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Abstract. The lack of expressive power of temporal logic as a specification language can be 
compensated to a certain extent by the introduction of powerful, high-level temporal operators, 
which are difficult to understand and reason about. A more natural way to increase the expressive 
power of a temporal specification language is by introducing conceptual state variables, which are 
auxiliary (unimplemented) variables whose values serve as an abstract representation of the 
internal state of the process being specified. The kind of specifications resulting from the latter 
approach are called conceptual state specifications. 

This paper considers a central problem in reasoning about conceptual state specifications: the 
problem of proving entailment between specifications. A technique, based on the notion of 
simulation between machines, is shown to be sound for proving entailment. A kind of completeness 
result can also be shown if specifications are assumed to satisfy well-formedness conditions. The 
role played by entailment in proofs of correctness is illustrated by the problem of proving that 
the concatenation of two FIFO buffers implements a FIFO buffer. 

1. Introduction 

A process’ can be characterized in terms of the possible histories of its accesses 
to variables. A specification describes a process by stating properties that are required 
to hold of all possible histories for that process. As has been shown by a number 
of authors [a, 3,6,10, Is], such process specifications CAL& be expressed as sentences 
in linear-time temporal logic. One of the difficulties with temporal logic as a 
specification language is that, at least in the most basic formulations, it is lacking 
in expressive power. This lack of expressive power can be compensated to a certain 
extent by the introduction of a number of powerful temporal operators such as 
until, chop or combine, and iterated combine [3,17]. ese operators do 
not permit one’s intuitive understanding of the desired process behavior to be 
formalized in the most direct and natural way, and also make reasoning about the 
resulting specifications more difficult. 

An alternative to the use of powerful temporal operators is the 
conceptual state specijkation. In a conceptual state specification, the 
process with respect to a collection of program variables is specified with the help 

* Supported in part by ARC Grant DAAG29-84-K-0058, NSF Grant DCR-83-02391, and DARPA 
Grant N00014-82-K-0125. 

’ In this paper, we use the term “process” to refer both to a sequential process and a system of 
concurrently executing sequential processes. 
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of a collection of conceptual state or auxiliary variables, whose values serve as an 
abstract representation of the internal state of the process. Conceptual state variables 
appearing in a specification are not intended to be implemented; their introduction 
serves merely to increase the expressive power of the temporal logic. A process 
satisfies a conceptual state specification if every computation of that process can 
be augmented or “explained” through the addition of a history of values for the 
conceptual state variables, in such a way that the temporal sentence comprising the 
specification is satisfied. 

In contrast to specifications involving the use of powerful temporal operators, 
conceptual state specifications appear to be a rather direct and natural way to 
formalize an intuitive understanding of the desired process behavior. For example, 
a conceptual state specification of a FIFO buffer process B directly formalizes an 
informal description that begins: “Imagine that process B contains an internal 
variable queue, whose value at any instant records the sequence of messages input 
to the buffer but not yet output . . . ,” and continues with a description of the initial 
state of a buffer process, the kinds of state transitions that may be taken by a buffer 
process, and a collection of liveness properties that must be satisfied. Conceptual 
state specifications generally do not require the use of temporal operators other 
than “henceforth, ” ‘“eventually,” and “next,” because conceptual state variables, 
rather than temporal formulas, are used to summarize the past history of module 
behavior. 

The basic idea of conceptual state specifications is not new, having been proposed 
previously in various forms by a number of authors. Yonezawa [18] describes a 
specification method that uses “conceptual representations,” to specify behaviors 
in the actor model of computation. The history variables of Hailpem and Owicki 
[6] can be viewed as a kind of conceptual state variables, whose values represent 
the sequences of values passed between processes up until a particular instant. 
Lamport [lo] describes a specification technique in which a specification is permitted 
to refer to a collection of indeterminate state functions, whose values summarize the 
state of a process. The style of specification that results is essentially similar to the 
conceptual state style illustrated in this paper. However, to show that a particular 
process satisfies a specification, it is necessary to provide definitions of the state 
functions in terms of the implemented process state. It would therefore appear that 
Lampert views state functions as playing more than just an auxiliary role. 

Although conceptual state specifications seem to be a natural way to describe 
process behavior, it is not quite as clear how to perform reasoning with them as it 
is in the case of ordinary temporal specifications. The somewhat nonstandard 
appearance of the quantifier “there exists a history for the conceptual state variables 
such that” in the definition of what it means for a process to satisfy a specification 
causes a certain amount of difficulty. A central problem in reasoning with conceptual 
state specifications is the problem of proving sn e~t~iZ~e~t or logical implication 
between two specifications, which in general involve different sets of conceptual 
state variables. 
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This paper introduces the notion of conceptual state specifications, defines what 
it means for the entailment relation to hold between two conceptual state 
specifications, and develops a technique for proving that this relation holds. We are 
able to show a kind of completeness result for our technique, which states that a 
true entailment relation can always be proved, assuming the specifications, irvolved 
satisfy certain well-formedness conditions that can be independently checked. The 
technique is illustrated by considering the problem of proving that the tandem 
connection of two FIFO buffers again implements a FIFO buffer. 

Our entailment proof technique makes use of the concept of a simulation between 
machines, and can be viewed as a generalization of the standard representation 
function, abstraction function, or interpretation techniques for proving an implementa- 
tion relationship between an abstract data type and its concrete representation 
[4,7,8]. If an abstract data type is viewed as a process, whose communications 
correspond to invocations of operations of the data type, then standard techniques 
are capable of proving only safety or invariance properties. In contrast, our technique 
permits both safety properties and Ziveness or eventuality properties to be proved. 
The technique used by Goree and Lynch [S, 1 l] in a hierarchical proof of invariance 
properties of a concurrency control algorithm can also be viewed as a special case 
of the technique presented here. 

