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Abstrac t  

A rely/guarantee specification for a program P is a specification of the form R D G (R implies 

G), where R is a rely condition and G is a guarantee condition. A rely condition expresses the 

conditions that P relies on its environment to provide, and a guarantee condition expresses what 

P guarantees to provide in return. This paper presents a proof technique that permits us to infer 

that a program P satisfies a rely/guarantee specification R D G, given that we know P satisfies a 

finite collection of rely/guarantee specifications R/D Gi, (i E I). The utility of the proof technique 

is illustrated by using it to derive global liveness properties of a system of concurrent processes 

from a collection of local liveness properties satisfied by the component processes. The use of the 

proof rule as a design principle is also considered. 

1 I n t r o d u c t i o n  

A rely/guarantee specification for a program P is a specification of the form R D G (R implies 

G), where R is a rely condition and G is a guarantee condition. A rely condition expresses the 

conditions that P relies on its environment to provide, and a guarantee condition expresses what 

P guarantees to provide in return. This paper presents a proof technique that permits us to infer 

that a program P satisfies a rely/guarantee specification R D G, given that we know P satisfies a 

finite collection of rely/guarantee specifications R~ D Gi, (i E I). In a typical application, R D G 

will be a global property of a large program P, whereas each R~ D Ci will be a locally verifiable 

property of a smaller component Pi of P. In a top-down design methodology based on successive 

decomposition [Lis79] [WirT1], the proof technique can be used as a decomposition principle for 

1This research was supported in part by ARO grant DAAG29-84-K-0058, NSF grant DCR.83-02391, and DARPA 
grant N00014-82-K-0125. 
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determining specifications R~ D Gi for component modules, when these component modules are 

used to implement a "higher-level module" that must satisfy the specification R D G. 

Two examples are given to illustrate the utility of the proof technique: a distributed syn- 

chronization algorithm, in which a collection of processes communicate in a ring-like pattern to 

synchronize access to critical sections, and a distributed resource allocation algorithm, in which 

processes communicate in a tree-like pattern to distribute a finite collection of resources among 

themselves. Although the statement of the proof technique does not depend on the choice of a 

particular specification or programming language, in the examples we use as a programming lan- 

guage a concurrent version of Dijkstra's guarded command language [Dij76], and as a specification 

language a version of temporal logic [Pnu77] [Lam80] [LamB3] [MP831. 

In the examples, we are concerned with the proof of liveness properties of systems of concurrent 

processes. In particular, we are interested in deriving globalliveness properties satisfied by a system 

from a collection of local liveness properties satisfied by the component processes. The fact that 

the technique applies readily to the proof of general liveness properties is interesting, since not 

many useful techniques for performing such proofs have been developed. 

1.1 R e l a t e d  Work 

The proof rule and examples presented in this paper are adapted from the author's thesis 

[StaS4}. 
The idea that  program specifications are conveniently formulated and manipulated in the form 

of rely/guarantee conditions is not new. Pre/postcondition specifications for sequential programs 

are examples of rely/guarantee specifications, in which the precondition expresses the conditions on 

the program variables the program relies on when control enters it, and the postcondition expresses 

the conditions the program guarantees when and if control leaves it. In fact, the Floyd/Hoare 

techniques for proving partial correctness of sequential programs [Flo67] [Hoa69] can be viewed as a 

special case of the proof technique presented here (see Section 2). However, our technique extends 

the Floyd/Hoare approach, since the former can be applied to the proof of liveness properties, 

whereas the applicability of the latter (in the usual formulation) is limited to safety, or invariance 

properties. 

For concuryent or distributed programs, a kind of rely/guarantee specification and associated 

proof technique was introduced in [MC81]. In that  paper, a process h is specified by an assertion 

of the form rlh]s, where r and s are predicates on finite sequences (called traces} of communication 

events. Such an assertion is interpreted as: ~The predicate s holds of the empty trace, and for all 

traces t that can be produced by process h, if r holds for all proper prefixes of t, then s holds for 

all prefixes (both proper and improper) of t. 

Misra and Chandy's proof technique is expressed as a ~Theorem of Hierarchy, ~ which gives 

conditions under which specifications that are satisfied by a collection of component processes 

can be used to infer a specification that holds for the network formed by interconnecting the 
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components. Their proof technique can be stated as follows: To show that the specification 

RolHISo for the network H is a consequence of the specifications r~lh~ls~ , (i E/~ for the components, 

it suffices to show that: 

1. S implies S0, 

2. (R0 and S) implies R, 

where R and S denote the conjunction of the r~ and si, respectively. These conditions are closely 

related to the cut 8e~ conditions presented below. 

In IMCS82], the techniques of [MC81] are extended to encompass a weak form of liveness 

specification in which an additional predicate q is used to state conditions under which a process 

trace is guaranteed to be extended. The Theorem of Hierarchy is augmented with additional 

conditions to permit its application to these more general specifications. The additional conditions 

do not appear to relate in a simple way to the proof technique presented here. 

The use of rely and guarantee conditions has also been proposed for safety specifications by 

Jones [Jon81] [Jon83]. Barringer and Kuiper IRK83] (see also [BKP84]) have proposed the use of 

]iveness specifications that are partitioned into an =environment part, ~ which captures assumptions 

made about the environment, and a =component part, ~ which captures committments made by 

the module being specified. Jones, as well as Barringer and Kuiper, exploit the rely/guarantee 

condition structure of specifications by defining inference rules for process composition. 

Hailpern and Owicki [HO80] have performed some example proofs in which liveness properties 

(expressed in temporal logic) for network protocols are derived from more primitive liveness prop- 

erties satisfied by each of the constituent processes. Although they are successful at constructing 

proofs for examples of reasonable complexity, it is difficult to discern much in the way of general 

principles that might be used to systematize the construction of proofs for different examples. In 

contrast, the proof rule presented here suggests a way of thinking about process interaction that 

can systematize and simplify the construction of correctness proofs. 

