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Chapter 1

Introduction

The purpose of this thesis is to explore the idea of using the Larch facilities to verify

hand proofs of distributed algorithms. It represents a first attempt at using these tools

in this context, and opens avenues for future exploration in this area. This section

informally discusses the mathematical model, previous research, and the problem the

thesis addresses.

1.1 Automata

Algorithms can be described using automata. The most fundamental type of au-

tomaton is the I/O automaton [9]. This model is used to describe algorithms without

any properties that involve time. Once an algorithm has been described using I/O

automata, a variety of techniques can be used to prove the algorithm's correctness.

In this paper, the most commonly used type of automata is the Merritt, Modugno,

Tuttle (MMT) automata [12]. This model provides a simple way to describe basic

timing properties of an algorithm. Unlike other models that can be used to describe

more complex timing properties, MMT automata are very similar to I/O automata.

It is helpful to think of an MMT automaton as an I/O automaton that is built out

of an untimed base I/O automaton and some additional information about time.

8



1.2 Proving Properties of MMT Automata

Since MMT automata are very similar to I/O automata, timing properties of MMT

automatoncan be proved in much the same way as other properties of I/O automata.

The timing requirements become additional proof obligations.

1.2.1 Operational Proofs

The most obvious way to reason about a program is to discuss its possible executions.

Thus, to prove a certain property of the automaton, one must show that every execu-

tion has that property. Such a proof is called an operational proof. Unfortunately, it

is very difficult to create a rigorous operational proof. This is because there are many

executions, and it is hard to be certain that all have been considered. Furthermore, it

is at best very hard, and maybe impossible, to create a standard form for operational

proofs, as they in general depend on the possible executions.

1.2.2 Invariant Proofs

Fortunately, there is an alternate proof technique, called invariant reasoning, that al-

leviates some of the difficulties of operational reasoning. In order to write an invariant

proof of some property p of an automaton, one finds some logical statement that is

true in every reachable of the automaton and that implies p. This logical statement,

called the invariant, corresponds to the intuitive reason why the automaton has the

property. Finding the invariant can be difficult, but once it is done, most of the rest

of the proof follows a general pattern. If one makes sure to prove the invariant in

the automaton's initial states, that every action preserves the invariant, and that the

invariant implies the property, one can be sure the property is true of any execution

of the automaton.

Frequently, it is more convenient to express the goal of the proof as a high level

automaton, rather than as a set of properties. This high level automaton is referred

to as the specification automaton, or sometimes simply the specification. Essentially,

it expresses the task that the more detailed automaton is intended to implement.
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Once one has a specification written, proving correctness amounts to showing that

the implementation simulates the specification. In other words, anything the im-

plementation does could also have been done by the specification on the same input.

This relationship can be stated formally using an abstraction function from the states

and actions of the implementation to the states and actions of the specification. More

precisely, the function must map each state of the implementation to' a set of states

of the specification, and each action of the implementation to a sequence of actions of

the specification, such that the state before the sequence is an element of the abstrac-

tion function of the state before the implementation's action, and the same condition

holds for the states after the action. Thus, most invariant proofs of simulations have

very similar obligations and structures.

1.3 Difficulties of Invariant Proofs

Although their similar structures makes invariant proofs easier to write and under-

stand, there are still many difficulties with them. The primary difficulty is that it is

hard to create a complete proof. There are several reasons for this, most of which

involve the quantity of things to be proved.

1.3.1 Proof Obligation Difficulties

One major contributor to this excess of things to be proved is the quantity of things to

be proved about each action performed by the automaton. One must show that each

action of the implementation preserves the relationship defined by the abstraction

function and preserves the invariants, both those associated with the base automaton

and with the timing properties. Furthermore, one must show that for any action in

the implementation there is a legal sequence of actions in the specification within the

abstraction function of the implementation's action. Many of these proof obligations

are extremely easy. The consequence of the quantity and relative ease of the proof

obligations is that it is often tempting to omit certain portions of the proof that seem

"obvious," but which may in fact be somewhat subtle. Worse still, it is sometimes
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easy to forget a proof obligation entirely, or to make an unjustified, but "obvious"

assumption; and it is very difficult, when reading someone else's proof, to be sure

that they cover all of their obligations and make no unjustified assumptions.

1.3.2 Uncertainty About Correctness

Thus, it is at worst difficult and at best extremely tedious to construct a completely

rigorous hand proof of an I/O automaton's properties. Furthermore, the addition of

timing information into MMT automata dramatically increases the number of proof

obligations for the easy steps. It also increases the number of actions by introducing

an action that represents the passage of time. Therefore, although invariant proofs

offer the possibility of complete rigor, it is difficult to achieve in practice.

Worse still, when one is examining someone else's proof, there is no way to be sure

that it is completely correct other than by carefully examining each case to be sure

that the proof correctly deals with each obligation. This can be almost as difficult as

writing the proof in the first place, and is much more tedious.

1.4 Solution: Machine-Assisted Proofs

In some ways, the fact that most of the proof steps are uninteresting is a blessing

in disguise. While it means that much of the proving is boring, it also means that

a substantial amount of it can be automated with a machine assistant. The general

concept of machine assisted proving is to get a computer to keep track of the proof

obligations and to perform the easy steps of the proof. With a machine assistant,

the user will only need to do the interesting steps and provide general guidelines.

Interesting steps correspond to providing invariants, defining the abstraction function,

deciding on important lemmas to prove, applying key facts, etc. Machine-assisted

proving seems to have the potential to alleviate the two main difficulties of invariant

proofs. It eliminates many of the tedious steps, while guaranteeing complete rigor.
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1.4.1 Previous Research

The appeal of automatic proving is obvious. It allows anyone who comes in contact

with the proof to be certain of the proof's correctness, to the extent that they can

trust the proof assistant, which is usually more than they can trust any single proof.

Furthermore, it alleviates some of difficulties of writing a proof by hand.

There are many different approaches to automatic proving. These range from

fully automated proving to computer assistance. This section briefly discusses some

research done in the area before my thesis.

Perhaps the most popular method is to use the Higher Order Logic (HQL) theorem

prover [3] in proving simulations [11]. This prover provides mechanisms for very

general systems of logic, which the user defines. Some attempts have been made to

perform proofs of timed systems with it [1].

Another approach, taken by [5], is to describe a concurrent algorithm using two

component finite state machines described with process algebra. This is significantly

different, as it does not involve simulation relations at all.

Of the many approaches, the most similar work to mine is [13]. This is similar

because it uses the Larch tools [4, 2] as a computer assistant. Furthermore, it proves

a simulation relationship between I/O Automata. The primary difference is that the

automata involve no timing properties. The absence of timing properties simplifies

proofs enormously. It dramatically reduces the proof obligations in small examples.

Furthermore, it greatly reduces the amount of algebraic and logical manipulations

necessary. The proofs performed here are among the first to make heavy use of LP's

quantifier facilities.

1.5 My Research

1.5.1 The Goal

Ideally, we would like to publish proofs that have been computer verified. Thus,

whenever a proof is published, the reader would know that it is error free. Before
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this goal can be attained, however, several questions must be resolved. First of all, is

machine-assisted proving of timing properties even possible, and if so how? Even if it

is possible with current provers, it may be to difficult to be practical. Another issue

is the readability of computer-verified proofs, which tend to be long and difficult to

read. What is the best trade-off between clarity, brevity, and completeness?

1.5.2 Method

In order to answer these questions, I used the Larch Tools to verify an invariant proof

of a simulation between MMT automata. This thesis answers questions of how the

process works, including the difficulties encountered during the process of verifying a

proof.

Tools

The Larch tools were originally developed for rigorous reasoning about sequential

programs, and have been used on relatively easy untimed I/O automata simulations

[13]. Using the Larch tools to develop a rigorous proof consists of two phases: formal-

izing the axioms and proof goals with the Larch Shared Language (LSL), and proving

these goals using the Larch Prover (LP) computer assistant.

The LSL formalization of the model is much like the hand proof model. Each

concept, such as I/O Automaton or forward simulation, is defined by a trait, in terms

of lower level traits and primitive concepts. For example, the TimedAutomaton trait

is built upon the IOAutomaton and Time traits, among others. The TimedAutomaton

trait is, in turn, used to define the properties of specific automata. A simulation

relationship is then defined between two specific automata. Thus, since the LSL

traits for timed automata and simulation relationships have already been created,

defining a new MMT automaton is as simple as writing an LSL description of the

automaton's properties, and stating that it is an MMT automaton. Once the traits

have been defined, the LSL checker is used to produce a set of axioms and proof

obligations. For example, if the trait defining a specific automaton claims that a

set of invariants hold throughout its operation, then running the LSL checker on
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that trait produces a proof obligation that states that the invariant holds in every

reachable state; the user must verify this obligation with the Larch Prover.

The Larch Prover is the machine assistant for the proof itself. In many ways, it

can be thought of as an interpreter for the proof. LP keeps track of known facts, and

goals to be proved. The facts that LP remembers include axioms from the LSL traits,

lemmas proved to make later sections easier, and context-dependent hypotheses. The

job of the user is to provide significant proof steps that the prover cannot figure out

itself. At present, there are many steps for which LP needs guidance, but may not

ultimately. For example, many algebraic manipulations are difficult in LP and must

be guided through specific steps (e.g., use transitivity here, add c to each side there,

etc). Soon this difficulty will be overcome as LP's developers are working on a module

to handle these proof steps without user guidance. Even in the long run, however, the

user will need to provide an overall proof strategy for LP. This includes such things as

whether to use induction or contradiction, providing and using lemmas, and dealing

with quantifiers.

1.5.3 The Example

The proof I have verified is a relatively simple simulation relationship. The proof

shows that an automaton that counts down at a certain speed and outputs a report

when it gets to zero must output the report within a certain time range. This was

chosen as the example for several reasons. First of all, it is a fairly easy proof, so

that I could focus on the difficulties inherent to automatic verification rather than the

difficulties specific to the proof. Secondly, the hand proof has been worked through

many times in many variants. One appears in [8]. Finally, despite its relative ease, it

captures many elements common to most simulation proofs.
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Chapter 2

Background

This chapter presents a brief technical introduction to the concepts and methods used

in hand proofs. To this end, it discusses a basic model of untimed algorithms and

an approach to correctness proofs with it. The chapter then discusses an extension

that adds some timing information to the model, and how this extension changes the

proof techniques. This chapter presents only the tip of the iceberg. A more detailed

understanding of the material would be helpful for continuing research in this area

but is not necessary for the remainder of the thesis. For a more complete explanation

of the untimed model and proof methods, see [9]. For a more complete explanation

of the timed model and proof methods, see [8], [10], or [7].

2.1 Input/Output Automata

An Input/Output (I/O) automaton is a way of describing the asynchronous execution

of a process. An automaton A has two components: actions(A) and states(A).