The results of this paper are a reformulation of results reported in [16]. In that 
document, a number of processes are specified using the conceptual state technique, 
and several correctness proofs are performed using the technique described here. 
Experience with these examples forms the basis of the author’s opinion that concep- 
tual state specifications are a natural specification method that can support the 
systematic construction of correctness proofs by the techniques described here. 

2. Processes 

In thiF see’ ‘un we define a mathematical model of processes, in which the notion 
of process is idenaltied with that of certain sets of histories, where each history 
records the acce:;cag $3 variables made during a particular system execution. In the 
next section, conceptual state specifications will be defined, and it will be shown 
how a conceptual state specification is satisfied by a process. 

Our model is based on the intuitive conception of a system of concurrently 
executing sequential processes that interact through changes to the values of shared 
variables. Only one process is permitted to access each particular variable at any 
given instant of time. Although we find the shared variable assumption convenient 
for this paper, it is not essential for the results, and in fact can easily be replaced 
by a message-passing model, or a model in which processes interact by synchronize 
communication. 

We will represent the computation of such a system of processes in terms of the 
history of values taken on by the variables. In addition, we will always be describing 
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a computation from the vantage of a distinguished process in the system, and our 
representation of computations will include information about which variables were 
accessed at each instant of time by the distinguished process, and which were 
accessed by the environment of that process. The presence of t is information in 
the model allows us to obtain composuble temporal specifications [3]. 

There is a nonstandard feature of our model that requires some prior explanation. 
Below we will define a history to be a certain kind of function from the nonnegative 
real line to a set of events. We will then define the semantics of our temporal logic 
language in terms of these “continuous” histories, rather than in terms of discrete 
sequences as is usually done. A consequence of our approach is that the “next-state” 
operator 0 becomes meaningless, and we replace it with the somewhat weaker 
notions of “before” and “after” states. The reason for making these nonstandard 
definitions is to obtain a temporal logic whose sentences are incapable of distinguish- 
ing between histories that are identical except for occurrences of “null events,” in 
which no changes are made to the values of variables. The formal statement of the 
property we require is the Projection Lemma (Lemma 3.1). Ordinary formulations 
of temporal logic in terms of discrete sequences do not satisfy the Projection Lemma. 

To begin our formal treatment, we assume the existence of a universe ‘IF of program 
variables, and a universe % of values. If V E Sr, then a V-state is a function q : V+ %. 
If q is a V-state, q’ is a V-state and U c Vn V’, then define q = u q’ if q(u) = q’(u) 
foralluE UIfq = vn v’ q’, then define the join q u q’ to be the unique ( V a, V’)-state 
r such that r = vq and r = v’ q’. If q is a V-state and U c_ V, then define the projection 
wu( q) to be the unique U-state q’ such that q’ = u q. 

efinition 2.1 (Event). A V-event is a pair e = (_e, Z, e), where _e and e’ are Vstates, 
called the before state and the after state, respectively, and e^ is a subset of V, called 
the access set of e. The event e is a null event if e^ = (b and z = ,e. 

We extend the = u notation to 
e^ n U = e^’ n U. The notations u 
obvious way. 

events by defining e = U e’ if _e = u _e’, e’ = u 8, and 
and mU( ) can then be extended to events in an 

Intuitively, a V-event records the results of a single step of execution, viewed 
from the vantage of a particular process, say P, in a system. The before state _e of 
a V-event e records the values of the variables V “just before” the step in question, 
and the after state e’ records the values of the variables “just after” the step in 
question. The access set e^ records the set of variables accessed by the process in 
the step. Changes to the values of variables in e^ are attributed to the action of 
process P. Changes to the values of variables not in e^ are attributed to the action 
of the environment of process P. Access sets are a refinement of, and serv? the same 
purpose as, the environment and process actions of [3]. 

(History). Let 92+ be the set of nonnegative real numbers. A V-history 



Entailment between conceptual state specifications 139 

is a function x from B+ to V-events, with the following property: for all t E B+, 
there exists an E > 0 such that 

(1) &‘)=R(t’)=&) and a(t’)=fl for all t’dR+ with t-ect’ct, 
(2) n(t) = x( t’) = W( t’) and x^( t’) = 0 for all t’ E %!+ with t < t’ c t + E. 

We extend the notations =u, u, and ~sr~( ) to histories in the obvious way. 
Intuitively, a V-history is a record of all steps that occur during a single execution 

of a process, along with their times of occurrence. The two requirements state that 
each instant of time at which a nonnull event occurs is surrounded by an interval 
of time during which only null events occur. These requirements intuitively corre- 
spond to the idea that processes execute at a finite rate, and formally ensure that 
histories have a certain local finiteness property, as we now show. 

Define a subset T c_ 3’ to be ZocaZly finite if T n I is finite whenever I is a 
bounded interval of B+. Note that a locally finite set T always has a unique 
enumeration as an increasing sequence, viz. to < tl < l l l , and if the set T is infinite, 
then this sequence is unbounded. 

Lemma 2.3. Suppose x is a V-history. Then the set of all t E B+ for which x(t) is 
nonnull is locally finite. 

