MIT/LCS/TR-342

FOUNDATIONS OF A THEORY OF SPECIFICATION

FOR DISTRIBUTED SYSTEMS

Eugene W. Stark

Tius blank page was inserted to preserve pagination.

Foundations of a Theory of Specification
for Distributed Systems

by

Eugene William Stark

B.E.S. The Johns Hopkins University
(1877)

- 8.M. Massachusetts Institute of Technology
(1980)

Submitted to the Department of Electrical Engineering
and Computer Science in partial fulfiliment
of the requirements for the degree of
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS lNSﬁTUTE OF TECHNOLOGY
August, 1984

Copyright Massachusetts Institute of Technology 1884

Signature of Author, ‘
' Department of Electrical Engineering and Computer Science
August 24, 1984
Certified by |
Prof. Nancy A. Lynch, Thesis Supervisor
- Accepted by,

Prof. Atthur C. Smith, Chairman., E.E.C.S. Department Committee
on Graduate Students

Foundations of a Theory of Specification for Distributed Systems

by
Eugene William Stark

Submitted to the
Department of Electrical Engineering and Computer Science
on August 24, 1984 in partial fulfiliment of the requirements
for the Degree of Doctor of Philosophy.

Abstract _

This thesis investigates a particular approach, called state-transition specification,
to the problem of describing the behavior of modules in a distributed or concurrent
computer system. A state-transition specification consists of: (1) a state machine,
which incorporates the safety or invariance properties of the module, and (2) validity
conditions on the computations of the machine, which capture the desired liveness or
eventuality properties. The theory and techniques of state-transition specification are
developed from first principles to a point at which it is possible to write example

* specifications, to check the specifications for consistency, and to perform correctness

nronfs iming tha spacifications The utility of the techniques is demonstrated through
examples. ‘ .]
Major contributions.of the thesis include: (1) the definition of a semantic model

| that incorporates hierarchy of abstraction and modular decomposition as fundamental

notions; (2) specification and proof techniques that smoothly handie both safety and
liveness properties; (3) techniques that use liveness properties stated in
rely-/guarantee-condition form to obtain simple proofs of correctness; (4) an interesting
and useful notion of consistency for specifications involving liveness properties.

Keywords: - state-transition specification, verification, concurrency, hierarchy, modularity,

temporal logic, safety, liveness, rely/guarantee conditions
Thesis Supervisor: Nancy A. Lynch '

Title: Associate Professor of Computer Science and Engineering

7
e

e

Acknowledgements

| am deeply indebted to my thesis adviser, Nancy Lynch, but for whom this thesis
would likely never have been completed. Nancy read many, many difficult drafts of this
work with enthusiasm and promptness that went far beyond the mere call of duty. She
always seemed to manage not only to identify the most troublesome portions of each
draft, but to make insightful suggestions for improvement as well. | am also grateful to
John Guttag, Barbara Liskov, and Albert Meyer for their suggestions on improving the
presentation. Discussions with Bill Weihl helped to formulate ideas during the early

stages.

in an entirely different category are my parents, Joan S. Stark and William L. Stark,
Jr., who made it seem natural that | should seek and complete graduate education, and
whose love and support during this endeavor | cannot adequately acknowledge. Julian
Stanley of Johns Hopkins made it possible for me to pursue the undergraduate portion
of my education at an accelerated rate.

Finally, | would like to thank the chessplayers at Au Bon Pain in Harvard Square for
providing a much-needed diversion during the past year.

CONTENTS
1. Introductioncc.ooiiiiiiniinnn, ceeres verssssneses O
1.1 Scope of the ThESISccevvrreeericenneneeracmnnsreemciemsasenarsnsnnrssssssens 7
1.2 AN EXAMPI@cccvivevireccnnmenniminininiiinensnnesiieniisssnssessssesasssssess 8
1.3 Outling of the ThESISccveiririvriiississsscsssssssssensessssssssenses 15
1.4 Related Workccoeeeviinieene resreeresestimssnsssrasererananurenssensoeasnnen 17

2. Framework for a Theory of Specification 38

2.1 Interfaces, Observations, and Behaviorscccieerennneees 38
2.2 Abstraction, Decomposition, and Interconnection 4
2.3 Specification, Implementation, and Correctness 43
3. State-Transition Specifications ceereeneene. 45
3.1 Subset Specificationsc.cconinniinnnininnieemeens. 46
3.2 Machines and Computations tessresstrsssserssasasnnranannins 48
3.3 Properties of HIiStOries ..., 50
3.4 State-Transition Specificationsccccceeeiirvennnssnininciiianes 52
3.5 The Correctness Theorem ... 54
3.6 Possibilities Mappingsccummcirierermiiiniescissessee 58
3.7 Rely-/Guarantee-Conditions ..., 60

4. The Synchronizer Implementation 66

4,1 NOtatioNc.covvieiiiiiineennmnmeniniiiese s 66
4.2 Specification of the Synchronizer Moduleccueueeen 67
4.3 Specification of the Synchronizer Component Module ... 69
4.4 Correctness of the Synchronizer Implementation 73

5. Consistency of Specifications 82
5.1 1/0-Systemsccccecerrviierissenennne eteesreteeesstaessaraeessaneerarassnns 83
5.2 1/0-Behaviors and 1/0-ConSiStencyc.ceccervvinnrecinesssnnes 87
5.3 Machine Characterization of I/0-Behaviorscceeuees 88
5.4 Examples of 17/0-Behaviorscceniniciiinnnennecnnin. 97
5.5 Composition of I/0-Behaviorsccccceeercciinnniniecnienieees 107
5.6 Alternative Classes of Computable Behaviorsccoeu... 110
6. A Completeness Result ceeeresnnnenne 112
6.1 Specification DOMAINScccceeeirrcecrsnnnneneeresiccsssesanserrensens 112
6.2 Locally 9-Consistent Subset Specificationsc...... 116
6.3 Well-Formedness Properties of Specifications 117
6.4 The Completeness Theoremcccuieenieiceninissesnsssssesss 120
7. Conclusion feeeesereenmeieserenne ceemreesanneees ... 123
7.1 SUMMACY ..oceeererreererneensens e 123
7.2 Ideas for FUtUre WOrKc..eeeeeeimieceneneinesssnsencenesssnsnanssarenss 124

Appendix |. Formal Specification and Proof ... 136

1.3 Event/State AlQebrascccccvmemrernriiinrccnseeseeniiescissnnsen 137
I.4 Description of Event/State Algebrascccccceiinvicsiinennns 140
1.5 Implementation Algebras ..., 144
1.6 Proof TeChNIQUES ...cccccicrnniininianniinesininnsnunesiensanseene 146
1.7 Rely-/Guarantee-Condition Proof Techniques 149
1.8 170-Consistency Proof Techniquecccccvveisvensuiensinnenns 150
Appendix ll. Additional Examples 152
1.9 A Distributed Resource Management Algorithm 163
I1.10 A Message Transmission Systemccvveirvivineerines 180

Appendix lll. Index of Definitions cerererees 202

1. Introduction

The purpose of this thesis is to investigate a particular approach, called
_ state-transition specification, to the problem of describing the behavior of modules in a
concurrent or distributed computer system. In the state-transition approach, the
desired behavior is described in terms of a kind of state machine whose computations
generate records of event occurrences, called observations. A state-transition
specification consists of two parts: (1) the definition of the state machine, which
incorporates the “safety" or invariance properties of the module, and (2) the definition
of some validity conditions on the computations of the machine, whose purpose is to
capture the desired module "liveness" or eventuality properties. A state-transition
specification defines a set of "acceptable” observations, namely the observations
produced by valid computations of the state machine. A module behavior satisfies such
a specification if the module behavior contains only acceptable observations.

The idea of describing module behavior with the help of state machines is not new,
having already been proposed in various forms by other authors, [e.g. Parnas72,
Yonezawa77, Lamport83]. However, previous work seems to be concerned primarily
with how to write module specifications, and how to use proof rules to prove the
correctness of implementations. The important issues pf what constitutes the meaning
of a specification, and what it means for an implementation to be correct, have not
received satisfactory treatment. As a result, it is impossible to answer important
questions such as: "What rules are sound for proving the correctness of an
implementation,” and "When is a specification consistent?"

This thesis improves upon previous work by systematically developing the theory
and techniques of specification from "first principles" to a point at which it is possible to
write example specifications, to prove implementations correct, and to check
specifications for consistency. The theory incorporates an underlying semantic model
within which one can formulate language-independent definitions of the notions of
“implementation” and "correctness." The meaning of state-transition specifications is
defined in terms of the model, and all proof techniques are shown to be sound with
respect to the model.

The major contributions of this thesis are:
(1) The definition of a semantic model that incorporates hierarchy of
abstraction and modular decomposition as fundamental notions.
(2) Specification and proof techniques that smoothly handle both safety and
liveness properties.
(3) Techniques that use liveness properties stated in rely-/guarantee-condition
form to obtain simple proofs of correctness.
(4) An interesting and useful notion of consistency for specifications involving
liveness properties.
(5) MNustration of the utility of the ideas developed through specifications,
impiementations, and correctness proofs for three examples:
(a) a synchronizer module, which is implemented by a ring-structured
network of synchronizer cbmponent modules,
(b) a resource management module, which is implemented by a
tree-structured network of local resource manager modules,
(c) a message transmission module, which is implemented by unreliable
transmission line modules, a send protocol module, and a receive protocol module,
which together obey the alternating bit protocol.

1.1 Scope of the Thesis

A specification is a piece of text whose purpose is to describe the desired
operation of a module in a computer system. Specifications form an integral part of a
"top-down" design method in which design proceeds by the successive decomposition
of a module to be implemented into a collection of interacting component modules
[Liskov79, Wirth71]. The purpose of specificaﬁohs in such an approach is to serve as a
contract between the user and the implementer of a module. This helps to limit
complexity by permitting a system to be decomposed into modules of reasonable size,
such that each module depends only upon the specifications, and not the
implementations, of the modules with which it interacts.

To permit the possibility of rigorous reasoning about specifications, a specification
language should be given a formal semantics in terms of an underlying mathematical
semantic domain. In this thesis, we use the term behavior to refer to the elements of a
semantic domain, since the purpose of these elements is to serve as a mathematical

model of the behavior of a portion of a real-world computer system. The semantics of a
specification language describe how each specification denotes a set of behaviors that
satisty the specification. If the semantics of a programming language are defined so
- that each important program fragment denotes a behavior, then it is possible to derive
syntactic rules for proving that (the denotations of) program fragments satisfy (the
denotations of) speciﬁcafions. The purpose of this thesis is not to propose particular
formal specification or programming languages, but rather to investigate a collection of
language-independent semantic concepts upon which particular specification and
programming languages might be based. We therefore assume that specification and
programming languages can have their meanings defined in terms of behaviors, and do
not concern ourselves with the precise method by which this is accomplished.

In this thesis, we are concerned with concurrent or distributed systems. By this we
mean systems that are most naturally viewed as a collection of independent,
communicating modules, such that effects of concurrent operation of the various
modules form a significant part of the description of system behavior. This thesis is
primarily concerned with the concurrency asnect of distributed computing; while the
model and techniques do not rule out the possibility of treating other aspects such as
node crashes and network failures, no special structure to deal with these problems is
included. The techniques of this thesis have been developed primarily with the idea that
they would be applied to the problem of describing and reasoning about distributed
algorithms. The examples presented are of this kind.

1.2 An Example

In this section, an example specification problem will be used to introduce
informally the fundamental ideas about specification on which this thesis is based.

1.2.1 The Synchronizer Module

Consider the following scenario: A number of processes in a computer system
require the use of a single resource to accomplish their respective tasks; however,
because of limitations inherent in the resource, at most one process can be allowed to
access the resource at any instant of time. To enforce this restriction, a synchronizer
module is introduced, and the processes, WHich we will refer to as the user processes,
are required to obtain permission from the synchronizer module before accessing the

.9-

resource. lt is the job of the synchrdnizer module to produce correct synchronizétion of
the user processes’ accesses to the resource. Our problem is to describe precisely the
‘synchronizer module behaviors that are "acceptable” in the sense that they always
" produce "correct synchronization.” This precise description is the specification of the
synchronizer module.

When a user process desires to access the resource, it issues a try request to the
synchronizer module. The user process is then supposed to wait until it receives a run
response from the synchronizer module., When the user process is finished using the
resource, it issues a rest response to the synchronizer module. We can capture these
decisions in diagrammatic form as shown in Figure 1, in which the synchonizer module
is depicted as a circle, and the possible requests and responsel are drawn as arcs
incident on and exiting from the circle, respectively. We assume that there are a total of
N user processes accessing the synchronizer module, and have used a subscripted
process number to distinguish the requests and responses corresponding to different
processes. '

Fig. 1. The Synchronizer Module

Synchronizer

Module

.10 -

The set of all possible requests and responses for the synchronizer module can be
thought of as an "alphabet" or "syntax" for describing the interaction of the
synchronizer module with its environment. We call this set the interface of the
- synchronizer module, and refer to its elements as events. By observing the
synchronizer module during an execution, we can obtain a record of the events that
occurred during the execution. We call this record of event occurrences an
observation, and assume that it takes the form of a finite or infinite sequence of events.

By fixing the interface of the synchronizer module to be a particular set of events,
we determine a universe of possible observations. We next consider how to describe
which observations in this universe are "acceptable." We must include in our
description the idea that at most one user process at a time may access the resource.
Also, we wish to require that the synchronizer module be fair in the sense that every try
request by a user process is eventually answered by a run response, if it is possible to
do so without violating the mutual exclusion property.

A natural way of describing which observations are acceptable is through the use
of conceptual states. With this technique, we imagine that at any instant of time the
synchronizer is in one of a number of possible internal states. These states may or may
not have anything to do with the actual internal state of the synchronizer module; they
are merely a tool for describing its observable behavior. After defining the set of initial
states, we then describe for each event the preconditions required for that event to
occur, and how the conceptual state of the synchronizer changes as a result of the
occurrence of that event.

The conceptual state of the synchronizer module at any instant of time is a vector
that tells for each user process what the synchronizer module thinks that user is
currently doing with respect to the resource, based on the requests and responses that
have occurred so far. The possibilities are that the user is either trying to obtain
permission to access the resource (trying), is actively using the resource (running), is
done using the resource (resting), or has failed to correctly follow the protocol (error).

1. The formal definition of observation used in this thesis is slightly more complicated
than a finite or infinite sequences of events (see Chapter 2). This is done for technical
reasons that are unimportant for the present, informal discussion.

-11-

Initially, the synchronizer module believes that each user process is resting. The state
changes and preconditions are as follows: a try event for a process causes the state of
that process to change to "trying" if it was previously resting, and to "error" otherwise;
a run event for a process can occur only if that process is trying and no processes are
currently running, and causes the state for that process to change to "running;" a rest
event for a process causes the state of that process to change to "resting” if it was
previously running, otherwise to “error."

A particular observation for the synchronizer module satisfies the description of

the previous paragraph if to each finite prefix of the observation we can assign a
conceptual state in such a way that each state change satisfies the conditions
enumerated in the previous paragraph. For example, assuming there are only two user
processes, the observation

try, try, run, rest, run, rest,
satisfies the conditions above since we can assign internal states as follows:

<resting, resting try, <trying, resting> try, <trying, trying> run, <running, trying>

rest, <resting. trving> run, <resting, running> rest,
<resting, resting).

However, the observation

try, try, run, run, rest, rest,
does not represent a correct functioning of the synchronizer module since

<resting, resting try, <trying, resting> try, <trying, trying> run, <running, trying>

run, <running, running> rest, <resting, running> rest,
<resting, resting>,

which is the only assignment of states that satisfies the state change requirements, has
the property that the precondition for the run, event is not satisfied by the state
<running, trying>. We will use the term "history” to refer td an observation that has
been annotated with states.

The state-transition description above tells us a significant amount about what are
the correct observations of the synchronizer module, but it does not say everything that
should be said. In particular, the requirement that every request by a user process
should eventually be satisfied, if possible, is not captured by the state-transition
description. Informally, the reason is that a state-transition description captures only
properties of histories that are "local" in the sense that they involve only adjacent

-12.

states, whereas the fairness property we would like is a "global” property that involves
possibly widely separated portions of the history. If the conceptual state technique is to
work, we must find some way to state global properties in a form compatible with the
statement of the local properties. In Chapter 4 it will be shown how global properties
can be expressed in the language of temporal logic.

A specification of the synchronizer module via the conceptual state approach
therefore consists of a state-transition description of the local properties that must be
satisfied by acceptable observations, plus a description of additional global properties
satisfied by such observations. A particular synchronizer module behavior is said to
satisfy the synchronizer module specification if it contains only acceptable
observations.

1.2.2 Implementation, Abstraction, and Composition

Now let us consider how the synchronizer module might be implemented. A
possible organization is shown in Figure 2. In Figure 2, the synchronizer module is
shown to be composed of a number of "synchronizer component” modules connected
in a ring-like fashion. Each synchronizer component module interacts with exactly one
user process and with its neighboring synchronizer component modules. The
implementation operates as follows: There is a single /conceptual token that circulates
around the ring in the clockwise direction. A synchronizer component module must
possess the token whenever it grants its associated user permission to access the
resource. In addition to the try, run, and rest events with which communication with the
user is accomplished, a synchronizer ccmponent module may pass the token to its
clockwise neighbor with a token_out event, may receive the token from its
counterclockwise neighbor with a tokeh_.in event, may request the token from its
counterclockwise neighbor with a request_out event, and may accept a request from its
clockwise neighbor with a request_in event.

We resolve the implementation relationship between the synchronizer component
modules and the synchronizer module into two separate operations on systems: a
composition operation, which takes a number of component modules and combines
them into a larger system, and an abstraction operation, which takes the larger system
and throws away internal details that are not of interest in the more abstract view. In the
synchronizer example the composition operation takes a collection of synchronizer

.13-

Fig. 2. Impiementation of the Synchronizer Module

A

Synchronizer
Module

component modules and connects them into a ring network, and the abstraction
operation throws away the details of the internal communication between the
component modules, saving only the events that make up the interface with the user

processes.

-14 -

1.2.3 Correctness of an Implementation

Suppose we are given a specification for the synchronizer module, and
~ specifications for each of the synchronizer component modules. Each specification
determines a set of behaviors that satisfy it. The implementation is "correct” with
respect to these specifications if, no matter what behaviors we "plug in" for the
synchronizer component modules, as long as each component behavior satisfies its
specification, then the resulting synchronizer module behavior, constructed from the
components via the operations of composition and abstraction, satisfies the
synchronizer module specification.

1.2.4 Summary

The ideas presented in this section can be summarized as follows:

(1) Every module in a system has a well defined interface, which is the syntax
with which it interacts with other modules in the system.

(2) An interface defines a universe of observations, which are records of
operation that might be produced by a module with that interface. These observations
constitute the possible "functionings" of the module. The set of all observations that
can be produced by a particular module instance serves as the behavior of that module
instance.

(3) A module can be specified by describing a set of "acceptable"
observations. A module behavior “satisfies” such a specification if it contains only
acceptable observations.

(4) An implementation of an abstract module in terms of a collection of
component modules consists of a composition operation for combining component
module behaviors to form a "composite” behavior, and an abstraction operation for
deleting information from the composite behavior to obtain a behavior of the abstract
module.

(5) An implementation is correct with respect to given specifications if,
whenever we apply the composition operation of the implementation to a collection of
behaviors that satisfy the component module specifications, and then apply the
abstraction operation of the implementation to the resulting composite behavior, we
obtain a behavior that satisfies the abstract module specification.

-15-

1.3 Outline of the Thesis

This thesis is an attempt to elaborate and make more precise the ideas illustrated
~ informally in the previous section. In particular, an attempt will be made to answer the
questions:

(1) What is an appropriate mathematical framework that adequately captures
the notions of interface, observation, composition, abstraction, implementation,
specificaiion. and correctness discussed above? (Chapter 2)

(2) How can we translate, in a natural and systematic way, an intuitive
understanding of the function to be performed by a module into a precise specification?
(State-Transition Specifications, Chapter 3)

(3) Once we have obtained such a specification, how can we be sure that it
says something meaningful? (Consistency of specifications, Chapter 5)

(4) How can we show, in a systematic way, that a particular implementation of
an abstract module by a collection of component modules is correct with respect to
given specifications? (Correctness Proofs, Chapters 3, 4, Appendix I1)

and proofs of correctness? (Rely/Guarantee-Conditions, Chapters 3, 4, Appendix)]
(6) How might the specification and proof techniques developed in this thesis
be formalized to permit the use of mechanical aids? (Event/State Algebras, Appendix 1).

This thesis is organized as follows: Chapter 2 introduces formal definitions of the
notions of interface, observation, abstraction, composition, implementation, and
correctness. Some of the modeling choices embodied in these definitions are
discussed.

in Chapter 3, the basic definitions of Chapter 2 are used to define formally the
notion of a state-transition specification. The main result of Chapter 3 is the
Correctness Theorem (Theorem 3.9), which shows how the étructure of state-transition
specifications can be exploited to obtain a systematic method for performing
correctness proofs. Secondary results of Chapter 3 (Lemma 3.11, Lemma 3.12) suggest
how the proof method embodied in the Correctness Theorem can be further
systematized if module liveness specifications are expressed in terms of
rely-/guarantee-conditions.

-16 -

Chapter 4 applies the theory of Chapters 2 and 3 to the synchronizer example.
The complete specifications of the synchronizer and synchronizer component modules
are presented, and the synchronizer implementation is proved correct with respect to
these specifications. The language of temporal logic is used as a notation for
expressing liveness properties.

Chapter 5 is concerned with finding an appropriate notion of consistency of
specifications that include nontrivial liveness properties. Intuitively, a specification
ought to be consistent if and only if it is satisfiable by some behavior. However, if by the
term "behavior" we mean "arbitrary set of observations," then we obtain a notion of
consistency that is much too liberal. To obtain stronger notions of consistency, we must
restrict our attention to "realizable” or “computable” behaviors. Chapter 5 introduces a
particular class of computable behaviors, the "I/0-behaviors," that is based on an
underlying model of asynchronous concurrent computation called "1/0-systems.” The
corresponding notion of "1/0O-consistency” is found to be useful for distinguishing
between "obviously realizable" and "obviously unrealizable" liveness specifications.
Chapter & develnns a techninue for proving state-transition specifications to be
170-consistent ahd applies this technique to examples.

In Chapter 6 a kind of completeness result is proved (the Completeness Theorem,
Theorem 6.4), which gives sufficient conditions under which a correct implementation
has a proof by the Correctness Theorem. The statement and proof of Theorem 6.4 uses
in a crucial way the existence of a "specification domain," which is a class of behaviors,
like the 170-behaviors, with certain closure properties.

Finally, Chapter 7 summarizes what has been accomplished and suggests avenues
for future investigation.

Additional important material is contained in Appendices |, ll, and Ill. Appendix |
provides a formal semantics for the temporal logic language used informally in Chapters
4-6, and shows the correctness and consistency proof techniques déveloped in the
thesis can be formalized within this language. Appendix I considers two additional
examples: a distributed resource management system, and a reliable message
transmission system based on the alternating bit protocol. Both of these systems are
specified and proved correct using' the techniques developed in the main body of the
thesis. Appendix llI is an index of definitions.

.17 -

1.4 Related Work

The rather large body of work related to this thesis can be divided roughly into the
~ following categories:

(1) Specification of sequential programs/abstract data types.

(2) Models of distributed/concurrent computation.

(3) Temporal logic specification techniques.

(4) Specification of communication protocols.

(5) Other distributed/concurrent system specification techniques.
Each of these categories will be discussed below. Further discussion is included at
appropriate points in this thesis.

1.4.1 Specitication of Sequential Programs/Abstract Data Types

Work in the area of specification of sequential programs can be classified into two
categories: that concerned with the specification of the function to be performed by a
program or program fragment, and that concerned with the specification of the data
types manipulated by a program.

Sequential Program Function Specification

Specification of the function to be performed by a program or program fragment is
a problem that must be addressed by any work on program correctness. In the
sequential case, the semantics of a programming language assigns to each program
fragment (statement, procedure, etc.) some mathematical object (denotation)
representing the effect of executing that fragment. Typically, (see, e.g. [Jones81]) this
denotation takes the form of a partial function or a binary relation on program states. A
specification for a program fragment consists of some properties that must be satisfied
by the denotation of that fragment.

Often function specifications .are expressed in the form of Floyd/Hoare partial
correctness assertions (PCA’s) [Floyd67, Hoare69)], consisting of a precondition and a
postcondition, which are predicates on states. A program fragment satisfies a PCA if,
whenever execution of the fragment is begun in a state satisfying the precondition, then
execution will terminate only in a state satisfying the postcondition. Thus, if binary
relations are used as denotations of fragments, a PCA is satisfied by any relation R such

-18-

that if <q, r> € R and q satisfies the precondition of the PCA, then r satisfies the
postcondition.

Besides being convenient for specifying the function that must be satisfied by a
' program fragment, partial correctness assertions can be used to construct a formal
deductive system for reasoning about the behavior of program fragments. For a good
overview of these "Hoare logics" of programs, see [Apt81].

The partial correctness assertion technique has been generalized with some
success to systems of concurrent processes [e.g. Owicki76]. However these
techniques suffer from a lack of modularity in the sense that there is no notion of the
behavior of a single process in isolation. Thus it is possible to specify the function of a
complete parallel program, but not the behavior of its constituent processes. Although
a logic of partial correctness assertions is used to prove that the behavior of a program
satisties its specification, the truth of PCA’s associated with one process cannot be
determined, except within the context of the PCA's for all other processes.

Partial eorrectness assertions are capable of expressing only safety properties of
the form: "Whenever control is at point P, then relation R holds on the program
variables. In general, one is interested in liveness specifications as well. For sequential
programs, often the only liveness specifications of interest are statements that the
program is guaranteed to terminate under certain conditions. Liveness properties of
this simple form can be handled by incorporating termination into PCA's, as in Dijkstra’s
calculus of "weakest preconditions” [Dijkstra76], or by techniques completely outside
of PCA’s, such as Floyd's well-founded set technique [Floyd67]. For distributed or
concurrent programs, it is aimost always the case that more general liveness properties
than simple termination are of interest, and these require alternative techniques.

Data Type Specification

The problem of describing the data objects manipulated by a program, especially
the user-defined data objects, is usually referred to as “"specification of abstract data
types.” There are actually two quite different problems that are addressed in the
literature on abstract data type specification: the specification of immutable abstract
data types, whose objects do not change their state during execution, and the
specification of mutable abstract data types, whose objects have changeable state.

-19-

Specification of immutable abstract data types is the problem of describing and
reasoning about static collections of values, functions, and relations. Usually a
collection of interdependent immutable abstract data types is identified with the
 mathematical notion of a heterogenecus algebra, and algebras are described either
axiomatically, as in [Guttag78, Goguen78, Kapur80], or via set-theoretic constructions,
as in [Abrial80]. Specification of mutable abstract data types, on the other hand, can be
thought of as the problem of describing and reasoning about the dynamic behavior of a
collection of objects that can be manipulated using a limited set of procedures
[Guttag80, Wing83]. Berzins [Berzins79] models a mutable abstract data type as a kind
of state machine, which describes how the states of the mutable data objects evolve as
a result of the invocation of the procedures.

The problem of specifying immutable abstract data types is not addressed by this
thesis. In fact, the specification and proof techniques presented in this thesis assume
as a prerequisite the ability to describe heterogeneous algebras and to perform
reasoning about such algebras once they have been described. On the other hand, the
problem of specifying mutable ahstract data tynes can be viewed as 2 snecial case of

_the general probIAem of module specification considered in this thesis, by thinking of a
mutable abstract data type in terms of a "type manager" module, which encapsulates
the objects of the data type and which performs manipulations on these objects in
response to requests by the environment. Viewed in this way, the purpose of a mutable
abstract data type specification is to describe the correct "observations” for the type
manager module. The notion of observation appropriate here is that of a history of
"avents," where each event records either a request for the type manager to perform
some manipulation on the objects, or a reply indicating the results of some previously
requested manipulation. '

1.4.2 Models of Concurrent Computation

Quite a number of models have been proposed for investigating concurrent and
distributed computer programs [Brock83, Hoare81b, Hoare81s, Greif75, Hewitt77,
Kahn74, Keller76, Lynch81, Pratt82, Rounds81]. In this thesis as well, specific
assumptions are made about how to model the behavior of such systems. It is
necessary to make these assumptions to reach a point at which concrete example
specifications can be written and correctness proofs performed. However, a conscious

effort has been made to assume no more structure than is necessary for the results of
this thesis. An attempt has been made to identify a few fundamental concepts that are
required of any model, if it is to serve as a semantic foundation for the theory of
specification developed here.

The fundamental concepts identified in this thesis are the notions of interface,
observation, behavior, abstraction, and composition. These concepts, which have
already been informally discussed, are given formal definitions in Chapter 2. In this
section, we will briefly review the features of a number of extant models of concurrency
and attempt to identify the notions of event, interface, observation, behavior,
abstraction, and composition used here with corresponding notions in each of the
models. We will also be interested in whether each model is suitable as a semantic
basis for a specification language -- in particular, whether the model can model is useful
for specifications involving liveness properties.

Kahn-MacQueen Processes

A ratiier eiegant model of concurrent compuiation is the strearn processing model
of Kahn [Kahn74] and Kahn and MacQueen [Kahn77]. In this model, a process
communicates with its environment through a collection of named channels. A process
uses each channel either as an input channel or an output channel, but never as both.
During execution, a process can read input values from input channels and emit output
values on output channels. We can imagine observing a process throughout an entire
execution and recording the sequencé of values transmitted on each channel. Such a
sequence of values, which can be either finite or infinite, is called a stream. A process is
modeled by a continuous function from tuples of input streams to tuples of output
streams. The notion of continuity used here is derived from the fact that streams under
the prefix ordering form a partially ordered set which is complete under limits of
increasing chains. Processes are deterministic in the sense that to each input tuple /,
there is precisely one output tuple O that can be produced by a particular process,
when that process is supplied with input /. This is a consequence of the fact that
processes are modeled by functions.

In the stream processing model, the sets of input and output channels used by a
process serve as the interface of that process. The role of an observation of a process
is played by a pair </, O>, where / is a tuple of streams corresponding to the input

.01 -

channels, and O is a tuple of streams corresponding to the output channels. The usual
identification of a function with its graph permits us to view a process behavior / as the
set of all observations of the form <, f{I)>.

A process network describes how to compose a collection of processes to form a
composite system. Formally, a process network defines a kind of fixed point
construction that maps a collection of component process behaviors to a behavior for
the composite network. These fixed point constructions comprise the composition
operations. The composition operations used by Kahn and MacQueen include features
of both composition and abstraction as defined here, in the sense that once two
processes have been connected by a communication channel, the stream of values
transmitted over that channel i no longer of interest, and is ignored.

The Kahn/MacQueen model is unsuitable for the purposes of this thesis because
it is incapable of representing processes with nondeterministic behavior.

Nondeterministic Process Nets

There have been several attempts to generalize the stream processing model of
Kahn and MacQueen to incorporate nondeterminism. One such attempt is reported by
Brock in [Brock83]) (superseding the earlier version [Brock81] by Brock and
Ackermann), where references to other attempts are given. In [Brock83], it is shown
that the straightforward attempt to generalize the model of Kahn and MacQueen by
permitting process behaviors to be relations, rather than functions, is doomed to failure.
Intuitively, the reason is that the behavior of nondeterministic processes depends, in
general, on the relative orders in which inputs are received and outputs produced. in
essence, Brock’s approach is to replace the </, O> observations used by Kahn and
MacQueen by scenarios. Scenarios include, in addition to the streams of values
transmitted on each of the channels, a partial ordering that records some of the
information concerning the temporal order in which values were transmitted. The
behavior of a process is defined to be the set of all scenarios that the process can
produce in its various executions. Brock shows how composition operations on
scenario sets can be defined, in analogy to the operations on continuous functions
defined by Kahn and MacQueen.

.22.

Pratt's [Pratt82] "repackages” Brock’s model into a general framework for
modeling processes and their composition, in which the behavior of a process is
represented by the set of all traces (partially ordered multisets of events) it is capable of
- producing. As in the models of Kahn/MacQueen and Brock, the interface of a process
can be identified with the set of all events in which the process can participate. The
notion of trace plays the role of an observation. The notion of the restriction of a trace
to a subset of its events is used to define composition of process behaviors. Restriction
mappings on traces play essentially the same role in Pratt's model as decomposition
maps play in the model of this thesis.

The models of Brock and Pratt admit the possibility of infinite scenarios or traces,
and therefore do not a priori rule out the possibility of modeling processes that satisfy
nontrivial liveness properties. However, this possibility is not addressed by either Brock
or Pratt. Since we are interested in modeling processes with liveness properties, the
models of Brock and Pratt are not suitable in their present state of development.

Communicating Sequential Processes

An important class of models of concurrency [Francez79, Hoare81a, Hoare81b,
Rounds81] has been developed through attempts to give a formal semantics to the
language of "Communicating Sequential Processes” (CSP) defined in [Hoare78]. In
each of these models, the behavior of a process describes the traces (finite sequences
of communication events) in which the process is willing to participate as it executes.
The set of all events in which a process can ever participate plays the role of the
interface of that process. The notion of a trace plays the role of an observation.
Although the particular notion of process behavior is different for different models, each
of the models of CSP contains a collection of algebraic operations on process
behaviors, which are used to define the meaning of the various constructs of CSP. In
particular, each model has some sort of “restriction” or "hiding" operations, which
cause events to be deleted from a process behavior, and some sort of "relabeling”
operations, which allow events of a process to be renamed. These operations are used
for essentially the same purpose as the abstraction operations used in this_ thesis. Each
model also has one or more "composition" operations (composition by intersection,
composition by interleaving, or a mixture of the two) corresponding to the composition
operators of this chapter, whose effect is to combine process behaviors in various ways.

.23.

The important considerations for models of CSP derive from a feature peculiar to
that language. A CSP process can refuse to communicate with its environment. If a
CSP process refuses to perform any of the communications offered by its environment,
then deadlock is the result. The different definitions of process behaviors in the various
models of CSP arise from attempting to deal with (or to ignore) the subtleties of refusals

and nondeterminism.

In [Hoare81b], a process behavior is a prefix-closed set of traces, which can be
viewed equivalently as a behavior of the kind defined in this thesis. There are
operations in [Hoare81b] for deleting and renaming the events of a process. These
operations are examples of the abstraction operators used in this thesis. Process
behaviors are composed by the parallel composition operator ||, which is defined as
follows: If A is the behavior of a process with interface E and B is the behavior of a
process with interface F, then A || B is the set of all traces u formed from events in EU F
such that the restriction of u to E is in A and the restriction of u to F is in B. This notion
of composition is a particular example of the composition operators defined in this
thesis.

Hoare, Brookes, and Roscoe [Hoare81a] extend the work of [Hoare81b] to deal
with the problems of refusals and nondeterminism. They do this by permitting behaviors
to be more highly structured objects than just sets of traces. In particular, a behavior is
a set of pairs <s, X>, where s is a trace, and X is a set of events that can be refused by
the process after the trace s has been produced. Although they use a single universal
set of events for all processes, we can imagine designating the set of all events that
actually appear in a process as the interface of that process. As in the model of
[Hoare81b], traces play the role of observations. There are "concealment” operators
for deleting events, and "inverse image" operators that permit renaming of events.
There are no "direct image"” operators, apparently because they are not as well
behaved as the inverse image operators. Two kinds of parallel composition operations
are defined: composition by intersection, in which events of the component processes
are connected, and composition by interleaving, in which the events of the components
remain independent.

Rounds and Brookes [RoundsB81] attempt to justify and extend the work of
[Hoare81a] in the following way: A definition of process behaviors is made that includes
somewhat more information than that of [Hoare81a), and is based on supposedly more

.24 .

fundamental intuitive considerations. A number of algebraic operations, including
composition and abstraction, are defined on behaviors. A notion of "observabie
equivalence” of behaviors is defined, and is shown to be a congruence. The quotient of
~ the algebra of behaviors with respect to this congruence is then shown to be isomorphic
to the model of [Hoare81a], thus providing evidence that this model exactly captures the
externally observable properties of processes.

There seem to be problems associated with ther use of models of CSP as a
semantic basis for specification languages. These problems center around the
following two questions: (1) Do traces represent a "complete” record of execution ofa
process, or simply some finite portion of such a record? (2) What is the meaning of a
liveness specification such as "eventually event a will occur,” if a process can be
placed in an environment that refuses to permit the occurrence of event a?

With respect to question (1), it is difficult to see how the designers of the CSP
models could have intended traces to represent complete observations. This is
because in general a complete observation will be infinite, but the CSP models provide
no method for extracting infinite traces from behaviors. Without a distinction between
complete and incomplete observations, we have no way to determine whether a
particular CSP process satisfies a liveness specification. It is clearly ridiculous to
require that a specification such as "eventually event /a will occur" be satisfied by all
"incomplete"” as well as all "complete” observations.

Question (2) arises from a desire to "assign the blame" for an unsatisfied liveness
specification, either to a process or its environment. If a process can always be placed
in an environment that can prevent the occurrence of event a, then the only reasonable
conclusion we can draw is that the specification “eventually a will occur” is too strong
(i.e. inconsistent). However, it is not clear how to weaken such a specification so that it
can be regarded as consistent.

The above problems associated with the models of CSP have been avoided here
as follows: First, it is assumed here that the observations in a behavior represent
complete records of execution. Second, we accept the obvious conclusion that the
specification “eventually a will occur” is inconsistent with respect to a model (such as
the model of [Hoare81b]) that admits the possibility of refusals. Instead of trying to find
ways to weaken specifications like this so that they can be regarded as consistent even

.05

in the face of refusals, though, we construct a model in which refusals are not allowed.
This is the idea behind the 1/0-behaviors constructed in Chapter 5 of this thesis.

Calculus of Communicating Systems

Rather similar to the models of CSP discussed above is the "Calculus of
Communicating Systems,” (CCS) of [Milner80]. As in CSP, the notions of a
communication event and a sequence of communication events are the fundamental
concepts for describing the behavior of a process. The role of a process interface is
played, in CCS as in CSP, by the set of communication events in which the process is
capable of participating. The CCS notion of an observation is a sequence of events; in
contrast to CSP, CCS admits the possibility of infinite observations.

To represent the behavior of a process, Milner introduces the notion of a
communication tree whose paths represent all possible complete histories of
communication for a process. In a communication tree there can be multiple arcs
emanating from a single node, labeled with with the same communication event, and
aics can be labeicd with the speciai symbol =, which represents an iniernai aciion of a
process not associated with any communication event. Communication trees therefore
contain more information about a process than just a simple set of traces. In fact,
communication trees contain more information about a process than can be detected
through composition with other processes. Milner addresses this problem by defining
several notions of "observable equivalence” of communication trees, and shows that
these relations are congruences for an algebra of processes whose operations include
operations of composition and abstraction. He suggests that the class of process
behaviors be obtained by forming the quotient of the algebra of communication trees
with respect to one of these congruences. He is unable to reach a conclusion, though,
as to which of the congruences is "best," or to give explicit characterizations (not
involving quotient constructions) of the quotient algebras.

Although communication between two processes in CCS, as in CSP, is
synchronized in the sense that it is represented by the simultaneous occurrence of
communication events for the participating processes, communication in CCS is unlike
that in CSP in the sense that a CCS process cannot prevent another process from
performing an event. This is because the definition of the composition operation in CCS
states that, if process A can perform an event a, and process A’ can perform the

.26 -

"complementary" event a’, then the composition A || A’ can perform either a, or a’, or
the communication represented by the simultaneous occurrence of bothaand a .

The fact that dbservations can be infinite in CCS raises the question of whether it
is possible to define CCS processes that satisfy interesting liveness properties.
However, it seems that this possibility is ruled out by Milner's composition operation.
Milner's composition operation is "unfair” in the sense that there are paths in the
communication tree corresponding to the composition of two processes along which
only one of the component processes gets to run. This means that no process can
satisfy a specification of the form: "eventually a will occur,” in an environment that has
the capability of producing an infinite observation.

Actors

One of the earlier event-based models of computation is the actor model [Greif75,
Hewitt77]. An actor system consists of a collection of primitive computing agents
(actors), that communicate by passing messages. A computation for an actor system is
a patiiaily ordered sel 6f events, where an event marks the arrivai of a message at its
target. Receipt of a message activates the target actor, and may cause additional
messages to be issued. The partial order represents a kind of temporal "precedes”
relationship between events, formed by taking the transitive closure of the union of the
"causes"” relation and the “arrival" ordering, the latter of which linearly orders all events
with the same target. Hewitt and Baker [Hewitt77] postulate certain laws that must be
satisfied by the various orders.

The actor model was originally applied [Greif75] to the specification of
synchronization problems such as the mutual exclusion and readers/writers probiem.
The specifications are written as axioms that constrain the possible computations of a
system. The language used, although not formally defined, is essentially a propositional
calculus in which the propositions are of the form "e — e’," which means that event e
must precede event e’ in any computation of a system satisfying the specification.
Although no notion of state was used in the specifications, the language has
nevertheless sufficient expressive power to handle several important examples.

Subsequent work concentrated on applying the actor model to the specification of
more complex systems, both distributed and centralized [Yonezawa77]. In contrast to
the work of Greif, Yonezawa's specifications have a decidedly state-transition flavor,

.97.

and although proponents of the actor model consistently argue that global state is not a
well-defined notion for distributed systems, the “situations” used in Yonezawa's
correctness proofs appear to be just such global states.

in the actor model, the notion of an actor is generally defined by informal axioms
and description, which are insufficient to answer the question: "What is an actor?" We
must know the answer to this question if we wish to obtain a meaningful notion of the
collection of all actors that satisfy a given specification, and to show the validity of rules
for deriving consequences of specifications of actor systems. The question of what
actors are has only recently been dealt with by Clinger [Clinger81], who defines actors
and their computations directly in terms of set-theoretic constructs. It is interesting to
note that, although actor enthusiasts like to point out that viewing computations as:
partially ordered sets of events captures "true" concurrency better than linearly ordered
computations, Clinger shows that the laws of Hewitt and Baker are in fact equivalent to
the existence of a global linear ordering of events in a computation.

To relate the actor mode! to the model used in this thesis, we can attempt to
identify notions of interface, observation, behavior, abstraction, and composition in the
actor model. There seems to be no obvious notion of the interfaée of an actor. The
notion of a partially ordered set of events plays the role of an observation. Roughly
speaking, Clinger defines the behavior of an actor to be a function that describes the
actor's response (i.e. its state change and message transmissions) to the receipt of a
message. Although we can imagine composing a collection of independent actors into
a composite system, there seems to be no formal notion in the actor model
corresponding to such an operation. As mentioned above, the existence of the arrival
ordering prevents the definition of an abstraction operation.

The actor model has certain defects that render it unsuitable for a theory of
specification. The major difficulty is that the actor model does not support abstraction
of systems in a uniform way. There are notions of an actor and a system of actors, but
no way to view a system abstractly as a single actor. The artificial “arrival ordering,”
imposed on all events that occur at a single actor, is the primary feature that prevents
abstraction from being defined in a reasonable way. Another reason is the fact that
every message must contain the name of its target actor, since this means that it is
never possible to completely suppress the internal structure of an actor system.

Lynch/Fischer Processes

In the model of distributed computation proposed by Lynch and Fischer
[Lynch81], the primitive objects are variables and processes, and systems of processes.
 Avariableis a mailbox-like container for values, and a process is a kind of state machine
that can perform input and output on variables. A system of processes consists of a
collection of processes that commur{fcate through variables. The variables of a system
of processes are partitioned into external and internal variables. There is a kind of
composition operation that combines a collection of systems of processes to form a
larger system. There is also a kind of abstraction operation that transforms some of the
external variables of a system into internal ones.

A correspondence between Lynch and Fischer’s model and the model of this
thesis can be established, if the notion of an event is identified with Lynch and Fischer's
notion of a "variable action.” A variable action describes the change in the value of a
variable resulting from a single execution step. The interface of a system of processes
is the set of all variable actions it can perform. The behavior of a System of processes is,
as Lynch and Fischer define, the set of all finite and infinite sequendes of variable
actions the system is capable of performing. To view Lynch and Fischer’s operation of
composition of systems of processes as a special case of the composition operators
defined here, it is necessary to account for the requirement that the actions on a single’
variable in the computation of a system have congistent values. This is easily
accomplished if variables are thought of as active entities with an interface and a
behavior. The interface of a variable is the set of all variable actions that can be
performed on it. The behavior of a variable is the set of all finite and infinite sequences
of variable actions in which the value read in each variable action equals the value
written in the immediately preceding variable action.

In terms of modeling power, the model of this thesis and that of Lynch and Fischer
appear equivalent. Lynch and Fischer’'s model is certainly capabie of handling
nondeterminism and liveness properties. The main advantage of the model of this
thesis over that of Lynch and Fischer is that the former contains fewer primitive
concepts. It is not necessary to draw distinctions between variables, probesses. and
systems of processes, and the definitions of composition and‘ abstractibn are simplified
by avoiding these distinctions.

