ON THE MINIMAL SYNCHRONISM NEEDED
FOR DISTRIBUTED CONSENSUS

Danny Dolev*
Computer Science Department
Hebrew University
Jerusalem, Israel

Abstract. Reaching agreement is a primitive of distributed com-
puting. While this poses no problem in an ideal, failure-free
environment, it imposes certain constraints on the capabilities of
an actual system: a system is viable only if it permits the existence
of consensus protocols tolerant to some number of failures.
Fischer, Lynch and Paterson [FLP] have shown that in a com-
pletely asynchronous model, even one failure cannot be tolerated.
In this paper we extend their work, identifying several critical
system parameters, including various synchronicity conditions, and
examine how varying these affects the number of faults which can
be tolerated. Our proofs expose general heuristic principles that
explain why consensus is possible in certain models but not possi-
ble in others.

1. INTRODUCTION

The problem of reaching agreement among separated proc-
essors is a fundamental problem of both practical and theoretical
importance in the area of distributed systems; see, e.g. [Ag, DRS,
DS, LSP, PSL]. We consider a system of N processors Py,....Py
(N>2) which communicate by sending messages to one another.
Initially, each P; has a binary value x;. At some point during its
computation, a processor can irreversibly decide on a binary value
v. Each processor follows a deterministic protocol involving the
receipt and sending of messages. Even though the individual
processor protocols are deterministic, there are three potential
sources of nondeterminism in the system. Processors might run at
varying speeds, it might take varying amounts of time for mes-
sages to be delivered, and messages might be received in an order
different from the order in which they were sent.

A protocol solves the (weak) consensus problem if

(i) no matter how the systems runs, every nonfaulty proc-
essor makes a decision after a finite number of steps,

(ii) no matter how the system runs, two different nonfaulty
processors never decide on different values, and

*Work performed in part at Stanford University, supported in part
by DARPA under Grant No. MDA9%03-80-C-0107, and in part at
IBM, San Jose.

tWork performed at Cornell University, supported in part by NSF
Grant MCS81-01220.

0272-5428/83/0000/0393$01.00 © 1983 IEEE

Cynthia Dwork T
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

393

Larry Stockmeyer
Computer Science Department
IBM Research Laboratory
San Jose, CA 95193

(iii) 0 and 1 are both possible decision values for (possibly
different) assignments of initial values. (This condition is needed
to avoid the trivial solution where each processor decides 1 re-
gardless of its initial value.)

If the processors and the communication system are com-
pletely reliable, the existence of consensus protocols is trivial.
The problem becomes interesting when the protocol must operate
correctly when some processors can be faulty. The failure mode
studied in this paper is fail-stop, in which a failed processor nei-
ther sends nor receives messages. A consensus protocol is
t-resilient if it operates correctly when at most t processors fail.
The existence of N-resilient consensus protocols is easily estab-
lished if the processors and the communication system are both
synchronous. Intuitively, synchronous processors means that the
internal clocks of the processors are synchronized to within some
fixed rate of drift. Synchronous communication means that there
is a fixed upper bound on the time for a message to be delivered.
These two types of synchronism are assumed in much of the
research on "Byzantine Agreement", e.g. [DRS, LSP].

Our point of departure and motivation for this paper was the
interesting recent result of Fischer, Lynch and Paterson [FLP]
which states that in a completely asynchronous system no consen-
sus protocol is 1-resilient, that is, even one failure cannot be
tolerated. In reading the proof of this result one sees that three
different types of asynchrony are used:

Processor asynchrony allows processors to "'go to sleep’ for
arbitrarily long finite amounts of time while other proc-
essors continue to run;

Communication asynchrony precludes an a priori bound on
message delivery time;

Message order asynchrony allows messages to be delivered in
an order different from the order in which they were
sent.

One major goal of this work was to understand whether all three
types of asynchrony are needed simultaneously to obtain the
impossibility result. We find they are not. In fact, we prove the
impossibility of a 1-resilient consensus protocol even if the proc-
essors operate in lock-step synchrony, thus strengthening the main
result of [FLP]. In this result we retain Fischer, Lynch and
Paterson’s definition of an "atomic step"” in which a processor can
attempt to receive a message and depending on the value received,
if any, it can change its internal state and send messages to all the

other processors. In contrast, using this same definition of an
atomic step, we prove that either synchronous communication
alone or synchronous message order alone is sufficient for the
existence of an N-resilient consensus protocol.

These two N-resilient protocols are fairly delicate and depend
on the definition of an "atomic step” of a processor. For exam-
ple, in the case where we have synchronous communication, if
receiving and sending are split into two separate operations so
that an unbounded amount of time can elapse in between, then
the N-resilient protocol falls apart, and in fact we can prove that
there is no 1-resilient protocol in this case. Similarly, if a proc-
essor can send a message to at most one other processor in an
atomic step (we call this point-to-point transmission) then there is
a 1-resilient protocol but no 2-resilient protocol.

We identify five critical parameters:

(1) processors synchronous or asynchronous,

(2) communication synchronous or asynchronous,

(3) message order synchronous or asynchronous,

(4) broadcast transmission or point-to-point transmission,

(5) atomic receive/send or separate receive and send.
In defining the system parameters, even informally as we do now,
it is useful to imagine that one is standing outside the system
holding a "real time clock"” that ticks at a constant rate. At each
tick of the real clock, at most one processor can take a step. The
processors are modeled as infinite-state machines. In the most
general definition of "step”, a processor can attempt to receive a
message, and based on the value of the received message (or
based on the fact that no message was received) it can change its
state and broadcast a message to all processors. Restrictions on
this definition of step are given by 4 and 5 below. The letters U
and F below refer to situations that are unfavorable or favorable,
respectively, for solving the consensus problem; in other words,
the possible behaviors of the system in a favorable situation are a
subset of the possible behaviors in the corresponding unfavorable
situation.

1. Processors.

U. Asynchronous. Any processor can wait an arbitrarily
long, but finite, amount of real time between its own steps. (In
the language of distributed systems, there is no bound on the rate
of drift of the internal clocks of the processors.) However, if a
processor takes only finitely many steps in an infinite run of the
system, then it has failed.

F. Synchronous. There is a constant ® > 1 such that in any
time interval in which some processor takes ® + 1 steps, every
nonfaulty processoi' must take at least one step in that interval.

