preserved in the representation. 

A third goal for the PCM is that it be designed in such a manner that incremental 

changes to a partially-completed specification are easy to make. The PCM is intended to be 

used as a working model for developing a specification. Some formal specification 

techniques are excellent for precisely indicating what is desired in a completed design. 

However, modifying such a specification during development of the system is often a 

difficult task. The PCM is intended to permit small incremental changes to be made easily, 

without requiring massive restructuring of the entire specification to make small changes to 

the behavior that is being specified. 

A fourth goal is that the specification language should preserve the specifier's 

problem structure throughout the specification development process. This goal essentially 
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means that the fonnal model should not disregard any infonnation provided by the 

specifier. For instance, if a designer wishes to indicate that a certain event always be 

handled in a specific way, the underlying formal model should represent that condition in 

the same manner, without having to separately indicate in each possible state that the 

specific event is handled in a specific way. It should be possible to specify behavior upon a 

group of states without having to consider such behavior as being a summation of many 

individual behaviors. On the other hand, there are occasions when group behavior is not 

intended, but is simply a "coincidence" of many individual behaviors. In this instance, the 

specification language should not automatically abstract group behavior, but should 

preserve the specifier's intent of separate, but coincidentally the same, behaviors. 

However, it may be appropriate for an implementation of the partitioned computation 

machine to suggest such an abstraction to the user when many states share common 

behavior behavior arises in case the system being specified really contains group behavior, 

but the specifier hasn't yet realized this. 

A fifth goal of the partitioned computation machine model is that it have fully general 

computational power. The expressive ability of the model should not be limited to behavior 

that can be defmed by only classical finite state machines, context-free grammars, or 

recursive functions. Instead, the partitioned computational model should be able to express 

any type of behavior that can be implemented by a fully general Turing machine -- that is, 

anything that can be computed. In fact, it is possible for the PCM to describe even a larger 

class of behaviors. At the same time, however, it is desirable for the partitioned 

cOlnputation machine model to permit the behavior to be readily examined to see if it can 

be represented solely by a fmite state machine, computational grammar, or augmented 

regular expressions so that automated proving techniques could be used upon these aspects 

of the model's behavior in such a case. 

To permit abstraction and modularity is another goal for the PCM. It is generally 
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extrelnely advantageous to reason about the behavior of a system as being a combination of 

other types of behavior. Modularity permits the overall behavior to be broken into modules 

and to reason about the behavior of each module separately. Abstraction permits one to 

determine the behavior of a module and then concern oneself only with its behavior, and 

not the internal details that provide that behavior. In addition to increasing the 

comprehensibility of a specification or program, the concepts of modularity and abstraction 

also permit modules that are generally useful to be iInplemented once and then re-used in 

many different applications. For both the iInprovement in ease of understanding and the 

possibility of reusing code, modularity and abstraction are desirable goals in the PCM. 

Lastly, a final goal for the PCM is that the specification model should readily permit 

siInulation or execution. It would be highly desirable for a siInulator of the specified 

behavior to be built directly from the PCM model. If a system were to be fully specified by 

a PCM, the entire system could be siInulated to test the behavioral specification to ensure 

that it is the desired specification. Then, as the system is iInplemented in a logical, modular 

fashion within the overall specification, each iInplemented model could replace the 

siInulated specification, leaving the remainder of the system with just the siInulation. In 

this manner, each iInplementation piece can be tested easily in the entire system, permitting 

both isolation and integration testing to occur naturally. 
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Chapter 2 

Background of the PCM 

2.1 Building Blocks of the PCM 

The PCM is built primarily from ideas of four existing specification techniques. The 

first of these specification languages is that used to describe a classical finite state machine, 

a mechanism that is familiar to all computer scientists, making it an excellent starting point 

for a new specification technique. The PCM also uses Harel' s statecharts [Harel 87] for 

some aspects of the visual syntax and some of the features relating to the specification of 

transitions. The PCM draws upon Rumbaugh's state trees [Rumbaugh 88] for the notion of 

formal inheritance within a hierarchical tree-like structure of states. Lastly, the PCM relies 

upon Lynch's Input/Output automata [Lynch 88] as a basis for the formal representation for 

the visual language. Additionally, Lynch's model has the full generality that the PCM 

desires; the fact that I/O automata can express the full generality of the PCM permits the 

same behavior to be expressed by each. Furthermore, since they can express the same 

behavior and have similar formal models, the PCM can theoretically be translated into an 

equivalent I/O automaton which can then be used for theorem-proving -- such a process 

essentially utilizes the PCM as a visual front-end for the I/O automata. 

This section will examine, in greater detail, the aspects of the PCM that have directly 

evolved from each of these other specification models. 
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2.2 The Classical Finite State Machine 

There are two primary ideas in the Partitioned Computation Machine that have 

evolved from ideas in the classical finite state machine. The frrst of these ideas is the 

notion of describing the behavior of the system as separate modes of behavior that can 

occur, depending on the current "state" of the system. The second is the concept of 

representing the states, input events, and output actions in a visual format. 

The idea of describing the behavior of a system by frrst specifying the behavior in a 

nUlnber of modes and then specifying the transition behavior between the possible modes of 

the system is a very important concept in the state machine. The primary importance of this 

is that the only thing that matters to determine current or future behavior is knowing the 

current state. The specific sequence of events that have led to the current state is not 

important in determining behavior. This idea permits the entire concept of partitioning the 

behavioral specification of a system into equivalence classes (states), where each class 

shares common behavior. 

The second idea of describing the state, input events, and output actions visually is 

also important. The primary advantage of a visual language is that the control flow of the 

system is more readily evident than in most textual languages. In a typical computer 

language, state changes are made haphazardly throughout the code, without a special way 

to indicate when a significant change in the behavior of the system will result. In a state 

machine, however, transitions that make significant changes in behavior are easily 

recognized. As an example of this, consider Figures 2-1 and 2-2. 

The state machine in the figure and in the code both represent similar behavior for a 

simple text editor with the ability to handle text characters and two special function keys, 

escape and insert. The text characters are added to the document by the Process_Keypress 

procedure. The escape key is used to exit the program, and the insert key is used to toggle 
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KeyPress / Process_Keypress 

Figure 2-1: A State Machine for a Portion of a Text Editor 

Get_Input (Standard_Input, Input_Character); 

While (Input Character != Escape) Do 
{If (Insert Mode) then 

{If (Input Character == Insert) then 
{ -

Insert Mode := False; 
Replace_Mode := True; 

else Process Keypress;} 
elseIf (Replace Mode) then 

} ; 

{If (Input Character == Insert) then 
{ -

Insert Mode := True; 
Replac;_Mode := False; 

else Process_Keypress;} 

Exit_Routine; 

Figure 2-2: C Code for a Portion of a Text Editor 

between insert and replace modes. Although both specifications give similar behavior, in 

the state machine it is readily apparent what input events cause the transition to the new 

state (and new resultant behavior.) The equivalent C code, however does not make this 

obvious. The partitioned computation machine is built under the presumption that the input 

events that cause primary changes in behavior should be as evident from the PCM graphic 

specification as they are in the state machine specification of this example. 
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2.3 Statecharts 

Statecharts are an extension of standard state-transition diagrams but are still 

isomorphic to finite state machines. [Harel 88] The primary advantage of statecharts is that 

they give notational shorthands for expressing traditional state machines. The innovative 

forms of shorthand employed in statecharts include a hierarchical depth structure and a 

cross-product notation to address the exponential growth in the number of states for linear 

systeln growth. (The exponential growth problem comes from needing a separate state for 

each possible combination of conditions represented. For example, if there are n conditions 

for which state information needs to be maintained, and each has a binary result, then there 

will be 2n states needed. [Davis 88, p. 1102]) Additionally, statecharts begin exploration of 

state-based techniques for modeling a concurrent system with the cross-product notation. 

These primary statechart extensions to the visual language used for state machine 

description are also adopted in the partitioned computation machine. 

L 

Figure 2-3: A Statechart Using a State Hierarchy 

The ftrst significant feature of statecharts that is utilized in the partitioned 

computation machine is the notation for representing a state hierarchy. The statechart 
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represents the hierarchy of states by graphically placing substates physically within 

superstates as is shown in Figure 2-3. Transitions may originate or fmish at either a 

substate or a superstate. A transition to a superstate has the identical semantics as a 

transition to the "default" substate of that superstate. A transition originating from a 

superstate has exactly the same semantics as arcs originating from each and every one of 

the substates of that superstate. In this way, a single arc drawn from a superstate 

demonstrates that the behavior indicated on that arc is commonly shared among all of its 

substates. The ability to represent common behavior by parent states reduces the number of 

transitions which need to be drawn in large specifications. For example, in Figure 2-3, if 

transitions from parent states were not permitted, each of the states V, W, and X would have 

transitions going to state R for input a. Also, states R and S would both need transitions 

going to state W for input a. 

Figure 2-4: A Statechart Featuring Cross-Product Notation 

The second major feature of statecharts is the manner in which a large number of 
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states can be represented with a cross-product notation. Figure 2-4 gives an example of a 

state chart that has concurrently operating substates. The two halves of the statechart 

divided by the dotted line indicate concurrently-operating portions of the statechart. The 

current state within the superstate is the cross-product of the states of each concurrent 

substate. Transitions in response to an event occur simultaneously in all concurrent 

substates. This type of notation helps the user understand a large system more easily as the 

number of states which are represented in the visual language is much less then the number 

of states into which the cross-product expands. The complexity in the number of states is 

still present in the underlying model, but is hidden from the user. 

2.4 State Trees 

Rumbaugh's state trees are a state-based specification tool intended for the design 

and specification of user interfaces. The model presents a number of innovations, including 

entry and exit routines with states and inheritance of behavior from parent states to their 

descendants. Of these innovations, the only one which is used in the partitioned 

computation model is the ability to inherit behavior from parent states. 

Inheritance of behavior from a parent state is permitted in Harers statecharts, 

however in a statechart, such inheritance requires consistency between transitions defmed 

upon parents and their children. State trees, however, permit the children to take exception 

to the behavior which is defined at the level of the parents. In this way, the parent provides 

a default behavior that the child may use without change, or modify to suit its own needs. 

The behavior present at the level of the parent may be viewed in one of two ways: as 

a requirement for the child to have a certain form of behavior, or as a default behavior that 

the child may follow or may override. Statecharts use the former view, while state trees 

view the behavior in the latter manner. Both languages can describe the same behavior, but 

the abstraction methods differ. In the partitioned computational model, the type of 
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inheritance defined in the statechart has been used because it provides a simpler model 

since child and parent behavior is required to be consistent. 

2.5 Input/()utput Automata 

The Input/Output Automaton is a modeling tool intended for describing and 

reasoning about concurrent and distributed discrete event systems. The notable strengths of 

the I/O automaton are that the model is defmed formally, that the model is executable and 

simulable (largely due to its formality), and that the model readily lends itself to proving 

fairness and liveness properties for a system. In addition, the model of I/O Automata 

permits distinct I/O Automata to be composed into a single automaton to express 

concurrent interaction between the separate component automata. All of these ideas are 

used in the partitioned computational model. 

2.5.1 The I/() automata formal model 

The fonnal model for I/O automata gives the specification technique two significant 

advantages. First, the precision of meaning which is provided by the formal model permits 

the execution of I/O Automata by a computer simulator. In this way, the behavior that is 

specified by the I/O Automata can be tested by running a computer simulation. Such a 

simulation technique provides an important method for checking that a specification may 

provide the desired results -- the results can be demonstrated directly. 

A second advantage of the I/O automata formal model is that it has been built with 

the intention of carrying out algorithm correctness proofs. In fact, one of the primary goals 

for the construction of the I/O automata is to produce correctness proofs for large, complex 

concurrent algorithms. Without a formal model upon which to build such proofs, creating 

valid proofs would be nearly impossible. An added bonus for using the formal model to 

prove properties about the specified behavior is that lnany of the proofs could be machine­

checked when automatic proof technology develops. 
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2.5.2 Composition of automata 

Another special feature of the I/O automata is that many automata can be composed 

to yield other I/O automata. This composition permits one to describe a algorithm or 

behavioral specification in a modular manner. The process of composition maintains some 

properties of component behavior for the result of the composition. The modularity permits 

complex behavior to be represented easily as well as permitting the user to reason about the 

behavior of the whole as the sum of its parts, instead of attempting to understand an entire 

cOlnplex system at once. 

One shortcoming of the I/O automata composition, however, is that the formal model 

does not maintain the modularity of the component specifications in its formal model. The 

composition process for I/O automata compresses a number of automata into a single one, 

but does not maintain the distinction between the component automata within the formal 

model. The only difficulty with this is that the specifier's view of the composition is 

organized around the individual components, but the structure of the components 

disappears in the composition process. This restructuring is acceptable for the primary 

applications of I/O Automata, proving algorithm correctness, since the I/O automata 

manner of composition guarantees that some types of properties proven for the component 

parts of a composition are still guaranteed for the whole. However, for the application 

domain of the partitioned computation machine, program specification, preservation of the 

specifier's intent at each level of specification is important. 
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Chapter 3 

The Partitioned Computational Model 

This chapter presents the partitioned computational model informally. First the basic 

building block, the finite state machine, is presented. Then, the expansions to the basic 

state machine, namely, a state hierarchy, variables associated with states, and the ability to 

represent concurrent substates are presented. Finally, the concepts of additive and 

multiplicative composition of partitioned computation machines are discussed. 