Prooa’+ Suppose not, then there is some bounded interval I c a+, such that x(t) is 
r~o~~null for infinitely many t E I. We can assume without loss of generality that I 
42: closed. Since the closed, bounded subsets of B+ are compact, it follows that 
{I E I : x(t) nonnull} has an accumulation point, say to, in I. Then to is also an 
accumulation point of one of the sets { t’ < to : x( t’) nonnull} or { 5’ > to : x( t’) nonnull}. 
Suppose the former, the argument for the latter case is symmetric. Then for all E > 0 
there exists a t’ E (‘to - 8, to) with x(t’) nonnull. This is in contradiction with the 
definition of a history. Cl 

Lemma 2.4. Given an infinite 1ocallyJinite set T = {to < t1 c 0 l l } with to = 0, a sequence 

qo,q1,*- of V-states, and a sequence V,, U, , . . . of subsets of V, there corresponds 
a unique V-history x such that x( tk) = (qk, U,,, qk+i) for all k, and x( t) = (qk+, ,0, qk+l) 
for all k and all t E ( tk, tk+,). Conversely, ifx is a V-history, then there exists a set T, 
a sequence qo, ql, c . . of V-states, and a sequence Wo, U, , . . . of subsets of U with the 
stated properties. 

roof. Given T, qo, q,, . . . , and U,, &,. . . , the stated properties uniquely define 
a function x from 9+ to V-events, which is easily seen to be a V-history. 

Conversely, suppose x is a V-history. ‘Ihen the infinite set 

T={O, 1,2,. . .}w{t~%!+:x(f) nonnull} 

is locally finite by Le.mma 2.3. Suppose T = {to c t, c l 9 a}. straightforward argu- 

ment, which we omit, making use of the compactness of the closed, bounded subsets 
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of a+, shows that a( tk) = ~(t~+~) for all k, and x(t) = (Z(&), 0, ~(t~+~)) for all k 
and all t E (tk, tk+l). We can therefore obtain the required 4;k and Uk by defining 

qk=&) and Q=i(tk). Cl 

efinition 2.5 (Recess). A V-process is a :et of V-histories. 

It should be noted that, although we hav A here defned a process to be an arbitrary 
set of Vhistories, not every such set shouk’: be regarded as computable or realizable 
in the sense that it is the behavior of a process definition expressed in a particular 
concurrent programming language. For example, the empty set of histories is 
evidently not realizable since any program must have at least one execution. In 
general, we will have in mind a particular subset of all processes, which we call the 
realizabZe processes, and which are the processes denotable in a particular program- 
ming language under consideration. The definition of entailment between 
specifications, and subsequent results based on this definition, should then be 
relativized to the set of realizable processes. Since this relativization introduces 
certain complications which are inessential for the purposes of this paper, we suppose 
here that every process is realizable. The reader is referred to [16] for an attempt 
to address the general situation. 

3. Conceptual state specifications 

As a concrete medium in which to express conceptual state specifications, we 
define, for each set of variables V, a corresponding first-order temporal logic T( V), 
whose sentences are interpreted as properties of V-histories. The language T( V) is 
syntactically similar to other linear-time temporal logics [9, 12, 141, containing the 
temporal operators Cl (henceforth) and 0 (eventually). However, we do not permit 
the use of the next-state operator 0, since the notion of the “next” state is (by 
design) meaningless for histories. We draw a distinction between program variables, 
which ET thse in V and which cannot be bound by quantifiers, and logical variables, 
which are drawn from a set X, (disjoint from V, and which are permitted to be bound 
by quantifiers. 

In a temporal formula, we refer to the state portion of a history through the use 
of program variables in terms. A program variable v E V can appear ip a term only 
in the form _u, which denotes the value of a program variable just before the current 
instant, or in the form 4 which denotes the value of v just after the currerit instant. 
Through the use of the p and u’ constructs, we obtain some, but not all, of the 
expressive power normally provided by the 0 operator. We refer to the access set 
portion of a history through the use of special predicates 6, of which there is one 
for each program variable v E K The predicate u^ is true iff the variable v is accessed 
by the process under consideration at the current instant. 
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To avoid issues concerning the possibility of expressing various functions and 
relations on the underlying universe 41, we assume that for each function or relation 
there is a corresponding function or relation symbol in the language T(V). 

The precise syntax of T( V) is as follows. 

Terms 
i J If v E V is a program variable, then ,o and 0’ are terms. 
(2) If x E X is a logical variable, then x is a term. 
(3) If f is an n-ary function on % and t, , . . . , tn are terms, then f( tl . . . tJ is a 

term, where f is the function symbol corresponding to J: 

Formulas 

0) 
(2) 

(3) 

(4) 

If v E V is a program variable, then u^ is a formula. 
If P is an n-ary relation on % and tl ). . . , tn are terms, then r(t, . . . t,) is a 
formula, where r is the relation symbol corresponding to r. 
If p, # are formulas and v E X is a logical variable, then - JP, p A Q+ and (3v)p 
are formulas. 
If ~cp is a formula, then Clap is a formula. 

Additional logical connectives, universal quantification, and 0 are treated as 
defined constructs in the usual way. 

To define the semantics of T( V), we first define the meaning of a term t to be a 
function that takes a Vevent e and an X-state q to a value t(e, q). 

Terms 
(1) de, 4) = f+); @(e, 4) = W. 
(2) x(e, 4) = q(x). 
(31 fOl l l l t,h 4) ==Jlhk 41,. . . 9 t,k, q)b 

We next define the satisfaction relation I= between a V-history x, an X-state q, 

and a formula (9 of T(V). 

Formulas 
(1) x, ql=v^ iff vEXI( 
(2) x,ql=r(t1... t,) iff r( h(x(o), q), . . . 9 tn (x(O), 41 holds- 

(3) x,qi=lQ iff x,qFQ; x,ql=Q@ iff x,ql=Q and x,qk@; x,qk(3o)4p iff 
there exists q' with q' =x-{vl q such that x, q'l=Q. 

(4) x, q I= Lhp iff, for all t E @, x(‘), q I= Q, where 8) is the history x’ such that 
x’( t’) = x( t + t’) for all t’ E %!+. 