2 The  P r o o f  Rule  

We assume a programming language, a meaning function that assigns to each program the 

set of its computations, a specification language, and a binary relation ~ between computations 

and specifications, where if x is a computation and S is a specification, then z ~ S means that 

computation z 8at/s.fies specification S. 

We assume that the specification language is closed under the formation rules for the logical 

connectives -~ and D: 

(-~) If S is a specification, then -~S is a specification, 

(D) If $1 and $2 are specifications, then $1 D $2 is a specification, 
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and that  -~ and D are endowed with their usual meanings: 

(D) z D S ,  D & i f f z ~ & i m p l i e s x D & .  

The other standard logical connectives can be t reated as definitional extensions in the usual way. 

We are interested in establishing statements of the form "P  ~ S," which we define to mean 

"z ~ $ for all computations x of program P." 

To state our proof rule we do not need to make any other assumptions about the precise 

form of computations or the programming or specification languages. Later, in demonstrating 

the application of the rule to examples, we will assume that  computations are sequences of states 

and that specifications are sentences in a language of temporal  logic. Although the proof rule is 

a logical truth that  has nothing specific to do with the structure of programs, specifications, or 

computations, it derives power from the fact that  the rely/guarantee paradigm is a useful way to 

think about interaction between program modules. 

The proof rule described in this section permits us to derive a statement of the form: 

P ~ R D G  

from a finite collection of statements of the form: 

P ~ R ~ D G I ,  i E I  

under certain conditions on the specifications R, G, Ri, and Gi. 

Intuitively, R D G should be thought of as an aabstract" or "high-level" statement that  we 

wish to prove about the program P,  and each Ri D Gi should be thought of as a aconcrete" or 

"low-level" statement that we have already shown to hold for P .  In the examples given later on in 

the paper, P will be a parallel program composed of a finite set of component processes {Pi : i E I}, 

and each Ri D Gi will express a property of the component process Pi that we assume has already 

been shown to hold by arguments involving P~ alone. 

The specification R D G is a rely/guarantee specification, in which R expresses the conditions 

that  the program P relies on its environment to provide, and G expresses what P guarantees to 

i ts  environment in return. Similarly, R~ expresses the conditions that the component program Pi 

relies on its environment to provide, and Gi expresses what Pi guarantees to its environment in 

return. 

The proof rule presented below is based on the following intuition: If we know, for each i E I ,  

that  component program Pi guarantees condition Gi under assumption Ri, then we can prove that  

P guarantees condition G under assumption R by showing the existence of a set of specifications 

that  "cuts," in a certain sense, the dependence between each pair of component programs, and 

between each component program and the external environment. The sense in which dependence 
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is cut ".'s highly analogous to the way in which a loop invariant is used to isolate reasoning about 

one iteration of the loop from reasoning about the preceding and succeeding iterations. 

Formally, we say that  the collection of specifications {RGi~ : i , j  E I U {ext}} is a cut set for 

the program P and specifications R, G, {R~, Gi : i E I} if: 

P ~ R D (Aiet RG~xt,i) (1) 

P ~ (AiexRO,,e~) D G (2) 

P ~ (h~e~u{~xt} RG,.i) D R i, for all i G I (3) 

P ~ Gi D (Aiexu{ext} RGi,i), for all i E I.  (4) 

Here ~ext" is a special symbol that  does not appear in I. 

If i, ] are both in I ,  then the specification RG~,j should be thought of as expressing both what 

component i guarantees to component j ,  and dually~ what component j relies on component i to 

provide. The specification RGe~tj expresses what the external environment of the entire program 

guarantees to component j ,  and also what component j relies on the external environment to 

provide. Similarly, the specification RG~.ext expresses what component i guarantees to the external 

environment, and also what the external environment relies on module i to provide. By convention, 

we define RGe~t,~xt = true. This specification is not used in the proof rule and has no particular 

intuitive significance. We include it merely for uniformity. 

Conditions (1) and (2) above can be interpreted as stating, respectively, that the rely condition 

R implies what each component relies on the external environment to provide, and the guarantee 

condition G is implied by the conjunction of what each component guarantees to the external 

environment. Conditions (3) and (4) can be interpreted, respectively, as stating that  component j ' s  

rely condition is implied by the conjunction of what the external environment and each component 

i guarantees to provide to j ,  and component i 's guarantee condition implies the conjunction of 

what the external environment and each component j relies on i to provide. 

The existence of a cut set is not sufficient to imply that P ~ R D G is a consequence of 

{P ~ Ri D G~ : i E I}. Intuitively, the reason is that even though the rely and guarantee 

conditions imply each other in the proper way, it might still be the case in a computation of P 

satisfying the rely condition R, that no component's rely condition Ri holds, hence no component 's 

guarantee condition Gi need necessarily hold either, and hence the guarantee condition G need not 

hold. To avoid this kind of degeneracy, we introduce the additional condition that  every possible 

cycle of mutual dependence between components is broken by at least one condition in RG that 

holds. 

Formally, If I is a finite set, then define a cycle of I to be a finite set of pairs of the form 

{(io,ia),(Q, i2) , . . . , ( i , -1 , i , )}  such that i ,  - io. We say that the collection {RG~ d : i , j  E I} is 

acyclic if: 
n - - 1  

P ~ V RG'~,'k+, 
k=o 

for all cycles {(io,Q), . . . , ( i , - 1 , i , ) }  of I. 
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Note that acyclicity implies the ~diagonal" elements RGi.I hold unconditionally: 

P ~ RGi,i for all i E I .  

We now present our proof rule. 

T h e o r e m  1 (Rely/Guarantee Proof Rule) - Suppose P is a program, I is a finite index set, and 

the collection R G  -- { RGIj  : i , j  e IU (ext}} is an acyclic cut set for program P and specifications 

R, G, (Ri, Gi : i E I}.  Then to prove the statement 

P ~  R D G ,  

it sulgces to 8how 

for all i E I.  

P r o o f -  Suppose RG = {RGij  : i , j  E I u  {ext}} is a cut set for program P and specifications 

R, G, {R/, Gi : i E I}. Suppose further that 

P ~ Ri D G~ 

holds for each i E I, but 

P ~ R D G .  

