
A Proof Technique for Rely/Guarantee Properties

Eugene W. Stark l

D e p a r t m e n t of C o m p u t e r Science

S t a t e Univers i ty of New York a t S tony B r o o k

S t o n y Brook , New York l 1 7 9 4 - 4 4 0 0 / U S A

Augus t 19, 1985

Abstrac t

A rely/guarantee specification for a program P is a specification of the form R D G (R implies

G), where R is a rely condition and G is a guarantee condition. A rely condition expresses the

conditions that P relies on its environment to provide, and a guarantee condition expresses what

P guarantees to provide in return. This paper presents a proof technique that permits us to infer

that a program P satisfies a rely/guarantee specification R D G, given that we know P satisfies a

finite collection of rely/guarantee specifications R/D Gi, (i E I). The utility of the proof technique

is illustrated by using it to derive global liveness properties of a system of concurrent processes

from a collection of local liveness properties satisfied by the component processes. The use of the

proof rule as a design principle is also considered.

1 I n t r o d u c t i o n

A rely/guarantee specification for a program P is a specification of the form R D G (R implies

G), where R is a rely condition and G is a guarantee condition. A rely condition expresses the

conditions that P relies on its environment to provide, and a guarantee condition expresses what

P guarantees to provide in return. This paper presents a proof technique that permits us to infer

that a program P satisfies a rely/guarantee specification R D G, given that we know P satisfies a

finite collection of rely/guarantee specifications R~ D Gi, (i E I). In a typical application, R D G

will be a global property of a large program P, whereas each R~ D Ci will be a locally verifiable

property of a smaller component Pi of P. In a top-down design methodology based on successive

decomposition [Lis79] [WirT1], the proof technique can be used as a decomposition principle for

1This research was supported in part by ARO grant DAAG29-84-K-0058, NSF grant DCR.83-02391, and DARPA
grant N00014-82-K-0125.

370

determining specifications R~ D Gi for component modules, when these component modules are

used to implement a "higher-level module" that must satisfy the specification R D G.

Two examples are given to illustrate the utility of the proof technique: a distributed syn-

chronization algorithm, in which a collection of processes communicate in a ring-like pattern to

synchronize access to critical sections, and a distributed resource allocation algorithm, in which

processes communicate in a tree-like pattern to distribute a finite collection of resources among

themselves. Although the statement of the proof technique does not depend on the choice of a

particular specification or programming language, in the examples we use as a programming lan-

guage a concurrent version of Dijkstra's guarded command language [Dij76], and as a specification

language a version of temporal logic [Pnu77] [Lam80] [LamB3] [MP831.

In the examples, we are concerned with the proof of liveness properties of systems of concurrent

processes. In particular, we are interested in deriving globalliveness properties satisfied by a system

from a collection of local liveness properties satisfied by the component processes. The fact that

the technique applies readily to the proof of general liveness properties is interesting, since not

many useful techniques for performing such proofs have been developed.

1.1 R e l a t e d Work

The proof rule and examples presented in this paper are adapted from the author's thesis

[StaS4}.
The idea that program specifications are conveniently formulated and manipulated in the form

of rely/guarantee conditions is not new. Pre/postcondition specifications for sequential programs

are examples of rely/guarantee specifications, in which the precondition expresses the conditions on

the program variables the program relies on when control enters it, and the postcondition expresses

the conditions the program guarantees when and if control leaves it. In fact, the Floyd/Hoare

techniques for proving partial correctness of sequential programs [Flo67] [Hoa69] can be viewed as a

special case of the proof technique presented here (see Section 2). However, our technique extends

the Floyd/Hoare approach, since the former can be applied to the proof of liveness properties,

whereas the applicability of the latter (in the usual formulation) is limited to safety, or invariance

properties.

For concuryent or distributed programs, a kind of rely/guarantee specification and associated

proof technique was introduced in [MC81]. In that paper, a process h is specified by an assertion

of the form rlh]s, where r and s are predicates on finite sequences (called traces} of communication

events. Such an assertion is interpreted as: ~The predicate s holds of the empty trace, and for all

traces t that can be produced by process h, if r holds for all proper prefixes of t, then s holds for

all prefixes (both proper and improper) of t.

Misra and Chandy's proof technique is expressed as a ~Theorem of Hierarchy, ~ which gives

conditions under which specifications that are satisfied by a collection of component processes

can be used to infer a specification that holds for the network formed by interconnecting the

371

components. Their proof technique can be stated as follows: To show that the specification

RolHISo for the network H is a consequence of the specifications r~lh~ls~ , (i E/~ for the components,

it suffices to show that:

1. S implies S0,

2. (R0 and S) implies R,

where R and S denote the conjunction of the r~ and si, respectively. These conditions are closely

related to the cut 8e~ conditions presented below.

In IMCS82], the techniques of [MC81] are extended to encompass a weak form of liveness

specification in which an additional predicate q is used to state conditions under which a process

trace is guaranteed to be extended. The Theorem of Hierarchy is augmented with additional

conditions to permit its application to these more general specifications. The additional conditions

do not appear to relate in a simple way to the proof technique presented here.

The use of rely and guarantee conditions has also been proposed for safety specifications by

Jones [Jon81] [Jon83]. Barringer and Kuiper IRK83] (see also [BKP84]) have proposed the use of

]iveness specifications that are partitioned into an =environment part, ~ which captures assumptions

made about the environment, and a =component part, ~ which captures committments made by

the module being specified. Jones, as well as Barringer and Kuiper, exploit the rely/guarantee

condition structure of specifications by defining inference rules for process composition.

Hailpern and Owicki [HO80] have performed some example proofs in which liveness properties

(expressed in temporal logic) for network protocols are derived from more primitive liveness prop-

erties satisfied by each of the constituent processes. Although they are successful at constructing

proofs for examples of reasonable complexity, it is difficult to discern much in the way of general

principles that might be used to systematize the construction of proofs for different examples. In

contrast, the proof rule presented here suggests a way of thinking about process interaction that

can systematize and simplify the construction of correctness proofs.

2 The P r o o f Rule

We assume a programming language, a meaning function that assigns to each program the

set of its computations, a specification language, and a binary relation ~ between computations

and specifications, where if x is a computation and S is a specification, then z ~ S means that

computation z 8at/s.fies specification S.