2. Communication.

U. Asynchronous. Messages can take an arbitrarily long, but
finite, amount of real time to be delivered. However, in any
infinite run of the system, every message is eventually delivered;
i.e., messages cannot be lost.

F. Synchronous. There is a constant A >1 such that every
message is delivered within A real time steps.

3. Message Order.
U. Asynchronous. Messages can be delivered out of order.
F. Synchronous. If p sends m; to r at real time t, and q
sends m, to r at real time t, >t;, then r receives m, before m,.
(p, q, and r are not necessarily distinct. For example, we could
have r = p.)

394

4. Transmission Mechanism.

U. Point-to-point. In an atomic step, a processor can send to
at most one processor.

F. Broadcast. In an atomic step, a processor can broadcast
messages to all processors.

5. Receive/Send.

U. Separate. In an atomic step, a processor cannot both
receive and send.

F. Atomic. Receiving and sending are part of the same
atomic step.

In the next section, these definitions are formalized by modifica-
tions to the formal model of [FLP].

To obtain the strongest possible results we make some fur-
ther conventions. Whenever we assume synchronous processors
in an impossibility result, we actually take ® =1, i.e., the proc-
essors operate in rounds, which is essentially the same as lock-
step synchrony. Whenever we assume synchronous communica-
tion in an impossibility result, we actually take A = 1, i.e., message
delivery is instantaneous; in this case we assume that whenever a
processor attempts to receive, it receives all as yet unreceived
messages that have been sent to it at previous real times. In
results giving a consensus protocol, our protocol actually solves a
strong consensus problem, defined like the weak consensus problem
in the Introduction with the additional condition that if all initial
values are the same, say v, then all nonfaulty processors decide on
v. Whenever we assume atomic receive/send in a consensus
protocol, the definition SF above can be weakened to say only
that whenever a processor executes a receiving step followed by a
sending step, there is a fixed upper bound on the amount of real
time which can elapse between the two steps.

Varying these five parameters yields 32 cases, and we have
found the maximum resiliency for each case. More interestingly,
we have identified four cases where N-resilient protocols exist,
but any weakening of the system by changing one parameter from
favorable to unfavorable is sufficient for a proof that there is no
t-resilient protocol where t is either 1 or 2. Thus the boundary
between possibility and impossibility of solving the consensus
problem is very sharp. These four "minimal" cases are:

(1) synchronous processors and synchronous communication,

(2) synchronous processors and synchronous message order,

(3) broadcast transmission and synchronous message order,

(4) synchronous communication, broadcast transmission,
and atomic receive/send.

We find another type of boundary by allowing broadcast to k
processors in an atomic step. This "k-casting" is said to be
serializable if whenever processors p and q k-cast messages m,
and m,, respectively, to processors r and s, then both r and s
receive the two messages in the same order. In a system with
asynchronous processors and asynchronous communication, we
show, for any 1 <k <N, that serializable k-casting is sufficient
for (k—1)-resiliency, and that serializable (k—1)-casting is not
sufficient for (k—1)-resiliency. More generally, if for any two
broadcasts there are at most k—1 processors for which we can
guarantee that the order of reception is the same as the order of
transmission, and we can say nothing at all about the order in
which the other processors receive the messages, then there is no
(k—1)-resilient consensus protocol. The delineation of these
boundaries is the main contribution of this paper.

Another goal of this paper was to understand intuitively why
Fischer, Lynch and Paterson were able to prove impossibility and
to develop heuristic principles to allow one to make an educated
guess of the maximum resiliency before actually proving it. The
basic intuition is that if letting t processors fail can effectively
"hide" an event or the relative ordering among several events,
then no consensus protocol is t-resilient. In the original proof in
[FLP], the event is a "critical step" where one processor p takes a
step which moves the system from some configuration C, to some
configuration C,, and there are configurations Dy and D, reacha-
ble from C, and C,, respectively, in one step, such that v is the
only possible decision value when the system is started in configu-
ration D, (v=0,1). If p fails then the effect of the critical step
can be hidden from the other processors since the communication
system can hide all the messages sent by p during the critical step.
However, if we have a fixed upper bound on message delivery
time or if message order cannot be scrambled, then these mes-
sages cannot be hidden for an arbitrarily long time; this explains
intuitively why we get N-resiliency in these two cases. The heu-
ristic principle also explains why we get 1-resiliency but not 2-
resiliency in the case of bounded message delivery time and point-
to-point transmission. In the critical step, p sends a message to a
single processor q. In order to hide this event, it is necessary and
sufficient that both p and q fail. (Our detailed proofs are more
involved than this since we must show in each case that such a
critical step exists.)

Finally, we should point out that Ben-Or [BO], Bracha and
Toueg [BT] and Rabin [Ra] have shown that consensus in the
presence of faults can be achieved in various asynchronous envi-
ronments by probabilistic protocols where there is some small
chance that the protocol will operate incorrectly. Even in light of
these probabilistic solutions, our boundaries between possibility
and impossibility are fundamental to the study of distributed
systems. In particular, our results identify cases where probabilis-
tic solutions are needed to reach consensus because deterministic
solutions are impossible.

In the next section we give more formal definitions. Section
3 contains the results on possibility and impossibility for the 32
choices of the parameters. In Section 4 we give the results on
serializable k-casting. In Section 5, we suggest some directions
for future work, such as the extension of our results to Byzantine
failures [cf. DS, LSP].

2. DEFINITIONS

In this section we extend the formal framework of Fischer,
Lynch and Paterson [FLP] to handle our various system parame-
ters. A consensus protocol is a system of N (N 2 2) processors
P = {py,....Pny}- The processors are modeled as infinite-state
machines with state set Z. There are two special initial states Zy
and z;. For v=0,1, a processor is started in state z, if its initial
bit is v. Each processor then follows a deterministic protocol
involving the receipt and sending of messages. The messages are
drawn from an infinite set M. Bach processor has a buffer for
holding the messages that have been sent to it but not yet re-
ceived. If message order is synchronous, each buffer is modeled
as a fifo queue of messages. If message order is asynchronous,
each buffer is modeled as an unordered set of messages. The
collection of buffers support two operations:

395

Send(p,m): places message m in p’s buffer;
Receive(p): deletes some collection (possibly empty) of mes-
sages from p’s buffer and delivers these messages to p.

The exact details of what messages can or must be delivered by
Receive(p) depend on the choice of system parameters and this is
defined precisely below.