This means that there is a computation x of P such that x ~ R, but x ~ G. We perform an 

inductive construction to obtain a cycle 

(Cim, ira+t) . . . . .  (i._1, i . ) }  

of I such that x ~  ,-1 Vk=m RGi~,~k+~. This implies that RG is not acyclic for P .  

As the induction hypothesis at stage k of the construction, we assume that io, i2, . . .  ,ik have 

V k-I RG b,li+,. been constructed so that x ~ R/~ and x ~ i=t 

Basis: From property (1) of a cut set and the assumption that z ~ R, we know that x ~ RG,rt,i 

for all 3" E I.  Since x ~ G, by property (2) of a cut set we know that x ~ RGio,~ for some i0 E I.  

By property (4) of a cut set we know that x ~  Gio, and from the assumption that x ~ P~'0 D Gio, 

we conclude that x ~ R~ 0. 

Induction: Assume the induction hypothesis holds for some k > 0. By property (3) of a cut 

set we know that x ]~ RGik,ik+l for some/k+x in I. If ik+x = im for some m with 0 < m < k, then 

we have obtained the desired cycle and the construction terminates. Otherwise, by property (4) of 

a cut set we know that x ~  G~+I, and from the assumption that x ~ R/k+ ~ D Gik+~, we conclude 

that  x ~ Rik+~. This establishes the induction hypothesis for k + 1. 

Since the set I is finite by hypothesis, we cannot extend the sequence i0, i t , . . . ,  i~ indefinitely 

without obtaining a cycle. | 
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In a sense, Theorem 1 can be viewed as a generalization of the Floyd/Hoare technique [Flo67] 

[Hoa69] for proving partial correctness of sequential programs. In the Floyd/Hoare proof technique, 

a program contains a collection of control points, which are ~tagged ~ or ~annotated ~ by associating 

with them assertions about the values of the program variables. The meaning of an assertion 

Ap associated with control point p is the invariance property: "Whenever control is at point p, 

assertion Ap will be true of the program variables. ~ If we assume (which we can, without loss 

of generality) that to each ordered pair (El, Si) of program statements there corresponds at most 

one control point p/j, representing the point at which control leaves Si and enters Si, then the 

invariance property corresponding to control point p~,i can be thought of both as what statement 

Si guarantees to statement S/, and as what statement S i relies on S# to provide. The collection of 

all such invariance properties therefore corresponds directly to the set RG in the proof technique 

presented here. 

Once an annotation for a program has been selected, proving the partial correctness of the 

program with respect to a precondition R and a postco~zdilion G is reduced to showing the partial 

correctness of each statement S~ with respect to precondition R/and postcondition G~, assuming a 

certain relationship holds between the pre- and postconditions and the annotations associated with 

the control points. In Floyd's original formulation, the precondition for statement ,9i is required to 

be exactly the conjunction of the assertions associated with points at which control enters Si, and 

the postcondition is required to be exactly the conjunction of the assertions associated with points 

at which control leaves Si. In Hoare's version, the pre- and postconditions need not be exactly 

these conjunctions, as long as they imply or are implied by them in an appropriate way. 

The precise relationship that must hold between the pre- and postconditions and the annota- 

tions of the control points corresponds to the acut set ~ conditions defined above. Furthermore, 

the acyclicity condition defined above can be shown to follow from the fact that states in a com- 

putation are reachable from an initial state in a finite number of steps, plus the requirement that 

enough control points be tagged to cut any program loop. The problem of annotating a program 

with assertions can therefore be thought of as a special case of the problem of finding an acyclic 

cut set. 

3 Parallel Programs and Temporal Spec]ficat]ons 

To illustrate the use of the rely/guarantee proof rule in proving properties of concurrent pro- 

grams, we now make some specific assumptions about the programming and specification languages. 

We assume that expressions of both the specification and programming language are built from 

two kinds of symbols: f~ed symbols and rariable symbols. The set of fixed symbols includes 

function and relation symbols, logical connectives, and programming language constructs. The 

set of variable symbols comprises logical variable8 and program variables. Logical variables cannot 

appear in programs, and although both program and logical variables can appear in specifications, 

only logical variables are permitted to be bound by quantifiers. 
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We assume that the semantics of the specification and programming languages assign to fixed 

symbols a single interpretation that does not change during the course of a computation. An 

interpretation for the variable symbols is called a state. A computation is a sequence of states. We 
assume that all computations are infinite; this convenient assumption results in no loss of generality 

because finite computations can be modeled by introducing a special "halt flag" into the state, 

and assuming that finite computations are made infinite by repeating the final state with the halt 

flag set. 

For our concurrent programming language, we use a self-explanatory variant of Dijkstra's 

guarded command language [Dij76], augmented with a parallel construct l[. Communication 

between processes is accomplished through the use of shared variables. A multiple assignment 

statement of the form: 

t ' l ,  ~ 2 ~  • • • ,  ~ n  : ~ -  t i ,  t 2 ,  • • • ,  t n ,  

where the v~ are program variables and the t~ are terms, is used to read and update a collection of 

variables in a single atomic step. We assume that process scheduling is fair in the sense that no pro- 

cess can be forever enabled without taking a step. It is straightforward to give a formal semantics 

to this programming language by defining a mapping from programs to sets of computations. 

We assume that our specification language is the set of all sentences in the language of first-order 

temporal logic whose atomic formulas are formed from variables, function symbols, and relation 

symbols. In addition to the usual logical connectives and quantiflers, we assume the specification 

language contains the temporal operators [D (henceforth) and ~ (eventually), which are applied 

to formulas to yield new formulas, and O (next), which can either be applied to a formula to yield 

a new formula, or to a term to yield a new term. We assume that these operators are endowed 

with ~linear time" semantics in the usual way (see IMP83]), and we write z ~ ~b to indicate that 

the computation z satisfies the temporal sentence ~. 