1.4.3 Temporal Logic Specification

Several authors [Hailpern80, Lamport83, Schwartz81] have proposed the use of
temporal logic as a specification language and a vehicle for expressing correctness
proofs. The use of temporal logic as»a spécification language evolved gradually from its
use as an assertion language, that is, as a language for expressing properties of
program executions [Pneuli77, Lamport80]. There is a subtle difference, though,
between the semantics appropriate for temporal logic used as an assertion language
and temporal logic used as a specification language. This difference, which has not
been explicitly addressed in the literature,can be summarized as follows: Whereas
temporal formulas as assertions express properties of single computations of a fixed
program, temporal formulas as specifications express properties of the set of
computations of an undetermined program. Stated another way, whereas a model for a
temporal formula used as an assertion about a fixed program is a single computation of
that program, a model for a temporal formula used as a specification is the set of all
computations that can be produced by some program. This distinction has important
rainifications for whal nolion of consistency is appropriate in each case. A temporal
formula used as an assertion about the computations of a fixed program is consistent if
and only if there exists a computation of that program that satisfies the formula. A
temporal formula used as a specification is consistent if and only if there exists a
program, all of whose computations satisfy the formula.

Another important issue that is not addressed explicitly in literature on temporal
logic specification is the ability to specify a single module in isolation from particular
program context.! The notion of a program module satisfying a specification in isolation
must be meaningful if specifications are to effect the beneficial separation between
module use and implementation. Since extant work does not include the notion of the
meaning of a specification in isolation, there has been no discussion of the following
important question: How can we combine independent module specifications to perform

1. Recent work [Barringer83], performed independently of the work described in this
thesis, has begun to address some of the same issues, in particular: (1) temporal
specifications express properties of sets of computations, rather than single
computations, (2) specifications should have meaning that is independent of an
enclosing context.

.30 -

a proof of correctness? In particular, in what common language can the proof of
correctness be expressed, and what deductions in this language are sufficient to imply
the correctness of the implementation?

Among the papers on temporal specification of concurrent program modules, the
approach developed by Lamport [Lampori83] contemporarily with work on this thesis,
results in specifications that appear most similar to the state-transition specifications
described here. In Lamport’s approach, a specification cénsists of three parts: (1) A list
of state functions, which define salient features of the program state; (2) A list of initial
conditions, which represent assumptions on the initial values of the state functions; (3)
A list of properties, which constitute the main body of the specification, and which can
be viewed as standing for a collection of temporal logic formulas. The properties are of
two kinds: safety properties and liveness properties. Safety properties describe the
state transitions that are permissible for a program satisfying the specification, and
liveness properties describe situations under which transitions are required.

The way one writes a specification in Lamport’s approach is quite similar to the
way one writes state-transition specifications as described in this thesis. At the
semantic level, though, Lamport’s approach seems rather different. The difference can
be summed up briefly as follows: In Lamport's work, specifications for program
modules play the role of assertions about the computa/tions of a complete program in
which the module appears. Whether or not a particular program module satisfies a
specification can only be determined in such a context. In the framework presented in
this thesis, whether a program module satisfies a specification can be determined
without reference to any contextual information.

The meaning of the state functions used in Lamport's approach is obscure.
Lamport says that state functions in a specification "should describe information that
must be contained in the program state of any real implementation.” This statement
apparently implies that the value of the state functions is part of the observable behavior
of the module being specified, and in this sense is just as important a part of a module
specification as the relationship between the arguments passed and results returned
from an invocation of an operation on the module. Choosing state functions that
provide too detailed a view of the internal operation of a module can result in
overspecification, since an implementer wishing to satisfy the specification is
constrained to include enough information in the state so that the state functions can be

.31 -

defined.

This thesis resolves the problem of overspecification by introducing the notion of
an interface. By defining a module interface, one fixes a particular class of module
instances (i.e. the behaviors of that interface) which serves as a domain of discourse for
the temporal specifications. In this thesis, a module interface is a set of events. An
interface does not contain any notion of module state. States are used merely as a
device for increasing the expressive power of the specification language to permit the
desired properties of observations to be expressed in a convenient and natural way.
Since states are not part of the module interface, the state set in a state-transition
specification can be chosen on the basis of convenience, without danger of
overspecification.

Schwartz and Melliér-Smith have also proposed the use of temporal logic as a
specification language. In [Schwartz80], specifications are developed for the
alternating bit communication protocol. Appearing in these specifications are
uninterpreted symbols such as "InQ" and "OutQ." These symbols, like the state
functions used by Lamport, are evidently intended to refer to portions of the state that
must be identifiable in any program satisfying the specifications. Schwartz and
Melliar-Smith present collections of temporal axioms which they claim completely
characterize the send and receive processes supporting the alternating bit protocol.
There is little basis for this claim, since it is impossible to determine what a process is,
much less determine whether the specifications characterize a particular process or
class of processes.

The axioms presented by Schwartz and Melliar-Smith involve complicated derived
temporal operators such as "Iatches-until,"' which make the resulting specifications
quite difficult to understand. The specifications have an ad hoc flavor, and it is difficult
to obtain insight into how specifications for different examples would be obtained. In
contrast, the state-transition approach discussed in this thesis suggests a systematic
way of proceeding from an intuitive conception of the desired module behavior to a
precise specification. Schwartz and Melliar-Smith present no proof that their send and
receive process specifications correctly implement the service specification for the
alternating bit protocol. Experience gained from the examples presented in this thesis
suggests that specifications that have not been used in a proof of correctness are quite
likely to contain errors.

.32.

Hailpern and Owicki [Hailpern80] propose a style of temporal logic specification
that is different from the styles of Lamport and of Schwartz and Melliar-Smith. Hailpern
and Owicki also use the alternating bit protocol as an example to illustrate their
. approach to specification. In addition to symbols representing components of the
internal states of processes in the system, Hailpern and Owicki introduce the notion of a
history variable, whose value at any instant of time represents the entire history of
communication between two processes up until that instant of time. They state
explicitly that history variables are simply a descriptive tool, and are not intended to be
implemented. History variables appear to be quite useful for writing high-level,
nonprocedural specifications. For example, the safety properties satisfied by a
transmission line could be expressed by stating that the history of messages delivered is
always a prefix of the history of messages sent.

The state-transition approach to specification presented in this thesis takes the
history variable idea to its logical conclusion, by allowing arbitrarily structured history
information (in the form of states), to be introduced into a specification, together with
onerations for manipulating this information. This can he done differently for each
specification, without change to the underlying semantic model. For example, the
specification of the reliable transmission module presented in Chapter 6 uses the notion
of the history of all messages input to the reliable transmission module. In the
specification of the send protocol module in Chapter 8 it is convenient to define the
notion of "the history of all messages for which acknowledgements have been
received.” This history is a subhistory of the history of all messages transmitted by the
send protocol module, and would not be directly accessible in the model of Hailpern
and Owicki.

1.4.4 Specification of Communication Protocols

The problem of specification of communication protocols has received a good
deal of attention, and can be viewed as a special case of the more general problem,
investigated here, of specification of modules in a distributed system. Two surveys of
the protocol specification literature, written from different vantage points, can be found
in [Sunshine78] and [Hailpern81].

.33.

Of the numerous papers on protocol specification and verification, that of
Bochmann [Bochmann78] appears to be most directly relevant to this thesis.
Bochmann models a system as a collection of finite-state machines that affect each
. other through coupled state transitions. This is highly analogous to the definition, given
here, of composition of behaviors by identifying events. Bochmann also has a notion of
abstraction by ignoring uninteresting transitions, which matches the concept of
abstraction of behaviors used here.

Schwabe [Schwabe8la, Schwabe81b] exploits the analogy between the
instantaneous state of a communication protocol and a value of an abstract data type,
to translate state-transition specifications of protocols into equational axioms that
define an abstract data type. This translation enables him to verify correctness
properties of communication protocols using an automated verifier (AFFIRM) originally
intended for proving properties of abstract data types. However, only certain kinds of
correctness properties can be stated and proved using his technique. In particular,
liveness properties cannot be handled. Schwabe pays little attention to the semantics of
his specifications, leaving some ambhiguity as to what objects satisfy a specification, and

what consitutes correctness of a protocol.

It is interesting that the notions of hierarchy and modularity of systems, and the
prerequisite concept of the interface of a system with its environment, are much more
prominent in the literature on protocol specification than they are in the literature on
specification in general. In protocol specification, a system is viewed as a nested set of
layers: the bottom level corresponds to the communication hardware, and each layer
provides an abstract service to the next higher layer. The top level implements the
service provided to the "end user.” Typically the service provided by a level can be
viewed as an abstract communication network connecting two users, which often have
an asymmetric sender/receiver relationship. Higher levels of abstraction are
implemented by interposing protocol processes between the users and the
communication service provided by the next lower level. The interface between the
users and a service comprises the set of operations (e.g. open connection, send
message), they can perform. A distinction is drawn between the specification of an
abstract service provided to a user (the service specification) and a description of the
protocol processes (the protocol specification).

.34-

There are only a few specific correctness properties of interest for communication
protocols: freedom from deadlock, completeness (i.e. definedness of the protocol in
every reachable state), progress, and stability in the face of unexpected perturbations of
~ the protocol. These properties are certainly aiso of interest for more general kinds of
distributed systems. All verification techniques in the communication protocol literature
are ultimately based on representing the protocol processes and abstract
communication media as finite-state machines, constructing a combined
state-transition graph for the implementation, and performing various analyses on this
graph. The state-transition approach to specification and verification is a natural
generalization of this technique. It should be noted, however, that the machines used in
the state-transition specifications in this thesis are not necessarily finite-state, and that
reachability analysis of a system is performed by proving predicates to be invariant,
rather than by explicit construction of the combined state-transition graph. This means
that the proof techniques discussed in this thesis need not be subject to the
combinatorial explosion problem often referred to in the literature on protocol
verification.

1.4.5 Other Concurrent System Specification Techniques

Chen [Chen81, Chen82] develops a concurrent system specification language
called EBS (Event-Based Specification Language), and gives specifications for a
number of examples, including the alternating bit protocol. The EBS language can be
thought of as a generalized version of the language used in [Greif75] to specify various
synchronization problems. An EBS specification expresses properties of an event
history, which is a partially ordered set of events. The EBS notion of an event history
corresponds to the notion of an observation used in this thesis.

Chen’s ‘work seems to be motivated by a number of the same concerns that
motivated this thesis. In particular, Chen discusses the distinction between the user's
view and the designer's or implementer's view of a system, and introduces a notion of
interface to capture the way in which a system interacts with its environment. In Chen’s
approach, a module interface consists of a collection of ports. There is a notion of
module interconnection by identifying ports, which is reminiscent of the composition
operations used in this thesis. Chen’s work does not, apparently, include a notion of
behavior, or the idea that a module specification has meaning except with respect to a

complete program context. Chen does not have a semantic definition of the
correctness of an implementation from which the soundness of proof techniques can be
derived. Rather, the notion of correct implementation seems to be identified with the
notion of logical consequence.

An interesting property of Chen’s specifications is that they tend to be
"orthogonal.” An orthogonal specification is a specification that is composed of a
collection of independent subspecifications. For example, Chen defines a number of
different properties of a reliable transmission system, such as "no loss of messages,"
"no duplication of messages,"” and "no erroneous messages.” It is not obvious how the
state-transition technique presented in this thesis could support the writing of
specifications with a comparable orthogonality property.

The Gypsy system [Good79, Good82] has some capability for the specification and
verification of distributed systems. In the Gypsy model, a distributed system is viewed as
a collection of independent processes that communicate through message buffers.
Specifications of the communication function performed by a process are expressed in
terms of properties of "buffer histories,” which represent the sequences of messages
transmitted on, or received from message buffers. Gypsy seems capable of handling
only safety properties. '

Correctness proofs in Gypsy are performed by deriving a collection of verification
conditions from annotated program text, and then proving the validity of these
verification conditions using a semi-automatic theorem prover. Evidently the validity of
the verification conditions is taken as the definition of correctness; the literature shows
no attempt to justify the sufficiency of the verification conditions in terms of any
fundamental model of computation. Reasoning about the behavior of a system of
processes in Gypsy is done in terms of relationships between buffer histories. The
approach appears similar to Hailpern and Owicki's history variable approach.

An outgrowth of the Gypsy work is the work of DiVito [DiVito82], which is
concerned with the description and mechanical verification of communication
protocols. DiVito's specifications contain liveness properties only, and are expressed in
a decision table style that captures much the same information as the definitions of
state-transition relations presented in this thesis. The purpose of DiVito's work seems to
be to quickly reach a point at which experimentation with mechanical verification is

.36-

possible. His focus is primarily on linguistic issues, rather than their semantics.

Lansky and Owicki [Lansky83] have developed a language, called GEM, for the
specification and verification of properties'of concurrent systems. The underlying
mode! of computation is an event-oriented model similar to the actor model [Greif75,
Hewitt77], in which a computation of a system is represented as a set of events plus
various relations on this set. The enable relation captures the notion of necessary
temporal precedence, or causality, between events. :rhe element partial ordering
captures the notion of incidental temporal precedence, where one event precedes
another because they happen to occur at the same point in space. The temporal partial
ordering is the transitive closure of the union of the enable relation and the element
ordering. Besides the notion of an event and the relations on events discussed above,
GEM includes a number of additional primitive notions. An element corresponds to a
locus of activity or point in space. A group is a set of elements and other groups, which
is used to collect semantically related objects. History sequences are certain increasing
sequences of computation prefixes, and are used as a domain of interpretation for
temporal lngic formulas. Threads are a mechanism for dvnamically arouping a

sequence of related events.

The issues considered by GEM seem largely orthogonal to those examined in this
thesis. The design of GEM seems to have been moéivated primarily by a desire to
describe, within a common framework, the semantics of a number of primitives of
concurrent programming languages. For example, monitors and the CSP
communication primitives are discussed. In contrast, this thesis is not concerned with
the description of programming language primitives, although this is a problem that
must ultimately be addressed. A GEM specification describes constraints on
computations of a single program, whereas in this thesis a specification is viewed as
describing constraints on the entire set of computations of an undetermined program.
GEM apparently does not include any notion of behavior, composition, or abstraction.

Yonezawa [Yonezawa?7] develops techniques for the specification and
verification of parallel programs, based on the actor model! of computation. The central
concepts used in these techniques are the notions of a conceptual state, and a
situation. A conceptual state is a summary of the past communication history of an
actor, and corresponds closely to the conceptual states used in the state-transition
specifications of this thesis. A situation assigns a conceptual state to each actor in a

.37 -

system, and is used in verification in much the same way as the state of the "composite
machine” is used in this thesis (see Chapter 3). The notion of an implementation
invariant appears in Yonezawa's work, and plays roughly the same role there as it does
_ in this thesis. Yonezawa's model seems to incorporate a notion of hierarchy of
abstraction, in the sense that it is possible to view a system both at a more detailed level,
where there is a larger collection of events and more detailed states, and at a less
detailed level, where only a subset of the events is considered and less information is
contained in the states.

Yonezawa's specifications look very much like the definitions of state-transition
relations used here, in the sense that a specification describes, for each possible event,
a precondition on the state that must hold for an event to occur, and a postcondition
that describes the state that results after the event occurrence. The semantics of the
event/precondition/postcondition triples used by Yonezawa seems to differ from their
counterparts in this thesis, in the sense that if the precondition of an event ever holds,
then that event must eventually occur. Thus, Yonezawa's formalism appears, to a
certain extent, to be capable of expressing liveness properties.

There are three major deficiencies with Yonezawa's work, which are improved
upon in this thesis:

(1) The semantics of Yonezawa’s specifications are defined informally in terms
of the actor model, whose precise definition is somewhat obscure. It is therefore not
possible to address rigorously the question of what constitutes correctness in
Yonezawa's model, and to show that his proof techniques suffice to prove correctness.

(2) The actor model lacks a useful notion of modular decomposition. In
particular, there is no reasonable way to view a system of actors as a single actor.

(3) Yonezawa's techniques can handle only a very limited form of liveness
property in specifications and proofs; namely, those of the form: "If the precondition of
an event holds, then eventually that event must occur."

.38.

2. Framework for a Theory of Specification

The purpose of this chapter is to construct a framework of definitions that is
_ suitable as a foundation for a theory of specification. We present and motivate formal
definitions of the notions, discussed informally in Chapter 1, of “interface,”
"observation," "abstraction," "decomposition,” "implementation,” and "correctness.”

2.1 Interfaces, Observations, and Behaviors

An event is an observable instantaneous occurrence during the operation of a
computer system. If one were to examine a particular computer system in microscopic
detail, the events of a system could be identified with physical events, such as voltage
changes on signal lines. However, we are generally not interested in such a large
amount of detail, and instead regard large classes of physical events as equivalent and
indistinguishable. Examples of such equivalence classes are: the event in which
process A subniits a message to a transmission system for delivery to process B, the
event in which the variable x is set to three, and the event in which the synchronizer
module receives a try request from user process p.

The first step in modeling a particular system is to identify and classify the
interesting instantaneous occurrences. As a result of this procedure, we associate with
each system and each particular level of abstraction at which the system is to be
viewed, an "interface," which represents the set of all possible instantaneous
occurrences of interest at the given level of abstraction, plus a single element A, which
represents all uninteresting occurrences. Lower levels of abstraction (those that
incorporate more detail) are characterized by larger interfaces, corresponding to finer
classifications of the instantaneous occurrences, whereas higher levels of abstraction
are associated with smaller interfaces, corresponding to coarser classifications.

Definition - An interface is a structure <E, A, ...>, where E is a set whose elements are
called events, A, Is a distinguished element of E called the null event, and the ellipsis
indicates that further structure may be present. 3

We use the symbol E to denote both the entire structure and the underlying set of
events. When the interface E is clear from the context, we will omit subscripts, writing A
instead of A,.

-39-

in general, an interface E will have additional structure besides the distinguished
element .. For example, in Chapter 5 we will be concerned with interfaces of the form
<E, A\ Ing, Out>, where Ing and Out, are subsets of E called the sets of “input events”
and "output events,” respectively. Except for the material in Chapter 5, the only
structure required is the existence of the distinguished null event A_..

If E is an interface, then let £* denote the set of all finite strings, and E® the set of
all finite and infinite strings, on the alphabet E - {A.}. It is convenient to view E as a
subset of E* and E%, where the element A, of E is identified with the unique string of
length zero, and each non-A element e of E is identified with the corresponding string e
of length one.

In the synchronizer example, the interfaces are defined as follows. Let Proc be the
set of user processes. The synchronizer module has interface ESM = [tryp, run,, restp: [o}
€ Proc} U {A}. A synchronizer component module has interface ESC = {A, try, run,
rest, token_in, token_out, request_in, request_out}.

To describe the functioning of a system during a single execution, we nostulate
the existence of.an omniscient observer, outside of the system under consideration.
The observer is able to watch the operation of the system and compile a complete
record of the events that occur, along with their time of occurrence. We refer to this
record, the structure of which will be precisely defined below, as an "observation." An
observation is a function that maps each instant of time t in the interval [0, o) to the
event that occurs at time t.

We assume that at most finitely many non-A events can occur in any bounded
interval. This assumption, which is used to permit inductive reasoning about
observations, seems reasonable if we think of a compuiter as executing in discrete steps
taken at a finite rate. The fact that an observation is a (single-valued) function implies
that at most one event occurs at each instant of time. This is not to be interpreted as a
fact about real-world systems, but rather as part of the definition of the term “"event.”
That is, by definition no more than one event occurs at any instant. To model a situation
in which a number of primitive occurrences can happen simultaneously, we must use an
interface that contains one event for each possible combination of primitive
occurrences.

.40 -

The reason why we define observations as functions from [0, o0) to events rather
than simply as sequences of events (and in Chapter 3 define computations on [0, 00) as
well), is a technical one. We shall often be interested in composing a collection of
observations, one for each component module in a system of modules, to obtain a
single observation of the composite system. If observations are defined to be
sequences of events, then composition of observations corresponds (in the special
case that the component modules do not interact) to interleaving of sequences. For
example, if a module M, can produce the sequence of events ab and module M, can
produce the sequence of events cd, then the composite system consisting of modules
M, and M, can produce the interleaved sequence of events acbd. The feature of
interleaving that is inconvenient for our purposes is the fact that the indices of events
change under interleaving. That is, the event b appears as the second event in the
sequence ab, but as th'e third event in the sequence acbd. The definitions of
observation and composition we use have the more convenient property that an event
appearing at time t in an observation for module in isolation always corresponds to the
event appearing at time t in a composite observation.

Definition - An observation over an interface E is a function x: [0,) — E, such that
x(t) # A for at most finitely many t in each bounded interval. §

Let A denote the identically A observation, and let Obs(E) denote the set of all
observations over E. If x € Obs(E), and a € [0, o), then let [x] denote the function that
maps each t € [0, o) to the the (finite) string of non-A events that occur during the
interval [0, t) in x. Let suffix (x) be the observation y € Obs(E) such that y(t) = x(t + a)
for ali t € [0, 00).

By collecting the set of all observétions that can be produced by a system in
various environments, we obtain the "behavior” of that system.

Definition - A behavior of interface E is a subset of Obs(E).

Let Beh(E) be the set of all behaviors of interface E.

.41 -

2.2 Abstraction, Decomposition, and Interconnection

In this section, we show how the concepts of hierarchy of abstraction and modular
decomposition can be captured through the use of certain mappings between
interfaces, which we call “translations," and the corresponding mappings they induce
on observations.

Definition - A translation from an interface E to an interface F is a function h: E = F
such that h(A.) = A.. A translation h from E to F extends in a natural way to a function
h: Obs(E) — Obs(F), under the definition h(x) = hex. 1

The concept of an “interconnection,” defined below, is the formal notion
corresponding to a diagram like Figure 2. Intuitively, an interconnection consists of of
an "abstraction map," which captures the relationship between a more concrete and a
more abstract view of a system, and a "decomposition map,” which captures the
relationship between a composite system and its component modules. An abstraction
map is simply a translation from the interface corresponding to the concrete view, to the
interface corresponding to the abstract view. A decomposition map is a collection of
translations that shows how the events for the composite system are decomposed into
events for the component modules. '

Definition - An interconnection is a pair § = <a’, <8,’>,€,>, where oJ: ¥ - DY is a
translation, / is a finite index set, and each 8,’: I~ F,J is a translation. The interfaces F,’
are the component interfaces of 3, the interface £’ is the composite interface of 3, and
the interface DY is the abstract interface of 3. The transiation ol is the abstraction map
of 3, and the vector (8,5>,.€, is the decomposition map of 3. §

In the sequel, underlining will be used to denote a vector of objects; thus we write § Ytor
the vector <3,:">,€ ,

The synchronizer implementation yields an example of an interconnection. The
content of Figure 2 is formalized by the interconnection <a®™, 3 S, where ESM, oM
ESM! _, ESM gnd 83”“: ESM _, £SC p € Proc, are defined below.

The composite interface for the synchronizer module implementation is ESM =
{tryp, run,, rest , token , request,: p € Proc} U {A}.

.42.

The decomposition map § S™ projects or decomposes each event for the
composite interface into corresponding events for the synchronizer component
modules. The events try,, run , and rest, in ESM! decompose to try, run, and rest events
of the pth synchronizer component module. The events tokenp and requesrp of ESMI
represent interaction between the pth synchronizer component module and its
neighbors in the ring. Specifically, the event token‘D represents the joint occurrence of a
token_out event for the pth synchronizer component module, and and a token_jin event
for the p + 1st synchronizer component module. Similarly, the event request, represents
the joint occurrence of a request_out event for the pth synchronizer component module
and a request_in event for the p-1st synchronizer component module. Formally,

8% (e) = try, ife = try,
= run, ife = run,
= rest, ite = rest
= token_in, ife = tokenp_1
= token_out, if e = token R
= request._in, ife = requestp+1
= request_out, ife = requestp
= A, otherwise.

The abetraction map oM preserves events in which the system of synchronizer
component modules interact with the user processes, but deletes (i.e. maps to A) events
corresponding to internal interaction between synchronizer component modules.
Formally,

«SMi(g)

e, ife € {try_, run,, rest:p € Proc},
A ife € {tokenp. request :p € Proc} U {A}.

We assign intuitive significance to some of the operators on behaviors that are
naturally induced by abstraction and decomposition maps.

The direct image operator associated with an abstraction map takes a behavior of
a system viewed at a more concrete level, and produces the corresponding behavior of
that system viewed at a more abstract level.

Definition - The abstraction operator associated with a translation a: £ — D, is the
function, also denoted by «, that maps each behavior B € Beh(E) to the direct image
a(B) € Beh(D). We refer to the behavior a(B) as the abstraction of B under a. 1

.43-

The inverse image operator induced by a decomposition map models the
operation of composing a collection of component module behaviors to produce the
corresponding behavior of the composite system. Intuitively, if S is a system consisting
of component modules <M, then S can produce all and only those observations x
that, when decomposed, match observations that each M, can produce.

Definition - The composition operator associated with the vector § of translations is
the function, denoted by § ', that maps a vector (BP,G,, where B, € Beh(F) for eachi€|l,
to a behavior § (8) € Beh(E), under the definition:

8'(8) = {x € Obs(E): 8(x) € B, foralli €1}.
Thus, the set § “'(B) contains an observation x € Obs(E) iff 8(x) € B, foralli €. We call
this set the composition of B under § . &

2.3 Specification, Implementation, and Correctness

In practice a specification will take the form of a string of symbols in a formal
specification language, since it must be possible to write down a specification.
However, since this thesis is not concerned with the details of a particular formal
language in which specifications are to be expressed, it is convenient to adopt a more
liberal view: A specification is any mathematical object that denotes, in a well-defined
way, an interface and a set of behaviors of that interface.

Definition - A specification language is a triple <Specs, 8, B>, where Specs is a set of
specifications, 8 is a mapping that assigns an interface 8(S) to each specification S €
Specs, and B is a mapping that assigns a set B(S) C Beh(8(S)) to each specification S €
Specs. We say that S is a specification of interface 8(S), and that each B € B(S) satisfies
S. 1

An interconnection describes the pattern of interaction between modules in a
system in analogy to the way a program scheme describes the flow of control between
uninterpreted statements. It makes no sense to speak of an interconnection as
"correct" or "incorrect,” since an interconnection includes no information about the
behaviors of the component or abstract modules. However, if we provide an
interpretation for the modules by augmenting an interconnection with specifications of
the abstract and component module interfaces, it does become meaningful to speak of
correctness. We use the term "implementation” for an interconnection augmented with

specifications.

Definition - An implementation is a tuple <3, S, <SP where 3 is an
interconnection, S, . is a specification of interface D’, and S, is a specification of
interface F,.5 ,foreachi€l 1§

An implementation is correct if, whenever acceptable behaviors are plugged in for
the component modules, then the resulting abstract module behavior is also
acceptable. The composition and abstraction operators associated with the
interconnection formalize the notion of "plugging in."”

Definition - An implementation <3, S, <SD,¢> is correct It a¥(a ¥)'(8) € B(S,,),
whenever B, € 3(S) foreachi € /. 8 ‘

3. State-Transition Specifications

In this chapter, we will investigate a particular approach, called "state-transition
specification," to the derivation of module specifications. In this approach, we imagine
that at any instant of time a module can be thought of as being in one of a number of
conceptual states. Associated with each conceptual state is a collection of events that
can occur in that state, and a description of the state change that results from the
occurrence of each of those events. Thus, a state-transition specification describes the
desired functioning of a module in terms of a kind of machine that generates an
observation as it executes. It is important to note that the conceptual states in a
state-transition specification are merely a tool for describing the desired functioning,
and need not have anything to do with the “real” state present in any particular module
instance that satisfies the specification.

The properties captured by the state-transition technique discussed here are
divided into two classes: "local" properties, which concern the relationship between an
event and the conceptual state of the module immediately preceding and immediately
following the occurrence of that event, anc "globat” properties, which relate events and
states perhaps distant from each other in time. Local properties are of the form: "An
event e can occur only if the state of the module satisfies P, and if e occurs, then the old
state and new state of the module are related by the binary relation R." Examples of
global properties are "eventuality” conditions of the form: "If the module is now in a
state with property P, then eventually event e will occur." Local properties are specified
by a machine as mentioned above. Global properties are specified by defining a set of
"validity conditions” on computations of the machine. The set of computations that
satisfy the validity conditions is called the set of "valid" computations.

The reason for investigating state-transition specifications is that they appear to
provide a natural, straightforward strategy for turning an intuitive understanding of the
desired function of a module into a formal specification. This strategy consists of the
following steps:

(1) Define an appropriate set of conceptual states. For example, in the
specification of the abstract synchronizer module, a state is a vector that tells for each
user process whether the synchronizer module thinks that process is trying, running,
resting, or in error.

(2) Define a set of initial states, in which the module begins execution. For the

synchronizer module, there is a single initial state in which all user processes are
resting.

(3) Define, for each event, the conditions required on the state for the
occurrence of that event to be possible, and the state changes associated with an
occurrence of that event. For example, a "run” event for process p can occur only if p
is trying and no other process is currently running. Occurrence of a "run” event causes
the state of p to change to "running” and leaves the states of all other processes
unchanged. ,

(4) Define the desired global properties for the module. For the synchronizer
module, we wish to require that every user request eventually result in a corresponding
reply, if possible.

Besides serving as a natural vehicle for formalizing specifications, the
state-transition approach also provides a strategy for performing correctness proofs.
The Correctness Theorem (Theorem 3.9) gives sufficient conditions for correctness that
exploit the machine structure of the specifications.

This chapter is organized as follows: In Section 3.1 the notion of "subset
specifications," of which state-transition specifications are an example, is introduced.
In Section 3.2 the machines used in state-transition specifications are defined, and in
section 3.3 some tools for reasoning about their computations are developed. The
notion of a state-transition specification is defined in Section 3.4. In Section 3.5 the
Correctness Theorem, which is the main result of this chapter, is proved. Section 3.6
shows that the Correctness Theorem is a natural generalization of the "possibilities
mapping" proof technique of Lynch [Lynch83] and Goree [Goree81]. Section 3.7
shows how the proof technique suggested by the Correctness Theorem can be further
systematized in the case of state-transition specifications whose sets of valid
computations have been defined by "rely-/guarantee-conditions.”

3.1 Subset Specifications

As discussed in Chapter 2, a specification S of interface E defines a set %(S) of
behaviors of interface E. In general, we might look for specification techniques that are
capable of expressing arbitrary properties of behaviors. However, in practice it appears
that the properties of behaviors we wish to express in a specification are nearly always
of a special form. That is, it is nearly always the case that we wish to express universal

.47 -

properties of the observations in a behavior, of the form: "Every observation x in B has
property P," where P is a property of observations. This means that in practice it is
usually not necessary to have a specification technique that is powerful enough to
express arbitrary properties of behaviors. Rather, a less powerful technique, which is
capable only of expressing properties of observations, suffices. The state-transition
specification technique introduced in this chapter is of this less powerful variety.

Definitidn - A specification S of interface E is a subset specification if there exists a set
0(S) C Obs(E) such that B(S) = {B € Beh(E): B C 0(S)}. 8

For the rest of this thesis we will be concerned only with subset specifications. To
see what we give up by restricting our attention to subset specifications, let us consider
some examples. Examples of properties of behaviors that can be expressed as subset
specifications, that is, as universal statements about observations in a behavior B, are
the following:

- E_very observation in B contains at most finitely many occurrences of non-A
events (that is, computation always quiesces).
. In every observation in B, either each occurrence of a try event for process p
is ultimately followed by a run event for process p, or else there is a point in time after
which some process is in the "running” state forever.

Examples of properties of behaviors that cannot be expressed as subset
specifications, and hence cannot be captured by the state-transition approach

discussed here are:

- There exists an observation in B that contains at most finitely many
occurrences of non-A events (there exists a quiescing computation).

- If x is an observation in B and t € [0, o), such that [x](t) = u, then there is an
observation y € B and at’ € [0, o) such that [y](t) = ve. (if the module is capable of
doing u, then it is also capable of doing ue).

- If x is an observation in B, and f is an order-isomorphism from [0, o) to
[0,), then xof is also an observation in B (the module is asynchronous, or
timing-independent).

Because the properties of behaviors defined by subset specifications are really
just "lifted” properties of observations, the definition of correctness of an
implementation that involves subset specifications has an equivalent statement in terms

of observations.

Lemma 3.1 - Suppose that <3, S, ., <5, is an implementation, where S, . and each

f

S, is a subset specification. Then<s,S,,_, S > is correct iff a’=(8 %) (<O(S)>,¢) C O(S,,)-

Proof - => Suppose <3, S, , S > is correct. Suppose that x € Obs(E’) is such that af(x)
€ 0(S) for each j € I. Then the behavior {x} is the composition under § 3 of the vector of
behaviors <{57(x)}>,, and the behavior {a’(x)} is the abstraction under a’ of the
behavior {x}. Since the behavior {sf(x)} satisfies S, for each i € /, it follows by
correctness that the behavior {a’(x)) satisfies S,,_. Thus a’(x) € 0(S,,)).

<= Suppose that a’o(ﬁ 5)“(<O(SI.)>,.€,) C 0(S,,,)- For eachi €/, suppose that B, is
behavior that satisfies S, Then B, C 0(S). Let B, = a’(8 })'(B). Then B, is a
subset of O(Sm) by hypothesis, and hence Hence Bm satisfies Sm. |

3.2 Machines and Computations

In this section, we detine a kind of nondeterministic machine that generates an
observation in each of its computations.

Definition - A nondeterministic event machine (or just /"’machine" for short) M consists
of:

- An interface E,,

- AsetQ,, of states.
A nonempty set Init,, C Q,, of initial states.
A relation Trans,, C Steps(E,,, Q,) = Q,, X E,, X Q,,, called the
State-transition relation, such that for all g € Q,,, the null step <g, A, @> € Trans,,. §

It E,, = E, then we say that M is a machine of interface E.

The state-transition relation Trans,, of a machine M has a natural extension
Trans,,* that applies to strings of events, rather than just single events. Formally, define
TransM‘ C QM X EM" X Q,, to be the least relation containing TransM, and having the
following closure property: If <q, u, r> € Trans,,* and <r, v, s> € Trans,,*, then <q, uv, [
€ Trans,,*. (Recall from Section 2.1 that we identify the null event A, with the empty
string.)

.49 -

Definition - A state q € Q,, is reachable by M if there exists a state q, € Init,, and a
string u € E,,* such that<q,, u, g> € Trans,,*.

Suppose thatR C Q,,. ThenRis inductive for M if
(1) Init, CR.
(2) Forall<q,e,r> € Trans,,,ifq € Rthenr €R.
We say that R is invariant for M if it contains all reachable states of M. The following
extremely important induction principle is a standard technique (see, e.g. [Keller786]) for
proving properties of reachable states.

Lemma 3.2 (Induction Principle) - Suppose M is a machine, and that R C Q,,. fRis
inductive for M then R is invariant for M.

Proof - Straightforward. l

Ordinarily, a computation of a machine might be defined to be a pair consisting of
a state sequence q,, q,, - » and an event sequence e, 6, ... , such that each step
0,80 %1 satisfies the state-transition relation. Intuitively, q, and g, , reprecent the
states "just before" and “just after" the occurrence of the event e,, respectively. To
define a computation in which the notion of an event sequence has been replaced by
that of an observation, we generalize the notion of a state sequence to that of a "state
function,” which assigns a state to each nonnegative real number, in such a way that

the notion of state "just before" and "just after" each point t € [0, o) is meaningful.

Definition - A state function over a set of states Q Is a function f: {0, o) — Q such that
for all t € [0, o), there exists ¢, > 0 such that f is constant on the intervals [t-e,, t] N
[0,0)and (t,t+e]. B '

We write /(1 *) as an abbreviation for the constant value of f on the interval (t, t +¢,),
which intuitively represents the state “just after” time t. The state at and also "just
before" time t is represented by the value /(t).

Definition - A history over an interface E and state set Q is a pair X = <Obs,, State,>,
where Obs, is an observation over E, and State, is a state function over Q. Let
Hist(E, Q) denote the set of all histories over interface E and state set Q. §

-850 -

If X € Hist(E, Q) and t € [0, o0), then define the step occurring at time t in X by:
Step, () = <State,(t), Obs,(t), State,(t*)}>.

The generalization of the ordinary definition of a computation is now

straightforward.

Definition - A computation of a machine M is a history X € Hist(E,,, Q,,) such that
(1) State,(0) € init,,.
(2) Step,(t) € Trans,, foralit € [0, o0).

Let Comp(M) denote the set of all computations of M. I

If Vis a set of computations of M, then define Obs(V), the set of all observations
generated by V, by Obs(V) = {Obs,: X € V}.

3.3 Properties of Histories

The purpdse of this section is to develop some machinery for passing back and
forth between histories and "history skeletons," which are sequences of steps plus
timing ' information. Each history skeleton naturally defines a unique history.
Conversely, given a history X we can extract (though not in a unique way) a history
skeleton by restricting Step, to a suitable subset 7 of [0, ©0). Whereas histories have
convenient behavior under projection, history skeletons are more useful for performing
computational induction arguments.

Definition - A skeletal sequence is a monotone increasing sequence t, < t, < ... of
elements of [0,), such thatt, = O and t, = o as k — 0. A skeletal sequence T =
<2, xSpans a history X if for each k € N, Obs, is identically A and State, is constant on
the interval {t,, ¢, . ,). §

Note that by the properties of a state function, if Statex is constant on the open interval
(t,. t,,) then State, is also constant on the right-closed interval (t,, f, , 1].

Lemma 3.3 - Suppose X is a history. Then there exists a skeletal sequence that spans
X.

Proof - Let T = X U {t € [0, 2): Step,(t) is nonnull}. The proof that T is a skeletal
sequence that spans X uses the defining properties of observations and state functions,

.51 -

plus the compactness property of the closed, bounded subsets of [0,). The details
are omitted. 1

Corollary 3.4 - Suppose XD, is a finite collection of histories. Then there is a
skeletal sequence T that spans all the X e

Proof - Foreachi € |/, let T, be a skeletal sequence that spans X,and define T = Ug T
The finiteness of / implies that T has order type w, and is hence a skeletal sequence. ltis
obvious that 7 spans each X. 1

Definition - A history skeleton over an interface E and a state set Q is a function f: T —
Steps(E, Q), where T = <2,) is a skeletal sequence, such that if f(t,) = <q,, e, r> for
each k € N, then r, = q,,,forall k € N. The history skeleton f spans a history X if T
spans X and / is the restriction of Step, toT. 1

Lemma 3.5 - Suppose that f is a history skeleton over E and Q. Then there is a unique
history X over £ and Q such that f spans X.

Proof - Suppose f: T — Steps(E, Q), where T = <2 Suppose ft) = <q,, 8,0,
The requirement that f spans X defines X uniquely:

Obs,(t) = 8, ift=t,
A, otherwise.

"

State,(t)

Qy ift=0
Qv ifte (tk' tk+1]'
It is easy to see that X is a history.

Lemma 3.6 - Suppose X is a historyover Eand Q. If T = <&, ¢) is a skeletal sequence
that spans X, then the restriction of Step, to T is a history skeleton that spans X.

Proot - Let f denote the restriction of Step, to 7, and suppose that fit) = <q,, 8, 1> Itf
is a history skeleton, then f spans X by definition. To see that f is a history skeleton, we
must show that r, = q, _, for all k € N. Fix k € N. By definition of a state function, we
can select ¢ > O such that State, is constant on the interval (t, t,+e]. Then r, =
State, (t, +¢). Since State, is constant on the interval (t, t,,] by the fact that T is a
skeletal sequence of X, it follows that re=q.,.+1

.52.

The following consequence of Lemma 3.3 and Lemma 3.6 says that every state
appearing in a computation is reachable.

Corollary 3.7 - éuppose X is a computation for a machine M. Then Statex(t) is
reachable for M, for all t € [0, o0).

Proof - Use Lemma 3.3 to obtain a skeletal sequence T = e x that spans X. By
Lemma 3.6, the restriction of Step, to T is a history skeleton that spans X. The result
follows by an inductive proof that the constant value of State, on each set {t}. (t,, AN
(tn t3], __is reachable for M. The details are straightforward, and are omitted. §

3.4 State-Transition Specifications

Definition - A state-transition specification S of interface E is a pair <Mg, Vo, where Mg
is a machine of interface E and Vg is a set of computations of Mg, which we call the set

of valid computations.

If S is a state-transition specificaticn of interface £, then the st of behavicrs that
satisfy S is defined as follows:
®(S) = {B € Beh(E): B C Obs(V)} _
It is clear from this definition that state-transition specifications are subse
specifications.

As a concrete example of a state-transition specification, consider the
specification for the synchronizer module. The interface for the synchronizer module is
defined by:

EM = (A} U {try,, run,, rest:p € Proc}.
The state set QM for the synchronizer module specification is defined by

QM = I, {trying, running, resting, error}.
Thus each element of the state set QSM is a vector that tells, for each process p € Proc,
what the synchronizer module thinks that process is currently doing. Ifq € Q™Mandp €
Proc, then let q(p) denote the component of g corresponding to process p. fveE
{trying, running, resting, error}, then let q[v/p] denote the state r € Q%M that is identical
to q except that r(p) = v.

.53-

Next, we define the initial state set InitS™ and state-transition relation TransS™ for
the synchronizer specification. The initial state set Init3™ consists of the single state q
that assigns the value "resting” to each p € Proc. The state-transition relation TransSM
contains a step €q, e, r> iff either e = A and g = r, or one of the conditions (try), (run), or
(rest) below is satisfied for some p € Proc:
(try) e = tryp, and either
q(p) = resting and r = q[trying/p], or
q(p) = resting and r = gferror/p). |

(run) e= run;, q(p) = trying, q(p ") # running forallp ' € Proc - {p},
and r = q[running/p].

(rest) e = restp, and either
q(p) = running and r = g[resting/p]}, or
q(p) # running and r = g[error/p].

We have defined the machine MM = <&M, QM Init™, TransS™> for the
synchronizer module specification. To complete the state-transition specification of the
synchronizer module, we must define the set V™ of valid computations of MSM. The
intuitive property we wish to capture by this definition is that the synchronizer must
eventually grant all requests, if possible. The qualification "if possible" is required since
if one user process remains in the "running” state forever, then it will be impossible for
the synchronizer module to grant any further requests, without violating the mutual
exclusion property. We can informally state the defining property of V™ as follows: "If,
for all user processes p, every instant of time at which p is running is eventually followed
by an instant of time at which p is not running, then, for all p, every instant of time at
which p is trying is eventually followed by an instant of time at which p is running."

The validity condition for the synchronizer module is relatively simple, but already
the locutions used to precisely define this condition are somewhat awkward. To deal
with more complex specifications, we require a more compact notation that can be
systematically applied, as opposed to the ad hoc approach taken above. Such a
notation is developed in the next chapter, where the constructs of temporal logic are
used to express properties of histories.

3.5 The Correctness Theorem

In this section we consider the problem of how to prove the correctness of an
implementation with respect to state-transition specifications. The fundamental result
of this section is the Correctness Theorem. This theorem shows how the correctness of
an implementation follows from certain properties of a composite machine, which is a
kind of a kind of product of the machines for the component module specifications and
the machine for the abstract module specification. Associated with this product
construction are projection maps that take each computation for the composite
machine to a corresponding computation for the abstract module machine and for each
component module machine.

The Correctness Theorem states that, for an implementation to be shown correct,
it suffices to show that two conditions hoid for the composite machine. We call these
conditions the "maximality” condition and the "validity” condition. The maximality
condition concerns the relationship between the state-transition relations of the
component module machines and the state-transition relation of the abstract module
machine. The validity condition concerns the relationship between the set of valid
computations for the component modules and the set of valid computations for the
abstract module. N

If the inclusion of the machine from the abstract module specification as a part of
the composite machine seems somewhat strange, consider the following analogy: in
proofs of concurrent program correctness using Hoare-like deductive systems [Apt81,
Owicki76], it is well known that it is sometimes necessary to introduce "ghost
variables,” which have no effect on the execution of the program, but merely serve to
capture information about the state of program execution not reflected in the values of
the program variables. The abstract module part of the composite machine serves the
same function as ghost variables: namely to capture information about the history of
system execution possibly not reflected in the states of the component module
machines.

The proof technique suggested by the Correctness Theorem seems closely related
to the "data refinement proofs" of [Jones81]. Jones shows how the correctness of
implementations of data abstractions can be performed via "representation relations,"
which relate the states of abstract data objects to states of their concrete

representations. Representation relations capture the same information as the
"implementation invariants" defined below, and the "possibilities mappings” of Lynch
[Lynch83] and Goree [Goree81] (see Section 3.6).

We now define precisely the notion of the composite machine for an
implementation. Suppose <, Sabs’ <SP, is an implementation, where Saps =

(M.bs, Vm) and S, = {M,, V>, for each i €/, are state-transition specifications.

Definition - The composite machine M for the implementation <3, Sm and S > is
defined as follows:
E, = E’
Qy = QMﬂhs X, QMI'
Let #,, . and =, be the canonical projection maps from the cartesian product Q,, onto
the factors QMlbs and Q“:’ foreachi€l.
Init,, = lnitMabs X 1, '""u,'
Trans,, = {<q, e, > € Steps(E,,, Q,):
<7, (q) ale), m (D€ Trans'.M.ha and
<n(q), 8fe), n (s> € Tranle foralli€l}. 8

Suppose that X € Hist(E,,, Q,)). Then associated with X is its canonical projection
x&s) onto Hist(E,, .Q,,). defined by
abs abs

Obs, (abs) = a°Obs,

State,(abs) = w,.°State,.
In a similar way, we associate with X its canonical projection X! onto Hist(EMI, O“:)'
defined by

Obs, = §,°0Obs,

State, () = w,*State,.