We assume that the specification language is closed under the formation rules for the logical

connectives -~ and D:

(-~) If S is a specification, then -~S is a specification,

(D) If $1 and $2 are specifications, then $1 D $2 is a specification,

372

and that -~ and D are endowed with their usual meanings:

(D) z D S , D & i f f z ~ & i m p l i e s x D & .

The other standard logical connectives can be t reated as definitional extensions in the usual way.

We are interested in establishing statements of the form "P ~ S," which we define to mean

"z ~ $ for all computations x of program P."

To state our proof rule we do not need to make any other assumptions about the precise

form of computations or the programming or specification languages. Later, in demonstrating

the application of the rule to examples, we will assume that computations are sequences of states

and that specifications are sentences in a language of temporal logic. Although the proof rule is

a logical truth that has nothing specific to do with the structure of programs, specifications, or

computations, it derives power from the fact that the rely/guarantee paradigm is a useful way to

think about interaction between program modules.

The proof rule described in this section permits us to derive a statement of the form:

P ~ R D G

from a finite collection of statements of the form:

P ~ R ~ D G I , i E I

under certain conditions on the specifications R, G, Ri, and Gi.

Intuitively, R D G should be thought of as an aabstract" or "high-level" statement that we

wish to prove about the program P, and each Ri D Gi should be thought of as a aconcrete" or

"low-level" statement that we have already shown to hold for P . In the examples given later on in

the paper, P will be a parallel program composed of a finite set of component processes {Pi : i E I},

and each Ri D Gi will express a property of the component process Pi that we assume has already

been shown to hold by arguments involving P~ alone.

The specification R D G is a rely/guarantee specification, in which R expresses the conditions

that the program P relies on its environment to provide, and G expresses what P guarantees to

i ts environment in return. Similarly, R~ expresses the conditions that the component program Pi

relies on its environment to provide, and Gi expresses what Pi guarantees to its environment in

return.

The proof rule presented below is based on the following intuition: If we know, for each i E I ,

that component program Pi guarantees condition Gi under assumption Ri, then we can prove that

P guarantees condition G under assumption R by showing the existence of a set of specifications

that "cuts," in a certain sense, the dependence between each pair of component programs, and

between each component program and the external environment. The sense in which dependence

373

is cut ".'s highly analogous to the way in which a loop invariant is used to isolate reasoning about

one iteration of the loop from reasoning about the preceding and succeeding iterations.

Formally, we say that the collection of specifications {RGi~ : i , j E I U {ext}} is a cut set for

the program P and specifications R, G, {R~, Gi : i E I} if:

P ~ R D (Aiet RG~xt,i) (1)

P ~ (AiexRO,,e~) D G (2)

P ~ (h~e~u{~xt} RG,.i) D R i, for all i G I (3)

P ~ Gi D (Aiexu{ext} RGi,i), for all i E I. (4)

Here ~ext" is a special symbol that does not appear in I.

If i,] are both in I , then the specification RG~,j should be thought of as expressing both what

component i guarantees to component j , and dually~ what component j relies on component i to

provide. The specification RGe~tj expresses what the external environment of the entire program

guarantees to component j , and also what component j relies on the external environment to

provide. Similarly, the specification RG~.ext expresses what component i guarantees to the external

environment, and also what the external environment relies on module i to provide. By convention,

we define RGe~t,~xt = true. This specification is not used in the proof rule and has no particular

intuitive significance. We include it merely for uniformity.

Conditions (1) and (2) above can be interpreted as stating, respectively, that the rely condition

R implies what each component relies on the external environment to provide, and the guarantee

condition G is implied by the conjunction of what each component guarantees to the external

environment. Conditions (3) and (4) can be interpreted, respectively, as stating that component j ' s

rely condition is implied by the conjunction of what the external environment and each component

i guarantees to provide to j , and component i 's guarantee condition implies the conjunction of

what the external environment and each component j relies on i to provide.

The existence of a cut set is not sufficient to imply that P ~ R D G is a consequence of

{P ~ Ri D G~ : i E I}. Intuitively, the reason is that even though the rely and guarantee

conditions imply each other in the proper way, it might still be the case in a computation of P

satisfying the rely condition R, that no component's rely condition Ri holds, hence no component 's

guarantee condition Gi need necessarily hold either, and hence the guarantee condition G need not

hold. To avoid this kind of degeneracy, we introduce the additional condition that every possible

cycle of mutual dependence between components is broken by at least one condition in RG that

holds.

Formally, If I is a finite set, then define a cycle of I to be a finite set of pairs of the form

{(io,ia),(Q, i2) , . . . , (i , -1 , i ,)} such that i , - io. We say that the collection {RG~ d : i , j E I} is

acyclic if:
n - - 1

P ~ V RG'~,'k+,
k=o

for all cycles {(io,Q), . . . , (i , - 1 , i ,) } of I.

374

Note that acyclicity implies the ~diagonal" elements RGi.I hold unconditionally:

P ~ RGi,i for all i E I .

We now present our proof rule.

T h e o r e m 1 (Rely/Guarantee Proof Rule) - Suppose P is a program, I is a finite index set, and

the collection R G -- { RGIj : i , j e IU (ext}} is an acyclic cut set for program P and specifications

R, G, (Ri, Gi : i E I}. Then to prove the statement

P ~ R D G ,

it sulgces to 8how

for all i E I.

P r o o f - Suppose RG = {RGij : i , j E I u {ext}} is a cut set for program P and specifications

R, G, {R/, Gi : i E I}. Suppose further that

P ~ Ri D G~

holds for each i E I, but

P ~ R D G .

This means that there is a computation x of P such that x ~ R, but x ~ G. We perform an

inductive construction to obtain a cycle

(Cim, ira+t) (i._1, i .) }

of I such that x ~ ,-1 Vk=m RGi~,~k+~. This implies that RG is not acyclic for P .

As the induction hypothesis at stage k of the construction, we assume that io, i2, . . . ,ik have

V k-I RG b,li+,. been constructed so that x ~ R/~ and x ~ i=t

Basis: From property (1) of a cut set and the assumption that z ~ R, we know that x ~ RG,rt,i

for all 3" E I. Since x ~ G, by property (2) of a cut set we know that x ~ RGio,~ for some i0 E I.