It will also be convenient to introduce the derived temporal operators ~,~ (leads to), 1" (increases), 

and .~ (decreases), defined by: 

t t  ~ t < O t  

t l  ~ t > O L  

where in the latter two definitions we assume that t is an integer-valued term and the relation 

symbols > and < denote the usual ordering relations on the integers. 

4 Example 1: Distributed Synchronization 

In this section we consider the problem of coordinating the accesses of N user processes to 

critical sections, the executions of which must be mutually exclusive. The coordination should be 

done in such a way as to avoid the phenomenon of starration, in which one process is prevented 

forever from entering its critical section while other processes repeatedly enter and exit their critical 
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sections. 

Program Ring in Figure 1 is a distributed algorithm that solves the mutual exclusion problem. 
In program Ring, each user process, represented by the code labeled User/, has been associated 

with an additional node process Node/. The user process User/communicates with the associated 

node process Node# through the boolean variables waiting~ and critical/. When process User# is 

ready to enter its critical section, it informs process Node/by setting the variable waiting/to true. 

Process User/then walts for the variable critical/to become true before entering its critical section. 

When process User/finishes its critical section, it sets critical/to false. 

The node processes communicate with each other in a ring-like pattern; that is, process Node/ 

communicates with processes Node/_l and Nodei+l, where we assume the addition and subtraction 

to be performed modulo N. Mutual exclusion is obtained through the use of a single tokes, which 

propagates around the ring in the forward direction (i.e., 0 to 1 to 2, ...), in response to requests, 

which propagate in the reverse direction. The process Node/ permits its user process User/to 

execute in its critical section only while Node/possesses the token. The current position of the 

token is recorded by the variables token/, and requests are recorded by the variables request/. 

The main loop of process Node/operates as follows: If Node/does not currently have the token, 

and if either User/is waiting to enter its critical section, or Node/+t wants the token, then Node/ 

must request the token from Node/_1 by setting request/to true. If User# is not waiting, and Node/ 

doesn't want the token, then there is nothing to do. If Node/has the token, and User/is currently 

executing in its critical section, then there is also nothing to do. If Node/has the token, and User/is 

not in its critical section, then Node# must examine the variables waiting/, request/+1, and sched# to 

see what to do. If User/is waiting, and Node/+1 doesn't want the token, then User/is allowed into 

its critical section. If Node/+1 wants the token, and User/is not waiting, then the token is passed 

to Node/+1. If both User/is waiting and Node/+l wants the token, then the choice is resolved on 

the basis of the scheduling variable sched/--if sched/is true, then the token is passed to Node/+1, 

and if sched# is false, then User/is allowed to enter its critical section. In either case, the variable 

schedl is complemented to ensure that the opposite decision will be made next time. 

Using standard concurrent program proof techniques (e.g., [OG76]), we can show that the 

program Ring satisfies the following invariants: 

Ring ~ [] A~o1(critical/D token/) (1) 

Ring ~ r-l (E~ I token/= I) (2) 

where the expression N- l  E/=O token# = 1 denotes the first order formula tha t  s tates  tha t  precisely one 

of the  variables token~ is true. 2 These  invariants together imply that p rogram Ring has the mutual  

exclusion proper ty  

Ring ~ [] A/~i(critical/D -~criticali). 

~In the sequel, we shall occasionally write expressions like this, which although not themselves first-order formulas, 
can be regarded as denoting equivalent first-order formulas in an obvious way. 
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boo lean  (token/: 0 < i < N - 1) i n i t i a l l y  (it" i = 0 t hen  true else false); 

boo lean  (waiting,,criticali, request,, sehed/ :0  < i < N - 1) i n i t i a l l y  false; 

]I~_-~ I (User/II Node,); 

do Noncritical Section; 

waiting, := true; 

do  -cr i t ical / - -*  skip; od; 

Critical Section; 

critical, := false; 

od; 

do --token, i f  --request i A (waiting i V request/+1) ~ request/:= true; 

0 requesti V (~wait ing i ^ --request/+1) ~ skip;  

fi; 

token, A critical, --* sk ip;  

token/A -cr i t ical/--* if --waitingi A -,request,+ 1 --* skip; 

[3 request/+1 A (-,waiting, V sched;) 

- *  token/, token/+1, request/+1, sched/ 

:=  false, true, false, false; 

E] waiting, A ('~requesti+ 1 v -~schedi) 

--* waiting/, critical/, sched/:= false, true, true; 

fl; 

0 

0 

od; 

Figure 1: Distributed Synchronization Algorithm 
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Besides the above invariants, we can show (for example, by the ~proof lattice" techniques of 

[OL82] or by the "chain principle" of IMP83]), that program Ring satisfies the following rely/guarantee 

specification for all i with 0 < i < N - I: 

Ring ~ P~ 3 Gi, 

where 

- cr i t ica l / -~  -~criticali ^ request /~ ,  token; 

G;  -- requesti+ t "~ token~+1 ^ waiting; ,x~ critical/ 

Of course, to prove these properties, we must make use of our fair scheduling assumption. 

Our goal is to show that if critical sections always terminate, then no process waits forever to 

enter its critical section. That is, 

where 

G = 

Ring ~ R D G 

A~=t (critical; ,~  --critical;) 

A ~ l ( w a i t i n g ;  ,~ critical;) 

Note that the property Ring ~ R; D Gi is local in the sense that it is stated solely in terms of 

variables that are referenced by the process Node/. In contrast, the property Ring ~ R D G is a 

global property that involves variables referenced by all processes. In general, we imagine that the 

proof rule presented in this paper will be most useful when it is used, as in this example, to reduce 

the proof of a global property to the proof of a collection of local properties. 

To apply our rely/guarantee proof rule, we define the set of specifications 

RG = {RGi,j :i,j E {0,1,...N- 1} U {ext}} 

as follows: 
wait ing; ,~  critical/, 

c r i t ica l / ,~  -~critical/, 
RG;j = 

request/ ,~ token/, 

true, 

0 < i < N - 1,j  = ext 

i = ext,0 < j  < N -  1 

O < i , j < N - l , j = i + l  

O< i , j  < N -  1,j ~ i+  1. 