It is easily verified that the projections X and x defined above are, in fact,
histories. Also, it is easily checked that if X is a computation of M, then X s a
computation of M,,, and X1 is a computation of M,, for each / € 1.

Next, we state the conditions that are shown by the Correctness Theorem to be
sufficient for <3, S, ., S > to be correct. Intuitively, the maximality condition states that
the abstract machine can perform any event that can be performed by the system of
component module machines. The validity condition states that a computation that is

valid for each of the component modules is also valid for the abstract module.

Definition - The maximality condition holds for the implementation <3, S, ., 8 > if for all
states g reachable for the composite machine M, and all e € E, if § (e) is enabled for M, in
state = (q) for each i € /, then a(e) is enabled for M, in state 7 6(q)- 1

Definition - An implementation invariant for the implementation<3, S, ., S > is a set Inv
C Q,,, such that Inv is inductive for the composite machine M.

Note that an implementation invariant is indeed invariant for M by the Induction
Principle (Lemma 3.2).

Since an implementation invariant contains all reachable states of the composite
machine, it is sufficient to use "q € Inv, where Inv is an implementation invariant,” in
place of "q reachable for the composite machine," in proving that the maximality
condition holds.

Definition - The validity condition holds for the implementation €3, S ., £ > if:
Whenever X is a computation for the composite machine M with the property that x e
V,foralli € i, then X&) ¢ v___as well. §

We now come to the main technical lemma (Lemma 3.8 below) used to prove the
Correctness Theorem. The intuitive content of this lemma is as follows: Suppose we are
given a collection X of computations for the component module machines, which are
"coherent” in the sense that there is a single observation x € Obs(E) such that each
Obst is the image of x under the mapping 8. The vector X of computations can be
thought of as a computation of the system of machines, obtained by juxtaposing the
machines for the component module specifications, and "interconnecting” their events
as specified by the decomposition map § . Lemma 3.8 asserts that, if the makimality
condition holds, then it is possible to construct a computation X for the composite
machine M, such that Obs, = x, and furthermore, such that the projections x of the
computation X are the given original computations X. Since X% must be a
computation of the abstract module machine (because every computation of M projects
to a computation of M,,), it follows that every coherent collection X of computations for
the component module machines, "simulates” some computation of the abstract
module machine.

.57 -

Formally, suppose that X, is a computation of M, for each i € I. Given an
observation x € Obs(E), we say that the collection X is x-coherent if Obsxi = §(x) for
each i € I. The point of this definition is that a vector X cannot be used to form a
computation X of M unless the observations of each of the X, are in agreement.

Lemma 3.8 - Let<3,S,, ., <52, be an implementation, where S, = M, Vabs>, and
that S, = <M, V2, for each i € | are state-transition specifications. Suppose that the
maximality condition holds for <3, S, ., § >. Suppose that x € Obs(EJ), and that X, is a
computation of M, for each i € I, such that the collection X is x-coherent. Then there
exists a computation X of the composite machine M such that Obs, = x, and such that

X = x_for eachi € 1.

Proof - By Corollary 3.4, there exists a skeletal sequence T = <t,>, . \-that spans each
of the X,. We assume without loss of generality that 7 includes all points t for which x(t)
A\ Lete, = x(t,) for each k. We will use the maximality condition to construct a
sequence g, q,, ... of elements of Q,, such that v(q,) = Statex'_(tk) foralli€/andall k €
X, and such that <q,, e,, q,,,> C Trans,, for all k € N. Then the function 11 7 —
Steps(E,,, Q,,) that takes t, to <q,, e,, q, . is a history skeleton for M. By Lemma 3.5
there is a unique history X for M such that 7 spans X. It is easy to see that X is a
computation of M with Obs, = x and X = X foreach /€.

The q, are constructed by induction on k. At the kth stage of the construction (k 2>
0), we assume that q, has been constructed so that g, is reachable and ’i(qk) =
Statexl(tk) for alli € 1. We constructg, ,, so that #(q,,) = Statexi(t,l L) foralli€l and
so that <q,, ¢,, q,,,> € Trans,,. It follows by definition of reachability that q, _, is
reachable.

Basis: Let g, be an arbitrary element of {q € Init,: = (q) = State, (0) for all i € 1}. Note
i
that this set is nonempty since it is a cartesian product of nonempty sets. Clearly g, €
Invand = (q,) = State, (0)foralli€/.
i

Induction: Suppose, for some k € X, that g, has been defined so that g, € Inv and 7(q,)
= Statexi(tk) for all i € I. Since X, is a computation for M, for each i € 1, we know that
8(e,) is enabled for M, in state =(q,), for each i € /. Since g, is reachable for M, the
maximality condition implies that a(e,) is enabled for M, in state 7 0s(d,)- Hence

{9€Q,:<q,,e,q>€ Trans,, and #(q) = Statexi(tk .y foralli €1} is nonempty. Letgq, .
be an arbitrary element of this set. 1

The Correctness Theorem is an easy consequence of the preceding lemma.

Theorem 3.9 (Correctness Theorem) - If the maximality and validity conditions hold for
an implementation, then the implementation is correct.

Proof - Suppose {3, Sabs, <S)i€p is an implementation, where Sabs = (Mabs, Vabs> and
that S, = <M,., v,> for each i € / are state-transition specifications. Suppose that the
maximality and validity conditions hold. Let M be the composite machine. Suppose that
x € Obs(E) is such that 8(x) € O0(S) for all i € I. By Lemma 3.1, it suffices to show that
a(x) € 0(S,,). Since §(x) € 0(S) for each i € /, we know that for each i € / there is a
computation X, € V,, such that Obsxl = §(x). Since the collection X is x-coherent, by
Lemma 3.8 there exists a computation X for the composite machine M, such that Obs,
= x and such that X = X, for all i € /. Using the validity condition, we then conclude
that x©#*9) € v, . It follows that a(x) = a(Obs,) € 0(S,,,), as required.

3.6 Possibilities Mappings

In this section we show that the Correctness Theorem is a natural generalization of
the "possibilities mapping" proof technique proposed by Lynch [Lynch83] and Goree
[Goree81].

Lynch and Goree define a possibilities mapping to be a function that assigns a set
of abstract module machine states to each vector of states for the component module
machines, in such a way that the initial state set and state-transition relation are
preserved. The fact that each vector of component module states is mapped to a set of
abstract states, rather than to a single abstract state, means that possibilities mappings
are a generalization of the usual notions of simulation or machine homomorphism.
Intuitively, the value of the simulation mapping on a vector of component states is the
set of "possible"” abstract states that correspond to the given component states --
hence the name "possibilities mapping."”

Lynch and Goree's proof technique can be stated as follows: "If there exists a
possibilities mapping for an implementation, then the implementation is correct.”
Interpreted in the framework of this thesis, Lynch and Goree's technique applies only to

implementations that involve state-transition specifications <M, V> for which V =
Comp(M). For such implementations, the validity condition required by the Correctness
Theorem is vacuous. Theorem 3.10 below shows that the existence of a possibilities
mapping is equivalent to the maximality condition required by the Correctness Theorem,
and thus the Correctness Theorem includes Lynch and Goree’s proof technique as a
special case. ‘

To define the notion of a possibilities mapping, suppose <J, Sausr $SPcp I8 @n
implementation. Suppose Sabs = Mypes Vape® @A S, = <M, V>, foreachi€ /. Let Mbe
the composite machine.

Definition - A possibilities mapping for the implementation 3, Sausr <82, Is afunction
f: T, Q’“I - ‘EKQM“S), with the following properties:
(1) lnitM‘m C 1(<gp,¢,) whenever q, € '"“u, foraili€l.
(2) Forallq €Q,,, if n (q) € {(<w (q)>,c,), then:
(a) Wheneverr € Q,, and e € E,, are such that<g, e, > € Trans,, then =, (r)
€ f(<a(rd,).
(b) For all e € E,, if §(e) is enabled in state w(q) for each i € /, then a(e) is
enabled for M, . in state #_, (q). §

Theorem 3.10 - Suppose that <3, Sausr <S2i¢p is an implementation, where S, and S,
for each i € | are state-transition specifications. Then the following are equivalent:

(1) There exists a possibilities mapping for <3, S angr £ -

(2) The maximality condition holds for <3, S, ., S >.

Proof - Suppose that S, = M, Vops @nd that S, = <M, V>, foreachi € 1. Let Mbe

the composite machine for the implementation <4, S, $>.

(1) =>(2): Suppose that ! is a possibilities mapping for J, S,us @nd S . Define

Inv = {q € Q,;’ 7,,,(q) € (<7 ().
Condition (1) in the definition of a possibilities mapping implies that Init,, C Inv.
Condition (2)(a) in the definition of a possibilities mapping implies that /nv is inductive,
and hence by Lemma 3.2 contains all states reachable for M. The maximality condition
now follows from condition (2)(b) in the definition of a possibilities mapping.

(2) => (1): Conversely, suppose that the maximality condition holds. Define f: neQ-

Q,,s as follows: g2, is the set of all Qs € Qg Such that there exists a reachable
state g for M with #»_, (q) = Q. @ad n(q) = q, for alli €. We claim that f is a
possibilities mapping.

Condition (1) in the definition of a possibilities mapping holds, since given <q,>,.€, €
N, lnitMl_. theneveryq,, € lnitMabs yields a state Gy <q,>,.€,> that is in Init,, and hence

is reachable for M.

To show that condition (2) holds, suppose that g is a state of M such that = abs(q) €
f(Kx{q)>,). Then q is reachable for M by definition of /. To see that (2)(a) holds, note
that if <q, e, r» € TransM, then r is reachable by definition of reachability, and hence
7)€ f(Km (r)>,¢)). The maximality condition implies that condition (2)(b) holds.

3.7 Rely-/Guarantee-Conditions

In this section we will see how state-transition specifications whose sets of valid
computations are defined by rely-/guarantee-conditions can be used to perform the
validity part of a proof of correctness. The principle of rely /guarantes sond
states that the set of valid computations V in a state-transition specification S = <M, V»
should be defined in the form: "Rely implies Guar,” where Rely expresses the properties
that the module being specified relies on its environment to provide, and Guar
expresses the properties that the module guarantees to provide in return.

For the synchronizer module, we wish the validity conditions to capture the idea
that every user’s request should eventually result in a response, if possible. The tricky
part is the precise formulation of the "if possible" condition. Clearly if some user goes
into the running state and remains in that state forever, then it will never be possible to
allow any other user in the trying state to go to the running state, without violating the
mutual exclusion property. This condition can be stated in rely-/guarantee-condition
form as follows: "If every user process obeys the requirement that, once in the running
state, it will eventually leave the running state, then the synchronizer module guarantees
that every user in the trying state will eventually leave the trying state (and hence
advance to the running state.)"

We have two results, Lemma 3.11 and Lemma 3.12 below, that describe
techniques for using rely-/guarantee-condition specifications in proofs of correctness.
In both of these techniques, we are required to prove:

.61 -

*) Each component module’s rely-condition is implied by the conjunction of the
abstract module's rely-condition and the guarantee-conditions for some subset of the
component modules. _

Although the exact form taken by condition (*) is different for the two techniques, a
proof by either of the techniques is simplest when the rely- and guarantee-conditions for
the component modules are chosen so that the truth of condition (*) is obvious. Thus,
rely- and guarantee-conditions serve to "cut” the interdependence of modules on each
other, analogously to the way in which a loop invariant cuts the dependence of one
iteration of a loop on the previous iteration. This observation is strong motivation for the
suggestion that module specifications ought not to be derived in isolation, but rather
with a proof of correctness in mind in which those specifications are used.

A correctness proof that makes use of Lemma 3.11 or Lemma 3.12 is rather
different from one in which eventuality conditions (such as termination) are verified by
the well-founded set techniques of [Floyd67, Keller76] and others. Proofs by the latter
techniques tend to take the form of reasoning about the structure of a computation,
whereas proofs by | emma 3.11 and Lemma 3.12 tend to be arguments based on the
communication structure of the modules in the system. Experience gained from the
examples presented in this thesis suggests that arguments based on communication
structure are simpler and more natural.

The use of rely- and guarantee-conditions has been proposed for safety
specifications in [Jones83]. Independently of this thesis, Barringer and Kuiper
[Barringer83] have proposed the use of liveness specifications that are partitioned into
an "environment part,” which captures assumptions made about the environment, and
a "component part,” which captures commitments made by the moduie being specified.
Jones, as well as Barringer and Kuiper, exploit the rely-/guarantee-condition structure
of specifications by defining inference rules for process composition that seem closely
related to Lemma 3.11. Barringer and Kuiper’s environment/component division seems
essentially the same as the rely/guarantee division used in this thesis, except that
Barringer and Kuiper apply the environment/component division to state-transition
properties, as well as liveness properties.

Misra and Chandy [Misra81] have also used a kind of rely/guarantee distinction to
develop proof techniques for safety properties. In that paper, a process h is specified by
an assertion of the form rjhls, where r and s are predicates on finite sequences (called

-62-

traces) of communication events. Such an assertion is interpreted as: "The predicate s
holds of the empty trace, and for all traces t that can be produced by process h, if r
holds for all proper prefixes of t, then s holds for all prefixes (both proper and improper)
of t. The predicates r and s can be thought of as roughly analogous to rely- and
guarantee-conditions, respectively, although the former are properties of finite prefixes
of traces rather than properties of infinite computations. Misra and Chandy’s proof
technique is a "Theorem of Hierarchy,” which gives conditions under which
specifications of a collection of components can be used to infer a specification of the
network formed by interconnecting the components. Their proof technique can be
stated as follows: To show that the specification ROJH|SO for the network H is a
consequence of the specifications rlhls, (i € /) for the components, it suffices to show
that:

(1) S implies SO,

(2) RO and S implies R,
where R and S denote the conjunction of the r, and s, respectively. These conditions
are syntactically similar to the conditions (1) and (2) of Lemma 3.11, although their
meaning is quite different. The proof of Misra and Chandy’s Theorem of Hierarchy is by
induction on computation prefixes, whereas the proof of Lemma 3.11 is by structural
induction using a well-founded dependency relation.

In [Misra82], the techniques of [Misra81] are extended to encompass a weak form
of liveness specification in which an additional predicate q is used to state conditions
under which a process trace is guaranteed to be extended. The Theorem of Hierarchy
is augmented with additional conditions to permit its application to these more general
specifications. The additional conditions do not appear to relate in a simple way to any
conditions used in this thesis.

To state Lemma 3.11 and Lemma 3.12, the following notation is convenient: If R
and G are subsets of a universe U, then define R — , G (read R implies G in U) to be the
subset (U - R) U G of U. In applications of Lemma 3.11 and Lemma 3.12, the set U will
be the set Comp(M) of computations of a machine M, and R and G will be the sets of
computations of M that satisfy rely-conditions and guarantee-conditions, respectively.

Lemma 3.11 below says that to prove that the validity condition holds, it suffices to

prove:
(1) The abstract module’s guarantee condition is implied by the conjunction of

the guarantee conditions for the component modules.

(2) There exists a well-founded partial ordering (a "depends on" relation) of
the component modules in the system, such that each component module's
rely-condition is implied by the conjunction of the abstract module's rely-condition and
the guarantee-conditions for the modules on which the component depends.

Lemma 3.11 - (Rely/Guarantee Technique 1) - Suppose U is a set and that R, G, .
and R, G, for each i € | are subsets of U. Suppose V,,. = R, —, G, and V, =
R,—, G, foreachi€ /. Suppose
() Nie; G/ G Gape
(2) There exists a well-founded partial order < on/ such thatfor alli €/,
Raps N (ni<i G)CR,

Then N, V. C Vm.

Proof - Suppose X € R,ps N (N, V). Suppose further, to obtain a contradiction, that X
¢ G,_,,. Then by hypothesis (1) we know that X ¢ G’o for some i, € /.

Since X ¢ G"o' and since X € v,o by assumption, it must be the case that X ¢ R’o' By
hypothesis (2) and the assumption that X € R, there exists i, < i, such that X ¢ G,1.
Repeating this argument yields an infinite descending sequence g >0, > ., in
contradiction with the well-foundedness of <. §

An example of the use of Lemma 3.11 can be found in the proof of correctness of
the transmission module implementation in Appendix il.

The existence of the "depends on" relation required to satisfy hypothesis (2) of
Lemma 3.11 is a rather stringent condition. In some cases, for example the
synchronizer implementation, all of the component modules in the system are
symmetric in their relationship to each other, and it is hard to see how a suitable
dependency relation might be found. Lemma 3.12 below shows that an alternative
"acyclicity” condition can be used, in case the component module rely- and
guarantee-conditions can be factored in a certain way. Specifically, Lemma 3.12
assumes that the rely-condition for module i/ can be expressed as the conjunction of
what module i relies on the external environment and on each component module j to
provide, and that the guarantee-condition for module i can be expressed as the
conjunction of what module i guarantees to the external environment and to each

component module .

In Lemma 3.12 below, one should think of R, G,ps 8S the rely- and
guarantee-conditions for the abstract module, and of R, G, as the rely- and
guarantee-conditions for component module /. The hypotheses of Lemma 3.12 require
us to find {RG, fhi €1 + {abs}}. (RG stands for "rely/guarantee.”) Intuitively, if i, j € /,
then RG, i expresses what module i guarantees to module j, and also what module j
relies on module i to provide. RG,, ; expresses what the external environment of the
entire system guarantees to component module j, and also what module j relies on the
external environment to provide. RG,'.b$ expresses what component module i
guarantees to the external environment, and also what the external environment relies
on module i to provide.

Condition (1)(@) and (1)(b) in Lemma 3.12 state, intuitively, that the abstract
module’s rely-condition implies what each of the component modules rely on the
external environment to provide, and that the abstract module’s guarantee condition is
implied by the conjunction of what each of the component modules guarantees to
provide to the external environment. Condition (2)(a) states that each component
module’s rely-condition is implied by the conjunction of what that component relies on
the external environment to provide and on what that component relies on the
component modules in the system to provide. Condition (2)(b) states that the
guarantee-condition for component module i implies what module i guarantees to the
external environment and what module i guarantees to each of the component modules
in the system. Condition (3) in Lemma 3.12 is an acyclicity condition, which states that
there can be no unbroken cyclic dependency between component modules.

If I is a set, then define a cycle of / to be a nonempty subset of / X [of the form:
{(io, [0 SR i}, suchthati = i,

Lemma 3.12 (Rely/Guarantee Technique Il) - Let / be a finite index set. Suppose that
Uis a set and that R,,, G, and R, G, for each i € / are subsets of U. Suppose V,, =
Ry —yGaps@ndV, = R, =, G, for eachi € I. If there exists, foreachi,j €/ + {abs},a
set ARG, C U such that (1)-(3) below hold, then N;¢, V, C V.
(10@) Ry € Nig) RGgpe
(b) r.‘Iel RGi.abs g Gabs‘
(2)(a) N/ + abs) RG,;CR, forallj €l

(b) G,C n/én{abs) RG,.J.. foralli€ 1.
(3) Whenever (<, i,3, <iy, igds - <. i>)isacycleof!, then

_ 1
U=URG,, .

Proof - Suppose (1)-(3). Suppose further, to obtain a contradiction, that there exists X
€ UN R, N(Ng V) such that X ¢ G, We perform an inductive construction to
obtain a cycle {<i_, i, , > - 1 <y iy, ¥} Of 1 Such that X € UF, ARG, , . This
. +
contradicts hypothesis (3).
As the induction hypothesis at stage k of the construction, we assume that

iqsiy ..., i, have been constructed so that X ¢ R, , and that X ¢ Ui\ RG, ,
k WED

Basis: From (1)(a) and the assumption that X €R_,, we know that X € RG j forallj€l.
Since X ¢ G, by (1)(b) we know that X ¢ RGHMs for some i, € /. By (2)(b) we know
that X ¢ G,1, and from the assumption that X € V,1, we conclude X ¢ R,i.

Induction: Assume the induction hypothesis holds for some k > 1. By (2)(a) we know

that X QRG forsomei €1 Wi = in for some m with 1 < m < k, then we have
k+1

obtained the desired cycle and the construction terminates. Otherwise, by (2)(b) we

know that X ¢ G,k ;! and from the assumption that X € V,* ; we conclude that X ¢
+ +

R,.k K This establishes the induction hypothesis for k + 1.
. .

Since the set / is finite by hypothesis, we cannot extend the sequence iy, i, ..., A
indefinitely without creating a cycle. §

Examples of the use of Lemma 3.12 can be found in the proof of correctness of the
synchronizer implementation in Chapter 4, and in the proof of correctness of the
resource manager implementation in Appendix Il.

4. The Synchronizer Implementation

in this chapter, the theory developed in Chapter 3 is applied to obtain complete
specifications and a proof of correctness for the synchronizer example. In Section 4.1
we review the synchronizer module specification which has aiready been developed. It
is shown how the set of valid computations for this specification can be given a concise
definition using the language of temporal logic. In Section 4.2, the synchronizer
component module specification is presented. In Section 4.3, the definition of the
synchronizer module implementation is reviewed. In Section 4.4, the Correctness
Theorem is used to prove the correctness of the synchronizer implementation.

4.1 Notation

This section introduces the notation we will use to express state-transition
specifications, and in particular, the temporal logic notation we use to define the sets of
valid computations. We use this notation in this chapter in a highly informal fashion,
and do not concern ourselves with precise syntax and semantics. The reader who is
interested in a careful treatment of the notation we use is referred to Appendix l.

To define a state-transition specification S, we first define the interface Eg and
state set Qg of the machine M. As discussed in detail/ in Appendix |, we regard these
two sets as two distinguished sorts Events and States in a many-sorted algebra Ag. We
associate a first-order language L(S) with the algebra A in the usual way. The
language L(S) is used to define the initial state set Initg and the state-transition relation
Transg of the machine M. In this chapter, we often use constructions that are not part
of a first-order language. Appendix | shows how the use of these constructions can be
justified.

From the first-order language L(S), we obtain a temporal language 9(S) by
augmenting L(S) with the temporal operators 0 (read "henceforth") and < (read
»eventually"), which are applied to formulas to obtain new formulas. In addition, three
new atomic terms are added to the language: Now and After, which behave
syntactically like constant symbols of sort States, and Occurs, which behaves like a
constant symbol of sort Events. The meanings of the symbols Now, Occurs, and After
depend upon the particular instant of time under consideration, and thus are altered by
the action of temporal operators 0 and ¢ in a way that is detailed below. Intuitively, if

.67 -

the particular instant of time under consideration is t, then Occurs denotes the event
that occurs at time ¢, Now denotes the state at time t, and After denotes the state "just
after” time t.

The semantics of the temporal language associated with a specification S =
<M, V> are captured by the binary relation = (read "satisfies”), which tells when a
formula of the temporal language is satisfied by a particular history over E,andQ,,. To
assert that the history X satisfies a particular temporal formula ¢, we write X k= ¢.
Satisfaction is defined informally as follows: If ¢ is a formula that contains no
occurrences of temporal operators, then X k= ¢ iff ¢ holds in the usual sense of
first-order logic, with the symbols Now, Occurs, and After interpreted as State,(0),
Obs, (0), and State, (0*), respectively. It ¢ is a formula of the form Oy, then X = ¢ iff
suffix(X) = ¢ for all t € [0, 00). If ¢ is of the form Oy, then X &= ¢ iff suffix,(X) = ¢ for
some t € [0,). Note that the semantics we use are essentially the "linear time"
semantics of [Lamport80], and hence the ¢ operator is equivalent to the compound
operator 0.

We say that a formula ¢ is a consequence of a set of formulas ¥, written ¥ k= g, if
X = ¢ whenever X k= ¢ for all ¢ € ¥. A formula ¢ is valid, written k= ¢, if it is a
consequence of the null set of formulas.

The temporal language 9(S) of a specification S = Mg, Vs> contains an important
sentence to which we shall refer extensively. This is the sentence
Comp, = Init(Now) A OTrans (Now, Occurs, After).
Intuitively, X = Comp iff X is a computation for the machine M.

4.2 Specitication of the Synchronizer Module

In this section, we review the state-transition specification S5 = <MSM, My of
the synchronizer module, which has already been developed in Chapter 3.

Let Proc be a finite set of user processes.
interface:

ESM = {A} U {try,, run rest :p € Proc}.
In anticipation of Chapter 5, we classify each event in the synchronizer module interface

.68-

as either an input event, an output event, or both (the null event A is the only event that
is both an input and an output event).

InSM = {A}U {try,, rest:p € Proc}

Out™ = {A} U {run_: p € Proc}.
Although our theoretical framework so far draws no formal distinction between input
and output, in Chapter 6 such a distinction is introduced to obtain a useful test for
consistency of liveness specifications. Input events should be thought of intuitively as
stimuli that are applied to a module by its environment, and output events as responses
applied by a module to its environment. A module does not have the capability of
regulating the application of input stimuli to it.

Machine:

The state set for the synchronizer module machine is defined by
QM = My proc {trying, running, resting, error}. .
To ease later discussion, let us say that process p is resting (resp. trying, running, in

error) in state q if g{p) = resting (resp. trying, running, error).

The set of initial states for the synchronizer module machine is defined by
InitS™ = {g € @M: q(p) = resting for all p € Proc}.

A step <q, e, r> is in the state-transition relation TransSM for the synchronizer
module machine iff either e = A and g = r, or one of the conditions (try), (run), or (rest)
below is satisfied for some p € Proc.

A try event for process p can occur at any time. If process p was previously resting then
it advances to the trying state, otherwise to the error state. The states of all other
processes are unaffected.
(ry) e = try,, and either
q(p) = resting and r = q[trying/p], or
q(p) # resting and r = glerror/p].

A run event for process p can occur only if process p is trying, and no other processes
are currently running. Process p advances to the running state, and the states of all
other processes are unaffected.
(run) e =run,q(p) = trying, g(p) # running for all p ' € Proc - {p},
and r = g[running/p].

.69 -

A rest event for process p can occur at any time. If process p was previously running,
then it advances to the resting state, otherwise to the error state. The states of all other
processes are unaffected.
(rest) e =rest, and either
q(p) = runningand r = q[resting/p), or
q(p) # running and r = q[error/p}.

Validity Conditions:

We wish the validity condition for the synchronizer module to capture the idea that
every user's request should eventually result in a response, if possible. This condition
can be stated in the rely-/guarantee-condition form as follows: "lIf every user process
obeys the requirement that, once in the running state, it will eventually leave the running
state, then the synchronizer moduie guarantees that every user in the trying state will
eventually leave the trying state (and hence advance to the running state).” We can
express this condition concisely as a temporal sentence.
Valid™ = Rely*™ — GuarM

where '
RelyM = 0O(Vp€Proc)(Now(p) = running — O (Now(p) # running))
Guar™ = O(Vp€Proc)(Now(p) = trying — ©(Now(p) # trying)).

4.3 Specification of the Synchronizer Component Module

A synchronizer component module communicates with an associated user
process via the try, run, and rest events, with its neighboring synchronizer component
module in the clockwise direction via token_out and request_in events, and with its
neighboring synchronizer component module in the counterclockwise direction via
token_in and request_out events. The conceptual state of the module contains a count
of the number of tokens the module possesses, plus information concerning the state of
the associated user process. The synchronizer component module can allow the user
process to enter the running state only if it possesses a token, and must retain a token
throughout the entire period during which the user is in the running state. We would
like the synchronizer component module to be fair" in the sense it eventually grants
each user request, if possible, and eventually responds to each request for the token by
its clockwise neighbor in the ring, if possible.

.70 -

The specification of the synchronizer component module is parameterized by the
number of tokens it possesses in the initial state. Thus the specification presented
below actually is a specification schema that represents a family {SC,:k € N} of related
specifications, where SC, is the specification for the synchronizer component module
with k tokens in the initial state. The only place the initial number of tokens appears in
the specification is in the definition of the initial state set.

Iinterface:

The first task in the construction of the synchronizer component module
specification is the description of its interface.
ESC = {), try, run, rest, token_in, token_out, request_in, request_out}.
The sets of input and output events are defined by:
InS¢ = {A, try, rest, token_in, request_in}
Out¢ = {A, run, token_out, request_out}.

Machine:

A state for the synchronizer component module contains a "token™ component,
whose value represents the number of tokens the module possesses, and a "ustate"
component, which tells what state the synchronizer component module thinks the user
process is in.

QSC = token: X X ustate: {trying, running, resting, error}.
The "tags" token and ustate are used as selectors; if g € QSC, then g(token) denotes the
token component of g and g(ustate) denotes the ustate component.

In an initial state the synchronizer component module SC, has k tokens and the
user process is resting.
InitSC = {g € QSC: gq(token) = k A g(ustate) = resting}.

A step <q, e, r is in the state-transition relation Trans™™ for the synchronizer
component module machine iff either @ = A and g = r, or one of the conditions (try),
(run), or (rest), (token_in), (token_out), (request_in), (request_out) below is satisfied:

A try event can occur at ahy time. If the user process was previously resting, then it
advances to the trying state, otherwise to the error state. '
(try) e = try and either

-7T1-

q(ustate) = resting and r = q[trying/ustate], or
q(ustate) # resting and r = g[error/ustate].

A run event can occur only if the user process is trying and the synchronizer component
module currently possesses a token. The user process advances to the running state.
(run) e = run, g(ustate) = trying, g(token) # 0, and r = g[running/ustate].

A rest event can occur at any time. If the user process was previously running, then it
advances to the trying state, otherwise to the error state.
(rest) e = restand either
q(ustate) = running and r = g[resting/ustate], or
q(ustate) # running and r = g[error/ustate).

A token_in event can occur at any time, and causes the number of tokens possessed by
the synchronizer component module to be increased by one.
(token_in) e = token_inand r = qlq(token) + 1/token]

A token_out event can occur only if the user process is currently not running, and the
synchronizer component module possesses at least one token. The number of tokens
possessed is decremented. '
(token_out) e = token_out, g(ustate) # running, g(token) # 0, and
r = q[q(token)-1/token]

A request_in event can occur at any time, and has no direct effect on the state. The way
in which a request_in event induces the synchronizer component module to eventually
respond with a token_out event is captured by the validity conditions.

(request_in) e = request_inandr = q

A request_out event can occur only if the synchronizer component module currently
does not possess a token. Occurrence of such an event has no effect on the state.
(request_out) e = request_out, g(token) = 0,andr = q

Validity Conditions:

.72-

We would like the synchronizer component module validity conditions to capture

the following two ideas:

(1) A synchronizer component module always eventually satisfies a user’s
request, if possible.

(2) A synchronizer component module always responds to requests for the
token issued by its clockwise neighbor, if possible.
We can state this in rely-/guarantee-condition form as folows: If all requests issued by
the synchronizer component module to its counterclockwise neighbor are eventually
granted, and the user process never remains forever in the running state, then all user
requests and all requests for the token from the clockwise neighbor, will eventually be
granted. Formally,

ValidSC = RelySC — GuarsC,
where

RelySC = O(Now(ustate) = running = O(Now(ustate) # running)) A

D(Occurs = request_out = O(Now(token) = 0))
Guar®® = [O(Now(ustate) = trying - O(Now(ustate) # trying)) A
- O(Occurs = request_in —» O(Occurs = token_out))

4.3.1 The Synchronizer Implementation
/

To be able to describe and reason about the synchronizer implementation we must
formalize the idea that the set Proc is a "ring-structured set of processes with a
distinguished process.” We assume that the set Proc is the set of integers modulo N for
some N, and that zero is a distinguished process, which will be the process that initially
possesses the token.

We first define the synchronizer interconnection
SMI _ ¢pSMI _SMI ¢ aSMI
I 2 CESM, oM, s .

The abstract interface D™ is the synchronizer module interface ESM, and the pth

component interface F‘f”“ is the synchronizer component module interface ESC,

The composite interface for the synchronizer module implementation is defined
by:
ESM = (A} + {try,, run,, rest , token,, request : p € Proc}.
M = A} + {try,, rest : p € Proc})
Out™M = {A} + {run,, token_, request : p € Proc}.

.73.-

The try, run,, and rest, events in the composite interface correspond under the
decomposition map to try, run, and rest events for synchronizer component module p,
and under the abstraction map to try,, run,, and rest, events for the synchronizer
module. A tokenp event represents the transmission of a token from synchronizer
component module p to synchronizer component module p+ 1 (i.e. in the clockwise
direction around the ring), and a "request” event represents the transmission of a
request from synchronizer component module p to synchronizer component module
p-1 (i.e. in the counterclockwise direction). We capture this information formally by
defining the abstraction map o™ and decomposition map § SM\,

aM(e) = ¢, if e € {try,, run_, rest : p € Proc},

= A, ife € {tokenp, request :p € Proc} U {A}.
8Me) = try, ifo = try

= run, ife = run,

= rest, ife = restp

= token_in, ife = tokenp_,

= luken_out, ife = toke:np

= request_in, ife = requestp+1

= request_out, ife = requestp

= A, otherwise.

To complete the description of the synchronizer implementation <JSM!, S5M!, g SMiy,

we must define the specifications Sf';' and Sf”’ for each p € Proc. The specification
S is the synchronizer module specification SSM, The specification SM is the
specification S5€1 of the synchronizer component module with one initial token, and for
all p € Proc - {zero}, S?" is the specitication $5Co of the synchronizer component
module with no initial tokens.

4.4 Correctness of the Synchronizer Implementation

In this section, we use the techniques of Chapter 3 to show the correctness of the
synchronizer implementation. Most of the proof consists of straightiorward case
analyses. The interesting content of the proof is contained in the use of Lemma 3.12 to
prove that the validity condition holds.

.74 -

4.4.1 Implementation Invariant

To prove the correctness of the synchronizer module implementation, we first
need to find an implementation invariant that provides enough information about the
reachable states of the composite machine so that we can prove the maximality
condition. The implementation invariant will also be useful in the proof that the validity
condition holds, and so in this section we define an implementation invariant that is
strong enbugh for both the maximality and validity proofs.

For a set Inv to be an implementation invariant for an implementation means that it
is inductive for the composite machine for the implementation. Formally, if M is the
composite machine and E the composite interface, we must show:

(Basis) (Vq€Q,)q € Init,, — q € Inv)) ‘
(Induction) (Vq,r€Q,, e €E)<q,6,n € Trans,, — (q € Inv — r € Inv)).

It is generally convenient to define an implementation invariant Inv by a predicate
Inv(q) = Rep(q) A Abs(g),

where Asp is called the representativn invariant and Abs is called the absiraciion
relation. A representation invariant describes a relationship that must hold at all times
between the states of component modules in an implementation. Representation
invariants serve roughly the same purpose here as what is called the "data type
invariant" in the literature on abstract data types [e.g. Jones81, Jones83). An
abstraction relation describes the correspondence between the states of the
component modules and the state of the abstract module. The abstraction relation
plays the same role here as the "retrieve functions" of [Jones81], and the
“representation functions" of [Hoare72].

The implementation invariant Inv®™ for the synchronizer implementation is defined

as follows:
InvSM(g) = RepSM(q) A AbsSM(q),

The abstraction relation AbsS™' holds of state q iff in state g, the abstract synchronizer
module's view of the state of the pth user process is identical to the pth synchronizer
component module’s view, for each p in Proc. Stated another way, the abstract
synchronizer module state corresponding to a given collection of synchronizer
component module states is obtained by throwing away all information, except for the
ustate component, in the states of the component modules. Formally,

.75 -

AbSSVHQ) = A oo (@,,5(0) = q,(ustate)),
where we have used the notations gq,,.. q, as abbreviations for =, (q), qrp(q).

respectively.

The representation invariant RepSM is defined by:
RepSM(q) = Mutex(q) A Token(q).
Mutex(q) states that if a user process is in the running state, then the corresponding
synchronizer component module must possess a token. Formally,
Mutex(q) = /\pepm(qp(ustate) = running — q p(token) # 0).
Token(q) asserts that the total number of tokens in the system at any time is precisely
one.

Token(g) = X qp(token) = 1.

p€EProc

The proof that InvS™(q) is in fact an implementation invariant for the synchronizer
implementation is a straightforward induction.

Basis: It follows directly from the initial state sets that if InitS™M!(q) holds, then

qm(p) = resting for all p € Proc
Qe = <token: 1, ustate: resting>
a, = <token: 0, ustate: resting> for all p € Proc-{zero}.

It is easily checked that these three conditions imply' that AbsSM(g), Mutex(g), and
Token(qg) all hold. We conclude that InvSM(q) holds for all q € InitSM, as required.

Induction: We must show that for all <g, e, r> € TransSM!, if InvS™(q) holds then InvSM(r)
does, too. Suppose that<g, e, r> € TransS™' and InvS™!(q) holds.

First of all, note that if e = A, then g = r and hence Inv3M(r) follows trivially from
InvM(q). We therefore assume in what follows that e # A. We consider separately the
proofs of AbsSM(r), Mutex(r), and Token(r).

To prove that AbsSM(r) holds, there are two cases: (1) e € {token,, request,: p €
Proc); and (2) e € {tryp, run,, rest : p € Proc}. Case (1) is disposed of quickly by noting
thatife = tokenp, or e = request, for some p € Proc, then r, (p") = q,, " and
r,{ustate) = q_ (ustate) for all p’ € Proc. Thus in this case AbsSM(r) follows directly
from AbsSM/(g). Case (2) is handled by a straightforward enumeration of the cases: e =
tryp, e=run,e= rest , and verifying that in each case, the occurrence of e results in
identical values for r,, (0 ') and r, {ustate), for each p ' € Proc.

.76 -

We now consider the proof that Mutex(r) holds. Suppose not, then it must be the
case that rp(ustate) = running and rp(token) = O for some p € Proc. By a case analysis
on e it is straightforward to check that the only way this can happen is if either q p(ustate)
= running and e = token L OF qp(token) = 0QQand e = run,. Examination of the
specification of the synchronizer component module shows that it is impossible for a
token, event to occur if qp(ustate) = running, and also for a run, event to occur if
qp(token) = 0.

Finally, we wish to show that Token(r) holds. A case analysis on e shows that the
only events that affect the number of tokens in the system are those of the form token R
for some p € Proc. Examination of the specifications shows that, when such an event
occurs, rp(token) = qp(token) -1, rp”(token) = qp”(token) + 1, and r {token) =
q,, (token) for all p * € Proc - {p,p+1}. Thus Z, ¢proc fp(tOkeN) = Z .., g, (token),
and hence Token(r) holds.

4.4.2 Proof of Maximality

We must show that for all g € Q5™ and e € ESM, if invS™(q) holds and §5M(e) is
enabled in state q, for all p € Proc, then «*M(e) is enabled in state L« J

Suppose Inv®M!(q) holds and that 83”'(e) is enabled in state q,, for all p € Proc.
There are two cases: (1) e = run, for some p € Proc; and (2) e is not of this form.
Examination of the synchronizer module specifications shows that case (2) is trivial,
since a(e) is enabled in any state unless e = run,, for some p € Proc.

Now consider case (1). Since sf'“'(e) is enabled in state 9, from the syrnichronizer

component module specification we know that

(A) qp(ustate) = trying and qp(token) #0.
The assumption that Inv®™'(q) holds implies that Token(g), Mutex(q), and AbsSM(q) all
hold. From (A) and Abs*™!(q) we infer that q,, (p) = trying. From (A) and Token(q) we
know that q,(token) = O for all p" € Proc-{p}. From this and Mutex(q) we infer that
q, {(ustate) # running for all p ' € Proc-{p}. From this and AbsM(q), we conclude that
QP) # running for all p ' € Proc-{p}. We have shown that

(B) q,elP) = trying A (A ¢proc) TanslP) # running).
holds. Examination of the synchronizer module specifications shows that (B) implies

that aM(e) is enabled in state g, , as desired.

4.4.3 Proof of Validity

To express the proof that the validity condition holds for the synchronizer
implementation, we associate a temporal language g{sSMY) with the composite
specification SSM = MM, vSMb in the same way as temporal languages were
associated with the synchronizer module and synchronizer component module
specifications. In addition, we must have some way of taking the temporal sentences,
each expi'essed in its own temporal language, that define the sets of valid computations
for the synchronizer module and synchronizér component module specifications, and
"lifting” them to the common language g{$SM)), This can be accomplished by a simple
syntactic translation, which we now define. '

To each formula ¢ of 9(SSM) we associate a corresponding "lifted" version [e],,
of 9{SSMY, by replacing each occurrence of the symbol Now by the term Now,, .. each
occurrence of After by the term After,,, and each occurrence of Occurs by the term
aM(Occurs). Similarly, to each formula ¢ of 9(SSC) and each p € Proc, we associate a
corresponding formula an}]p € g(SM), by replacing each occurrence of Now by Now,,
each occurrence of After by After, and each occurrence of Occurs by GISM'(Occurs).

The precise relationship between a formula and its lifted version is captured by
Lemma 1.2 in Appendix |. Informally, if ¢ € 9{SSM), then a history X for the composite
machine MSM satisfies the formula [¢],,,, € 9(ASM) iff the canonical projection x(abs) of x
satisfies the formula ¢. Similarly, if ¢ € 9{SSC), then a history X for MM satisfies ﬂtp]]p iff
x satisfies p. An analogous result is stated in [Wolper82], where the process of
"lifting" specifications of individual processes to obtain specifications of a system of
processes is called "relativization."

In the proof that the validity condition holds for the synchronizer implementation,
we must have some way of making use of the information contained in the
state-transition relation of the composite machine. We do this by using the
implementation invariant according to the following rule of inference: If Inv has been
shown to be invariant, then

Comp k= Oinv(Now)
holds. This rule, whose validity follows from Corollary 3.7, will be used extensively in our
correctness proofs.

.78 -

To show that the validity condition holds for the synchronizer implementation, we
must show that:
Comp™ I= A .o [ValidSC]) — [ValidSM],.
In light of Lemma 3.12 it suffices to find, for each i, j € Proc + {abs}, a temporal
sentence RG,.J. such that conditions (SMi1)-(SMI3) below hold.

(SMi1)(a) CompM' k= [RelySM}, - Ajeproc RCaps;
(SMI1)(b) Comp™' I= Ap, o RG, pps = [Guar™j,,,
(SMi2)(a) Comp™ = Aycooc (Archroc + (absy RGi; = [REC])
(SM12)(b) Comp™ k= A, (IGUarse], — Acproc + (absy RG/)

(SMI3) Whenever {(io, i <giy .., i,y i0) is acycle of Proc, then

SMi -1
Comp™ k= Vi, RG, , .

The sentences RG; ;j express what is relied/guaranteed between each pair of
synchronizer component modules or between a synchronizer component module and
the external environment of the entire system. The synchronizer component module
specifications have been chosen in such a way that the sentences RG, ;can be obtained
simply by "lifting" the synchronizer component module rely-/guarantee-conditions to
the temporal language of the composite machine. The formal definitions are as follows:
For all j, j € Proc, , '

RG, ;s = O(Now (ustate) = trying — O(Now (ustate) # trying))

RG,,. J= D(Nowl(ustate) = running — O(Nowl(ustate) # running))
For all i € Proc,

RG_,, = D(5M(Occurs) = request_out — O(Now (token) # 0))
Foralli,j € Proc suchthati+ 1 #j,

RG, ; =true

Next, we verify (SMI1)-(SMI3). Assume CompSM! throughout the remainder of the
proof. The interesting intuitive content of the validity proof is contained in the proof that
(SMI3) holds. The remaining cases are practically automatic.

Intuitively, hypothesis (SMi1)(a) says that the abstract module rely condition
implies what each component module relies on the external environment to provide.
Hypothesis (SMIi1)(b) says that the conjunction of what each component module
guarantees to the external environment implies the abstract module
guarantee-condition. Formally, we must show:

(SMi1)(a) [RelySM] abs ~ Npeproc RGaps,p

(SMIT)(b) A cproc RG, ps — 1GUArSM
We show (SMi1)(a), condition (SMI2)(b) is equally straightforward. From the
synchronizer module specifications, we know that

[RelyS™]ps = OA cproc(NOW,, (p) = running — O(Now . (p) # running))
Suppose that [Rely>™]_, _ holds. By the invariance of the abstraction relation AbsSM!, we
infer

DApepmc(Nowp(ustate) = running —» O(Nowp(ustate) # running)).
Interchanging the O and conjunction yields

A RG

pEProc
as desired.

abs,p’

Intuitively, hypothesis (SMi2)(a) says that each component module’s rely-condition
is implied by the conjunction of what is guaranteed to it by the external environment and
by each other component module. Hypothesis (SMi2)(b) says that each component
module's guarantee-condition implies what the external environment and each other
component module rely on it to provide. Fermally, we must show:

(SMI2)(@) Aeproc, (ans) RG), = [RelySC], for all p € Proc

(SMI2)(b) [GuarS®], — Acp,o.., tabs) RG,» fOr all p € Proc.
To show condition (SMI2)(a) is completely straightforward. Let p € Proc be fixed. It
suffices to show that RG,,, / ARG__, , = [RelyS],.. By definition

RG = D(Nowp(ustate) = running — O(Nowp(ustate) # running))

RG,_,, = O(8;¥"(Occurs) = request_out - O(Now ,(token) = 0)).
The conjunction of these two sentences is easily seen to be equivalent to [RelySC] , by
inspection of the synchronizer component module specifications.

abs,p

To show (SMI2)(b) is not completely trivial because of the fact that what
component module p guarantees to module p + 1 is not exactly what module p + 1 relies
on module p to provide. Specifically, module p guarantees always to eventually send
the token in response to a request from module p + 1. However, module p + 1 relies not
on the eventual occurrence of a token_in event, but rather on the eventual setting of the
token component of its state to a nonzero value. The nontrivial portion of the proof is to
use the state-transition relation for module p + 1 to show that occurrence of a token_in
event for that module implies the eventual setting of the token component of its state to
a nonzero value.