3.1 The Simplest Form -- The Finite State Machine 

The partitioned computation machine has evolved by adding a number of extensions 

to the basic finite state machine. In its simplest form, a partitioned computation machine 

has no more complexity than a simple state machine. The classical finite state machine has 

a set of states and transitions between states as its primary elements. Each transition 

between states is enabled when the event associated with the transition occurs. The 

classical FSM model requires that every input must pennit some transition, even if it is only 

a self-transition back to the current state. Such a simple state machine is considered to be a 

partitioned computation machine, albeit a very simple one. 

The Mealy modification to the language for the state machine is one of the oldest 

state machine modifications. It augments the state machine to generate output events by 

placing output events on the transition arcs between states. The Mealy model pennits the 

state machine to respond to input by performing a transition to a new state, and also to 

produce output in response to input. As an example of a Mealy fmite state machine, see 

Figure 2-1 on page 13. The extensions made by the Mealy FSM are the first extensions that 

make the state machine a useful computer specification tool, as it can describe the input / 
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output behavior of a computer system or any other type of machine. This simple model is 

sufficient to describe many types of behavior; in fact, it can describe any type of behavior 

by a "real" computer, since all computers have, in reality, a fmite number of states. 

However, such a description is unwieldy for specifying large systems. 

3.2 Basic Notation 

The basic notation for the partitioned computation machine gives a unique name to 

every state. The pictoral representation for a state consists of a rectangle with rounded 

corners with a "flag" on one of the upper corners that indicates the name of the state. (See 

Figure 3-1.) In the figure are two states, state A and state B. Transitions from one state to 

another state are indicated with an arrow. All transitions are enabled by an input event; the 

input event enabling a transition is indicated next to the arrow for the transition in the 

pictoral notation. Output events, if any, are indicated next to the arc, preceded by a slash 

(/). In the figure are transitions from A to A for input m and from B to A for input m, 

producing an output of n. 

Figure 3-1: The basic notation of a PCM 

The partitioned computation machine permits a single arc to contain any number of 

output events. All of the output events on a single arc are considered to occur 

simultaneously. As an example of this, see Figure 3-2. In the example there is a transition 

from state D to state C for input g that produces outputs of x and w. The PCM will produce 

output events for x and w in some order, determined non-deterministically. The ordering of 

these events affects the externally observable behavior of the machine. Furthermore, if 

these outputs are also inputs to the partitioned computation machine, the order in which 
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they are generated could affect the future behavior of the machine. The implications of the 

different possible orderings will be discussed further in section 3.8 on page 37. 

Figure 3-2: Simultaneous output events in a PCM 

3.3 The Inclusion of a State Hierarchy 

The next extension to the visual language for the Mealy state machine that is utilized 

in the partitioned computation machine is Harel's extension of adding a state hierarchy to 

the machine. The basic notation for representing a hierarchy of states in the partitioned 

computation machine is adopted from Harel's notation for statecharts. [Harel 87] In this 

extension, a tree hierarchy of states may be built, with each state, excepting a root state, 

being given a unique parent. The tree of states is represented by nesting contours 

representing the states. The contours for child states are drawn within the contour of their 

parent as in Figure 3-3. Parent states differ from leaf states in one manner: they may not be 

considered the current state of the machine. The current state of the machine must always 

be a leaf state of the tree. However, transitions may be defmed as beginning or ending at a 

parent state. 

3.3.1 Transitions from a parent state 

The semantics of transition arcs from a parent state is that an arc emanating from a 

parent is exactly the same as if the arc were a set of arcs emanating directly from each of 

the child states of the parent. For an example of this, let us consider a simple hierarchical 

PCM with three child states, A, B, and C, and one parent state, Y. (See Figure 3-3a.) In this 

simple PCM, there is a transition for input x that starts from parent Y and ends at child C. 
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a) b) 

Figure 3-3: Transitions from parents in a PCM hierarchy 

The transition from the parent Y is considered to have exactly the same meaning as three 

separate transition arcs for input x -- one that traverses from A to C, one that traverses from 

B to C, and one that traverses from C to C. (See Figure 3-3b.) In this manner, the arc 

defined at parent Y expresses the desired behavior that the input x always results in a 

transition to state C. Such notation permits behavior that is common to a number of states 

to be represented at a single parent state. Such an abstraction makes the behavior of the 

system easier to reason about, and also reduces the complexity of the pictoral representation 

of the machine. 

3.3.2 Transitions to a parent state 

The other form of transition involving a parent state is a transition to a parent state. 

Each parent state has a unique child state which is considered to be the default state for that 

parent. A parent's default state is indicated in the PCM notation by a transition emanating 

from a small black dot within the parent state. A transition arc which ends at a parent state 

is interpreted as being a transition to the default child of the parent state. The semantics 
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z 

Figure 3-4: Transitions to a parent state in a PCM hierarchy 

provided by this notation is that a transition which has a parent state as its destination is 

exactly the same as a transition directly to the default state of the parent. The reason for 

permitting transitions to a parent state when they are exactly the same as transitions to the 

default child of the parent state is that such a transition permits the parent state to 

encapsulate the default state -- this allows the state from which the transition emanates to 

abstract away from the internal state of the transition destination. As an example of such a 

transition, see Figure 3-4. This figure is an extension of Figure 3-3a with the additions of 

another level in the hierarchy and a transition from state D to parent state Y for input w. 

The diagram also indicates that state B is the default child of state Y. In this diagram, the 

transition from D to Y for input w gives the same behavior as a direct transition from D to B 

for input w. The distinction, however, is important to maintain in case future changes are 

made to the diagram. 

Default states of a parent are also used to determine the starting state of the 

partitioned computation machine. When a machine first begins execution, it begins as if 
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there were a transition to the root state. This root state would provide a default state which 

would actually be the starting state. (Of course, the default state of the root state could 

itself be a parent state with a default state, and etc.) 

3.3.3 Consistency requirements with parent transitions 

Figure 3-5: Inconsistencies between parent and child transitions 

The ability to define transitions at the level of parent states as well as at the level of 

the child states pennits inconsistencies to arise if transitions are defined at both levels for 

the same inputs. Figure 3-5 shows a case where the transition a is defmed both at the child 

state X and the parent state W. The two transitions for a from X and W give different 

destination states. The primitive set elements of the PCM fonnal model are capable of 

representing such an inconsistency (see section 4.1); however, in order to provide 

detenninistic behavior, the PCM imposes constraints to prohibit these inconsistencies. 

(Ensuring consistency for transitions defmed for the Sanle inputs is discussed further in 

section 4.2. If the transitions have the same destinations, having the redundant definition of 

the transition would be acceptable. An example of such a redundant defmition exists with 

the transitions labeled c in the same figure. 
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In an implementation of the PCM, inconsistencies of this type can be easily detected 

by examining the ancestors and descendants of the state for other transitions defined for the 

same input; an error message indicating that such an inconsistency is present could be 

provided to the user. (See section 4.2 for a constraint forbidding this type of inconsistency.) 

Some specification languages permit such inconsistencies, either by non-deterministically 

choosing which of the transitions to consider [Lynch 88], or by having some deterministic 

technique for determining which transition overrides the other [Rumbaugh 88]. In the 

partitioned computation machine, we choose to avoid such inconsistencies, however, to 

permit deterministic behavior and also to view behavior defined at the level of a parent as a 

required behavior for all children, as discussed in section 2.4, beginning on page 16. 

3.4 Variables Associated with States 

The next extension to the hierarchical partitioned computation machine is to associate 

variables with the states. This extension is similar to an extension for parameterizing states 

in statecharts suggested by Hare!. [Harel 87] However, the partitioned computation 

machine includes this feature as part of the language and formal model, using an entirely 

different syntax than the one Harel suggests. 

Each state can have variables associated with it. These variables maintain state 

information that the designer has chosen not to represent as a grouping of separate states. 

The use of variables associated with states can greatly simplify the state diagram if most of 

the variable values result in the same control flow characteristics. Each variable has a 

scope limiting the visibility of the variable to the state to which it is associated and any 

descendants of that state. In the pictorial representation for partitioned computation 

machines, variables are listed in the state below the flag giving the name for the state, a 

range or list of values which each variable can assume, and an initial value for the variable. 

Variables that have not yet been explicitly assigned will have their initial value. Variables 
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are accessed and modified by the transition arcs. In addition to responding to input events 

and possibly generating output events, each transition arc can have a predicate clause which 

checks the value of any visible variables, enabling the transition only when the predicate is 

true. Each arc can also have variable assignments that are performed when the transition is 

followed during execution. The only requirements upon transition arcs is that they have a 

source state, an input event, and a destination state. 

I decade-counter 

Current-count:O .. 

Figure 3-6: A simple decade counter 

Figure 3-6 provides an example where a simple hierarchical partitioned computation 

machine represents a counter which repeatedly increments the value of the count variable 

upon each occurrence of the increment input event. The counter commences at the initial 

value of zero, and whenever the count increments from a value of nine, a carry-out output 

event is generated and the counter restarts at the initial value of zero. This example 

demonstrates how the use of variables can greatly simplify the state diagram. In this case, 

although the variable count can take on ten different values, the only criterion affecting the 

control flow of the partitoned computation machine is whether or not the variable has a 
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value of exactly nine. If this condensed fonn of variable representation were not available, 

it would be necessary to pictorally depict ten different states for each of the ten possible 

values of the counter. The many states required to represent variable values would serve to 

clutter the diagram and obscure the control flow which the partitioned computation machine 

seeks to make evident; the condensed representation of variables, however, permits the 

specification to depict the control-affecting aspects of the variable pictorally without 

necessitating a distinct pictoral state for each possible value. 

3.5 Concurrent States in the Hierarchy 

....... 
• A • .i.···· I ••••••• · . · . · . · . · . · . · . · . · . · . ~ . . ." •.....•..•••• 

:W. B •• : . .•.............. 
· . · . · . · . · . . · . · . : . .. .: . •.•......•.• 

• c • .i .... . 1 •• ••••• · . · . · . · . · . · . · . · . · . · . · . ..... ........... . 

a) b) 

Figure 3-7: An example of PCM concurrent notation 

Another significant feature in the partitioned computation machine is the ability to 

express the concurrent operation of states in a manner similar to Harel' s cross-product 

notation. The partitioned computation machine permits the children of a parent state to be 

operating concurrently. The notation for describing concurrency is to outline the 

concurrent child states with dashed lines as in Figure 3-7 a instead of enclosing them in the 
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nonnal solid lines as would be the case for the non-concurrent children in Figure 3-7b. 

This notation is used instead of that of statecharts to pennit the parent and each of the 

concurrent children to have local variables without requiring both a dashed line separating 

children and a box around each child as in figure 3-8. [Harel87] 

....... ....... 
: A : 

: B : 

. 1.······ ..... . 
! a-var: 0 .~ 

.1.····· ...... . 
! b-var: 0 .~ 

· . . · · · · · · . · . · . · . · . · . · . · . ................. 
· . · . . ............... . 

....... 
• c • .i .... . 1 • •••••• 

! c-var: 0 •• · . · . · . · . · . · . · . · . ~ . . ." •.........••• 

PCM notation Extended Statechart notation 

Figure 3-8: PCM vs. Statechart's notation extended to include variables 

In a state with concurrent children, the current state of the system actually consists of 

a set of states that are active concurrently. In figure 3-9, the current state would be 

considered to be a set of states such as {A, M, X}, or {B, N, X}. The semantics of transition 

behavior when the current state is a tuple of states is that an arc from each element of the 

tuple may be enabled. Transitions in all concurrent states for the same input events appear 

to occur simultaneously. The simultaneous execution of such transitions will lead from one 

tuple of states to another tuple of states. As an example of this behavior, consider a case 

where the current state of Figure 3-9 is {A, M, X}. When an input event / is received, the 

next state will be {B, M, Y} because the transitions from A to B, M to M, and X to Y will all 

occur simultaneously when input event/is received. 

One advantage of the concurrent notation is that many fewer states need to be 
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.............. 
: child-2 : . . .. ,. ................................ . . . . . : . 

· · · · · · · · · · · · . · . · . . : ...... . ..... . ................•........ 

~ ................ , .....•.....•......................•• .............•............ .... . ... 
• y •• : . 

! : · . · . · . · . · . · . · . · . · . · . · . · . · . · ~ ......... . ...................... . •••..•.•..•...•..............•....•••..••.....•...•...• 

Figure 3-9: An example of PCM concurrent notation 

depicted in order to describe the actual control flow than would be depicted in a fully-

expanded notation. In addition, the concurrency aspect of the notation pennits the designer 

to use the natural idea of parallel execution to describe the system. This is especially useful 

if a system has multiple modes or values that could be either on or off simultaneously. 