With these definitions, the conditions required for RG to be a cut set for program Ring and 

specifications R,G, (P~,GI : 1 < i < N}, are tautological. To complete the proof that Ring ~ R D 

G it therefore remains only to prove that RG is acyclic for Ring. 

To prove the acyclicity condition we need consider only the cycle {(0,1), (1,2)..., (N - 1,0)}, 

since all other cycles contain links (i, j)  for which j ~ i + 1 and hence for which RGi# =-- true. We 

show Ring ~ N-t V/=o RGi#+I indirectly, by assuming the existence of a computation x of Ring such 
that z ~ N-t A;=0 ~RG;,i+t, and deriving a contradiction. 
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A"V-~ -- ,#~ Then Suppose x ~ ,',~=o -*,-,,.i+1. 

x ~ h~o  I -~(request~ -~  token,). 

Using the definition of ',~ and temporal reasoning, we have 

x ~= A~o z O(request i ^ [] (-~token~)). 

Since the conjunction N-z hi=0 is finite, it is valid (in linear-time temporal logic) to interchange it 

and the temporal operator ~ .  Since N-~ hi=o and Q are both of universal character, it is valid to to 

interchange them as well, yielding 

A~=o token~. 

This implies that  

x ~= ~ D  (~,~ol token, = 0) ,  

which contradicts invariant (2) above. 

5 E x a m p l e  2: Dis tr ibuted  Resource  Al locat ion  

In this section we consider the problem of allocating a fixed number of resources in response to 

requests from a collection of user processes. An algorithm to solve this problem should have the 

property that as long as the total number of requests issued by users does not exceed the number of 

originally available resources, a resource will eventually be issued in response to each user request. 

Program Tree in Figure 2 is a distributed algorithm, based on the adynamic match" algorithm 

of [FLG83], that solves the problem. As in program Ring of the previous example, each user 

process, labeled User,, has been associated with a node process Nodei. The user process User, 

communicates with the node process Nodei through the variable pendingl, which represents the 

number of user requests that have not yet been satisfied. Process Useq starts out with an initial 

number of requests IREQ~, which it issues to Node~ (by incrementing pendingl) at unpredictable 

times during execution of the system. Process Nodei records the number of free resources it has 

in the variable free~, which is initially set to the constant IFREEi. Process Node~ "responds" to 

requests from User~ by decrementing pending~ and freei - a practical algorithm would also transmit 

a capability for a resource to the user process as well, but we ignore this here. 

In contrast to the previous example, in which the communication pattern of the node processes 

was a ring, the communication pattern of the node processes in this example is a tree. The set 

T is the set of process identifiers, which we imagine to be arranged as a binary tree. For each 

process i E T, we write p(i), l(i), r(i) for the parent, left child, and fight child, respectively, of 

process i. For uniformity, we introduce a special symbol nil, and define p(i) = nil when i is the 

root of the tree, and define l(i) = r(i) = nil when i is a leaf of the tree. Furthermore, we define 
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where 

Tree _~ integer (owes/j, estimi,i : (j E T and i = p(j)) or (i E T and j E {l(i), r(i)})) 

initially (0, ~keD(i) IFREE~); 

integer (pending,. : i E T) initially 0; 

H,.eT (User/]1 Node,.); 

User~ = i n t e g e r  request i i n i t i a l l y  IREQi; 

d o  request*. > 0 -* requests, pending*. :=  request*. - 1,pending,. + 1; 

request,. < 0 -'-* s k i p ;  

od;  

i n t e g e r  free*, i n i t i a l l y  IFREEi; 

d o  pending,. > 0 A free,. > 0 

0 

0 

D 

D 

E] DEBT/ 

0 DEBTi 

F-I DEBT,. 

od; 

Node*. = 

(issue resource to user) 

-* pending/, f r e e / : =  pending,. - 1, f r e e / -  1; 

owes~(0# < 0 A free,. > 0 (pay resource owed to parent - i not root) 

-* owesp(,.),i, free/, freer( 0 := owesp(0,i + 1, f r e e / -  l ,  fre%(, 3 + 1; 

owes*.,ff*.) > 0 A free,. > 0 (pay resource owed to left child - i not leaf) 

--, owesi,ff,3,free,.,freez(o :=  owesij(1) -- 1 , f ree l -  1,freeff, 3 + 1; 

owes,.,r(/) > 0 A free,. > 0 (pay resource owed to right child - i not leaf) 

- *  owesi,dO, free,., free,(;) :=  owes~,,(O - I ,  free~ - 1, free,(o + 1; 

DEBT,. > 0 A estim,.j( o > 0 (forward request to left ctdld) 

owesij(O,estim*.j(i) := owes,.,t(0 - 1, estim,.j( 0 - 1; 

> 0 ^ estimi,d,.) > 0 (forward request to right child) 

owesi,d0 , estim,.~(,.) :=  owes,.,,(,.) - 1, estim,.,di } - 1; 

> 0 A estimij{*.) < 0 A estimi~,{,.) < 0 (reject request up to parent) 

owesp{0,i , estimpb 3 j := owesp(0,# -F 1,0; 

< 0 A ( f r e e / <  0 V (pending/<  0 (nothing to do, idle) 

^ owesp(0,*. >_ 0 ̂  owesi,ff0 _< 0 A owes/,,{0 < 0)) 
-* s k i p ;  

DEBTi = (pendingl + owesij(O -b owesi,dO) - ( f ree/+ owesp(O,i) 

Figure 2: Distributed Resource Allocation Algorithm 
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p(nil) =/ (ni l )  = r(nil) = nil. If i E T, then let D(i) represent the set of all .7" ~ T (including i itself) 

that  are descendants of i. 

If i , j  E T and i = p(j), then processes Nodei and Node i communicate through the variables 

owesij and estimij.  Intuitively, the variable owesid records the net number of resources that  Node/ 

owes to Nodes.. If owesij is positive, then Node/owes resources to Nodes. If owes;j is negative, 

then Node i owes resources to Nodei. The variable estimij  contains an est imate of the number 

of free resources remaining in the subtree headed by ] .  It is initially set to the total number of 

free resources initially available in the subtree headed by j .  The important invariant property of 

this estimate is that  it is always optimistic; that  is, estimid is always greater than or equal to the 

number of free resources actually available in the subtree headed by ] .  