.80 -

Formally, to prove (SMI2)(b) it suffices to show that [Guars®], — RG,,.. A
since RGP JE true by definition unlessj = absorj = p+1. By definition_
RGP'm = D(Nowp(ustate) = trying = O(Now p(ustate) # trying))
RG,,, = D(Gﬁﬁf‘,(Occurs) = request_out — O(Now_ _,(token) = 0)).
By inspection of the synchronizer component module specifications, we have

[GuarS°] , = O(Now (ustate) = trying — O(Now (ustate) # trying)) A

D(Bf“'(Occurs) = request_in — O(&?"(Occurs) = token_out)).

Assume [GuarSC] o Then RGp.abs follows immediately from the first conjunct of
ﬂGuarscllp. To show that the second conjunct of HGuars‘:]‘° implies RG, , _ ,, note the
definition of the state-transition relation for synchronizer component module p implies

that

RG,,, ¢

D(sﬁ'f',(Occurs) = token_in = O(Now,_ _, #0)).
From the second conjunct of [[Guarscﬂp, using the definition of the decomposition map
3 M we obtain

D(S?f'1(0¢=cufs) = request_out — O(G,f’f',(Occurs) = token_in)).

Combining the preceding two sentences and applying temporal reasoning shows

RG, , , .+ as desired.

The most interesting part of the proof is the proof that (SMi3) holds. To show
(SMI3), we must show that
SMI -1
Comp™>*' k= V], F!G,k',k+1
holds for every cycle {<iy, i}, ... , <

_» 1>} from Proc. The only nontrivial case is the
cycle {<zero, zero + 1>, <zero + 1, zero + 2, ... , <zero + N-1, zero>} that traverses the
entire ring in the clockwise direction, since every other cycle from Proc contains a link
<i, > for which RG;, ; = true by definition. Suppose, to obtain a contradiction, that
(SMI3) fails for this cycle. Then for all p € Proc, the sentence RG‘,_1 » does not hold.
This means that

Aeproe O(85M(Occurs) = request_out A C(Now (token) = 0)).
That is, for each p € Proc, eventually a point is reached at which synchronizer
component module p issues a request_out event, but never has the token after that
point. This implies that

Ape,,m OO(Now p(token) = 0).
Since Proc is a finite set, it is valid to interchange the conjunction and < operator in the
preceding formula, concluding that

OAPEPmD(Nowp(token) = 0).

.81 -

This asserts that there is some point after which no synchronizer component module
ever possesses a token. This is a contradiction with the invariance of Token, which

states that the total number of tokens in the system is always precisely one. 1

5. Consistency of Specifications

In Chapter 3 it is suggested that module specifications ought to be expressed in
rely-/guarantee-condition form, and that the rely- and guarantee-conditions for the
component modules in a system ought to be selected so that each component module
guarantees precisely the conditions relied upon by its neighbors in the system. In
Chapter 4 the synchronizer example illustrates how adherence to this principle can
result in a simple proof of the validity condition required by the Correctness Theorem.
In practice, there seems to be considerable flexibility in the choice of rely- and
guarantee-conditions. Often significant simplifications in a correctness proof can be
effected simply by adjusting the component module specifications.

The apparent flexibility in the choice of rely- and guarantee-conditions in
specifications raises the following somewhat disturbing question: What is to prevent us
from writing component module specifications with extremely weak rely-conditions (e.g.
true), and ridicdlously strong guarantee-conditions (e.g. false), in order to simplify the
proof of correctness? An implementation whose component module validity conditions
are all' of the form "true — false” makes the validity part of a correctness proof
extremely simple, but also vacuous. We can also consider more subtle, but still
problematic specifications in which a module "guarantees” the application of some
input to it -- something that seems to contradict our intuitive notion of what it means to

be an input.

Since a specification of the form "true — false,” or a specification that guarantees
the application of input ought to be regarded as meaningless, we should have some way
of distinguishing these specifications from others that are meaningful. The theory we
have set up so far provides no format criteria for making such a distinction. What we
require is a suitable notion of consistency of specifications, with respect to which
obviously unrealizable specifications such as "true — false" are inconsistent, and
apparently reasonable specifications, such as the synchronizer component module
specification, are consistent.

In mathematical logic, a theory is consistent iff it has a model. Since the "models”
of specifications are behaviors, it seems reasonable to define a specification to be
consistent iff there is a behavior that satisfies it. If we take the term "behavior” in this
definition to mean "arbitrary behavior,” though, we do not obtain a stringent enough

.83-

notion of consistency. For example, every subset specification is consistent in this
sense, since the empty behavior @ satisfies every subset specification. To obtain more
stringent notions of consistency, we must restrict our interpretation of the term
"behavior" to mean "realizable” or "computable"” behavior.

In this chapter, we examine a notion of consistency based on a model of
concurrent computation called "1/0-systems.” An 1/0-system models a collection of
concurrent processes that interact through coupled events. By viewing 1/0-systems at
various levels of abstraction we obtain the "1/0-behaviors," which we take as our class
of computable behaviors. A specification is defined to be "I70-consistent” iff there
exists an 1/0-behavior that satisfies it. The notion of I/0-consistency seems to be quite
useful for distinguishing between meaningful and meaningless eventuality
specifications. We develop a technique for proving state-transition specifications to be
1/0-consistent and apply this technique to show the 1/O-consistency of the
synchronizer component module specification.

5.1 1/0-Systems

This section defines a model of asynchronous concurrent computation called
"|/0-systems.” An 1/0-system is a system of nondeterministic processes that interact
through coupled events. The nonnull events in which each process can participate are
partitioned into "input events" and "output events.” An input event for a process
represents the stimulation of the process by its environment, and an output event for a
process corresponds to the process responding to its environment. A process can
choose whether or not it will produce output, but does not have the ability to control the
application of input to itself. If a process wishes to produce output, then it cannot be
prevented from doing so, although a process has no control over precisely when the
output will be produced. ‘

The coupling of the processes in an 1/0-system is described by a "system
interface,” the elements of which are "system events.” Each system event is a vector
with one component for each process in the system, and represents a possible
simultaneous occurrence in the computation of the system. No system event contains
more than one component output event, modeling the idea that at most one process can
produce an output at any instant of time.

To describe the execution of an 1/0-system, it is helpful to imagine the existence
of a "scheduler," who controls the path of execution of the system. For each step of the
system, the scheduler chooses a system event from the system interface. All processes
then simultaneously take steps corresponding to the chosen system event. By the
constraint that there is at most one output component of each system event, at most one
process produces an output event in each step, and the other processes perform input
steps or null steps. We are only interested in computations of an 1/0-system that are
"fair" in the sense that the scheduler selects each process to perform output steps
often enough.

We now give a formal definition of 170-systems. We first define the notion of an
I70-interface, which is an interface whose non-A events are partitioned into input events
and output events.

Definition - An I/O-interface is an interface <E, A, In, Out>, where In_ C E is a set of
input events and Out, C E is a set of output events, such that the sets In., Out,, {A.;}
partition £. 1

We next define the "asynchronous product” of a collection of 1/0-interfaces.
Intuitively, the asynchronous product ®,.€, F, of the collection <F>, of 1/0-interfaces
represents the set of all possible simultaneous occurrénces in a system of processes
where process i has interface F. Each element of the asynchronous product interface is
a vector of events from the component interfaces, such that at most one of the events in
the vector is an output event. The fact that at most one event in each vector is an output
event means that at most one process produces an output event at a time. This
restriction is typical of asynchronous, interleaved execution models, and this is why the
asynchronous product has been so named.

Definition - The asynchronous product ®,¢, F; of a collection <Fp ., of 170-interfaces is
the interface F defined as follows:

F = {t €1, F,;: at most one, is an output event}
Ae = <AF,>i€I
In,. = {f €F:{ = A and no{ is an output event}

Out, = {{ €F:exactlyone is an output event}.
The maps w: ®,, F,— F, fori €1, that take a vector { to its ith component, are called the
canonical projections associated with ® ¢ F,. 1

-85 -

In general, a system interface will not be the entire asynchronous product of the
process interfaces, but rather only a sub-interface of the asynchronous product. The
reason for using a sub-interface of the asynchronous product as the system interface is
to capture possible coupling of events between processes. One kind of coupling that
can be modeled in this way is the identification of events of distinct processes. For
example, if the output event out for process one is to be identified with the input event in
for process two, then we would include in the system interface the vector <out, in>, in
which process one performs an out event at the same time as process two performs an
in event, but we would exclude from the system interface the event <out, A>, in which
process one performs an out event while process two does nothing, and the event <A,
in>, in which process two performs an in event while process one does nothing. Other
kinds of coupling can also be modeled. For example, if the input event in for process
two always occurs along with an output event out for process one, but the event out for
process one need not occur along with an in event for process two, then the system
interface would include the events <out, in> and <out, A>, but would exclude the event
<A, ind.

Our only requirement on the system interface is that to each event of a component
process there is some system event that contains the given event as a component. This
requirement ensures that each observation over a process interface has a faithful
representation as an observation over the system interface.

Definition - An embedding of an |/O-interface E into an I/O-interface F is an injective
translation y: E — F such that y(In,) C In, and y(Out,) C Out,. I

(Recall that the fact y is a translation implies that y(A,) = A..)

Definition - A system interface for a collection <FD,, of I/O-interfaces is an
I/O-interface E C ®,, F, such that

(1) Theinclusion map y: E = ®,, F, is an embedding.

(2) Each map #, ° y is onto F, where <w>, are the canonical projections
associated with ® ¢ F,.
The collection of maps <= ;° y),e , is called the canonical decomposition map associated
withE. &

.86 -

Each process in an 1/0-system is represented by an "1/0-machine,” which is a
machine that cannot prevent the occurrence of input events. The 1/0-machines in an
I/0-system are required to be "explicit” in the sense that each nonnull step results in
the occurrence of some non-A step. This assumption is justified because we think of an
I/0-system as being a detailed, low-level model, in which all steps taken by processes
result in explicit observable events. Later we will apply abstraction maps to the
behaviors of 1/0-systems to obtain less detailed, higher-level views of system behavior,
in which steps can be taken that do not result in observable events.

Definition - An I/O-machine of I/0-interface E is a machine M of interface E that is
input-cooperative in the following sense: For all q € Q, and e € In,, there exists r € Q,,
such that <q, e, > € Trans,,. An I/0-machine M of interface E is explicit if every step
<q,\, > € Trans, hasr = q. § |

Definition - An I/0-system is a tuple ¥ = <E, (M,>i€,), where / is a finite, nonempty set of
process indices, E C ®,, F,is a system interface, and each M, is an explicit I/O-machine
of interface F. 1

We associate with an 1/0-system ¥ = <E, <MD, a system machine M defined as
follows:
E, =E
Qy = I, QM,
Init,, = ¢, InitM,_
Trans,, = {<g,e, > <q, 8e),r> € TransMi foralli €},

where <52, is the canonical decomposition map associated with E. 1

Definition - A computation for an 1/0-system is just a computation for its system
machine. 1 '

A computation X for an 1/0-system projects to computations X for each of its
constituent machines in the obvious way.

We will be interested only in the “fair" computations of an 1/0-system. To formally
define the notion of fairness, suppose ¥ = <E, <M,>,€,> is an 1/0-system and M is the
system machine. Suppose g € Q,, is a system state. We say that process i runs in a
step<q, e, > € Trans,, if 5(e) is an output event for process i. We say that process i is

-87 -

enabled in system state g if thereis astep<g,e,r> € Trans,, in which process i runs.

Suppose X is a computation for M. Process i is repeatedly enabled in X if forallt €
[0, o) there exists t’ € [t, 90) such that prbcess i is enabled in State,(t). Process i
repeatedly runs in X if for all t € [0, o0) there exists t * € [t, 00) such that process i runs in
Step, (t).

Definition - A computation X for an 170-system is fair it for each process i in the
system, if process i is repeatedly enabled in X, then process j repeatedly runsin X. #

5.2 1/0-Behaviors and 1/0-Consistency

Each computation of an 170-system produces an observation over the system
interface. We call the set of all observations that are produced in fair computations of
an 1/0-system the “primitive behavior" of the system. This behavior is called
"primitive" because it contains complete detail about the events that occur during a
computation of the system.

Definition - The primitive behavior PBeh(¥) of a system of 1/0-processes fis the set of
all Obs, where X is a fair computation for ¥. 8

By applying abstraction maps to the primitive behaviors, we obtain additional
(nonprimitive) behaviors. We call any behavior that is the abstraction of a primitive
behavior an "1/0-behavior." An abstraction map can suppress information in a behavior
by mapping two distinct events of the same type (either input or output) to the same
event, or by mapping an output event to A. To ensure that an abstraction map faithfuily
preserves the input/output structure of a behavior, we require that an abstraction map
never map an input event to A, and never map an input event and an output event to the
same event. Furthermore, we require that each abstract input event be the image of
some concrete input event.

Definition - An I/0-abstraction map from the 1/0-interface E to the I/O-interface D is a
translation a: E — D with the following properties:
(1) a(Out,) C Out, U {»}. (a preserves outputs)
(2) aling) C In,, (a strictly preserves inputs)
(3) aisonto In,.

.88 -

Definition - A behavior B € Beh(D) is an I/0-behavior of interface D iff there exists a
system ¥ of 1/0-processes with system interface E and an I/0-abstractionmap a: E =+ D
such that 8 = a(PBeh(Y)). §

The following result shows that the class of I/0-behaviors is a kind of completion
under 170-abstraction of the class of primitive behaviors.

Theorem 5.1 - The class of 1/0-behaviors contains all primitive behaviors and is closed
under |/O-abstraction operators.

Proof - Obvious from the definition of an 1/0-behavior and the facts:

(1) !dentity translations are {/0-abstraction maps.

(2 faF—-E and B: E — D are 1/0O-abstraction maps, then 8 ° a is an
I/0-abstraction map. 1§

By taking the 1/0-behaviors as our class of realizable or computable behaviors, we
obtain the notion of "1/0-consistency” of specifications.

Definition - A specification S of 1/O-interface D is I/0-consistent if there exists an
1/0-behavior B of interface D such that B satisfies S. 1

5.3 Machine Characterization of 1/0-Behaviors

To obtain techniques for proving the 1/0-consistency of state-transition
specifications, it is convenient to have a direct characterization, not involving
I/0-abstraction maps, of the 1/0-behaviors of interface E. Such a characterization is
provided by Theorem 5.4 below. Theorem 5.4 states that the 170-behaviors are exactly
the sets of observations produced by “productive step machines," which are
170-machines plus some scheduling information.

Definition - A productive step set for an 1/0-machine M of interface EisasetProd C
Trans,, N Steps(OutEU{AE}, Q,,) that contains no null steps. &

-
Definition - A productive step machine (PS-machine) of 1/O-interface E is a tuple

<M, <Prodp >, where M is an 1/0-machine of interface E and <Prod),, is a finite,
nonempty collection of productive step sets for M, such that U,, Prod, equals the set of
all nonnull steps <q, e, > € Trans,, N Steps(Out,U{A,}. Q). 1

Suppose that <M, <Prodl>l€,> is a PS-machine. The notions of the productive step
set Prod. being enabled in a state of M and running in a step of M are defined in the
obvious way. A computation X for M is fair if for each i € /, if Prod, is repeatedly enabled
in X then Prod, repeatedly runs in X. Define the behavior Beh(M, <Prod)>,.) of the
PS-machine <M, <Prod,. > to be the set of all Obs, where X is a fair computation of M.

The following lemma states that every PS-machine has the same behavior as a
PS-machine whose productive step sets are pairwise disjoint.

Lemma 5.2 - If <M, <Prod,.>,€,> is a PS-machine of interface E, then there exists a
PS-machine <M, <Prod, > > of interface E such that the collection <Prod; >, is
pairwise disjoint and such that Beh(M *, <Prod, >,.) = Beh(M, <Prodp).

Proof - The idea of the proof is to include a dummy “tag" component in the state of M/,
so that steps in Prod, ’ write i into the tag component. This ensures disjointness, since if
i # j, then steps in Prod, and Prodj write different values into the tag component.

Formally, define
Q- =Q,, %I
Init,,, = Init,, X1/
Trans,,. = {<<q, k>, e, <r, m>>: (1)-(3) below all hold}
(1) <q,e,r> € Trans,,
(2) If<q, e, € U Prod, then <q, e, r> € Prod ..
(3) If<q,e,»> ¢ U, Prod,thenm = k.
Prod," = {<q, k>, e,<r, D> €Trans,,: <q,e,r> € Prod}
It is straightforward to check that M’ is an 1/0-machine of interface E and that the
coliection <Prod, 7., is pairwise disjoint.

To show that <M, <Prod, "> is a PS-machine, we must show that the Prod,’
cover the nonnull output or A-steps in Trans,,.. If <<q, k>, e, <r, m>> is a nonnull output
or A-step in Trans,, ., then either m = k or <q, e, r> is a nonnull output or A-step in
Trans,,. If m # k, then <q, e, > € U,, Prod, by part (3) of the definition of Trans,,. and
hence <q, e, r> € Prod, by part (2) of the definition of Trans,,.. By definition of Prod,, y
we have that <{q, k>, e, <r, m>> € Prod ‘. If £q, e, > is a nonnull output or A-step in
Trans,, then <q, e, r> € U, Prod, because the Prod, cover the nonnull output or A-steps
in Trans,,. By part (2) of the definition of Trans,,., we know that <q, e, > € Prod,_, and

hence <<q, k>, e, <r, m>> € Prod " by definition of Prod_ ".

We claim that Beh(M *, <Prod, >,) = Beh(M, <Prod>).

Case Beh(M ', <Prod, '>,.€,) C Beh(M, <Prod>,):

Each computation X' of <M’', <Prod, " > defines a computation X of
<M, <Prod >, >, which we obtain simply by deleting the tag information from X. Suppose
X 'is fair and that Prod, is repeatedly enabled in X. It is easy to see from the definition of
Prod, ’ that if Prod, is enabled at time t in X, then Prod, ' is enabled at time t in X '. Hence
Prod, ' is repeatedly enabled in X', and thus repeatedly runs in X ' by the assumption
that X ' is fair. If Prod,’ runs at time t in X ', then by definition of Prod, it follows that
Prod, runs at time t in X, so that X is fair.

Case Beh(M, <Prod>,) C Beh(M ', <Prod, >,)):

Given a fair computation X of <M, <Prodp>, we wish to construct a fair
computation X ‘' of <M, <Prod, '>,€,> that generates the same observation. We construct
X' from X simply by filling in appropriate tag information to match the occurrence of
productive steps in X, however we must do this in such a way that X 'is fair.

To construct X ', let . T — Steps(E, Q,,) be a history skeleton that spans X, where T
= <> N Suppose Step,(t,) = <q,, e,, q,,,> for each k € X. By a straightforward
inductive construction involving fair scheduling of the elements of /, we can obtain a
sequence (rr'rk>k6 yof elements of / such that <<q,, m)>, e,,<q, ,,, m, ,>> € Trans,,. for
all k € N, and such that if <q,, e,, r,> € Prod, for infinitely many k € X, then m, =i for
infinitely many k € N. The history skeleton f' that maps t, to the step «q,, m>, e,
<q, 1 M, ,>> then defines the desired fair computation X ‘of M".

The lemma below shows that the class of behaviors of PS-machines is closed
under I/0O-abstraction.

Lemma 5.3 - Given a PS-machine <M, <Prod>p of interface E, and an 1/0-abstraction
map a: E — D, there exists a PS-machine <M, <Prod._’ e Of interface D such that
Beh(M ', <Prod, >,¢) = a(Beh(M, <RrodD,c)).

Propf - The basic idea of the proof is simple: M’ and the Prod, ’ are defined by taking
the images of M and the Prod, under a. There is one problem with the straightforward

.91 -

execution of this idea: the Prod, ' might contain null steps. We solve this problem by
introducing into the state of M’ an "idling counter," which is a boolean component
whose only purpose is to change state upon execution of productive steps.

Formally, define <M ', <Prod, >,c > as follows:
Q. =Q,, X {0,1}
tnit,,. = Init, X {0, 1}
Trans,,. = {<q, b>, a(e), <r, c>>: (1) and (2) below both hold}
(1) <q,e, > € Trans,, .
(2) i<q,8, € U, Prod,thenc = 1-b, otherwise c = b.
Prod,” = {<<q,b>, ale),<r,c>> € Trans,, . <q, e, € Prod }.

We claim that M ' is an I/0O-machine. It is clear that Init,, . is nonempty. Part (2) of
the definition of TransM. does not prevent TransM, from containing all null steps, since
no such step can be in U, Prod. Thus M’ is a machine. To show that M’ is
input-cooperative, suppose <q, b> € Qu-and d €In,. Since ais onto in, and preserves
outputs, there exists e € In. with a(e) = d. By the input-cooperative property of M, there
exists r with <q, e, r> € Trans,,. Since<q,e, > ¢ U,¢, Prod, by the fact that e is an input
event, it follows that <<{q, b>, d, <r, b>> € Trans,, ..

We next show that <M, <Prod, '>,€,> is a PS-machine. By definition Prod,’ C
Trans,,. for all j € I. Since each step in Prod, is an output or A-step and a preserves
outputs, it follows that each step in Prod, ' is an output or A-step. Each Prod,’ contains
no null steps because the idling counter is complemented in each step in Prod,’. To see
that every output or A-step in Trans,,. is in some Prod, ', note that because a strictly
preserves inputs, each output or A-step in Trans,,. cannot be the image of an input step
in Trans,,, and therefore must be the image of ad output or A-step in Trans,,. Since the
Prod, cover all output or A-steps of TransM, it follows that the Prod,.' must cover all
output or A-steps of Trans,, ’.

We claim that Beh(M ', <Prod, ,¢) = a(Beh(M, <Prod)>,.)).

Case a(Beh(M, <Prod),)) C Beh(M ', <Prod, >,):

Each computation X of M maps in an obvious way (by taking the image of the
observation part under a, and deleting the idling counter from the state part) to a
computation X ' of M ', such that Obs, . = «(Obs,). It suffices to show that if X is fair,

.92

then so is X . Suppose that X is fair. Fix i € /, and suppose that Prod,’ is repeatedly
enabled in X'. We claim that Prod,’ repeatedly runs in X '. By definition, Prod,’ is
enabled in state q iff Prod, is enabled in state q. It follows that Prod, is repeatedly
enabled in X, and hence by fairness of X, that Prod, repeatedly runs in X. By definition of
Prod,’, if Step,(t) € Prod, then Step, {t) € Prod,’. Thus Prod, ‘ repeatedly runs in X ',

Case Beh(M ', <Prod,) C a(Beh(M, <Prod)>,.)):

Suppose that x ' € Beh(M ', <Prod, >,c), and let X’ be a fair computation of M’ in
which the observation x ' is generated. We will construct a fair computation X of M,
such that «(Obs,) = x'. The idea is simply to choose inverse images under a of the
steps in X ', however this must be done carefully to ensure fairness.

Let 7 = <>,y be a skeletal sequence that spans X'. Suppose Step, {t,) =
«q,,b,>,d,, <r,, ¢, >> foreach k € X.

For each k, since <<g,, b,>, d,, <r,, ¢, € Trans,, ., we can select e, such that d, =
a(e,) and <q,, e,, r,> € Trans,,. Because a might map two different e's to the same d, we
can’t n'ecessarily select the e, in such a way that for each i € |, the step WQ,.8e.r>¢€
Prod, iff <q,, b,>, d. <. ¢,>> € Prod,". However, by making sure that we don't
persistently neglect some Prod, ‘, we can select the e, in such a way that for each i € /, if
«q,, bk>, d, < ck>> € Prod,. " for infinitely many k, then <‘7«- e, rk> € Prod,. for infinitely
many k.

The function f that takes t, to the step <q,, e,, r,> is a history skeleton over E u and
Q,, By Lemma 3.5 there is a unique history X such that f spans X. It is easily verified
that X is a computation of M, with a(Obs,) = x'. To show fairness, fix i € / and suppose
that Prod, is repeatedly enabled in X. We claim that Prod, repeatedly runs in X. From the
definition of Prod, ' we know that Prod, ’ is repeatedly enabled in X . By the fairness of
X ' we know that Prod, ‘ repeatedly runs in X . This implies that €q,, d,, r,> € Prod,’ for
infinitely many k, and hence by construction that W9,e.r>€ Prod, for infinitely many k.
It follows that Prod, repeatedly runs in X. §

The following theorem is our desired characterization of the 1/0-behaviors: a
behavior is an 170-behavior iff it is the behavior of a PS-machine.

Theorem 5.4 - Suppose D is an |/O-interface. Then a behavior B € Beh(D) is an

I7/0-behavior of interface D iff B = Beh(M, <Prod>) for some PS-machine <M,

<Prod,.>,.€ ,) of interface D.

Proof - => Since the class of behaviors of PS-machines is closed under
I/0-abstraction by Theorem 5.1, it suffices to show that every primitive behavior B is the
behavior of a PS-machine. Suppose B = PBeh(¥), where ¥ = <E, <MD, is an
170-system. We associate a PS-machine <M, <Prod> > with ¥ as follows: The machine
M is the system machine for 5. The set Prod, is the subset of Trans,, in which process i
runs. Since a step in which process i runs is always an output step, it is clear that Prod,
is a productive step set for M. Since every nonnull output or A-step in Trans,, is in fact
an output step for some process i € /, and hence is in Prod,, it follows that the Prod, sets
cover the nonnull output or A-steps in Trans,,.

It is obvious that the set of fair computations of the system ¥ is exactly the set of
fair computations of the PS-machine <M, <Prod,>,€,>, and thus PBeh(y) =
Beh(M, <Prod>).

<= Suppose that <M, <Prod,>,€,> is a PS-machine of interface D. We construct an
1/0-system ¥ = <E, Mp,.> and an I/O-abstraction map a: £ — D, such that
Beh(M, <Prod>,) = a(PBeh(y)).

Without loss of generality we make the following three assumptions about

<M, <Prod>,p:

(1) The set Init,, of initial states for M contains exactly one state 4y

(2) Forallq €Q,, and all e € In,, there is a unique r € Q,, such that <q, e, » €
Trans,,.

(3) Prod, N Prod,. = @fori=j.
A PS-machine <M ', <Prod, .¢p that does not have these three properties can easily be
transformed, without changing its behavior, into a PS-machine <M, <Prod>,p that does
have these properties. We first obtain properties (1) and (2) by buffering input events in
an input queue in the order that they occur so that the change of state associated with
an input event is just to append the event to the end of the input queue. All
nondeterministic choice, including the choice between multiple initial states, is
absorbed into the output steps.

.94 .-

Formally, we transform the PS-machine <M’, <Prod, " > into a PS-machine
<M ", <Prod, "> > by defining State,, .. to consist of all pairs <q, u>, where q is either an
element of State,,. or the distinguished symbol L, and v € Ing*. The single initial state
of M " is the state <L, A>. The transition relation Trans,, .. consists of all steps <{q, u>, e,
<r, v>» such that

- lfe€lincthenr = gand v = ve.
- Ife €Out U (A}, thenv = A, and either
(a) <q,ue, r>isin Trans,,.*, or
(b) g = L and <s,ue, r> € Trans,,.* for some s in Init,,..
The set Prod, ” consists of all steps <<q, >, e, <r, v>> € Trans,, . such that for some state
s of M’, the step <s, e, r> € Prod,’, and in addition, either g # L and the step <q, u, s> is
inTrans,,.*,orq = 1 and. for some g ' € Init,, . the step <q ', u, s> is in Trans,,.*.

Once <M", <Prod,'>,> with properties (1) and (2) is obtained, it can be
transformed into <M, <Prod> > with all three properties by an application of Lemma 5.2.

We now proceed to the construction of ¥. The idea is as follows: The system ¥ will
contain one process for each i € I. The processes in ¥ perform a lock-step simulation of
the machine M. The interface for each of the processes in the system ¥ consists of the
null event, the input events of D, and the set of all productive steps for M. The input
events for process i will be the input events of D and the steps in U[€I—{i} Prodi. The
output events for process i will be the steps in Prod.. Each process keeps track of the
current simulated state of M, and permits an output event to occur only if the event
corresponds to a step of M from the current simulated state of M. To ensure that the
input-cooperative property holds, process i imposes no requirements on the state from
which astep in Prodl. canoccur,ifj#i.

Formally, define the I/O-interfaces F, as follows:
F, = {)\F’} + In, + Uy, Prod;
Ing =In, + (Ul.e,_m Prod[)

i
OUtFI = Prod,

Define the system interface E C F = ®,, F, as follows:
E ={t€F:f,=Iiforalli.jEI]U{AF}
Ae =X

In, =EnNin,

Out, = EN Out,
It is easy to see that the inclusion map y: E — F is an embedding. For each f € lnFi, the
identically f vector <P, is in E. By the assumption that the Prod, are pairwise disjoint, it
follows that the identically f vector <P, is in E for each f € OutFi as well. This shows that
=, © y is onto F,, where the =, are the canonical projections associated with F.

Define a: E — D to be the translation that behaves in the following way on the

identically f vector <P, € E:

- Iff €1n,, then a(<P,) = 1.

- Iff = <q. d, r> € Prod, for some i € /, then a(<D,) = d.
We claim that « is an 1/0-abstraction map. It is clear that « is onto in,. The map a
preserves outputs because if the identically f vector is an output event of E, then f €
Prod, for some i and hence f is an output or A-step. To show that a strictly preserves
inputs, suppose the identically f vector N, is an input event of E. Then f € in,, so
a{lD) = f€ln,

The machines M, are defined as follows:

EMI = Fl .
QM, = Qy
Init = Init,, =

TransM’ = {<q, f, r>: one of (1)-(4) below holds}

(1) f = AFlandr = q,

(2) f€in,and<q,f,r> € Trans,,.

(3 r=<qg',d,NE Prod, for some j # i.

(4) 1 = <q,d, > € Prod,
Obviously M, is a machine and every step <q, }‘F:’ »E TransMi hasr = q. To see that M,
is input-cooperative, suppose q € Q“: and f € InF'. Then either f € Injorf€ Prod'. for
some j # i. Iff € In, then f is enabled in state g by part (2) of the definition of TransMi
because M is input-cooperative. If f = <q',d, > € Prodj for some j # i, then f is enabled
in state q by part (3) of the definition of TransM,.

A straightforward induction establishes that if g is a reachable state of the system
%, then q; = q; for alli,j € I. This argument uses the assumed uniqueness of the initial
state of M, plus the assumption that a state g and an event e € In uniquely determine a
state r such that <q, e, r> € Trans,,. Intuitively, since the processes in ¥ do not interact

.06 -

with each other during input steps, the uniqueness assumptions are needed to ensure
that all processes reach the same new state in each such step.

There is an obvious correspondence bétween the steps of the machine M and the
steps of the system ¥. Specifically, each step s = <q, d, r> of M determines astep s’ =
<q, e, > of $under the definitions:

- g is the identically g vector
- r is the identically r vector
-8 = A, if s is null
= <>, ifd €ln,
= <D, if sis anonnull output or A-step.

it easy to see that a step s of M is enabled in state q of M iff the corresponding step
s 'is enabled for the system ¥ in state <@>,, The correspondence between the steps of
M and the steps of ¥ therefore defines a bijection between the set of computations of M
and the set of computations of ¥, such that if X' is a computation of ¥ and X is the
corresponding computation of M, then Obs, = a(Obs,). Furthermore, a step s of M is
in Prod, iff process i runs in the corresponding step s ' of ¥, so that fairness is preserved
in both directions of this correspondence. It follows that a{PBeh(¥)) =
Beh(M, <Prodp,). § /"

The following two properties of 1/0-behaviors are easily derived from the
PS-machine characterization.

Corollary 5.5 If B is an |/0-behavior of interface E, then B # 0.

Proof - Suppose B = Beh(M, <Prodp,). It suffices to show that there is a fair
computation of M. We construct a sequence q,, q,, ... of states of M, and a sequence
ey e, --- Of events of £, such that the following properties hold:

(1)<q,,6,,4,,,> € Trans,, forall k € N,

(2) For eachi €, either Prod, is enabled in only finitely many of the g,, or else
the step <q,, e,, g, , ,” is in Prod, for infinitely many k.
Letting t, = k for each natural number k and applying Lemma 3.5 yields a fair
computation of M.

.97 -

To construct the g, and e, first let a, € Init, be chosen arbitrarily. We maintain a
running assignment of priorities to the elements of A so that at each stage of the
construction i is more urgent than j iff a step in Prod, has been chosen less recently than
astepin Prodl.. At stage k, where k > O, we choose e, and q, _, sothat<q,,e,,q,, > €
Prod, where i is the most urgent element of / such that Prod,. is enabled in state q,. If no
Prod,; is enabled in state q,, then we lete, = Aandgq, _,

A behavior B is asynchronous if whenever x € B and f: [0, ©0) — [0, o0) is an
order-isomorphism, then x o f € B.

Corollary 5.6 - 1/0-behaviors are asynchronous.

Proof - Straightforward from the observation that if X is a fair computation of a
PS-machine <M, <Prod> > and : [0, o0) — [0, o0) is an order-isomorphism, then X « f is
also a fair computation of <M, <Prod‘.>,€,>. 1=gq,.10

5.4 Examples of |/0-Behaviors

In this section we give two examples of I/0-behaviors and an example of a
behavior that is not an 1/0-behavior.

Example 1: An1/0-Behavior:

As an example of how 1/0-behaviors can be used to model a system capable of
satisfying eventuality requirements, imagine that we wish to model the behavior of a
"black box" to which input stimuli can be applied by pressing a single button, and from
which output can be observed by flashes of a single light bulb. The black box has the
property that every press of the button is later followed by a flash of the light bulb, and
no flashes of the bulb occur unless the button has been pressed at least once since the
time of the most recent previous flash.

The interface of such a black box is the I/O-interface E with E = {A, button, flash},
In, = {button} and Out, = {flash}. The behavior of the black box is defined by a
PS-machine M of interface E. Intuitively, a push of the button sets a flag in the state of M
to true. A flash of the light can occur only when the flag is true, and causes the flag to
be reset to false. There is one productive step set Prod, which contains exactly those
steps in which flashes occur.

Formally,
EM =E
Q, = {true, false}
Init, = {false}

Trans,, = {<q, button, r>: r = true} U {<true, flash, false>} U
g, A\ q>:q€Q,}.
Prod = {<g,flash, r> € Trans, }
That <M, Prod> is a PS-machine of interface E is easily checked.

Let B = Beh(M, Prod), so that B is an 1/0-behavior. Through analysis of the fair
computations of M it can be shown that an observation x € Obs(E) is in B iff there is a
surjective total function f: {t € [0, 0): x(t) = button} — {t' € [0, 0): x(t ') = flash} such
that for all t € [0, 00), #(t) is the least t* € (t, o) such that x(t) = flash. That is, an
observation x is in B provided that in x, every push of the button "causes" a future flash
of the light, and every flash of the light is caused by some collection of recent past
pushes of the button.

Examble 2: Two Productive Step Sets

We can give an example of an 1/O-behavior that is not the behavior of a
PS-machine with one productive step set. Let the interface £ be defined by: E =
{A, button, flash1, flash2}, where In_ = {button} and Out, = {fiash1, flash2}. Let B be
the set of all x € Obs(E) such that the following proberties hold:

(1) Occurrences of flash1 appear only between the 2kth and 2k +1st
occurrences of button, where k € N,

(2) Occurrences of flash2 appear only between the 2k +1st and 2(k + 1)st
occurrence of flash.

(3) x\contains infinitely many occurrences either of flash1 or flash2

(4) If x contains infinitely many occurrences of button, then it contains infinitely
many occurrences of both flash1 and flash2.
It is straightforward to show that B is the behavior of a PS-machine of interface E with
two productive step sets, one that governs the occurrence of flash1 events and one that
governs the occurrence of flash2 events.

.99-

Suppose B is the behavior of a PS-machine <M, Prod> with one productive step
set. Construct a computation of M by repeating the following procedure: Run M until a
flash1 event is produced, then run M for two steps containing a button input. It is always
possible to obtain the flash1 events in this construction, since otherwise we could
construct a fair computation in which only finitely many flash1 events and no flash?
events occur. It is always possible to run the button events by the input-cooperative
property of M.

The above construction yields a computation X of M that must be fair, since it
contains infinitely many steps in which the output event flash1 occurs, and which must
be in the single productive step set Prod because Prod contains all output steps of M.,
However, X generates an observation in which infinitely many button events occur, but
no flash2 events occur.

Example 3: A Non-1/0-Behavior

We can also give an example of a set that is demonstrably not a 1/0Q-behavior.
oefine the i/O-interface E as fullows:

E = {A, button, flash}
Ing = {button}
Out, = {flash}.

Let the behavior B € Beh(E) be the set of all x € Obs(E) such that x contains an infinite
number of occurrences of flash, and such that either the number of occurrences of
button in x is finite or (# flashes in x on the interval [0, 1))/ (# buttons in x on the interval
[0,1)) »0ast — oo,

We argue that B is not an 1/0-behavior of interface E. Suppose <M, <Prodp, > is a
PS-machine of interface E, whose behavior is B. Construct a computation X for M by
repeating the following procedure: Run M without input until a flash event is produced,
then run M for one step with a button input. We can run M until a flash event is
produced by always trying to take steps in which flash events are produced, if possible,
otherwise taking some other productive step. During this construction, we make sure to
use a fair scheduling algorithm to determine which of the Prod, should be executed at
each step. We can never reach a state in which no productive steps are enabled,
otherwise we could construct a fair computation in which only finitely many flash events
are produced. We can run M at any time with a button input by the input-cooperative

-100 -

property of M.

The above construction yields a computation X of M that must be fair, since the fair
scheduling of the Prod, ensures that every repeatedly enabled Prod, will be repeatedly
run. However, computation X generates an observation x that contains infinitely many
occurrences of button events, and in which the ratio of the density of flash events to
button events approaches one in the limit, rather than zero. This contradicts the
assumption that Beh(M, <Prod,>,€,) = B.

5.4.1 Proving 1/0-Consistency

From the PS-machine characterization of the 1/0-behaviors we obtain the
following test for I/O-cons_istency of subset specifications.

Theorem 5.7 - Suppose that S is a subset specification of 1/0-interface E. Then S is
I/0-consistent iff there exists a PS-machine <M, <Prod,>,€,> of interface E such that
Beh(M, <Prod,>,€,) C 0(S).

Proof - Obvious. 1§

If S = <M, V> is a state-transition specification, then to show the 1/0-consistency
of S, it suffices to define a collection of productive step sets for M, such that every fair
computation of M is in the set V of valid computations.

Corollary 5.8 - Suppose that S = <M, V> is a state-transition specification of
I/0-interface E. Suppose that <M, <Prod> > is a PS-machine of interface E. If every
fair computation of M is in V, then S is 1/0-consistent.

Proof - Since <M, <Prod>,> is a PS-machine of interface E, it follows that
Beh(M, <Prod>,c,) is a 1/0-behavior of interface E. Since every fair computation of M is
in V, we know that Beh(M, <Prod),.,) C 0(S). By Theorem 5.7, S is 1/0-consistent.

To illustrate the use of this result, we apply it to a simple example specification: A
neuron is a module with a single input event in, and a single output event out. The state
set for the neuron is the set {ff, tt}. At any instant of time, if the state of the neuron is tt,
then the neuron is said to be excited, otherwise the neuron is said to be inhibited.
Initially the neuron is excited. An in event can occur at any time, and causes the neuron

-101 -

to become inhibited. If the neuron is excited, then it can fire, producing an out event,
and then becoming inhibited. The neuron should satisfy the condition, "If the neuron
becomes excited and remains that way, then eventually it will fire.”

The neuron module description can be formalized as a state-transition

specification.
ENEV = (], in, out}
InNEY = {in)

OutNEY = {out}
QNEY = {ff, 1t}

InitNeY = {tt}
A step <q, e, > € TransNEV iff either e = A and r = q or one of the conditions (in), (out)
below holds:

(in) e =inandr = ff

(out) e =outandg =t

The neuron module validity condition is defined by:
ValidNEV = DO(O(Now = tt) - O(Occurs = out)),

To show the I/0-consistency of the neuron specification, we define a single

productive step set Prod"EY as follows:

<q,e,r> €Prod"EViffe = out,q = tt,and r = ff.
It is clear by inspection that MNEY is input-cooperative, and that ProdNe! is a productive
step set for MNEY, To show the I/0-consistency of the neuron specification, we must
show that every fair computation of MNEY ig valid. That is,

CompNEY A FairNEV = ValidNEY,
where

FairEY = OOEnabled"EV(Now) — OO Prod"EY(Now, Occurs, After)

EnabledMEY(q) = (3e€ENEY, r € QNEY) Prod™EV(q, e, r).
We claim the stronger property

FairNEY = ValidNEY,
To show this, we use the neuron module specification and the definition of ProdNe! to
expand the term FairNEU, From the definition of Prod“EV we obtain

- 102 -

EnabledEY(q) = q = tt,
and hence that

FairNEV = OO(Now = tt) = OO(Now = tt A Occurs = out A After = fi).

By straightforward temporal and propositional reasoning it is now easy to see that

OO (Now = tt) = OO(Now = tt A Occurs = out A After = ff)

= O(O(Now = tt) » O(Occurs = out)),
That is, if we suppose that ’

(1) whenever the state repeatedly takes on the value one then it is also
repeatedly the case that an out event occurs (which takes the state from one to zero),
then we are entitled to conclude that

(2) whenever the state is persistently one after some instant, then there is a
later instant at which an out event occurs.

We can use the PS-machine characterization of the 1/0-behaviors to show the
I/0-inconsistency of a slightly stronger version of the neuron specification, obtained by
using the stronger validity condition

validlEV = O(New = tt — ©{Cccure = out)).
This condition states that if the neuron is ever excited for a single instant, then it must
eventually fire. Suppose there is a PS-machine <M, <Prod> > of interface ENEV such
that Beh(M, <Prodp,p) satisfies the strong neurcn specification. Construct a
computation of M as follows: Run M for one step with input in, and then repeatedly run
productive steps of M if possible, otherwise null steps, being sure to schedule the
occurrences of Prod, fairly. The result is a fair computation X of M.

Since the observation x = Obs, satisfies the strong neuron specification, there
must exist a valid computation X ' of MNEV such that Obs,. = x. In X', the neuron
module is excited at time 0, an in event occurs at time 0, and no input events occur after
time 0. Consequently, the neuron module is inhibited after time O, and thus no out
events can appear in x because X ' is a computation of MN®Y, Thus, in the computation
X' of MNEU, the neuron module is excited at time O but no out events subsequently
occur. This means that the computation X ‘ of MNEY fails to satisfy the validity condition
validiV, a contradiction. We conclude that the PS-machine <M, <Prod),> cannot
exist and the strong neuron specification is 1/0-inconsistent.

-103 -

5.4.2 1/0-Consistency of the Specification SC

As an extended example of an 'l/O-consistency proof, we prove the
I/0-consistency of the synchronizer component module specification. For the
productive step sets, we use the sets Prod, Prod.oken_om. and Prodmmt_om, defined

as follows:

Prod, (q.6,7) =e = run A Trans%%(q, e, 1)

Prod, ,en out(d 8 1) = e = token_out A Trans%%(q, e, r)

Prod, . estou(® & 1) = e = request_out A Trans®(q, 6,).
It is easily checked that <MSC, <Prod, . Prod, .. oue Prod,equest o> is @ PS-machine of
interface ESC,

We must show that each fair computation is valid; that is,

CompSCk A FairsC A FairgGen ou A f-‘airrse"quw_out I= ValidSC,
where
FairSc = OOEnabled3C (Now) —
OOProdSC(Now, Occurs, After)
; - sC
Fairpeen_out = OCEnabled(y, .(Now) —
sC
DOProdtoken_w‘(Now, Occurs, After)
; = sc
Falr,se‘fmst_uut = OOEnabled;y .. ou(NOW) —
sC
DOProd,equom(Now, Occurs, After)

and each Enabledfc(q). where i € {run, token_out, request_out}, is a formula that
expresses the conditions under which Prod,sc is enabled in state q. Using the
definitions of the Prod, given above, we derive the following expressions for Enabled .,

Enabled,, ., o. 8Nd Enabledmmt_out:
Enabled ,(q) = q(ustate) = trying A g(token) = 0
Enabledmm_ou‘(q) = q(ustate) # running A g(token) = 0
Enabledmuw_om(q) = g(token) = O
To show .
CompSC A FairsC A Fairge,, on A Fanﬁmt_out k= ValidSC,

we assume CompSC, RelySC, —GuarSC, Fair_, Fair, _oup @nd Fair .. . and
derive a contradiction. That is, we consider a fair computation in which the
synchronizer component module rely-conditions are satisfied, but in which the
guarantee-conditions are not satisfied. If “Guar®C holds, then either

(A) —O(Now(ustate) = trying — O(Now(ustate) # trying))

-104 -

or
(B) —O(Occurs = request_in) —» O(Occurs = token_out)).