Consider an editor which has a insert mode, a caps-lock mode, a control-character mode, 

and an automatic justification mode. Depending on whether or not these modes are active, 

different behavior will be provided by the system. The cross-product notation pennits the 

user to think about the modes as being separate, but active concurrently. This is an 

advantage in reasoning about the systems, and in preventing the enumeration of all sixteen 

possible combinations of the modes. 
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3.6 Consistency Requirements with Concurrent Children 

......... . 
: s : . ~ ..•.....•.•......•.•...•.•••• 

~. ~ . . . . : . . . 

............ 
: T : 
: ................................. . .. .. . . . . : . · · 

· · · · · · . · . · . · . . . .... . ... ................... .......... . 

Figure 3-10: Inconsistencies between concurrent transitions 

The ability to define transitions for the same inputs on each of the concurrent children 

in a partitioned compuation machine permits inconsistencies to arise if such transitions have 

different destination states or modify the same variables. Figure 3-10 shows a case where 

the transition a is defined on two concurrent states, W and Y. These two transitions are 

consistent because they both give transitions that maintain the concurrency. Assuming the 

current state is (W, Y) and a is recieved as input, the next state will be (X, 2). However, the 

transition for b from the state W is disallowed as it violates the concurrency of the states S 
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and T, by starting and finishing in states which are concurrent. Such transitions are 

prohibited in the PCM. As another example of an inconsistent transition, the two 

transitions for c from X and Z conflict because the transition from X indicates that the 

concurrent states should be exited, with the new state being simply Q, while the transition 

from Z would maintain the concurrent pairings with the next state being (*, Y). As with 

inconsistencies with parent and child states mentioned in section 3.3.3 on page 24, the sets 

used in the formal model for the PCM are capable of representing such an inconsistency, 

but constraints are imposed on the model to forbid this case. 

An implementation for the PCM will prohibit the existence of the inconsistencies 

outline above. A more subtle inconsistency exists in the same figure where the transitions 

from a current state of (X, Z) for input d give conflicting variable assignments for the index 

variable. One way to require this form of consistency is to prohibit arcs which could be 

simultaneously enabled from making assignments that reference the same variable. The 

more general problem of ensuring that multiple assignments resolve to the same value 

could be very difficult. The possibility of including such a consistency check is discussed 

in section 5.1.1.1. None of these inconsistencies are allowed in a well-formed partitioned 

computation machine. In an implementation of the PCM, all of these inconsistencies could 

be detected by examining the other concurrent states for conflicting transitions that are 

simultaneously enabled; an error message indicating that such an inconsistency is present 

could be provided to the user. (See section 4.2 for a constraint forbidding this type of 

inconsistency.) As with inconsistencies between parents and children, the partitioned 

computation machine chooses to prohibit such potential problems and require deterministic 

behavior. 
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3.7 Composition 

A primary strength of the partitioned computation machine model is the ability to 

combine several partitioned computation machines into a single new machine. The 

resulting machine permits the behavior of the composition to be reasoned about as a 

combination of separate parts instead of requiring the entire machine to be considered as a 

whole. Additionally, composition permits general-purpose PCMs to be developed for use 

as building blocks for the construction of other PCMs. For example, a specification for 

data input from a keyboard device could be developed once, to be used by any application 

which needed to specify behavior for data input. 

The partitioned computation machine permits two types of composition, additive 

composition and multiplicative composition. Additive composition takes two or more 

partitioned computation machines and produces a new PCM by giving all of the 

components a common parent. This form of composition permits the behavior of the 

resultant machine to take on the behavior of any of the composed elements one at a time. 

Multiplicative composition produces a new PCM from two or more PCMs by making each 

component a concurrent child of a common parent. The essential difference between the 

two composition techniques is in the number of control threads maintained in the 

composition. Additive composition keeps one control thread, permitting transitions from 

each component machine to the others, but permitting only one component to be active at 

any time. Multiplicative composition, however, lets each component child operate 

concurrently, permitting multiple control threads. This corresponds to grouping the 

component PCMs as concurrent children of a common parent. 
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3.7.1 Additive composition 

Additive composition is a function that accepts some number of partitioned 

computation machines and produces a new PCM from them. The resultant PCM consists of 

a parent state with each of the given machines as a child state. In addition to requiring 

some number of PCMs as arguments, the additive composition function also requires a 

name for the new parent state and an indication as to which of the argument PCMs will be 

the default child for the composition. Furthermore, the composition function can accept 

optional arguments which associate variables with the new parent state, new input events, 

new output events, and new transitions describing how the current state can change from 

one of the children to another. The only restrictions upon the composition is that all the 

new events are disjoint from ones already defmed in the components, and that the names of 

states and variables are unique across all the components. Further constraints can be 

Figure 3-11: Three PCMs to be additively composed as an example 
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imposed to prohibit the possibility of inconsistencies arising between child and parent 

transitions as discussed in section 3.3.3 on page 24. These further constraints are also 

discussed in section 4.2. 

As an example of composition, consider a composition of the three partitioned 

computation machines shown in Figure 3-11. These three machines will be given as 

arguments to the additive composition function, along with Additive-Composition-Example 

as the name for the new parent state. Also, PCM A is chosen to be the default child for the 

composition. No new variables are indicated in this composition, but new transitions are 

given for input h from A to B, from B to C, and from C to A. The resultant PCM from this 

composition is shown in Figure 3-12. 

additive 
composition 

example 

Figure 3-12: The additive composition of the three PCMs of Figure 3-11 
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3.7.2 Multiplicative composition 

Multiplicative composition is a function that accepts some number of partitioned 

computation machines and produces a new machine from them. The resultant PCM 

consists of a parent state with each of the given PCMs as a concurrent child state. In 

addition to requiring some number of PCMs as arguments, the multiplicative composition 

function also requires a name for the new parent state. Furthermore, the composition 

function can accept optional arguments which associate variables with the new parent state, 

new input events, new output events, and new transitions that handle behavior at level of 

the new parent. The only required restriction upon the composition is that all the variables, 

and statenames for the components and new definitions be unique. As with additive 

composition, additional constraints may be placed on the arguments of the multiplicative 

Figure 3-13: Three PCMs to be multiplicatively composed as an example 
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composition to prevent inconsistent transition behavior both between a parent and children 

and between concurrent childen. These constraints are discussed in section 4.2. Another 

potential problem with multiplicative composition is that the composition may produce 

simultaneous outputs for some inputs where the original components do not. The 

consistency problem which may result from such simultaneous outputs is discussed in 

section 3.8 on page 37. Resolution of this consistency problem is left as a topic for future 

work in section 5.1.2. 

As an example of composition, consider a composition of the three partitioned 

multiplicative 
composition 

example 

integer 

....••....•• 
: A : . . .... : ............................... . . . . . · . · . 

· · . · . 
~ : . . ...... . ..... . ......•..••.............. 

: .......... . 
: c : . . .: ......................................... . .... . .. · . : ~ 

: : · . : : · . · . · · . · . · . · . : : · . · . ..... . ..... ................................... .. 

j / k h / 1 

............. 
: B : .:. .............................. . 

~. .~ . . · . · . · . · . · 

· · · · · · · · · · · · · · . · . : : . . . . . . . . ...... . ..... . ....................... 

Figure 3-14: The multiplicative composition of the three PCMs of Figure 3-13 
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computation machines shown in Figure 3-13. These three machines will be given as 

arguments to the multiplicative composition function, along with 

Multiplicative-Composition-Example as the name for the new parent state. Also, a new 

variable, comp-var, which can contain any integer value, is added to the parent state. New 

transitions are also given to the composition function indicating transitions just on the 

parent state for input j producing k as an output, and for input h producing I as an output. 

The resultant PCM from this composition is shown in Figure 3-14. 

3.8 Consistency Issues with Simultaneously Generated Events 

The partitioned computation machine generates simultaneous events in a number of 

cases, as has been pointed out in sections 3.2 and 3.7.2. If a partitioned computation 

machine is responding to simultaneous events, however, the events are considered in some 

serial order, chosen non-deterministically. It is possible that the chosen order of 

serialization could affect future behavior of the machine. 

To demonstrate this point, consider the example PCM in Figure 3-15. Assuming that 

the current state is state A, and the transition x is received, what would be the sequence of 

states followed? Both possible input serializations of y and z generated by the transition 

from A to B for input x must be considered. If the non-deterministic serialization is the 

ordering (y, z), then the transition from B to A will be taken for input y and then the 

transition from A to D will be taken for input z, resulting in D being the current state after 

the transitions are considered. 

Considering the other case where the input serialization in this example is the 

ordering (z, y), the transitions from B to C for input z will be taken, and then the transition 

from C to C will be followed for input y, resulting in C being the current state after the 

transitions are considered. In this case, the external input of x results in two different states 

for the partitioned computation machine after both possible input orderings of the resultant 
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Figure 3-15: Serialization of simultaneous events could affect future behavior 

events y and z are considered. A discrepancy such as this could lead to non-detenninistic 

results for a fixed simultaneous input, something which would be highly undesirable in an 

environment requiring detenninistic results. The non-detenninistic ordering of 

simultaneous events does not always result in non-detenninistic results, however. Consider 

the situation if the current state is B when the external input x is received. In such a case, 

state D will be reached after y and z are handled, regardless of the chosen order of 

serialization of the events. This second case would pose no problems for a detenninistic 

system, provided that the ordering of y and z is insignificant outside the machine. However, 

if this machine were to be multiplicatively composed with another machine which used y 

and z as inputs, the other machine may provide inconsistent behavior for different orderings 

of the y and z events. 

The fundamental question regarding the possibility of inconsistent behavior resulting 

from the generation of simultaneous events concerns the restrictions, if any, that should be 

placed on the partitioned computation machine to guarantee consistency. Preventing the 

model from generating simultaneous events would significantly decrease the usefulness of 
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multiplicative composition in the model, as machines which produced output depending on 

the same inputs would require the user to serialize all events, even if no inconsistency were 

to result. The proposed solution in the partitioned computation machine, however, is to 

permit the model to represent the fact that the possibility for inconsistency is present so that 

an implementation of the partitioned computation machine could warn the user of the 

potential problem. The user could then ignore the warning if consistency is unnecessary for 

his application, or take steps to correct the inconsistency. An implementation could search 

the partitioned computation machine to check if all possible orderings of simultaneously 

generated events result in the same state of the machine and perform the same operations on 

all variables. Such a search could consider only the handling of the initially generated 

simultaneous events, or could consider the effects of events generated in response to the 

initial events before requiring a consistent state for all possible serializations of the 

simultaneous events. A search of this form is made more difficult where predicates for 

variables exist. Different levels of consistency could be determined depending on the 

degree of consistency required by the user; this issue is discussed further in section 5.1.2 as 

a topic for future work. 
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Chapter 4 

The Formal Partitioned Computational Model 

The partitioned computational machine's most important quality is the fact that it is 

supported by a fonnal model. The visual representation has been designed with the goal of 

developing a corresponding fonnal model that provides a meaning for every visual 

construct. The fonnal representation of the PCM describes the structure of the state 

hierarchy and associated variables, groups the partitioned computation machine's events 

into input and output events, and defines the execution semantics for the partitioned 

computation machine. The first section of this chapter describes the fonnal representation 

of the pictoral information contained in the PCM diagram. The second section places 

constraints on the model to enforce consistency; the third section formally describes the 

execution semantics of the machine, and the fourth section provides the fonnal descriptions 

of composition. 

4.1 The Formal Representation of Pictoral Information 

The fonnal model for the partitioned computation machine's pictoral information 

consists of a collection of sets and mappings. Each set or mapping represents a portion of 

the infonnation provided by a PCM diagram. The fonnal representation must maintain 

information regarding the state hierarchy, the input and output events, the usage of 

variables, and the transitions indicated in the diagram. 

The fIrst four elements in the formal model serve to encapsulate the hierarchy of 

states. The fifth and sixth elements group the possible events of the PCM as input and 

output events. Elements seven through nine represent the variables which are associated 

with states. The tenth and fmal element of the formal model describes the arcs that are 

present in the PCM diagram. 
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The representation of the hierarchy of states consists of sets and mappings which 

signify the states in the hierarchy, and the parent relationships among them. The events 

recognized by the PCM are simply grouped into events that can be used as input or as 

output. The usage of variables is slightly more complex, however. The model assumes that 

a language exists to describe the type, conditional predicate, and variable assignment of 

variables, yet does not restrict the language used for this description. To avoid restricting 

the PCM's expressive capabilities by a specific language, the general concepts of values, 

variable names, types (where a type is a set of values), conditionals, and variable 

assignments are used. For a partitioned computation machine, X, the following would be 

defined: 

• V(X) : the set of variables used by the PCM X, 

• Val (X) : the set of possible values for variables, 

• Type(X) : 2Val(X)(the power set ofVal(X», 

• Env(X) : V(X) ~ Val(X) , 

• Pred(X) : 2Env(X) (the power set of Env(X»), 

• VAsg(X): Env(X) ~ Env(X). 