Intuitively, the steps of process Nodel serve either to satisfy a pending user request with a 

locally available resource, to pay a resource owed to a neighboring node, or to reduce a projected 

deficit of resources at node i. The quantity DEBT/ in  the code for process Nodei represents the 

projected amount by which requests exceed resources at node i, once all debts  have been paid. If 

process Node/projects  a deficit, then to reduce this deficit, it can either forward a request to its 

left or right child, or reject a request to its parent.  Requests are forwarded to a child only in case 

it is estimated that  there is a surplus of resources in the subtree headed by that  child. Requests 

are rejected to the parent only if neither of the subtrees headed by the child nodes are estimated 

to have a surplus of resources. 

Certain of the steps of process Node/, involving the transfer of resources to a parent or child, 

are to be omitted from the program in case i is the root or a leaf, respectively. These branches are 

indicated by comments in Figure 2. 

The program Tree can be shown, by s tandard techniques, to satisfy the following invariants: 

Tree ~ i~ (owesnil,root _~ 0), (1) 

Tree ~ D Aiez (owesp(,),i > 0 D owesp(,),i <_ ~jeDb3(pendings - frees) ). (2) 

lnvariant (2) expresses the fundamental relationship between amount owed and amount needed: If 

node i is owed resources by its parent, then the amount owed to i by its parent  is a lower bound 

on the instantanous amount by which pending requests exceed available resources in the subtree 

headed by i. 

It can also be shown that Tree satisfies the following rely/guarantee specifications for all i E T: 

Tree ~ ~ D Gi, 
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where 
R4 -= owesp(oj  > 0 .~  owesp(/),i J. 

^ owesi#( 0 < 0 .~ owesi,qi) T 

^ owes/,,(/) < 0 ~* owes/,,(/) T 

G/  = p e n d i n g / >  0 ~ pending/ 

^ owesp(o# < 0 ,~  owesp(/)# T 

^ owes/,q 0 > 0 ,~ owes/#(/) 

^ owes/,,(/) > 0 ~* owes/,,(/) 

The rely condition R~ states that  debts  owed to node i by its parent and each of its children will 

eventually be paid. The guarantee condition Gi states that debts owed by node i to its parent 

and each of its children will eventually be paid. To obtain these properties, we must assume the 

scheduling of the branches of the main loop in the node program is strongly fair, in the sense that  

no branch that is enabled infinitely often during the course of a computation can fail to be selected 

during that  computation. 

We are interested in establishing that ,  assuming the total number of user requests never exceeds 

the total  number of resources initially available, then a resource will eventually be issued for every 

user request. Formally, we would like to show: 

Tree ~ R D G, 

where 

R - - .  []  (Y : /e rpendingl  < •ierfree4) 

G = ( E / e r  p e n d i n g / >  0) "-~ (Eier  pending/) J. 

That  this property holds is not immediately obvious. Examples of the kinds of things tha t  might 

go wrong are resources being shuttled endlessly around the system without ever reaching nodes 

where they are needed, and nodes with surplus resources never receiving requests from nodes with 

deficits. 

To apply our rely/guarantee proof rule, we define the set of specifications 

follows: 

R G  = ( R G / z  : i ,1  e T u {ext}} 

[]  (oWeSnil,root = 0), 

true, 

pending i > 0 , ~  pending/1 ,  
RG/,i =- 

owesi~ > 0 ~-* owes/ j  ~, 

owesj,i < 0 "~ owesj,i T, 

true, 

i = e x t , j  : root 

i = ex t , j  E T -- root 

i E T, j = ext 

i, J e T, i = P(J) 

i, i e T, i = p(i) 

i , j  e T , j  # p( i ) , i  # p(j) .  
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We must first show that RG is a cut set. To prove condition (1) in the definition of a cut set, 

we must show that 

Tree ~ R D (Aier  RO,xt,i), 
which, applying the definitions of R and RG,,~j, becomes 

Tree ~ [] (E ie r  pendingi < E~er free~) D D(owesnil,roo t = 0). 

Suppose z is a computation of Tree such that 

z ~ [] (Eier  pending~ _ EieT freei). 

Then 

z ~ E] (E ie r  freel - pendingi > 0). (3) 

From the fundamental invariant (2) above, and the'fact that D(root)  = T, we infer that 

z ~ [](owesnil~root > 0 Z) owesnil;oo t < EieTpending~- freei). 

From this and (3), we conclude that 

x ~ [] (owesnil,roo t > 0 D owesnil,root <_ 0),  

which, combined with the invarlant (1), implies that 

= b [](owesn,,~oot = 0), 

as required. 

To prove condition (2) in the definition of a cut set, we must show that 

Tree ~= (Aier RGi,ext) D G, 

that is, 

Tree ~= Aier (pending/> 0 .~ pendingl ].) 

D ( ( ~ i e r  pendingi > 0) ~.~ (~ieT pendingi) t )  

This is obviously true, because at most one of the pending i can change in a single step of execution. 

To prove condition (3), we must show that 

Tree ~ (AieTu{,xt} RG~,i) D R i, for all j E T. 

We split the proof into two cases, j = root and j E T - root. In case j = root, we must show 

Tree ~ (O (oWeSnil,root = 0) 

A oWeSrootj(root ) < 0 "~ oWeSrootj(root ) T 

A owesroot,r(root) < 0 ,'~ oweSroot,r(root) ]') 

D 

(0WeSnil,root > 0 "~ oWesnil,root ~. 

/% owesrootj(root ) < 0 "~ oweSroot,ffroot) T 

A owesroot,,(root) < 0 '~ oweSroot,r(root) T) 
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This is obviously true. 