Thus the proof can be split into two cases, one headed by assumption (A), and the other

by assumption (B). :

Case (A): Suppose that (A) holds. Then by temporal reasoning, we have

O(Now(ustate) = trying A O(Now(ustate) = trying))
(*) OD(Now(ustate) = trying)
That is, it is persistently the case that the user process is trying. By definition of
TransSC, the following is valid:

CompSCk = O(Occurs = run — After(ustate) # trying)
and thus, using the temporal tautology = O(p(After) — Op(Now)), that

CompSC k= OO(Now(ustate) = trying) — OL(Occurs # run).
Intuitively, since occurrence of run results in the user process leaving the trying state, if
the user process is persistently trying, then it must be the case that a run event
persistently does not occur. Applying this to formula (*) yields

- O0(0ccurs * run A Now(usiate) = trying)

That is, it is persistently the case that the user process is trying but a run event never
occurs. Using the definition of Prod , , we conclude

<0(—Prod, (Now, Occurs, After) A Now(ustate) = trying).
By applying of the hypothesis that Fair, _ holds, we obtain

<ODO(—Enabled, (Now) A Now(ustate) = trying).
Using the expression for Enabled obtained above, we have

OO(Now(token) = O A Now(ustate) = trying).
That is, it is persistently the case that the synchronizer component module possesses
no tokens, and the user process is trying. Using the hypothe_sis that Fair,equest_wt holds,
we obtain '

O0(Occurs = request_out) A OL(Now(token) = 0).
That is, it is repeatedly the case that request_out occurs, but persistently the case that
the synchronizer component module possesses no tokens. Applying the hypothesis
that RelySC holds, we conclude

OO (Now(token) # 0) A O0O(Now(token) = 0).
That is, it is repeatedly the case that the synchronizer module possesses a token, but
persistently the case that the synchronizer module possesses no tokens. This is a
contradiction, and we conclude that case (A) is impossible.

-105 -

Case (B): Suppose that (B) holds. Then by temporal reasoning, we have

O(Occurs = request_in A O(Occurs # token_out)).
That is, eventually there is a point at which a request for the token is received, but no
token is ever sent in response. Using the definition of Prodmen_om. and temporal
reasoning, we obtain

OD-ﬂProdmken_out(Now, Occurs, After).
Application of the hypothesis that Fairmken_cml holds, we have

©OO~Enabled, n_om(Now).
That is, it is persistently the case that a token_out event is not enabled. Using the
expression for Enabledmm__om obtained above yields
(**) ©ODO(Now(ustate) = running v Now(token) = 0).
Thus, it is persistently the case that either the user process is running or the
synchronizer component module possesses no token. We now use the temporal
tautology = OO(p Vv ¢) — (OCe v ©OOY). Intuitively, this says that if it is persistently
the case that ¢ v ¥ holds, then either ¢ hoids repeatedly, or else ¥ holds persistently.
Application of this tautology to (**) gives

O¢(Now(ustate) = running) v O0O0(Now(token) = O).
That is, either the user process is repeatedly running, or the synchronizer component
module persistently has no token. We now split the proof into two subcases, depending
upon whether

(B1) O0<(Now(ustate) = running)
or

(B2) ODO(Now(token) = 0)
holds.

Subcase (B1): Suppose that (B1) holds. Application of the hypothesis that RelySC holds
gives
0O¢O(Now(ustate) = running) A OO (Now(ustate) # running).

Next, we use the temporal tautology
= (OO ¢(Now) A 0O gp(Now)) = OO (p(Now) A np(After)).
Intuitively, if it is repeatedly the case that ¢ holds of the current state, and it is repeatedly
the case that —¢ holds of the current state, then it must repeatedly be the case that a
point is reached where ¢ holds of the current state and = holds of the "next” state.
Application of this tautology in the present situation gives

-106 -

O<¢(Now(ustate) = running A After{ustate) # running).

In addition, we need the following invariance property:

CompSC« = D(Now(ustate) = running — Now(token) # 0).
The validity of this sentence can easily be shown by Corollary 3.7, and the details are
omitted. Using this, plus the fact that

= (Vq.r€State, e€Event){(Trans®(q, e, r) A g(ustate) = running

A r{ustate) # running) — r(token) = g(token)),

which is verified by case analysis on e, we obtain

OO (After(ustate) = running A After(token) # 0).

Let us examine the intuitive content of the preceding steps. If the user process is
running in the current state and not running in the "next" state, then the following must
be true: Since the synchrénizer component module must possess a token whenever the
user process is running, and no event that takes the user process out of the running
state can affect the number of tokens possessed, it must be the case that the
synchronizer component module possesses a token in the next state as well.

Another use of the temporal tautology = O(p(After) = O¢(Now)), we obtain
OO (Now(ustate) # running A Now(token) = 0),
which is a contradiction with formula (**). We conclude that subcase (B1) is
impossible.

Subcase (B2): Suppose that (B2) holds, that is
OO(Now(token) = Q).
Then by definition of Enabledmuesuu‘ we have
ODEnabled,eqmt_wt(Now),
and thus by the hypothesis that Fairreqmm_wt holds, we infer
00 (Occurs = request_out).
That is, it is repeatedly the case that request_out events occur. By the hypothesis that
RelySC holds, we conclude
OO (Now(token) = 0)
a contradiction with (B2). We conciude that subcase (B2) is impossible, and hence that

case (B) is impossible.

-107 -

Since both cases (A) and (B) have been shown to be impossible, we conclude that
the original hypotheses are contradictory, and thus the synchronizer component
module specification is I/O-consistent.

5.5 Composition of I/0-Behaviors

We have previously shown that the class of 1/0-behaviors is closed under the
abstraction operators associated with the 1/0O-abstraction maps. In this section, we
define the class of "1/0-decomposition maps,"” and show that the class of I/0-behaviors
is also closed under the composition operators associated with these maps.

5.5.1 1/0-Decomposition Maps

When we defined the notion of a system interface above, we noted that there is a
canonical decomposition map (and hence a composition operator) associated with
each system interface. We would now like to extend the notion of composition
associated with system interfaces so that we can view behaviors of non-system’
interfaces as a composition of component behaviors. The most natural way to do this is
to require that the the domain of a decomposition map be a system interface only up to
isomorphism. |

Definition - An isomorphism from the |/O-interface E to the 1/O-interface D is a
bijective translation y: E — D such that y and y! are embeddings. 8

Definition - An I/0-decomposition map from the 1/O-interface E to the collection of
17/0-interfaces {FD ¢ is avector<5p,, of translations, where §;: E — F, with the following
property: There exists a system interface £' C ®,¢, F; and an isomorphism y: E = E ‘,
such that §, = §," » y for all i € |, where <§, D¢, is the canonical decomposition map
associated with E'. 1

From this definition, we can immediately derive a number of properties of the
170-decomposition maps.

Lemma 5.9 - If <5, is an 1/0-decomposition map from E to <Fp,¢, then
(1) e = e "implies §(e) = 5 (e ') for somei € /. (8 is injective)
(2 8(in)) C '"F, U{A.}foralli€l (& preserves inputs)
]

- 108 -

(3) ife € Out_then §(e) € Out, forsomei € /. (& strictly preserves outputs)
i
(4) 8,."(OutFi) N si"(OutF) = @wheneveri #j. (Compatible Coupling Property)
' i
(5) §,is onto F, for alli€l.

Proof - Straightforward. 1
5.5.2 Closure Proof

We can now prove that the class of 1/0-behaviors is closed under the composition
operators associated with 170-decomposition maps.

Theorem 5.10 - Suppose <8, is an I/0-decomposition map, where 8. E — F. If B, is
an 1/0-behavior of interface F, for each /i € /, then § ‘(B) is an I/0-behavior of interface
E.

Proof - Suppose that for each i € 1, <M,, <Prod, >, is a PS-machine of interface F,
' i
such that Beh(M,, <Prod,.' o a€ A}) = B,. We construct a PS-machine <M, <Prod,' a e a€ “:>

of interface E such that Beh(M, <Prod, , ¥, ,¢ ‘:) =518)

Let M be defined as follows: , !

Qu = Mg, QM, /

Init,, = I, '“'tu,

Trans,, = {<g@ ,e,r>:suchthat<q, 8(e), 7P € TransM, foralli € 1}.
It is easy to check that Init,, is nonempty and that<g , A, @ > € Trans,, forallg € Q,,
Thus M is a machine. To show that M is an 1/O-machine, we must show that it is
input-cooperative. Supposeg € Q,,and e € In,. Since § preserves input, it follows that
§(e) € InF’ U {AF’} for each i € I. Since each M, is input-cooperative, for each i € / we
can get r, such that<q, 8(e), rp € Transul. It follows that<g , e, > € Trans,,.

Foreachi €/, and a € A, define
Prod,," = {<@.e, > € Trans,;: <q, 8(e),r> €Prod, ande ¢ Ing}.
it is clear that each Prod“' is a productive step set for M. To show that
<M, <Prod, , D¢/ 4¢ ‘.'> is a PS-machine, we must show that the sets Prod,, * cover the set
of nonnull output or A-steps in Trans,,.. Suppose <g , e, > is such a step. Then <g,
8(e), rp is a nonnull output or A-step for M, for some i € I, by the fact that § strictly
preserves outputs. Since the collection <Prod‘.'.>.“i covers the nonnull output or

-109 -

A-steps for M,, we know that <g, §(e), rp € Prod, forsomea € A. Hence<g,e, > €
Prod“ ’,

We claim that'Beh(M, <Prod,

13

a '>I€I.B€Al) = § "(<Beh(M,, <Pr Odi,a>a€Al)>l€l)’

Case Beh(M, <Prod, , ¢, . A’) cs'B)

Each computation X of M maps in an obvious way (by taking the image of the
observation part under 5, and the canonical projection of the state part) to a
computation X, of M, for each i € /. Suppose that X is fair. Leti € /and a € A, be fixed.
We show that if Prod“ is repeatedly enabled in X, then Prod“ repeatedly runs in X..
Suppose Prod, , is repeatedly enabled in X,.

We first show that, given g € State,, if Prod,_ o is enabled in state g, then Prod,'a ‘is
enabled in state g . If Prod,, is enabled in state g, then there exists f, € OUtF, U {AFI} and
r € Q’“/ such that<q, e, rp € Prod,'.. Since §, is onto OutFl. we we can get e € Out_ U
{J\E} with §(e) = /. By the compatible coupling property of § , we know that 81(9) € 'nF,
u{ A,,} for all j € 1 - {i}. For each j € I - {i}, by the input-cooperative property of M, we
can get r, ‘ such that (q,., a,(e), g € TransMI. It follows that<g ,e,r » € Prod,, ', and
thus Prod e ‘is enabled in state g .

Since Prod ia is repeatedly enabled in X , by hypothesis, and Prod,' o €nabled in state
q, implies Prod,.' o €nabled in state g , we know that Prod“ " is repeatedly enabled in X.
By the fairness of X, it follows that Prodi' o repeatedly runs in X. By definition of Prod e !
if Stepx(r) € Prod“I ‘, then Stepx (t) € Prod, 2 This implies that Prod, a repeatedly runs in
f , A
X,
Case 3 '(8) C Beh(M, <Prod,, V¢, ¢ a)

ia”a€
computation of M, in which the observation 3,(x) is generated. We construct a fair

computation X for M, such that Obs, = x.

Suppose that §,(x) € Beh(M,, <Prod, > “i)’ foralli €. Foreachi€/,let X, be afair

Without loss of generality we assume that the X, have the following property: For
all t € [0, o0), if a productive A-step runs at time t in X, for some i € |, then the step that
runs at time t in X; is null for all j € / - {i}. If we are given a collection <X, >, for which
this property does not hold, then it is a simple matter to construct order-isomorphisms f:

-110-

[0, 00) — [0, o) such that if X, = X,' o f, then Obst = Obsxl, for all i and the desired
property holds for the collection <X>..,. Since the property of being a fair computation
is preserved under stretching of [0, o0) by an order-isomorphism, it folows that each X,
is a fair computation for M.

We now define X by letting Obs, = x and State,(f) = <Statex’(t)>,€,. It is easy to
see that X is a computation for M.

To show that X is fair, suppose that Prod“' is repeatedly enabled in X. Since
Prod,.'.' enabled in state g implies Prod,'. enabled in state g, it follows that Prod“ is
repeatedly enabled in X,. Since X, is fair, we know that Prod,.' , repeatedly runs in X. We
claim that if Stepxl(t) € Prod,.'. then Step,(t) € Prod“' as well, and hence Prod“'
repeatedly runs in X.

By definition of Prod, L if Stepxl(t) € Prod, , then Step, () € Prod, , ', except in case
Obs, (t) € In.. But if Obs,(t) € In(E), then the fact that §, preserves inputs and Prod,'.
contains only output and A-steps implies that Stepxl(t) =<qu AP € Prod“. Since § is
injective and preserves inputs, it musi be the case that Obsxl(t) €ln F, for somej € I - {i},
and hence Stepxl(t) is nonnull. This contradicts our assumption that if a productive

A-step runs at time t in X, then the step occurring at timej in X, isnullforallj€l-{i}. 8
5.6 Alternative Classes of Computable Behaviors

The class of 170-behaviors is by no means the only class of "computable”
behaviors that it is interesting to consider. By replacing the fairness requirement for
computations of 1/0-systems with that of "weak fairness,” in which a process is
required to repeatedly run only if it is persistently enabled, rather than repeatedly
enabled, we obtain the class of weak I/0-behaviors (Wi/O-behaviors). It can be shown
that every WIi/O-behavior is an 1/0O-behavior, but not every 1/0O-behavior is a
WI/0-behavior. The notion of WI/O-consistency is therefore strictly more stringent
than I/0-consistency.

Besides the fairness assumption, the definition of the class of 1/0O-behaviors
embodies several other choices that might have been made differently:

(1) (Asynchrony) - The 1/0O-systems model is an asynchronous model of

computation. We might have chosen a timing-dependent model of computation instead.

-111 -

(2) (Input/Output Structure) - Instead of focusing on interfaces with
input/output structure, we might have chosen additional or alternative structure, such
as interfaces in which events include information about the physical location at which
" they occur. . ‘

(3) (Simultaneity) - The definition of an 1/O-system permits at most one
process to perform an output at any instant of time. We might imagine a more general
model in which any numbér of processes can perform an output at once.

An interesting avenue for future research is to try to discover additional classes of
behaviors and associated notions of consistency by modifying one or more of the above
assumptions.

-112.

6. A Completeness Result

A reasonable question to ask about the sufficient correctness conditions required
by the Correctness .Theorem is whether these conditions are also necessary. That is, is
it the case that the maximality and validity conditions hold for every correct
implementation involving state-transition specifications? In this chapter we show that in
general the maximality and validity conditions need not hold for every correct
implementation. However, it is possible to impose some well-formedness conditions on
the state-transition specifications involved in the implementation, which are sufficient to
ensure that correctness implies maximality and validity. The Completeness Theorem
(Theorem 6.4) is the formal statement of this result. Although Theorem 6.4 is probably
not the strongest result of this kind it is possible to prove, it nevertheless sheds some
light on the limitations of the Correctness Theorem, and serves to motivate some
well-formedness properties of state-transition specifications.

6.1 Specification Domains

The statement and proof of Theorem 6.4 depends crucially on the existence of a
collection of interfaces, behaviors, abstraction maps, and decomposition maps with
closure properties like those of the 1/0-interfaces, 1/0-behaviors, 1/0-abstraction maps,
and I/0-decomposition maps defined in Chapter 5. The definition of a "specification
domain" below summarizes these properties, which seem like fundamental properties
that are likely to be shared by other interesting models.

Informally, a specification domain 9 contains four pieces of data: the
"3-interfaces," the "9-behaviors," the "9-abstraction maps,” and the "9-decomposition
maps.” The J-interfaces are interfaces with structure particular to the domain 9. For
example, the |/0-interfaces are those whose non-A events are partitioned into input and
output events. For each 3-interface E, the 9-behaviors of interface £ represent a class
of "realizable" or "computable" behaviors of interface E. Just as the definition of
I/0-behavior depends upon the input/output structure of an I/0-interface, whether or
not a behavior of 9-interface F is a 9-behavior of interface E will depend, in general, on
the particular structure of the interface E. The 9-abstraction and g-decomposition maps
represent meaningful ways to abstract and decompose systems modeled by
9-behaviors. In general, these maps will have certain preservation properties with

-113-

respect to the particular structure of the interfaces, just as the 1/0-abstraction and
1/0-decomposition maps preserve input/output structure in various ways.

The definition of a specification domain requires that the class of 3-behaviors be
closed under the abstraction and composition operators associated with the
9-abstraction and 9-decomposition maps. In addition to the properties of closure under
abstraction and composition discussed above, we require a third regularity property of
the 9-behaviors. This property, called "nondegeneracy,” rules out the empty behavior
as a 9-behavior of any interface. Intutively, the empty behavior does not model any real
system, since it is always possible to obtain an observation of a real system, even if that
observation is only the null observation A.

Definition - A specification domain $ consists of the following:

- A class Interfacesq of interfaces, called the 3-interfaces.

- For each pair E, D € Interfaces, a set AbsMapsg(E, D) of transiations from E
to D, called the set of 9-abstraction maps from E to D.

- For each pair E, <FD,, where ! is a finite index set and E and each F, are
elements of Interfacesy, a set DecMapsy(E, E) called the set of $-decomposition maps
from E to F . Each element of DecMapsq(E, E) is a vector <§D,¢,, where §; is a translation
from Eto F,

- For each interface E € Interfacesq, a set Behaviorsg(E) of behaviors of
interface E, called the set of 9-behaviors of interface E.

In addition, 9 is required to have the following properties:

(1) (Nondegeneracy) - For all 3-interfaces E, the empty behavior @ is not in
Behaviorsg(E).

(2) (Abstraction Closure) - For all 3-interfaces E, D, if « € AbsMapsq(E, D) and
B € Behaviorsy(E), then a(B) € Behaviorsg(D). _

(3) (Composition Closure) - For all 3-interfaces E, <Fp ., if § € DecMapsg(E,
F) and B = <BD, is such that B, € Behaviorsq(F) for each i € /, then § B.) €
Behaviorsg(E). 1

A rather simple example of a specification domain is the domain "CSP," where we
define every interface to be a CSP-interface, every translation a to be a CSP-abstraction
map, every finite vector § of translations with a common domain to be a
CSP-decomposition map, and define the CSP-behaviors of interface E to be exactly
those behaviors of interface E that are nonempty, asynchronous, and

-114.

truncation-closed.! We call this specification domain CSP because it is closely related
to the "trace model” for CSP defined in {Hoare81b]. In that paper, process behaviors
are modeled by nonempty, prefix-closed subsets of E*, where E is an alphabet of
process events. To each nonempty, prefix-closed subset of E*, there naturally
corresponds a nonempty, asynchronous, and truncation-closed behavior of interface E.
Thus, for each of Hoare’s processes, there is a CSP-behavior that contains the same
information. Hoare defines operations of parallel composition, concealment, and
alphabet transformation on processes. Under the natural correspondence described
above, Hoare's concealment and alphabet transformation operations are special cases
of the CSP-abstraction operators defined here, and Hoare's parallel composition
operation is a special case of the CSP-composition operators defined here. Since no
truncation-closed behavior can satisfy a specification with nontrivial eventuality
properties, the specification domain CSP is not particularly useful for the analysis of
such specifications.

As a consequence of Theorem 5.1, Corollary 5.5, and Theorem 5.10, the

I/O-interfaces, |/C-behaviors, 1/0-abstraction maps, and 1/0-decomposition maps also
define a specification domain, which we call "1/0."

We can generalize the definition of I/O-consister;éy to an arbitrary specification
domain 9.

Definition - A specification S of 3-interface E is 9-consistent if B(S) N Behaviorsg(E) #
0.1

We define relativized notions of interconnection, implementation, and correctness
with respect to a specification domain 9 as follows: An interconnection J is a
9-interconnection if the interfaces D’. E’, and F,’ for each i € / are 9-interfaces, the
abstraction map Jisa g-abstraction map from EJ to D’, and the decomposition map ﬁ’
is a 9-decomposition map from Ed to E I An implementation <3, S, ., S > is a
9-implementation if 3 is a 9-interconnection. We say that the 9-implementation

1. If x is an observation and t € [0, o0), then the t-truncation of x is the observation x '
suchthatx(t") = x(t)forallt' € [0,t),and x ‘(t') = Aforallt'€ [t,). A behavior B is
truncation-closed if whenever x € B and t € [0, o), then the t-truncation of x is also in B.

-115-

<3, S, 8 >is 3-correct it ao(8) (B) € B(S,,)NB, € B(S)NBehaviorsy(F) for each i €
I

Every fb-implefnentation that is correct in the sense of Chapter 2 is also 9-correct,
and thus the Correctness Theorem can be used to prove 3-correctness. However, in
general there will be 9-correct implementations that are not correct in the sense of
Chapter 2.

Lemma 6.1 - If a9-implementation is correct, then it is 9-correct.

Proof - Suppose <3, S, ., <D, is a correct g-implementation. For eachi € /, let B, be
an arbitrary 9-behavior of interface F) that satisfies S, Let B, = a’o(2 %'(8). Then
since 9 is closed under abstraction and composition, it follows that B, _ is a 9-behavior
of interface D’. By the assumption of correctness, B, satisfies S, .. Since the B, were
arbitrary, it follows that <3, S, ., S > is 9-correct. #

We next define the notion of an "evolutionary” specification domain. Intuitively, if
an evoiutionary specification domain 4 contains a behavior B that modeis what a system
S can do starting from time 0, and if we observe S produce a certain prefix of an
observation over the interval [0, t), then 3 will also contain a "future” behavior B ', which
models what S is capable of doing, starting from time t. Probably any reasonable
specification domain will be evolutionary (as is the specification domain 1/0) although
this property does not seem quite fundamental enough to be included as part of the
definition of a specification domain.

To define the evolutionary property precisely, we require some additional notation.
If x and y are observations and a € [0, ©0), then 'we write x =_yif x(t) = y(t) forali t €
[0, a). | B is a behavior of interface E, x € Obs(E) is an observation, and t € [0, o), then
define the future of B with respect to x and t as follows:

future, (B) = {suffix(y):y €B,y =,x}.

Intuitively, if a behavior B models what a system can do if we begin watching at time t =
0, then future”(B) models what the system can do after we have already observed the
initial segment of x on the interval [0, 1).

-116 -

Definition - A specification domain 9 is evolutionary if, whenever B is a 9-behavior of
J-interface E, x € B, and t € [0, o), then future, (B) is also a 9-behavior of 3-interface E.
1

For the remainder of this chapter, we assume that an evolutionary specification
domain 9 (such as the domain CSP or 1/0) has been fixed.

6.2 Locally 9-Consistent Subset Specifications

This section introduces the notion of a "locally 9-consistent" subset specification,
and obtains some properties of such specifications that will be used in the proof of
Theorem 6.4. Intuitively, local 3-consistency of a subset specification S means that 0(S)
contains no isolated observations that cannot be realized in some 9-behavior satisfying
S.

Definition - A subset specification S of 9-interface E is locally $-consistent if for all x €
O(S) there exists a 9-behavior B of interface E such that x € B C 0(S). 8

Note that if S is locally 9-consistent, and in addition O(S) # @, then S is ¥-consistent.

Lemma 6.2 below states that if the component module specifications in a
g-implementation are locally 3-consistent, then the necessary and sufficient conditions
for correctness provided by Lemma 3.1 for implementations involving subset
specifications, are also necessary and sufficient for 9-correctness.

Lemma 6.2 - Suppose <4, S, ., <SP, is a 9-implementation, where S, . and each S,
are subset specifications. Suppose that each S, is locally 3-consistent. Then <3, S, .,

<S¢ is 3-correct iff a’o(8 I)1(<O(SP,¢) C O(S,)-

Proof - =) follows directly from Lemma 3.1 and Lemma 6.1, and actually does not
- require the assumption of local 3-consistency. To show <=, suppose <3, S,,.. <S¢ is
g-correct. It suffices to show that if x € Obs(E) is such that.83(x) € 0(S)) for each i € /,
then a¥(x) € 0(S,,,). Because each 0(S) is assumed locally 9-consistent, given x €
Obs(E) such that a,.’(x) € 0(S)) for each i €/, then for each i € / there exists a 3-behavior
B, of interface F? such that 87(x) € B, C 0(S). Thus oa’(x) € B,,, = a’*(3 })'(B), which is
a 9-behavior because 9 is closed under abstraction and composition. By the
assumption of 9-correctness, it follows that B © O(S.bs), and hence a’(x) € 0(S abs). |

-117 -

The proof of Theorem 6.4 requires Lemma 6.3 below, which expresses a special
property of locally 9-consistent subset specifications in an evolutionary specification
domain 9.

Lemma 6.3 - Suppose that 9 is an evolutionary specification domain, and that S is a
locally 9-consistent subset specification of $-interface E. Then futurex',(O(S)) contains a
9-behavior of 3-interface E whenever x € 0(S) and t € [0,).

Proof - The local 9-consistency of S means that, given x € O(S) there exists a
9-behavior B of interface E such that x € B C 0(S). Since 9 is evolutionary, it follows
that future, (B) is a 9-behavior contained in future, (0(S)). §

6.3 Well-Formedness Properties of Specifications

This section defines three properties of state-transition specifications, which are
used in the statement of Theorem 6.4. These properties are: regularity,
quasi-determinacy, and orthogonality. The original motivation for these definitions was
technical, in the sense that they were sufficient to permit the proof of Theorem 6.4 to go
through. However, it was surprising to find that these properties could be thought of as
well-formedness properties that should be satisfied by "good"” state-transition
specifications. In a regular state-transition specification, whether or not a computation
is valid depends only upon the observation that is produced, and not upon the particular
choice of states. In a quasi-determinate specification, the fact that the state-transition
relation permits choices between states is inessential, since a choice of state made at
time t can have no effect on the portion of the observation produced subsequent to time
t. Orthogonality is related to the correct partitioning of "local" and "global" properties
between the state-transition relation and the validity conditions of a specification.

We first consider regularity. Intuitively, the requirement of regularity amounts to
the assumption that whether a computation is valid does not depend upon the states
appearing in the computation, but rather only the observation produced.

Definition - A state-transition specification S = <M, V> is regular if, for all computations
Xand Y of M, if Obs, = Obs, ,then X EViff Y EV. 1

-118 -

To motivate the somewhat technical definition of quasi-determinacy, it is
convenient to first examine the stronger, but more simply defined notion of
"determinacy.”

Definition - A machine M is determinate if Init,, is a singleton set, and for all g € Q,, and
all e € E,,, there is at most one r € Q,, such that<g, e, 1> € Trans,,. A state-transition
specification S = <M, V> is determinate if M is determinate. 1

A determinate specification is automatically regular, since a determinate
specification can have at most one computation that produces a given observation. The
importance of the determinacy property is that each observation generated by a
determinate machine is produced in exactly one computation of that machine. Thus, if
S = <M, V» is a determinate specification, x € 0(S), and X is a computation of M with
Obs, = x, then it is automatically the case that X € V, since no other computation of M
can produce the observation x.

To show that the maximality condition holds for a correct implementation, it
appears 10 be necessary to assuine thal sonie properly similar to deierminacy hoids for
the abstract module specification. To see why, consider the following example: We are
attempting to implement an abstract module whose function is to produce a finite
number of occurrences of a single event e. (Think of a "black box" with a single light
bulb on top, and let e be an event corresponding to a flash of the light bulb.) This
module can be specified in two different ways:

(Determinate): The state set of the specification consists of a single state *. The event
e is enabled in state *, and obviously cannot produce any state change. The constraint
that e should appear only finitely many times is captured by the validity condition.

(Indeterminate):. The state set for the specification is the set of natural numbers. Every
state is an initial state. The event e is enabled in state k iff k # 0, and the occurrence of
e causes the state to be decremented. Every computation is valid. In this specification,
the requirement that e occurs only finitely often is captured by the indeterminate choice
of initial state.

Let S, be the determinate specification and let S, 4 be the indeterminate specification.
Clearly 0(S,,,) = 0(S,):

-119-

Now consider an interconnection 3 = (a’. 85>. where the abstract interface D’, the
single component interface F3 , and the composite interface £’ are all the same interface
{A, e}, and the abstraction map o3 and the decomposition map 83 are the identity
translation. Clearly both of the implementations <3, S, S;,s> and <3, S, ,, S, are
correct. However, the maximality condition does not hold for the implementation
<, 8,4 Sy TO SEE this, note that any pair <k, *> is an initial state for the composite
machine, and is hence reachable for that machine. Furthermore, the event e is always
enabled for the component machine. For maximality to hold, it would have to be the
case that e is enabled for the abstract machine no matter what the value of kis. Bute is
not enabled for the abstract machineif k = 0.

In certain situations, for example the transmission line module specification in
Appendix I, the use of indeterminate specifications is quite natural. However, the
preceding example shows that unless we are careful, it may not be possible to use the
Correctness Theorem to prove the correctness of implementations when such a
specification is used as the specification for the abstract module.

The proof of the Completeness Theorem actually does not require that the
abstract module specification S, . be determinate, but rather the somewhat weaker
assumption that S, . be regular and "quasi-determinate." Intuitively, the set of future
observations that can be produced by a quasi-determinate machine is independent of
the choice of states made on the initial segment [0, t].

To define quasi-determinacy precisely, we extend to histories the =, notation
defined above for observations. If X and Y are histories, then we write X =_ Y if Obs, (t)
=, Obs, (f) and State,(t) = State(t) for all t € [0, a) (and hence for all t € [0, a] by the
properties of state functions).

Definition - A machine M is quasi-determinate if for all computations X and Y for M, and
all t € [0, o), if Obs, =, Obs,, then there exists a computation Z of M such that Z =, X
and Obs, = Obs,. A state-transition specification S = <M, V> is quasi-determinate if M
is quasi-determinate. 1

If a state-transition specification is determinate, then it can also be seen to be
quasi-determinate by choosing Z = Y in the above definition. Determinacy implies that
State, can be defined in exactly one way on the interval [0, t}, thus showing that X = Z.

-120 -

We next consider orthogonality. Intuitively, in an orthogonal specification, every
computation agrees for an arbitrarily long time with a valid computation. Orthogonality
is related to the correct partitioning of "local" and "global" properties between the
" state-transition relation and the validity conditions of a specification. Roughly,
orthogonality means that the validity conditions contain no information that could have
been expressed by strengthening the machine part of the specification.

Definition - A state-transition specification S = <M, V> is orthogonal it for all
computations X of M and all t € [0, o), there exists Y € VsuchthatX =, Y.

6.4 The Completeness Theorem
We can now state and prove the Completeness Theorem.

Theorem 6.4 (Completeness Theorem) - Let 9 be an evolutionary specification domain.
Suppose that<3, S, .. <SP is a g-implementation, where S,, . and S, for each i€ /are
state-transition specifications. Suppose that S, _is regular and quasi-determinate, and
that S, is orthogonal and locally 9-consistent for each i € I. If <3, S,, ., <SP, is
g.-correct then the maximality and validity conditions hold.

/
Proof - Suppose that S, . = <M_, , Vabs>, and that S, = <M, V>, foreachi €1l. Let Mbe
the composite machine. Note that the assumption that each S,. is locally 9-consistent

together with the assumption of 9-correctness implies, by Lemma 6.2, that
a’o(8)OS >,) C 0(S,,.)-

(Validity): To see that the validity condition holds, suppose that X is a computation for M,
such that X € v, for each i € /. Then 8,’(Obsx) € 0(S)) for each i € I. It therefore follows,
by the previous paragraph, that a’(Obsx) € 0(S,,)- This means that there exists a

computation X, of M, ., such that X, €V, and Obsx‘lbs = a’(Obsx). Since S, is
assumed regular, and Obs, (abs) = Obsxm, it follows that the computation X85 is also

in V,, . as required.

(Maximality): To prove maximality, suppose q € Q,, is reachable, and thate € E, is such
that 8,.3(9) is enabled for M, in state w(q), for each i € /. We wish to show that a’(e) is
enabled for M, _ in state # m(q).

-121 -

The proof is of necessity somewhat roundabout, since the assumption of
g.correctness is the only information we have at our disposal concerning the
relationship between the computations of M, . and those of the M. The idea is as
follows: We first obtain a computation X of M that arrives at state g at time n, and such
that no non-A events occur on the interval [n,). Let x = Obs,. For eachi €/, we can
modify X to obtain a computation X ; for M, by letting the event af(e) occur at time n. Of
course, we do not yet know that we can modify X{8) in a similar way -- this is what we
are trying to show.

We next use the orthogonality assumption on the S, to obtain, for eachi €/, avalid
computation Y, that “looks like" X, on the initial segment [0, n+ 1). Each Y, produces an
cbservation y, € O(S)) that looks like a,.’(x) on the interval [0, n + 1). We do not know that
there is a single observation y such that y, = af(y) for all i € I. However, we can use
Lemma 6.3, plus the composition closure property of the specification domain 9 to
obtain an observation z such that, for all i €> l, af(z) € 0(S)) and §(z) looks like y; on the
interval [0, n + 1). 3-correctness implies that a’(z) € 0(S,,4)-

Since a’(z) € 0(S,,,), we can obtain a computation Z_, for M,, ., such that Obszab
]

= a’(z). Now, event a’(e) occurs at time nin Z, . If we knew that State, t”(n) =
al

7,,.5(q), then this would show that a’(e) is enabled for M_, in state 7 005 Q)- Although it
need not be the case that Statezm(n) = w,..(q), the quasi-determinacy of S, lets us
replace the [0, n] segment of Statez‘bs with the corresponding segment of State,(abs),
with the result still a computation of M, .. Since State,(abs)(n) = 7 ,.(q), this will
complete the proof.

Formally, since q is reachable for M, by definition of reachability there exist
Ay 9y -1 G, €Q,, and ey e,, ..., e, , €E,, such that g, € Init,, q, = q, and <q,, 8,

q,,, € Trans, forallk € {0, 1,...,n-1}.

Letf: N — Steps(E,,, Q,,) be defined by:
f(k) = <q,,6,,9,,,f0<k<n
=4q,, A q,>, otherwise.
Then f is a history skeleton and by Lemma 3.5 there is a unique history X such that f
spans X. Letx = Obsx. It is easy to see that X is a computation of M.

-122 -

Since 8,.’(9) is enabled for M, in state (q), for each i € / we can choose r; € QM/
such that <= (q), 8,.’(9), rp € TransMI. it follows that for each i € /, the history X,, where X,
= X" and

Obs, (1) = 83(e), fort = n
= A, fort € (n, o)
Statexl(t) = r,fort € [n, 00)
is a computation for M. Let x; = Obsxl foreachi€ I

By the assumption that each S, is orthdgonal, we can obtain computations Y, € V,
suchthatY, = _ X. Lety, = Obsyl. Theny, €0(S)andy, =, x,

n+1

Since each §, is locally 3-consistent, and the the specification domain 3 is
evolutionary, we can apply Lemma 6.3 to show that futUreyan(O(S,)) contains a

9-behavior B, of interface Fi’ foreachi €1 LetB = (§ j)"(B). Then since the
~ specification domain 9 is closed under composition, it follows that B is a 9-behavior of
interface £3. Since Z-behaviors are nonempty by the nondegeneracy property of 9, it
follows that we can choose an element z ‘' of 8. Let z be the observation defined by the
properties:

zZ = n X

z(n) =6

z(t) = A fort€(n,n+1)

suffix (2) = z".
Then by construction, 8,.’(2) € O(S) for each j € 1. As shown in the first paragraph of the
proof, it follows by 9-correctness that a’(z) € 0(S,,4)-

Since a’(z) € 0O(S,,,), there exists a computation Z_, for M, with Obsz‘bs =

. a’(x) = Obs,aws). Since S, is

a’(z). By construction, Obszm = a’(z) =
quasi-determinate, there exists a computation 2, ' such that Z,, ' =, X and
Obszm. = Obszm. Since Z,, ' =, X{®®), we know that Statez.bs {n) = =, (q). Since
a’(e) occurs attimeninZ
desired. 8

abs " It follows that a’(e) is enabled for M, in state =, (q), as

-123 -

7. Conclusion

7.1 Summary

The important accomplishments of this thesis are the following:

1. Formal Framework - A major accomplishment of this thesis is that it sets
up a formal framework within which it is possible to formulate precisely a large number
of interesting and important questions about specifications and correctness proofs, and
to obtain rigorous answers to these questions. The framework includes the notions of
interface, observation behavior, composition, and abstraction, as primitive. These
primitive notions are used to give precise, language-independent definitions of the
notions of implementation, correctness, and consistency.

2. State-Transition Specifications - The thesis shows how module
behaviors can be conveniently and naturally described in terms of a machine that
generates an observation as it executes, plus some validity conditions on the
computations of that machine. Specifications stated in such a form lend themselves to
& systematic method for performing correctness proofs.

3. Rely- and Guarantee-Conditions - The concept of rely- and
guarantee-conditions is shown to be useful for organizing eventuality specifications and
proofs of correctness involving such specifications. The use of rely- and
guarantee-conditions seems to result in simple proofs based on the communication
structure of a system, rather than in proofs based on the structure of computations.

4. Consistency of Specifications - The 1/0-behavior model provides an
interesting and useful notion of consistency for eventuality specifications. The thesis
obtains a technique for proving the I/0O-consistency of state-transition specifications.

The investigation of state-transition specification performed in this thesis has
resulted in some practical insights that can be tentatively expressed in the form of the
following procedure for refinement of an abstract module into a system of component
modules:

(1) Determine the interconnection of component modules that will be used to
implement the abstract module.

(2) Identify the implementation invariant and the rely-/guarantee-conditions
required for the proof of correctness.

(3) "Localize" the rely-/guarantee-conditions to each component module.

-124 -

introduce sufficient information into the component module states to permit the
localized conditions to be conveniently expressed.

(4) Define the state-transition relations for each component module.

(5) Check the completed component module specifications by proving their
consistency.

(6) Use the component module specifications to perform a complete proof of
correctness for the implementation.
The resource manager example in Appendix Il illustrates the use of this procedure.

It has unfortunately been possible in this thesis to investigate only a tiny fraction of
the questions that could conceivably be formulated using the framework developed
here. The remainder of this chapter lists a number of questions that have not been
addressed, but should be. Hopefully the answers to these questions can provide further
practical insights into the problem of design, and ultimately contribute to more useful
and reliable distributed/concurrent systems.

7.2 ideas for Future Work

The basic framework set up in this thesis can serve as a starting point for a number
of interesting extensions. The discussion below is concerned with the following broad
possibilities for investigation:

(1) Specification Domains

(2) Semantic Properties of State-Transition Specifications
(3) Organizing Principles for Specifications and Proofs
(4) Formal Specification and Proof

(5) Non-State-Transition Specifications

7.2.1 Specification Domains

The concept of a specification domain appears to offer considerable possibilities
for theoretical investigation. There are two broad directions for future investigation of
specification domains. The first direction is concerned with developing the general
theory of specification domains, and relating this theory to domain theory as used in
programming language semantics. The second direction is to construct additional
example specification domains that model systems with interesting properties.

-125 -

Plausible steps toward a general theory of specification domains might include the
following:

(1) The definition of a specification domain should be generalized so that the
" particular structure of an observation is not specified. The assumption of the particular
structure of translations between interfaces would also have to be removed. A
reasonable approach might be to assume that the interfaces and translations comprise
the objects and morphisms of a category. The relationship between interfaces and
observations would take the form of a functor defined on the category of interfaces,
which maps each interface E to the set Obs(E) of observations over E, and which maps
each translation a: E = F to a function on observations.

(2) The notion of a behavior should be generalized so that a behavior
determines, but is not identified with, a set of observations. This would permit behaviors
such as the "futures processes” of [Rounds81] to be used, as well as correspondingiy
more general abstraction and composition operations. There still should be some
constraints on the effect of abstraction and composition operations with respect to the
set of observations determined by a behavior. It is not immediately obvious what those
constraints should be.

(3) An attempt should be made to try to identify the correct set of regularity
assumptions for abstraction and composition operations. The results of Chapter 6
required no such assumptions, however it seems reasonable that the classes of
abstraction and decomposition maps ought to be closed under function composition
and include the identity translations. The 1/0-abstraction maps and 170-decomposition
maps certainly have these properties.

(4) The specification domain 170 seems to provide motivation for a kind of
duality between abstraction and decomposition, in the sense that abstraction and
decomposition maps seem to have complementary preservation properties with respect
to input and output. It would be very interesting if abstraction and decomposition maps
could be unified, so that they are just dual instances of a single underlying notion of
translation, or “interface morphism.” One way this might be accomplished is by
assuming the existence of a kind of conjugation operation on interfaces. Intuitively, the
conjugate of a module interface would be the interface of the module's environment.
The duality between abstraction and decomposition might then be captured by stating
that a decomposition map is an abstraction map defined on conjugate interfaces.

-126 -

To help motivate the correct general definitions, further specific examples of
specification domains should be constructed and studied. Ideas for constructing
further examples of specification domains might be as follows:

(1) Different notions of observation might be used to construct a number of
interesting specification domains. One example is to replace the assumption that
observations contain only finitely many events in any finite interval with some less
restrictive topological assumption, and to attempt to construct corresponding classes of
behaviors. If the machine approach to defining behaviors is to be used, then there is the
problem of how to define a machine that permits infinitely many events to occur ina
finite interval. Examples of such "machines" already appear in the theory of dynamical
systems. For example, if one is willing to assume that an observation is a continuous,
differentiable function on [0,), then the correct notion of machine is that of a
differential equation.

(2) Different special assumptions on behaviors can be made to model systems
with particular properties. For example, it would be interesting to find a class of
behaviors that includes non-asynchronous behaviors, corresponding to sets of
observations that are not necessarily closed under stretching of the time axis. These
behaviors would model timing-dependent systems. If observations contain space
coordinates, in addition to time coordinates, then it m/ight be possible to construct a
class of behaviors with the property that information doesn't travel "too quickly” from
one place to another. This specification domain could be used to investigate the
problem of what can be observed by one module about the operation of another in a
distributed system. Another idea might be to try to characterize a class of "atomic”
behaviors, like the atomic data types of [Weihi84]. The observations in these behaviors
would have certain serializability properties.

(3) An attempt should be made to deal correctly with simultaneity. It should be
possible to do this within the specification domain framework as follows: Introduce
additional structure on interfaces to mode! the intuitive idea that some events represent
the simultaneous occurrence of more primitive events. For example, it might be
assumed that the events in an interface form a complete lower semilattice with A at the
bottom, and with the semilattice operation LI representing the operation of
»simultaneous occurrence.” The main problem with this approach is how to introduce
the notions of input and output so that an assignment of behaviors that is
nondegenerate and closed under composition can be defined.

127 -

7.2.2 Semantic Properties of State-Transition Specifications

In Chapter 6 three semantic properties of state-transition specifications were
identified (determinécy, regularity, orthogonality) and it was suggested that these might
be properties characteristic of "well-formed"” specifications. The idea of finding
semantic well-formedness properties of specifications also appears in [Jones81], where
the notion of an "unbiased" specification is discussed. It is interesting and useful to try
to identify such properties, since they can possibly serve as guidelines in the design
process. An important extension to this thesis would be to try to examine more closely
the properties identified in Chapter 6, to develop techniques for proving that
specifications have these properties, and to try to develop additional well-formedness
properties.

7.2.3 Organizing Principles for Specifications and Proofs

The development of organizing principles for specifications and proofs appears to
be a promising area of investigation. The rely- and guarantee-condition approach to
writing specifications and performing correctness proofs is an example of the kind of
results one might try to obtain. The way to proceed in this area is to perform example
specifications and correctness proofs, and then try to abstract from these examples
something in the way of general methods that would be applicable to other examples.
This is difficult, because the examples take a long time to do, and it is hard to abstract
general methods from a few examples.

Rely-/Guarantee-Conditions:

Rely- and guarantee-conditions were used in this thesis in the statement of the
validity condition portion of a specification only. This is in contrast to the work of other
researchers, for example [Jones81], in which rely- and guarantee-conditions can be
used for state-transition properties only. For the examples in this thesis it did not seem
particularly helpful to use rely- and guarantee-conditions for the state-transition portion
of a specification. One possible exception might be the synchronizer and synchronizer
component module specifications, in which the use of rely- and guarantee-conditions in
the state-transition part of the specification might obviate the need for an error state.

-128 -

Determinate vs. Indeterminate Specifications:

Both determinate and indeterminate specifications seem to be useful. From a
~ strictly theoretical standpoint, determinate specifications are more convenient to work
with than indeterminate specifications. From a practical point of view, though, there are
cases (such as the transmission line specification of Appendix Il) in which the use of
indeterminate specifications is quite natural, and in which an equivalent determinate
specification would have to be stated in a much more convoluted fashion. Perhaps a
result could be proved which shows that determinate and indeterminate specifications
are equivalent in expressive power, in the sense that every indeterminate specification
could be stated equivalently as a determinate specification. Such a result would permit
the theory of specification to deal only with the more convenient determinate
specifications, while permitting indeterminate specifications to be used in examples
where they seem natural.

Parallel Speclfications:

In ceitain examples, though noi in any of the ohes considered in this thesis, it is
convenient to describe the desired functioning of a module in terms of a collection of
loosely interacting concurrent processes. This process structure is a logical one used
for descriptivé purposes only, and may or may not bear any relation to the structure of
an implementation of the module. It would be nice to be able to write specifications that
reflect such a logical decomposition. State-transition specifications as described in this
thesis are an inherently sequential form of description, since they include only a single
machine. Perhaps the state-transition technique could be extended by permitting
specifications to include a collection of machines that execute in parallel, and whose
state sets are mostly independent of each other. To perform correctness proofs with
this kind of specification would require a modified version of thé Correctness Theorem.