The above definitions warrant some additional explanation. Each element of 

Type(X) is a valid type for a variable. In this context, a type is simply a subset of the values 

in Val (X) which a particular variable can assume. An element of Env(X) is an 

environment, which maps each of the variables of the PCM into a value. An element of 

Pred(X) is referred to as a predicate and consists of a set of environments. An environment 

that is an element of a predicate is said to satisfy the predicate. This set of environments 

contains all environments that satisfy the predicate. Finally, an element of V Asg(X) is a 

variable assignment which produces a new environment, given an initial environment. 

Conceptually, a variable assigrunent assigns new values to variables. 

Also, to permit the usage of these sets, an additional function, Variables(asg) where 
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asg E V Asg(X), is defmed as the set of variables in asg which either have a different new 

value assigned to them, or can affect the new values assigned to other variables. (If asg 

were a set of assignment statements in a language, Variables(asg) would be the set of 

variables referenced on either the right- or left-hand-sides of the equation.) Finally, for two 

predicates to be Overlapping(pred1, pred2) means that [pred1 n pred2 *- 0]. To state this 

simply, two predicates are overlapping if there are any environments for which they are 

both satisfied. 

The specific use of these sets and mappings for variable usage is defmed as part of 

the PCM. The sets and mappings make the formal model more complex, but permit any 

language to be used to describe the use of variables. In the examples presented in this 

document, simple C-like syntax has been used for variable access and assignments, 

however, the model does not require such a syntax. Definitions of specific languages for 

variable manipulation and issues accompanied with their use are left as topics for future 

work as discussed in section 5 .1. 

Once the state hierarchy, events, and variable usage are defined, the only remaining 

element of the formal model is a transition relation which contains the information present 

on the transition arcs of the pictoral diagram. 

The formal model for a partitioned computation machine X consists of the ten 

following elements (continued onto the next page): 

1. A set of states, S(X), with the distinguished root element, so(X) E S(X) 

2. A parent mapping, P(X) = S(X) - {so(X)} ~ S(X) which configures the set 
of states into a tree, with sO(X) as the root. 

Define the set of leaf states, LS(X), the elements of S(X) that have no children 
as indicated by P(X). 

Define the set of internal states, IS(X), the elements of S(X) with both parents 
and children as indicated by P(X). 

Define the set of child states, CS(X) = LS(X) u IS(X) 

Defme the set of parent states, PS(X) = IS(X) u {so(X)} 
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3. A partition of PS(X) into AP(X) and MP(X), the parent states with additively 
composed and multiplicatively composed children, respectively. 

4. A default-child relation, DC(X) c PS(X) x CS(X), relating each additive 
parent state with one of its children and each multiplicative state to all of its 
children. (Each default child state must be one of the parent's children; 
formally, 'V (p, c) E DC(X), (c, p) E P(X).) 

Define the set of default leaf states, DLS(X), the elements of LS(X) that are 
default children of some state as indicated by DC(X). 

Derme Default-Leaves-of-Subtree(s) as the elements of DLS(X) that are 
descendants of the state s E S(X) including s if s E S(X). 

5. A set of input events: IE(X) 

6. A set of output events: OE(X) 

7. A set of variables: V(X) 

8. A variable-state mapping, VS(X): V(X) ~ S(X) (This indicates the state with 
which the variable is associated.) 

9. A variable-type mapping, VT(X): V(X) ~ Type(X) (This indicates the type 
of the variable.) 

10. A transition relation: TR(X) c S(X) x IE(X) x Pred(X) x 20E(X) x 
V Asg(X) x S(X) 

(There is one element of the transition relation for each arc in the PCM 
diagram.) 

The preceding ten elements serve to contain all the information present in the PCM 

pictoral representation. The formal model given above serves to represent all partitioned 

computation machines, including additively or multiplicatively composed machines. 

Further notation is introduced to permit discussion of the elements of the transition 

relation of the PCM. For an element t of a transition relation TR(X), "dot" notation will be 

used to refer to the components of the transition. The starting state of a transition (position 

1) is referred as t.s. The input event for a transition (position 2) is t.1t. Similarly, the 

remaining components are t.pred, t.oe, t.asg, and t.s'. 
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4.2 Constraints Imposed on the Model 

There are a number of constraints that must be imposed upon the PCM model in 

order to limit the forms of transitions that may be included in the diagram. These 

constraints serve to ensure that all transitions present in the PCM can be handled by the 

execution semantics, as will be defmed in the next section. There are three forms of 

transitions that are avoided. These three forms of transitions are transitions which start and 

end at states that can be active concurrently, transitions that give conflicting destination 

states, and transitions that give conflicting variable assignments. 

In order to defme these constraints, some further defmitions are needed: 

• For two states, members of S(X), to be Parent-Related(sl' s2) means that sl = 
s2' or sl is an ancestor of s2' or s2 is an ancestor of sl for P(X). 

• For two states, members of S(X), to be Concurrent-Related(sl' s2) means that 
sl and s2 are not parent-related and the least-conunon-ancestor of sl and s2 in 
P(X) is a member of MP(X). 

The first defmition indicates that two states are considered to be parent-related if one is an 

ancestor of the other, or if they are the same state. (A state is always parent-related to 

itself.) The second defmition indicates that states are concurrent-related if they are distinct 

states that can be active concurrently. 

The formal definitions (further explanation to follow) for the constraints are: 

Constraint #1: 

If it is the case that t E TR(X) then it is not the case that Concurrent-Related(t.s, t.s'). 

Constraint #2: 

If it is the case that t1 E TR(X), and t2 E TR(X), such that t1.1t = t2.1t, and such that 
Overlapping(t1.pred, t2.pred), where either Parent-Related(t1.s, t2.s) or 
Concurrent-Related(tl's, t2's), then it must be the case that Concurrent-Related(t1.s', t2's') or 
(t1·s' = t2·s'). 

Constraint #3: 

If it is the case that tl E TR(X), and t2 E TR(X), such that t1.1t = t2.1t, and such that 
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Overlapping(t.1.pred, t2.pred), where either Concurrent-Related(t1.s, t2.s), or 
Parent-Related(t1.s, t2's), then it must be the case that [ Variables (t1.asg) (l Variables 
(t2.asg) = 0]. 

The first constraint is used to prohibit transitions among concurrent substates. The 

second constraint serves to prohibit transitions which are defined for the same state and 

input event with overlapping predicates from giving different non-concurrent destinations, 

while the third constraint prohibits such transitions from referencing the same variables. 

4.2.1 Constraint #1: to prohibit transitions among concurrent states 

lIegal-Transitions 

:c~;~~;;~~t~~t~·t;~··~ 

..................... -" 
:Concurrent-statel • 

; ••••••••••••••••••••• 1 •••••••••••••••• 

~ .................................•• 
~ ~ : . 

: . 

. ..... . . ~-~ ................................. . 
+ •••••••••••••••••••••••••••••••••••••• 

a 

Figure 4-1: Example of an Illegal Transition Between Concurrent States 

Constraint #1 simply prohibits transitions that have a source and destination state that 

could potentially be active concurrently. As an example of a transition that would be 

disallowed by this constraint, consider a transition as for input a from state State-l in Figure 

4-1. This transition does not maintain the concurrency between the two components and 

would not be permitted. 
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4.2.2 Constraint #2: to require a deterministic choice of next state 

In order to prevent some cases that give rise to a non-detenninistic choice of a 

destination state during the execution of the PCM (see section 4.3.2), constraint #2 is 

imposed upon the fonna! model. Fulfilling such a detenninism requirement would be 

desirable for implementations of the PCM that are used for real-world systems. 

The first "or" case of constraint #2 prevents two states that are parent-related from 

having transitions with the same input and overlapping predicates but different non­

concurrent destination states. The constraint does not rule out multiple arcs from a single 

Constraint2a-Example-A 

a) b) 

Figure 4-2: Examples of Syntactic Constraint Violations in a PCM 

state for the same input and overlapping predicates, as long as the arcs have the same 

destination or concurrent destinations. As an example of an arc forbidden by this 

constraint, in Figures 4-2a and 4-2b, respectively, the pairs of transitions for inputs a and b 

both violate this constraint since each pair is enabled from state-l, giving conflicting 

destination states. 

The second "or" case of constraint #2 prevents concurrent states from having 

transitions with the same input and overlapping predicates but distinct destination states 

that are non-concurrent. For example, in Figure 4-3, the pair of transitions for input d 
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. . 

. ..................... .. 
: Concurrent-state2 : 

". .................................. . ( ~ 

~ : . . 
••••••••••• II ••••••••••••••••••••••••••• 

Figure 4-3: Examples of Syntactic Constraint Violations in a PCM 

starting from state-l and state-2 violate this constraint since the source states are 

concurrently active, but give different destinations which are not concurrently related. On 

the other hand, the pair of transitions for input e satisfies the constraint since the two 

destination states are still concurrent. 

4.2.3 Constraint #3: to require determinism in variable assignments. 

In order to prevent some cases that permit multiple assignments to a single variable 

or circular variable assignments, constraints #3 is imposed upon the formal model. 

guarantee that multiple or circular variable assignments do not occur in the PCM.) As with 

the determinism requirement upon destination states, the requirement that variable 

assignments occur deterministically is desirable for implementations of the PCM that are 

used for real-world systems. 

The first "or" clause of constraint #3 prevents two states which are parent-related 

from having transitions with the same input, overlapping predicates, and assignments 

referring to the same variables. The constraint permits multiple arcs from a single state for 

the same input and overlapping predicates, as long as all arcs have no assignments 
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Figure 4-4: Examples of Conflicting Variable Assignments in a PCM 

referencing the same variables. As an example of an arc forbidden by this constraint, in 

Figures 4-4a and 4-4b, the pairs of transitions for inputs a and b both violate this constraint 

since each pair is enabled from state-I, giving assignments referencing the same variables. 

The second "or" clause of constraint #3 prevents concurrent states from having 

transitions with the same input, overlapping predicates, and assignments referring to the 

same variables. For example, in Figure 4-5, the pair of transitions for input d starting from 

Constrai nt3b-Example 

x 0, 1, 2, 3 
Y : 0, 1, 2, 3 

: ..................... . 
: Concurrent-state! ; 

". ................................. . 
I· ~ . 

. . . . . 
......................................... 

. ..................... .. 
: Concurrent-state2 : . ....................................... . 

: . . 

. . 
+"' •••••••••••••••••••••••••••••••••••••• 

Figure 4-5: Examples of Conflicting Variable Assignments in a PCM 

state-l and state-2 violate this constraint since the source states are concurrently active, but 

reference the same variables in their assignments. 



-49-

4.2.4 A degenerate PCM 

The correspondence between the pictoral representation of the PCM and the fonnal 

model is best described by an example. The simplest partitioned computation machine to 

consider is a degenerate PCM which consists of only one state. With such a machine, 

LS(X) is identical to {so(X)}. This specific case, however, is the only time that LS(X), 

IS(X), and {so(X)} are not all disjoint. 

The-state 

a / x 

b / x 

Figure 4-6: A Sample Degenerate Partitioned Computation Machine 

A sample one-state PCM is shown in Figure 4-6. The fonnal representation for this 

PCM is given in Figure 4-7. This machine is intended to produce an output x, whenever the 

inputs a, or b are received. No output results from the input c. The set of states for the 

degenerate PCM contains only one element, which is also the distinguished root element: 

The-State. This degenerate PCM has no hierarchy or variables, so the sets and mappings 

describing these are all empty. The three transitions in this PCM are described in the 

transition relation. Each element in the transition relation corresponds exactly to one of the 

arcs in the diagram. For example, the arc for a in the diagram produces an element of the 

transition relation which starts and ends at The-State, has a as an input, and produces x as 

an output. This information is represented by building the element of the transition relation 

appropriately. 
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1. S (X) = {The-State}, So The-State 

2. P (X) = { } 

3. AP (X) { } 

MP (X) { } 

4. DC (X) { } 

5. IE(X) {a, b, c} 

6. OE (X) {x} 

7. V (X) { } 

8. VS (X) { } 

9. VT (X) { } 

10. TR(X) { (The-State, a, True, {x} , 0, The-State), 
(The-State, b, True, {x} , 0, The-State), 
(The-State, c, True, 0, 0, The-State) } 

Figure 4-7: The Fonnal Representation for the One-State PCM of Figure 4-6 

4.3 The Execution of the PCM 

In addition to the fonnal representation for the pictoral infonnation, the PCM fonnal 

model includes a fonnal semantics of execution. The execution semantics relies upon 

expanding the set of states, S(X), into a set of all possible maximal sets of concurrent states. 

This expansion makes an execution state of a partitioned computation machine just one of 

the members of the expanded state set; a single execution state consists of a set of states 

from S(X). 