An action is a transition from one state to another. The automaton is allowed to

begin in a set of start states: start(A) C states(A). The set actions(A) is divided

into internal and external subsets. The external subset is further split into input

and output actions. Finally, the actions are partitioned into equivalence classes by

part(A). These equivalence classes are referred to as the classes of the automaton,

and are chosen by the creator of the automaton. The motivation for having classes
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will be seen in the timed setting. The ways in which an action may affect the state is

defined by steps(A). This is a set of (state, action, state) triples. If there is a triple

of the form (s, a, s'), then a is said to be enabled in s, and the effects of a in s are said

to be s'. I/O automata are required to be input enabled. This means that every input

action is enabled in every state. We represent an execution of the I/O automaton as

a sequence

so, a0 , s, al, 

such that so E start(A) and Vi(si, ai, si+,) E steps(A). An execution may be either

finite or infinite. An execution fragment is a similar sequence, but so need not be a

start state. The trace of an execution fragment is the list of all external actions in

that fragment. An extended step is a triple (s, 3, s') such that there is an execution

fragment il that starts in s and ends with s'. A state s is said to be reachable if there is

some execution that ends in s. Often, we wish to establish a property for all reachable

states of an automaton. Such properties are called invariants. Since invariants are

often used, certain techniques have developed for proving them. The most common is

to prove the invariant in every start state, and then prove that every action preserves

the invariant. In other words, if the invariant is true before the action, then it will

be true after the action. These two steps ensure that the invariant is true in every

reachable state s by induction on the length of the execution fragment necessary to

reach s. Invariants are also discussed in [7].

2.2 Forward Simulation

Often, proving the correctness of an automaton that implements an algorithm is done

by showing a forward simulation relationship between that implementation automa-

ton and a specification automaton that provides a high-level description of what it

means for the implementation to be correct. A forward simulation from an imple-

mentation automata to a specification automaton informally states that anything the

16



implementation can do, the specification can also. This can be expressed somewhat

more formally by saying that the traces of the implementation are a subset of the

traces of the specification.

The formal definition of a forward simulation from A to A' relies on an abstraction

function. This is a function f from the states of A (the implementation) to sets of

states of A' (the specification). The requirements on f are

1. Vs E start(A) 3u E start(A'),such that u E f(s), and

2. If s is a reachable state of A, u is a reachable state of A', u E f(s), and

(s, a, s') E steps(A), then there is an extended step (u, /3, u') such that u' E f(s'),

and trace(a) = trace(p).

This ensures the condition described informally above by induction on the length

of an execution. In other words, the basis is the initial states, and the inductive step

is an action of the implementation.

The definition above is expressed in terms of the reachable states of the automata.

One can alternatively express the second obligation as

2'. If s is state of A such that s E IA, u is a state of A', u f(s)nIA,, and

(s, a, s') steps(A), then there is an extended step (u, 3, u') such that u' e f(s'),

and trace(a) = trace(3).

where IA and IA' are the sets of states that satisfy the invariants of A and A', respec-

tively. This second phrasing is actually stronger than the first, but it is also easier

to show. Section 2.5.1 discusses a similar transformation for the timing case in more

detail.

2.3 Timed Automata

A timed automaton is an augmented I/O automaton that has additional information

to allow discussion of timing properties. The additional information takes the form of

a boundmap that expresses the time requirements for each class of the automaton. The
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timed automaton consisting of I/O automaton A and boundmap b is represented by

(A, b). The boundmap associates a lower and upper bound with each class (sometimes

referred to as bl(C) and b,,(C), respectively). Informally, the bounds associated with

a class signify the interval of time during which, if an action in the class is enabled,

an action must occur. For example, consider a class c that has a lower bound of a

and an upper bound of b, and that becomes enabled at time t (and remains enabled).

In this case, some action in c must happen between the times t + a and t + b. Just

as I/O automata have executions, traces, and execution fragments, timed automata

have timed executions, timed traces and timed execution fragments that have a time

associated with each action. E.g.,

so7 (al t), Si, (a2, t2), s2,*-

In such a sequence, the subscripts are referred to as the indices. From any such

sequence a of states, actions, and times, one can produce the ordinary sequence

(signified ord(a)) that contains the same states and actions, but omits the times.

The formal use of the boundmap is defined as follows (taken from [8]).

Suppose (A, b) is a timed automaton. Then a timed sequence a is a timed execution

of (A,b) provided that ord(oa) is an execution of A and satisfies the following

conditions, for each class C E part(A) and every action with index i in class C and

execution oa.

1. If bu(C) < co then there exists j > i with tj t + b(C) such that either

7rj E C or s E disabled(A, C).

2. There does not exist j > i with t < t + b1(C) and rjy E C.

2.4 MMT Automata

In order to carry out assertational reasoning on timed systems in the same way as it

is done on untimed systems, it is convenient to incorporate the time into the state
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of the automata. This section presents the MMT automaton, which can be created

from a regular timed automaton.

The MMT automaton for a timed automaton (A, b) is denoted by time(A, b) in

[8] and [12], where a more thorough explanation of MMT automata can be found.

An action of an MMT automaton created from (A, b) must be either an action of

A, augmented by the time at which it occurred, or a special NULL(t) action, which

advances time to t. The input and output subsets of time(A, b) are divided the same

way as in A, and the internal actions subset is internal(A) U{NULL}.

The state of A is kept in a basic component of the state of time(A, b). Further-

more, the state is augmented with a now component that represents the current time.

Finally, each class C has values first(C) and last(C) in the state. We use record

notation to signify values in the state. For example, in a state s, the basic compo-

nent is represented as s.basic. If s is a start state, then for every enabled class C,

s.first(C) = b(C), and s.last(C) = b,(C). For the classes that are not enabled in

s, s.first(C) = 0, and s.last(C) = co, as a default. The values of first and last

outside of the start states, as well as the definition of a step (s, (r, t), s'), are defined

as follows (taken from [8]).

1. if r E actions(A) then:

(a) s.now = s'.now

(b) (s.basic, r, s'.basic) steps(A)

(c) i. If 7r E C, then s'.first(C) < t.

ii. If s'.basic E enabled(A, C), 7r 0 C, and s.basic E enabled(A, C), then

.st.first(C) = s.first(C) and s'.last(C) = s.last(C).

iii. If s'.basic E enabled and either 7r E C or s.basic E disabled(A, C),

then s'.first(C) = t + b1(C) and s'.last(C) = t + b~(C).

iv. If s'.basic e disabled(A, C), then s'.first(C) = 0 and s'.last(C) = oo.

2. if 7r = NULL, then

(a) s.now < t = s'.now.

19



(b) s'.basic = s.basic

(c) VC e part(A)t < s.last(C).

(d) VC e part(A)s'.first(C) = s.first(C) and s'.last(C) = s.last(C).

2.4.1 Invariants

The following invariants, taken from 8], hold for all reachable states of all MMT

automata. They are easy to check, but are not proved here.

For every class C and any reachable state s of an MMT automaton time(A, b):

1. s.last(C) > s.now

2. if s.basic E enabled(A, C), then s.last(C) < s.now + b,,(C)

3. if s.basic E disabled(A, C), then both first(C) = 0 and last(C) = oo

2.5 Timed Forward Simulation

This is simply an extension of the normal forward simulation which ensures the timed

correctness of the simulation. In other words, we want to guarantee that any time

the implementation takes an action, the specification could have taken an equivalent

action. It is also called a strong possibilities mapping in [8]. The formal definition

listed below comes directly from [8].

Let (A, b) and (A', b') be timed automata with the same set II of external actions.

Let f be a mapping from the states of time(A, b) to sets of states time(A', b'). Then

f is a strong possibilities mapping from time(A, b) to time(A', bt) provided that the

following conditions hold:

1. For every start state s of time(A, b) there is a start state u of time(A', b') such

that u E f(s).

2. If s is a reachable state of time(A, b), u E f(s) is a reachable state of time(A', b')

and (s, (7r, t), s') is a step of time(A, b), then there is an extended step (u,3, u') of

time(A', b') such u' e f(s') and the timed traces of r and ,3 are equal.
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3. If s and u are reachable states of time(A, b) and time(A', b'), respectively, and

u E f(s), then u.now = s.now.

2.5.1 Invariant Definition

The definition above of timed forward simulations is expressed in terms of reachable

states. In this context, it is more convenient to use an equivalent definition that is

instead expressed in terms of invariants of the system. This is because it is easier to

express and verify invariants than reachability with the Larch tools. Consequently,

we will use the following definition of timed forward mapping, taken loosely from [7],

where it is referred to as "weak forward simulation."

Let (A, b) and (A', b') be timed automata with the same set HI of external actions.

Let IA and IA, be invariants of (A, b) and (A', b'), respectively. Let f be a mapping

from the states of time(A, b) to sets of states time(A', b'). Then f is a strong possibil-

ities mapping from time(A, b) to time(A', b') provided that the following conditions

hold:

1. For every start state s of time(A, b) there is a start state u of time(A', b') such

that u E f(s).

2. If s is a state of time(A,b) such that s E IA, u f(s)nIA, is a state of

time(A', b') and (s, (r, t),s') is a step of time(A, b), then there is an extended step

(u, 3, u') of time(A', b') such u' e f(s') and the timed traces of 7r and ,B are equal.

3. If s and u are states of time(A, b) and time(A', b'), respectively such that s E IA

and u e f(s) fnlIA,, then u.now = s.now.

In order to use this definition, we must first show that if a function satisfies the

conditions of the invariant definition, then it will also satisfy the conditions of the

reachability definition. This is true because each of the conditions of the invariant

definition implies the same condition of the original definition:

1. This condition of the invariant definition clearly implies the same condition of

the original definition, as the conditions are identical.

2. If this condition holds for the invariant definition, then something is true when-
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ever the states s and u of the automata satisfy the invariants. However, if these

states are reachable, then they must satisfy the invariants. Therefore, the same

condition of the original definition must hold for s and u also.

3. This condition holds for the same reason as the prior one.

Therefore, the invariant definition is a stronger requirement than the original one,

and if a function satisfies the invariant definition, then it must also satisfy the original

definition.
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Chapter 3

The Larch Tools

The Larch Tools support a method of systematically constructing and verifying proofs.

The process consists of two phases. Informally, the first is describing the proof goals.

This phase, commonly called formalizing the model, is done in the Larch Shared

Language (LSL). The formalization provides the axioms and proof obligations. Proof

obligations are facts that must be proved to show the correctness of a trait. Once

the formalization is done, the proof itself is carried out using the Larch Prover (LP).

Note that these phases may be intertwined, especially if one discovers an error in the

formalization after having worked within LP for a while.

This chapter is intended to give an introduction to the Larch Tools, and to provide

an understanding of the role each plays in constructing and verifying proofs. It

provides a basis for the next chapter, which contains an actual proof, as an example

of how the Larch Tools work when dealing with timed automata. To that end, this

chapter is broken down into sections that

* provide an idea of what each tool is for, and a basic'understanding of its use.

* describe the use of the Larch Shared Language in formalization, including the

overall approach and some examples.

* describe the purpose and use of the Larch Prover, and explain an example proof.
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3.1 Overview and Purpose of Each Tool

Formalize

(manual)

,

Run Larch Shared

Language Checker

(Automatic)

Verify with

Larch Prover

(Computer Assisted)

Figure 3-1: Pictorial Overview of the Formalization Process.

The Larch Tools provide a method for formalizing an informal proof. This process

consists of formalizing the specification, and performing the proof itself. Figure 3-

1 provides an overview of the process and shows the role of each tool. The Larch

Shared Language is used to define the axiomization and proof obligations, and the

Larch Prover carries out the proof.

The Larch Shared Language provides a method for describing the automata and

proof goals at a high level. This description must be done manually, and consists of

creating a number of traits. Each of the traits describes a conceptual object. The tool

itself takes the form of a compiler: once the traits have been entered, the LSL checker

is run on them to produce the axioms and conjectures that need to be proved in a way

that the Larch Prover can understand. By contrast, the Larch Prover is interactive.
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Once the axioms and proof goals have been defined, LP attempts to perform the proof.