In case 3" E T - root, we must show 

Tree [= (owesp(i) J > 0 ,~  owesHj) j  

A owesj,zO) < 0 ~,~ owesi,z(i } T 

^ owess,dj)r < 0 ~ owess,,(j) T) 

(owesp(i),i > 0 ~ owesp(i} J 

^ owesss(.~ ) < 0 "~ owes/j(/) T 

^ owesj,,O) < 0 "~ owesj,d~- ) T), 

which is a tautology. 

To prove condition (4), we must show that 

Tree ~= Gi D (Aieru{ext} RGi,i), 

Using the definitions of R/and RGid, this becomes 

Tree 

for all i E T. 

(pending i > 0 , ~  pending/ 

^ owesp(/),i < 0 ~ owesp(o,~ T 

A owesi,q 0 > 0 , ~  owesiA(/) 

^ owesi,,(O > 0 ~* owesi~(/) J,) 

(pend ing />  0 , ~  pending~ 

^ owesp(/)# < 0 , ~  owesp(,'),i T 

which is a tautology. 

^ owes~,t(/) 

A owes/,r (i) 

> 0 ,,-* owes~.~( 0 1 

> 0 ,,-, owesi,(/) 1), 

Finally, we must show tha t  RG is acyclic for Tree. To do this, it suffices to show that  Tree 

RG;,p(/) v RGp(/),~ for all i E T - root. This is because every cycle 

{(io, i,), (i~, i~), . . . ,  (i._,, i .)} 

of T either contains a llnk (ik, ik+l) for which RGi,,i,÷l = true by definition, or else contains both 

links (i,p(i)) and (p(i),i) for some i 6 T - r o o t .  

To show that  Tree ~ RGi~(i)v RGp(o,i for all i E T - r o o t ,  let i be arbitrarily fixed, and suppose, 

to obtain a contradiction, that  z is a computation of Tree such that 

z ~ -~RGi~(/) ̂  "~RGp(/).i. (4) 

From (4) and the definition of RGi~(/) we know that  

x t= <>(owesm,, < o ^ o'~owespo~,~ T), 
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which implies that 

z ~ OG(o~,esp(0,~ < 0). 

Similarly, from (4) and the definition of RGptl),i we have that 

z ~ On(otoesp~0,~ > 0). 

These two statements are contradictory, and we conclude that RG is acyclic. 

6 C o m p a r i s o n  W i t h  O t h e r  T e c h n i q u e s  

To obtain perspective on the rely/guarantee proof method presented,here, it is useful to compare 

this method with other extant methods. In this section we consider two methods: the =proof 
lattice" method of Owicki and Larnport [OL82], and the =well-founded set ~ method originally 

applied by Floyd {Flo67] to termination proofs for sequential programs, and later adapted by 

Manna, Pnueli [MP83], and others to prove eventuality properties expressed in temporal logic. 

Below we sketch how alternative proofs of the property Ring ~ R D G might be constructed for 

the distributed synchronization example. The reader is challenged to produce simple proofs, at an 

adequate level of rigor, along the lines sketched. The author's own inaLility to accomplish this is 

what led him to devise the rely/guarantee proof technique. 

6 .1  P r o o f  L a t t i c e  M e t h o d  

The proof lattice method of Lamport and Owicki is designed to permit the proof of temporal 

implications of the form ~ ,~ ~ from simpler implications of the same form, plus auxiliary invari- 

ance properties of the program under consideration. A proof lattice for the program P ~ ~ ~ ~ is 

a finite, directed, acyclic graph, whose nodes are labeled by temporal sentences, with the following 

properties: 

1. There is a single root node, labeled by ~. 

2. There is a single leaf node, labeled by ~. 

3. If the children of a node labeled by p are labeled by ~ 1 , ~ , . . .  ,~r,, then 

P ~ p ~ (~ va2 v ...  v ~.). 

A proof lattice for P ~ ~ .,~ ~ represents a sufficiently rigorous proof when each node labeled p, 

with children labeled ol , t r2, . . . ,  ~,, can be justified by appeal to primitive inference rules associated 

with the constructs of the programming language, by appeal to an auxiliary invariance property, 

or by appeal to a theorem of temporal logic. 

To use the proof lattice technique to prove the statement Ring ~= R D G, we might assume R, 

(that is, we consider a computation x such that z ~ A~o 1 critical; .~ -.eriticali), and attempt to 
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construct a proof lattice for waiting~ .~, critical;. The informal content of the argument that would 

be captured formally by the proof lattice is as follows: We would show that if waiting; holds, then 

a chain of requests is generated that propagates around the ring in the reverse direction until a 

node is reached that has the token. The token is then forced to propagate in the forward direction 

around the ring until node i is reached. Once node i is reached, then depending upon the value 

of sched/, either critical; will become true right away, or the token will be passed to node i + 1. In 

the latter case, we have to follow another chain of requests and subsequent token passes until the 

token again reaches node i. 

In the construction of the proof lattice, we would make use of simple eventuality properties like 

the following, which can be verified by local reasoning about the control flow within the process 

Node;: 
Ring ~ waiting/,-~ critical/v request/ 
Ring ~ request/,-.* token/V requesti_ 1 
Ring ~ token; A waiting i "~ critical/V -~sched/ 
Ring ~ waiting/A token/A -~schedi ,~ critical~ 

In addition, we would make use of safety properties like the following: 

Ring ~ waiting; latches-until critical/ 
Ring ~ request/latches-until token/ 
Ring ~= schedl latches-until token/+l 
Ring ~ -~schedi latches-until critical/ 
Ring ~ token/latches-until token/+1 
Ring ~ [] (request; D ~token;) 

Ring ~ [] (critical/D token/), 
where ¢ latches-until ¢ means, intuitively, ~If ¢ ever holds, then ¢ remains true from then until 

the next instant at which ¢ holds." CSee [SM81] for a formal definition of this construct.) 

If one actually tries to construct a proof lattice according to the preceding informal sketch, 

one is quickly overwhelmed by the number of branches and cases that it is necessary to consider. 