By property (4) of a cut set we know that x ~ Gio, and from the assumption that x ~ P~'0 D Gio,

we conclude that x ~ R~ 0.

Induction: Assume the induction hypothesis holds for some k > 0. By property (3) of a cut

set we know that x]~ RGik,ik+l for some/k+x in I. If ik+x = im for some m with 0 < m < k, then

we have obtained the desired cycle and the construction terminates. Otherwise, by property (4) of

a cut set we know that x ~ G~+I, and from the assumption that x ~ R/k+ ~ D Gik+~, we conclude

that x ~ Rik+~. This establishes the induction hypothesis for k + 1.

Since the set I is finite by hypothesis, we cannot extend the sequence i0, i t , . . . , i~ indefinitely

without obtaining a cycle. |

375

In a sense, Theorem 1 can be viewed as a generalization of the Floyd/Hoare technique [Flo67]

[Hoa69] for proving partial correctness of sequential programs. In the Floyd/Hoare proof technique,

a program contains a collection of control points, which are ~tagged ~ or ~annotated ~ by associating

with them assertions about the values of the program variables. The meaning of an assertion

Ap associated with control point p is the invariance property: "Whenever control is at point p,

assertion Ap will be true of the program variables. ~ If we assume (which we can, without loss

of generality) that to each ordered pair (El, Si) of program statements there corresponds at most

one control point p/j, representing the point at which control leaves Si and enters Si, then the

invariance property corresponding to control point p~,i can be thought of both as what statement

Si guarantees to statement S/, and as what statement S i relies on S# to provide. The collection of

all such invariance properties therefore corresponds directly to the set RG in the proof technique

presented here.

Once an annotation for a program has been selected, proving the partial correctness of the

program with respect to a precondition R and a postco~zdilion G is reduced to showing the partial

correctness of each statement S~ with respect to precondition R/and postcondition G~, assuming a

certain relationship holds between the pre- and postconditions and the annotations associated with

the control points. In Floyd's original formulation, the precondition for statement ,9i is required to

be exactly the conjunction of the assertions associated with points at which control enters Si, and

the postcondition is required to be exactly the conjunction of the assertions associated with points

at which control leaves Si. In Hoare's version, the pre- and postconditions need not be exactly

these conjunctions, as long as they imply or are implied by them in an appropriate way.

The precise relationship that must hold between the pre- and postconditions and the annota-

tions of the control points corresponds to the acut set ~ conditions defined above. Furthermore,

the acyclicity condition defined above can be shown to follow from the fact that states in a com-

putation are reachable from an initial state in a finite number of steps, plus the requirement that

enough control points be tagged to cut any program loop. The problem of annotating a program

with assertions can therefore be thought of as a special case of the problem of finding an acyclic

cut set.

3 Parallel Programs and Temporal Spec]ficat]ons

To illustrate the use of the rely/guarantee proof rule in proving properties of concurrent pro-

grams, we now make some specific assumptions about the programming and specification languages.

We assume that expressions of both the specification and programming language are built from

two kinds of symbols: f~ed symbols and rariable symbols. The set of fixed symbols includes

function and relation symbols, logical connectives, and programming language constructs. The

set of variable symbols comprises logical variable8 and program variables. Logical variables cannot

appear in programs, and although both program and logical variables can appear in specifications,

only logical variables are permitted to be bound by quantifiers.

376

We assume that the semantics of the specification and programming languages assign to fixed

symbols a single interpretation that does not change during the course of a computation. An

interpretation for the variable symbols is called a state. A computation is a sequence of states. We
assume that all computations are infinite; this convenient assumption results in no loss of generality

because finite computations can be modeled by introducing a special "halt flag" into the state,

and assuming that finite computations are made infinite by repeating the final state with the halt

flag set.

For our concurrent programming language, we use a self-explanatory variant of Dijkstra's

guarded command language [Dij76], augmented with a parallel construct l[. Communication

between processes is accomplished through the use of shared variables. A multiple assignment

statement of the form:

t ' l , ~ 2 ~ • • • , ~ n : ~ - t i , t 2 , • • • , t n ,

where the v~ are program variables and the t~ are terms, is used to read and update a collection of

variables in a single atomic step. We assume that process scheduling is fair in the sense that no pro-

cess can be forever enabled without taking a step. It is straightforward to give a formal semantics

to this programming language by defining a mapping from programs to sets of computations.

We assume that our specification language is the set of all sentences in the language of first-order

temporal logic whose atomic formulas are formed from variables, function symbols, and relation

symbols. In addition to the usual logical connectives and quantiflers, we assume the specification

language contains the temporal operators [D (henceforth) and ~ (eventually), which are applied

to formulas to yield new formulas, and O (next), which can either be applied to a formula to yield

a new formula, or to a term to yield a new term. We assume that these operators are endowed

with ~linear time" semantics in the usual way (see IMP83]), and we write z ~ ~b to indicate that

the computation z satisfies the temporal sentence ~.

It will also be convenient to introduce the derived temporal operators ~,~ (leads to), 1" (increases),

and .~ (decreases), defined by:

t t ~ t < O t

t l ~ t > O L

where in the latter two definitions we assume that t is an integer-valued term and the relation

symbols > and < denote the usual ordering relations on the integers.

4 Example 1: Distributed Synchronization

In this section we consider the problem of coordinating the accesses of N user processes to

critical sections, the executions of which must be mutually exclusive. The coordination should be

done in such a way as to avoid the phenomenon of starration, in which one process is prevented

forever from entering its critical section while other processes repeatedly enter and exit their critical

377

sections.

Program Ring in Figure 1 is a distributed algorithm that solves the mutual exclusion problem.
In program Ring, each user process, represented by the code labeled User/, has been associated

with an additional node process Node/. The user process User/communicates with the associated

node process Node# through the boolean variables waiting~ and critical/. When process User# is

ready to enter its critical section, it informs process Node/by setting the variable waiting/to true.

Process User/then walts for the variable critical/to become true before entering its critical section.

When process User/finishes its critical section, it sets critical/to false.