Differential vs. Integral Form:

There is a certain amount of flexibility in whether state-transition properties are
expressed in “differential,” state-transition form, or in "integral,” invariant form. In
general, given a statement of the invariant form, "for all reachable states q, property
P(q) holds," an equivalent expression in state-transition form can be obtained by a
simple syntactic transformation analogous to differentiation, e.g. "Property P holds of

-129.

all initial states, and a state transition from q to r can occur only if P(q) implies P(r)."
There is apparently no general method for "integration," that is, for obtaining equivalent
statements in invariant form, given a statement in state-transition form.

In this thesis, the policy was adopted that all local properties would be expressed
in state-transition form, rather than in invariant form. One reason for this is that, in
general, invariants for the composite machine for an implementation cannot be proved
directly from invariants for the component machines. Rather, it is necessary to first
“differentiate” the invariants for the components, to obtain corresponding
preconditions for event occurrences, and then use these preconditions in an inductive
proof of the desired invariant for the composite machine. In certain circumstances,
though, it seems natural to express specifications in invariant, rather than
state-transition form. For example, in the synchronizer module specification it is
perhaps more natural to state explicitly that "at most one user process can be running
at any instant,” rather than the more indirect approach taken here, where we use the
precondition "a run event can occur only if there are no users currently running.”
Further investigation into the relationshin between state-transition and invariant
specifications seems needed.

7.2.4 Formal Specification and Proof

For the specification and proof techniques developed in this thesis to be useful for
practical examples, the development of mechanical aids for manipulating specifications
and assisting in correctness proofs is essential. Appendix | takes the first steps toward
this goal by showing how all of the proof techniques developed in this thesis can be
formalized within an appropriate temporal language. Further steps should be taken
along the following lines:

(1) A practical method should be devised for describing heterogeneous
algebras and for associating with each description a reasonably powerful, sound
deductive system for deducing properties of the described aigebra. In spite of the large
amount of work that has been done in this area (specification of abstract data types), a
completely satisfactory method is still lacking.

(2) Tools are needed for enumeration and checking of cases in inductive
proofs of invariance. In the correctness proofs performed in this thesis, once the
implementation invariant is devised, the proof that it is inductive is a tedious case

-130 -

analysis that ought to be easily mechanizable.

(3) Mechanical aids for checking proofs in temporal logic are needed. Such a
proof checker would probably not be capable of performing complete proofs by itself,
but rather would serve to fill in intermediate steps in a proof generated by a human

vertier.
7.2.5 Non-State-Transition Specifications

it would be interesting to use the framework of definitions set up in Chapter 2 to
investigate specification languages not based on the state-transition approach. One
obvious example is to investigate specification languages based on some kind of
generalized regular expression. Preliminary experience with this kind of specification
seems to indicate that the regular expression approach seems to produce shorter
specifications for trivial examples, but for more complex examples it is much more
difficult to express the desired properties. Interesting questions are what sort of
deductive system, if any, could be used to derive consequences from specifications
stated in reqular expression form, and what form the Correctness Theorem would take
for such specifications.

-131 -

References

[Abrial80] Abrial, J.R., "The Specification Language Z: Syntax and Semantics,"
Programming Research Group, Oxford University, 1880.

[Apt81] Apt, K., "Ten Years of Hoare's Logic: A Survey - Part |," TOPLAS 3, 4(1981), pp.
431 '483- .

[Barringer83] Barringer, H., Kuiper, R., "A Temporal Logic Specification Method
Supporting Hierarchical Development,” Manuscript, University of Manchester
Department of Computer Science, November, 1983.

[Bartlett69] Bartlett, K.A., et al. "Note on Reliable Full Duplex Transmission on Half
Duplex Links," CACM 12, 5(May 1969), pp. 260-261.

[Berzins79] Berzins, V.A., "Abstract Model Specifications for Data Abstractions,"
MIT/LCS/TR-221, 1979.

[Bochmann78] Bochmann, G.V., "Finite State Description of Communication
Protocols,” Computer Networks 2(1978), pp. 361-372.

[Brock81] Brock, J.D., Ackermann, W.B., "Scenarios: A Model of Non-determinate
Computation,” Proc. Peniscola Colloquim, Springer LNCS 107, 1981.

[Brock83] Brockl, J.D., "A Formal Model of Non-Determinate Dataflow Computation,”
MIT/LCS/TR-309.

[Chen81] Chen, B., Yeh, R.T., "Event Based Behavior Specification of Distributed
Systems,"” |IEEE Symposium on Reliability in Distributed Software and Database
Systems, July, 1981.

[Chen82] Chen, B., "Event-Based Specification and Verification of Distributed
Systems," PhD Dissertation, University of Maryland, 19882.

[Clinger81] Clinger, W. "Foundations of Actor Semantics," MIT/Al/TR-633, May, 1981.
[Dijkstra76] Dijkstra, E.W., A Discipline of Programming, Prentice Hall, 1976.

[DiVito82] DiVito, B.L., "Verification of Communications Protocols and Abstract Process
Models," Institute for Computing Science TR-25, University of Texas at Austin, 1982.

[Fischer83] Fischer, M.J., Griffeth, N.D., Guibas, L.J., Lynch, N.A., "Probabilistic
Analysis of a Network Resource Allocation Algorithm," submitted for publication.

-132-

[Floyd67] Floyd, R.W., "Assigning Meanings to Programs,” in Mathematical Aspects of
Computer Science, American Math. Soc., 1967.

[Francez79] Francez, N., et. al., "Semantics of Nondeterminism, Concurrency, and
" Communication JCSS 19(1979), pp. 290-308.

[Goguen78] Goguen, J.A., Thatcher, J.W., Wagner, E.G., "Initial Algebra Approach to
the Specification, Correctness, and Implementation of Abstract Data Types," in Current

Trends in Programming Methodology, Vol. IV, Data Structuring, R.T. Yeh, ed.,
Prentice-Hall, 1978.

[Good79] Good, D.l., Cohen, R.M., Keeton-Williams, J., "Principles of Proving
Concurrent Programs in GYPSY," 6th POPL, 1979.

[Good82] Good, D.1., "The Proof of a Distributed System in GYPSY," Technical Report
30, University of Texas at Austin, September 1982.

[Gordon79] Gordon, M.J.C., "The Denotational Description of Programming
Languages," Springer-Verlag, 1979.

[Goree81] Goree, J.A., "Internal Consistency of a Distributed Transaction System with
Orphan Detection,” MIT/LCS/TR-286, Mass. Institute of Technology, 1981.

[Greif75] Greif, I. "Semantics of Communicating Parallel Processes,"” MIT/LCS/TR-154,
September, 1975. /

[Guttag78] Guttag, J.V., Horowitz, E., Musser, D.R., "Abstract Data Types and Software
Validation," CACM 21, 12(Dec. 1978), pp. 1048-1064.

[Guttag80] Guttag, J., Horning, J., "Formal Specification as a Design Tool,"” 7th POPL,
1980, pp. 251-261.

[Hailpern80] Hailpern, B.T., Owicki, S.S., "Verifying Network Protocols Using Temporal
Logic," Technical Report No. 182, Computer Systems Laboratory, Stanford University,
June, 1980.

[Hailpern81] Hailpern, B.T., Owicki, S.S., "Modular Verification of Computer
Communication Protocols,” 1BM Research Report RC 8726, March, 1981.

[Harel78] Harel, D., "Logics of Programs: Axiomatics and Descriptive Power," MIT LCS
TR-200, May, 1978.

[Hewitt77] Hewitt, C., Baker, H., "Laws for Communicating Parallel Processes," IFIP 77,
Toronto, August, 1977.

-133-

[Hoare69] Hoare, C.A.R., "An Axiomatic Basis for Computer Programming,” CACM, Vol.
21, October, 1969.

~ [Hoare72] Hoare, C:A.R., Proof of Correctness of Data Representations, Acta
Informatica 1, 4(1972) pp. 271-281.

[Hoare78] Hoare, C.A.R., "Communicating Sequential Processes,” CACM, Vol. 21,
August, 1978.

[Hoare81a] Hoare, C.A.R., Brookes, S.D., Roscoe, A.W., "A Theory of Communicating
Sequential Processes," Technical Monograph PRG-22, Oxford University Computing
Laboratory, May, 1981.

[Hoare81b] Hoare, C.A.R., "A Model for Communicating Sequential Processes,"
Technical Monograph PRG-22, Oxford University Computing L.aboratory, June, 1981.

[Jones81] Jones, C.B., "Development Methods for Computer Programs Including a
Notion of Interference," Wolfson College, June, 1881.

[Jones83] Jones, C.B., "Specification and Design of (Parallel) Programs," IFIP 83.

[Kahn74] Kahn, G., "The Semantics of a Simple Language for Paralle! Processing," IFIP
74, pp. 471-475.

[Kahn77] Kahn, G., MacQueen, D.B., "Coroutines and Networks of Parallel Processes,"
IFIP 77, pp. 993-998.

[Kapur80] Kapur, D., "Towards a Theory for Abstract Data Types," MIT/LCS/TR-237,
May, 1980.

[Keller76] Keller, R.M., "Formal Verification of Parallel Programs,” CACM 19,7(July
1976), pp. 371-384. '

[Lamport80] Lamport, L., "'Sometime’ is Sometimes 'Not Never’: On the Temporal Logic
of Programs,” ACM POPL 1980.

[Lamport83] Lamport, L., "Specifying Concurrent Program Modules," TOPLAS, 1983.

[Lansky83] Lansky, A.L., Owicki, S., "GEM: A Tool for the Description of Concurrency
Primitives and Verification of Concurrent Programs,” PODC 83.

[Liskov79] Liskov, B.H., "Modular Program Construction Using Abstractions,” MIT
Computation Structures Group Memo 184, September, 1979.

[Lynch81] Lynch, N.A,, Fischer, M.J., "On Describing the Behavior and Implementation

<134 .

of Distributed Systems," Theoretical Computer Science 13(1981), pp. 17-43.

[Lynch83] Lynch, N.A., "Concurrency Control for Resilient Nested Transactions," ACM
~ SIGACT-SIGMOD Symposium on Principles of Database Systems, Atlanta, March, 1983.

[Milner80] Milner, R., A Calclulus of Communicating Systems, Springer Lecture Notes in
Computer Science 92, 1980.

[Misra81] Misra, J., Chandy, K.M., "Proofs of Networks of Processes," IEEE TOSE, Vol.
SE-7, No. 4, July 1981.

[Misra82] Misra, J., Chandy, K.M., Smith, T., "Provi ng Safety and Liveness of
Communicating Processes with Examples,” ACM PODC 1982.

[Owicki76] Owicki, S., Gries, D., "Veritying Properties of Parallel Programs: An
Axiomatic Approach,” CACM 15, 5(1976).

[Parnas72] Parnas, D.L., "A Technique for Software Module Specification with
Examples," CACM 15, 5(May, 1972), pp. 330-336.

[Pneuli_?‘l] Pnueli, A., "The Temporal Logic of Programs," FOCS 1977.
[Pratt82] Pratt, V.R., "On the Composition of Processes," ACM POPL 1982.

[Rounds81] Rounds, W.C., Brookes, S.D., "Possible Futures, Acceptances, Refusals,
and Communicating Processes," FOCS 1981.

[Schwabe81a] Schwabe, D., "Formal Techniques for the Specification and Verification
of Protocols,” Report No. CSD-810401, UCLA Computer Science Department, April,
1981,

[Schwabe81b] Schwabe, D., "Formal Specification and Verification of a
Connection-Establishment Protocol," USC-ISI Tech. Rpt. ISI/RR-81 -91, April, 1981.

[Schwartz81] Schwartz, R.L., Melliar-Smith P.M., "Temporal Logic Specification of
Distributed Systems," Second International Conference on Distributed Systems, INRIA,
April, 1881.

[Sunshine78] Sunshine, C.A., "Survey of Protocol Definition and Verification
Techniques,” Computer Networks 2(1978), pp. 348-350.

[Weihi84] Weihl, W.E., "Specification and implementation of Atomic Data Types," PhD
Thesis, MIT, March, 1984.

[Wing83] Wing, J.M., "A Two-Tiered Approach to Specifying Programs,”

-135-

MIT/LCS/TR-299, 1983.

[Wirth71] Wirth, N., "Program Development by Stepwise Refinement,” CACM 14, 4(April
1971), pp. 221-227. '

[Wolper82] Wolper, P., "Specification and Synthesis of Communicating Processes
Using an Extended Temporal Logic,"” ACM POPL 1982.

[Yonezawa77] Yonezawa, A., "Specification and Verification Techniques for Parallel
Programs Based on Message Passing Semantics,” MIT/LCS/TR-191, December, 1977.

-136 -
Appendix | - Formal Specification and Proof

The purpose of this appendix is to outline the way in which the informal
state-transition specification and proof techniques used in this thesis can be formalized,
perhaps to permit mechanically-assisted specification and verification. The major new
concepts introduced to permit this formalization are those of an "event/state algebra"
and an "implementation algebra." An event/state algebra is a heterogeneous algebra
that embeds the machine part of a state-transition specification. An "implementation
algebra” is a special kind of event/state algebra, which embeds the composite machine
for an implementation, and which contains among its operations the abstraction and
decomposition map for the implementation.

The utility of event/state algebras and implementation algebras derives from the
fact that associated with each event/state algebra A (and hence each implementation
algebra as well) is a temporal logic language 9{A), within which can be expressed
properties of the computations of the embedded machine. Each of the proof techniques
presented in this thesis has the property'that its hypotheses can be formalized in terms
of the validity of verification conditions, which are sentences expressed in the temporal
language of an appropriate event/state algebra. The problem of formalizing proofs that
use the techniques of this thesis is thereby reduced to the following two problems:

(1) Find a convenient method for describing event/state algebras.

(2) Find a general method whereby the description of an event/state algebra A
can be used to obtain a formal deductive system for deriving a large number of true
statements about A, where thesé statements are expressed in the temporai language

9(A).

in this appendix, the following tasks are accomplished:

(1) The notions of event/state algebra and implementation algebra are
defined. |

(2) Precise semantics are given for the temporal language 9{A) associated with
an event/state algebra A.

(3) An approach, based on set theory, for describing event/state algebras is
sketched. It is indicated how, from the description of an event/state algebra A, an
A-sound deductive system for the language 9{A) might be obtained.

(4) 1t is show how the various proof techniques presented in this thesis can be

-137 -

formalized in the language 9{A) for an appropriate A.
1.3 Event/State Algebras

Definition - An event/state algebra A is a heterogeneous algebra whose signature is of
the form: <Events,, States,, Init,, Trans,, A, - 2, where A is a distinguished constant
of sort Events,, so that <Events,, A > is an interface, and <Events,, States,, Init,, Trans,>
is a machine, which we call the embedded machine and which we denote by Mach a1

When there is only one event/state algebra under consideration, we will omit the
identifying subscripts. The ellipsis in the signature of A indicates that A is permitted to
contain additional sorts, relations, and functions besides those explicitly listed. The
reason for permitting A to contain these additional sorts, relations, and functions, is to
provide a mechanism by which the temporal language 9{A) can be made as expressive
as desired.

We now define precisely the syntax and semantics of the temporal language 9{A)
of an event/state algebra A. Let T, be the signature of A. The signature % 4 IS required
to contain distinguished sorts Events and States. In addition, we assume that
corresponding to each sort of Z, is a countably infinite collection of variables which we
use to range over values of that sort. The language 9{A) contains syntactic categories
of "terms," "atomic formulas,” and "formulas,” which are defined by induction as
follows:

Terms:

(1) The distinguished symbols Now and After are terms of sort States.

(2) The distinguished symbol Occurs is a term of sort Events.

(3) If vis a variable of sort S, then v is a term of sort S.

(4) itt, ...t areterms of sorts S, ... , S, respectively, and f is an n-ary
function symbol of type §, X ... X S,—S,thenf(t, ... t)isatermof sort S.

Atomic Formulas: Ift,, ... ,t_are terms of sorts S, .., S, respectively, and R is an n-ary
relation symbol of type S, X ... X S, then R(t, ... 1)) is an atomic formula.

Formulas:
(1) An atomic formula is a formula.

-138-

(2) If ¢ and ¢ are formulas, and v is a variable of sort S, then =g, ¢ Vv ¥, and
(3vES)p are formulas.

(3) If p is a formula, then O is a formula.
The sets of terms, atomic formulas, and formulas of 9{A) are the ieast sets with the
properties listed.

The first-order language L(A) is the sublanguage of 9(A) obtained by omitting
formation rules (1) and (2) under "Terms," and formation rule (3) under "Formulas."
We treat the additional logical connectives A, —, «, ¥ as abbreviations in the usual
way. In addition, the temporal operator © is regarded as an abbreviation for =0

We use the notation t(v, ... v) to denote a term t whose variables are a subset of
the set {v,, ..., v,}, and the notation g(v, ... v,) to denote a formula whose free variables
are a subset of {v,, ..., v }. The notations t(t,/v, ... t,/v))and ot /v, ... t /v) denote
the result of substituting the terms t,, ..., t, for free occurrences of the variables v,, ...,
v, intand ¢, respectively.

Next, we define the semantics of 9(A). If S is a symbal (sort name, function symhol,
or relation symbdl) in the signature of A, then we use S, to represent the denotation (set,
function, or relation) assigned by A to the symbol S. Define an interpretation for a
sequencev,, ..., v, of variables of sorts S, ..., S, respectively, to be a sequence a,, ...,
a, of elements of A, where each a,isof sort S,. The semantics of 9(A) are defined in two
parts. First, given an intepretation 8, .y 8, for the free variables Vi oy V,, @ term
t(v, ... v,) of sort S denotes a function t[a /v, ... & /v] from Steps(Events,, States,) to
S, whose value on the step s = <q, e, r> is defined as follows:

(1) iftis Now, then t[a, /v, .. a /v I(s) = q.
iftis After, thent[a, /v, ... a /v](s) = r.
(2) U tis Occurs, thentfa /v, ... a,/v](s) = e.
(3) If tis the variable v, then t[a,/v, ... & /v I(s) = a,.
(4) Iftisf(t, ...t) thentla /v, ... a /v I(s) = f,(b,..b),
where b, =t [a,/v, ... a,/v](s)for each k.

The second part of the definition of the semantics of 9{A) is concerned with when a
formula (v, ... v,) is satistied by a history X € Hist(Events,, States,), and an
intepretation 8y vy 8, for vy - o V. We abbreviate this as X =, w[81/v1 an/vn], or,
when the algebra A is clear from the context, as simply X k= ¢[a,/v, ... a /v,].

-139 -

Atomic Formulas: If ¢ is the atomic formula R(t, ... t), where the free variables of each
t,areintheset {v,, .., v }, then X k= pla,/v, .. a,/v] ifi<b,, ..., b> € R, where b, =
tfla,/v, ... a,/v,]1(Step,(0)) for each k.

Formulas: If @ is a formula, but not an atomic formula, then

(1) Hgis =Y, ¢ Vv x, or (IVES)Y, then satisfaction for ¢ is defined by induction
in the usual way.

(2) If @ is Oy, then X = gla,/v, ... a,/v,] iff suffix(X) = ¢la,/v, ... a,/v] for
all t € [0, o0).

Suppose that ¢(v, ... v) is a formula of 3{A) and that ¥ is a set of formulas of 9{A),
the free variables of which are a subset of {v,, ... v }. We say that ¢ is a consequence
of ¥in A, written ¥ =, ¢, if whenever a,, ..., a, is an interpretation for the variables v,,

..y v, and X € Hist(Events,, States,) is such that X = vla,/v, ... a,/v] forall ¢ in ¥,
then X k= ¢la./v, ... a,/v] as well. The formula ¢ is said to be valid in A, abbreviated
=, ¢, if ¢ is a consequence in A of the null set of formulas. A sentence of 9{A) is a
formula of 9{A) that has no free variables. If ¢ is a sentence and ¥ is a formula, then it is
easily verified that g k=, ¢ iff =, ¢ — ¢.

The following result makes explicit the relationship between the preceding
definitions and the usual semantics of first/order logic.

Lemma I.1 - Suppose that ¢(v,, ... v,) is a formula of g{A), containing no occurrences of

O. Suppose that A is an event/state algebra, that X € Hist(Events,, States,), and that

, @, is an interpretation for the variables v,, ... , v,. Suppose X(0) = €q, e, r>. Then
Xe=,pla /v, .. a,/v]

84y oo

iff
=, ola,/v, .. a /v, q/Now, e/Occurs, r/After],
where the latter is defined in the usual sense of first-order logic.

Proof - Straightforward. 1

We recall here the definitions, given in Chapter 4, of the sentence Comp of 9{A).
Comp = Init{Now) A OTrans(Now, Occurs, After)
Intuitively, X = Comp iff X is a computation for the embedded machine Mach,.

-140 -

We conclude this section with the following definition: Suppose that A is an
event/state algebra, and Valid is a sentence of 9{A). Then the state-transition
specification defined by the pair <A, Valid> is the state transition specification S =
<M, V>, where M = Mach,, and V = {X € Hist(Events,, States,): X = Comp A Valid}.

1.4 Description of Event/State Algebras

In this section, we consider the problem of describing event/state algebras in such
a way that a sound deductive system for 9{A) can be obtained from a description of the
event/state algebra A. It should be noted that this problem has already received a good
deal of attention in the research literature under the heading of “Specification of
Abstract Data Types." In spite of the effort that has been expended on this problem,
there still does not seem to be an available description method that is convenient for the
purposes of this thesis. Hopefully this situation will be rectified in the near future.

The description technique we use here can be summarized as follows: We assume
fixed in advance a standard "primitive" or "core" algebra with a sufficiently expressive
first-order theory. Let C be the core algebra, and let T be its complete first-order theory,
expressed in the language £(C). An event/state algebra is described by writing a
collection of first-order axioms U in an extension L of L(C), that define an extension by
definition of T. Such a collection of axioms defines a unique extension of the core
algebra Ctoamodel Aof T U U.

We wish to obtain an A-sound deductive system for the language L(A) (= L).
Since we wish our description method to be powerful enough to describe algebras such
as <N, 0, 1, +, *>, which cannot be completely axiomatized, it seems unreasonable to
expect the core theory T to be axiomatizable. If we fix in advance a deductive system
that axiomatizes a usefully large fragment of T, though, then by augmenting this
deductive system with the defining axioms U, we can hopefully obtain an axiomatization
of a usefully large fragment of the complete first-order theory of A. In this thesis, we
assume as the core theory some suitable variant of the theory of sets. Set theory is
highly expressive, and this makes it easy to describe desired event/state algebras.
However, if machine-assisted verification is a goal, then set theory might not be the most
appropriate: it seems quite possible that some less expressive core theory would be
more amenable to mechanization.

et

-141 -

We next consider the problem of deduction in 9{A). Given an event/state aigebra
description, which, as discussed above, we regard as denoting an extension by
definition of an underlying set theory, we wish to be able to deduce a large class of
- A-valid formulas of 9{A). Suppose we could somehow transform an arbitrary sentence ¢
of 9{A) into a sentence ¢’ of L(A) such that =, ¢ «» ¢ ‘. In other words, suppose that
wé could axiomatize the temporal operator O and special symbols Now, Occurs, and
After, in terms of the set theoretic notions of L. Then the problem of showing =, ¢,
where ¢ € 9{A), would be reduced to the problem of showing that T = ¢ ‘, where ¢’ €
L(A) is the transformed version of ¢.

It seems likely that the reduction described the preceding paragraph can actually
be carried out, since the idea seems essentially the same as that used in the proofs
[Harel78] of the "arithmetic completeness” of deductive systems for dynamic logics.
Assuming that this idea works for the temporal logics 9{A), this would give us a way of
deducing all valid formulas of 9{A), assuming we have available the complete theory of
some model of set theory. Although we can never obtain a complete axiomatization of
sat theory, it seems likely that any of the usual collections of axioms for set theary would
provide us with a deductive system for 9{A) that is powerful enough to be useful in
practice.

In practice, to write down explicitly the collection of defining axioms that describe
an event/state algebra A is cumbersome. It is convenient to introduce some notation
for common constructions. We do this with the understanding that descriptions
expressed in this notation stand for collections of first-order defining axioms. In
general, the description of an event/state algebra can be divided into two parts: one,
the definition of new sorts, and two, the definition of new function and relation symbols.

We define new sorts by a set of defining equations that define the new sorts in

terms of more primitive components. These equations take the form:
S =8(S,,...S))

where S is the new sort being defined, S,, ... , S, are the names of previously-defined
sorts, and € is an expression within which various set-theoretic constructions can
appear. These defining equations are analogous to the domain equations used in the
denotational definition of the semantics of a programming language [Gordon79);
however, to ensure that a set of equations can be regarded as denoting a colletion of
defining axioms, we do not permit here the use of recursive equations. The

-142 -

set-theoretic constructions (cartesian product, disjoint union, etc.) that appear on the
right-hand sides of the defining equations introduce implicitly various “built-in"
functions and relations (projection, injection, etc.). The constructions we use, and their
associated built-in functions and relations are listed below.

Once the equations that define the new sorts have been given, we can use these
sorts and their built-in function and relations to define additional functions and
relations, in particular the initial state and state-transition relations for the embedded
machine. These additional functions and relations are defined by writing defining
axioms in the usual way.

1.4.1 Set-Theoretic Constructions Used in Defining Equations

1. (Enumeratioh) - The expression {a,, ... , a,} denotes the n-element set
whose elements are the constants a,, ..., a,,.

2. (Disjoint Union) - If A and B are sets, then the expression [t,: A + t,: B]
denotes the disjoint union D of the sets A and B. The tagst, and ¢, are used to denote
the injection operations associated with the disjoint union. Thatis,ifa € Aand b € B,
then t,:a denotes the image of a, and 1:b the image of b, in D.

3. (Cartesian Product) - The expression [t,: A X t;: B] denotes the cartesian
product C of the sets A and B. Associated with an element c of C are its projections c(t,)
and c(t;) onto the sets A and B, respectively. Givena €A and b € B, then the expression
<t,: a, tg: b> denotes the ordered pair with componentsa and b. Ifc € Cand a € A, then
the notation cl[a/t A] denotes the element ¢ ' of C which is identical to ¢ except that its ¢,
component has the value a. To reduce clutter in expressions, tags will be omitted from
both the disjoint union and cartesian product constructions when this is unlikely to
cause confusion as to the intended meaning.

4. (Function Space) - If A and B are sets, then the notation [A — B] denotes
the set of all functions with domain A and range B. We use the usual notation f(a) for the
application of f to the argument a, and the notation f[b/a] for the function that is
identical to f except that it has value b for argument a.

5. (Finite Powerset) - The notation Set[A] denotes the set of all finite subsets
of the set A. If s € Set[A] and a € A, then the expression a€s is true iff a is an element of
the set s. The expression |s| denotes the cardinality of the set s. We also use the usual
operations U, N, and ~ on Set[A]. The notation MSet[A] denotes the set of all finite

- 143 -

multisets of elements of A. We use the same notation for operations on multisets as for
sets, however, the meaning appropriate for multisets is assumed in this case.

6. (Finite Sequences) - The notation Seg[A] denotes the set of all finite
- sequences (i.e. strings) of elements of A. If u, v € Seq[A], then |u| denotes the length of
u, uv and u-v denote the concatenation of u and v, and if n € Nat, then u(n) denotes the
n + 1st element of u.

1.4.2 Definition of the State-Transition Relation

Manipulation of the state-transition relation is sometimes more convenient if its
defining axioms are factored into a collection of pairs, each of which consists of a
precondition, and a next-state predicate. The precondition defines the class of events
to which the pair applies, and defines conditions on the current state that must be
satisfied before an event in that class can occur. The next-state predicate determines
the relation that must hold between the current state and the new state that results from
an occurrence of such an event.

Although the basic idea of precondition/next-state predicate pairs is fairly simple,
some subtleties arise in actual use, especially associated with the interpretation of free
variables common to the two predicates. This problem is similar to that which arises in
the interpretation of free variables in the pre- and post-conditions used to specify
sequential programs. We must therefore be somewhat more careful about the precise
form and meaning of the pairs. A pair takes the form: <Pre(q, 6, x), Next(q, r, x)>, where
e is a variable of sort Events, g and r are variables of sort States, and x is a vector of free
variables of sorts S , where S can be chosen arbitrarily for each pair. A finite collection
<Pre,, Next,>, ..., <Pre,, Next >, where the kth pair contains free variables x , of sorts
S ,» determines the defining axiom for the state transition relation Trans according to the
following definition: '

Trans(q, e,) = V) _,(3x €S)(Pre,(q, e, x) A Next,(q,r, X),
where Prey(q, e, x o =e = Aand Next(q.r,xg)=r=q. What the above definition
says is that a step <q, e, r> satisfies the state transition relation Trans iff there exists a
pair <Pre,, Next,> (0 < k < n), and an interpretation of the free variables of that pair,
such that the precondition and next state predicate hold for that pair.

.144 -

A useful convention we will follow, which simplifies the maximality part of
correctness proofs, is to define the preconditions Pre(q, e, X) and next state predicate
Next(g, r, x) in each pair so that they satisfy the following relationship:

= (vg€States, e€Events, x €S }(Pre(q, e,x) — (3r€States)Next(q, r, x)).
That is, whenever the precondition is satisfied by a state q, an event e, and an
interpretation x for the free variables, then there must be a new state r such that g, r and
x satisfy the next state predicate.

1.4.3 Parameterized Descriptions

Quite often one wishes to write parameterized descriptions of event/state
algebras, where the parameters may be values, as in the case of the synchronizer
component module, where the number of initial tokens is given as a parameter, or
perhaps sets or some other kind of object. In this thesis, we view a parameterized
event/state algebra description as a schema for the construction of a family of related
descriptions. This way of treating parameters is satisfactory as long as there is no need
to perform reasoning about parameters with infinitary structure. A more general
treatement of pafameters requires extensions to the event/state algebra formalism, and
is outside the scope of this thesis. ,

/

1.5 Implementation Algebras

We have previously discussed the notion of an event/state algebra, which is a
formal structure that embeds the machine part of a state-transition specification. The
purpose of an event/state algebra is to provide semantics for the associated temporal
language. The temporal language, in turn, serves as a vehicle for the formal statement
of properties of histories, among which are the validity conditions for a specification.
Augmented with a sound deductive system, the temporal language can also serve to
express derivations of consequences of a specification.

Just as we can use the temporal language associated with a specification to
express and derive consequences of that specification, we would like to associate with
an implementation a language suitable for the expression and derivation of the
conditions required for the correctness of that implementation. However, taken
separately, none of the temporal languages associated with any of the modules involved
in an implementation suffices for this purpose. To solve this problem, we define below

- 145 -

the notion of an "implementation algebra,” which is a kind of "composite” event/state
algebra whose associated temporal language is powerful enough to permit the
expression of correctness conditions.

Let us say that an algebra A embeds an algebra B if there exists a signature
morphism1 « from the signature of B to the signature of A such that, for each sort S
(resp. function symbol f, relation symbol R) of B, the interpretation of S (resp. f, R) in B is
the same as the interpretation of «(S) (resp. «f), «(R)) in A. If A embeds B, then since we
might as well think of B as a subalgebra of A, we will omit mention of the signature
morphism « when no confusion can arise.

Suppose A, is an event/state algebra (corresponding to an abstract module to
be implemented), and let A = <A, ..., A > be a finite-length vector of event/state
algebras (corresponding to the component modules).

Definition - An implementation algebra for A, . and A is an event state algebra A with
the following properties:

{1) Aembeds A, and each A, wilh i < i < n. For eaci st ur operaiion S of
A s (resp. A)), we write S358 (resp. S') for the corresponding sort or operation of A.

(2) A contains distinguished functions

a: Events — Events®®s

8; Events — Events', for 1 <i<n
m,s States — States®™

n; States — States/,for 1 <i <n,

such that: 3, = <a, § > is an interconnection, called the embedded interconnection,

and <Mach A,>" and w,, and the »,

Mach, is the composite machine for 3,, Mach, (Y

abs
are the canonical projections from the cartesian product States to the factors States®bs

and States’, respectively. §

1. A function, mapping each sort, function symbol, and relation symbol of the signature
of B to a corresponding sort, function, symbol, or relation symbol of the signature of A,
that preserves relevant structure such as the -arity of the symbols.

- 146 -

Since an implementation algebra is a particular kind of event/state algebra, it has
an associated temporal language. Furthermore, the temporal language g{A) associated
with an implementation algebra A contains the temporal languages A, and each
9{A)) as sublanguages. This property is what makes an implementation algebra useful
for expressing correctness conditions.

The description of an implementation algebra is performed in the same way as for
ordinary event/state algebras. The meanings of many the symbols are fixed by the
definition of an implementation algebra, and in practice it is convenient to omit their
defining axioms. For example, the definition of the sort States is fixed by the
requirement that it be the cartesian product of the sorts States*:

States = [w,,: States®™ X = ;: States! X ... X #: States"].
Other examples of symbols whose meanings are fixed by the definition of an
implementation algebra are the initial state relation Init, and state-transition relation
Trans for the composite machine. Definitions must always be explicitly given for the sort
Events, the abstraction map « and the components §, of the decomposition map.

1.6 Proof Techniques
1.6.1 Formal Correctness Theorem

In this section we reduce the problem of proving the correctness of an
implementation to the problem of showing the validity of a set of verification conditions,
which are expressed in the temporal language associated with the implementation
algebra. There are three verification conditions in the technique introduced here. The
invariance” verification condition expresses that the predicate Inv is an
implementation invariant. The "maximality" verification is a straightforward
formalization of the the maximality condition required by the Correctness Theorem,
except that the phrase "q is reachable for the composite machine" is replaced by
"inv(q) holds.” The "validity" verification condition is the formalization of the validity
condition required by the Correctness Theorem.

Recall that the validity condition required by the Correctness Theorem states that,
if X is a computation for the composite machine that projects, under the canonical
projections associated with the composite machine, to a valid computation for each
component machine, then X projects to a valid computation for the abstract machine as

- 147 -

well. This condition cannot be formalized directly as a sentence in the temporal
language of the implementation algebra, since that language has no constructs for
dealing directly with histories and functions on histories. However, the language does
. contain the function symbols a, <8,.>,.€,. L, and <w,.)i€,. which denote the abstraction
map, components of the decomposition map, and canonical projections on the state
set, respectively.

To formalize the validity verification condition, we need some way of taking the
sentences that express the conditions required for a computation of the abstract
machine or a component machine to be valid, and "lifting"” these sentences to
sentences that express the corresponding properties on computations of the composite
machine. In Chapter 4 we defined a syntactic translation that accomplished this lifting
in the case of the synchronizer implementation. We now define this translation in
general, and state a lemma that summarizes its useful properties.

Suppose that A is an implementation algebra for A, and <A, Given a formula
¢ of 9(A,), define fel,,s to be the formula of 9{A) obtained by replacing each
occurrence of the symbol Now by the term # m(Now). each occurrence of After by the
term #, (After), and each occurrence of Occurs by the term a(Occurs). Similarly, for
each i € I, given a formula ¢ of 9(A), define [¢l, be the formula of 9{A) obtained by
replacing each occurrence of Now by -n,.(Now). each occurrence of After by w,(After),
and each occurrence of Occurs by 6,(0ccurs).

The precise relationship between a formula and its translation is captured by
Lemma |.2 below. An analogous result is stated in [Wolper82], where process of
“lifting" specifications of processes to obtain specifications of a system of processes is
called "relativization.”

Lemma 1.2 (Translation Lemma) - Suppose that A is an implementation algebra for A, .
and <AD,,. Suppose that vy - V) is a formula of 9(A,,) (resp. 9(A), for some i €,
thata, ..., a, is an interpretation of the variables v, ... , v, and that X is a history over
Events, and States,. Then

X 1= 19Dyl Vo - B! Vi) i X b=, @lag/vg o a, /v,
(resp. X =, [ollay/v, .. a,7v,] iff X0 =, plag/v, . a,/v,])

Proof - Straightforward induction on formulas, based on the precise syntax and

.148 -

semantics of 9(A) given above. §

In the sequel, to make formulas in the language 9(A) of an implementation algebra
A easier to read, we will often abbreviate the application of the functions «#,, , and =, to
a variable or constant by simply affixing an appropriate subscript to that variable or
constant. Thus, if g is a variable of sort States, then q,, . and g, abbreviate ”.bs(Q) and

7,(q), respectively.

We can now give a formalized version of the Correctness Theorem. Roughly
speaking, this result says that to prove the correctness of an implementation defined by
an implementation algebra A, it suffices to perform the following three steps:

(1) Determine the implementation invariant Inv(q) expressed in the first-order
language L(A) and containing the single free variable q of sort States. Show the validity
of two sentences of L(A), Which assert that Inv is inductive.

(2) Show the validity of a sentence of L(A) which implies that the maximality
condition holds. This sentence is obtained by formalizing the maximality condition of
the Correctness Theorem in the obvious way.

(3) Show the validity of a sentence of 9{A) that asserts that the validity
condition holds. This sentence is formed from the sentences that describe the sets of
valid computations for the abstract and component machines, through the use of the
translation operation discussed above.

Lemma 1.2 (Formal Correctness Theorem) - Suppose that A is an implementation
algebrafor A, and <AD. Suppose that Valid_, is a sentence of 9(A,,,), and for each
i, Valid, is a sentence of 9(4). Let S, be the state-transition specification defined by
the pair <A abs’ Valid m), and for each i, let S, be the state-transition specification defined
by the pair <A, Valid). Suppose that Inv(q) is a formula of L(A), with one free variable q
of sort States, such that the verification conditions below hold. Then <3,, S, S >is
correct.

(Invariance):

(Basis) = (Vg €States)(nit(q) — Inv(q))

(Induction) = (Vq,r€States, e€Events)(Trans(q, e, r) — (Inv(q) — Inv(r)))
(Maximality):

k= (Vg€States, e€Events)((Inv(q) A Ay, Enabled(q, e)) = Enabled,, (q, e)).
(Validity):

-149 -

Comp k= (A, [valid]) - fvalid B0

where
Enabled,,(q,6) = (3r€States)Trans®™¥(q,,., a(e), e
Enabled(q,6) = (3reStates)Trans'(q,, 5,(e),)

Proof - The basis part of the invariance verification condition states that Inv is true for
all initial states, and the induction part of the invariance verification condition states that
Inv is préserved under state transitions, and hence the truth of these two conditions
implies that /nv is inductive.

From the definition of the predicates Enabled, and Enabled, we know that
Enabled, (q, e) is true of a state g and event e iff a(e) is enabled for Mach, Agpn in state
Q,pe 2Nd similarly, Enabled(q, e) is true iff ,(e) is enabled for Mach, m state q. The
maximality verification condition therefore says that whenever g is a state such that
Inv(g) holds, and 8(e) is enabled for Mach, in state g, for each i with 1 <i < n, then a(e)
is enabled for Mach, in state g, This |mpl|es the maximality condition required by

the Correctness Theorem.

By the Translation Lemma, we know that I{Validm]] abs IS satisfied by a computation
X of Mach, iff Valid,, is satisfied by the computation x(8b) of Mach, A Similarly, for
each i we know that [Valid], is satisfied by a computation X of Mach,, iff Valid, is satisfied
by the computation X of Mach Since a history X satisfies Comp iff X is a computation
of Mach,, we see that the valudlty verification condition is the formal statement of the
validity condition required by the Correctness Theorem.

Since the truth of the verification conditions above implies that the hypotheses of
the Correctness Theorem are satisfied, an application of the Correctness Theorem
shows the correctness of the implementation <3, Sm, S> 1

1.7 Rely-/Guarantee-Condition Proof Techniques

In this section we give the formalized versions of the rely-/guarantee-condition
proof techniques stated in Chapter 3. The first result formalizes Lemma 3.11.

Corollary 1.4 (Formal Rely/Guarantee Technique) - Suppose that A is an
implementation algebra for A, and <AD.. Suppose that Valid,, , = Rely, - Guar,, .

- 150 -

) and that Valid, = Rely, — Guar, for each i € | is a sentence of

is a sentence of g(Aabs

9{A)). Suppose that
(1 Comp k= (A, [Guar]) — [Guar,,l,,,, and
(2) There exists a well-founded partial order <on/ such thatforalli €/,
Comp = [Rely,,Jus A (A [Guar]) — [Rely];.
Then Comp = (A, [Valid]) — [Valid g 1,

Proof - Straightforward from Lemma 3.11. 1

The next result formalizes Lemma 3.12.

Corollary 1.5 (Formal Rely/Guarantee Technique 1) - Suppose that A is an
implementation algebra for A and <AD,., Suppose that Valid,, = Rely,, . — Guar,, .
is a sentence of ﬂ(Am) and that Valid, = Rely, — Guar, for each i €/ is a sentence of
9(A). Suppose that for each i, j € | U {abs}, we have determined a sentence RG, j of
g({A), such that properties (1)-(3) below hold.
(1)Xa) Comp = [Rely,, J.0s — /\I.€, RG,ps J
(b) Comp = ARG, oo = [Guar,,b.0e
(2)(a) Comp = RG,, . N Nt {sbs) RG, Thad lReri]i. forallj€!
(b) Comp k= [Guar], = RG, ;s A Ajey, {abs) F}G, » foralli€!
(3) (Acyclicity) - Whenever {<i,, i), <igy iy v iy iy | 2} isacycle of /, then
Comp k= V™' RG

k=t iy’
Then Comp k= (A, [Valid]) - [Valid,,] e

Proof - Straightforward from Lemma 3.12. §
1.8 1/0-Consistency Proof Technique

The result below formalizes the technique for proving I/0-consistency expressed
by Coroliary 5.8.

Corollary 1.6 - Suppose that S is the state-transition specification of 1/0-interface E
defined by the pair <A, Valid>, where the sets of inputs and outputs of E are defined by
the unary relations In and Out of type Events in A. Suppose that the event/state algebra
A includes among its operations the finite collection of relations <ProdD , where Prod,
is of type States X Events X States. If the following sentences of 9{A) are valid, then S is

- 151 -

9,-consistent.
(1) = A, (Vg,r€States, e€Events)(Prod(q, e, r) - Trans(q, e, 1))
(2) = (Vg€States, e€Events)(in(e) - (3r€States)Trans(q, e, 1))
(3) = (Vq.r€States, e€Events)(Trans(qg, e, r) A (Out(e) ve = A) —
Vies Prod(q, e, r)
(4) Comp k= (A, Fair) — Valid,
where
Fair, = OCOEnabled(Now) — OOProd(Now, Occurs, After).
Enabled,(q) = (3r€States, e€Events) Prod/(q, e, r)

Proof - Straightforward from Corollary 5.8. Hypothesis (1) says that the Prod, are
subsets of Trans. Hypotheses (2) states that Mach,, is input-cooperative. Hypothesis (3)
states that the Prod, cover the set of nonnull cutput or A-steps in Trans. Hypothesis (4)
formalizes the requirement that every fair computation of Mach, is valid. 1

-152 -

Appendix Il - Additional Examples

In this appendix the specification and" verification techniques introduced in the
thesis will be further illustrated through two additional examples. The first example
concerns the specification and implementation of a resource manager module whose
function is to allocate resources in response to requests from user processes. The
resource manager is implemented in a highly distributed fashion by a tree-structured
system of local resource manager modules that communicate with each other to
determine where resources should be sent. In the second example, a reliable message
transmission service is specified, and an implementation by an unreliable message
transmission substrate is given. Reliability is achieved through the use of a
fault-tolerant protocol: the alternating bit protocol [Bartiettéd]. The alternating bit
protocol example has been examined by several other researchers [Chen82,
Hailperng80, Lamport83, Schwartz81], and has become gomewhat of a standard for
evaluating specification and verification techniques for concurrent systems.

The major purpose of the additional examples given here is to lend support to the
following assertion: Essentially the same techniques as were used to obtain
specifications and a correctness proof for the synchronizer implementation, can be
applied in a reasonably systematic way to achieve similar results on other nontrivial
examples. Thus, the ideas of state-transition specification, rely- and
guarantee-conditions, and the proof technique embodied in the Correctness Theorem,
are not ad hoc concepts useful for a single example, but serve as generally applicable
guiding principles.

A second point illustrated by the examples of this chapter is that more elegant
specifications can result if one first imagines the structure of a proof of correctness in
which the specifications will be used, and then derives the module specifications in an
attempt to satisty the requirements imposed by the proof structure. The difference
between specifications obtained via this approach and those resuiting from the "specify
first, prove later" approach can be seen by comparing the validity conditions given here
for the send and receive protocol modules with the liveness properties given by Lamport
[Lamport83] for these modules. The specifications and proof given below are to a large
extent independent of the precise assumptions on the behavior of the unreliable
transmission medium. Lamport's presentation does not make this independence quite

-153-

so explicit.

The observation that a proof of correctness can be used to derive component
module specifications suggests the following general method for designing a correct
implementation of a given abstract module:

(1) Decide on the communication structure of the system of component
modules (e.g. tree or ring structure).

(2) For each pair of component modules that can possibly communicate,
express informally the properties that each relies on/guarantees to the other to provide.
These rely- and guarantee-conditions will serve to "cut” the interdependence of the
component modules in a fashion similar to the way in which a loop invariant cuts the
dependence of one iteration on preceding and succeeding iterations.