As usual, if p is a sentence (a formula with no free logical variables), then whether 
x, q I= Q holds is independent of q, and we may write x I= Q without ambiguity. we 
say that a sentence Q is valid, and we write I= Q if x I= Q holds for all V-histories X. 

By interpreting sentences of T( V) over “continuous ” histories, zather than discrete 

sequences as is usually done, we easily obtain t e following result. lt is crucial in 
what follows. 
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ma 3.1 (Rojeztion Lemma). Suppose V and U are sets of variables, with U c V 
is a sentence of S( U) and x is a V-history, then 

‘dX)~Q iff +Q, 

where the satisfaction on the left is taken in T( U) and that on the right is taken in 9( V). 

By induction on formulas-straightforward. Cl 

Definltlon 3.2 (Conceptual State Specification). A conceptual state specijication is a 
three-tuple S = ( V, C, Q), where V is a set of intefice variables, C is a set of 
conceptual state variables disjoint from V, and Q is a sentence of the temporal 
language 9( V v C). 

A V-process P satisfies a conceptual state specification S = ( V, C, Q) (in which 
case we write PI= S) if to each V-history x E P there corresponds a C-history y such 
that (X LJ y) i= Q. 

Thus, a process satisfies a conceptual state specification iff every history in the 
process can be augmented or “explained” by the addition of a history for the 

temporal sentence in the 

specification. Suppose P, P’ 

conceptual state variables, in such a way that the 
specification is satisfied. 

Lemma 3.3. Suppose S = ( V, C, Q) is a conceptual state 
are V-processes such that P c_ P’. If P’l= S, then PI= S. 

k foof. Obvious. 0 

c Example: a buffer specification 

As a concrete example of a conceptual state specification, we treat the problem 
of specifying the behavior of a process that behaves as an unbounded FIFO buffer. 
Later we will consider the problem of proving that the tandem connection of two 
FIFO buffers is again a FIFO buffer. This example, although trivial from a practical 
point of view, nevertheless exhibits most of the interesting theoretical issues. 

4.1. Informal buffer specification 

A buffer process has two interface variables: in and out, which we assume take 
their values in the set A u (I). The set A is the set of values that the buffer process 
is capable of buffering, and 1 is a special value, denoting undefined, which plays 
an important role in the protocol by which the buffer process communicates with 
its environment. The variable I is used for receiving values to be buffered from a 

t is used for outputting values to a consumer 
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The behavior of a buffer process can be described with the help of a single 
conceptual state variable e, whose values are finite sequences of elements of 
A, representing the sequence of values stored in the buffer. The specification is 
divided into three parts: a part describing the initial conditions that hold at the start 
of execution, a part describing state-transition information, which is concerned with 
the step-by-step evolution of the values of the variables, and a part describing 
liveness properties. 

For the buffer process, the initial conditions state merely that the value of queue 
is the empty sequence. 

It is convenient to organize the state-transition part of the buffer specification by 
classifying each state transition that can occur as an instance of a certain kind of 
event. There are three kinds of events that can occur during the execution of a buffer 
process. The first kind of event is an input event in which a value, say a, is read 
from the external variable in, the value of in is reset to I, and the value of the 
conceptual state variable queue is changed by appending a at the end. When an 
input event occurs, the variable out is not accessed by the buffer process. 

The second kind of event is an output event in which a value, say a, is removed 
from the conceptual queue, and written into the output variable out. It is required 
that the variable out have value I before an output event can occur. When an output 
event occurs, the variable in is not accessed by the buffer process. 

The third kind of event is an environment event, which can occur at any time, in 
which any change at all to the variables in and out is permitted, but in which the 
conceptual state variable queue does not change. The buEer process does not access 
the variables in and out during an environment event-rather, such an event rep- 
resents a possible access of these variables by the environment of the buffer process. 

There are two liveness conditions that must be satisfied by a bufIer process: one 
associated with the assimilation of input values, and one associated with the 
production of output values. The first liveness condition states that if the variable 
in assumes a non-l value and retains this value for a sufficiently long time, then 
eventually an input event will occur. The second liveness condition states that if 
the internal queue of the buffer process is ever nonempty, and the variable out 
assumes the value I and retains this value for a sufficiently long time, then eventually 
an output event will occur. Together these conditions ensure that the buffer process 
eventually transmits values from producer to consumer, if possible. 

4.2. Formal bu$er specijca tion 

The informal description of the behavior of a buffer process given above can be 
formalized as a conceptual state specification: 

where 

ene) A rbuf(i e), 
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Ybudi, 0, q)=g=( h 

rtdi, 0, q) = q l(Ievent(i, 0, q) v Qevegs a, q) v Nevent(i, 0, q)), 

At& 0, q) = q (O(i # U~OIevetlr(@, 0% gb) 

A q ( # ( ) A Cl& s -lhHkWnt( i, 0, q)), 

and 

Ievent(i, 0, q) = i^n +hj # IA L _LA 

Oevent(i,o,q)~Olhllhq#()AP~~~~~tBil(q)~B-head(g), 

Nevent(i,o,q)=&~o^r,q=~. 

The functions head and t il are the obvious f~~$$ions on sequences. 
The sentence ybUf(in, out, queue) expresses the Gdhdition that the conceptual state 

variable queue has the empty sequence as it% value in an initial state. 
The sentence TbUF(in, out, queue) assert8 &at, km all instants of time, an event 

appearing in a history for a buffer process EIW$ either be an input event, an output 
event, or an environment event, as discussed &bte. 

The sentence hbuf(in, out, queue) expr:ws the liveness properties mentioned 
above. 