The node processes communicate with each other in a ring-like pattern; that is, process Node/

communicates with processes Node/_l and Nodei+l, where we assume the addition and subtraction

to be performed modulo N. Mutual exclusion is obtained through the use of a single tokes, which

propagates around the ring in the forward direction (i.e., 0 to 1 to 2, ...), in response to requests,

which propagate in the reverse direction. The process Node/ permits its user process User/to

execute in its critical section only while Node/possesses the token. The current position of the

token is recorded by the variables token/, and requests are recorded by the variables request/.

The main loop of process Node/operates as follows: If Node/does not currently have the token,

and if either User/is waiting to enter its critical section, or Node/+t wants the token, then Node/

must request the token from Node/_1 by setting request/to true. If User# is not waiting, and Node/

doesn't want the token, then there is nothing to do. If Node/has the token, and User/is currently

executing in its critical section, then there is also nothing to do. If Node/has the token, and User/is

not in its critical section, then Node# must examine the variables waiting/, request/+1, and sched# to

see what to do. If User/is waiting, and Node/+1 doesn't want the token, then User/is allowed into

its critical section. If Node/+1 wants the token, and User/is not waiting, then the token is passed

to Node/+1. If both User/is waiting and Node/+l wants the token, then the choice is resolved on

the basis of the scheduling variable sched/--if sched/is true, then the token is passed to Node/+1,

and if sched# is false, then User/is allowed to enter its critical section. In either case, the variable

schedl is complemented to ensure that the opposite decision will be made next time.

Using standard concurrent program proof techniques (e.g., [OG76]), we can show that the

program Ring satisfies the following invariants:

Ring ~ [] A~o1(critical/D token/) (1)

Ring ~ r-l (E~ I token/= I) (2)

where the expression N- l E/=O token# = 1 denotes the first order formula tha t s tates tha t precisely one

of the variables token~ is true. 2 These invariants together imply that p rogram Ring has the mutual

exclusion proper ty

Ring ~ [] A/~i(critical/D -~criticali).

~In the sequel, we shall occasionally write expressions like this, which although not themselves first-order formulas,
can be regarded as denoting equivalent first-order formulas in an obvious way.

Ring

User;

Node,

378

boo lean (token/: 0 < i < N - 1) i n i t i a l l y (it" i = 0 t hen true else false);

boo lean (waiting,,criticali, request,, sehed/ :0 < i < N - 1) i n i t i a l l y false;

]I~_-~ I (User/II Node,);

do Noncritical Section;

waiting, := true;

do -cr i t ical / - -* skip; od;

Critical Section;

critical, := false;

od;

do --token, i f --request i A (waiting i V request/+1) ~ request/:= true;

0 requesti V (~wait ing i ^ --request/+1) ~ skip;

fi;

token, A critical, --* sk ip;

token/A -cr i t ical/--* if --waitingi A -,request,+ 1 --* skip;

[3 request/+1 A (-,waiting, V sched;)

- * token/, token/+1, request/+1, sched/

:= false, true, false, false;

E] waiting, A ('~requesti+ 1 v -~schedi)

--* waiting/, critical/, sched/:= false, true, true;

fl;

0

0

od;

Figure 1: Distributed Synchronization Algorithm

379

Besides the above invariants, we can show (for example, by the ~proof lattice" techniques of

[OL82] or by the "chain principle" of IMP83]), that program Ring satisfies the following rely/guarantee

specification for all i with 0 < i < N - I:

Ring ~ P~ 3 Gi,

where

- cr i t ica l / -~ -~criticali ^ request /~ , token;

G; -- requesti+ t "~ token~+1 ^ waiting; ,x~ critical/

Of course, to prove these properties, we must make use of our fair scheduling assumption.

Our goal is to show that if critical sections always terminate, then no process waits forever to

enter its critical section. That is,

where

G =

Ring ~ R D G

A~=t (critical; ,~ --critical;)

A ~ l (w a i t i n g ; ,~ critical;)

Note that the property Ring ~ R; D Gi is local in the sense that it is stated solely in terms of

variables that are referenced by the process Node/. In contrast, the property Ring ~ R D G is a

global property that involves variables referenced by all processes. In general, we imagine that the

proof rule presented in this paper will be most useful when it is used, as in this example, to reduce

the proof of a global property to the proof of a collection of local properties.

To apply our rely/guarantee proof rule, we define the set of specifications

RG = {RGi,j :i,j E {0,1,...N- 1} U {ext}}

as follows:
wait ing; ,~ critical/,

c r i t ica l / ,~ -~critical/,
RG;j =

request/ ,~ token/,

true,

0 < i < N - 1,j = ext

i = ext,0 < j < N - 1

O < i , j < N - l , j = i + l

O< i , j < N - 1,j ~ i+ 1.

With these definitions, the conditions required for RG to be a cut set for program Ring and

specifications R,G, (P~,GI : 1 < i < N}, are tautological. To complete the proof that Ring ~ R D

G it therefore remains only to prove that RG is acyclic for Ring.

To prove the acyclicity condition we need consider only the cycle {(0,1), (1,2)..., (N - 1,0)},

since all other cycles contain links (i, j) for which j ~ i + 1 and hence for which RGi# =-- true. We

show Ring ~ N-t V/=o RGi#+I indirectly, by assuming the existence of a computation x of Ring such
that z ~ N-t A;=0 ~RG;,i+t, and deriving a contradiction.

380

A"V-~ -- ,#~ Then Suppose x ~ ,',~=o -*,-,,.i+1.

x ~ h~o I -~(request~ -~ token,).

Using the definition of ',~ and temporal reasoning, we have

x ~= A~o z O(request i ^ [] (-~token~)).

Since the conjunction N-z hi=0 is finite, it is valid (in linear-time temporal logic) to interchange it

and the temporal operator ~ . Since N-~ hi=o and Q are both of universal character, it is valid to to

interchange them as well, yielding

A~=o token~.

This implies that

x ~= ~ D (~,~ol token, = 0) ,

which contradicts invariant (2) above.

5 E x a m p l e 2: Dis tr ibuted Resource Al locat ion

In this section we consider the problem of allocating a fixed number of resources in response to

requests from a collection of user processes. An algorithm to solve this problem should have the

property that as long as the total number of requests issued by users does not exceed the number of

originally available resources, a resource will eventually be issued in response to each user request.