(3) Select event and state sets for the component modules in such a way that
the temporal language of the resulting implementation algebra is powerful enough to
formally express the informally stated rely- and guarantee-conditions.

(4) "Localize" the rely- and guarantee-conditions so that they are expressed in
the temnoral language of each component module event/state algebra. The rely- and
guarantee-condifions of a resulting component module specification will be the
conjunction of the localized rely- and guarantee-conditions, respectively.

The examples in this appendix will be presented using the notation of Appendix |.
11.9 A Distributed Resource Management Algorithm

In this section, we consider the specification and implementation of a resource
manager module RM, whose function is to allocate resources to a set of clients in
response to requests from those clients. We will see how the resource manager can be
implemented by a tree-structured network of local resource manager (LRM) modules,
each of which communicates with a single client. Initially each local resource manager
starts out with some subset of the resources. As client requests arrive and are filled at a
particular site, though, the locally available set of resources might be exhausted. An
LRM that is deficient in resources must then attempt to obtain additional resources from
other sites. The interesting part of the implementation is concerned with how the local
resource managers communicate with each other to determine where the resources
should be sent. The strategy by which this is accomplished is essentially the
"DYNAMIC-MATCH" strategy of [Fischer83], although this stategy is explained here ina

. 154 -

slightly different and hopefully simpler way than in that paper.

The resource manager example is presented here as a nontrivial exercise in the
use of rely-/guarantee-conditions and an associated correctness argument as a basis
for the derivation of specifications for the local resource manager modules. The use of
rely-/guarantee-conditions as a guiding principle permits us to derive, in a reasonably
systematic fashion, essentially the same specification for the local resource manager
module as the node algorithm presented in [Fischer83]. The primary difference
between the specification derived here and the algorithm of [Fischer83] is that we are
not concerned here with the way in which an LRM resolves choices as to the pattern in
which excess requests are forwarded to its neighbors. In [Fischer83], it is assumed that
choices are resolved according to a specific probability distribution, and a large portion
of the paper is concerned with probabilistic analysis of the consequences of this
assumption. Here we concern ourselves only with showing that every request from a
client is eventually satisfied, if possible. The argument provided in [Fischer83] of this
basic correctness property is more of a proof sketch than a proof, and is somewhat
unsatisfactory for this reason.

11.9.1 Specification of the Resource Manager Module

The function of the resource manager module RM can be described as follows: Let
Clients be a set that contains the names of the clients with which the resource manager
communicates, and let Resources be a set that contains the names of the resources to
be managed. A client ¢ requests a resource from the resource manager by issuing a
request event request.c. The resource manager allocates a resource r to client ¢ by
issuing a reply event reply:<c, r>. In this example, a resource that has been allocated to
a client is never returned to the resource manager.

The state of the resource manager can be thought of as consisting of a pair
<pending, free>, where pending is a multiset of clients that represents the collection of
unfilied requests and free is the set of available resources. The pending component is a
multiset since we permit more than one request from a single client to be outstanding at
one time. Receipt of a request from client ¢ by the resource manager causes an
instance of ¢ to be added to the pending multiset. The event reply:<c, r> can occur only
if the client ¢ is in the pending multiset and the resource r is in the free set. Occurrence
of this event causes an instance of ¢ to be removed from the pending set and the

. 155 -

resource r to be removed from the free set. It is clear from this description that no
resource is allocated more than once and no more than one resource is allocated in
response to each request. In addition, we would like the resource manager to respond
eventually to every request, as long as the set of free resources has not been exhausted.

To derive a more precise specification from the preceding informal description, we
begin by defining the resource manager event/state algebra. Our description has the
following as parameters:

Clients: a finite set of clients
Resources: a finite set of resources
The interface of the resource manager is defined as follows:
Events™ = {A} + [request: Clients + reply: (Clients X Resources)].
InRM = {A} + [request: Clients]
outftM = {A} + [reply: (Clients X Resources)]
The state set for the resource manager is defined by:
States™ = [free: Set[Resources] X pending: MSet[Clients]].

In an initial state, the multiset of pending requests is empty, and all resources are
free.
Initf™(q) = q(free) = Resources A g(pending) = @.

The state-transition relation Trans”™ is defined by precondition/next-state
predicate pairs as follows:

A request event for client ¢ can occur at any time, and causes ¢ to be added to the
pending set.
(request) Pre, gquest(@: & c) = e = request:c

Next . et(d: 71 €) = r = ql(g(pending)U{c})/pending]

A reply event with resource res for client ¢ can occur only if res is in the free set and ¢ is
in the pending multiset. It causes res to be removed from the free set and an instance of
¢ to be removed from the pending multiset.

(reply) Premp,y(q, e, c, res) = e = reply:{c, res> A ¢ € g(pending) A
res € q(free)
NeXtrepw(q’ rc, feS) =r= Q[(Q(pend'ng).{c})/pend'ngl

(q(free)-{res})/free]

. 156 -

The validity conditions for the resource manager module can be stated in

rely-/guarantee-condition form as follows: Valid™ = Rely™ — Guar"M, where

Rely™ = D(|Now(free)] > [Now(pending)})

Guar™ = O(vc€Clients)(c € Now(pending) —

O(3r€Resources)(Occurs = reply:c, r)).

Thus, if the number of outstanding requests never exceeds the number of available
resources, then the resource manager module guarantees that every request will
eventually receive a reply.

11.9.2 Implementation of the Resource Manager

Our plan is to implement the resource manager module by a tree-structured
network of local resource manager modules as depicted in Figure 3. Each local
resource manager is responsible for filling requests originating from a single client. If
the set of resources locally available is exhausted, the the LRM must try to obtain
additional resources from elsewhere in the system. If an LRM has a surplus of
resources, then it must be willing to give ‘out resources to other LRM's whose resources

have aiready been allocated.

To guide us in our derivation of the components t/hat will be needed as part of an

LRM state, let us first obtain a rough statement of the validity conditions that an LRM is
to satisfy. We organize these conditions into properties the LRM relies on its
environment to provide, and properties that an LRM guarantees to its environment in
return. An LRM relies on:

(1) No special properties on the part of the client.

(2) The eventual elimination of resource debts owed to the LRM by its parent.

(3) The eventual elimination of resource debts owed to the LRM by each of its
children.
In return for these properties, an LRM guarantees that:

(1) Every client request eventually receives a reply.

(2) Resource debts owed by the LRM to its parent will eventually be eliminated.

(3) Resource debts owed by the LRM to each of its children will eventually be
eliminated.

-167 -

Fig. 3. Resource Manager Implementation

Resource Manager Module

To obtain formal statements of the preceding conditions, we must first obtain a
precise definition of the notion of an LRM having a “resource debt” to one of its
neighbors, and we must describe the mechanics of how such debts are incurred and
eliminated. The introduction of the various components of the LRM state below can be
viewed as providing us with enough expressive power Iin the language {AL"M™) of the
LRM event/state algebra, to permit the formalization of the undefined quantities in the

. 158 -

above statement of the LRM validity conditions.

A significant feature of the validity conditions stated above is the complementary
form of the rely- and guarantee-conditions. The conditions above have been selected in
such a way that ultimately, in the resource manager implementation, the conditions
relied upon by an LRM i from its neighboring LRM j will be precisely the conditions that
LRM j guarantees to provide to LRM i. This symmetric statement of the validity
conditions will be seen below to result in a rather simple and pleasant proof of
correctness.

With the above validity conditions in mind, we now attempt to identify the various
events of the LRM interface and the components of the LRM state. We can identify
immediately several kinds of events that must be in the interface of the LRM.
Communication with the client requires the existence of a reduest event request, which
represents the receipt of a request from the client, and a reply event of the form reply:r,
in which resource r is allocated to the client in response to a prior request.
Furthermore, the interface of an LRM must contain events corresponding to the transfer
of resources between an LRM and its neighbors in the system. Let Resources be the set
of names of all the resources that the LRM might be called upon to handle. Foreachr €
Resources, the LRM interface includes the event parent_in:r, which represents the
receipt of resource r from an LRM's parent in the tree, and parent_outur, which
represents the delivery of resource r by an LRM to its parent. Let Children be a set of
names used to index the children of the LRM. For each ¢ € Children and r € Resources
the interface of the LRM includes the event child_out:<c, >, which represents the
transfer of resource r from the LRM to child ¢, and the event child_in{c, r>, which
represents the receipt of resource r by the LRM from child ¢.

To describe the conditions under which transmission of resources between LRM’s
and between a client and an LRM is permitted, we include in the state of each LRM a set
free, which represents the resources locally available at the LRM, and a nonnegative
integer pending, which counts the number of unfilled requests that originated at the
client associated with the LRM. A request event causes pending to be incremented. A
reply:r event can occur only if pending is nonzero and r € free, and causes pending to
be decremented and r to be removed from free. The resource transmission events
parent_jn:r and child_in:r cause r to be added to the set free. The events parent_out:r
and child_out:<c, r> can occur only if r € free, and cause r to be removed from free.

- 169 -

We have thus settled the issue of how and when requests and replies are
transmitted betweeen an LRM and its client, and how resources are shuttied between
LRM's. However, we have not yet determined how and when an LRM should request
- resources from one of its neighbors, or when an LRM should issue resources to a
neighboring LRM. To describe the conditions governing the transmission of resources
between LRM's, we introduce a few more components into the state of an LRM. The
state of each LRM contains a component p_balance, and a component c_balance:c for
each child ¢. The component p_balance represents the instantaneous "balance of
payments" between the LRM and its parent, and c_balance:c represents a similar
balance of payments between the LRM and child ¢. A positive balance represents a
number of resources owed to the LRM by its neighbor, and a negative balance
represents a number of resources owed by the LRM to its neighbor. These balances will
be maintained so that the following relation is invariant: If p is an LRM with child ¢, then
the c_balance:c component of the state of LRM p is always the negative of the
p_balance component of the state of LRM c. This reflects the idea that resources owed
by p to ¢ can be viewed as a debit from the point of view of p, or as a credit from the
point of view of ¢. These balances will be updated appropriately as requests are
forwarded, and as resources travel between LRM's in payment of debts. An LRM will
transmit resources to its neighbor in an attempt to reduce its indebtedness.

To represent the forwarding of requests between LRM's we introduce the
following additional kinds of events into the LRM interface: A forward_in event
represents the receipt by the LRM of a forwarded request from its parent. Similarly, a
forward_out:c event corresponds to the forwarding of a request by the LRM to child c.
The event reject_out represents the forwarding of a request by the LRM to its parent,
and the event reject_in:c represents the receipt of a forwarded request by the LRM from
child c. We use the lerminology reject for the forwarding of requests upward in the tree
to emphasize the asymmetry inherent in the parent/child relationship.

In determining the conditions under which forwarding and rejection events should
be permitted to occur, we must attempt to avoid the following two bad situations: (1)
We must avoid the deadlock situation in which two LRM's are stubbornly requesting
resources from each other, while each of their resource requirements could be fulfilled
by resources from elsewhere in the system. (2) We must avoid the "livelock™ situation
in which a request is continually shuttied back and forth in the system without ever

- 160 -

reaching an LRM with available resources. Our proposal for resolving these difficulties
is to have each LRM keep estimates of the number of surplus resources available in the
subtree headed by each of its children. These estimates are to be optimistic in the
sense that the estimate held by an LRM for child ¢ is at all times an upper bound on the
number of surplus resources actually available in the subtree headed by c. Situation (1)
is avoided by having an LRM request resources from its parent only in the case that it
has no resources locally available and there are no surplus resources left in any of the
subtrees headed by its children. Situation (2) is avoided by requiring that an LRM only
send a request to a child c if it estimates that there is a surplus of resources in the
subtree headed by c. The effect of these two requirements is to ensure that the
following invariant holds: If an LRM p owes resources to its child LRM c, then the
number of resources owed by p to ¢ is a lower bound on the instantaneous amount by
which pending requests eiceed available resources in the subtree headed by ¢. Thus p
never owes more resources to ¢ than are actually required by ¢’s subtree.

The balances of payments between an LRM and each of its neighbors can be
combined with the number of panding requests and locally aveilahle resources to
produce a quantity PBalance, which represents the projected net number of resources
(positive = surplus, negative = deficit) that would be left at the LRM after all debts are
paid. The quantity PBalance, defined formally below, is informally the number of free
resources, plus the net number of resources owed to the LRM by its neighbors, minus
the number of pending requests. The forwarding and rejection of requests by an LRM
to its neighbors is done with the goal of "getting in the black;" that is, reducing the
projected deficit.

The remaining components we need as part of the LRM state are the following:
For each child ¢, the state of an LRM contains a component c_estim(c) which is an
integer that represents the optimistic estimate made by the LRM, of the projected
number of resources that would be available in the subtree headed by child ¢, once all
debts have been paid. If ¢ is an LRM whose parent is p, then the state of ¢ also contains
a component p_estim, which is a local copy of the c_estim(c) component of the state of
LRM p. Thus, not only does an LRM keep estimates of the projected number of
resources remaining in the subtrees headed by each of its children, but it also keeps
track of what its parent must currently estimate as the projected number of resources
remaining in the subtree headed by the LRM. We permit p_estim and c_estim(c) to take

- 161 -

on arbitrary integer values, although it can be shown that if an LRM is used only in a
system of other LRM's in the way we envision, then p._estim and c_estim(c) are
invariantly nonnegative.

The important points of the preceding discussion of the LRM events and states
can be summarized as follows:

(1) The LRM interface contains events corresponding to requests from and
replies to the client, transferring of resources from/to its neighbors, and forwarding and
rejection of requests.

(2) An LRM state contains a set free of locally available resources and a count
pending of outstanding requests from the client, to ensure that every request receives a
response and that no resource is allocated more than once.

(3) An LRM state contains a record of its "balance of payments” with each of
its neighbors. Transfer of resources and requests between LRM's is performed to
reduce indebtedness. If p and ¢ are neighboring LRM's, then the balance kept by p for
c is the negative of the balance kept by ¢ for p.

~(4) An LRM state contains an estimate of the projected net number of
resources that would remain, once all debts have been paid, in the subtrees headed by
each of its children. This information is used to control the forwarding and rejection of
requests. If p is the parent of ¢, then ¢ maintains a local copy of p's estimate of the
projected number of resources remaining in the subtree headed by c.

11.9.3 Local Resource Manager Specification

From the informal discussion of the preceding section, we can derive a precise
local resource manager specification. In the informal discussion above, we made no
distinction between the root LRM and the other LRM's in the system. Although similar in
many respects, the precise specifications of these two kinds of LRM’s will be sﬁghtly
different since a root LRM has no parent. To avoid redundancy, the specifications of
the two kinds of LRM will be presented simultaneously, with differences pointed out
along the way.

The parameters of the LRM are the following:
Children: a finite set of children
Resources: a finite set of resources
IResources: the subset of Resources held initially by the LRM

-162 -

{estim . C€ Children}: initial estimates of the number
of resources in the subtrees headed by
each of the children.

The set Children is a set of names used to identify the children of the LRM. The set
Resources is a set of names for all of the resources that the LRM might have to deal
with. This set includes the names of all resources initially held by the LRM, as well as all
resources that might be transmitted to the LRM at some later instant by its neighbors.
The set IResources is a subset of Resources that represents the set of resources initially
available at the LRM. For each ¢ € Children, the parameter estim_ is a nonnegative
number which the LRM uses as its initial estimate of the projected number of resources
remaining in the subtree headed by child c. Since there will be no debts in an initial
state, correct use of an LRM requires that each estim_ equal the actual number of
resources initially available in the subtree headed by child ¢.

The interface of a node LRM is defined as follows:
EventsM-FM = {3} + [CEvent + SEvent]
inNHM . = {3} + [CIEvent + SiEvent]
OutNRLM = 1)} + [COEvent + SOEvent],

where
CEvent = CiEvent + COEvent
SEvent = SlEvent + SOEvent
and
ClEvent = [request}
COEvent = [reply: Resource]}

SiEvent = [reject_in: Children +
forward_in +
parent_in: Resource +
child_in: [Children X Resource]]

SOEvent = [reject_out: +
forward_out: Children +
parent_out: Resource +
child_out: [Children X Resource]]

-163-

The events listed above have the following intuitive meanings: Client events are
those in which the LRM communicates with the client, whereas system events are those
in which the LRM communicates with other LRM's. The client events are classified into
request events, in which a request is received from the client, and reply events, in which
a resource is sent to the client in response to a prior request. The system events are
classified into: forwarding events (forward_out, forward_in), in which a request is
forwarded from’an LRM to one of its children; rejection events (reject_out, reject_in), in
which a request is rejected from an LRM to its parent; and resource transfer events
(parent_out, parent_in, child_out, child_in), in which a resource is transferred from an
LRM to one of its neighbors. The "_in" and "_out" suffixes denote the direction in
which resources or requests flow; thus, forward_out:c is the event in which a request is
forwarded from an LRM to child ¢, whereas forward_in is the event in which a forwarded
request is received by an LRM from its parent.

The interface EventsPtPM of a root LRM is obtained by omitting the forward_in,
parent_out, reject_out, and parent_in events.

The state set for both a node and a root LRM is defined as follows:
States'"M = [free: Set[Resource),

pending: Nat,

p_balance: Int,

c_balance: [Children — Int],

p_estim: int,

c_estim: [Children — Int]].
The set free is the set of resources currently available at the LRM. The number pending
is a counter that records the number of outstanding requests. The quantity p_balance
records the net number of resources that the LRM either is promised by its parent, or
promises to send to its parent. If p_balance > 0, then the LRM is promised resources by
its parent; if p_balance < 0, then the LRM promises to send resources to its parent. The
mapping c_balance records similar information for each of the children. The mapping
c_estim records the estimate of the projected number of remaining resources in the
subtree headed by each child. The quantity p_estim is the LRM's local copy of its
parent's estimate for the subtree headed by the LRM, as discussed above.

-164 -

The initial state relation for the LRM is defined below. Recall that we view a finite
multiset over a given universe as a function that assigns a finite multiplicity to each
element of the universe. Lambda-notation has been used below as & shorthand for
denoting particular multisets.

InittA"M(q) = q = (free: IResources,
pending: 0,
p_balance: 0,
c_balance: (Ac€Children)(0)
p_estim: JIResources| + =, ¢cpigren €StIMs
c_estim: (Ac€Children){estim)>

Thus, in the initial state, all resources in IResources are free, no requests are pending,
no resources are promised by/promised to any of the neighbors, and the estimated
surplus of resources in the subtree headed by the LRM is the sum of the number of free
resources initially at the LRM, plus the sum of all the initial estimates for the subtrees
headed by each of the children of the LRM. .

We can now give the formal definition of the quantity PBalance discussed above.

PBalance(q) = |g(free)] - g(pending) + g(p_balance) +
Z_cchildren g(c_balance)(c).

As discussed above, given a state g, PBalance(q) represents the net number of
resources (positive = surplus, negative = deficit) that would be left at the LRM after all

debts are paid.

The state-transition relation TransN-RM for a node LRM is defined as follows:
An incoming request from a client gets recorded as pending.

(request) Pre oquest{d: €) = e = request

Nextmm(q, r) = r = g[(g(pending) + 1)/pending]

A resource res can be sent to the client if there is at least one pending request, and res
is in the set of free resources. The resource res is removed from the set of free
resources, and the number of pending requests is decremented.

(reply) Pre .,.(q, e, res) = e = reply:res A res € g(free) A

q(perding) > 0

reply

- 165 -

Ne"tmmy(Q: r,res) =r = ql(q(free)-{res})/free,
(a(pending)-1)/pending]

Receipt of a forwarded request from the parent means that the LRM promises to send
one more resource to the parent, and consequently, that the LRM estimates a surplus of
one fewer in its own subtree.

(forward_in) Pre,omrd_in(q. e) = e = forward_in
Next r = qg[(q(p_balance)-1)/p_balance,
(g(p_estim)-1)/p_estim]

lorward_in(q ' r)

A request can be forwarded to child ¢ only if the LRM currently is "in the red" and
estimates a surplus of resources in the subtree headed by child ¢. As a result of
forwarding the request, the number of resources promised by child ¢ is incremented,
and the estimated number of resources in the subtree headed by ¢ must be
decremented.

(forward_out) Pre,omard_out(q, e, c) = e = forward_out:.c A
PBalance(q) < 0 A g(c_estim)(c) > O
(q,r,c) =r = q[(g{c_balance)(c) + 1)/c_balance(c),
(g(c_estim)(c)-1)/c_estim(c)]

Next

forward_out

Receipt of a rejected request from child ¢ means that child ¢ promises to send one
fewer resource (or requires one more resource) than it did before, and thus the quantity
c_balance(c) must be decremented. In addition, the fact that a request has been
rejected by ¢ means that the resources in the subtree headed by c¢c have been
exhausted, and thus c_estim(c) should be set to zero.

e c) = e = reject_in:c
r,c) =r= ql(g(c_balance)(c)-1)/c_balance(c),
0/c_estim(c)]

(reject_in) Pre,emun(q,

NeXtrejecl_in(q'

A request can be rejected to the parent only if the LRM is “in the red" and there is no
projected surplus in any of the subtrees headed by children of the LRM. By rejecting a
request, the LRM promises one fewer resource to its parent, and hence reduces its
projected deficit. In addition, p_estim must be zeroed to maintain the invariant equality

- 166 -

between p_estim and the corresponding c_estim component of the parent LRM.

(reject_out) Prereiect_m(q, e) = e = reject_out A PBalance(q) <O A
(Vc€Children)(q(c_estim)(c) < 0)
Next,eiect_wt(q, r) =r = g[(qg(p_balance) + 1)/p_balance, 0/p_estim]

The various resource transfer events occur when an LRM owes a debt and has an
available resource. Their effect is to cancel out some of the debt.

(parent_in) Prepa,enu,,(q. e, res) = e = parent_in:res
NextparenUn(q, r, res) = r = ql(q(free)U{res})/free,
(q{p_balance)-1)/p_balance}

(parent_out) Preparem_out(q, e, res) = e = parent_outires) A res € g(free)
A g(p_balance) < 0
Nextmrenuut(q, r, res) =r = q[(q(free)-{res})/free,

(q(p_balance) + 1)/p_balance]

e = child_inXc, res>
ql(q(free)U{res})/free,
(g(c_balance)(c)-1)/c_balance(c)]

"

n
Nextch"d_in(q, r,c, res)

(child_in) Pre,,. i {(q, e, c, res)
r

(child_out) Pre .,y o,(d: @, C, res) = e = child_out:{c, res> A
res € g(free) A g{c_balance)(c) <O
Nextchﬂd_wt(q, r,c, res) =r = q[(q(free)-{res})/free,

(g(c_balance)(c) + 1)/c_balance(c)]

The definition of the state-transition relation Trans®-"M for a root LRM is obtained
by deleting the pairs above for the forward_in, parent_out, and parent_in events, and
replacing the pair for reject_out events by the following pair for A-events:

(A) Pre,(q,8) =e =2AA PBalance(q) <0 A
(Vc€Children)(q{c_estim)(c) < 0)
Next,(q,r) =r= gl(q(p_balance) + 1)/p_balance, 0/p_estim]

The A-transitions permitted by this pair are necessary for the consistency of the root
LRM specification: if the reject_out pair were simply deleted as were the forward_in,

- 167 -

parent_out, and parent_in pairs, then there would be no way for a root LRM to change
the value of p_balance and the rely-condition Rely_external®-"M defined below would be

vacuous.

To complete the specification of the local resource manager, it remains to define
the validity conditions. As outlined in the informal discussion above, the validity
conditions for the node and root LRM’s can be expressed in rely-/guarantee-condition
form as follows:

ValigN-RM = RelyN-RM —, GuarhtAM
validRtRM = RelyRLAM - GuarPLRM,

As was done in the informal discussion, it is convenient to factor the rely- and
guarantee-conditions into what the LRM relies on each of its neighbors and the external
environment to provide, and what the LRM guarantees in turn to each of its neighbors
and the external environment.

The rely- and guarantee-conditions for the node LRM are defined by
RelyN-RM = Rely_parentNLAM A (vc€Children)Rely_child-RM(c)
GuarLRM = Guar_client'”M A Guar_parentN-FM A

(Vc€Children)Guar_child-RM(c).
The rely- and guarantee-conditions for the root LRM are defined by
RelyRLRM = Rely_external®'RM A (vc€Children)Rely_child-"M(c)
GuarfLRM = Guar_client'”M A (vc€Children)Guar_child-FM(c).

A node LRM relies on the eventual payment of debts owed to the LRM by its
parent.
Rely_parentN®M = (O(Now(p_balance) > 0) —
O(3Ar€Resources)(Occurs = parent_in:r))

Although a root LRM has no parent, the intuitive significance of a positive value for
p_balance in the case of a root LRM is that the total number of requests in the entire tree
exceeds the total number of available resources. Since we cannot expect a system of
LRM's to eventually satisfy all requests under such circumstances, a root LRM relies on
the external environment to ensure that p_bal/ance is invariantly nonpositive.

Rely_external®"M = O(Now(p_balance) < 0)
Both kinds of LRM rely on each of their children to eventually eliminate debts owed to
the LRM, either by the transmission of resources, or by the rejection of requests.

- 168 -

Rely_child-"M(c) = D(O(Now(c_balance)(c) > 0) —
O((3r€Resources)(Occurs = child_ini{c, M) v
(Occurs = reject_in:c)))

A node or root LRM guarantees to its client that pending requests will eventually
receive a reply.
Guar_client'"™™ = O(Now(pending) > 0 —»
<(3r€Resource)(Occurs = reply:r))
A node LRM guarantees eventually to eliminate debts owed to its parent, either by
actual transmission of resources, or by rejecting requests.
Guar_parentN'-AM = O(DO(Now(p_balance) < 0) —
O((3r€Resources)(Occurs = parent_outir) v
(Occurs = reject_out)))
Both kinds of LRM guarantee eventually to pay debts owed to their children.
Guar_child'®M(c) = O(O(Now(c_balance)(c) < 0) —
O(3r€Resources)(Occurs = child_out:{c, r))

In devising the validity conditions for the local resource manager moduile, it was
necessary to choose between two possible forms in which to state the rely- and
guarantee-conditions. Since we are often faced with, éuch choices in practice, it is
useful to examine the motivation for the particular choice made here. As an example,
consider the definition of Guar_parentN-?M, which was stated above in the form
(1) Guar_parentN'AM = O(O(Now(p_balance) < 0) —

O((3r€Resources)(Occurs = parent_out:r) v
(Occurs = reject_out)))
This guarantee-condition states that eithcr.a parent_out or a reject_out will occur if
there is the condition p_balance < O holds persistently (i.e. forever after some point).
We might also have chosen the apparently stronger alternative form
2 Guar_parentN-AM = O(Now(p_balance) <0 —
O((3r€Resources)(Occurs = parent_out:r) v
(Occurs = reject_out))).
which requires the occurence of a parent_out or reject_out event in the case that the
condition p_balance < O occurs at a single instant. In fact, we claim these two
sentences are equivalent in the context of the LRM specification. More precisely, we
claim Comp'™M k= (1) « (2). Clearly (2) implies (1) by temporal reasoning alone. To see

- 169 -

that Compt"M = —(2) implies —(1), suppose Comp "M and —(2). Then
(*) O(Now(p_balance) < 0 A O((VrEResources)(Occurs = parent_out:r) A
(Occurs # reject_out))).
" That is, eventually there is a point at which p_balance < O holds, but after which no
parent_out or reject_out events ever occur. Inspection of the state-transition relation for
the LRM shows that the only events that can cause p_balance to be increased are
parent_out and reject_out events. This means that, if no parent_out or reject_out events
occur, then p_balance < 0, once established, holds forever. Applying this result to (*)
shows that
**) <O(O(Now(p_balance) < 0) A
O((vr€Resources)(Occurs # parent_out:r) A
(Occurs # reject_out))).
But (**) is precisely the negation of (1) above, and thus (1) and (2) are equivalent.

In this example, where form (1) and form (2) are equivalent, we chose form (1) over
form (2) because form (1) is more convenient for the proof of correctness. Once we
have decided on form (1) for the guarantec conditicn Guar_parentNRM, we must use tha
same form for the complementary rely-condition Rely_child-"M(c). Similar arguments
apply to Guar_child"FM(c) and Rely_parentN-AM,

11.9.4 The Resource Manager Implementation Algebra

In this section we define the resource manager implementation algebra ARM!, Let
the following be given as parameters:

Clients: a finite set of clients.

root: a distinguished element of Clients
Children: Clients — Set[Clients] maps each client to a set of children
Resources: a finite set of resources
{Resources_: ¢ € Clients}: the initial partitioning of Resources.

We require that <Clients, root, Children> be a rooted tree. Let parent: (Clients - {root})
— Clients be the function that maps each ¢ € Clients to its parent. Define the function
PDesc: Clients — Set[Clients], which takes an element ¢ of Clients to the set of all
proper descendants of ¢, in terms of the function Children in the obvious way. Define
Desc(c) = {c} U PDesc(c) for all ¢ € Clients.

-170 -

The set Clients will be the index set for the interconnection; that is, there will be

one LRM corresponding to each element of Clients. Define the embedded algebras A,
and {A o PE Clients} as follows:

Agest is the resource manager event/state algebra ARM, with parameters

Clients, Resources instantiated as Clients, Resources, respectively.

is the local resource manager event/state algebra A'"M, with

parameters Resources, IResources, Children, {estimc: ¢ € Children(root)}

Children(root), {szDesc(c)

root’

instantiated as Resources, Resources
[Resources,|: ¢ € Children(root)}, respectively.
A where p € Clients - {root}, is the local resource manager event/state
algebra A*”M, with parameters Resources, IResources, Children, {estim : c
€ Children(p)} instantiated as Resources, Resourcesp, Children(p),

{= J€Desc(c) |Resources |: ¢ € Children(p)}, respedtively.

Let the composite interface for the resource manager interconnection be defined

as follows:
Events”M! = (A} + [renuest: Clients +
‘ reply: (Clients X Resources) +

forward: (Clients - {root}) +
reject: Clients +
down: ((Clients - {root}) X Resources) +
up: ((Clients - {root}) X Resources)]

InRM! = {A} + [request: Clients]

Out"tM = {A} + (Events™™ - In"M!),

Intuitively, the event request:p corresponds to the receipt of a request by LRM p
from its client, and reply:{p, r> corresponds to the allocation of resource r by LRM p to
its client. The event forward:p represents the simultaneous occurrence of a forward_in
event for LRM p, and a forward_out:p event for LRM parent(p). The event reject.p
represents the simultaneous occurrence of a reject_out event for LRM p and a
reject_in:p event for LRM parent(p). The event down:{p, r> represents the simultaneous
occurrence of a parent_in:r event for LRM p and a child_out:{p, r> event for LRM
parent(p). Finally, the event up:{p, r> represents the simultaneous occurrence of a
parent_out:r event for LRM p and a child_in:{p, r> event for LRM parent(p). Formally,
these relationships are captured by the following definitions of the abstraction map a®™,

-171 -

and the decomposition map § "M = <82Ml>p€Cﬁents:

o"™M(e) = request: ¢ ife = request: ¢
= reply:{c, if e = reply{c,
= A otherwise.

8"';‘”'(9) = request ife = request:p
= reply:r if e = reply{p, >
= forward_in if e = forward:p
= forward_out:c if e = forward:c and p = parent(c)
= reject_out if e = reject:p
= reject_in:c if e = reject:c and p = parent(c)
= child_inXc, » if e = up:{c, > and p = parent(c)
= child_out:<c, > if e = down:<c, r> and p = parent{c)
= parent_out:r ife = up:p,
= parent_in:r if e = down:{p, >
= A otherwise.

11.8.5 Proof of Correctness

In this section we prove the correctness of the implementation <3,RMI, S,
<S8 .cciients”r Where S,,s Is defined by Qe Valid”M, Sioot 1S defined by
<A, Valid®"M>, and S_for ¢ € Clients - {root} is defined by <A, Valid'F*,

root’
Iimplementation Invariant:

As usual, we factor the implementation invariant Inv®M(q) for the resource
manager implementation into an abstraction relation AbsPMi(q) and a representation
invariant Rep®™!(q). The abstraction relation simply states that the set of free resources
for the abstract resource manager module is just the union of the sets of free resources
for each of the component LRM'’s, and that the multiset of pending requests for the
abstract RM assigns to each client a multiplicity equal to the value of the state variable
pending for the corresponding LRM.

AbsFM(q) = g, (free) = U ¢ yens 9.(fre€) A
q.bs(pending) = (Ac€Clients)(q c(pending))

-172 -

It is convenient to factor the representation invariant into several conjuncts:
RepRM(q) = Disjoint(q) A Neighbor(q) A Owed(q) A Optim(q).

The conjunct Disjoint(q) states that the sets of free resources possessed by two distinct
LRM's are disjoint.
Disjoint(q) = A_ . ‘¢clents(¢ * © ' - g (free) N q, (free) = O).

The conjunct Neighbor(q) expresses the consistency constraints that hold between the
values of the state variables for neighboring LRM's.
Neighbor(q) = Apecﬁemslcecm,dren(p){(qc(p_balance) = -qp(c_balance)(c)) A
(a (p_estim) = q,(c_estim)(c))}

The conjunct Owed(q) states that an LRM can be owed resources by its parent only if
the LRM estimates no surplus in the subtree of which it is the root.
Owed(q) = ApEC“ems(qp(p_balance) >0
PBa!ance(qp) + Zechidren(o) qp(c_estim)(c) <0)

The conjunct Optim(q) states that the estimate p_estim held by an LRM p is optimistic in
the sense that it is an upper bound on the actual projected number of resources
remaining in the subtree of which p is the root, assuming that each estimate c_estim(c)
held by p is an upper bound for the subtree rooted at c.
Optim(q) = A ¢ ciens(d,(P-estim) 2
PBaIance(qp) + Z_echildren(p) qp(c__estim)(c)).

To show the inductiveness of InvPMl(q), first note that the basis step, i.e. that
InitftM(q) — InvRM(q) holds for all g € States, is easily checked. A complete formal proof
of the induction step, namely, that Trans™!(qg, e, r) — (Inv"™(q) ~ Inv*™(r)), would be
performed by case analysié on the event e. Such a complete proof would be quite
tedious o read, and will not be inciuded here. Rather, we will remark on the cases that
are not quite trivial. Assume that Trans”Ml(q, e, r) and Inv®™(g) holds, to show InviM(r).
We consider each of the conjuncts of InvFM(r) in turn.

AbsPM(r): The truth of this predicate depends upon the values of r (free) and
r.(pending), for each ¢ € Clients, as well as r,,_(free) and rm(pending). The events e
that affect the pending components of the state are request:c and reply:c. The effect of
request:c is to add one instance of ¢ to the multiset q.bs(pending), and to increment the

-173 -

value of qc(pending) by one. Clearly this preserves the desired invariant relationship.
The case of e = reply:{c, res>, is similar. The events e that affect the free components
of the state are up:{c, res>, down:{c, res>, and reply.c. Because of the fact that each
up:{c, res> or down:{c, res> is participated in only by LRM ¢ and its parent, and the
effect on the states of these two modules is complementary, it is easily verified that
U, cciients rc(free) = U, ccients 9.(fre€), holds for e = down:{c, res> or up:<c, res>. The
case e = reply:{c, res> is slightly more troublesome, since to show that U cciiens c(free)
= (U, cciiens 9.(free)) - {res}, we need to make use of the inductive assumption that
Disjoint(g) holds. From this we know that if res € q (free), for some c € Clients, then res
¢ q_ (free) for all ¢ ' # ¢, and hence deleting res from q c(free) in fact deletes it from the
union of the free sets for all the component modules.

Disjoint(r): The truth of this predicate depends only upon the values of r (free) for each
c € Clients. These components of the state are affected only by events of the form
reply:{c, res>, up:<c, res>, and down:{c, res>. In case e = reply:{c, res>, we have that
r(free) = q_(free) ~ {res} and r_.(free) = q_.(free) for all ¢ ' € Clients withc ' # c. In
case e = upc, resd, and ¢ € Childien{p), we have that rp(free) = qp(iree) U {res},
r(free) = q_(free) - {res}, and r_(free) = q_ (free) for all ¢ * € Clients with ¢ ' € Clients -
{c, p}. Incase e = down:{c, res>, and ¢ € Children(p), we have that r p(free) =q p(free)
- {res}, r (free) = q_(free) + {res}, and r_.(free) = q, {free} forallc ' € Clients withc ' €
Clients - {c, p}. In each of these cases it is easily checked that Disjoint(r) holds.

Neighbor(r): Note that the predicate Neighbor(r) depends upon the values of
r.(p_balance), r (c_balance), r(p_estim), and r (c_estim), for each ¢ € Clients.
Enumeration of cases shows that the only events that affect the values of these
components of the state are the events reject.c, forward.c, down:{c, res>, and
up:{c, res>. However, examination of the definition of the LRM state-transition relation
and the definition of the decomposition map § ™ shows that each change in the state
of a participant in one of these events is accompanied by a compensating change in the
state of the other participant. For example, if ¢ € Children(p), then occurrence of an
event of the form reject:c makes r (p_balance) = q(p_balance) + 1, but also makes
rp(c_balance)(c) = qp(c_balance)(c) - 1. Thus the predicate Neighbor is preserved.

Owed(r): Assuming that Owed(q) holds, the only way for Owed(r) to be false is for an
event e to occur that increments qp(p_balance) when it is zero, or increments

174 -

PBalance(qp) + chChildren(p) qp(c_estim)(c) when it is zero. The only events that might
have this property are e = reject:p, and up:{p, res>. In case e = reject.p, PBalance(qp)
+ EcGChildren(p) qp(c_estim)(c) is incremented, but the precondition for this event
requires that this quantity be less than zero, so Owed(r) holds. In case e = up:p, res>,
the quantity qp(p_balance) is incremented, but the precondition for e requires that this
quantity be strictly negative, and hence Owed(r) holds.

Optim(r): Assuming that Optim(g) holds, the only way for Optim(r) to be false is for the
quantity q_(p_estim) to be decreased below the quantity PBalance(q,) + zdecmd,en(c)
qc(c_estim)(d), or for the latter quantity to be increased above the former. The only
events that could possibly have this effect are forward:c and reject:c. If e = forward:c,
then g (p_estim) is decremented, but so is PBalance(q,) + szChildren(c) g, (c_estim)(d).
If e = reject:c, then PBalance(q)) + Zdecm,d,en(¢) q (c_estim)(d) is incremented and
qc(p_estim) is set to zero. However, the precondition for e requires that the former
quantity be negative. This fact implies that PBalance(r,) + zdecm,dm(c) r (c_estim)(d) <
0and r_(p_estim) = O, and Optim(r) holds.

From the invariance of Owed, Neighbor, and Optim, we can derive the
fundamental property of estimates upon which the /correctness of the resource
management system crucially depends. This property is expressed by Lemma Il.1
below, which states that if an LRM i is owed resources by its parent, then the amount it
is owed by its parent is a lower bound on the total instantaneous deficit in the subtree of
which i is the root. To express this result formally, we introduce the quantity /Balance(q)
where g is an LRM state, defined as follows:

iIBalance(q) = lg(free)| - g(pending).
Whereas the quantity PBalance(q) introduced previously represents the total projected
balance of resources at an LRM, after all debts have been paid, the quantity /Balance(q)
represents the total instantaneous balance of resources at an LRM, where the amount
of indebtedness is not taken into account.

Lemma i1.1 - The following is invariant for the resource manager implementation:
A pec“ems(qp(p_balance) >0—
qp(p_balance) < —zcemw IBalance(q)

Proof - From their definitions, it is easily seen that the quantities PBalance(q) and
IBalance(q) are related by the following identity, expressed in the language L(A-"M) of

-175-

the LRM event/state algebra:

PBalance(q) = IBalance(q) + g(p-balance) + Z_ccnidren g{c_balance){c).
From this identity, a simple induction on the height of a node i € Clients in the tree
{Clients, root, Children>, shows the truth of the following identity for all i € Clients:

(1) 2, ¢ Descl) PBalance(q,.) = q,(p_balance) + 21€Desc(p) lBalance(qi).

That is, the total projected balance in the subtree of which / is the root is equal to the
total instantaneous balance in that subtree, plus the net number of resources promised
to be exchanged with the parent of i.

The invariance of Owed(g) means that the following is invariant:

(2) Aiccienms!d{P-balance) > 0 -
PBalance(q) + zi€Chi|dren(i) q/(c_estim)(j) < 0).

That is, if an LRM i is owed resources by its parent, then it must estimate no surplus of
resources in the subtree of which i is the head, based on the estimates it has for each of

its children.

The invariance of Neighbor(g) implies that the following is invariant:
(3) A cciiens{ VIEChHildren(i))(q (c_estim)() = qi(p_estim)).
Substitution of (3) into (2) shows the invariance of

(4) Neciiems(@(P-balance) > 0 —»
PBalance(q) + Z.¢ Childrent) qi(p_&stim) <0).

Using the invariant Optim(q) to substitute for qi(p_estim) in (4) shows that

(5) Aeciens(d;(P-balance) > 0 —»
PBalance(q) + zj€Children(i) (PBalance(ql.) +

zkEChildren(n q](c—eSﬁm)(k)) < 0). 7

is invariant. Repeating this argument to eliminate all occurrences of c_estim yields the
invariance of

(6) A (q,(p_balance) > 0 — ziEDesc(l) PBalance(q,.) <0),

i€Clients

-176 -

which states, intuitively, that if LRM i is owed resources by its parent, then there can be
no projected surplus of resources in the subtree of which i is the root.

By using (1) to eliminate PBalance in favor of IBalance in (6), we obtain the
invariance of
(7) A ,.ecuems(qi(p_balance) >0—

q(p_balance) + zZ IBalance(q,.) < 0),

€Desc(i)
which is equivalent to the desired resuit. 1

Proof of Maximality

The maximality verification condition is:
k= (Vg€States, e€Events)(Invi™(g) A A ¢ .sENabled. (g, 6)
—» Enabled,, (q, 6)). '
The proof of this assertion is most easily performed by a case analysis on the event e;
making use of the fact that the module specifications define the state-transition relation
by precondition/next-state predicate pairs. If e = forward:c, reject:.c, down:{c, r>, or
upic, O, then a™e) = A, and hence Enabled , (g, 6) = true. We iherefore need

consider only the cases e = request.c and e = reply:{c, r>. if e = request:c, then
a"™Mi(e) = request:c, and hence Enabled,, (g, 6) = true.

We are left with the case e = reply:{c, r>. In this case, we obtain the following

from the module specifications:

Enabled,, (q,e) =r €q, (free) Ac € q,s(Pending)

Enabled (q,e) =r€q_free) A q.(pending) > 0

Enabled (q.6) = true, if p € Clients - {c}.
Assume InvfM(q), and hence Abs™M(g), holds. Assume further that A coions
Enabledp(q, e) holds. From Enabled_(q, e) we know thatr € q free) A q.(pending) > 0
holds. From this and Abs”M(q) we infer that r € q,, (free) A ¢ € g, (pending) holds, as
desired.

Proof of Validity

To prove that the validity verification condition holds for the resource manager
implementation, we use Corollary 1.5. To apply Corollary 1.5, we must find, for each j, j, €
Clients + {abs}, a sentence RG, ; of g{ARM!) such that the following hold:

-177 -

(RMI1)(a) Comp™' = [Rely™],.. = Acciients RCabsy
(RMI1)(b) Comp™' k= A cronts RGians = 16U ™] 0
(RMI2)(a) :
(root) CompRMl = (Al€Chents+{abs} RG: oot “Re'yRLRMnroot)
(node) COmpRM' = A;EClcents-{root) (AIGClnents+{abs} ﬂl:{e'yNLRMnl)
(RMI2)(b)

R RM
(root) Comp M = (ﬂGuarR'- Bmc:t - AI€CIients¢{abs} F*Groot.i)
RMI RM
(node) Comp™" = Aeciens {root) (IGuar™"™™], = Acciients « (abs) RCGi)
(RMI3) Whenever {<ig, i, iy, ip2y o s S0 >} is a cycle of Clients, then

Comp™M = V-1 RG .
P k=0"""Iydy 41

The sentences RG; j bear a particular relationship, formalized in Lemma il.2 below,
to the various conjuncts appearing in the local resource manager validity conditions.
Lemma 1.2 states in essence, that the local resource manager validity conditions are
"localized” versions of the sentences RG; ; Part (a) of Lemma I1.2 states that the
sentence RG,‘pmmm captures exactly what LRM i guarantees to its parent and exactly
what LRM narentli) relies on / to provide. Part (b) states that the scntence R ‘“‘parent(i) J
captures exactly what LRM j relies on its parent to provide, and exactly what LRM
parent(j) guarantees to provide to j. Part (C) states that the sentence l'-'\‘Gabsm,t captures
exactly what the root LRM relies on the external environment of the system of LRM's to
provide. Part (d) states that the sentence RG,'M captures exactly what LRM i
guarantees to provide to the external environment of the system of LRM’s.

The sentences RG,. jare defined as follows:

RG oot abs = D(Nowm,(pending) >0—
<>(3r€Resources)(8r°°t(0ccurs) reply:r))
RGps oot = D(Now, (p_balance) < 0)
For all j, j € Clients - {root}:
RGilm = D(Now,(pending) >0
O(3r€Resources)(8T™(Occurs) = reply:r))
RG,,; =true.
For all i € Clients - {root}:
F%G,.'pare o) = D(O(Now ,.(p_balance) <0) -

O((3r€Resources)(8™(Occurs) = parent_outr) v
(8™(Occurs) = reject_out))

-178 -

RG parent(i)i = I:I(CJ(Nowpa rem(l.)(c__balance)(i) <0)—
<>(3r€Resources)(am'emm(Occurs) = child_out:<, r>))
For all i, j € Clients such that neither i = parent()) orj = parent(j):
RG; J = true.