Problems are also caused by the fact that the depth of the lattice is dependent upon the parameter 

N, which is the size of the ring. This variable parameter necessitates the use of elipses in the proof 

lattice. 

6 . 2  W e l l - F o u n d e d  S e t  M e t h o d  

Another alternative to the rely/guarantee method is to use a method based on well-founded 

sets. In this approach, the proof of a statement P ~ ¢ -,~ ¢, might proceed by contradiction as 

follows: Assume x is a computation of P such that x ~ ~ ( ¢  ^ D-~¢). Define a variant function f 

that maps the program state into a well-founded set W (typically the nonnegative integers under 

the usual ordering), and prove the following properties: 
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P b n( (~  ^ n ~ 9 )  ~ ~ f  ~) 

The first condition states that, assuming ~ holds at some instant, and -~¢ holds for that instant 

and all future instants, then the wlue of the variant function f does not increase from that instant 

on. The second condition states that, under the same assumptions, the value of f is repeatedly 

decreased. If P ~ ~ ( ~  ^ E3-~9), then we would have a contradiction with the well-foundedness 

of W. We conclude that P ~ D(~ ~ O9) ;  that is, P ~ ~ . ~  9. The power of this rule lies 

in the fact that it is typically easier to prove the two conditions above than to prove the original 

statement P ~ ~ ~ 9. 

Let us consider how a well-founded set proof of Ring ~ R D G might proceed. Suppose, to 

obtain a contradiction, that z is a computation of Ring such that z ~ R ^ -~G. Then for some 

i with 0 < i < N - 1, we have that z ~ ~(waiting: ^ D-~critical~). Making use of the invariant 

that  states that there is precisely one token in the system at all times, we know that for each state 

in z, there is precisely one j for which tokenj is true. We select a varlant function f that maps 

each program state to a nonnegative integer according to the following intuition: The value of f 

on a program state measures a kind of ~distance ~ between that  state and a ~desired ~ state (one 

for which critical/holds). In particular, f takes into account: 

1. The distance around the ring the token has to travel from j to i. 

2. The distance around the ring requests have yet to propagate from i to j .  

3. The values of the scheduling variables sched~ for k on the path the token must take from j 

to i. 

A appropriate f can be defined in the form of a polynomial in N, whose coefficients depend upon 

the program variables token:, request/, and schedl. 

Having defined f ,  we must prove: 

Ring ~ []((waiting i ^ Ct~criticall) D D" , f  T) 

Ring ~= D((waiting/^ rT-~criticali) -,* n ~ f  1) 

The first condition can be proved by a case analysis on all the kinds of steps that the program 

Ring might take. The second condition can be proved by showing that it is invariantly the ease 

that there is an enabled process whose steps must decrease the variant function (for example, a 

node that has the token and whose next step must pass it along the ring closer to node i), and 

therefore by the fair scheduling assumption must eventually execute. 

Although it seems intuitively clear that such a proof can in principle be carried out, the problem 

of doing so in a sumciently rigorous, perhaps machlne-checkable fashion seems formidable. 
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7 Conclus ion 

We have examined a technique by which rely/guarantee statements of the form P ~ R D G can 

be inferred from a finite collection of rely/guarantee statements of the form {P ~ Ri D G# : i E I}. 

The technique involves the discovery of a collection RG = {RG#j : i E I u {ext}} of specifications 

that ~cut ~ the interdependence between the rely-conditions P~ and R, and the guarantee-conditions 

Gi and G, in a fashion analogous to the way in which a loop invariant cuts the dependence of 

one iteration on the preceding and succeeding iterations. An %cyclicity ~ condition must also be 

proved, to ensure that there are no computations of P for which the interdependence between the 

rely and guarantee conditions is degenerate. The utility of the proof technique was illustrated by 

two examples, in which the technique was used to infer ~global" liveness properties of a system of 

concurrent processes from "local" liveness properties of the individuM processes. We expect the 

inference of global properties from local ones to be the typical way in which the technique will 

be useful in practice. An interesting feature of the proof technique is the way in which it can be 

applied, with equal facility, to both ring-structured and tree-structured communication patterns. 

In the examples presented in this paper, judicious selection of the local rely and guarantee con- 

ditions Ri and Gi, resulted in tautological, or nearly tautological "cut set ~ conditions, leaving most 

of the interesting content of the proof to be captured in the %cyclicity ~ part. This phenomenon 

suggests that the rely/guarantee proof technique might be valuable as a decomposition principle 

to be used during top-down design. This decomposition principle can be codified as follows: 

To decompose a module M, which is to satisfy the specification R D G, into a system 

of submodules {Mi : i E I}, and to determine the specifications {Ri D Gi : i E I }  that 

the submodules must satisfy, one should: 

1. By considering what each module Mi relies on and guarantees to the external 

environment and each other module Mi, determine a collection of specifications 

RG~j that satisfies the acyclicity condition and cut set conditions (1) and (2). 

2. Use cut set conditions (3) and (4) as definitions of the rely and guarantee condi- 

tions 1~ and G# for component module i. Since the conditions Ri and Gi should 

be expressed in terms of information local to module i, this step can actually be 

used to help determine what variables need to be accessible to module i. 

3. Verify that the resulting component module specifications P~ D Gi are reasonable, 

in the sense of being ~consistent" or ~implementable. ~ For example, P~ D Gi 
should not be logically equivalent to false. Consistency can be checked either by 

completing the top-down decomposition to the level of primitive modules, or by 

performing checks at the abstract level [Sta84]. 

In general, the discovery of a cut set RG for a program will require the use of intuition about why 

the program works correctly. Since discovery of a collection of loop invariants in the Floyd/Hoare 
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approach to sequential program correctness can be viewed as a special case of the problem of 

finding a cut set, it will be at  least as difficult in general to discover cut sets as it is to discover 

loop invariants. We therefore consider it unlikely that the proof technique presented here can 

be fully automated. However, once a human verifier has discovered an appropriate cut set for a 

program, along with necessary global invariants, it seems quite possible that the checking of the 

cut set and acyclicity conditions is a task that is within the capability of an automated verification 

system. 
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