First consider cases where message order is synchronous.
Each processor p is specified by a state transition function 3 and a
sending function B, where

Jp:ZxM' -7
BP:ZXM‘ -+ {B £ PxM | B is finite }.

The pair (q,m) in the range of Bp means that p sends message m
to processor q. Since we place no constraints on the message set
M, we can assume that for each p,qe P, z€ Z and g € M’ there is
at most one message m with (q,m) € B (z,s). It is also convenient
to assume that a processor attaches its name and a sequence
number to each message so that the same message m is never sent

'by two different processors nor at two different times.

If transmission is point-to-point, then | Bp(z,u)l < 1 for every
P, z and p. If transmission is broadcast then p can send messages
to any number of processors in one step.

If receive/send is separate, we assume that Z is partitioned
into two disjoint sets Zy (the receiving states) and Zg (the sending
states), such that no messages are sent when in a receiving state
(formally, if z € Zy then Bp(z,u) = ¢), and no messages are re-
ceived when in a sending state (this condition is formalized be-
low). It is also convenient to assume that receiving and sending
states alternate, i.e., all transitions from states in Zp must go to
states in Zg and vice versa. If receive/send is atomic, then any
state in Z can both receive and send messages.

A configuration C consists of
(i) N states st(p;,C) € Z for 1 <i < N, specifying the current
state of each processor, and
(ii) N strings buff(p;,C) e M* for 1 <i< N, specifying the
current contents of each buffer.
Initially, each state is either zy, or z, as described above, and each
buffer contains A (the empty string).

An event is a pair (p,u) where p € P-and g € M*. Think of
the event (p,u) as the receipt of message string u by p. Processor
p is said to be the agent of the event (p,x). We now define condi-
tions under which an event can be applied to a configuration to
yield a new configuration. The first condition applies only if
receive/send is separate.

(1) If st(p,C) € Zg, then (p,n) is applicable to C only if
p=A.
The remaining conditions apply when st(p,C) € Zy, if receive/send
is separate, or in general if receive/send is atomic.
(2) If communication is asynchronous, (p,u) is applicable to
C only if p e M u {A} and g is a prefix of buff(p,C).
(3) If communication is synchronous, (p,s) is applicable to C
only if u is a prefix of buff(p,C).
(4) If communication is immediate, (p,u) is applicable to C
only if p = buff(p,C).

If the event e = (p,u) is applicable to C, then the next configura-
tion e(C) is obtained as follows:

(a) p changes its state from z = st(p,C) to Gp(z,p) and the
states of the other processors do not change,

(b) for all (q,m) € Bp(z,p.), append m to the right end of
buff(q,C), :

(c) delete u from the left end of buff(p,C).

In the case of asynchronous message order, the main differ-
ence in the above definitions is that each buffer is modeled as an
unordered finite set. Therefore in the discussion above, M® is
replaced by the set of finite subsets of M, buff(p,C) is a finite
subset of M, events have the form (p,u) where u is a finite subset
of M, and the empty set ¢ takes the place of A. Minor modifica-
tions to the definition of "applicable” and "next configuration"
must also be made, and we leave these obvious modifications to
the reader; for example, in the case of asynchronous communica-
tion, (p,u) is applicable only if x € buff(p,C) and |u| < 1.

To define synchronous processors and synchronous (but not
immediate) communication and to define correctness of a proto-
col, we must consider sequences of events. A schedule is a finite
or infinite sequence of events. A schedule ¢ = ¢,0,,... is
applicable to an initial configuration I if:

¢))

the events of o can be applied in turn starting from I, i.e.,
a, is applicable to I, o, is applicable to o,(I), etc.;

if processors are d>-synchronods (constant ® > 1) then for
every consecutive subsequence t of ¢, if some processor
takes ¢ + 1 steps in r and if the processor p takes no step
in 7, then p takes no steps in the portion of ¢ following r
(this says that once a processor fails it cannot restart at a
later time);

2

(3) if communication is A-synchronous (constant A > 1) then,
for every j, if o= (p,u), if message m was sent to p by the
event ¢; with i < j—A, and if none of the events o, with
i<k <j is the receipt of m by p, then m belongs to p (this
says that messages must be delivered within A real time

steps).
If ® =1 in (2), the processors are said to be lock-step.

If o is finite, o(I) denotes the resulting configuration which is
said to be reachable from 1. A configuration reachable from some
initial configuration is said to be accessible. Henceforth, all con-
figurations mentioned are assumed to be accessible. If Q is a set
of processors, the schedule o is Q-free if no p € Q takes a step in
o. A schedule together with the associated sequence of configura-
tions is called a run.

We assume that there are two disjoint sets of decision states
Yo and Y, such that if a processor enters a state in Y, (v €
{0,1}) then it must remain in states in Y,. A configuration C has
decision value v if st(p,C) e Y, for some p. A consensus protocol
is partially correct if
(1) no accessible configuration has more than one decision
value, and
(2) for each ve {0,1}, some accessible configuration has
decision value v.

396

A processor p is nonfaulty in an infinite run if it takes infi-
nitely many steps and is faulty otherwise. For 0 <t <N, an
infinite run is a t-admissible run from I if:

(1) the associated schedule is applicable to 1,

(2) at most t processors are faulty, and

(3) all messages sent to nonfaulty processors are eventually

received.

A run is a deciding run if every nonfaulty processor enters a deci-
sion state. A protocol is a t-resilient protocol for the weak consen-
sus problem if it is partially correct and every t-admissible run
from every initial configuration is a deciding run. A protocol is a
t-resilient protocol for the strong consensus problem if it is partially
correct, every t-admissible run from every initial configuration is a
deciding run, and if I, is the initial configuration in which all
processors have initial value v then all deciding configurations
reachable from I, have decision value v.