However, if it comes to a proof requirement that it cannot perform automatically, it

asks the user for input to help it with the proof. The user's input can be remembered

and used again in the future to handle the same or similar obligations. Sequences of

commands can be thought of as a program, and LP as their interpreter.

3.2 Formalizing the Model with LSL

As described in the previous section, LSL is a language to formally describe the

model used and the theorem to be proved at a higher level than the Larch Prover.

It produces a sequence of LP commands that assert the axioms and introduce the

conjectures be proved. The process itself is referred to as formalization and the model

used in the hand proof is called the informal model, in contrast to the formal model

described in LSL.

3.2.1 Notation in Larch

In this thesis, Larch code or names are printed in typewriter font, in order to

differentiate them from regular text. Furthermore, Larch code has often been printed

with mathematical symbols where the real Larch code actually contain ascii strings.

This section provides a guide for translating the symbolic definitions shown here to

their ascii equivalents.

Printed Symbol Ascii Equivalent

V \/

A /\

U ->

<=>

U \U
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< ~~~~~~ \<
> ~~~~~\>

V \A

3 \E

< <~~~~~~=
> >=

EG~~~ ~\in

e \ominus

There is one exception. The first V in the asserts section uses the string \forall

rather than \A.

3.2.2 Generic Background for LSL

This section presents a conceptual overview of the Larch Shared Language, without

going into details related to automata. The goal is to give the reader a sufficient

understanding of the issues to write most specifications, and to understand more

advanced works on LSL if the information here is insufficient for the reader's needs.

For one such treatment see [4]. An LSL formalization consists of a group of traits.

Each trait represents a conceptual object. For example, a trait might describe the

integers, or associativity. Each trait is allowed to be parameterized. Thus, you could

say that i is an integer or that + is associative. In practice, each trait is kept in

its own file. This allows users to easily find the traits they need. Each trait defines

two different kinds of things: sorts, and operators. Sorts are basically types, in

the programming sense. Operators are functions on zero or more arguments. (An

operator with zero arguments is a constant).

When a trait has been completed, it can be tested for errors and compiled into

an LP-compatible format using the LSL checker. This will produce proof obligations

for the trait. The remainder of this section will describe traits at a high level, and

discuss how they are mapped into LP.

26



Defining Sorts

One way to define sorts is while defining an operator. If the name of a previously

undefined sort is specified in the signature of an operator (see the section on Defining

Operators), then that name is taken to be the name of a new sort.

Another method of defining a sort within a trait is explicitly. For example, the

trait that represents the bounds on a single class contains the following line:

Bounds tuple of first:Time, last: Time

This line introduces the sort Bounds.

The final way to define a sort is by referencing another trait. If, for example, you

needed to use time in a trait, then you could simply refer to the time trait. Later in

this section is a more detailed discussion of interrelating traits.

Defining Operators

The introduces section defines a list of operators (and, by extension, constants, since

they are simply operators without arguments) for use in the trait. For example, the

introduces section for the trait Time includes the following lines.

introduces

0: -> T

--__ + __, __ - _ : T T -> T

To understand these lines one must know that each one is divided into two sections

by the colon. The first section describes the name and format of the operator (+ or

- are names). Operators are allowed to be prefix, postfix, or mixfix. The -_ symbol

represents the location of arguments in this section. The second half of each line

tells the signature of the operator, i.e., the sorts of the arguments and the result.

Note that if the second half says there are arguments, but the first half does not

show any locations for them, then they follow the name of the operator in function

notation. The default form of named operators is OPERATOR( ARG1, ARG2, ... 

ARGN). Also, the line 0: -> T says that 0 is a constant of sort T. In the middle line
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the + and - operators go in between two items of sort T, and the result of adding or

subtracting two items of sort T is another item of sort T.

Facts

LSL provides two means of defining facts about a trait. The first is for axioms, which

are true by definition. The second is for facts that can be proved from the other

facts in the trait. When the LSL checker is run on a trait, the axioms become facts,

and the provable facts become proof obligations. However, if the trait is referenced

from another trait (how to do this is discussed in the next section), then both become

facts.

The asserts section found in each trait states the axioms of the trait. There

are two parts of the asserts section. The first tells how things are generated. This

is approximately an enumeration of the possible values something can take. For

example, in every automaton, there is a generated by statement such as

Actions generated by actI, act2, act3

where actl, act2, and act3 would be replaced by a complete list of the actions of

the automaton.

The rest of the asserts section describes general facts about the trait.

This section is fairly easy to read without any particular explanation. However, for

an explanation of the details of this section, see [4]. The information in [4] is slightly

out of date. Statements in the asserts section are now allowed to have existential

and universal quantifiers. Also, the == operator has been eliminated. Ambiguities in

the parsing of = should be resolved with parentheses instead. The major useful but

non-intuitive fact about this section is that when you put in some fact such as a = b,

the LSL checker takes this as a strong hint that a is defined as b. Thus, the rewrite

rule that LP creates will probably be ordered as a -> b. Rewrite rules are discussed

in more detail in section 3.3.

The implies section of a trait lists some useful, supposedly provable facts about

that trait. This section differs from the asserts section only in that when the LSL
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checker is run on the trait, the implies section become proof obligations rather than

facts. Thus, almost all the remarks in the previous paragraph hold true for this

section as well.

Relating to Other Traits

Most often, a trait does not exist in a vacuum, but is instead defined in terms of other

traits. There are three methods of doing this. The first two methods are the assumes

and includes sections of a trait. The difference between these two is somewhat

subtle. If another trait is included, then the trait included is a part of the definition

of the new trait. However, if another trait is assumed, then the definition of the new

trait does not make sense unless the assumed trait is included elsewhere. The best

way to see this distinction is to see it in use. One example is the Executions trait,

where the distinction is discussed in context (see page 32.) The third method is as a

statement in the implies section. This requires the user to prove the properties in

the trait. For example, when one wishes to prove a simulation relationship between

two automata A and B, one usually uses a line such as Simulation(A, B) in the

implies section of the complete trait for the system.

3.2.3 The Layered Approach to LSL Specification

The informal description of an MMT automaton is based on several other concepts,

such as I/O automata, and time. Similarly, a specific automaton is described as an

MMT automaton that has certain additional properties. In other words, the general

approach is to build up the description in layers, so that each layer is defined in

terms of the lower levels. Thus, understanding a concept necessitates understanding

the lower level concepts. This same approach is used in LSL. In LSL each concept

is defined in its own trait. Thus, the specific simulation relationship to be proved

is expressed as a trait that is defined in terms of lower level traits such as the spe-

*-cific automata and simulation relationships in general. Figure 3-2 shows a module

dependency diagram for the proof I carried out. One of the major benefits of this

approach is the reusability of traits. This means that, in effect, there is a library of
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predefined traits which now includes things like MMT automata and timed simula-

tion relationships. Because of this library, defining a new simulation will really only

require describing the details of the specific automata and the relationship between

them. The traits that need to be redefined when doing this are shown in dotted boxes

in figure 3-2. This reusability cuts down on a lot of work, both in formalizing the

simulation, and in the proving process, as the traits in the library have already been

tested and honed. Furthermore, the use of predefined libraries increases the user's

confidence in results proved, as the axioms will be less likely to have inconsistencies.

, .

Simulation Relationship

… - - - - - - - -I

Figure 3-2: Module
ship.

Dependency Diagram of a Timed Forward Simulation Relation-

The rest of this section describes in detail each of the traits used in defining a

specific automaton. In other words, this section describes the reusable library for

automata. Traits for the automata used in the example can be found in the example

chapter. This should be useful both as a reference and as an example of what real

traits look like.

30



AutomatonBasics (A): trait

introduces

start : A$States -+ Bool

enabled : A$States, A$Actions -+ Bool

effect : A$States, A$Actions, A$States -+ Bool
isExternal : A$Actions -+ Bool

isInternal : A$Actions - Bool

isInput : A$Actions -+ Bool

isOutput : A$Actions -+ Bool

asserts V a: A$Actions, s: A$States

isExternal(a) 4* isInput(a) V isOutput(a);

- (islnput(a) A isOutput(a));

isInternal(a) -n isExternal(a);

isInput(a) = enabled(s, a)

Figure 3-3: LSL trait defining basics of input-enabled I/O automata

3.2.4 I/O Automata

This section shows the traits that specify an I/O Automaton. The first four of these

collectively describe input-enabled I/O Automata in general. The fifth discusses

the invariants of automata, and provides some proof obligations that are required of

a trait for it to actually describe an I/O automaton.

The AutomatonBasics trait provides the basic vocabulary of automata, as well

as some basic concepts that arise directly from the definitions. Note that since it is

defined in terms of nothing else, but used in other definitions, it does not include

or assume any other traits. Just as in the informal definition, the start states are a

subset of the states. In the formal model this subset is defined by the boolean start

operator. Thus,

Vs E states, s E start , start(s) = TRUE

The constructs isExternal, islnternal, isInput, and isOutput express the

notions of the external, internal, input, and output subsets of actions in the same

way. Furthermore, the trait says that external actions are partitioned into input and

output actions, and that actions in general are either input or output. Furthermore,
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Executions (A): trait

assumes AutomatonBasics(A)

introduces

isStep : A$States, A$Actions, A$States -+ Bool

null : A$States -+ A$StepSeq

__(__) : A$StepSeq, A$Actions, A$States-+ A$StepSeq

execFrag : A$StepSeq -+ Bool

first, last : A$StepSeq -+ A$States

asserts

V s, s': A$States, a, a': A$Actions, ss: A$StepSeq

isStep(s, a, s') -= enabled(s, a) A effect(s, a, s');

execFrag(null(s));

execFrag(null(s)(a,s')) 4= isStep(s, a, s');

execFrag((ss(a,s))(a',s')) .

execFrag(ss(a,s)) A isStep(s, a', s');

first(null(s)) - s;

last(null(s)) = s;

first(ss(a,s)) = first(ss);

last(ss(a,s)) = s;

Figure 3-4: LSL trait defining executions I/O automata

it expresses the idea that input actions are always enabled. The effects of an action

are expressed as a subset of all possible pre/post pairs of states. Thus, the effects

of an action of the automaton are not required to be deterministic, as an action can

take the automaton from one pre-state to any of several post-states. This property

is also true of the informal model, but is not often used in practice.

The Executions trait formalizes the informal notion of executions, and execution

fragments. Within the context of this trait, null(s) refers to the empty sequence

of actions beginning at the state s, rather than the passage of time action discussed

later in the timed setting. The Executions trait lets one define a formal analog to

the sequence so, a, s, al, an-1, Sn. To express this sequence in LSL, one would use

(...((null(s)<aO, sl>)<al,s2>)...<an-l,sn>

Note that this trait assumes AutomatonBasics, rather than including it. This is

because the notion of executions is intended to make sense on top of the definition of

an existing automaton, rather than on an automaton defined by this trait.
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Traces (A): trait

assumes AutomatonBasics(A), Executions(A)

introduces

common : A$Actions -+ CommonActions

empty : -+ Traces

__ ^ __ : Traces, CommonActions -+ Traces

trace : A$Actions -+ Traces

trace : A$StepSeq -+ Traces

asserts

Traces generated by empty,

V s: A$States, a: A$Actions, ss: A$StepSeq

trace(null(s)) = empty;

trace(ss(a,s)) =
(if isExternal(a) then trace(ss) ^ common(a) else trace(ss));

trace(a) = (if isExternal(a) then empty common(a) else empty)

Figure 3-5: LSL trait defining traces for I/O automata

The trait Traces formalizes the notion of the behavior of an execution. In this

trait, the trace of an execution fragment is the sequence of all external actions in that

fragment. It shows how to construct the trace of any finite sequence of actions.