Program Tree in Figure 2 is a distributed algorithm, based on the adynamic match" algorithm

of [FLG83], that solves the problem. As in program Ring of the previous example, each user

process, labeled User,, has been associated with a node process Nodei. The user process User,

communicates with the node process Nodei through the variable pendingl, which represents the

number of user requests that have not yet been satisfied. Process Useq starts out with an initial

number of requests IREQ~, which it issues to Node~ (by incrementing pendingl) at unpredictable

times during execution of the system. Process Nodei records the number of free resources it has

in the variable free~, which is initially set to the constant IFREEi. Process Node~ "responds" to

requests from User~ by decrementing pending~ and freei - a practical algorithm would also transmit

a capability for a resource to the user process as well, but we ignore this here.

In contrast to the previous example, in which the communication pattern of the node processes

was a ring, the communication pattern of the node processes in this example is a tree. The set

T is the set of process identifiers, which we imagine to be arranged as a binary tree. For each

process i E T, we write p(i), l(i), r(i) for the parent, left child, and fight child, respectively, of

process i. For uniformity, we introduce a special symbol nil, and define p(i) = nil when i is the

root of the tree, and define l(i) = r(i) = nil when i is a leaf of the tree. Furthermore, we define

381

where

Tree _~ integer (owes/j, estimi,i : (j E T and i = p(j)) or (i E T and j E {l(i), r(i)}))

initially (0, ~keD(i) IFREE~);

integer (pending,. : i E T) initially 0;

H,.eT (User/]1 Node,.);

User~ = i n t e g e r request i i n i t i a l l y IREQi;

d o request*. > 0 -* requests, pending*. := request*. - 1,pending,. + 1;

request,. < 0 -'-* s k i p ;

od;

i n t e g e r free*, i n i t i a l l y IFREEi;

d o pending,. > 0 A free,. > 0

0

0

D

D

E] DEBT/

0 DEBTi

F-I DEBT,.

od;

Node*. =

(issue resource to user)

-* pending/, f r e e / : = pending,. - 1, f r e e / - 1;

owes~(0# < 0 A free,. > 0 (pay resource owed to parent - i not root)

-* owesp(,.),i, free/, freer(0 := owesp(0,i + 1, f r e e / - l , fre%(, 3 + 1;

owes*.,ff*.) > 0 A free,. > 0 (pay resource owed to left child - i not leaf)

--, owesi,ff,3,free,.,freez(o := owesij(1) -- 1 , f ree l - 1,freeff, 3 + 1;

owes,.,r(/) > 0 A free,. > 0 (pay resource owed to right child - i not leaf)

- * owesi,dO, free,., free,(;) := owes~,,(O - I , free~ - 1, free,(o + 1;

DEBT,. > 0 A estim,.j(o > 0 (forward request to left ctdld)

owesij(O,estim*.j(i) := owes,.,t(0 - 1, estim,.j(0 - 1;

> 0 ^ estimi,d,.) > 0 (forward request to right child)

owesi,d0 , estim,.~(,.) := owes,.,,(,.) - 1, estim,.,di } - 1;

> 0 A estimij{*.) < 0 A estimi~,{,.) < 0 (reject request up to parent)

owesp{0,i , estimpb 3 j := owesp(0,# -F 1,0;

< 0 A (f r e e / < 0 V (pending/< 0 (nothing to do, idle)

^ owesp(0,*. >_ 0 ̂ owesi,ff0 _< 0 A owes/,,{0 < 0))
-* s k i p ;

DEBTi = (pendingl + owesij(O -b owesi,dO) - (f ree/+ owesp(O,i)

Figure 2: Distributed Resource Allocation Algorithm

382

p(nil) =/ (ni l) = r(nil) = nil. If i E T, then let D(i) represent the set of all .7" ~ T (including i itself)

that are descendants of i.

If i , j E T and i = p(j), then processes Nodei and Node i communicate through the variables

owesij and estimij. Intuitively, the variable owesid records the net number of resources that Node/

owes to Nodes.. If owesij is positive, then Node/owes resources to Nodes. If owes;j is negative,

then Node i owes resources to Nodei. The variable estimij contains an est imate of the number

of free resources remaining in the subtree headed by] . It is initially set to the total number of

free resources initially available in the subtree headed by j . The important invariant property of

this estimate is that it is always optimistic; that is, estimid is always greater than or equal to the

number of free resources actually available in the subtree headed by] .

Intuitively, the steps of process Nodel serve either to satisfy a pending user request with a

locally available resource, to pay a resource owed to a neighboring node, or to reduce a projected

deficit of resources at node i. The quantity DEBT/ in the code for process Nodei represents the

projected amount by which requests exceed resources at node i, once all debts have been paid. If

process Node/projects a deficit, then to reduce this deficit, it can either forward a request to its

left or right child, or reject a request to its parent. Requests are forwarded to a child only in case

it is estimated that there is a surplus of resources in the subtree headed by that child. Requests

are rejected to the parent only if neither of the subtrees headed by the child nodes are estimated

to have a surplus of resources.

Certain of the steps of process Node/, involving the transfer of resources to a parent or child,

are to be omitted from the program in case i is the root or a leaf, respectively. These branches are

indicated by comments in Figure 2.

The program Tree can be shown, by s tandard techniques, to satisfy the following invariants:

Tree ~ i~ (owesnil,root _~ 0), (1)

Tree ~ D Aiez (owesp(,),i > 0 D owesp(,),i <_ ~jeDb3(pendings - frees)). (2)

lnvariant (2) expresses the fundamental relationship between amount owed and amount needed: If

node i is owed resources by its parent, then the amount owed to i by its parent is a lower bound

on the instantanous amount by which pending requests exceed available resources in the subtree

headed by i.

It can also be shown that Tree satisfies the following rely/guarantee specifications for all i E T:

Tree ~ ~ D Gi,

383

where
R4 -= owesp(oj > 0 .~ owesp(/),i J.