4.3.1 Expansion of concurrent cross-product states 

The partitioned computation machine permits concurrency in states with 

multiplicative parents. The execution model for the partitioned computation machine, as 

will be presented in section 4.3.2, actually operates upon a set containing all possible 

concurrently active states. Before presenting the execution of the PCM, this expanded state 

set, ES(X), will be defined. 
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The expanded state set, ES(X), is defmed by fust defining a set, IES(X), then 

creating ES(X) to include only the elements of IES(X) which have no proper superset in 

IES(X). IES(X) is conceptually all sets consisting of leaf states of S(X) where all elements 

of the set are concurrent-related with one another. 

IES(X) = ( Is lIs E 2LS(X) and T;f sl' s2 E Is, Concurrent-Related(sl' s2)} 

ES(X) = ( es I es E IES(X) and T;f Is E IES(X), -,(es cIs)} 

Conceptually, ES(X) is a set containing all maximal sets of concurrently active states. 

The elements of ES(X) are the possible execution states of the PCM X. 

In order to formally determine the semantics of transition arrows, it is necessary to 

define two more constructs: 

• Expanded-Parent-Related(es, sl)' for an expanded state es E ES(X), and a 
state sl E S(X), is defined as 3 SEes where Parent-Related(s, sl)' 

• Concurrent-De!ault-Related(sl' s2)' for states sl E DLS(X) and s2 E S(X) is 
defined as Concurrent-Related(sl' s2) where the least common ancestor of sl 
and s2 according to P(X) is also an ancestor of sl according to DC(X). 

Finally, the set of Compatible-States(Sj, S2)' where SI and S2 are sets of states, is the 

set of states in SI that are Concurrent-Related to all elements of S2' 

4.3.2 Execution semantics 

The PCM always has an execution state which is one of the members of the expanded 

state set, ES(X). Since concurrent children have been expanded into a single state in 

ES(X), a single element of this set can represent the concurrent operation of many states. 

Each element in the formal model's transition relation represents an arc in the 

pictoral representation for the PCM. The partitioned computation machine operates under 

the assumption that only one input event is received at any time. This is an acceptable 

assumption to make as "simultaneous" input events can simply be serialized in some order 

before being received by the partitioned computation machine. 
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An element t of TR(X) is said to be enabled with respect to an expanded state es e 

ES(X), an input event 1t E IE(X), and a environment env mapping variables to values, if 

Expanded-Parent-Related(es, t.s), and 1t = t1t, such that env satisfies t.pred. The 

enabled-transition-set(X, es, 1t, env) is defined for a given state es E ES(X), an input event 

1t E IE(X) and an environment env, as the set of all t E TR(X) that are enabled with 

respect to es, 1t, and v. Lastly, before defining a step in the execution of the PCM, it is 

convenient to define the Default-Leaves-of-Subtree( s) as the set of states which are leaves 

of the subtree determined by DC(X) with s as the root of the subtree. 

The basic unit of execution in a partitioned computation machine is a step. A step 

takes a machine from a current expanded state set and environment to a "next" expanded 

state set and environment when a specific input event is enabled. In this way, the complete 

execution of a PCM is composed of many individual steps. A step of the execution of a 

PCM X has a defmition contingent upon the contents of the enabled-transition-set(X, es, 1t, 

v), and as such will be written step(X, es, 1t, v). A single step is a six-tuple of the form (esl' 

envl' 1t2' oes2' s2' env2)· The formal definition of a step(X, es, 1t, v) is divided into two 

primary cases as follows: 

• If enabled-transition-set(X, es, 1t, env) = 0 then step(X, es 1t, env) is defined 
as (es, env, 1t, { }, es, env). 

(Conceptually, this means that if the transition for input 1t is not explicitly 
handled, assume that a self-transition with no output events or variable changes 
should take place.) 

• If enabled-transition-set(X, es, 1t, env) '#- 0, then step(X, es, 1t, env) is defined 
as (es, env, 1t, oes, es', env') where 

oes = Union (t.oe) for all t E enabled-transition-set(X, es, 1t, env), and 

Define explicit-destinations = Union (Default-Leaves-of-Subtree(t.s'»») for all 
t E enabled-transition-set(X, es, 1t, env). 

Define unchanged-destinations = compatible-states( es, explicit-destinations). 

Define implicit-destinations = the elements of Compatible(DLS(X), explicit­
destinations u unchanged-destinations) that are Concurrent-Default -Related to 
at least one element of es. 
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es' = explicit-destinations u unchanged-destinations U implicit-destinations 

env' = the functional composition of Variable-Assignmentsj applied to the 
argument env where Variable-Assignmentsj E Union( { t.asg}) for all t e 
enabled-transition-set(X, es, 1t, env). 

Essentially, the first three elements of a step are composed of the starting expanded 

state and environment with the appropriate input event. The output event set in a step is the 

union of the output events from all enabled transitions. The new expanded state consists of 

the union of states to which arcs are explicity given, with any of the original states that are 

still active, and any states which are entered implicitly. Lastly, the new environment is 

simply the application of the composition of any variable assignments to the original 

environment. 

The set steps(X) is defmed as the set of all possible values for step(X, es, 1t, env). An 

element of steps(X) is said to be a step of X. 

An execution fragment of X is a finite sequence sl' envl' 1t2' oes2' s2' env2' ... , so' 

envo' or an infinite sequence sl' envl' ~, oes2' s2' env2' ... such that (Sj' envj, 1tj+l' oesj+l' 

si+l' envi+l) is a step of X. The set of all possible execution fragments of X is called 

efrags(X). An execution fragment of X beginning with the expanded state 

Default-Leaves-of-Subtree(so(X» is called an execution of X. The set of all possible 

executions of X is called execs(X). A state is said to be reachable if it is the fmal state of a 

finite execution. The special case of a sequence with no input events, (sl' envl)' is also 

considered a valid exection and will be referred to as a null execution. 

An execution string represents a "run" of the partitioned computation machine. In 

most situations, one is only concerned with the sequence of input and output events that 

occur during the execution and not with the sequence of states involved with the 

computation. A behavior of an execution fragment for X is the subsequence consisting of 

the events defmed for X, denoted by behav(X). The set of all possible behaviors of X is 

denoted by behavs(X). 
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4.3.3 An example specifying a soda machine 

Soda-Machine 

Credit: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 : 0 

Nick/Continue, 
Credit +- 5 

Dime/Continue, 
Credit +-10 

Quar/Continue, 
Credit+-25 

Continue, 

Orange/ 
Continue 
Disp-Orange 
Credit --35 

5 <- Credit < 10/ D-Nick 
Continue, Credit --5 

Continue, 
10 <- Credit < 25/ D-Dime 
Continue, Credit --10 

Continue, 
25 <- Credit/ D-Quar, 
Continue, Credit --25 

Figure 4-8: A Soda Machine as a Partitioned Computation Machine 

Figure 4-8 provides the PCM pictoral representation for a soda machine. The soda 

machine accepts nickels, dimes and quarters as input, and dispenses cola, grape, and orange 

sodas after thirty-five cents worth of change have been inserted. The soda machine has four 

primary states under its root state. Each state represents the primary modes of the soda 

machine: a startup state, a state where it allows a person to insert coins, a state where it will 

dispense soda, and a state where it will return coins as change. 

The soda machine starts in the startup state where the machine accepts inputs of nick, 

dime, and quar. When one of these inputs is received, the credit is set appropriately and the 

insert-coin state is made the new current state. The insert-coin state accepts inputs of nick, 



1. S (X) 

2. P (X) 

3. AP (X) 

MP (X) 

4. DC (X) 

5. IE (X) 

6. OE(X) 
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{Startup, Insert-Coin, Dispense, Return-Coin, 
Soda-Machine}, so(X) = Soda-Machine 

{(Startup, Soda-Machine), 
(Insert-Coin, Soda-Machine), 
(Dispense, Soda-Machine), 
(Return-Coin, Soda-Machine)} 

{Soda-Machine} 

{ } 

{(Soda-Machine, Startup)} 

{Nick, Dime, Quar, Cola, Grape, Orange, 
Change-Return, Continue} 

{Disp-Cola, Disp-Grape, Disp-Orange, D-Nick, D-Dime, 
D-Quar, Continue} 

7. V(X) = {Credit} 

8. VS(X) 

9. VT(X) 

10. TR(X) = 

{(Credit, Soda-Machine)} 

{(Credit, (0, 5, 10, 15, 20, 25, 30, 
35, 40, 45, 50, 55»} 

(Startup, Nick, True, {I, Credit 5, Insert-Coin), 
(Startup, Dime, True, {I, Credit 10, Insert-Coin), 
(Startup, Quar, True, {I, Credit 25, Insert-Coin), 
(Insert-Coin, Nick, True, {Continue}, 

Credit += 5, Insert-Coin), 
(Insert-Coin, Dime, True, {Continue}, 

Credit += 10, Insert-Coin), 
(Insert-Coin, Quar, True, {Continue}, 

Credit += 25, Insert-Coin), 
(Insert-Coin, Continue, Credit >= 35, {I, 0, Dispense), 
(Dispense, Cola, True, {Disp-Cola, Continue}, 

Credit -= 35, Return-Coin), 
(Dispense, Grape, True, {Disp-Grape, Continue}, 

Credit -= 35, Return-Coin), 
(Dispense, Orange, True, {Disp-Orange, Continue}, 

Credit -= 35, Return-Coin), 
(Return-Coin, Continue,S <= Credit < 10, {D-Nick, Continue}, 

Credit -= 5, Return-Coin), 
(Return-Coin, Continue, 10 <= Credit < 25, {D-Dime, Continue}, 

Credit -= 10, Return-Coin), 
(Return-Coin, Continue, 25 <= Credit, {D-Quar, Continue}, 

Credit -= 25, Return-Coin), 
(Return-Coin, Continue, Credit == 0, {I, 0, Insert-Coin), 
(Soda-Machine, Change-Return, True, {Continue}, 0, 

Return-Coin) } 

Figure 4-9: The Fonnal Representation for the Soda Machine of Figure 4-8 
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dime, and quar, representing nickels, dimes, and quarters until thirty-five or more cents 

have been inserted. When sufficient funds have been inserted, the current state will become 

the dispense state. In the dispense state, the machine responds to inputs corresponding to a 

selection of the type of soda desired, generates the appropriate output to dispense the soda, 

and subtracts thirty-five cents from the credit inserted before proceeding to the return-coin 

state. The return-coin state returns all remaining credit and then returns to the insert-coin 

state to begin the cycle again. If the change-return input is received at any point duing this 

process, the return-coin state is entered and any remaining credit is returned. Note that the 

continue event is used both as an input and an output to permit a sequence of transitions to 

be enabled in response to an external input. 

The formal representation of the pictoral information appears in figure 4-9. This 

example demonstrates the use of variable predicates, variable assignments, and multiple 

events all on the same arc. 

4.3.4 Examples of execution of the PCM 

To illustrate the definition of execution, this section presents sample executions for 

the soda machine presented in Figures 4-8 and 4-9 in section 4.3.3. The execution of this 

example is presented for a variety of different inputs. 

4.3.4.1 Execution of a soda machine 

Let us consider the execution of the soda machine of Figure 4-8 for the following 

sequence of inputs: Nick, Grape, Nick, Orange, Quar, Orange, Dune, Nick, Nick, Change­

Return 

To simplify the listing of the execution string, the starting state of a step will always 

be listed at the beginning of the line; the current value of the credit variable is given as the 

second element on the line. The third element on the line is the input event for the 

transition, and the fourth element is the set of output events from the transition. The fifth 
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and sixth elements of a step (the destination state and environment) are listed on the next 

line as the first two elements, as they will be the starting state and environment for the next 

transition. Also, to increase the readability of an execution, the first letters of any pending 

input events are shown on the extreme right of the line. 

When examining the execution for the soda machine, note that the Continue event 

appears both as an output and as an input of the machine. Each occurrence of the Continue 

event appears twice in the execution -- once when it is an output, and once when it is used 

as input. 

One possible execution for the machine given the above inputs would be: 

Startup, 0, Nick, {}, 
Insert-Coin, 5, Grape,{}, 
Insert-Coin, 5, Nick, {Continue}, 
Insert-Coin, 10, Continue, {}, 
Insert-Coin, 10, Orange, {}, 
Insert-Coin, 10, Quar, {Continue} , 
Insert-Coin, 35, Continue, {}, 
Dispense, 35, Orange, {Disp-Orange, Continue}, 
Return-Coin, 0, Continue, {}, 
Insert-Coin, 0, Dime, {Continue}, 
Insert-Coin, 10, Continue, {}, 
Insert-Coin, 10, Nick, {Continue}, 
Insert-Coin, 15, Continue, {}, 
Insert-Coin, 15, Nick, {Continue}, 
Insert -Coin, 20, Continue, {}, 
Insert-Coin, 20, Change-Return, {Continue}, 
Return-Coin, 20, Continue, {D-Dime, Continue}, 
Return-Coin, 10, Continue, {D-Dime, Continue}, 
Return-Coin, 0, Continue, {}, 
Insert-Coin, 0 

G 
N 
C 0 
o 
Q 
C 
o 
C 
D 
C 
N 
C 
N 
C 
CR 
C 
C 
C 

The above execution does essentially what one would expect; one inserts a total of 55 

cents, and receives one orange soda, and twenty cents in change by the end of the 

execution. The above execution assumes that the PCM has an opportunity to consider the 

transitions with no input event before the next input event has been received. However, the 

model does not require that the PCM has these transitions before new input is received. 