We introduce a function common to map the actions of an automaton into a

new sort CommonActions. This is necessary because LSL requires sorts to repre-

sent disjoint, non empty sets. This allows the traces of an automaton A1 (which

have actions of sort Al$Actions) to be compared with the traces of an automaton A2

(which have actions of sort A2$Actions), via the common actions. The definition of

CommonActions must be provided when specifying the particular automaton. This is

usually a fairly mechanical process.

The IOAutomaton trait gathers these three traits and introduces the.idea of equiv-

alence classes of actions. This is the complete description of an input-enabled I/O

automaton. It includes all the axioms. The AutomatonBasics, Executions, and

Traces traits define most of these axioms, so the IOAutomaton trait merely needs to

add a few finishing touches. These are the definition of classes, and the addition of a

function inv that maps states to booleans, to express the invariant of the automaton.

Even though the IOAutomaton trait defines all the axioms about input enabled I/O
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IOAutomaton (A): trait

includes AutomatonBasics(A), Executions(A), Traces(A)

introduces

class : A$Actions -+ A$Classes

enabled : A$States, A$Classes -+ Bool

inv : A$States -, Bool

asserts V s: A$States, a: A$Actions, c:A$Classes

enabled(s, c) <* 3 a (enabled(s, a) A class(a) = c);

Figure 3-6: LSL trait bringing together I/O automata definition

Invariants (A): trait
assumes IOAutomaton(A)

asserts V s, s': A$States, a: A$Actions

start(s) = inv(s);

inv(s) A enabled(s, a) A effect(s, a, s') => inv(s');

enabled(s, a) = 3 s' effect(s, a, s')

Figure 3-7: LSL trait defining requirements for I/O automata

automata, it alone is not sufficient for defining an I/O automaton. This is because I/O

automata must satisfy certain requirements in order to be correct. The Invariants

trait expresses these requirements. The first two statements in this trait deal with

proving the correctness of the invariant. The final statement requires that an action

may only be enabled in a certain state if there is a post-state for that action in that

state.

Thus, defining an I/O automaton requires two interactions with other traits. First,

one must include the IOAutomaton trait. and imply the Invariants trait. For a

complete description of defining an automaton, see section 3.2.7.

3.2.5 MMT Automaton

Before showing how an MMT automaton is defined, we must first show three auxiliary

traits. These are Time, Bounds, and NowExists.

The Time trait provides a basic definition of time. It has probably received more

attention than most of the other traits in the formalization. This is because earlier
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Time T): trait
includes TotalOrder(T), Natural(- for 8), AC(+, T)

introduces
0: - T
__ + __, __ - __: T, T -+ T
__ * __: N, T -+ T

asserts V t, t, t2: T, n: N

O < t;

+ t = ti;

O * t = O;

succ(n)*t = (n*t) + t;

t < (t + tl);
(t + t) - t = t;
(t + t) < (t + t2) 4= tl < t2;

(t + t) < (t + t2) 4 t < t2;
(t + t) = (t + t2) D t = t2;
0 < n = ((n*t) < t);
n > =~ ((n-l)*t) + t = n*t

Figure 3-8: LSL trait defining the properties of time

versions attempted to allow time to be infinite, in order to allow classes without

upper bounds. This led to some inconsistencies in earlier versions of the axioms, as

the requirement t $ oo was omitted accidentally. When this requirement was inserted

in the proper places, it became difficult to perform algebra involving time. Thus, to

solve this problem, infinity was moved to the Bounds trait, and time is required to be

finite.

One of the notable things about the Time trait is its heavy reliance on the library

of traits. It should be noted that AC (associative/commutative) has special support in

LP. Thus using them is more powerful than an equivalent formalization of the same

properties.

The Bounds trait represents the concept of the period of time during which an

action from a class must occur. The trait also includes a definition of what it means

for a class's occurrence to be unbounded in time, and what it means to add a time

to the bounds. Both of these are useful in the TimedAutomaton trait. As discussed

in the previous paragraph, time must be finite, but the concept of an infinite upper

bound is allowed by this trait.
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Bounds: trait

includes Time(Time)

Bounds tuple of bounded: Bool, first, last: Time

introduces

_+ _: Bounds, Time - Bounds

_+_: Bounds, Bounds -+ Bounds

_*_: N, Bounds -+ Bounds

__ C _: Bounds, Bounds -+ Bool

__ E __: Time, Bounds -+ Bool

asserts V b, bl, b2: Bounds, t: Time, n: N-

b.first < b.last;

b + t = [b.bounded, b.first + t, b.last + t]

bl + b2 =
[bl.bounded A b2.bounded, bl.first + b2.first, bl.last + b2.1ast];

n * b = [b.bounded, n * b.first, n * b.last];

bl C b2 =

(bl.bounded A b2.bounded A b2.first < bl.first A bl.last < b2.1ast)

V -ib2.bounded;
t E b (b.first < t A t < b.last) V -ib.bounded

Figure 3-9: LSL trait defining a single class of the boundmap

NowExists (A): trait

introduces --__.now : A$States-+ Time

Figure 3-10: LSL trait for checking if the automaton has a time in its state
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The NowExists trait is provided as support for the TimedForward trait, which

formalizes the notion of timed simulation relationships described in Chapter 2. In

the TimedForward trait (figure 3-12, described in more detail later), NowExists is used

to check if the I/O automata involved in the simulation are actually MMT automata

which always have a now component in their state. Thus, the TimedForward trait

assumes NowExists for each of the two automata involved in order to make sure

that they are MMT automata. Although the requirements of MMT automata are, in

reality, more stringent than simply having a now component, it is not necessary for

an I/O automaton to meet these other requirements for the TimedForward trait to

make sense. Thus, using NowExists leaves open the possibility of using another type

of automaton with timing properties in conjunction with the TimedForward trait.

The TimedAutomaton trait is the largest and most complex of the traits used in

our formalization. It describes how an MMT automaton may be created from an

untimed I/O automaton and a boundmap, which relates a bounds to every class. It

follows the definition of MMT automata outlined in Chapter 2 and [8]. Because of

this, it is much like the definition of most other I/O automata, only more complex.

The next several paragraphs discuss the TimedAutomaton trait's various noteworthy

and difficult aspects.

As with the informal model, the actions of an MMT automaton are the null action,

along with the actions of the untimed I/O automaton, each associated with the time

of execution. Much of the TimedAutomaton trait is devoted to explicitly stating the

various facts associated with this. Some of the facts included are

* the boundmap must define bounds for every class,

* the null action is internal,

* the effect of the null(t) action is to advance time to t,

* how far forward the null(t) action can advance time,

* an action from the I/O automaton is enabled in the timed automaton if it is

enabled in the same state of the untimed automaton,
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TimedAutomaton (A, b, TA): trait

assumes IOAutomaton(A)

includes

IOAutomaton(TA), Bounds,

FiniteMap(A$Bounds, A$Classes, Bounds, __[__] for apply)

TA$States tuple of basic: A$States, now: Time, bounds: A$Bounds

introduces

b : A$Classes -+ Bounds

null : Time -+ TA$Actions

addTime : A$Actions, Time -+ TA$Actions

asserts

TA$Actions generated by null, addTime

V s, s': TA$States, c: A$Classes, a: A$Actions, t: Time

defined(s.bounds, c);

isInternal(null(t));

isInternal(addTime(a, t)) t= isInternal(a);

isInput(addTime(a, t)) 4= isInput(a);

start(s) =

start(s.basic) A s.now = 0

A V c ( ( enabled(s.basic, c) s.bounds[c] = b(c))

A (-enabled(s.basic, c) = - (s.bounds[c]).bounded));

enabled(s, null(t)) -=~

s.now < t A V c (t E s.bounds[c]);

effect(s, null(t), s) 
s'.now = t A s'.basic = s.basic A s'.bounds = s.bounds;

enabled(s, addTime(a, t)) =

s.now = t A enabled(s.basic, a)

A (-isInput(a) = t E s.bounds[class(a)]);
effect(s, addTime(a, t), s') =

s'.now = t A effect(s.basic, a, s'.basic)

A V c ( (enabled(s'.basic, c) A enabled(s.basic, c)

A class(a) -= c => s'.bounds[c] = s.bounds[c])

A (enabled(s'.basic, c) A class(a) = c

=> s'.bounds[c] = b(c) + t)

A (enabled(s'.basic, c) A -enabled(s.basic, c)

=* s'.bounds[c] = b(c) + t)

A (-enabled(s'.basic, c)

= -, (s'.bounds[c]).bounded));
trace(addTime(a, t)) = trace(a);

common(addTime(a, t)) = common(a);

inv(s) 

V c ( s.now E s.bounds[c]

A (-enabled(s.basic, c) = -(s.bounds[c]).bounded))
implies Invariants(TA)

V a: A$Actions, t: Time

isOutput(addTime(a, t)) -t isOutput(a:A$Actions)

Figure 3-11: LSL trait describing he creation of a Timed Automaton
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* the effects of an action from the I/O automaton on the times at which other

actions may occur,

* all other actions are internal or external just as they were in the I/O automaton,

* the trace of the timed automaton is the same as the trace of the I/O automaton,

and

* the common actions of the timed automaton are the same as the common actions

of the untimed automaton.

It is quite easy to recognize which line in the trait corresponds to each of these facts.

The boundmap is defined with the FiniteMap trait, which is taken from the LSL

library of standard traits. It is used to introduce a function b from classes to time

bounds. Note that the use of the FiniteMap trait restricts our definition of MMT

automata to those which contain only a finite number of classes, as the FiniteMap

trait only allows a finite number of entries. The boundmap associates a time bound

b(c) with each class c in the untimed automaton. The values of each of the bounds

must be defined with the trait defining the'specifics of the simulation relationship.

Invariants that hold for all MMT automata are listed at the end of the asserts

section. As with the definition of any I/O automaton, invariants must be set up as a

function inv that maps states of the automaton to boolean values. This allows the

Invariants trait to be used to verify the invariants. They will be useful for future

users of the library, as they allow us to use these properties as needed from LP. The

fact that they are preserved has been verified using LP. In fact, the proof of one of

them is discussed in the LP section of this chapter as an example.

3.2.6 Simulations

This section describes the TimedForward trait used to define the notion of a timed

simulation between two automata Al and A2. The requirements of a formally defined

timed simulation are exactly the same as the requirements put forth in section 2.5.1.
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TimedForward (A1, A2, f): trait

assumes IOAutomaton(A1), IOAutomaton(A2), NowExists(Al), NowExists(A2)

introduces f: Al$States, A2$States - Bool

asserts V s, s': Al$States, u: A2$States, a: Al$Actions,

alpha: A2$StepSeq

start(s) 3 u (start(u) A f(s, u));

f(s, u) = u.now = s.now;

f(s, u) A inv(s) A inv(u) A isStep(s, a, s') 

3 alpha (execFrag(alpha) A first(alpha) = u

A f(s', last(alpha)) A trace(alpha) = trace(a))

Figure 3-12: LSL trait defining basics of input-enabled I/O automata

Note that the assumes line requires that the two automata be I/O automata

that have a now component. We take this approach because we don't explicitly have

access to the untimed versions of the automata and the boundmaps, which would be

necessary in order to have an assumes section like

assumes

TimedAutomaton(UntimedAl, Boundmapl, A),

TimedAutomaton(UntimedA2, Boundmap2, A2),

While the approach we take does not require the automata in the relationship to be

MMT automata, it does guarantee everything necessary for the TimedForward trait

to make sense. This allows the trait to be somewhat more general: any form of timed

automata that contains a now component can use the trait.