^ owesi#(0 < 0 .~ owesi,qi) T

^ owes/,,(/) < 0 ~* owes/,,(/) T

G/ = p e n d i n g / > 0 ~ pending/

^ owesp(o# < 0 ,~ owesp(/)# T

^ owes/,q 0 > 0 ,~ owes/#(/)

^ owes/,,(/) > 0 ~* owes/,,(/)

The rely condition R~ states that debts owed to node i by its parent and each of its children will

eventually be paid. The guarantee condition Gi states that debts owed by node i to its parent

and each of its children will eventually be paid. To obtain these properties, we must assume the

scheduling of the branches of the main loop in the node program is strongly fair, in the sense that

no branch that is enabled infinitely often during the course of a computation can fail to be selected

during that computation.

We are interested in establishing that , assuming the total number of user requests never exceeds

the total number of resources initially available, then a resource will eventually be issued for every

user request. Formally, we would like to show:

Tree ~ R D G,

where

R - - . [] (Y : /e rpendingl < •ierfree4)

G = (E / e r p e n d i n g / > 0) "-~ (Eier pending/) J.

That this property holds is not immediately obvious. Examples of the kinds of things tha t might

go wrong are resources being shuttled endlessly around the system without ever reaching nodes

where they are needed, and nodes with surplus resources never receiving requests from nodes with

deficits.

To apply our rely/guarantee proof rule, we define the set of specifications

follows:

R G = (R G / z : i ,1 e T u {ext}}

[] (oWeSnil,root = 0),

true,

pending i > 0 , ~ pending/1 ,
RG/,i =-

owesi~ > 0 ~-* owes/ j ~,

owesj,i < 0 "~ owesj,i T,

true,

i = e x t , j : root

i = ex t , j E T -- root

i E T, j = ext

i, J e T, i = P(J)

i, i e T, i = p(i)

i , j e T , j # p(i) , i # p(j) .

384

We must first show that RG is a cut set. To prove condition (1) in the definition of a cut set,

we must show that

Tree ~ R D (Aier RO,xt,i),
which, applying the definitions of R and RG,,~j, becomes

Tree ~ [] (E ie r pendingi < E~er free~) D D(owesnil,roo t = 0).

Suppose z is a computation of Tree such that

z ~ [] (Eier pending~ _ EieT freei).

Then

z ~ E] (E ie r freel - pendingi > 0). (3)

From the fundamental invariant (2) above, and the'fact that D(root) = T, we infer that

z ~ [](owesnil~root > 0 Z) owesnil;oo t < EieTpending~- freei).

From this and (3), we conclude that

x ~ [] (owesnil,roo t > 0 D owesnil,root <_ 0),

which, combined with the invarlant (1), implies that

= b [](owesn,,~oot = 0),

as required.

To prove condition (2) in the definition of a cut set, we must show that

Tree ~= (Aier RGi,ext) D G,

that is,

Tree ~= Aier (pending/> 0 .~ pendingl].)

D ((~ i e r pendingi > 0) ~.~ (~ieT pendingi) t)

This is obviously true, because at most one of the pending i can change in a single step of execution.

To prove condition (3), we must show that

Tree ~ (AieTu{,xt} RG~,i) D R i, for all j E T.

We split the proof into two cases, j = root and j E T - root. In case j = root, we must show

Tree ~ (O (oWeSnil,root = 0)

A oWeSrootj(root) < 0 "~ oWeSrootj(root) T

A owesroot,r(root) < 0 ,'~ oweSroot,r(root)]')

D

(0WeSnil,root > 0 "~ oWesnil,root ~.

/% owesrootj(root) < 0 "~ oweSroot,ffroot) T

A owesroot,,(root) < 0 '~ oweSroot,r(root) T)

385

This is obviously true.

In case 3" E T - root, we must show

Tree [= (owesp(i) J > 0 ,~ owesHj) j

A owesj,zO) < 0 ~,~ owesi,z(i } T

^ owess,dj)r < 0 ~ owess,,(j) T)

(owesp(i),i > 0 ~ owesp(i} J

^ owesss(.~) < 0 "~ owes/j(/) T

^ owesj,,O) < 0 "~ owesj,d~-) T),

which is a tautology.

To prove condition (4), we must show that

Tree ~= Gi D (Aieru{ext} RGi,i),

Using the definitions of R/and RGid, this becomes

Tree

for all i E T.

(pending i > 0 , ~ pending/

^ owesp(/),i < 0 ~ owesp(o,~ T

A owesi,q 0 > 0 , ~ owesiA(/)

^ owesi,,(O > 0 ~* owesi~(/) J,)

(pend ing /> 0 , ~ pending~

^ owesp(/)# < 0 , ~ owesp(,'),i T

which is a tautology.

^ owes~,t(/)

A owes/,r (i)

> 0 ,,-* owes~.~(0 1

> 0 ,,-, owesi,(/) 1),

Finally, we must show tha t RG is acyclic for Tree. To do this, it suffices to show that Tree

RG;,p(/) v RGp(/),~ for all i E T - root. This is because every cycle

{(io, i,), (i~, i~), . . . , (i._,, i .)}

of T either contains a llnk (ik, ik+l) for which RGi,,i,÷l = true by definition, or else contains both

links (i,p(i)) and (p(i),i) for some i 6 T - r o o t .

To show that Tree ~ RGi~(i)v RGp(o,i for all i E T - r o o t , let i be arbitrarily fixed, and suppose,

to obtain a contradiction, that z is a computation of Tree such that

z ~ -~RGi~(/) ̂ "~RGp(/).i. (4)

From (4) and the definition of RGi~(/) we know that

x t= <>(owesm,, < o ^ o'~owespo~,~ T),

386

which implies that

z ~ OG(o~,esp(0,~ < 0).

Similarly, from (4) and the definition of RGptl),i we have that

z ~ On(otoesp~0,~ > 0).

These two statements are contradictory, and we conclude that RG is acyclic.

6 C o m p a r i s o n W i t h O t h e r T e c h n i q u e s

To obtain perspective on the rely/guarantee proof method presented,here, it is useful to compare

this method with other extant methods. In this section we consider two methods: the =proof
lattice" method of Owicki and Larnport [OL82], and the =well-founded set ~ method originally

applied by Floyd {Flo67] to termination proofs for sequential programs, and later adapted by

Manna, Pnueli [MP83], and others to prove eventuality properties expressed in temporal logic.

Below we sketch how alternative proofs of the property Ring ~ R D G might be constructed for

the distributed synchronization example. The reader is challenged to produce simple proofs, at an

adequate level of rigor, along the lines sketched. The author's own inaLility to accomplish this is

what led him to devise the rely/guarantee proof technique.