For the purposes of our impossibility proofs we would also
like to define when a schedule is applicable to a noninitial config-
uration C. In the case of synchronous processors or synchronous
communication it would seem that the definition would have to
depend not only on C but also on the history of events that led to
C. However, the full history is not needed since in all of the
impossibility proofs given in detail in this paper, one of the fol-
lowing two situations hold:

(1) processors are asynchronous and communication is ei-

ther asynchronous or immediate, or

(2) processors are lock-step and communication is asynchro-

nous,

For situation (1), clearly the history is irrelevant, and the defini-
tion of o being applicable to C is identical to the definition above
for initial C. The definitions of ¢(C) and "reachable" are also
identical. For situation (2), the definition requires a little extra
technical machinery and this will be developed in the proof of
Theorem I0 which is the only place where it is used. Whenever
we give an impossibility proof in a model with lock-step proc-
essors (resp., immediate communication), a modification of the
proof also shows impossibility in the same model but with
®-synchronous processors, ® > 1, (resp., A-synchronous commu-
nication, A>1). These modifications will appear in the final
version of this paper.

For configuration C let V(C) be the set of decision values of
configurations reachable from C. Configuration C is bivalent if
V(C) = {0,1}, or univalent otherwise. Univalent configurations
are either O-valent if V(C) = {0}, or 1-valent if V(C) ={1}. The
following obvious fact is used often in our proofs:

For v=0,1, if C is v-valent and D is reachable from C then
D is v-valent.

3. THE PRINCIPAL BOUNDARIES

Since our impossibility proofs follow the general outline used
by Fischer, Lynch and Paterson [FLP], it is worthwhile to first
review this outline. The proof assumes the existence of a t-
resilient protocol and reaches a contradiction. There are three
steps.

1. Show that there is a bivalent initial configuration.

II. Show that if C is a bivalent configuration and p is a
processor, then there is a schedule ¢ such that ¢(C) is bivalent
and p takes a step in 0. Moreover, if p’s buffer is nonempty in C,
then for any message m in p’s buffer there is such a o in which p
receives m. (This is the difficult part.)

III. Using I and II construct an infinite t-admissible run
which is not deciding as follows. Let B; be an initial bivalent
configuration. In general, if B, is bivalent, let p = p; where j=i
(mod N) and let B, ; = o(B;) where ¢ is obtained from II. More-
over, if p’s buffer is nonempty in B, let p receive a message which
has been in the buffer for the longest time. The resulting infinite
run is 0-admissible. It is not a deciding run because, by partial
correctness, a bivalent configuration has no decision value.

Although our proofs follow the general outline of [FLP], in
most cases we lose the "commutativity" property of schedules
which was used heavily in [FLP]. Therefore, we have had to
develop new techniques beyond those used in [FLP]. First we
review the first step of the outline.

Lemma 3.1. (Fischer, Lynch, Paterson [FLP]). For any choice of
the system parameters and any t > 1, if a protocol is t-resilient
and solves the weak consensus problem then the protocol has a
bivalent initial configuration.

Proof. Suppose otherwise that all initial configurations are either
O-valent or 1-valent. Since partial correctness implies that 0 and
1 are both possible decision values, there must be initial configu-
rations I and I; such that I, is v-valent. By changing the initial
values in which I, and I, differ, one at a time, we can find initial
configurations J, and J; such that J, is v-valent and J, and J;
differ in the initial value of exactly one processor, say p. Consid-
er a finite deciding run from J, in which p takes no steps; such a
run must exist by t-resiliency. Letting o be the associated sched-
ule, ¢ is applicable to J; also and the same decision 0 is reached
in both cases. This contradicts the 1-valency of J;. [

Another basic lemma from [FLP], variations of which are
used in most of our proofs, is the following.

Lemma 3.2 ([FLP]). Suppose that processors, communication
and message order are all asynchronous. Let C be a bivalent
configuration and let e = (p,m) be an event applicable to C. Let
€ be the set of configurations reachable from C without applying
eand let @ = {e(E) | E e €¥}. If @ contains no bivalent configu-
ration then @ contains both a 0O-valent and a 1-valent configura-
tion.

397

Proof. Suppose otherwise that, for some v, @ contains only v-
valent configurations. Since C is bivalent, there is a schedule o
such that o(C) has decision value ~v. If ¢ is an event in o, then
writing o =o0,e0, where e does not occur in o; and letting
D = e(0,(C)), we have D ¢ & but D cannot be v-valent because
0,(D) has decision value ~v. If e is not in ¢ then o(C) ¢ € and e
is applicable to o(C) so e(a(C)) € @ and it cannot be v-valent.

O

The main result of [FLP] is that in the model with proc-
essors, communication and message order all asynchronous (and
the other two parameters favorable) there is no 1-resilient proto-
col for the weak consensus problem. Our first result strengthens
this by allowing synchronous, even lock-step, processors. In
general, the letters I and E in the names of our theorems refer to
impossibility and existence of protocols, respectively.

Theorem I0. In the model with asynchronous communication and
asynchronous message order (and the other three parameters
favorable), there is no 1-resilient weak consensus protocol.
Moreover, this is true if processors are lock-step synchronous.

Proof. We give the proof for lock-step processors. The proof
needs a few new definitions and lemmas. Since processors are
lock-step assume that in any schedule or run, the processors take
turns in the order py, P, ..., Pn> P1» Pps --- - If C is a configura-
tion, let turn(C) be the number of the unique processor whose
turn it is. That is, turn(I) = 1 for every initial I and if C’ follows
in one step from C then turn(C’) = turn(C) + 1 (mod N). The
definition of a schedule ¢ being applicable to C is identical to the.
definition in Section 2 for initial C with the added condition that
if turn(C) =1 then p; is the agent of the first event in ¢. To allow
processors to fail, we introduce the notion of a "failure step” as
an expositional convenience. The corresponding event is denoted
(p,t). The event (p;,t) is applicable to C iff turn(C) =i. The
next configuration (p;,+)(C) is identical to C except that its turn
is incremented. To the definition of applicable schedule add the
condition that if a processor takes a failure step then all of its
subsequent steps are failure steps. A round is an N-event sched-
ule gy,..., 0 such that if q; is the agent of o; for 1 <i < N then
4y, .. 4y is a cyclic shift of py,...,py. A schedule or run is
failure-free if no processor takes a failure step. A configuration C
is ff-bivalent if there are configurations Dy and D, reachable from
C by failure-free runs such that D, has decision value v for
v=0,1.

Lemma [0.1. C is ff-bivalent iff C is bivalent.