The lengthiness of the specification is @m&)l due to the fact that we have to 
say explicitly when a variable is unchanged $5 a result of an event, as well as how 
the values of variables change. For more complex ptocesses, it is useful to introduce 
notational conventions to shorten the state&b$tiob part of a specification. Lam- 
port’s “Allowed Changes” notation [lo] is an esgmple of the kind of abbreviations 
that can be made. 

roving entailment 

In this section, we define the notion of a&Glment between conceptual state 
specifications, and consider the problem of’ QW to prove that a conceptual state 

specification S = ( V, C, fp) entails a comeptual s&&e specification S’ = ( V, C’, Q’). 

efinition 5.1 (Emailment). A conceptual stats specification S = ( V, C, p) entails a 
conceptual state specification S’ = ( V, C’, rp’) (Qf$i we write SI= S’) if every 
that satisfies S also satisfies S’. 

Intuitively, one would expect it to be pos&l& perform a proof that S /= S’ by 

proving a certain implication in temporal IO&, e evident implication is 9 3 Q'. 
Although the validity of this implication (ta language $( Vu C u C’)) is 

sufficient to imply that S I= S’, it is not necessaf5/, in fact is much too strong a 
condition to be useful in practice. Tti owing p holds of a 
( Vu C u C’)-history tells us nothing aba etween the values of 
the C-variables and the values of the C’-vadablvs, This relationship will clearly be 
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important, in general, for proving that yp’ holds. We would like to find weaker 
sufficient conditions for Si= S’, which if not necessary? are at least of practical utility. 

In this election we show that it is in fact sufficient to find temporal sentences PM 
and PM’ corresponding to “machines” M and M’, such that the temporal implica- 
tions Q 3 pM and PM’ A Q A p 3 Q’ are valid. Here p iS a temporal sentence derived 
from a “simulation relation” from M to M’, which expresses the correspondence 
between the states of M and those of M’. The simulation relation p is a generalization 
of, and serves a purpose similar to, the abstraction functions or representation functions 
used in proofs of implementation relationships between abstract data types [4,7,8]. 

Earmma 5.2. Suppose S = ( V, c, Q) and S’= ( V, C’, Q’) are conceptual state 
specifications. l3en S I= S’ iff to each V-history x and C-history y such that (x u y ) I= Q, 
there corresponds a C-history y’ such that (x u y’) I= Q’. 

Proof. Suppose that to each V-history x and C-history y such that (x u y) I= Q there 
corresponds a C’-history y’ such that (X u y’) I= Q’. Assume Pb S; then to each 
V-history x E P there corresponds a C-history y such that (X u y) b Q. By hypothesis, 
there exists a C’-history y’ such that (X u y’) b Q’. Since this is true for all x E P, it 
follows that R= S’. 

Conversely, suppose S I= S’. If x is a V-history and y is a c-history such that 
(X u y) l= Q, then the singleton V-process P = {x} satisfies S. Since Sl= S’, it must 
also be the case that PI= S’. This implies the existence of a C’-history y’ such that 
(XUJ”)i=Q’. q 

Next, we define the kind of nondeterministic machine that will be used in our 
entailment proof technique. Such a machine consists of an “initial state relation,” 
which specifies the states in which computation is permitted to start,, and a “state 
transition relation,” which specifies the events that are permitted to occur. Condition 
(1) of the definition below says that a machine must have an initial state correspond- 
ing to any given assignment of values to interface variables. Condition (2) says that 
it is always possible for a machine to execute a null event (i.e., do nothing). Condition 
(3) is a technical condition which ensures that access information for conceptual 
state variables is essentially irrelevant in a computation. We impose this condition 
because conceptual state variables are unimplemented auxiliary variables, for which 
access information is meaningless. 

nitim .3 (Machine). Suppose V and C are disjoint finite sets of variables. 
A (V, C)-machine is a pair M = (YM, ,,,, , 7 ) where yM is a unary relation on ( Vu 
C)-states, called the initial state relation and 7-M is a unary relation on ( Vu 
C)-events, called the transition relation, such that the following conditions are 
satisfied: 

(I) For all V-states q, there exists a C-state r such that yM (4 u r) holds. 
(2) For all Estates q and all C-states r, TM( q u r, 0, q u r) holds. 
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(3) For all V-states qo, ql, all C-states ro, rl , and all subsets U, 14’ of V v C, if 
Un V= U’n V, then T&qou ro, U, q1 u rl) holds iff T&qou r,, U’, q, u rJ 
holds. 

The temporal sentence corresponding to a ( V, C)-machine M = ( yIM, T& is the 
sentence PM of F( Vu C) defined by 

Here TM (V u C) denotes the formula, involving the terms p for each in E Vu C, 
corresponding t0 the initial State r&tiOn yM, and TM ( VU c, 6 u 6, v u c) denotes 
the formula, involving the terms _u, 6 for each v E Vu C, and the predicates 6 for 
each v E Vu C, corresponding to the transition relation TM. 

A computation of a (V, C)-machine M is a (Vu C)-history x uy such that 

b@bMm 

We next define the notion of a “simulation” from a machine M, with interface 
variables V and conceptual state variables C, to a machine M’ with the same set 
of interface variables, but a disjoint set C’ of conceptual state variables. Intuitively, 
a simulation relates states of M to corresponding states of M’ so that the initial 
state and state transition relations are preserved in a certain fashion. 

efinition 5.4 (SimuZation). Suppose M is a ( V, C)-machine, and M’ is a ( V, C’)- 
machine, where C n C’= 0. A simulation from M to M’ is a relation p G 
V-states x C-states x C’-states such that the following hold: 

(1) For all V-states p and C-states q, if yM( p u q) holds, then there exists a 
C’-state q’ such that yM’( p u q’) and p( p, q, q’) hold. 

(2) For all V-states p, p’, C-states q, q’, all U G V, and all C’-states r, if p( p, q, r) 
and TM( p u q, U, p’u q’) hold, then there exists a C’-state r’ such that 
p( p’, q’, r’) and TM’( p u r, u, p’u r’) hold. 