Consider the case when the entire above input sequence reached the machine in the exact 

order above, before the machine had an opportunity to handle even one of its own output 

events. This would give the following behavior: 
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Startup, 0, Nick, { } , N G N 0 Q 0 0 N NCR' 
Insert-Coin, 5, Grape, { } , G N 0 Q 0 0 N N CR 
Insert-Coin, 10, Nick, {Continue} , N 0 Q 0 D N N CR C 
Insert-Coin, 10, Orange, { } , Q 0 D N N CR C 
Insert-Coin, 35, Quar, {Continue}, 0 D N N CR C C 
Insert-Coin, 35, Orange, { } , D N N CR C C 
Insert-Coin, 45, Dime, {Continue}, N N CR C C C 
Insert-Coin, 50 Nick, {Continue}, N CR C C C C 
Insert-Coin, 55, Nick, {Continue}, CR C C C C C 
Insert-Coin, 55, Change-Return, {Continue}, C C C C C C 
Return-Coin, 55, Continue, {D-Quar, Continue}, C C C C C C 
Return-Coin, 20, Continue, {D-Quar, Continue}, C C C C C C 
Return-Coin, 10, Continue, {D-Nick, Continue} , C C C C C C 
Return-Coin, 0, Continue, { } , C C C C C 
Insert-Coin, 0, Continue, { } , C C C C 
Insert-Coin, 0, Continue, { } , C C C 
Insert-Coin, 0, Continue, { } , C C 
Insert-Coin, 0, Continue, { } , C 
Insert-Coin, 0, Continue, {}, 
Insert-Coin, 0 

In the second execution, the PCM is never given an opportunity to perfonn any of its 

Continue transitions until the input sequence has ended. It still ends up processing the same 

nine Continue events it did in the first scenario. The net effect here, however, is that 55 

cents were inserted, and 55 cents were given back in change. 

This example demonstrates that if inputs are coming into the machine in a manner 

that is not pennitting the machine to handle its own generated events, the behavior received 

by the specification may not be exactly what the specifier may have expected. The above 

examples are both valid executions for the system. An interesting possibility for future 

work, however, would be to modify the model to pennit the user to specify a response to an 

input, and then handle the generated events before additional input is processed. Such a 

technique would essentially permit multiple transitions in the machine to be treated as a 

single, atomic transition. Exploring this direction of research could be an area of future 

work. (See section 5.1.5.) 
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4.4 Composition of PCMs 

The fonnal model for the PCM also includes a fonnal mechanism for composing a 

number of machines. Composition is a valuable operation as it pennits a number of 

machines, each providing a distinct behavior, to be combined into a machine which behaves 

in a manner which can be predicted by examining only the behaviors of the component 

machines. (See Section 4.4.5.) Partitioned computation machines may be composed in one 

of two ways: additive composition or multiplicative composition. The primary distinction 

between the two fonns of composition is that an additive composition maintains one control 

thread (i.e. the tnachines interact sequentially) and a multiplicative composition maintains 

multiple control threads (i.e. the machines appear to interact concurrently). The manner of 

each type of composition is discussed in further detail below. 

4.4.1 Additive composition 

As described infonnally in section 3.7.1, additive composition produces a new PCM 

from a number of other partitioned computation machines. A new PCM, Y, is produced out 

of n existing PCMs. The parameters of the additive composition process are: 

1. Each of the n PCMs to be composed. (Call these ~). 

2. Default-~: The name for the ~ which is to be the default child of the 
composition. 

3. New-Root: The name for the root state of the composition. 

4. New-Variables: Set of variables to be associated with New-Root (optional). 

5. New-Variable-Types: Mapping of New-Variables ~ Types(Y) (optional). 

6. New-Input-Events: Set of new input events (optional). 

7. New-Output-Events: Set of new output events (optional). 

8. New-Transitions: Set of new relations for the Transition Relation (optional). 

The parameters provided for the additive composition are restricted syntactically to 

prevent the composition of the machines from creating duplicate names for states or 
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variables. The first restriction is that all of the state names in the components and the new 

root name must be unique. An actual implementation of the partitioned computation 

machine could generate unique names for the component states which overlap, but the 

formal model simply requires that the all state names are unique. Similarly, all variables 

must also have unique identifiers. 

In order to guarantee that the result of an additive composition satisfies the 

constraints given in section 4.2, it is sufficient that all component PCMs satisfy the 

constraints on a PCM, and furthennore, that the parameters to the composition satisfy the 

following constraints: (the multiplicative composition will have the same constraints upon 

its parameters) 

Composition Constraint #1: 

If it is the case that t E Union: l (TR(~) U New-Transitions), then it must not be the 
case that Concurrent-Related(t.s, t.s') 

Composition Constraint #2: 

If it is the case that tl E (Union:) (TR(~» U New-Transitions ), and t2 e New­
Transitions, such that tl .1t = t2.1t, and such that Overlapping(tl.pred, t2.pred), where either 

Parent-Related(tl's, t2's) or Concurrent-Related(tl's, t2's), then it must be the case that 
Concurrent-Related(tl·s', t2·s') or (tl.s' = t2.s'). 

Composition Constraint #3: 

If it is the case that tl E (Union: 1 (TR(~» U New-Transitions ), and t2 e New­
Transitions, such that tl .1t = t2 .1t, and such that Overlapping(t.l.pred, t2.pred), where either 
Concurrent-Related(tl.s, t2's), or Parent-Related(tl.s, t2.s), then it must be the case that [ 
Variables (tl.asg) rI Variables (t2.asg) = 0]. 

Parameters which satisfy the above constraints are used to construct a new PCM. 

Additive composition creates a new PCM, Y, from the above parameters: 
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1. S(Y) = Union:l S(~) U {New-Root}, sO(X) = New-Root 

2. CP(Y) = Union: l CP(~) U Union~=l ((RS(~), New-Root)} 

3. AP(Y) = Union:l AP(~) U {New-Root} 

MP(Y) = Union7= 1 MP(~) 

4. DC(Y) = Union:l DC(~) U {(New-Root, Default-~)} 

5. IE(Y) = Union:. IE(~) U New-Input-Events 

6. OE(Y) = Union:l OE(~) U New-Output-Events 

7. V(Y) = Union: l V(~) U New-Variables 

8. VS(Y) = Union:. VS(~) U {(New-Variablej' New-Root) I New-Variablej E 

New-Variables} 

9. VT(Y) = Union:. VT(~) U New-Variable-Types 

10. TR(Y) = Union:1 TR(~) U New-Transitions 

LS(Y), R(Y), and IS(Y) are still defmed as they are in the basic fonnal model 

presented in section 4.1. 

Clearly, the result of the additive composition is also a partitioned computation 

machine, by construction. The satisfaction of the three composition constraints guarantees 

that the resultant machine satisfies the three constraints upon all PCMs given in section 4.2. 

Conceptually, additive composition takes all of the components and gives them a 

common parent to fonn a single partitioned computation machine. The new PCM is 

constructed from the components by defming its elements to be the union of the elements of 

the components, with the addition of new set elements indicated in the parameters of the 

composition. The set of new states, S, becomes the union of the state sets of the 

components and the New-Root for the composition. The tree structure, CP, is amended to 

indicate that the root states of the components,~, now have the New-Root as a parent. The 

New-Root is made a melnber of the additive-parent set, PA to indicate that its children have 

been additively composed. The default child mapping, DC, is expanded to indicate the 

default child for the New-Root. New events may be added to the sets of input and output 

events; new variables can be associated with the new root state. The set V, and mappings 
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VS and VT are all updated appropriately if New-Variables are defined. Finally, new 

transitions may be added to the composition as well. 

4.4.2 Example of additive composition to build a simple user interface 

This section provides an example to demonstrate the procedure of additive 

composition. The machines to be composed each specify simple menus to map 

buttonpresses generating the events button-I, button-2, and button-3 into output events that 

would execute the correct program for that menu choice. The composition takes two such 

machines and additively combines them; the desired behavior of the composition is that the 

escape event toggles between the two menus. Figures 4-10 and 4-11 present the graphical 

and formal representations of the component partitioned computation machines. The 

arguments to the additive composition are listed at the top of page 65. Figures 4-12 and 

4-13, respectively, provide the graphical and formal representations of the result of the 

composition. 
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1. s (X) {Menu-One} 

2. P (X) { } 

3. AP (X) { } 

MP (X) { } 

4. DC (X) { } 

5. IE (X) {Button-I, Button-2, Button-3} 

6. OE (X) {Move, Iconify, Resize} 

7. V (X) = { } 

8. vs (X) {} 

9. VT (X) { } 

10. TR (X) {(Menu-One, Button-I, True, {Move}, 0, Menu-One), 
(Menu-One, Button-2, True, {Iconify}, 0, Menu-One), 
(Menu-One, Button-3, True, {Resize}, 0, Menu-One)} 

Menu-One 

Button-l / Move 

Button-2 / Iconify 

Button-3 / Resize 

Figure 4-10: Example ofPCM Fonnal Model for a Mouse Menu (Menu-One) 
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1. S (X) {Menu-Two} 

2. P (X) { } 

3. AP (X) { } 

MP (X) { } 

4. DC (X) {} 

5. IE (X) {Button-1, Button-2, Button-3} 

6. OE (X) {Kill, Raise, Lower} 

7. V (X) = {} 

8. VS (X) { } 

9. VT (X) { } 

10. TR (X) { (Menu-Two, Button-1, True, {Kill}, 0, Menu-Two), 
(Menu-Two, Button-2, True, {Raise}, 0, Menu-Two), 
(Menu-Two, Button-3, True, {Lower}, 0, Menu-Two) } 

Menu-Two 

Button-l / Kill 

Button-2 / Raise 

Button-3 / Lower 

Figure 4-11: Example of PCM Fonnal Model for a Mouse Menu (Menu-Two) 
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The arguments to the additive composition are: 

1. Components: PCM(Menu-One), PCM(Menu-Two) 

2. Defau1t-~: Menu-One 

3. New-Root: Window-Menus 

6. New-Input-Events: {Escape} 

8. New-Transitions: {(Menu-One, Escape, True, { }, 0, Menu-Two), 
(Menu-Two, Escape, True, {}, 0, Menu-One)} 

The resulting Window-Menus is represented by: 

Window-Menus 

Menu-One Menu-Two 

Button-l / Move Button-l / Kill 

Button-2 / Button-2 / Raise 

Button-3 / Resize Button-3 / Lower 

Figure 4-12: Example of PCM Additive Composition for Window-Menus 



1. S (X) 

2. P (X) 

3. AP (X) 

MP (X) 

4. DC (X) 

5. IE(X) 

6. OE (X) 
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{Menu-One, Menu-Two, Window-Menus} 

{(Menu-One, Window-Menus), 
(Menu-Two, Window-Menus)} 

{Window-Menus} 

{ } 

{(Window-Menus, Menu-One)} 

{Button-I, Button-2, Button-3, Escape} 

{Move, Iconify, Resize, Kill, Raise, Lower} 

7. V (X) = {} 

8. VS (X) { } 

9. VT (X) { } 

10. TR (X) {(Menu-One, Button-I, True, {Move}, 0, Menu-One), 
(Menu-One, Button-2, True, {Iconify}, 0, Menu-One), 
(Menu-One, Button-3, True, {Resize}, 0, Menu-One), 
(Menu-Two, Button-I, True, {Kill}, 0, Menu-Two), 
(Menu-Two, Button-2, True, {Raise}, 0, Menu-Two), 
(Menu-Two, Button-3, True, {Lower}, 0, Menu-Two), 
(Menu-One, Escape, True, {}, 0, Menu-Two), 
(Menu-Two, Escape, True, {}, 0, Menu-One)} 

Figure 4-13: Formal Model for Window-Menus of Figure 4-12. 

4.4.3 Multiplicative composition -- multiple control threads 

As described informally in section 3.7.2, multiplicative composition produces a new 

PCM from a number of other partitioned computation machines. The formal procedure for 

multiplicative composition creates a new PCM, Y, out of n existing PCMs by supplying the 

necessary parameters for multiplicative compositions. The parameters are: 

1. Each of the n PCMs to be composed. (Call these ~). 

2. New-Root: The name for the root state of the Composition. 

3. New-Variables: Set of variables to be associated with New-Root (optional). 

4. New-Variable-Types: Map of New-Variables ~ Types(Y) (optional). 

5. New-Input-Events: Set of new input events (optional). 

6. New-Output-Events: Set of new output events (optional). 

7. New-Transitions: Set of new relations for the Transition Relation (optional). 
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As with the additive composition, there are some syntactic restrictions on these 

parameters to prevent the composition of the machines from creating duplicate names for 

states or variables. The syntactic restrictions are the same as those for additive 

composition, namely, that all of the state names and new root name be unique, in addition 

to all variables having unique identifiers. 