3.2.7 The Specific Traits

Now that the library has been displayed, the natural question is, what is left for

the user to do? The user needs to do the following to formalize a timed simulation

relationship:

* Write formal descriptions of two untimed automata that include the IOAutomaton

trait, and imply the Invariant trait.
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* Write a CommonActions trait that has all the common actions of the two au-

tomata.

* Write a simulation trait that includes the traits defining the specific au-

tomata, defines the simulation relation f, and implies the TimedForward trait.

An example of this can be seen in the next chapter.

3.2.8 Using the LSL Checker

The LSL checker is run on a specific trait. It checks the syntax and static semantics

of the trait and all its subtraits. Furthermore, if the -ip option is specified, the checker

generates axioms and proof obligations for the trait. These are put in two files, as

follows.

* traitLaxioms.lp This file gives an LP description of all the axioms of the trait.

Generally, it is run once, and a freeze file is produced. (See next section for a

description of what this means.)

* traitchecks.lp This is a list of proof obligations for the trait. These generally re-

sult from the assumes and implies statements in that trait. This file generally

is taken and edited extensively to prove the theorems.

One notable fact about the LSL Checker is that it only produces checks for the trait

itself, and not for the subtraits. Thus, in order to prove a simulation relationship, you

must verify the proof obligations in the Simulation trait and in the traits defining the

two automata, which have their own proof obligations due to the implied Invariants

trait. Only after checking all three traits can you be sure that the simulation actually

holds, as otherwise the invariants of the automata may be left unproved. Usually,

proving these invariants is quite easy, as they will normally follow quickly by an

inductive argument.
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3.3 Using LP

Once the formalization of the model has been carried out using LSL, the checks must

be carried out using LP. This section provides a basic understanding of how to use

LP to accomplish these goals. It begins with an introduction to some of the most

important concepts of LP. Next, it talks briefly about a few important commands.

Finally, it explains a relatively simple proof in detail. The proof comes from the

verification of an MMT invariant. For a more technical and detailed coverage of the

material here, see [2], or use LP's help facility.

3.3.1 LP Concepts

In many ways, LP can be thought of as an interactive interpreter, much like the old

BASIC interpreters, or a LISP/SCHEME interpreter. In a typical session, LP loads

the axioms and proof obligations, and verifies a proof script. If a problem occurs, it

stops, and has the user continue the proof manually. LP is often called a computer

proof assistant.

LP helps with the proving process in two major ways. It keeps track of the state

of the proof, and it automatically carries out the easy proof steps. For the user, LP's

ability to keep track of the state of the proof is crucial to knowing that a proof is

correct. This ability ensures that no case can be glossed over. LP also remembers all

the facts one has available at any given time. In LP terminology, the theorem you

are trying to prove (which may be a proof obligation from LSL) is called a conjecture.

To prove the conjecture, you need to prove various goals which may be divided into

several subgoals. For proving these subgoals, you may have certain hypotheses which

you have assumed during the course of your proof. These could be, for example,

facts about the case you are in. The other capability that LP provides as a computer

assistant is a completely automatic handling of the easy proof steps. This means that

LP can automatically perform some reasoning. At other times, LP merely needs a

pointer in the right direction, such as "prove this by induction." Sometimes, however,

LP needs detailed guidance about how to perform a section of a proof. The section
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on LP commands gives a description of how to guide LP in these two ways.

For the most part, the reasoning that LP handles automatically is done by normal-

ization. Under ideal conditions, every expression has a unique normal form. When

LP encounters an expression, it attempts to rewrite it to a normal form by applying

rewrite rules. Most facts in LP take the form of rewrite rules. For example, if a is

defined to be b + c, then there probably is a rewrite rule of the form a - b + c. (This

is read "a rewrites to b + c.") If the rewriting process is going well, then conjectures

will be normalized down to identities, so LP will be able to handle the proof auto-

matically. However, the following is a list of some of the less pleasant properties of

normalization.

* The rewriting process is non-deterministic. Consider, for example the system

with the rules a -+ b and a - c. Then, a can be rewritten to either b or c,

depending on which rule gets applied. This could be a problem, for example,

if one were trying to prove a = b. LP could rewrite the a to b, reducing this

to the identity b = b, or it could rewrite the a to c, thus getting c = b, which

is not an identity. This does not happen much in practice, however, as LP

internormalizes its rewrite rules. This means that it uses its rewrite rules to

normalize each other. In the example, it could use the rule a -+ b to normalize

the rule a -+ c to b -+ c. Now it would normalize a = b to the identity c = c.

* The rewriting sometimes fails to prove things. Sometimes the situation can be

helped by using the critical-pairs facility, described in the next section.

* Needed facts can be accidentally normalized away if they rewrite to identities.

* The rewriting process is not always guaranteed to terminate.

Because of these problems, LP provides the user with several commands to direct the

normalization process. Although they are needed fairly rarely, it is certainly useful

to be aware of them. They are discussed in the next section.
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3.3.2 Commands

This section is just a brief overview of some of the most useful and often used com-

mands. It is intended as a primer to be read before the tour of the simple proof in

the next section. It will cover issues that are disjoint from the ones in the proof tour.

To get more detailed help about any command while using LP, simply type help

(command name).

Dealing with Files LP has several commands that deal with files. They are

* freeze - remember the state of the proof.

* thaw - restore a previously frozen state.

* execute - perform a list of commands in a file.

Instantiation Frequently during the course of a proof, one needs a specific form

of a general fact. For example, one may have the general fact Vx (f(x) = g(y)), and

need to use this fact for the case of x = 4. One LP command that can be used at

these times is instantiate. In the example above, the precise command would be

instantiate x by 4 in theRule

where theRule is the name of the fact.

Critical Pairs Since normalization is LP's primary way of discovering the equiv-

alence of expressions, most facts are kept in the form of rewrite rules. This has the

advantage of being largely automatic, but it still sometimes needs direction to dis-

cover certain facts. Critical-Pairs is a command for helping the prover find new facts

that result from considering rewrite rules as equations. For example, consider the

situation of manually applying transitivity using the following rewrite rules:

.Trans: a < b A b < c -+ a < c

Rulel: xl < x2 -+ TRUE

Rule2: x2 < x3 - TRUE
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(Here, a, b, and c are variables and xl, x2, and x3 are constants.) It is clear to a

human that xl < x3 by using transitivity. For LP, however, it is necessary to perform

two critical-pairs operations. The first:

Critical-pairs Trans with Rulel

yields the rewrite rules

NewRulel: x2 < c -+ xl < c

NewRule2: a < x -+ a < x2

Now, the command

Critical-pairs NewRulel with Rule2

yields the rewrite rule

xl < x3-+true

This example is somewhat unusual in that one usually does not need to use the

critical-pairs command twice to get the new fact.

Conceptually, then, critical pairs is an attempt to combine two rewrite rules in a

way that can yield a valuable new fact. It is not necessary to remember the details of

how it works, merely that it matches common sections of the rules to yield the new

fact.

Directing Normalization Most of the time LP's normalization methods work

very well. It serves as a solid basis for showing the equivalence of two expressions.

Occasionally, however, there are problems. Sometimes, the difficulties described in

section 3.3.1 occur. At other times, it is simply easier to read expressions in their

unnormalized form. To deal with these situations, LP provides methods of directing

the normalization process.

There are two commands to direct normalization. To prevent a particular rewrite

rule from being used during normalization, one makes it inactive. To prevent a

particular expression from being normalized, one sets its immunity. The activity of
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a rule is somewhat easier to understand, because there are only two modes: active

and inactive. If a rewrite rule is active, it is used in normalization. If it is inactive, it

is not. If a rewrite rule is inactive, it may still be used explicitly, with the command

rewrite <expression> with <rule>.

Immunity has three modes: on, off, and ancestor. When an expression has im-

munity on, then it will not be normalized, except explicitly. When it has immunity

off, it will be normalized by any active rewrite rules. When it has ancestor immunity,

it will not be normalized by its ancestors. For example, if you have a rewrite rule

such as f(x) -+ 4, and you execute the command instantiate x with 2 in rule,

then the expression produced, f(2) - 4, would be a special case of the original rule.

Thus, it would be normalized away if immunity were set off, but it would not be if

immunity were set to ancestor.

Deduction Rules In addition to rewrite rules, LP also has deduction rules. These

provide an operational semantics for logical implication. Deduction rules take the

form

WHEN hyp YIELD conclusion

where hyp and conclusion are the hypotheses and the conclusion of the implication.

To use a deduction rule explicitly, one can apply it to a formula or rewrite rule.

However, LP makes deduction rules active by default, which means that they will

be automatically applied to all formulas and rewrite rules that are not immune.

When a deduction rule is applied to a formula that matches its first hypothesis,

the result is the rest of the deduction rule with the matching terms substituted in.

For example, applying the rule

WHEN a < b, b < c YIELD a < c

to the formula

xl < x2

produces the deduction rule

when x2 < c yield xl < c
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Appyling this deduction rule to the formula

x2 < x3

produces the deduction rule

when true yield x < x3

which reduces to the formula

xi < x3

Thus LP can sometimes apply the sample deduction rule automatically to derive facts

about transitivity, without the user having to compute critical pairs.

LP also allows users to apply deduction rules to prove conjectures. For example,

given the deduction rule

when x2 < c yield x < c

and the rewrite rule

a < a -+ true

the user can finish the proof of xl < x2 by typing

apply deduction-rule to conjecture

This causes LP to match the conclusion xl < c of the deduction rule to the conjecture

xl < x2 by letting c be x2, after which LP substitutes x2 for c in the hypothesis of

the deduction rule to get x2 < x2, which reduces to TRUE and finishes the proof of

the conjecture.

Informational Commands This section discusses informational commands, both

because they are useful, and because they do not usually appear in completed proofs,

as they are not needed in this context. The most useful informational command is

display. Part of its usefulness comes from the fact that it can be used to display a

number of things. For a complete list, see [21 or the LP help facilities.

There are three commonly used types of displays. The most useful is sets of rules.

A set of rules can be defined by name, containing-operator, or a union or intersection

47



of sets of rules. One common example is display *hyp, which displays all the current

hypotheses. This is useful for establishing the context in which one is working. The

second is display proof, which tells the state of the proof in gory detail. The final

is display symbols, which provides a complete list of declared sorts, operators, and

variables.

Another useful informational command is show normal-form. This command

shows each of the steps involved in normalizing an expression. This can be useful

when you can't seem to get a fact to appear, because it is unexpectedly normalized

away.

Yet another often used informational command is history. This gives a list of the

previous commands. It is usually given an argument, which tells how many previous

commands to display. By default, it gives all the commands used to get to the present

state. This is probably more commands than you want to know when working with

I/O automata.

3.3.3 A Guided Tour of a Simple Proof

This section presents a simple proof from the verification of the TimedAutomaton

trait. It corresponds to the fact that whenever a class of actions in an automaton is

not enabled, then that class has has a lower bound of 0 and an upper bound of oo.

The proof presented is a proof script. This means that LP's responses to the

commands here are not listed. Instead, we supply a commentary that will tell both

why the commands in the script were chosen, as well as what their effects were.