Proof. Clearly ff-bivalency implies bivalency. The other direction
follows immediately from the following fact: If C can reach a
configuration with decision value v by a finite run R then C can
reach a configuration with decision value v by a failure-free run.
To see this let o be the schedule associated with R. If ¢ contains
no failure events we are done. Say then that p takes failure steps
in 0. Consider any schedule o’ identical to o except that p takes
no failure steps. Since communication and message order are
asynchronous, ¢’ is applicable to C also since any message sent by
p in o’ but not sent by p in o can be delayed until after the deci-
sion is reached. (We are using here the fact that R is finite.) The
failure-free run obtained by applying ¢’ to C leads to decision v.

O

Lemma J0.2. Let C be a bivalent configuration reachable from
some initial configuration by a failure-free run, and let e = (p,m)
be an event applicable to C with m ¢ M u {¢}. Let € be the set
of configurations reachable from C by zero or more failure-free
rounds in which the event e is not applied, and let @ =
{e(B) | E ¢ ¥}. Then P contains a bivalent configuration.

Proof. Suppose otherwise that @ contains only univalent configu-
rations. If buff(p,C) = ¢ then e = (p,4) is the only non-failure
event applicable to C, so the bivalency of C implies the bivalency
of e(C). Say then that buff(p,C) % ¢ so at least two events are
applicable to C.

As in the proof of Lemma 3.2, it is easy to show that @
contains both a 0-valent and a 1-valent configuration. In carrying
out the details of the proof, first use Lemma 0.1 to conclude that
C is ff-bivalent, so for each v ¢ {0,1} there is a failure-free run
from C that leads to decision value ~v, so the configurations in @
cannot all be v-valent. Now by an easy induction there are con-
figurations C;,C; €« € and a single failure-free round p such that
e(C,) is v-valent for v=0,1 and either Cy = p(C;) or C, = p(Cy).
Say w.Lo.g. that C; =p(Cq). For v e {0,1},let D, =¢e(C,) so D,
is v-valent. Write p = fr where f = (p,m’) and m »% m’ and write

T = (qpumy), (q3,my), ..., (qy,my).
Let T’ = (Q2,¢). (113,4'), ooy (qu¢)’ and p’-fT" If e(p’(Co)) is
bivalent we are done since e(p'(Cp)) € D. If e(p'(Co)) is not
bivalent, we claim that it is 1-valent. Suppose otherwise that it is
O-valent. For1 Sj<N, let
Tj - (112,%), oy (qN!nN)

where o; = m; if i <j and n; = ¢ if i > j, and let p; = fr;. In partic-
ular, p; = p’ and py = p. Note that pe is applicable to C, for all j
because e is applicable to Cy and e is not applied in p; Since
e(p1(Cp)) is 0-valent and e(pn(Cy)) is 1-valent, there must exist a
j such that e(Pj(Co)) is O-valent and e(pj +1(Cp)) is 1-valent. The
only difference between p; and p;,; is that p; contains (q],¢)
where p;, ; contains (q],mj). Let 9 be identical to pj except that
the event with agent q; in 9 is (qj,ﬂ. Note that ne is applicable to
Cp also. Let o be a qj-free finite schedule applicable to
G, = e(7(Cg)) such that the associated run is deciding. Then o is
applicable to Gg = e(p;(Co)) and to G;=e(p;,1(Cp)). Since
st(r,Gg) = 8t(r,G;) = st(r,G,) for all r aj the same decision is
reached when o is applied to Gy, G, and G,. But this contradicts
either the O-valency of G, or the 1-valency of G, and completes
the proof that E; = e(p'(Co)) is 1-valent.

Our purpose in changing r to 1’ is to ensure that no event in
v is the receipt of a message sent by the event f. Therefore,
[+',(p,})] is applicable to Dy; let E, be the resulting configuration.
Also’ [(P,f),""y(P,f)] is app‘-icable to Co; let E2 be the result.ing
configuration. See Figure 1. (We indicate v-valency in figures by
writing v inside a small box.) Let o be a p-free schedule applica-
ble to E, such that the associated run is deciding. Since o is
applicable to both E, and E; and since st(r,Ey) = st(r,E;) =
st(r,B,) for all r% p, the same decision is reached in all three
cagses, which contradicts either the O-valency of E, or the 1-
valency of E;,. [

Using Lemmas 3.1 and 10.2, the proof of Theorem I0 is now
completed as described in part ITI of the general outline. []

398

-l-l

1
|
|
|
|
v
l (s)
E E
!
!
|
[
[
v

[+

Figure 1.

Another definition and simple lemma will be used often in
the remaining proofs.

Definition. Let XsP. Two configurations C and D are
X-equivalent if st(p,C) = st(p,D) and buff(p,C) = buff(p,D) for
allpe P-X.

Lemma 3.3. Assume a model in which processors are asynchro-
nous and communication is either asynchronous or immediate. In
any t-regilient consensus protocol, there do not exist a O-valent
Dy, a 1-valent D, and a set X P with | X| <t such that D, and
D, are X-equivalent.

Proof. Suppose otherwise. By X-equivalence, if o is an X-free
finite schedule applicable to Dy such that the associated run is
deciding, then o is applicable to D, also and the same decision is
reached in both cases. []

By Theorem I0 we can henceforth restrict attention to mod-
els where either communication or message order is synchronous.
In each case we identify models where N-resilient protocols exist,
but the model cannot be weakened and still have N-resilient
protocols. We first consider synchronous communication.

Theorem El1. If communication is synchronous, transmission is
broadcast and receive/send is atomic (and the other two parame-
ters are unfavorable), there is an N-resilient strong consensus
protocol,

Proof. We describe the protocol for p;. First p; broadcasts its
name and initial value (i,x;). p; then attempts to receive messages
for 2A of its own steps (where communication is A-synchronous).
If it receives a message "Decide v", it decides v. If it receives
(j,xj) from some other processor, it remembers X; and attempts to
receive for 2A more steps. If at some point it has run for 24
steps without receiving any messages it sees if all initial values
received from other processors are the same as its own initial
value. If so it decides on this common value v; if not it decides
v=0. In either case, it broadcasts "Decide v".