The composition constraints which are placed upon the multiplicative composition 

parameters in order to guarentee that the result of the composition satisfies the constraints 

for a PCM are the same as the constraints placed upon the additive composition parameters 

as given in section 4.4.1. 

Multiplicative composition constructs a single new PCM from the components in 

much the same manner as the additive composition. As with the additive composition, the 

new PCM is constructed from the components by having its elements be the union of the 

components' elements, with the addition of new set elements indicated as parameters to the 

composition. The only differences between the representations for an additive and 

multiplicative composition is that the multiplicative composition makes the New-Root an 

element of the multiplicative-parent set, PM, instead of P A, and that the multiplicative 

composition does not expand the default child mapping, as multiplicative compositions do 

not have a default child -- all children appear to act concurrently. 

The formal construction of the multiplicative composition of n PCMs, ~, into a 

single PCM, Y, is the same as the additive composition presented in section 4.4.1 on page 

60 with the following exceptions: 

3. AP(Y) = Union:1 AP(~) 

MP(Y) = Union:1 MP(~) U {New-Root} 

4. DC(Y) = Union:1 DC(~) u Union:. {(New-Root,R(~))} 

LS(Y), R(Y), and IS(Y) are still defmed as they are in the basic formal model 

presented in section 4.1. 
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4.4.4 Example of multiplicative composition to build a combination clock-odometer 

This section provides an example of multiplicative composition to demonstrate the 

procedure. The multiplicative components to be composed consists of simple controllers 

for a clock, odometer, and a visual display. These components are being combined to 

create a monolithic system which provides the functions of a clock and odometer on a 

simple display. Figures 4-14, 4-15, 4-16 present the graphical and fonnal representations of 

the component partitioned computation machines. The arguments to the multiplicative 

composition are listed at the top of page 72. Figures 4-17 and 4-18, respectively, provide 

the graphical and fonnal representations of the result of the composition. 
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1. S (X) {Clock-Run, Clock-Stop, Clock} 

2. P (X) { (Clock-Run, Clock) , (Clock-Stop, Clock) } 

3. AP (X) {Clock} 

MP (X) { } 

4. DC (X) { (Clock, Clock-Stop) } 

5. IE (X) {clock-start, clock-stop, clock-tick} 

6. OE (X) { } 

7. V(X) = {Time} 

8. VS(X) 

9. VT (X) 

10. TR (X) 

{(Time, Clock)} 

{ (Time, Integer)} 

{(Clock-Run, clock-stop, True, {}, 
0, Clock-Stop), 

(Clock-Run, clock-tick, True, {}, 
Time +=1, Clock-Run), 

(Clock-Stop, clock-start, True, {}, 
0, Clock-Run)} 

Clock 

Tine:Integar : 0 

o 
~ 
o 
o 
;.r , 
to 
rt .g 

Figure 4-14: Example ofPCM Fonna! Model for a Clock 
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1. S (X) {Odo-Run, Odo-Stop, Odo} 

2. P (X) { (Odo-Run, Odo) , (Odo-Stop, Odo) } 

3. AP (X) {Odo} 

MP (X) { } 

4. DC (X) { (Odo, Odo-Stop) } 

5. IE (X) {odo-start, odo-stop, odo-tick} 

6. OE (X) { } 

7. V(X) = {Dist} 

8. VS (X) 

9. VT (X) 

10. TR (X) 

{(Dist, Odo)} 

{(Dist, Integer)} 

{(Odo-Run, odo-stop, True, {}, 0, Odo-Stop), 
(Odo-Run, odo-tick, True, {}, Dist += 1, Odo-Run), 
(Odo-Stop, odo-start, True, {}, 0, Odo-Run)} 

Odo 

Dist:lnteger : 0 

+' 
I-l 
1\1 
+' 

" I .g 
o 

o g. 
I 

1/1 
rt .g 

Figure 4-15: Example ofPCM Fonnal Model for Odometer 



1. s (X) 

2. P (X) 

3. AP (X) 

MP (X) 

4. DC (X) 

5. IE (X) 

6. OE (X) 
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{Disp-Latched, Disp-Unlatched, Display-Control} 

{(Disp-Latched, Display-Control), 
(Disp-Unlatched, Display-Control)} 

{ } 

{Display-Control} 

{(Display-Control, Disp-Unlatched)} 

{lap-on, lap-off} 

{latch-display, unlatch-display} 

7. V (X) = {} 

8. VS (X) 

9. VT(X) 

10. TR (X) 

{ } 

{ } 

{(Disp-Latched, lap-off, True, {unlatch-display}, 
0, Disp-Unlatched), 

(Disp-Unlatched, lap-on, True, {latch-display}, 
0, Disp-Latched)} 

Display-Control 

Disp-Latched 

lap-off/ 
unlatch-display 

lap-on/ 
latch-display 

Figure 4-16: Example of PCM Fonnal Model for Visual Display 



-72-

The arguments to the multiplicative composition are: 

1. Components: PCM(Clock), PCM(Odo), PCM(Display-Control) 

2. New-Root: Clock-Odometer 

The resulting Clock-Odometer is represented by: 

Clock-Odometer 

..................... \ · . : Clock • 
•••••••••••••••••••••• w. 
: Odo : . . ~ ••.................. ' ......•.•••• 

! Tine:lnteger : 0 +~ 
. :. ................................... . 

: Dist:lnteger : 0 ~ 
: . 

~ 
"\.l 
"1\1 

:~ 
• I '.l4 
• 0 :~ 
: 0 · " " · · · · · · · · · " " " · · · " · · · · · 

· · · · " 

o g. 
I 

III 
rt. .g. 

· · · \ .: . . 
+ • ................................. . - .................................................... 

~ ........•.•........... \ 
: Display-Control 

" " : ..................................................................................................................... . 
:+ +~ · . 

· · · 

Disp-Latched 

lap-off/ 
unlatch-display 

lap-on/ 
latch-display . · . · . · . · . · . · . · . . . ..... . ... 

............. III ........................................................................................................ •• 

Figure 4-17: Example ofPCM Multiplicative Composition for Clock-Odometer 
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1. S(X)= {Clock-Run, Clock-Stop, Odo-Run, 
Odo-Stop, Disp-Latched, Disp-Unlatched, 
Clock, Odo, Display-Control, 
Clock-Odometer} 

2. P (X) {(Clock, Clock-Odometer), 
(Odo, Clock-Odometer), 
(Display-Control, Clock-Odometer), 
(Clock-Run, Clock), 
(Clock-Stop, Clock), 
(Odo-Run, Odo), 
(Odo-Stop, Odo), 
(Disp-Latched, Display-Control), 
(Disp-Unlatched, Display-Control)} 

3. AP(X) {Clock, Odo, Display-Control} 

MP(X) {Clock-Odometer} 

4. DC(X) {(Clock-Odometer, Clock), 
(Clock-Odometer, Odo), 
(Clock-Odometer, Display-Control), 
(Clock, Clock-Stop), 
(Odo, Odo-Stop), 
(Display-Control, Disp-Unlatched)} 

5. IE(X) {clock-start, clock-stop, clock-tick, odo-start, 
odo-stop, odo-tick, lap-on, lap-off} 

6. OE(X) = {latch-display, unlatch-display} 

7. V(X) = {Time, Dist} 

8. VS(X) = {(Time, Clock), 
(Dist, Odo)} 

9. VT (X) 

10. TR(X) 

{ (Time, Integer), 
(Dist, Integer)} 

(Clock-Run, clock-stop, True, {}, 0, Clock-Stop), 
(Clock-Run, clock-tick, True, {}, 

Time +=1, Clock-Run), 
(Clock-Stop, clock-start, True, {}, 0, Clock-Run), 
(Odo-Run, odo-stop, True, {}, 0, Odo-Stop), 
(Odo-Run, odo-tick, True, {}, 

Dist += 1, Odo-Run), 
(Odo-Stop, odo-start, True, {}, 0, Odo-Run), 
(Disp-Latched, lap-off, True, {unlatch-display}, 

0, Disp-Unlatched), 
(Disp-Unlatched, lap-on, True, {latch-display}, 

0, Disp-Latched)} 

Figure 4-18: Fonnal Model for Combination Clock-Odometer of Figure 
4-17. 
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4.4.5 Executions of composed machines 

With certain restrictions imposed upon the parameters for composition, additive and 

multiplicative composition, the possible behaviors of a composed machine can be built 

simply from the executions of the component machines. These restrictions can greatly 

simplify proofs regarding the executions of partitioned computation machines. Even when 

these restrictions do not apply, however, the structure of the composed machine makes the 

resultant behavior easir to understand. 

The restrictions that are imposed serve to prevent inconsistencies between the 

transitions among the component machines and their internal behavior as discussed in 

section 3.3.3 on page 24. Furthermore, the restrictions prevent the component machines 

from interfering with each other's behavior. 

4.4.5.1 Claims regarding additive composition executions 

Additive Composition Claim #1: 

Given that the following constraints are imposed on the parameters of an additive 

composition, (see section 4.4.1.) 

• [(New-Input-Events U New-Output-Events) n (Union: 1 IE(~) U Union: 1 

OE(~»] = 0 

(This constraint requires that the composition parameters are restricted so that 
all new input or output events are disjoint from events used in any of the 
components. ) 

• For all t E New-Transitions, t.1t E New-Input-Events 

(This constraint requires that all new transitions are enabled by new inputs.) 

• For all t E New-Transitions, t.oe c New-Output-Events 

(This constraint requires that all new transitions only produce new outputs.) 

then the following assertion is claimed to be true: 

An execution fragment of the additive composition consists of execution fragments 

of one of the component machines, separated by new input events and output events 

defined in the composition. 
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Fonnally, the execution fragment, €y of the PCM Y, produced from the additive 

composition of machines ~ can be expressed as a sequence €a' 1ta, oea, €b' 1tb' oeb' ... where 

each € E efrags(TR(Xh),1t E New-Input-Events, and oe c New-Output-Events. 

Proof: Let Y = the additive composition of ~, and suppose that €y = 

sl,envl,1t2,oe2,s2,env2 ... By the definition of an execution fragment, sl is an element of 

ES(Y), and every six-tuple (sk_l,envk_l,1tk,oek,sk,envk) is a step of Y. Two facts follow 

from the definition of the additive composition Y. First, sl E ES(~) for some i. Second, if 

sk_l is an expanded state of ES(Xi) and 1tk E New-Input-Events, then 

(sk_l,envk_l,1tk,oek,sk,envk) is a step of the same Xi. If sk_l is an expanded state of ES(~) 

and 1tk E New-Input-Events, then the six-tuple (sk_l,envk_l,1tk,oek,sk,envk) can be broken 

into four portions, where sk_l,envk_l is a null execution of an Xi' 1tk E 

New-Input-Events,oek c New-Output-Events, and sk,envk is a null execution of an ~. 

Therefore, an execution fragment, €y of the PCM Y, produced from the additive 

composition of machines ~ can be expressed as a sequence €a' 1ta, oea, €b' 1tb' oeb' ... where 

each € E efrags(TR(Xh),1t E New-Input-Events, and oe c New-Output-Events. 

4.4.5.2 Claims regarding multiplicative composition executions 

As with the additive composition, a number of claims regarding the execution of 

lnultiplicatively cOlnposed machines can be made. The results of these claims can be used 

to reason about the execution of a composed machine as the "sum" of the executions of the 

component machines. When examining the executions of multiplicatively composed 

machines, the concept of a projection is useful. 

A projection of an execution fragment, € (or a portion of an execution fragment) for a 

partitioned computation machine, X, is defined as the same sequence as € (or the portion of 

the fragment), but including only states in S(X), input events in IE(X), and output events 

that are in OE(X). The projection of an execution fragment € for a PCM X can be written 

as€IX. 
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Multiplicative Composition Claim #1: 

For a multiplicative composition producing a PCM, Y, if New-Transitions = 0 and 

all OE(~) are disjoint, the following assertion is claimed to be true: 

If €y E efrags(Y) where Y is the multiplicative composition of some Xi' €yl~ e 

efrags(Xi)· 

Proof: Let Y = the multiplicative composition of ~, and suppose that €y = 
sl,envl,1t2,oe2,s2,env2'" By the definition of an execution fragment, sl is an element of 

ES(Y), and every six-tuple (sk_l,envk_l,1tk,oek,sk,envk) is a step of Y. Two facts follow 

from the defmition of the multiplicative composition Y. First, sll~ E ES(~) for some i. 

Second, (sk_l,envk_l,1tk,oek,sk,envk)l~ is a step of the same~. Thus, for €yl~, every six­

tuple (sk_l,envk_l,1tk,oek,sk,envk) is a step of~. Therefore, €yl~ E efrags(~). 

Multiplicative Composition Claim #2: 

Furthermore, if the following constraints are imposed on the parameters of the 

multiplicative composition, 

• [(New-Input-Events U New-Output-Events) n (Union: 1 IE(~) U Union: l 

OE(~»] = 0 

(This constraint requires that the composition parameters are restricted so that 
all new input or output events are disjoint from events used in any of the 
components. ) 

• For all j, OE(Xj ) n Union:1,i~j OE(~) = 0 

(This constraint requires that the composition parameters are restricted so that 
the output events of each component are disjoint from output events of the 
other components.) 