The proof script begins with some preliminary commands. Commands similar to

these are found at the start of most proof scripts.

set script TimedAutomaton

set log TimedAutomaton

Thaw TimedAutomaton

declare variables

s: TA$States
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s': TA$States

a: A$Actions

a: TA$Actions

t: Time

set name InvariantsTheorem

The first two lines tell LP where to keep a record of the commands it executes and the

output it gives, respectively. This is often useful as a reference later, particularly if the

script is still being worked on. The third command tells LP to restore a previously

saved state. In this case, the state restored contains the axioms necessary for the

remainder of the proof. The next command creates a number of variables to be used

later. Note that there are two variables with the name a. When the user wishes to

refer to one of these, it is necessary to specify the sort of the one intended. The final

command sets the name to call facts that LP discovers.

Most of these commands were automatically generated by the LSL Checker, when

it produced a file to verify this invariant. The only exception to this rule is the com-

mand Thaw TimedAutomaton, which was originally execute TimedAutomatonAxioms.

In order to avoid having to wait for TimedAutomatonAxioms to execute each time I

worked on the invariant proof script, I simply executed it once, and saved the results.

prove (start(s:TA$States) : inv(s:TA$States))

This command was also generated by the LSL Checker. It is one of the two proof

requirements the checker generates for this invariant. These requirements come from

the implication of the Invariants trait by theTimedAutomaton trait. Notice that it

is one of the two halves of a typical hand proof of an invariant.

Once this prove command has been parsed, LP begins attempting to prove it.

By default, this means it tries to normalize the conjecture. Normalization alone fails

to prove this conjecture, however. The next command provides the first step of user

guidance for this proof.
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resume by =*

The goal of this proof in an implication. To LP's normalization process, however,

an implication is just like any other statement. That is to say, it is only true if it

normalizes to true. Consequently, there is a special command to tell LP to break up

the conjecture and treat it as an implication. This command is

resume by =>

This command. causes LP to try to use the hypotheses of the implication to try to

prove the conclusion. Since the conjecture we are working on is an implication, the

script uses this command to tell LP to treat it as one.

Z 1 subgoal for proof of =

l[] = subgoal

[] conjecture

Lines that begin with the symbols <> and [] show progress towards proving a

conjecture. These lines are added by LP to the script file. Users do not have to type

them. The <> symbol (called a diamond) signifies the start of work towards a new goal.

Similarly, the symbol [] (commonly called a box) signifies the completion of a proof

goal. Therefore, these lines show that LP treated the conjecture as an implication,

and automatically proved the implication subgoal, thus proving the conjecture. For

more about diamonds and boxes, see section 5.3.

qed

This command asks LP to confirm the completion of a proof. When executed in

a script, it causes the script to stop running if the proof is incomplete. If the proof is

complete, LP continues on to the next command.

set proof-method =, normalization

In the previous proof, the user had to tell LP to treat the conjecture as an impli-

cation. Since it is usually desirable to do this when the conjecture is an implication,
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LP provides a proof method to automatically break up the conjecture when it is an

implication. Proof methods are approaches to proving that LP can automatically

apply to all conjectures. The default proof method (as mentioned earlier without the

name) is normalization. The command above simply tells LP to use the implication

proof method as well as normalization.

prove
((inv(s:TA$States) A enabled(s:TA$States, a:TA$Actions)

A effect(s:TA$States, a:TA$Actions, s' :TA$States)) => inv(s':TA$States))

by induction on a:TA$Actions

This is the second and final proof obligation for proving the correctness of the in-

variant. It corresponds to proving that any action that every action preserves the

invariant. This, when combined by the previous line, is sufficient to show that the

invariant holds in any reachable state.

The line that reads by induction on a:TA$Actions gives LP a hint for per-

forming the proof. As discussed earlier, induction is the method used to tell LP to

consider each action separately. Once LP has been given this hint, it is able to carry

out the rest of the proof by itself, as shown by the following diamonds and boxes that

were automatically generated.

<O 2 subgoals for proof by induction on 'a:TA$Actions'

c 1 subgoal for proof of =

[I = subgoal

[] basis subgoal

1 subgoal for proof of =

[ ] = subgoal

[] basis subgoal

[] conjecture

qed
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Chapter 4

Example - Counting Automaton

This chapter covers the proof that I verified using Larch.

This automaton proof comes from [8]. In this paper, it is used as an example of

an MMT Automaton simulation proof. The proof given there is similar to the hand

proof here, but the bounds shown here are slightly tighter.

The first section gives the hand proof of the simulation relationship. Some of the

equations in it are labelled for reference from the explanation of the LSL traits and

the LP script, which are in later sections of the chapter.

4.1 Hand Proof

The general goal of this proof is to show a timed forward simulation relationship

between an automaton that issues a single external report action, and an automaton

that counts down internally before issuing a single external report action.

4.1.1 Automata Definitions

Counting Automaton: Count(cl, c2, k):

This automaton, which will be referred to as Count, is the implementation. It is

parameterized on three variables. The first two are the common bounds for the

classes, and the third is the number from which it counts down. The definition itself
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is given as a timed automaton. Within the proof, it is treated as an MMT automaton.

The transformation is carried out in the standard way from the definition given here.

See Chapter 2 for more details.

The definition of the automaton contains first a definition of the state variables,

and the start states. The definition next lists and describes the actions. Finally, it

gives the classes and their bounds in terms of the parameters.

After this section, the state variables and actions of the automaton will be referred

to using record notation. When record notation is used to refer to an action, the pre-

state of the action will be on the left, and the action's name the right.

State:

count, init k > 0

reported, Boolean, init false.

Actions:

report: Output

Precondition: count = 0 A reported = false

Effect: reported := true

decrement: Internal

Precondition: count > 0

Effect: count := count- 1

Classes:

{report} [Cl,C2]

{decrement} [cl, c 2]

Invariants: Ic

The only invariant specific to this automaton is count > 0 --reported. However,

we may use some of the invariants of all MMT automata discussed in Chapter 2.

A state s is said to be in Ic if these invariants are satisfied.

Proof: by induction on the length of execution.

Basis: Trivial, since reported = false.

Inductive step: Clearly, because reported may only become true through the report

action, which may only happen if count = 0. Thus, every action preserves the
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invariant.

Specification Automaton: Report(lb, ub)

This automaton, which will be referred to as Report, is the specification. It is de-

scribed in much the same way as Count was.

State:

reported, Boolean, init false.

Actions:

report: Output

Precondition: reported = false

Effect: reported := true

Classes:

{report} [lb, ub]

Invariants: IR

No invariants specific to this automaton are needed, although IR still requires the

invariants of all MMT automata discussed in Chapter 2.

4.1.2 Mapping

This section offers a definition of the abstraction function from Count to Report.

Let s be a state of Count and u be a state of Report. Define (s, u) E f provided

that:

I. u.now = s.now

II. u.basic.reported = s.basic.reported

III.

J s.first(decrement) + s.basic.count cl if s.basic.count > 0,
u.f irst(report) <

s.first(report) otherwise.
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u.last(report) > {s.last(decrement) + s.basic.count C2

s.last(report)

if s.basic.count > 0,

otherwise.

4.1.3 Theorem

f is a Forward simulation from Count to Report if lb < (k + l)cl and ub > (k + 1)c2.

The precise requirements for a forward simulation are included with the proof.

However, for review of the details of the definition, see Chapter 2.

4.1.4 Proof

f is a Forward simulation from Count to Report if all three conditions of the definition

are satisfied.

Condition one: For every start state s of Count there is a start state u of

Report such that u E f (s).

Since there is only one start state s of Count, it suffices to show that there is a start

state u of Report such that u E f(s).

Define u as follows:

* u.now = 0

* u.basic.reported = false

* u.first(report) = lb

* u.last(report) = ub

Since this is the start state of Report, condition one is satisfied if u E f(s).

Conditions I and II of the mapping are clearly satisfied:

u.now = 0 -= s.now,
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u.basic.reported = false.

Conditions III and IV will be proved by cases:

case 1: k > 0, condition III

Because u.report is enabled (since u is a start state and the report action is

enabled in the start state of the Report automaton)

u. f irst(report) = lb (4.1)

(by definition of timed automata's initial bounds),

lb < (k + 1)cl

(by definition of lb), and therefore,

u.first(report) = lb < (k + 1)c

Furthermore, since k > 0, s.decrement is enabled. Hence, by definition of timed

automata's initial bounds,

(4.2)

Because s.basic.count = k initially,

s.first(decrement) + s.basic.count cl = cl + k cl = (k + )c1 ,

s. f irst(decrement) + s.basic.count c > u.first(report).

Thus, III is satisfied for k > 0.

case 1: k > 0, condition IV: Similarly,

(4.3)
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since u.report is initially enabled. Since s.decrement is also enabled,

s.last(decrement) = c2. (4

Therefore,

s.last(decrement) + s.basic.count C2 = 2 + k C2 = (k + 1)c2,

u.last(report) = s.last(decrement) + s.basic.count c2 = c2 + k C2.

Therefore condition IV is satisfied for k > 0.

case 2: k = 0

Because u.report is enabled initially,

u.first(report) = lb,

by definition of the timed automaton. Also,

lb < (k + 1)c1 ,

by definition of lb.

u.first(report) < (k + 1)cl = c1.

Since k = 0. Furthermore, since s.basic.count = k = 0, s.report is enabled. Thus,

s.first(report) = c. (4

u.first(report) < s. f irst(report)

Thus condition III f the mapping is satisfied for k = 0.

Similarly, since u.report is enabled and k = 0,

u.last(report) = lb > c2. (4
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Additionally, s.basic.count = k = 0, so s.report is enabled and

s.last(report) = 2. (4.7)

u.last(report) s.last(report)

Thus condition IV of the mapping is satisfied for k = 0.

Condition two: If s' is a state of Count such that s E Ic, u E f(s')nIR is a

state of Report and (s', (r, t), s) is a step of Count, then there is an extended

step (u', , u) of Report such u E f(s) and l( I x R) = (r,t)l(I x R).

By case of r:

Case 1: r = decrement

Let 3 = NULL, where u.now = u'.now. First we must show that (u', /, u) is an

extended step of Report. Since u'.now = u.now, and VC E part(A'), u'.now <

s'.last(C), VC part(A'), u.now < s'.last(C).

Now, to show u E f(s). The first two conditions of the mapping are easy:

u.now = u.now = s8 '.now = s.now, and

u.basic.reported = u'.basic.reported = s.basic.reported = s.basic.reported

These two facts result because neither r nor : modifies now or reported. Conse-

quently, the equality before the actions implies equality after it.

The second two conditions of the mapping are proved by case of s'.basic.count:

Case 1: s'.basic.count > 1

u.first(report) = u'.first(report) (4.8)

u'.first(report) s'.first(decrement) + s'.basic.count cl (4.9)
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s'.first(decrement) + s'.basic.count c l _< s'.now + c1 + -(s'.basic.count- 1)cj (4.10)

s'.now + c1 + (s'.basic.count - )c = s.first(decrement) + s.basic.count * c1 (4.11)

u.first(report) < s.first(decrement) + s.basic.count cl (4.12)

Equation 4.8 derives because the NULL action does not change anything in u's

state. Equation 4.9 is the precondition given by the mapping. Equation 4.10 arises

from the fact that s'.first(decrement) < s'.now in order for decrement to be exe-

cuted. Equation 4.11 is the rule for the new lower bound of an action which has been

executed, and remains enabled. Equation 4.12 inequality provides a restatement,

verifying that the mapping is maintained.

u.last(report) = u'.last(report) (4.13)

u'.last(report) > s'.last(decrement) + s'.basic.count. C2 (4.14)

s'.last(decrement) + s'.basic.count C2 > s'.now + c2 + (s'.basic.count - 1)c2 (4.15)

s.now + c2 + (s'.basic.count - 1)c2 = s.last(decrement) + s.basic.count c2 (4.16)

u.last(report) > s.last(decrement) + s.basic.count c2 (4.17)

These equations are precisely analogous to the lower bound condition.