Termination of the protocol is obvious: since at most N
messages of the form (i,x;) are sent, a processor can run for at
most 2AN of its own steps before deciding. It is also clear that if
all initial bits have the same value v, then all nonfaulty processors
decide v. If the initial bits are not all the same, it remains to
show that there is no run with two different decision values.
Suppose there is such a run. Number the steps 1,2,3,.... These
are the "times" at which the steps occur. Let p be the processor
that makes the earliest broadcast of a message "Decide v" for
some v. If some other processor decides ~v, let q be the proc-
essor that decides ~v earliest. Before deciding, both p and q
attempted to receive for 2A steps but received no messages. Let
Sp be the time of p’s first such attempt to receive, and let dp be
the time when p decides. Let 8q be the time of g’s first attempt,
let m; be the time of g’s Ath attempt, and let dq be the time when
q decides. If m_>d, then g will receive the message "Decide v"
from p before time dg, so q will also decide v. Therefore, we
must have mj<d, Since m; > s;+4, it follows that
d,>s, + 4, so any message received by q before time s, will be
received by p before time d;, Similarly, since d; > d;, > s, +4,
any message received by p before time s, will be received by g
before time d;. Therefore, p at time d, has collected exactly the
same set of initial values as q has collected at time d;. Since q is
the earliest processor to decide ~v, q has not received a message
"Decide ~v" from some other processor. Therefore, p and q
must decide the same. []

The next two results show the effect of replacing broadcast
transmission by point-to-point transmission in the protocol of
Theorem E1. We find the unusual phenomenon that 1-resiliency
is possible but 2-resiliency is not.

Theorem E1.1. If the model of Theorem E1 is weakened by
having point-to-point - transmission, then there is a 1-resilient
strong consensus protocol.

Proof. The proof follows easily from Theorem E1. Let p; and py
run the protocol of Theorem El1. In this protocol, a processor
need never send to itself, so atomic sending to N-1, or "(N-1)-
casting” suffices. Since there are only two processors participat-
ing, point-to-point is equivalent to (N-1)-casting. When one of
Py or p, (or both) decides, it sends the decision to all others. []

399

Theorem I1.1. Assume N > 3. If the model of Theorem E1 is
weakened by making transmission point-to-point, there is no
2-resilient weak consensus protocol. Moreover, this is true even
if message order is synchronous and communication is immediate.

Proof. We give the proof for immediate communication and
synchronous message order. Assume there is a 2-resilient proto-
col in this model. Since communication is immediate, we can
name an event simply by naming the processor that takes the step,
since the message string received when p takes a step from C is
buff(p,C) by definition. Let p(C) denote the configuration
reached when the event (p,buff(p,C)) is applied to C.

Lemma I1.1.1. There do not exist a bivalent C and v-valent D,
for v=0,1, and distinct processors p and q such that Dy = p(C)
and Dl = q(C).

Proof. Suppose otherwise. Recall that a processor can send to at
most one processor in a step. If the set of processors receiving
messages sent by the events p and q is contained in {p,q}, then
Dy and D, are {p,q}-equivalent, which contradicts Lemma 3.3. If
one of p or q sends to some r ¢ {p,q}, say that p sends to r. Since
st(q,C) = st(q,Dy) and buff(q,C) = buff(q,Dy), q will act the
same when q is applied to Dy as when q is applied to C. But
q(Dg) is O-valent, and q(Dy) and D are {p,r}-equivalent, again a
contradiction. [J

Lemma I1.1.2. Let C be a bivalent configuration and let p and g
be distinct processors. There is a configuration E reachable from
C such that either p(E) or q(E) is bivalent.

Proof. 1f either p(€) or q(C) is bivalent, we are done. By Lem-
ma I1.1.1, p(C) and q(C) cannot have different univalencies, so
say that they are both O-valent. Since C is bivalent, there is a
finite deciding run from C with decision value 1. If D is a config-
uration in R with decision value 1, then p(D) and q(D) are obvi-
ously both 1-valent. Therefore, there are configurations A and B
in R and a processor r such that B =r(A), p(A) and q(A) are
both O-valent, but p(B) and q(B) are not both O-valent. Note
that r# p and r #q since p(A) and q(A) are both 0O-valent but B
(=r(A)) is not O-valent. If p(B) or q(B) is bivalent, we are done.
We show that p(B) and q(B) both univalent leads to a contradic-
tion. By Lemma I1.1.1 and the choice of B, p(B) and q(B) must
both be 1-valent. Let s be the processor to which r sends when it
takes the step from A to B. Say w.lo.g. that s#p. Now it is
easy to see that p(A) and p(B) are {r,s}-equivalent, which contra-
dicts Lemma 3.3. [J

To complete the proof of Theorem I1.1, we must slightly
modify step IIl of the outline. Starting from a bivalent initial
configuration, we again try to let processors take steps, in turn,
while keeping the system in a bivalent configuration. If at some
point we cannot let p take a step and maintain bivalency, we use
Lemma 11.1.2 to let the other processors take steps, in turn, while
staying in bivalent configurations. Even in this case we have
constructed a 1-admissible infinite nondeciding run. []

The next result shows the effect on the protocol of Theorem
E1 by separating the Receive and Send operations.

Theorem I1.2. If the model of Theorem E1 is weakened by mak-
ing receive/send separate, there is no 1-resilient weak consensus
protocol. Moreover, this is true if communication is immediate.

Proof. As in the previous proof, we specify an event by naming
the processor that takes the step. Furthermore, the event Rec(p)
(Send(p)) means that p takes a step when in a receiving (sending)
state. Given a bivalent C and an event e applicable to C, let € be
the set of configurations reachable from C without applying e and
let @ = {e(E) | Ee €}. We show by contradiction that & con-
tains a bivalent configuration. If @ does not contain a bivalent
configuration, then by a proof very similar to the proof of Lemma
3.2, @ contains both a 0O-valent and a 1-valent configuration.
Therefore, we can find configurations C(,C; € € and an event f
such that C; =f(Cgy) and e(Cy) and ¢(C;) have different vniva-
lencies. Say w.lo.g. that D, =e(G,) is v-valent. Let p be the
agent of e and q be the agent of f. Since processors are determin-
istic, p# q. There are four cases, and in each case we find an
equality or equivalence that contradicts Lemma 3.3.

(1) e = Send(p) and f = Send(q).
Let Dy = f(Dg); Dy’ is O-valent. Since message order is asynch-
ronous,

Dy’ = f(e(Cp))) = e(f(Cy))) = D.

(2) e = Rec(p) and f = Rec(q).
Again, f(Dy) = D;.

(3) e = Rec(p) and f = Send(q).
Let Dy = f(Dg). Since st(q,Co) = st(q,Dp) and buff(q,Cy) =
buff(q,Dg), q acts the same when it takes a step from C, as when
it takes a step from Dy; in particular, the messages sent are the
same in the two cases. It follows that Dy’ and D; are {p}-
equivalent.