6 .1 P r o o f L a t t i c e M e t h o d

The proof lattice method of Lamport and Owicki is designed to permit the proof of temporal

implications of the form ~ ,~ ~ from simpler implications of the same form, plus auxiliary invari-

ance properties of the program under consideration. A proof lattice for the program P ~ ~ ~ ~ is

a finite, directed, acyclic graph, whose nodes are labeled by temporal sentences, with the following

properties:

1. There is a single root node, labeled by ~.

2. There is a single leaf node, labeled by ~.

3. If the children of a node labeled by p are labeled by ~ 1 , ~ , . . . ,~r,, then

P ~ p ~ (~ va2 v ... v ~.).

A proof lattice for P ~ ~ .,~ ~ represents a sufficiently rigorous proof when each node labeled p,

with children labeled ol , t r2, . . . , ~,, can be justified by appeal to primitive inference rules associated

with the constructs of the programming language, by appeal to an auxiliary invariance property,

or by appeal to a theorem of temporal logic.

To use the proof lattice technique to prove the statement Ring ~= R D G, we might assume R,

(that is, we consider a computation x such that z ~ A~o 1 critical; .~ -.eriticali), and attempt to

387

construct a proof lattice for waiting~ .~, critical;. The informal content of the argument that would

be captured formally by the proof lattice is as follows: We would show that if waiting; holds, then

a chain of requests is generated that propagates around the ring in the reverse direction until a

node is reached that has the token. The token is then forced to propagate in the forward direction

around the ring until node i is reached. Once node i is reached, then depending upon the value

of sched/, either critical; will become true right away, or the token will be passed to node i + 1. In

the latter case, we have to follow another chain of requests and subsequent token passes until the

token again reaches node i.

In the construction of the proof lattice, we would make use of simple eventuality properties like

the following, which can be verified by local reasoning about the control flow within the process

Node;:
Ring ~ waiting/,-~ critical/v request/
Ring ~ request/,-.* token/V requesti_ 1
Ring ~ token; A waiting i "~ critical/V -~sched/
Ring ~ waiting/A token/A -~schedi ,~ critical~

In addition, we would make use of safety properties like the following:

Ring ~ waiting; latches-until critical/
Ring ~ request/latches-until token/
Ring ~= schedl latches-until token/+l
Ring ~ -~schedi latches-until critical/
Ring ~ token/latches-until token/+1
Ring ~ [] (request; D ~token;)

Ring ~ [] (critical/D token/),
where ¢ latches-until ¢ means, intuitively, ~If ¢ ever holds, then ¢ remains true from then until

the next instant at which ¢ holds." CSee [SM81] for a formal definition of this construct.)

If one actually tries to construct a proof lattice according to the preceding informal sketch,

one is quickly overwhelmed by the number of branches and cases that it is necessary to consider.

Problems are also caused by the fact that the depth of the lattice is dependent upon the parameter

N, which is the size of the ring. This variable parameter necessitates the use of elipses in the proof

lattice.

6 . 2 W e l l - F o u n d e d S e t M e t h o d

Another alternative to the rely/guarantee method is to use a method based on well-founded

sets. In this approach, the proof of a statement P ~ ¢ -,~ ¢, might proceed by contradiction as

follows: Assume x is a computation of P such that x ~ ~ (¢ ^ D-~¢). Define a variant function f

that maps the program state into a well-founded set W (typically the nonnegative integers under

the usual ordering), and prove the following properties:

388

P b n((~ ^ n ~ 9) ~ ~ f ~)

The first condition states that, assuming ~ holds at some instant, and -~¢ holds for that instant

and all future instants, then the wlue of the variant function f does not increase from that instant

on. The second condition states that, under the same assumptions, the value of f is repeatedly

decreased. If P ~ ~ (~ ^ E3-~9), then we would have a contradiction with the well-foundedness

of W. We conclude that P ~ D(~ ~ O9) ; that is, P ~ ~ . ~ 9. The power of this rule lies

in the fact that it is typically easier to prove the two conditions above than to prove the original

statement P ~ ~ ~ 9.

Let us consider how a well-founded set proof of Ring ~ R D G might proceed. Suppose, to

obtain a contradiction, that z is a computation of Ring such that z ~ R ^ -~G. Then for some

i with 0 < i < N - 1, we have that z ~ ~(waiting: ^ D-~critical~). Making use of the invariant

that states that there is precisely one token in the system at all times, we know that for each state

in z, there is precisely one j for which tokenj is true. We select a varlant function f that maps

each program state to a nonnegative integer according to the following intuition: The value of f

on a program state measures a kind of ~distance ~ between that state and a ~desired ~ state (one

for which critical/holds). In particular, f takes into account:

1. The distance around the ring the token has to travel from j to i.

2. The distance around the ring requests have yet to propagate from i to j .

3. The values of the scheduling variables sched~ for k on the path the token must take from j

to i.

A appropriate f can be defined in the form of a polynomial in N, whose coefficients depend upon

the program variables token:, request/, and schedl.

Having defined f , we must prove:

Ring ~ []((waiting i ^ Ct~criticall) D D" , f T)

Ring ~= D((waiting/^ rT-~criticali) -,* n ~ f 1)

The first condition can be proved by a case analysis on all the kinds of steps that the program

Ring might take. The second condition can be proved by showing that it is invariantly the ease

that there is an enabled process whose steps must decrease the variant function (for example, a

node that has the token and whose next step must pass it along the ring closer to node i), and

therefore by the fair scheduling assumption must eventually execute.

Although it seems intuitively clear that such a proof can in principle be carried out, the problem

of doing so in a sumciently rigorous, perhaps machlne-checkable fashion seems formidable.

389

7 Conclus ion

We have examined a technique by which rely/guarantee statements of the form P ~ R D G can

be inferred from a finite collection of rely/guarantee statements of the form {P ~ Ri D G# : i E I}.