Lemma 1.2 - The foliowing are valid for the resource manager implementation:
(a) For all i € Clients - {root},
' RMI
Comp™ k= RGi.parem(l) -
[Guar_parentN-AM] «»
[Rely_child-"M(n]
(b) For all j € Clients - {root},
RMI
Comp™ = RGpa renti)y
[Rely_parentN-FM], «»
[Guar_child""™()] ey
(c) Comp™ E=RG « [Rely_externalf-FM]
(d) For alli € Clients,
Comp™! = RG, gps ﬁGual_clientLR"’i,.

parent(i)

abs,root root

Proof - Straightforward, using the invariance of Neighbor and the definition of the
decomposition map § "M, 1

Lemma 11.3 - Under the definitions given above for the sentences RG, » conditions
(RMI1)-(RMI3) hold for the resource manager implementation.

Proof - Assume CompfM.

To prove that (RMI1)(a) holds, we must show
[Rely™] 45 = Avecient RGiaps,
Suppose that uRely"Mﬂm holds. It suffices to prove that RGmmwl holds, since RG,,,; =
true for all i € Clients - {root}. [Rely™™],, is defined by:
[Rely™],,, = O(INow (free)] > |[Now, (pending)]). Using this and the
invariance of the predicate Abs™™!, we infer the truth of D(Zccyems (INOW(free)] -
Now (pending)) > 0), which is equivalent to

(A) D(Z¢ ciients 1Balance(Now) 20).

- 179 -

From Lemma Il.1 and the fact that Desc(root) = Clients, we infer that
D(Nowm‘(p_balance) >0 Nowmo‘(p_balance) Zi¢ Chients IBalance(Now))). From
this and (A), we conclude that D(Nowmt(p_balance) < 0), which is precisely the

statement that RG abs.root holds.

To prove (RMI1)(b), we must show

Aiccients RGiaps — [GUAr ™]
Suppose that A ¢cjiens RG; aps hOlDS. From the definition of RG, ., we know that

Acciients D(NOW (pending) > 0 — o(3reResources)(57M(Occurs) = reply:r))
holds. From the invariance of Abs”M and the definition of the abstraction map o™ we
infer that

Aseciens Bl € Now‘bs(pending) -

o (3r€Resources)(a"™(Occurs) = reply:<i,r>))
holds: This is precisely the statement that [Guar"M]_ _ holds.

We next prove (RMI2)(a). In case (root), we must show
RLRM
(rOOt) AIGCIients+{abs} RGi.root - ﬂRer - Broot'
From the root LRM specifications we know that
ﬂReIy"e"(temaim-m‘nw:mt A AiGChildren(root)
Using Lemma 11.2 (a) and (c¢) we infer that

RGahs,rcx:t A AiGChiOdren(root)RG
which implies formula (root).
In case (node) we must show that for all j € Clients,
(node) Aecients + abs) RGiy =~ nRelyNLm]r
Fix j to be an arbitrary element of Clients. From the node LRM specifications we know
that

[Rely_child"FM(A)], ., <> [Rely™ -], .

RLRM
oot <> IREY " o

[Rely_parent™- ™), A A crigrengyTREN-ChIld“ P, «» [Rely"-FM],

Using Lemma 11.2 (a) and (b) we infer that
RG pentgy; M MiecniarenyyRGij < ERe'VNLRan
which implies formula (node).

We next show (RMI2)(b). in éase (root) we must show
(root) uGuarRLRMBroot i€Clients+{abs} RG
From the root LRM specifications we have

[Guar®tRM] > [Guar_client'R"M]
Using Lemma 1.2 (b) and (d), we infer

root/*

ilg-RM)]

root A Ajechitdrentrooy IGUATChi oot

.180-

[Guar®™ ™), o «* RG, o abs A Mrecnitarentroon Croots
This implies formula (root), since RG, = true unlessj = abs or j € Children(root).
In case (node) we must show that, for all i € I:
(node) [Guar"™], = Acciems + (absy RGI
Let i be an arbitrary element of Clients, and assume [GuarN"M],. From the node LRM
specifications we have

[Guar™AM]. « [Guar_client-"M], A [Guar_parent™FM} A

A echitgreny 1GUAr—child“"M(,
Using Lemma I1.2 (a), (b), and (d), we infer
LRM . . r

[Guar®FM], «» RG, .. ARG, jarenip A (Vj€Children())RG, .
This implies formula (node), since RG,, = J = true unless j = abs, j = parent(i), orj €
Childreng(i).

To prove (RMI3) it suffices to show that RG,'W«,) \% RGparent(m holds for all i €
Clients - {root}. This is because every cycle {<iy, />y . s <y i >} of Clients either
contains a link <, i, ,> for which RG,k Doy = true by definition, or else contains both
links <, parent(i)> and <parent(7}, » for some i C Clients - {root}.

To show RG, parent) ¥ RGparent(i) J holds for all i € Clients {root}, let i be arbitrarily

fixed, and suppose that =RG; parent() holds, to show that RGwemm holds. By definition

of RG, parenty W€ know that OD(Now,(p_balance) < 0) holds. By the invariance of
Neighbor, we infer that OD(Nowwmm(c balance)(i) > 0) holds. This implies that
RGpamm J holds. 8

11.10 A Message Transmission System

In this section we consider the specification and implementation of a message
transmission module TM, whose function is to reliably deliver messages input by one
user, called the sender, to another user, called the receiver. Messages should be
delivered in the order in which they are sent, and should not be subject to loss or
duplication. The message transmission module therefore behaves as a FIFO buffer
between the sender and the receiver. The interesting part of this example is how the
reliable FIFO buffer behavior of the message transmission module is implemented by a
transmission module implementation TMI, which consists, in part, of unreliable
transmission line components. This is accomplished through the use of a send protocol
module and a receive protocol module, which together implement the alternating bit

-181 -

protocol [Bartiett69)].

The alternating bit protocol is a standard example for which correctness proofs in
~ varying styles have been given by other researchers. Most analyses treat only safety
properties, however the proofs given by Hailpern and Owicki [Hailpern80] and Lamport
[Lamport83] treat liveness properties of the protocol in addition to safety properties.
The major deficiency of Hailpern and Owicki's treatment is the unstructured and
apparently ad hoc nature of the specifications and the correctness proof. It is difficult to
discern from their work very much in the way of a general method (with the exception of
their use of history variables, which can be seen as a special case of the state-transition
approach espoused here) likely to be applicable to other examples. In contrast, the
specifications and correctness proof given below are an instance of a general strategy,
which is embodied in the state-transition approach to specification, the use of rely- and
guarantee-conditions, and the Correctness Theorem.

Of the extant proofs of the correctness of the alternating bit protocol, that of
Lamport [Lamport83] is perhaps the most similar to the one given here. The modules
are specified in a state-transition style quite like that proposed here. It is possible to
identify portions of Lamport’s proof that correspond to the proof of invariance of the
abstraction relation and implementation invariant given be!ow. The major difference
between Lamport's proof and the one given here is in the statement and proof of the
liveness (i.e. validity) properties. Lamport's liveness specifications for the send protocol
module take the form: "If the send protocol module has an unprocessed message, then
it will eventually give a packet containing that message to the unreliable transmission
medium for transmission to the receive protocol module;” "If a correct
acknowledgement is received by the send protocol module, then eventually the protocol
will progress to the next unprocessed message;" etc. These are "low-level”
specifications that can be thought of as essentially a set of assertions that might appear
in an assertional proof that a particular program satisfies the specification. in contrast,
the specifications given here are of the form: "If the send protocol module can rely on
the fact that sufficiently many transmissions of packet p will eventually result in the
receipt of an acknowledgement for packet p, then it guarantees eventually to process
every message given to it as input.” This is a "higher-level” specification that states
what the send protocol module accomplishes without detailing a chain of intermediate
steps by which it is. accomplished.

-182-

A feature that distinguishes the proof presented here from previous proofs, is that
the proof here is to a great extent independent of the precise assumptions on the
reliability of the transmission line components. The specifications of the transmission
line module are expressed in the form: "If a message m is transmitted according to
certain conditions Xmit(m), then eventually m will be delivered according to conditions
Divr(m)." For concreteness, we use "m is transmitted repeatedly, without intervening
transmission of any different message m ' for Xmit(m), and a symmetric condition for
Divri(m). However, Xmit(m) and Divr(m) can easily be replaced with alternative
conditions without change to the proof structure.

11.10.1 Specification of the Message Transmission Module

The interface of the message transmission module TM consists of two kinds of
events: those of the form TM_in:m, in which message m is presented to the transmission
module by the sender, and events of the form TM_out:m, in which message m is
delivered by the transmission module to the receiver. We wish to state that the
transmission module delivers messages in FIFO order without loss or duplication. We
can think of the étate of the transmission module as a sequence of the messages input
by the sender but not yet delivered to the receiver. Equivalently, and for our purposes
more conveniently, the state of the transmission module can be thought of as a pair
<ing, outq> of sequences of messages, where inq represents the entire history of
messages that have ever been input to the transmission module by the sender, and outq
represents the entire history of messages that have ever been output to the receiver by
the transmission module. The sequence of messages sent but not yet delivered by the
transmission module is represented, in this alternative state set, by the sequence
ing-outq.

Based on this selection of state set, let us now derive a precise specification of the
transmission module.

Let Values be a finite set of message values, given as a parameter. The interface of the
transmission module is defined as follows:

Events™ = {A} + [TM_in: Values + TM_out: Values].

In™ = {A} + [TM_in: Values]

Out™ = {A} + [TM_out: Values].
The state set for the transmission module is defined by:

.183-

States™ = [inq: Seq[Values] X outq: Seq[Values]].
If g € States™, then we write g(ing-outq) as an abbreviation for g(inq) - g(outq).

In an initial state for the transmission module, the queue is empty.
Init™(q) = q(inq) = g{outq).

The state transition relation Trans™ is defined by precondition/next-state

predicate pairs as follows:

An input event with message m can occur at any time, and causes message m to be
appended to the end of inq.
(TM_in) Prem_in(q, e, m)

Next.,, _in(q, r, m)

e = TM_in:m
r = ql(g(ing))>m/inq]

An output event with message m can occur only if there is a message that has been sent
but not yet delivered, and m is the first such message. The effect is to append m to the
end of outq.

T\ _cut) Prem_out(q, c, m) = e = TM_out:n A gloutq) < g{ing) A
m = (q(ing-outq)(0)
Nextry, ou@: 1 m) = r = g[(g(outq))*m/outq].

We wish the validity condition for the transmission module to capture the
requirement that every message sent is eventually delivered. This is captured by the
definition below, which states that, given any prefix s of inq, there is eventually a later
time at which s is also a prefix of outq.

valid™ = Rely™ —» Guar™
where
Rely™ = true
Guar™ = O(Vs€Seq[Values])(s < Now(ing) = O(s < Now(outq))).

11.10.2 Implementation of the Transmission Module

Figure 4 shows the implementation of the transmission module by a send protocol
module SP, a receive protocol module RP, a sender-to-receiver transmission line
module SRTL, and a receiver-to-sender transmission line module RSTL. Messages
received from the sender by the send protocol module (an "in" event) are placed in a
queue for transmission to the receive protocol module. When this queue is nonempty, a

-184 -

packet consisting of the first message in the queue and a current boolean sequence
number is transmitted (via a "pkt_out" event) by the send protocol module SP over the
transmission line SRTL. in contrast to the reliable transmission module specified in the
preceding section, the transmission line module is inherently unreliable, and might lose
or duplicate messages. We require, however, that the transmission line not reorder
messages. Since messages might be lost, in general it will be necessary for the send
protocol module to transmit the same packet a number of times before it is delivered to
the receive protocol module. Thus the send protocol module continues to send the
packet until an acknowledgement for the sequence number it contains is received (an
"ack_in" event) over the transmission line module RSTL. Receipt of a correct
acknowledgement by the send protocol module causes the first message to be removed
from its queue. In addition the send protocol module complements its sequence
number.

When a packet arrives at the receive protocol module (via a "pkt_in" event), it is
checked to see if its sequence number is current. If the sequence number is current,
then the message is extracted and placed in a queue of messages to be delivered to the
receiver. Also, the sequence number expected by the receive protocol module is
complemented. The receive protocol module ignores packets that do not contain the
current sequence number. The receive protocol module transmits acknowledgements
for the most recently received packet over the transmission line module RSTL (via
"ack_out” events). Whenever the queue of messages to be delivered to the receiver is
nonempty, then a message can be removed and sent to the receiver (via "out” events).

11.10.3 Specification of the Transmission Line Module

The interface of the transmisssion line module contains events of the form
TL_jn:m, which correspond to the presentation of message m for transmission, and of
the form TL_out:m, which correspond to the delivery of message m to its destination.
Thus, the interface of the transmission line module TL is isomorphic to that of the
message transmission module. The difference between the two modules lies in the fact
that, whereas the transmission module guarantees to deliver each message exactly
once, the transmission line module is permitted to lose or duplicate messages any
number of times. We require, however, that the transmission line module not reorder
messages. Also, we require that repeated input of messages to the transmission line

. 185 -

Fig. 4. Transmission Module Implementation

Sender Receiver

Transmission
Module

module will eventually cause messages to be delivered.

We will use the same state set for the transmiésion.line specification as we used for
the transmission module specification. However, the intyitive meanings of the
components inq and outq of the state are significantly changed, as is the state-transition
relation and validity condition. For the transmission line module, the sequence inq
represents a sequence of messages, each of which is destined to be delivered at least
once. However, each message in inq might be delivered more than once. The
sequence outq represents the messages in inq, each of which has already had all its
copies delivered, and will therefore never be delivered again. The state transition
relation is modified to permit message loss and duplication as follows: The possibility of
message loss is captured by the fact that input events are permitted either to produce
no state change (corresponding to the loss of the associated message) or to append the
message exactly once to the end of inq (indicating that the message is destined to be
delivered eventually at least once). The possibility of message duplication is captured
by the fact that output events are permitted either to produce no state change
(corresponding to the duplication of the message just delivered) or to add the message

. 186 -

to outq (corresponding to the delivery of the final copy of the message).

Note that the preceding description is only one of many possible ways of
presenting the same transmission line specification. For example, we could have
captured the possibility of message loss or duplication by stating that the occurrence of
a TL_in:m event causes the message m to be appended k times to inq, where k is a
nondeterministically chosen natural number. Occurrence of a TL_out:m event would
then be possible only if m is the first element of inq not also in outq, and would cause m
to be appended precisely once to outq. The transmission line specification is an
example of an indeterminate specification (see Section 6.2), which means that a single
observation can be produced in more than one computation. Although we could give a
determinate transmission line specification equivalent to the indeterminate version used
here, the use of an indeterminate specification seems more natural.

.We now make the above informal specification more precise. As in the case of the
transmission module specification, let Values be a finite set of message values, given as
a parameter. Define the interface of the transmission line module as follows:

Events't = {A} + [TL_in: Values + TL_out: Values].

InT = {A} + [TL_in: Values]

Out™ = {A} + [TL_out: Values] h
Define the state set of the transmission line module by:

States™ = [ing: Seq[Values] X outq: Seq[Values]}.

In an initial state, the transmission line queue is empty.

Init™(q) = q(inq) = g(outq).
The state-transition relation Trans™ is defined as follows:

An input event with message m can occur at any time, and either causes no change in
state (the message is lost) or appends the message to the end of the queue (the
message is destined to be delivered).
(TL_in) PreTUn(q, e,m) =e = TL_innm

Next; ,(q,r,m) =r = qvr = ql(a(inq))*m/inq]

An output event with message m can occur only if there is a message that has been sent
but for which the last copy has not yet been delivered, and m is the first such message.
The message m is either appended to outq (corresponding to the last copy of m being

-187 -

delivered), or there is no state change (corresponding to the duplication of m).
(TL_out) Preq oid.6.m) =6 = TL_out:m A g(outq) < g(ing) A
m = (q(ing-outq))(0)

Next (q,r,m)=r = q v r = g[(g{outq))sm/outq].

TL_out

The validity condition for the transmission line module should express the
requirement that, for each message m, if the transmission of m satisfies certain minimal
conditions (e.g. that m is transmitted repeatedly, without intervening transmission of
other messages), then the transmission line module will ensure that m will eventually be
delivered according to certain conditions (e.g. m will eventually be delivered repeatedly,
without intervening transmission of other messages). Formally,

Valid™ = Rely™ — Guar™
Rely™ = true
Guart = C(VYmEValues)(Xmit™(m) — ODivr'H(m)),

where XmitT'-(m) describes the conditions required on the transmission of message m
and DIvr’'(m) describes the corresponding conditions according to which m will be
delivered. Aside from the requirement that the resuiting specification be consistent,
there is a reasonable amount of flexibility in the choice of the conditions Xmit™(m) and
Divit(m). We will see later that the particular choice of conditions does not
significantly affect the proof of correctness of the transmission module implementation,
as long as the conditions Xmit™(m) and Divr™"(m) interact properly with corresponding
conditions appearing in the specifications for the send and receive protocol modules.
For concreteness though, we make the following definitions:
Xmit™(m) = OO(Occurs = TL_in:m) A
O(Vm '€Values)(Occurs = TL_innm "= m ' = m).
Divr't(m) = OO(Occurs = TL_out:m) A
O(Vm ‘€Values)(Occurs = TL_outm '~ m' = m).
Intuitively, the condition Xmit™-(m) states that the message m is transmitted repeatedly,
without any transmission of other messages m '. The condition Divr™(m) states that the
message m is delivered repeatedly, without any delivery of other messages m "

.188 -

11.10.4 Specification of the Send Protocol Module

The send protocol module SP interfaces between the sender and the SRTL and
RSTL transmission line modules. Its function is to implement one half of the alternating
bit transmission protocol. The interface of the send protocol module consists of three
kinds of events: SP_in:m, which represents the receipt of message m from the sender,
SP_pkt_out:p, which represents the transmission of packet p over the unreliable
transmission line SRTL, and SP_ack_in:b, which represents the receipt of an
acknowledgement for sequence number b from the unreliable transmission line RSTL.

~ The state of the send protocol consists of three components: a sequence inqg of all
messages that have ever been received from the sender, a sequence oulq of all
messages that have been acknowledged by the receive protocol module, and a boolean
component sn, which records the current sequence number. Choosing outg to be the
sequence of acknowledged messages, rather than the sequence of all messages
transmitted to the SRTL transmission line, allows us to obtain a simpler correctness
proof than that presented by Hailpern and Owicki [Hailpern80]. In that paper, the use of
the actual history of messages transmitted requires the correctness proof to define and
reason about certain functions whose purpose is essentially to éxtract the history of
acknowledged messages from the history of all transmitted messages.

informally, the send protocol module behaves as follows: Occurrence of a
SP_in:m event causes the message m to be appended to inq. When there is a message
to be sent, and processing of all previous messages has been completed, the message
is paired with the current sequence number to form a packet p, which is then given to
the unreliable transmission line SRTL to be transmitted to the receive protocol module.
The send protocol module continues to transmit the packet p until an acknowledgement
for its current sequence number arrives over the unreliable transmission line RSTL.
When a correct acknowledgement arrives, the message acknowledged is appended to
outq, signifying that it has been successfully delivered, and the current sequence
number is complemented.

More precisely, let Values be a finite set of message values, given as a parameter.
The interface of the send protocol module is defined as follows:
EventsS? = {A} + [SP_in: Values + SP_pkt_out: Pkts + SP_ack_in: Bool]
InSP = {A} + [SP_in: Values + SP_ack_in: Bool]

-189-

Out®® = {A} + [SP_pkt_out: Pkts]

Pkts = [msg: Values X sn: Bool],
where Pkts is the set of packets. The state set for the send protocol module is defined
by:

StatesS? = [ing: Seq[Values] X outq: Seq[Values] X sn: Bool].

In an initial state, the queue is empty, and the sequence number is false.
InitSP(g) = qling) = q(outq) A g(sn) = false.

The state-transition relation TransSP is defined as follows:

An SP_in:m event can occur at any time, and causes the message m to be appended to
inq.
(SP_in) Preg, ol.6,m) =e = SP_in:m

Nexts, (@, r,m) =r = ql(q(inq))*m/inq]

An SP_pkt_out:p event can occur only if there is a message that has been received from
the scndcer but not yet successfully transmitted to the receiver, p(iisg) is the first such
message, and p(sn) is the current sequence number. There is no effect on the state.
(SP_pkt_out) Preg, _pkum(q, e,p) =e = SP_pkt_out:;p A g(outq) < g(ing) A
p(msg) = (q(ing-outq))(0) A p(sn) = g(sn).
Nextg,, _pkLout(q, npysr=4q.

An SP_ack_in event for acknowledgment b can occur at any time. If b does not match
the current sequence number, or if there is no message currently being transmitted,
then there is no change in state. If b does match the current sequence number and
there is a message currently being transmitted, then this indicates that the message has
been successfully transmitted. In this case, the current message is appended to outq,
and the sequence number is complemented.

(SP_ack_in) Prege aexinld> @ b) =e = SP_ack_in:b

Nextgp ooy in(3: 72 B) = ((q(inq) = g(outq) v b # q(sn)) =1 = q) A
((g(outq) < q(ing) Ab = g(sn)) —
r = q[—(q(sn))/sn,
(qa(outq))+q(inq-outq)(0)/outa]).

-190 -

With the validity condition for the send protocol module, we would like to capture
the following: If the send protocol can rely on the fact that repeated transmissions of a
packet eventually result in the repeated receipt of acknowledgements for that packet,
then it guarantees that every message appearing in ing will eventually also appear also
in outq. This requirement is stated in rely-/guarantee-condition form as follows:
ValidS® = RelyS? — Guars®
RelyS? = O(Vp€Pktis)(XmitS(p) — ODIvrSP(p(sn)))
Guars? = D(Vs€Seq[Values])(s < Now(ing) = O(s < Now(outq))),
where the formula XmitSP(p) is the formalization of the statement: "packet p is
transmitted repeatedly, without any transmissions of other packets,” and the formula
DivriSP(b) is the formalization of "acknowledgements for sequence number b are
received repeatedly, without receipt of any other acknowledgements.” These formulas
must be defined to be compatible (in a way that is made precise by Lemma I1.6 below)
with the formulas Xmit™(m) and Divr™(m) in the transmission line specification. Thus,
XmitSP(p) = 0O(Occurs = SP_pkt_out:p) A
0(Vp '€Pkis){Occurs = SP_pkt_outp’'—p’ = p)
- DivrSP(b) = DO(Occurs = SP_ack_in:b) A
O(Vb '€Bool)(Occurs = SP_ack_inb' = b’ = b).

11.10.5 Specification of the Receive Protocol Module

The receive protocol module interfaces between the SRTL and RSTL transmission
lines, and implements the complementary half of the transmission protocol. it operates
as follows: The state of the receive protocol module consists of two sequences, inq and
outq, of messages, and a boolean sequence number sn. The sequence inq records the
history of valid messages (with duplications removed) that have been received from the
unreliable transmission line SRTL. The sequence outq records the history of messages
that have been delivered to the receiver. Initially the sequence number sn in the receive
protocol module’s state matches the sequence number in the state of the send protocol
module. The receiver waits for packets to be delivered by the SRTL transmission line. If
a received packet has a sequence number that does not match the current sequence
number, then it is ignored. If a received ‘packet has a sequence number that matches
the current sequence number, then the message is extracted from the packet and
placed at the end of ing. In addition, the current sequence number is complemented.
At any time, the receive protocol module can transmit acknowledgements for the

-191 -

complement of its current sequence number (i.e. for the sequence number of the last
valid packet received).

As in the previous specifications, let thé finite set Values be given as a parameter.
Define the interface of the receive protocol module as follows:
EventsPP = {A} + [RP_pkt_in: Pkts + RP_out: Values + RP_ack_out: Bool]
InRP = {A} + [RP_pkt_in: Pkts]

out?? = {A\} + [RP_out: Values + RP_ack_out: Bool]
Pkts = [msg: Values X sn: Bbol].
Define the state set by:

StatesRP = [inq: Seq[Values] X outq: Seq[Values] X sn: Bool].

In an initial state, both queues are empty, and the sequence number is false.
InitfP(q) = q(inq) = g(outq) A q(sn) = faise

The pairs that define the state transition relation Trans®P are given below.

A RP_pki_in event with packet p can occur at any time. If the sequence number in p
does not match the current sequence number, then there is no effect on the state. if the
sequence number in p does match the current sequence number, then the message
contained in p is appended to ing, and the current sequence number is complemented.
(RP_pkt_in) Preg, _m_m(q, e,p) =e = RP_pkt_in;p
Nextep ouin(@ 1 P) = (p(sn) # q(sn) = r = q) A
(p(sn) = q(sn) - r = g[—q(sn)/sn,
(q(inq))+p(msg)/ing])

A RP_ack_out event can occur only for the complement of the current sequence
number. There is no effect on the state.
(RP_ack_out) Prenp_mk_om(q. e) = e = RP_ack_out:(mq(sn))

Next., _ack_om(q, r) =r=q

An RP_out event with message m can occur only if there is a message in inq that has not
yet appeared in outg, and m is the first such message. The effect is to append m to
outq.
(RP_out) Prenp_wt(q. e, m) = e = RP_out:m A q(outq) < g(inq) A
m = (q(ing-outq)X0)
Next_ (q,r, m) = r = q[(g({outq))*m/outq]

-192 -

The validity condition for the receive protocol module should capture the following
two requirements: (1) 1 packet p is received repeately, then eventually
acknowledgements for the sequénce number contained in that packet will be
" transmitted repeatedly; and (2) Every message that appears in inq will eventually appear
in outg. Formally,

Valid®® = Rely®F — Guar®f
Rely®" = true
Guar®? = O(Vp€Pkts)(DIvifP(p) — OXmit?P(p(sn))) A
O(vs€Seq[Values])(s < Now(ing) = O(s < Now(outq))),
where, as in the previous specifications, DivriR"(p) formalizes the statement, "Packet p is
received repeately, without any receipt of other packets" and XmitRP(b) formalizes the
statement, "Acknowledgement b is transmitted repeately, without any transmission of
other packets.” These forrhulas are defined as follows:
DivrRP(p) = OO(Occurs = RP_pkt_in:p) A
O(vp '€Pkts)(Occurs = RP_pkt_inip’' = p ' = p)
XmitRP(b) = DO(Occurs = RP_ack_out:b) A
O(vb ‘€Bool)(Occurs = RP_ack_outtb' = b’ = b)

11.10.6 The Transmission Module Implementation /A'Igebra

In this section we define the transmission module implementation algebra A™!
Let the finite set Msgs of message values be given as a parameter. Define

Pkts = [msg: Msgs X sn: Bool].

The index set for the interconnection is the set {SP, RP, SRTL, RSTL}, corresponding to
the send protocol, receive protocol, send-protocol-to-receive-protocol transmission
line, and receive-protocol-to-send-protoco! transmission line component modules.
Define the embedded algebras A, , Agp: Apps Agary s and A, gy, as follows:

A is the message transmission module event/state algebra A™, with the
parameter set Values instantiated as the set Msgs.

Agp! is the send protocol module event/state algebra ASP, with parameter
Values instantiated as the set Msgs.

Agp: is the receive protocol module event/state algebra ARP, with
parameter Values instantiated as the set Msgs.

Asam is the transmission fine module event/state algebra A™, with

parameter Values instantiated as the set Pkts.

-193-

is the transmission line module event/state algebra A™, with
parameter Values instantiated as the set Bool.

Apsti’

Let the composite interface for the transmission module interconnection be

defined as follows:

Events™' = {A} + [in: Msgs + out: Msgs + pkt_out: Pkts + pkt_in: Pkts +

ack_out: Bool + ack_in: Bool]

In™ = {A} + [in: Msgs]

Out™ = {A} + (Events™! - In™)
Intuitively, events in:m and out:m represent, respectively, the receipt of message m from
the sender and the delivery of message m to the receiver. Events pkt_out.p and pkt_in:p
represent, respectively, the presentation of packet p by the send protocol module to the
SRTL transmission line and the receipt of packet p by the receive protocol module from
the SRTL transmission line. Events ack_out:b and ack_in:b represent, respectively, the
presentation of acknowledgement b by the receive protocol module to the RSTL
transmission line and the receipt of acknowledgement b by the send protocol module

Define the abstraction map «™!, and the decomposition map § ™ as follows:

a™ie) = TM_in:m ife = inim
= TM_out:m ife = outim
= A otherwise.
52e) = SP_in:m ife = inim
= SP_pkt_out:p if e = pkt_out:p
= SP_ack_in:b ife = ack_in:b
= A otherwise.
dmaie) = RP_out:m ife = out:m
= RP_pkt_in:p ife = pkt_in;p
= RP_ack_out:b if e = ack_out:db
= A otherwise.
dgmr (e) = TL_inp if e = pkt_out:p
= TL_out:p ife = pkt_in:p

=A otherwise.

-194 -

St (e) = TL_in:b ife = ack_out:p
= TL_out:b ife = ack_in:p
=A otherwise.

11.10.7 Proof of Correctness

In this section we prove the correctness of the implementation
. . . TM
<g,™, S <Si>i€{SP,RP.RSTL.SRTL}>' where S, is defined by <A, ., Valid™, and S,
Sper Sasrr Ssar @re defined by <A, Valid®, <Ag,, Valid™>, Aggy, Valid™>, and
<A valid™™>, respectively.

abs’

SRTL!
invariance

The correctness of the transmission module implemenfation depends only on the

invariance of the following:

(1) Q,ps(inQ) = Ggp(ina) A gygfouta) = gpplouta)

(2) qgploutq) < gpp(ing) < ggp(ing).
Condition (1) is the abstraction relation Abs™™i(q), and states that the abstract
transmission module’s ing is identical to the ing for the send protocol module, and that
the abstract transmission module's outq is identical to the outq for the receive protocol
module. Condition (2) is Lemma 1.4 below, and says that thé receive protocol module’s
ing is always an extension of the send protocol module’s outq and a prefix of the send
protocol module’s ing.

Condition (2) is not inductive as stated, and must be strengthened to permit an
inductive proof of invariance. We therefore define the implementation invariant
InvT™(q) by

Inv™!(q) = Rep™!(q) A Abs™(q),
where Rep™!(q) is the representation invariant and Abs™!(q) is the abstraction relation.
The abstraction relation is:

Abs™!(q) = q,,(inQ) = qgp(ina) A g . (outa) = ggploutq).

The representation invariant Rep™!(q) is defined as follows:
Rep™(g) = Queue(q) A (Start(q) v Send(q) v Flip(q) v Ack(q)),
where
Queue(q) = qg,(inq) 2 ggp(outa) A qpy(ing) 2 ggg(outa)

-105 -

and the formal definitions of Start, Send, Flip, and Ack will be given below. This .
invariant says that, at any instant of time, the histories inq and outq for the send and
receive protocol modules satisfy certain prefix relationships captured by the predicate
Queue. In addition, the transmission system is always in one of four kinds of states,
corresponding to the four predicates Start(q), Send(q), Flip(g), and Ack(g). The
situations covered by these four predicates, and how they evolve during execution, will
now be described.

In a state that satisfies Start, the send and receive protocol modules have the same
sequence number, the send protocol module’s outq and the receive protocol module’s
inq are identical, and no new packets or acknowledgements are currently in transit over
the transmission lines. The predicate Start is satisfied by all initial states.

States satisfying Stért give rise to states satisfying Send when there is an
unprocessed message at the send protocol module that has been output to (but
possibly lost by) the transmission line RSTL. In a state that satisfies Send, the send and
receive protocol modules have the same current sequence number, the outq of the send
protocol module and the inqg of the receive protocol module are identical, there is an
unprocessed message at the send protocol module, there may be packets containing
this message in transit over the transmission line SRTL, and there are no new
acknowledgements in transit over RSTL.

States satisfying Send give rise to states satisfying Flip when the first packet
containing an unprocessed message arrives at the receive protocol module. In a state
that satisfies Flip, the send and receive protocol modules have complementary current
sequence numbers, the inqg of the receive protocol module is equal to the outq of the
send protocol module with the newly arrived message appended, and all packets in
transit over SRTL or acknowledgements in transit over RSTL are old in the sense that
they are for a sequence number that is not the one currently expected by the send
protocol module.

States satisfying Flip give rise to states satisfying Ack when the first
acknowledgement for the newly arrived packet is transmitted over RSTL. In a state
satisfying Ack, the send and receive protocol modules have complementary current
sequence numbers, the inq of the receive protocol module is equal to the outq of the
send protocol module with the still-unacknowledged message appended, all packets in

-196 -

transit over SRTL are old, but there may be new acknowledgements in transit over
RSTL.

To complete the cycle, states satisfying Ack give rise to states satisfying Start
when the first new acknowledgement is received by the send protocol module.

For the formal statement of these predicates, it is convenient to define some
auxiliary predicates, which describe possible states of the transmission lines SRTL and
RSTL.

The predicate SRTL_old is true of a state iff all packets in the SRTL transmission line are
old, in the sense that they are for the opposite sequence number than the one currently
expected by the receive protocol module.

SRTL_old(q) = (Vn< lagqy, (ing-outa)ll(@ggy (inq-outa)(n)(sn) * qpp(sn))

Similarly, the predicate RSTL_old is true of a state iff all acknowledgements in the RSTL
transmission line are old, in the sense that they are for the opposite sequence number
than the one expected by the send protacol module.

RSTL_old(q) = (Vn < |gpgy, (ing-outq)l)(qpgy, (ing-outa)(n)(sn) # ggp(sn))

The predicate SRTL_new is true of a state iff the SRTL transmission line queue consists
of a {possibly empty) sequence of old packets, followed by a (possibly empty) sequence
of new packets, each of which contains the first unprocessed message held by the send
protocol module.

SRTL_new(q) = (Im < lagpy (ing-outq))(Vn < lagry (ing-outa)))
((n < m = qggy (ing-outq)(n)(sn) * ggg(sn)) A
(n 2 m = qggy (ing-outg)(n) =
<msg: q,(ing-outq)(0), sn: Qpp(sn)))

Similarly, the predicate RSTL_new is true of a state iff the RSTL transmission line queue
currently consists of a (possibly empty) sequence of old acknowledgments, followed by
a (possibly empty) sequence of new acknowledgements.

RSTL_new(q) = (3m < lgggq, (ing-outq)](vn < ansn(inq-outq)l)
((n <m — gpgr (ing-outq)(n) # ggp(sn)) A
(n 2 m = qpgy, (inq-outq)(n) = qgp(sn))).

-197 -

The formal definitions of the predicates Start, Send, Flip, and Ack are as follows:

Start(q) = qgp(sn) = Ggplsn) A ggplouta) = gpg(ina) A
SRTL_old(g) A RSTL_old(qg)

Send(q) = Ggp(SN) = Grplsn) A ggp(0uta) < Ggy(ina) A ggp(outa) = ggg(ing) A
SRTL_new(q) A RSTL_old(q)

Flip(@) = qgp(sn) # Gga(sn) A ggplouta) < ggg(ing) A
(@gplouta))ag,(ing-outa)(0) = Ggp(ing) A
SRTL_old(g) A RSTL_old(q)

Ack(q) = qgp(sn) # gpp(sn) A ggplouta) < ggp(ina) A
(9gp(outa))agp(ing-outa)(0) = ggg(ing) A
SRTL_old(q) A RSTL_new(q).

We now consider the proof that InvTM{(q) is invariant.

(Basis): k= (Vg€States™)(Init™!(g) — Inv™(q)).

If g is an initial state then all queues are empty and the sn components of the state of
both the send protocol module and the receive protocol module have value false. It is
easily verified from this that Abs™!(q) A Queue(q) A Start(q) holds.

(Induction): k= (Vq,r€States™, e€Events™!)(Trans™!(g, e,) = (Inv™'(q) — Inv’™(n))).
Suppose that Inv™!(g) holds and that Trans™!(g, e, r) hoids.

We first examine the problem of showing that Abs™!(r) holds. Abs™!(r) is easily
seen to be true, since the only events that affect components of the state upon which
Abs™! depends are the events in:m and out:m. Comparison of the definitions of
Trans™, TransS®, and Trans”® shows that the events in:m and out:m maintain the
desired correspondence between the abstract module state and the states of the send
and receive protocol modules.

To see that Queue(r) holds, note that the definitions of TransSP and Trans"® imply
that the ing and outg components of the states of the send and receive protocol
modules can only change in one of the following two ways:

- A new message is appended to the end of inq.

- The first element of inq - outq is appended to the end of outq.
Neither of these two kinds of changes can cause outq not to be a prefix of ing, and thus
Queue(r) must hold.

.198 -

To show that Start(r) v Send(r) v Flip(r) v Ack(r) holds, we claim that all events
preserve the truth of the predicates Start, Send, Flip, and Ack, except in the following
cases:)

- It Start(q) is true and e = pkt_out:p, then Send(r) is true.

- If Send(q) is true and e = pkt_in:p, with p(sn) = q(sn), then Flip(r) is true.

- If Flip(q) is true and e = ack_out:b, then Ack(r) is true.

- If Ack(q) is true and e = ack_in:b, with b = qg,(sn), then Start(r) is true.
It is a straightforward, but tedious process to verify the truth of this claim by exhaustive
case analysis.

The following consequence of the invariance of Inv™!(q) is the crucial fact used in
the maximality and validity proofs below.

Lemma i1.4 - The following are invariant for the transmission module implementation:
(8) ggploutq) < gpp(ina)
(b) ggp(inq) < ggp(ing)

Proof - The invariance of Start(q) v Send(q) v Flip(q) v Ack(q) implies the invariance of
(1) qge(ing) = ggp(outq) v |

(q5p(inq) > qgp(0Utq) A Gpeling) = (@gp(outa))age(ing-outa)(0)).
Suppose the first disjunct of (1) holds, that is qsp(outq) = gpp(inQ). Then (a) is
immediate. The invariance of Queue(q) implies that gy (outq) < qgp(ing), thus yielding
(b). Now suppose that the second disjunct of (1) holds. It is a fact about finite
sequences that if s, s’ are finite sequences, and s > s’, then s > s'm, where m =
(s - s’)(0). This fact permits us to conclude, from the second disjunct of (1), that
qgp(ina) > (ggp(0uta))qgy(ing-outa)(0) = gga(ina) 2 ggp(outa), yielding (a) and (b).

Maximality

The maximality verification condition is:
k= (Vq€States™!, e€Events™!)(Inv™!(q) A Enabledg,,(q, €) A Enabled(q, €) A
Enabledg,, (9, e) A Enabled¢;, (9, e)
- Enabled,, (9. e)).
Examination of the definition of Trans™ shows that Enabled,_,(q,) is identically true
unless e = out:m. Thus it suffices to show that, for all g € States™ and all m € Msgs, if
Inv™!(q) and Enabled,(q, out:m) hold, then Enabled,, (g, out:m) holds as well.

-199 -

Suppose now that Inv™!(q) and Enabled,,(q, out:m) hold. It suffices to show that
(1) ggp(ing) > ggp(outq)
holds, for then the assumption that Inv™Y(q) (and hence Abs™!(q)) holds implies that
d,.s(ina) > g, (outq) holds, which in turn implies that Enabled , .(q, out:m) holds.

By definition of Enabled_(q, out:m), we know that
(2) qpploutq) < qpp(ing) A gge(ing-outq)(0) = m
holds. Informally, if e = out:m, then m must be the first message in the receive protocol
module’s inq, that has not yet been transferred to its outq. The truth of (1) follows from
(2) and Lemma 1.4 (b). §

Validity

To prove that the validity verification condition holds for the transmission module
implementation, we use Corollary .4. We use the well-founded partial ordering < on the
set {SP, RP, RSTL, SRTL} that includes exactly the pairs SRTL < SP, RP < SP, and
RSTL < SP. Under this ordering, hypotheses (1) and (2) of Corollary 1.4 are as follows:
(TMi1) - Comp™ 1= [Guar®Tjj, A [Guar™ ., A [Guarger A iGuar™ g, =

[Guar™]_
(TMI2) Comp™! k= [Guar™]gq;, A [Guar®P] . A [Guar™) s, — [RelySFlg,.
These two conditions capture abstractly the important relationships between the validity
conditions of the various modules.

We now prove that (TMI1) and (TMIZ) are consequences of the module
specifications.

Lemma I1.5 - Condition (TMI1) holds for the transmission module implementation.

Proof - Assume Comp™' and [Guar®f]g, and [Guar®P]... Using the definition of
[Guarsf],, we have
O(Vs€Seq[Msgs])(s < Now,(inq) = O(s < Now,(outq))).
From this and Lemma 1.4 (a), we obtain
D(Vs€Seq[Msgs])(s < Now (inq) = O(s < Now_,(inq))).
Using the assumption [Guar™"]_ gives
O(Vs€Seq[Msgs))(s < Now(inq) — O(s < Now_(outq))).
From an application of the invariance of Abs™!, we conclude

- 200 -

D(Vs€Seq[Msgs])(s < Now,, (inq) = O(s < Now anstouta)). o

The proof of condition (TMI2) makes use of the following lemma, which expresses
the principle that guided our choices for the definitions of the various Xmit and Divr
formulas in the specifications above.

Lemma I1.6 - The following hold for the transmission module implementation:
= [XmitSP(p)[gp «> [Xmit™ ()] gar,
= [DIvrSP(b)]gp « [DIVITH(b)] gy,
= [Xmit™P(b)]ge « [Xmit™ (6)}em,
k= [DIviRP()] e < IOV (0)]gr, -

Proof - Straightforward from the module specifications and the definition of the

decomposition map § ™. 8
Lemma I1.7 - Condition (TMI2) holds for the transmission module implementation.

Proof - Suppose that Comp™, IValid™lc ., [Valid™f.,, and [valid'joqy hold.
Suppose, to obtain a contradiction, that ---i[Flely‘“""nsp holds. From the definition of
[RelySP]gp, we know that

(1) O(3Ip€Pkts)([XmitS ()]s A O DIV (p(sn))lgp)
holds. That is, eventually a point is reached after which the packet p is transmitted
infinitely often, without intervening transmission of other packets, but infinitely many
acknowledgements for the sequence number contained in p are not received by the
send protocol module. From (1) and Lemma 1.6 we infer

(2) O(Ip€EPkts)([Xmit™ (0)]gay A O[OV (p(sn))gp)-
From (2) and the assumption that [Valid"-]gq;, holds, we deduce

(3) O(3p€EPkis)([DVI™(p)]gqy, A O [DIvr (p(sn))]p)-
That is, packet p is delivered infinitely often to the receive protocol module, without
intervening delivery of other packets, but infinitely many acknowledgements for the
sequence number contained in p are not received by the send protocol module. From
(3), another application of Lemma 1.6 shows

(4) O(3p€PKIS)[DIVFP(p)] p A O IDIVFE (p(sN))]gp)-
From this, an application of [Valid""] ., shows

(5) O(3Ip€PKs)([Xmit*P(p(sn))]p A O IDIVSP((sn))]gp)-
That is, an acknowledgement for the sequence number contained in packet p is

- 201 -

repeatedly transmitted by the receive protocol module, but infinitely many
acknowledgements for p are not received by the send protocol module. Applying
Lemma 11.6, [Valid™ g, . and Lemma 11.6 again, shows that

(6) ©O(3pEPKts)([DIvr*F(p(sn))]gp A B[DIVESP(p(sn))]gp)-
This is a contradiction, and we conclude that (TMI2) must hold. 8

.202 -

Appendix lll - Index of Definitions

abstraction map 41
g-abstraction map 113
1/0-abstraction map 87

abstraction operator 42

asynchronous 97

asynchronous product 84

behavior 40
9-behavior 113
170-behavior 88
primitive behavior 87

canonical projection 55, 84

coherent 57

Completeness Theorem 120

compatible coupling property 108

composite machine 55

composition operator 43

computation 80
valid computation 52

consistent '
g-consistent 114
170-consistent 88
locally 9-consistent 116

correct 44
g-correct 114

Correctness Theorem 58

cycle 64

decomposition map 41
9-decomposition map 113
canonical decomposition map 85
170-decomposition map 107

determinate 118
quasi-determinate 119

embedding 85

enabled 86

event 38
input event . 84
null event 38
output event 84

event/state algebra 137

evolutionary 116

explicit 86

fair
future
history
history skeleton
170-system
implementation
J-implementation
implementation algebra
implementation invariant
Induction Principle
inductive
input-cooperative
interconnection
9-interconnection
embedded interconnection
interface
abstract interface
component interface
composite interface
9-interface
I/0-interface
system interface
initial state set
invariant
isomorphic
maximality condition
machine
embedded machine
1/0-machine
PS-machine
system machine
null step
observation
orthogonal
possibilities mapping
preserves
strictly preserves
productive step set
reachable
regular
rely-/guarantee-conditions
repeatedly
runs
satisfies
skeletal sequence

Q5938889

87
115
51

114

113

-

BI8SRIRA2888

8582

. 204 -

spans
specification
state-transition specification
subset specification
specification domain
specification language
state function
state-transition relation
translation
Translation Lemma
truncation
truncation-closed
validity condition

50, 51

52
a7
113

49

41
147
113
113

56