(4) e = Send(p) and f = Rec(q).
By an argument similar to case (3), Dy and D, are {q}-equivalent.

Having shown that @ must contain a bivalent configuration,
the proof is completed by III of the outline. []

Theorem E2. If processors and communication are both synchro-
nous (and the other three parameters are unfavorable), then there
is an N-resilient strong consensus protocol.

Theorem E2 is well-known. A processor can tell if another
has failed by using "time-outs". Consensus can be reached by
simplifying any algorithm which reaches Byzantine agreement,
e.g., [DS].

Theorem 12. If the model of Theorem E2 is weakened by making
processors asynchronous, there is no 1-resilient weak consensus
protocol. Moreover, this is true even if message order is synchro-
nous and communication is immediate.

Proof. The proof is very similar to the proof of Theorem I1.2.
The only difference is in case (1), the only place where we used
asynchronous message order. In this proof, message order is
synchronous but transmission is point-to-point. The new case (1)
is as follows.
(1") e = Send(p) and f = Send(q).

Let Dy = f(Dg). If p and q do not send to the same processor in
the two events e and f, then Dy’ =D;. If p and q send to the
same processor r, then Do' and D, are {r}-equivalent. [}

The next group of results have synchronous message order.

Theorem E3. If message order is synchronpus and transmission is
broadcast (and the other three parameters are unfavorable), there
is an N-resilient strong consensus protocol.

Proof. The first step of each processor is to broadcast its initial
value. It then attempts to receive and decides on the first value
received. Since message order is synchronous, the first value
broadcasted will be the value decided by all. [

Remark. For Theorem E3 a weaker definition of synchronous
message order suffices: Whenever p broadcasts a message m, and
q broadcasts a message m,, then m, and m, appear in the same
order in the queues of all processors. The exact order does not
matter as long as it is the same for all processors.

Theorem 13. If the model of Theorem E3 is weakened by making
transmission point-to-point, there is no 1-resilient weak consensus
protocol. Moreover, this is true even if receive/send is atomic.

Theorem I3 is obtained as a corollary of a more general result in
the next section.

Theorem E4. If message order is synchronous and processors are
®-synchronous for some constant ® > 1 (and the other three
parameters are unfavorable), there is an N-resilient strong consen-
sus protocol.

Proof. The proof is by induction on N. The basis N =1 is obvi-
ous. Say that N> 1. Let & be the (N-1)-resilient consensus
protocol for N-1 ®-synchronous processors that exists by the
induction hypothesis.

On every other one of its own steps, each processor p; with
1 <i< N-1 runs the protocol #. When not running &, p; sends
the message ''p; is alive” to py. If p; decides in the protocol &, it
first sends the decision value to py and then p; itself decides.
Since & requires only that processors be ®-synchronous, it can be
seen that py, ..., py_1 simulate & correctly. On every other one of
its own steps, py sends a message to itself. On its other steps, py
attempts to receive. If at some point py has received a sequence
of ®+1 of its own messages without receiving a message "p; is
alive" between two of its own messages in the sequence, then py
concludes that p; has failed. If py concludes that p,,...,pN_;
have all failed, it decides on its own initial value.

The correctness proof has two cases. (1) If some p; reaches
a decision in & and sends the decision to py before failing, then
pn will receive this decision before py can conclude that p; has
failed. (2) If py, ..., py_; all fail before sending a decision to py,
then py will eventually discover this and decide on its own initial
value. [J

It follows from previous results that any weakening of the
model of Theorem E4 cannot tolerate one failure. These theo-
rems cover all 32 cases of choosing the system parameters.

4. ANOTHER TYPE OF BOUNDARY

In this section we consider models where the transmission
mechanism is intermediate between point-to-point and full broad-
cast and where message order is intermediate between synchro-
nous and asynchronous.

Definition. A model supports k-casting, 1 <k <N, if a processor
can send to at most k processors in an atomic step. - (In particular,
broadcasting as defined previously is N-casting and point-to-point
is 1-casting.) The k-casting is s-serializable, 1 < s <k, if for any
two k-casts from p to the set of processors Qp and from q to the
set of processors Q, there are at least min(s,IQanql) proc-
essors in Qanq that must receive the messages in the order in
which they were sent, but there are no constraints on the order in
which the other processors receive the messages. The set of
processors that must receive in the correct order depends only on
P q, Qp and Qq.

In this section, processors and communication are asynchro-
nous. The choice of the receive/send parameter is irrelevant.

Theorem E5. For any k, 1<k <N, k-serializable k-casting is
sufficient for (k—1)-resiliency.

Proof. Let S = {p;,...,p,}. Each processor in S k-casts its initial
value to all processors in S. Each then attempts to receive and
decides on the first value received. This decision value is then
sent to py,q, ..., PN- Since the k-casting is k-serializable, all
processors in S receive the same initial value first. Since at most
k-1 in S can fail, at least one will decide and send the decision to
P-S. O

Theorem I5. For any k, 2 <k < N, (k—1)-serializable broadcast-
ing is not sufficient for (k—1)-resiliency.

Lemma I5.1. There is no configuration C, events e = (p,m) and
f = (q,n) with p# q, and v € {0,1} such that e(C) is v-valent and
e(f(C)) is ~v-valent.

Proof. Since p # q, f is applicable to e(C). Let D = ¢(f(C)) and
E = f(e(C)) so D is ~v-valent and E is v-valent. Let Q be the set
of processors that must receive the messages from the two broad-
casts e and f in the same order, so | Q| <k—1. Any Q-free finite
deciding run applicable to D is also applicable to E and the same
decision is reached in both cases since st(r,D) = st(r,E) for all r.

O

Lemma 15.2. Let C be bivalent and let e = (p,m) be an event
applicable to C. Let € be the set of configurations reachable
from C without applying e and let @ = {e(E) | Ec €¢}. Then @
contains a bivalent configuration.