The following is the main technical lemma used in the proof of the Entailment 
Theorem below. Intuitively, it says that the existence of a simulation from M to 
M’ ensures that for each computation of M we can obtain a computation of M’, 
in such a way that the two computations can be combined into a single “joint 
computation” for which the simulation relation invariantly holds. 

is a ( V, C) -machine and M’ is a ( V, C’) -machine. Suppose 
‘. Then, to each computation x u y of M, there corresponds 

a computation x u y’ of M’ such that 

(xuyuy’)l=op(~ C, c’)hap(~ C, P). 

ose x u y is a given computation of y Lemma 2. , there exists an 
infinite locally finite set T = {to c tl < . 9 l } with to = 0, a sequence po, pl, . . . of 
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V-states, a sequence qo, ql, . . . of C-states, and a sequence Uo, V,, . . . of subsets 
of (VuC) such that x(tk)=(pkuqk, U&pk+luqk+l) for all k, and x(t)= 
( pktl u qk+l, 0, pk+l u qk+l) for all k and all t E (tk, fk+J. Since x u y is a computation 
of M, we know that yiM (qo) holds and TM( qk, Uk, qk+l) holds for all k. 

It is now a simple matter to construct by induction, using the defining properties 
of a simulation, a sequence q&, q:, . . . of C-states, such that yM( pou 96) holds, 
and P(pk9~k9dh and rM'~Pk~& Ukn KP &+I u qi+l) hold for all k Define uk = (b 
for all k. Then an application of Lemma 2.4 to the set T and sequences 

u;, W, l l l 9 dh 4: 9 . . . yields a C-history y’ such that x u y’ is the desired computa- 
tion of M’. I3 

The following result gives our technique for proving entailment between concep- 
tual state specifications. 

Theorem 5.6 (Entailment Theorem). Suppose S = ( V, C, 9) and S’ = ( V, C’, (p’) are 
conceptual state specifications, with C n C’ = 0. Suppose we canfind a ( V, C)-machine 
M, a ( V, C’)-machine M’, and a simulation p from M to M’ such that the implications 

are valid. Z%en Sl= S’. 

Proof. Suppose M, M’, and p have the stated properties. By Lemma 5.2 above, we 
need only show that, to each V-history x and C-history y such that (x u y)Cqp. 
there corresponds a C’-history y’ such that x u y’l= Q'. Given x and y such that 
x u y I= Q, we know from the first hypothesized implication that (x u y) /= PM- Since 
p is a simulation, Lemma 5.5 gives us a y’ such that x u y?= pMM’ and 

(xuyuy’)tOp(_V, C, C’)nOp(q e;, C’). 

By the Projection Lemma, 

By modus ponens and the second implication assumed valid by hypothesis, it 
follows that (x u y u y’)+~‘. Applying the Projection Lemma again gives us 
(XUy’)i=Q’. 0 

connection of 

This section illustrates the role played by the Entailment eorem in a proof that 

the tandem connection of two FIFO buffers correctly implements a FIFO buffer. Let 
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Let S be the conceptual state specification 

({in, out, inout}, (queueO, queue,}, q Consis({inout)) A v. h pl), 

which is the specification satisfied by the tandem connection of two buffer processes. 
Were the formula Consis( U), for a finite set of variables U, is given by 

Consis( U)= A (ii?M=g). 
VEU 

Intuitively, the formula q lConsis({inout}) states that if the variable inout is not 
accessed in an event by one of the two buffer processes, then its value does not 
change in that event. This corresponds to the idea that the variable inout is an 
internal variable used for communication between the two buffer processes, and is 
hidden from access by the external environment. 

Let S’ be the specification 

({in, out, imu& {q-e,bJ, Qabs), 

which, if satisfied by an {in, out, inout}-process P, implies that the projection of P 

to the variable set {in, out} satisfies the buffer specification. 
To prove the correctness of the implementation, we must prove that the entailment 

Si= S’ holds. To apply the Entailment Theorem, we must determine the machines 
M and M’, find a simulation p from M to M’, and prove the validity of two 
implications in temporal logic. 

The factorization of the buffer specification into initial conditions, state-transition 
conditions, and liveness conditions obviously suggests an M and M’. Define 

yM = y&in, inout, queueo) A ybuf(inout, out, queue,), 

TM= r&in, inout, queueo) A ~buf(inout, out, queue,) A ConsWnoutH, 

It is straightforward to check that M and M’ are, in fact, machines, and that the 
implications 

q Consis({lnout}) /\ Qpo I\ Qp1 3 PM and (;P& 2 pMM’ 

are valid. 
Next, we must define a relation p, and show that it is a simulation from M to 

M’. The appropriate p is the one that says that the abstract queue is the concatenation 
of the two component queues, with the value of inout in between if that value is 
not 1. 

e abs , queue0, queue! ) 

abs = 



Entailment between conceptual state specifications 149 

The proof that p is a simulation involves a case analysis based on the different 
possible combinations of input, output, and environment events that are permitted 
by the transition relations T M and TM’. The details are straightforward but tedious, 
and are omitted. In general, the construction of the simulation p is the part of the 
proof that teguires insight; once this relation has been constructed, the enumeration 
of the various cases in the conditions required for p to be a simulation, and the 
construction of the proof for each case, are systematic tasks that are within the 
ability of automatic or semi-automatic theorem-proving programs. 

To complete the proof of correctness of the buffer implementation, we must prove 
the implication 

or equivalently, 

(PM A PM’ A 0 p (inout, queue0, queue1 , queu%bs) 
--- 

-- 
A q p(~, -0, queueI, queueabs)) 

The intuitive content of this implication is that every “joint computation” of M and 
M’, whose “M-part” satisfies the specification for the tandem connection of two 
FIFO buffers, and whose M-part and M’-part are related by the simulation relation 
p, also has the property that its M’-part satisfies the specification of a FIFO buffer. 