• For all t E New-Transitions, t.1t E New-Input-Events 

(This constraint requires that all new transitions are enabled by new inputs.) 

• For all t E New-Transitions, t.oe C New-Output-Events 

(This constraint requires that all new transitions only produce new outputs.) 

then, the following assertion is claimed to be true: 
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The projection of an execution fragment of the multiplicative composition for a 

component ~ consists of execution fragments of Xi' separated by new input events and 

output events defmed in the composition. 

Fonnally, if Ey E efrags(Y) where Y is the multiplicative composition of some Xi' 

Eyl~ can be expressed as a sequence Ea, 7ta, oea, Eb' 7tb' oeb'''' where each E e 

efrags(TR(X)i),7t e New-Input-Events, and oe c New-Output-Events. 

Proof: Let Y = the multiplicative composition of ~, and suppose that Ey = 

sl,envl,7t2,oe2,s2,env2'" By the definition of an execution fragment, sl is an element of 

ES(Y), and every six-tuple (sk_l,envk_l,7tk,oek,sk,envk) is a step of Y. Two facts follow 

from the definition of the multiplicative composition Y. First, sll~ e ES(~) for some i. 

Second, if 7t E New-Input-Events, (sk-l ,envk_l ,7tk,oek,sk,envk)l~ is a step of the same ~. 

If 7t E New-Input-Events, then the six-tuple (sk_l,envk_l,7tk,oek,sk,envk) can be broken into 

four portions, where sk_l,envk_ll~ is a null execution of Xi' 7tk e New-Input-Events, oek 

c New-Output-Events, and sk,envkl~ is a null execution of~. Therefore, if Ey E 

efrags(Y) where Y is the multiplicative composition of some Xi' EylXi can be expressed as a 

sequence Ea, 7ta, oea, Eb' 7tb' oeb'''' where each E e efrags(TR(X)i)' 7t e New-Input­

Events, and oe c New-Output-Events. 
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Chapter 5 

Future Work and Conclusions 

The visual language and fonnal representation of the partitioned computation 

Inachine presented in this thesis reach the goals that were set for this work. The partitioned 

computation machine uses a primarily visual, state-based langauge and a fonnal 

representation for describing the execution of this language. The representation pennits 

incremental changes to be made and describes the fonnal semantics without losing 

infonnation provided by the specifier. Furthennore, modularity and abstraction are 

encouraged by the PCM without restricting the computational power of the model to less 

than that of a Turing machine. However, there are some aspects of the partitioned 

computation machine model and its usage that would benefit from further research. 

5.1 Future Work 

Future work with the fonnal model of the partitioned computation machine could 

provide additional fonnality to the issues of variable usage and consistency with 

simultaneous events. Additional future work could also implement both the visual 

language and the fonnal representation in a single system to permit easy, rapid development 

of PCM specifications. Finally, the model could be extended to incorporate the ideas of 

multiple transitions occurring atomically. 

5.1.1 Variable usage 

5.1.1.1 Languages to describe variables 

One area of future work with the partitioned computation machine is to fonnalize the 

language used to describe variable usage. The elements of the fonnal model which are used 
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to describe the type, conditional predicate, and variable assignment of variables are 

extremely formal and need a language to describe them to make the model readily useful. 

A specific language should be developed to describe the different types a variable can 

assume and the valid predicates and assignments for that type. This language would need 

to provide a way for translating expressions in the language into all the sets used for 

variable description as described in section 4.3 .2. 

A significant area for research with variable usage concerns issues which arise with 

the use of arbitrary predicates to determine the enabling of arcs in a language. The general 

problem of determining if two arcs are ever enabled for the same input (in specific, this is 

the determination of overlapping(pred1, pred2) at the language level) is potentially 

undecidable with arbitrary predicates on infinite variables. In order to guarantee the 

satisfaction of the constraints given in section 4.2, restrictions on the language of predicates 

could be imposed. In addition, it may be desirable to relax the requirment that all 

assignments reference different variables to the less strict requirement that all variable 

assignments occuring on simultaneous transitions provide the same final values for the 

variables in all sequentializations of simultaneous assignments. Exploring the issues 

involved with relaxing the constraints on the PCM by use of a specific variable description 

language is an interesting future area of work. 

5.1.2 Simultaneous event issues 

A second area of potential future work with the partitioned computation machine is 

the development of algorithms for detecting the inconsistencies introduced by simultaneous 

events. As discussed in section 3.8, the model requires that valid specifications provide 

consistent behavior from the generation of simultaneous output events. The required 

consistency can be at varying levels of strictness. The strictest sense of consistency 

requirements is that the machine must have the exact same state and assignments to 
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b) 

Figure 5-1: A PCM generating infinite events 

variables immediately after perfonning the simultaneous output events in any order. This 

strictest fonn of consistency is the one suggested here, as it seems to be less difficult to 

verify than slightly looser requirements. Looser consistency could be pennitted by instead 

requiring that the machine have the exact same state and variable assignments after 

perfonning the simultaneous output events in any order and handling any events that are 

generated by transitions resulting from the original simultaneous events. This type of 

consistency, however, could be much more difficult to verify as the original simultaneous 

transitions may generate events which generate other transitions, etc. Indeed, a machine 

could be envisioned which has a single input event which generates another event, which 

then generates another event, etc., as in Figure 5-1. An execution of such a machine could 

never process all of the pending events. Alternatively, consistency does not have to be 

required by the computational model at all. It is mentioned as a requirement in this thesis 

because the partitioned computation machine is intended to serve as an application for 
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program development. In a program development environment, detenninism of executions 

is desirable so that bugs in specifications or implementations can be detected readily. Non­

deterministic executions such as PCM executions that depend on ordering of simultaneous 

events are exceedingly difficult to debug. 

5.1.3 Translation to input/output automata 

It is desirable to consider the possibility of translating the PCM into an I/O automata. 

Such a translation would permit the PCM to take advantage of existing proof techniques 

developed for I/O automata. This translation involves building two input/output automata 

which interact to simulate the PCM. This section proposes one way that such automata 

could be built. Detennining the details of the construction would be a future research topic. 

5.1.3.1 The high level translation 

The partitioned computation machine cannot be directly translated into an equivalent 

input/output automaton. One reason for the inability to perform a direct translation is the 

fact that the PCM and I/O automaton have different restrictions on the input and output 

events which they accept. The PCM permits the same event to be both an input and output 

of the machine. The I/O automaton, however, requires that the input and output action sets 

be disjoint for a single automaton. A second distinction between the two specification 

models is that the PCM permits an input and possibly multiple outputs to appear on a single 

transition arc while the I/O automaton requires that each step have a single action 

associated with it. Thus, the transitions taken by the partitioned computation machine in a 

single step may require multiple steps in an I/O automaton. Providing exactly the same 

behavior as the PCM requires that an I/O Automaton takes several steps atomically. Since 

the I/O automaton is always input-enabled, it is necessary to have a second I/O automaton 

act as a queue automaton to permit the first automaton to take multiple steps consisting of 

locally-controlled actions without being interuppted by new input. Finally, the I/O 
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automaton acting as a queue automaton can also serialize the input events as the PCM 

expects. This serialization is important so that the I/O automaton does not make non-

detenninistic choices about which input event to handle -- the PCM considers all input 

events serially. 

-- I/O Automata -
Queue 
Machine 

External 
Inputs 
(Ser~al) 

Request 

~ I/O Automata 
Emulating PCM 

Input Behavior 
for PCM 

• 
Ext 
Out 
(Se 

ernal 
puts 
rial) 

Figure 5-2: The High Level Model for I/O Automata Emulation of a PCM 

Figure 5-2 shows how two I/O Automata can interact to simulate a PCM. The left 

I/O Automaton acts as the queue automaton, while the right I/O Automaton directly 

corresponds to the PCM which is being emulated. The queue automaton receives all 

external inputs, and also receives all output events from the primary automaton. The 

primary automaton only receives inputs from the queue automaton when it requests them. 

Additionally, the primary automaton can indicate if its output events are to be considered as 

simultaneous. 

5.1.3.2 The interaction of the automata 

The way that the pair of automata work at a high level is as follows: 

1. The primary automaton requests an input from the queue automaton. 

2. The queue automaton provides the primary automaton with the input from the 

front of the queue. Meanwhile, the queue automaton may be queueing 

external inputs that are received. If the queue is currently e,mpty, the queue 

automaton will send the next input received to the primary automaton. 

3. When the queue automaton provides the primary automaton with an input, the 

primary automaton perfonns a sequence of steps corresponding to what the 

emulated PCM would do with such an input in one of its steps. Any outputs 
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that are produced by the primary automaton during this sequence of steps are 

queued by the queue automaton with no external inputs separating them. This 

queueing behavior occurs since any outputs produced would be simultaneous 

in the emulated PCM since they are the result of a single PCM step. 

4. After the equivalent of a single PCM step, the primary automaton requests 

another input. The queue automaton queues up any external inputs received 

since the last request, and then queues up any feedback inputs from the 

primary automaton. This process then returns to step 2 above. 

The actual translation of a partitioned computation machine into input/output 

automata requires the construction of the appropriate input/output automata to serve as the 

queue automaton and as the primary automaton. The two automata are then composed in 

the manner of input/output automata to emulate the partitioned computation machine. The 

definition of the queue automaton should be relatively straightforward as it is similar to 

other work already done with I/O Automata. [Lynch 88] 

5.1.3.3 The definition of the primary automaton 

The input/output automaton specifying the primary automaton contains the real 

behavioral information present in the partitioned computation machine being emulated. 

There are a number of issues to be considered in specifying the primary automaton. First, 

there is no explicit tree hierarchy dividing states into leaf, internal, and root states in an I/O 

automata. Thus, the hierarchy of the partitioned computation machine must be "flattened" 

in the construction of an equivalent input/output automaton. The PCM fonnal model 

already creates such a set, ES(X) for the fonnal execution. However, the existence of 

multiple outputs and variable assignments occuring on a single transiton arc in the PCM 

will require such transitions to be broken into a short sequence of input/output automaton 

steps. The major work to be done here would specify what modifications to the extended 

set of states, ES(X), are needed and to determine how the transition relation for the primary 

autolnaton is defIned from the PCM. 
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5.1.4 Implementation of the PCM 

A large area for future work with the partitioned computation machine would be an 

implementation of both the visual language and the execution of the formal representation. 

A graphical interface specifically intended for the development of PCMs would make the 

visual specification of a machine more precise than a pencil and paper drawing. The pencil 

and paper drawings, however, would still have usefulness as a preliminary method of 

designing a specification due to the ease of which they can be drawn while a specifier is in 

a creative frame of mind. An implementation of the visual language would permit the 

formal representation to be created directly from the graphical representation. The formal 

representation can be executed directly. Thus, a user could create a specification of an 

entire system in the partitioned computation machine's visual language. The computer 

could then simulate the execution of the PCM, producing an execution string. This 

execution string could be compared to the specifier's desired behavior of the system. This 

process would give immediate feedback to the specifier as to whether the actual behavior 

corresponds to what is desired. 

5.1.5 Atomic multiple-step transitions 

The partitioned computation machine relies on a continual stream of inputs to 

continue processing. This stream of inputs can either come from outside the machine, or be 

generated by the machine itself. A current limitation of the machine is that it handles input 

events and output events with a strict queueing mechanism. It may be desirable at times to 

have a multiple-step transition within the machine take place before any external input is 

examined. An extension to provide this capability could be done by defining multiple 

transitions to occur as a atomic transition. The definition of such atomic transitions may be 

an area for future work. 
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5.1.6 Complexity of concurrent machines 

The partitioned computation machine makes concurrent computation easier to 

consider through the use of concurrent children in the hierarchy. However, the complexity 

of simulating concurrent machines is not addressed by the formal model for the PCM. The 

formal model represents concurrency as the cross-product of all possible states in 

concurrent children. The notation reduces the conceptual complexity of the concurrent 

computation, but the formal model attacks the issue by brute-force cross-product expansion. 

Future research with the PCM could consider the possibility of permitting the 

simulation of a formal model with concurrent children by using concurrent processes in a 

machine. The model may need to be extended to deal with temporal issues in a concurrent 

system. 

5.2 Conclusion 

The partitioned computation machine does, to a significant extent, satisfy the goals 

for which it has been constructed. The PCM defmitely provides a visual language that 

helps to make apparent the control flow of the specified system. The hierarchy and 

modularity of the visual language make the language easier to understand as common 

behavior can be viewed as such. The representation for the visuallanguge is sufficiently 

formal to permit a precise semantics for the execution of a partitioned computation machine 

and also maintains all of the information regarding the visual language excepting the 

physical placement of graphical items. The information regarding the state hierarchy, 

interconnections of transition arcs, and variable types, predicates and assignments are all 

maintained in the formal representation. The PCM also maintains at least the 

computational power to model all computable behaviors. 
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