Case 2: s'.basic.count = 1

u.first(report) = u'.first(report) (4.18)

u'.first(report) < s'.first(decrement) + c1 (4.19)

s'.first(decrement) + cl < s.now + c1 (4.20)

s.now + cl = s.f irst(report) (4.21)

u.first(report) < s.first(report) (4.22)

Equation 4.18 derives because the NULL action does not change anything in u's
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state. Equation 4.19 is the precondition, with 1 substituted for s.basic.count. Equa-

tion 4.20 is because s'.first(decrement) < s'.now in order to execute decrement.

Equation 4.21 is the lower bound imposed on report when it becomes enabled. Equa-

tion 4.22 shows that the goal has been attained.

u.last(report) = u'.last(report) (4.23)

u'.last(report) > s'.last(decrement) + c2 (4.24)

s'.last(decrement) + c2 > s.now + c2 (4.25)

s.now + c2 = s.last(report) (4.26)

u.last(report) > s.last(report) (4.27)

These equations are precisely analogous to the lower bound condition.

Since there are no external actions to either decrement or NULL, 1(rII x R) =

(7r,t)(I x R).

Case 2: 7r = report

When r = report, = report. First we must show that (u', , u) is an extended step

of time(A', b'). For this to be true, the following conditions must be upheld:

/3 must be enabled in u'.basic

u'.first(report) < u'.now

The first of these will be true if u'.basic.reported = FALSE which is the case

because s'.basic.reported = FALSE, and u' E f(s').The second is true because

u'.f irst(report) < s'.f irst(report) < s'.now = u'.now since s.basic.count = O.

Now, to show u E f(s):

u.basic.reported = TRUE = s.basic.reported
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Since both u and s have reported, reported is TRUE by definition.

uOW-.now = u w =s.7no0W = s.now

Neither automaton changes the time during the report action.

u.f irst(report) = 0 = s.f irst(report)

u.f irst(report) = oc = s.f irst(report)

Both automata have the report action disabled, so the values first and last are the

defaults.

In both cases, the only external action is report. Thus, 31l(II x ) = (r, t) (I xR).

Case 3: r = NULL

When r = NULL, = NULL. Additionally, the 3 NULL should advance time

to the same point as the r NULL. (ie: t) First we must show that (u', /3, u) is an

extended step of time(A', bY). In order to show this, we must show that

t < u'.last(report). (4.28)

since report is the only class. If u'.basic.reported =TRUE then u'.last(report) = 00,

so this condition is upheld. If u'.basic.reported = FALSE, then

u'.last(report) s'.last(decrement) + s'.basic.count C2 if s'.basic.count > O.
s'.last(report) otherwise.

(4.29)

Thus, if s'.basic.count = 0, then

t < s'.last(report) < u'.last(report) (4.30)

t < s.last(decrement) = s'.last(decrement) (4.31)
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s'.last(decrement) < s'.last(decrement) + s'.basic.count C2 < u'.last(reported)

(4.32)

Thus since (s', (r, t), s) is a legal step, (u', 3, u) is also.

Now, to show u E f (s):

u.now = t = s.now

Since both have advanced to the time t.

Since the NULL action does not change the basic state, the second condition of

the mapping is held. Furthermore, the NULL action does not change any first or

last values. Thus, conditions two and three are unaffected by the action, and remain

valid after it.

Since there are no external actions to NULL, /[(1I x R) (r, t)I(I x R).

Thus, the mapping upholds condition two for any step r.

Condition three: If s and u are states of Count and Report, respectively

such that s E Ic, and u E f (s) n IR, then u.now = s.now.

This condition is upheld by the map by definition.

Q£ED

4.2 LSL Formalization

This section displays and discusses the four traits necessary to formalize the informal

model presented in section 4.1.1. These four traits rely heavily on the library of traits

described in section 3.2. To understand the precise dependencies, see figure 3-2.
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CommonActions (A): trait

assumes IOAutomaton(A)

introduces

report : -+ A$Actions

report : -+ CommonActions

reportC : -+ A$Classes

asserts V a: A$Actions

common(report) = report;

isOutput(report);

class(report) = reportC

implies equations

- isInput(report)

Figure 4-1: LSL trait defining automata's common actions

AutomatonReport (R): trait

includes IOAutomaton(R), CommonActions(R)

R$States tuple of reported: Bool

asserts

R$Actions generated by report

R$Classes generated by reportC

V s, s': R$States

start(s) 4 -s.reported;

enabled(s, report) t= s.reported;

effect(s, report, s') 4= s'.reported;

inv(s)

implies Invariants(R)

Figure 4-2: LSL trait defining the specification automaton

The CommonActions trait defines the actions and classes common to both of the

automata in the simulation relationship. Since the automata this trait relates are the

untimed ones, we can see that the only common action should be the report action,

and the only common class the report class. In order to alleviate human confusion,

a class of the automata with only a single action has been conventionally named the

same as the action except with a trailing C. This convention is followed in the other

automaton as well.

AutomatonReport is the specification automata described in section 4.1.1. Just

as in the informal definition, it has one class and one action: report. Notice that

63



AutomatonCount (C, k): trait

includes IOAutomaton(C), CommonActions(C), Natural(- for )

C$States tuple of count: N, reported: Bool

introduces

k :-+N
decrement : -+ C$Actions
decrementC : -+ C$Classes

asserts

C$Actions generated by report, decrement

C$Classes generated by reportC, decrementC

V s, s': C$States

- isExternal(decrement);

class(decrement) = decrementC;

start(s) t -s.reported A s.count = k;

enabled(s, report) 4= s.count = 0 A -s.reported;

effect(s, report, s') = s'.count = s.count A s'.reported;

enabled(s, decrement) t s.count > 0;

effect(s, decrement, s') 4= s'.count = s.count - 1

A s'.reported = s.reported;
inv(s) 4t s.count > 0 =* -s.reported

implies

Invariants(C)

V s: C$States

enabled(s, decrementC) #t enabled(s, decrement);
enabled(s, reportC) 4= enabled(s, report)

Figure 4-3: LSL trait defining the implementation automaton

this specification also conveys the information about when the action is enabled, and

the effects of the action on the state. The line inv(s) means that the automaton

has the trivial invariant. This is in contrast to the counting automaton, which has a

non-trivial invariant.

AutomatonCount is the formal model of the automaton described in 4.1.1. Just

as the specification trait, it defines each action and class, and states how they relate.

Furthermore, it defines the state and the requirements and effects of each action. The

invariant described is that the automaton cannot have the report state variable true

before the count has reached zero. This is verified using LP in section 4.3.1.

The Simulation trait pulls together all the lower level traits and defines the
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Simulation: trait

includes

AutomatonReport(R), AutomatonCount(C, k),

TimedAutomaton(R, br, TR), TimedAutomaton(C, bc, TC)

introduces

a, c: -+ Bounds

f: TC$States, TR$States -+ Bool

asserts V u: TR$States, s: TC$States, cr: R$Classes, cc: C$Classes

% Assign time bounds to the classes of TR and TC.

br(cr) = a;

bc(cc) = c;

c.bounded;

% Describe the relation between these time bounds.
a = (k+l)*c;

% Define the simulation relation.
f(s, u) 

u.now = s.now
A u.basic.reported = s.basic.reported
A (if s.basic.count > 0

then s.boundsEclass(decrement)] + (s.basic.count * c)

else s.bounds[class(report)])

C u.bounds[class(report)]
implies TimedForward(TC, TR, f)

Figure 4-4: LSL trait defining the simulation relationship
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mapping between the states of the two automata. Again, this is much like the informal

model of the system.

The most notable thing about the formalization process is that it is quite mechan-

ical to move from the informal definitions to the formal definitions. Simply do the

following things once for each automaton:

* define the state as a tuple.

* introduce each unique class and action.

* list each action in a generated by statement.

* define the class of each action.

* define the requirements and effects of each action.

* define the invariant, if any.

Next define the common actions in the CommonActions trait. Finally, define the

Simulation trait. This requires the user to

* include each I/O Automaton trait, and map them to boundmaps to define timed

automata.

* define the boundmaps

* define the simulation relation

* imply the TimedForward trait

4.3 Commented Proof Scripts

This section contains all the script files run by LP to prove the simulation relationship.

They are accompanied by comments that help describe what each section of the script

is doing, and relate it to the hand proof. Whenever possible, I have tried to refer to

the specific equations and proof sections in the hand proof. In this way, I hope the

formal proof becomes clear.
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There are two proof scripts. The first one merely proves the invariant of the

implementation automaton. The second proves the simulation itself.

4.3.1 Verification of the Implementation Automaton's In-

variant

The following proof script verifies the invariant of the Counting Automaton. It works

by initially verifying it in the initial states, and subsequently showing that the in-

variant cannot be broken by any action from a state where the invariant holds. This

proof is quite similar to the example in Chapter 3, and the style is common to all

invariant proofs.

execute AutomatonCountAxioms

set name theorem

set proof-methods =, normalization

This first section loads in the axioms and sets the proof methods. These proof methods

will enable most of the rest of the proof to be performed without human intervention.

These two proof methods are almost always used, as they are usually appropriate

when they are applicable. For more about proof methods see Chapter 5.

prove start(s) =* inv(s)

qed

The initial conditions are proved solely with normalization and implication. No

human guidance is needed.

prove

inv(s) A enabled(s, a) A effect(s, a, s') = inv(s')

by induction on a

qed

The proof that the invariant is preserved by every action requires a little guidance:

the induction command. This command tells LP to consider each action that a
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might be separately. It requires induction rather than a resume by cases command

because the actions were listed in a generated by statement in the LSL formalization.

The similarity between this proof and the proof shown in Chapter 3 is striking:

they require exactly the same guidance from the user. This demonstrates some of the

power of the prover, as future users will have a very good idea about what is required

to prove invariants in general.

4.3.2 Verification of the Simulation Relationship

The proof of the simulation relationship is considerably more complex. It is very

similar in structure to the hand proof. It follows, along with heavy commenting.

set script simulation

set log simulation

thaw Simulation

set name theorem

set proof-methods , normalization

The previous commands were very similar to earlier proofs. They set up the

environment in which the proof operates.

% First proof obligation

prove start(s: TC$States) = 3 u (start(u) A f(s, u))

This is the first of the three proof obligations necessary to prove a forward simula-

tion. It corresponds to condition one in the hand proof. In the statement, the s is

universally quantified. Thus, this statement requires that there is a start state u of

the specification (the variable u always refers to a state of the specification in this

proof) that is in the mapping from s.

resume by specializing u to [[false], 0, update({}, class(report), a)]

At the time this command was executed, the conjecture was that there is, in fact,

such a state u. This command offers to LP an explanation of what the state is. It is
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exactly the same as the state supplied for u in the same condition of the hand proof:

reported = FALSE, time = 0, the report class has its initial bounds a.