This proof can be performed, for example, by the proof lattice techniques of 
Owicki and Lamport 1131. We omit the details. 

7. A completeness result 

The sufficient conditions given by the Entailment Theorem for proving an entail- 
ment are not necessary, in general. However, if we assume the specifications involved 
satisfy certain well-formedness conditions, we can show that the proof technique 
given by the Entailment Theorem is complete in the sense that a proof can always 
be found when an entailment holds. 

Definition 7.1 (Regularity). Suppose M is a ( V, C)-machine, and A is a sentence 
of Y( VU 6). We say that A is v-egular with respect to if for all computations 

xuy, xuy’ of M, xuyl=A iff xuy’l=A. 

Intuitively, if A is regular with respect to then whether a computation x uy 

of M satisfies A depends only upon X, and not upon the particular choice of history 
for the conceptual state variables. 
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Definition 7.2 (Quasi-determinacy). Suppose M is a ( V, C)-machine. We say that 
M is quasi-determinate when, for all computations x u y, x’ u y’ of M, if x(t) 7 A: x’(t) 

for all t E 10, n), then there exists a computation x u y” of M, with y”(t) = y’(t) for 
all t E [0, n). 

Intuitively, for a quasi-determinate machine, the particular choice of conceptual 
state history made on an initial segment of a computation does not affect whether 
or not that computation can be completed to generate a particular history x for the 
interface variables. 

Defimition 7.3 (Density). Suppose M is a (V, C)-machine, and h is a sentence of 
T( Vu C). We say that A is dense in M if the following property holds: for all 
computations x u y of M and all n E 9 +, there exists a V-history X’ and a C-history 
_v’ such that (x’ u y’) I= pM A A and such that (X u y)(t) = (x’ u y’)(t) for all t E [0, n]. 

Intuitively, A is dense in M if every computation of M is arbitrarily close (w.r.t. 
a metric that measures the length of agreement of prefixes) to a computation of M 
that satisfies h. 

Theorem 7.4 (Completeness Theorem). Suppose 

S=(VC,p,nh) and S’=(V,C’,pMn~h’) 

are conceptual state specijkutions, with C, C’ disjoint. Suppose that A is dense in M, 
and that A’ is regular with respect to the quasi-determinate machine M’. If Sk S’, then 
there exists a simulation p frm M to M’, and the implication 

pM’hfiMhA3A’ 

is valid. 

Proof. Suppose M = (y, r) and M’ = (y’, 7’). We first show that pM# h PM A A 3 A’ 
is valid. To show this, suppose that x is a V-history, y is a C-history, and y’ is a 
C’-history such that 

Then (X u y) I= PM A A and (X u y’) t= pMt by the Projection Lemma. By Lemma 5.2 
and the assumption that Sk S’, there exists a C’-history y’ such that (X u y’) I= PM’ A 
A ‘. The regularity of A ’ with respect to M’ implies that (x u y ‘) I= A’ iff (x u y”) I= A ‘, 

so we conclude that (x u y’) k A ‘. It follows by the Projection Lemma that (X u y u 
y’)l= A’. 

It remains to prove the existence of the required simulation p from M to M’. 
Define a pair (p u q, p u r), where p is a V-state, q is a C-state and r is a Cktate, 
to be jointZy reachable according to the following inductive definition: 

(1) If’ yM( p u q) and yM’( p u r) both hold, then ( p u q, p u r) is jointly reachable. 
(2) If (p u q, p u r) is jointly reachable, and TM ( p u q, u, P’LJ q’) and rM’( p u 

r, U, p’u r’) hold for some IY G V, then ( p’u q’, p’u r’) is jointly reachable. 
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If p is a V-state, q is a C-state, and q’ is a C-state, then define p( p, q, r) to hold 
iff the pair ( p u q, p u r) is jointly reachable. 

We claim that p is a simulation from M to M’. To show this, we must show two 
things: 

(1) 

(2) 

For all V-states p and C-states q, if yM (p u q) holds, then there exists a 
C’-state q’ such that y&p u q’) and p(p, q, q’) hold. 
For all V-states p, p’, all C-states q, q’, all U G V, and all C’-states r, if 
p( p, q, r) and rM( p u q, U, p’ u q’) hold, then there exists a C’-state r’ such 
that p( p’, q’, r’) and T&P u r, U, p’u r’) hold. 

‘To show (l), suppose p is a V-state and q is a C-state such that yM ( p u q) holds. 
Then since M’ is a machine, there exists a C-state r such that ~IM,( p I_J r) holds. 
Since the pair ( p u q, p u r) is jointly reachable, it follows that p( p, q, r) holds, 

TO show (2), suppose p( p, q, r) and rM ( p u q, U, p’ u q’) hold. Then, by definition 
of p, the pair (p u q, p u r) is jointly reachable. We can therefore obtain a sequence 
Uo, U,,=*., U,,+ of subsets of V, a sequence po, pl,. . . , pn of V-states, a sequence 

qodIlr**~, q” of C-states, and a sequence ro, rl , . . . , r, of C’-states such that pn = p, 

4n = 49 rn = r, ~(POU 401, and ~W(POU ro) hold, n&k uqk, Uk,~k+~ uqk+h and 

TM’( pk Li rk, uk, pk+l U rk+1) hold for all k with 0 s k s n - 1, and p( pk, qk, rk) holds 
for all k with Odcsn. 