The technique involves the discovery of a collection RG = {RG#j : i E I u {ext}} of specifications

that ~cut ~ the interdependence between the rely-conditions P~ and R, and the guarantee-conditions

Gi and G, in a fashion analogous to the way in which a loop invariant cuts the dependence of

one iteration on the preceding and succeeding iterations. An %cyclicity ~ condition must also be

proved, to ensure that there are no computations of P for which the interdependence between the

rely and guarantee conditions is degenerate. The utility of the proof technique was illustrated by

two examples, in which the technique was used to infer ~global" liveness properties of a system of

concurrent processes from "local" liveness properties of the individuM processes. We expect the

inference of global properties from local ones to be the typical way in which the technique will

be useful in practice. An interesting feature of the proof technique is the way in which it can be

applied, with equal facility, to both ring-structured and tree-structured communication patterns.

In the examples presented in this paper, judicious selection of the local rely and guarantee con-

ditions Ri and Gi, resulted in tautological, or nearly tautological "cut set ~ conditions, leaving most

of the interesting content of the proof to be captured in the %cyclicity ~ part. This phenomenon

suggests that the rely/guarantee proof technique might be valuable as a decomposition principle

to be used during top-down design. This decomposition principle can be codified as follows:

To decompose a module M, which is to satisfy the specification R D G, into a system

of submodules {Mi : i E I}, and to determine the specifications {Ri D Gi : i E I } that

the submodules must satisfy, one should:

1. By considering what each module Mi relies on and guarantees to the external

environment and each other module Mi, determine a collection of specifications

RG~j that satisfies the acyclicity condition and cut set conditions (1) and (2).

2. Use cut set conditions (3) and (4) as definitions of the rely and guarantee condi-

tions 1~ and G# for component module i. Since the conditions Ri and Gi should

be expressed in terms of information local to module i, this step can actually be

used to help determine what variables need to be accessible to module i.

3. Verify that the resulting component module specifications P~ D Gi are reasonable,

in the sense of being ~consistent" or ~implementable. ~ For example, P~ D Gi
should not be logically equivalent to false. Consistency can be checked either by

completing the top-down decomposition to the level of primitive modules, or by

performing checks at the abstract level [Sta84].

In general, the discovery of a cut set RG for a program will require the use of intuition about why

the program works correctly. Since discovery of a collection of loop invariants in the Floyd/Hoare

390

approach to sequential program correctness can be viewed as a special case of the problem of

finding a cut set, it will be at least as difficult in general to discover cut sets as it is to discover

loop invariants. We therefore consider it unlikely that the proof technique presented here can

be fully automated. However, once a human verifier has discovered an appropriate cut set for a

program, along with necessary global invariants, it seems quite possible that the checking of the

cut set and acyclicity conditions is a task that is within the capability of an automated verification

system.

Acknowledgement
The author wishes to thank Professor Nancy Lynch for her support and guidance during his

thesis research. Gail Buckley, Jieh Hsiang, and Scott Smolka made helpful comments on drafts of

this paper.

Bibliography

{BK831

[BKP84]

[DIj76]

{FLG83]

[Fio67]

[HO801

[Hoa69]

[Jon81]

[Jon83]

H. Barringer, R. Kuiper, "A Temporal Logic Specification Method Supporting Hierar-

chical Development," Manuscript, University of Manchester Department of Computer

Science, November, 1983.

H. Barringer, R. Kuiper, A. Pnueli, "Now You May Compose Temporal Logic Speci-

fications, ~ Sizteenth ACM Symposium on Theory of Computing, 1984.

E. W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.

M. J. Fischer, N. D. Griffeth, L. J. Guibas, N. A. Lynch, ~Probabilistic Analysis of a

Network Resource Allocation Algorithm," to appear in Information and Control.

R. W. Floyd, "Assigning Meanings to Programs," in Mathematical Aspects of Com-

puter Science, American Math. Soc., 1967.

B. T. Hailpern, S. S. Owicki, ~Verifying Network Protocols Using Temporal Logic,"

Technical Report No. 192, Computer Systems Laboratory, Stanford University, June,

1980.

C. A. R. Hoare, ~An Axiomatic Basis for Computer Programming, ~ Comm. ACM,

Vol. 21, October, 1969.

C. B. Jones, ~Development Methods for Computer Programs Including a Notion of

Interference," Wolfson College, June, 1981.

C. B. Jones, "Specification and Design of (Parallel) Programs," IFIP Conference,

1983.

[Lam80]

[LamB3]

[Lis79]

IMP83]

[MCSl]

[MCS82]

[OG76]

[OL82]

[Pnu77]

[SM81]

[sta84]

[Wir711

391

L. Lamport, ='Sometime' is Sometimes 'Not Never'," Seventh ACM Conference on

Principles of Programming Languages, 1980.

L. Lamport, =Specifying Concurrent Program Modules," ACM Transadionz on Pro-

gramming Languages and Systems, 5, 2 (April, 1983), 190-222.

B. tI. Liskov, "Modular Program Construction Using Abstractions," MIT Computa-
tion Structures Group Memo 184, September, 1979.

Z. Manna, A. Pnueli, =Verification of Concurrent Programs: A Temporal Proof Sys-

tem," Stanford University Report No. STAN-CS-83-967, June, 1983.

J. Misra, K. M. Chandy, =Proofs of Networks of Processes," IEEE Trans. on Software

Eng., SE-7, 4, (July, 1981).

J. Misra, K. M. Chandy, T. Smith, =Proving Safety and Liveness of Communicating
Processes with Examples," A CM Conf. on Principles of Distributed Computing, 1982.

S. S. Owicki, D. Gries, =Verifying Properties of Parallel Programs: An Axiomatic

Approach," Comm. ACM 15, 5 (1976).

S. S. Owicki, L. Lamport, =Proving Liveness Properties of Concurrent Programs,"

ACM Transactions on Programming Languages and Systems, 4, 3 (July 1982), 455-

495.

A. Pnueli, =The Temporal Logic of Programs," IEEE Symposium on Foundation8 of

Computer Science, 1977.

R. L. Schwartz, P. M. Melliar-Smith, =Temporal Logic Specification of Distributed

Systems," Second International Conference on Distributed Systems, INRIA, France,

April, 1981.

E. W. Stark, =Foundations of a Theory of Specification for Distributed Systems,"
M.I.T. Laboratory for Computer Science MIT/LCS/TR-342, August, 1984.

N. Wirth, aProgram Development by Stepwise Refinement," Comm. ACM 14, 4

(April, 1971), 221-227.