Proof. Say that @ contains only univalent configurations. By
Lemma 3.2 and a simple induction as in preceding proofs, there
are configurations C;,C; ¢ € and an event f=(q,n) such that
C, =1(Cp), Dy =¢e(Cyp) is 0-valent, and D; =e(C;) (= e(f(Cyp)))
is 1-valent. By Lemma I5.1, p=q. Let R be a p-free finite
deciding run from C,. If R contains a configuration E with deci-
sion value 1, then since e(Cgy) is O-valent and e(E) is 1-valent,
there must be configurations A and B in R such that B = g(A) for
some event g (the agent of g is not p since R is p-free), e(A) is
O-valent and e(B) (=e(g(A))) is 1-valent. This contradicts Lem-
ma I5.1. Therefore, R has decision value 0.

By a similar argument, there must be configurations B; and
B, in R and an event b such that By = b(B,), [fe](B,) is 0-valent
and [fe](B,) is 1-valent. Since the agent of b is not p, the sched-
ule [be] is applicable to f(B;). See Figure 2. If [fbel(B,) is
bivalent, we are done because this configuration belongs to @.
Let Q, with | Q[< k~1, be the set of processors that receive the
messages from the two broadcasts b and f in the same order. Any
Q-free finite deciding run applicable to [fbe](B,) is also applica-
ble to [bfe](B;) and the same decision is reached in both cases.
Therefore, [fbe](B;) is O-valent because [bfel(B;) is O-valent.
Letting B, = f(B,), e(B,) is 1-valent and e(b(B,)) is O-valent,
which contradicts Lemma I5.1. [J

The proof of Theorem I5 is now completed as in part III of
the outline. [J

Since the model with point-to-point transmission and syn-
chronous message order is a special case of the the model with
1-serializable broadcasting, Theorem I3 is an immediate corollary
of Theorem IS with k=2. Also note that the completely asynch-
ronous model of [FLP] is precisely O-serializable broadcasting, so
the impossibility result of [FLP] also follows from Theorem I5.

Figure 2.

401

S. OPEN QUESTIONS

A number of directions for future research come easily to
mind.

(1) Byzantine failures. .

Most of the research on reaching agreement in the
"standard” synchronous model with synchronous processors and
synchronous communication (Theorem E2) has dealt with Byzan-
tine failures where processors can send erroneous messages. For
example, given a reasonable definition of correctness of a consen-
sus protocol in the case of Byzantine failures, then with authenti-
cation (i.e., a processor can attach its unforgable signature to any
message) it is known that there is a strong consensus protocol
which is resilient to any number of Byzantine failures [DS]; with-
out authentication, t-resilient consensus is possible iff
t< L(N-1)/3] [LSP]. What is the effect of Byzantine failures
on our other protocols? If the model has broadcast (or k-cast)
transmission (Theorems E1, E3 and E5), the answer might de-
pend on whether a Byzantine processor is forced to broadcast (or
k-cast) a message, including erroneous messages, whenever the
correct action calls for a broadcast (or k-cast). In contrast, a
possibly more destructive type of behavior would be to send a
message to some processors but not to others. One model where
this might matter is the model of Theorem E3. If Byzantine
processors are forced to broadcast, a trivial modification to the
protocol of Theorem E3 is still correct and N-resilient, since the
only thing that matters in this protocol is that the same message is
broadcast to all processors at the same time. However, if a By-
zantine processor can send to some but not others, then this
particular protocol-is not correct. We are presently pursuing the
problem of introducing Byzantine failures into the model of Theo-
rem E1.

(2) Complexity.

Once one knows that a consensus protocol exists in a certain
model, it then becomes interesting to place bounds on various
measures of efficiency such as the time to reach agreement and
the number of messages that must be sent. In the "standard"
synchronous model, considerable work_has been done on these
efficiency issues, e.g., [DR,DS]. One specific open question for
the model of Theorem E1 is the following. We noted in the proof
of Theorem E1 that every nonfaulty processor decides after at
most 2AN of its own steps. If we only want to solve the weak
consensus problem, there is a similar protocol in which every
nonfaulty processor decides after at most 2A steps. Is there a
constant ¢ such that for any number N of processors, there is an
N-resilient strong consensus protocol for this model in which
every nonfaulty processor decides within cA of its own steps?

(3) Asynchronous start.

In the two protocols that assume synchronous processors
(Theorems E2 and E4), we also assume that the processors all
start running the protocol at roughly the same time. A weaker
assumption would be to place no constraint on when the proc-
essors start (except that every nonfaulty processors must start at
some time in any infinite run), but once a processor does start it
must then respect the definition of ®-synchronicity (until it fails).
Are there N-resilient consensus protocois in the modeis of Theo-
rems E2 and E4 using this weaker assumption?

402

Another general direction is to study the effect of network
topology and network failures.

Acknowledgment. The second author thanks Nancy Lynch and
Dale Skeen for helpful discussions.

REFERENCES

H. Aghili, M. Astrahan, S. Finkeistein, W. Kim, J.
McPherson, M. Schkolnick, and R. Strong, A prototype
for a highly available database system, Report RJ375S5,
IBM Research Division, San Jose, CA, 1983.

M. Ben-Or, Another advantage of free choice: completely
asynchronous agreement protocols, Proc. 2nd ACM Sym-
posium on Principles of Distributed Computing, 1983.

Ag.

BO.

BT. G. Bracha and S. Toueg, Resilient consensus protocois,
Proc. 2nd ACM Symposium on Principles of Distributed

Computing, 1983.

DR. D. Dolev and R. Reischuk, Bounds on information ex-
change for Byzantine agreement, Proc. ACM SIGACT-
SIGOPS Symposium on Principles of Distributed

Computing, 1982, 132-140.

D. Dolev, R. Reischuk, and H. R. Strong, Eventual is
earlier than immediate, Proc. 23rd Annual IEEE Symp. on
Foundations of Computer Science, 1982, 196—203.

D. Dolev and H. R. Strong, Polynomial algorithms for
multiple processor agreement, Proc. 14th ACM Symp. on
Theory of Computing, 1982, 401-407.

M. J. Fischer, N. A. Lynch and M. S. Paterson, Impossi-
bility of distributed consensus with one faulty process,
Proc. 2nd ACM Symp. on Principles of Database Systems,
1983.

L. Lamport, R. Shostak and M. Pease, The Byzantine
generals problem, ACM Trans. on Programming Languages
and Systems 4 (1982), 382-401.

M. Pease, R. Shostak and L. Lamport, Reaching agree-
ment in the presence of faults, JACM 27 (1980), 228-
234.

M. O. Rabin. Randomized Byzantine generals, rthese
proceedings.

DRS.

DS.

LSP.

PSL.