Extend the sequences pi and qi to infinity by defining pi = p’ and qi = q’ for all 
i > n. Extend the sequence Vi to infinity by defining Un = U and Ui = 0 for all i > n, 
and extend the sequence ri to infinity by defining pi = an for all i > n. Define the 
sequences pi and U: SO that pi = pi and Ui = Ui for 0 G i < n, and pi = pn and Ui = 0 
for i > n. Then 

%d(pk u qk, uk, pk+l u qk+l) and 7M’(pi u rk, vi9 pi+, u rk+l) 

hold for all k 
Let T = (0, 1,2, . . .}. Then by Lemma 2.4, T and the sequences Uk, pk, and qk 

uniquely determine a V-history x0 and a C-history y. such that 

and 

xOttbyO(t)= (Pk+fUqk+dt pk+l!-I qk+l) 

for all k E T and all t E (fk, ?k+& 

Similarly, the sequences Vi, pi, and rk uniquely determine a V-history x6 and a 
C-history y&, which have the additional property that (x; u yh)(t) = (~0 u YO)( t) for 
all t E [0, n). By construction, (x0 u yoj k pM and (xhu y;) I= PM’. 

Intuitively, the computation x0 u y. of is a computation that begins in an initial 

state, reaches the state p u q before time n, performs the event ( p u q, U, p’ u q’ 
time n, and then subsequently performs null events. The computation &IJ ~6 of 
is a computation that begins in an initial state, reaches the state p u r before 

p to the way in 
tly. What we wis 
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transition to the state ~‘u r’ at time n, corresponding to the transition to the state 
p’ u q’ that I’M pen;forms at time n in x0 u yo. 

By the assumption that A is dense in M, there exists a ( V v C)-history (x, u yl) 
such that xl(t)uyl(r)=~o(t)uyo(t) for all t~[0, n], and such that (x,uyl)l=pcM A 
A. This implies that the singleton process {x1} satisfies S. By the assumption that 
S i= S’, {x,} I= S’, and hence there exists a C’-history yi such that (xl u y i) I= FM’ A h ‘. 

We now know that (xIuy;)b&f’, (x~uy~)+~M’, and x&)=x;(l) for all TV 
[0, n). By the quasi-determinacy of M’, there exists a C’-history yi such that 
(x, u ~5) I= phjI and y$( t) = y&(t) for t E [0, n j. 

Since (x1 u y;) I= cc&#‘, it follows that ?&.&(n) u y;(n)) holds. Since xl(n) = p, 
R,(n) = p’, a,(n) = U, and y;(n) = r, it follows that y;(n) has the property that 
TM( p u r, U, p’u y;(n)) holds, and hence is the desired state Y’. 0 

The previous result is not the strongest possible completeness result that one 
might wish for since it does not assert the existence of the machines M and M’. 
Rather, it assumes that the specifications have been presented in such a way that 
M and M’ are made explicit. A better completeness result would show that it is 
possible to choose M to be a “smallest” machine such that A =) PM is valid, and 
M’ to be a certain “maximal” machine for A’. Such a result is apparently not true 
for the general set-up considered in this paper. For example, it can be shown that, 
to each temporal sentence A that satisfies a “strong satisfiability” condition, there 
corresponds a “smallest” machine M such that l=A 3 PM. However, it is not always 
the case that A is dense in A4 Obtaining a “maximal” machine M’ corresponding 
to A’ such that M’ is quasi-determinate and A’ is regular with respect to M’ seems 
at least as problematic. Perhaps, though, by imposing suitable restrictions on the 
temporal specification language, a result along these lines could be obtained. Alpem 
and Schneider [I] have obtained similar completeness results in a set-up where 
temporal properties are specified as “property recognizers,” which are similar to 
Biichi automata. 

. Summa 

We have introduced the notion of a conceptual state specification, which is a 
kind of temporal logic specification in which conceptual state variables are intro- 
duced to increase the expressive power of the temporal language. We have defined 
the notion of entailment between conceptual state specifications, and have obtained 
a proof technique for establishing the entailment relationship. The proof technique 
can be viewed as a generalization of standard techriques for proving the correctness 
of implementations of abstract data type. WC showed that if the specifications 
involved are assumed to satisfy certain well-formedness conditions, then true entail- 
ment relations can always be established by our technique. e use of the technique 
was illustrated by a simple example. 
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The combination of the Entailment Theorem and the Completeness Theorem 
above suggests a disciplined approach to the use of conceptual state specifications. 
In particular, a conceptual state specification ought to be presented in “factored” 
form, where one factor (conjunct) is the temporal sentence corresponding to a 
machine, and the other factor expresses liveness properties (which cannot be 
expressed in machine form). Furthermore, the machine and liveness properties 
should be quite tightly related in that the liveness properties are regular with respect 
to, and dense in, the machine. Finally, the machine part should be quasi-determinate, 
which means that it does not permit very much freedom in the choice of the 
conceptual state history corresponding to any given history for the interface variables. 

We are therefore led to the following definition. 

Definitiolol8.1 ( Well-fomedness). A well-formed conceptual state specification is of 
the form S = ( V, C, pM A A), where A is regular with respect to, and dense in, the 
quasi-determinate machine M1 

Note that well-formedness is a property that can be verified about a specification 
in isolation, and it is possible to show the buffer specifications of the previous 
section to be well-formed. In general, the behaviors of many processes are naturally 
specified by well-formed conceptual state specifications. Exceptions are processes 
like a lossy buffer process, which behaves like a FIFO buffer except that it is 
permitted to lose values. Such a process is naturally specified by a conceptual state 
specification much like the lossless buffer specification presented here, except the 
occurrence of an input event can result either in no change to the internal queue 
(the value is lost), or to be added to the end of the queue (the value is destined for 
transmission). The machine derived from this specification is not quasi-determinate. 
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