From here on, the rest of this case serves only to show that this state is a start

state, and satisfies the mapping. LP now rewrites these two conditions by substituting

in definitions. This turns the conjecture into an enormous conjunction. This is fairly

common in LP proofs. Happily many of the conjuncts are proved automatically by

normalization. This is also fairly common.

instantiate c:C$Classes by class(report) in *hyp

instantiate c:C$Classes by class(decrement) in *Hyp

This tells LP that the hypotheses that are true of classes in general are also true of

these two classes in specific. In terms of the hand proof, this gives equations 4.1,

through 4.7.

resume by case k = 0

resume by induction on c:R$Classes

resume by specializing a:R$Actions to report

resume by induction on c:R$Classes

resume by specializing a:R$Actions to report

qed

Just as the hand proof does, the LP proof splits its proof into two case: k = 0 and

k > 0. The four commands following the case statement perform each of the cases.

In both cases, the goal is the same: to show that the report action of the simulation

is enabled. The rest of the proof is handled automatically. In each case, the induction

command tells LP to look at each class separately. Fortunately, there is only a single

class of this automaton, so there is only one class to consider. The specific subgoal

that the resume by specializing commands address is:

3 a:R$Actions(enabled([false], a) A class(a):R$Classes = reportC)

Once this subgoal is proved, the case is complete, and proving these two cases is

sufficient to finish the proof of the first obligation.

% Second proof obligation
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prove f(s, u) = u.now = s:TC$States.now

qed

Just as this requirement is trivial by the hand proof, it is carried out without any

guidance by LP.

The next several sections contain proofs of lemmas for the final proof obligation.

% The first two lemmas enable LP to deduce ordering relations based on

% transitivity. These lemmas may become unnecessary when work is

% completed to supply LP with a decision procedure for the ordering of

% the nationals.

set name Transitivity

prove when x:Time < y:Time, y:Time < z:Time yield x:Time < z:Time

critical-pairs *Hyp with IsTO

critical-pairs *Hyp with Transitivity

qed

prove when y:Time < z:Time, x:Time < y:Time yield x:Time < z:Time

qed

These are a proofs of deduction rules that enable transitivity to be handled more

easily than by the two critical pairs commands described in section 3.3.2. Deduction

rules in general are also discussed in section 3.3.2.

. The next lemma supplies a fact that should be included in, or implied

%. by, the LSL Handbook trait for the natural numbers.

set name natLemma

prove n = 0 V n = 1 V n> 

resume by induction

qed

This lemma is useful for a certain case statement in the proof. It follows the case

breakdown of the hand proof of this condition. Unlike most other induction com-

mands, the resume by induction here is actually induction in the usual sense.
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% The following lemmas establish some simple facts about the classes of

% actions in C and R. They might be unnecessary if LP provided special

%, handling for singleton sorts.

declare variables

rc: R$Classes

ra: R$Actions

rs: TR$States

set name lemma

prove class(ra) = class(report) = ra = report by induction

qed

prove a:C$Actions = report V a:C$Actions = decrement by induction

qed

prove - (enabled([true], a) A a:R$Actions = report) by induction

qed

The first of these lemmas states that the only action in the report class is the report

action. Similarly, the second states that the only actions in the implementation

automaton are decrement and report. The final lemma states that the report action

of the specification automaton cannot be enabled if the reported state variable is

true.

Now for the proof of the final condition itself.

% Third proof obligation

declare variables

a: TC$Actions

u: TR$States

s: TC$States

alpha: TR$StepSeq

s': TC$States
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set name theorem

set immunity ancestor

prove

f(s, u)

A isStep(s: TC$States, a, s')

A inv(s:TC$States)

A inv(u:TR$States)

A inv(s.basic:C$States)

3 alpha (execFrag(alpha)

A first(alpha) u

A f(s', last(alpha))

A trace(alpha) = trace(a:TC$Actions))

by induction on a:TC$Actions

This proof obligation is the same as Condition 2 in the hand proof. Its form is

definitely noteworthy. In the hypotheses, we assume the invariants of all the automata

(except the untimed specification, which has only a trivial invariant). This is sound

because they have already been proved for all reachable states (in section 3.3.3 and

section 4.3.1). This is essential to the proof, as it is not possible without the invariants.

Furthermore, including the invariants in the hypotheses has been explicitly put in the

TimedForward trait, from which the proof obligations are generated.

As in most situations described, the induction statement tells LP to consider

each action separately during this proof.

register top s'c

This is a command that helps direct LP's rewriting. It serves to tell LP how we want

the normal form. In this case, it tells LP that it should rewrite formulas expressed in

terms of post-states to pre-states, since s ' c is a post-state variable.

% Case 1: simulate passage of time

resume by specializing
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alpha to null(uc) (null(tc), uc.basic, tc, uc.bounds])

Just as in the hand proof, we must specify what the sequence of actions by the

specification is. This command is somewhat difficult to read because the two nulls

mean different things. The first indicates the start state of ca: the pre-state of the

specification. The second indicates the time passage action that advances time to tc.

The section in brackets defines the post-state: the basic component of the state and

the boundmap are unchanged, and now is tc.

resume by induction on c:R$Classes

Just as the proof of condition 3 for the NULL action in the hand proof begins with a

proof that the sequence is legal, we must do so for the null action as well. In the hand

proof, this amounts to showing 4.28. We arrived at this equation because reportC

is the only class with bounds to check. Thus, the first command reminds LP that

reportC is the only class of the specification.

resume by case sc.basic.count = 0

resume by case (uc.bounds[class(report)]).bounded

The first command tells LP to break the proof down into cases as equation 4.29 does.

The second command handles the cases of u.basic.reported, as the report class will be

unbounded only when the report action is disabled, and this can only happen when

the automaton has already reported. Notice that in the hand proof, these cases are

done in the other order.

instantiate c:C$Classes by class(report) in *Hyp

This command proves that the sequence is valid if s.basic.count =- 0, and

u.basic.reported =FALSE, this is the same as equation 4.30.

% The remainder of this case guides LP to apply transitivity.

resume by case (uc.bounds[class(report)]).bounded

instantiate c:C$Classes by class(decrement) in *hyp

set immunity on
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prove

(s'c.bounds[class(decrement)]).last <

((s'c.bounds[class(decrement)]).last

+ (s'c.basic.count * c:Bounds.last))

set immunity ancestor

critical-pairs *CaseHyp with *ImpliesHyp

apply Transitivity to theorem

This entire sequence of commands serves only to prove 4.31 and 4.32. This difficulty

is somewhat characteristic of LP's difficulties with algebra. Fortunately, this problem

is well known to LP's programmers, who are working on ways to improve it. This is

discussed more in Chapter 6.

On the bright side, proving that this is a legal step is sufficient to prove the

entire NULL case, unlike the hand proof, where considerably more work must be put

in to prove it.

Next, we must prove the simulation for the actions of the untimed implementation

automata, augmented with time.

resume by cases c6c = report, c6c = decrement

This command tells LP to consider the different actions of untimed automata sepa-

rately.

% Case 2A: simulate report action

resume by specializing

alpha to

null(uc) (addTime(report, uc.now),

[[true], uc.now,

update(uc.bounds, class(report), [false, , 0)]

)resume by induction on c:R$Classes

resume by induction on c:R$Classes
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These commands offer LP general guidelines for this section of proof by supplying it

with a sequence o, and reminding it that the only class of the specification is report.

This case shows the power of LP when there is only simple algebra: these hints alone

suffice to guide LP through the case.

h Case 2B: simulate decrement action

resume by specializing alpha to null(uc)

Once again, we must supply LP with a sequence a for the specification automaton.

resume by case

sc.basic.count = 0,

sc.basic.count = 1,

sc.basic.count > 

instantiate n by sc.basic.count in natLemma

The resume by case command parallels the case breakdown in the hand proof. How-

ever, it also includes a 0 case, since LP does not yet know that the decrement action

must occur when s.basic.count > 0 (although it works out that portion of the proof

without guidance). The second line offers justification of why these are all the natural

numbers, by relying on a lemma.

instantiate c:C$Classes by class(report) in *impliesHyp

resume by case (uc.bounds [class(report)]) .bounded

critical-pairs *ImpliesHyp with *ImpliesHyp

resume by A-method

apply Transitivity to conjecture

apply Transitivity to conjecture

These commands work out equations 4.18 through 4.27, thus solving the case of

s.basic.count = 1. Although these commands are not as nice as they might be,

in that LP requires considerable guidance to work out this algebra, they are still

considerably shorter than the same section of the hand proof.
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prove sc.basic.count - 1 0 by contradiction

critical-pairs *contraHyp with *

These commands prove a useful lemma for the s.basic.count > 1 case.

instantiate c:C$Classes by class(decrement) in *impliesHyp

define-class $timeLemma Time / contains-operator(-:N,N-+N)

instantiate t by c.first, n by sc.basic.count in $timeLemma

instantiate t by c.last, n by sc.basic.count in $timeLemma

resume by case (uc.bounds[class(report)]) .bounded

resume by A-method

apply Transitivity to conjecture

apply Transitivity to conjecture

These commands guide LP through equations 4.8 through 4.17 in order to complete

the case of s.basic.count > 1. Again, the prover needs much guidance, but the proof

is still much shorter than the hand proof.

qed

This completes the LP proof of the simulation relationship. Notice that it is about

the same length as the hand proof, even with all the commentary.
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Chapter 5

Techniques for Using LP

Using the Larch Prover varies a great deal in ease. There are times when it is a joy,

and LP is able to prove things quite easily, often considerably more easily than the

hand proof. There are also times when it is very frustrating, as there seems to be no

way to make it accept a proof for an "obvious" conjecture.

When I first started, the major problem was my lack of expertise. I would waste

entire days because I simply did not know how to drive LP effectively. This section is

intended to work with sections 3.3.1 and section 4.3 in explaining the most confusing

issues to a new LP user.

Later, the problems began to come from other corners. Most of the severe stum-

bling blocks resulted from omissions in the axioms. These have now been worked out

of the standard traits. Furthermore, considerable effort has been put to honing the

LSL traits so they provide more powerful support for the LP user. This means that

the new user starts out with a much better environment than I did. For example,

when I first tried to prove the TimedAutomata trait's invariants several months ago,

I could not prove them in several days of work, even though I was a fairly skilled LP

user at the time. Now, however, it is easy to prove them in about fifteen minutes.

Occasionally, LP would lack a very useful capability, and I was forced to work

without it. At times, this presented a significant delay. Even now, there are still

many improvements that would make LP much more useful. However, as time goes

on, more and more powerful abilities are being added to LP. Consequently, it's always
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becoming easier to use.

This section presents techniques for using LP that can help eliminate many of the

frustrating times, and alleviate them when they do come. The section begins with a

description of an overall approach to writing a proof script. Next, it discusses pitfalls

in LP use. It continues with hints for times when LP is stuck. Finally, it concludes

with a general approach to polishing a completed proof.

Another description of the approach, and more of these sorts of hints, can be found

in [2], although the hints found there are usually more applicable in a setting where

there are fewer facts than in the automata environment described here. Furthermore,

there are several new developments in the Larch Prover that may render some of the

more specific hints less useful. In general, however, I believe that the hints will be

applicable in most situations where the user is stuck.

5.1 Hand Proof

When I did my proof, I first wrote a hand proof of the simulation relationship. During

the course of the machine proof, I found this to be very helpful, as it is often difficult

to think about the proof itself while using LP. This was particularly true of times

when I was doing some relatively complex algebra. This is because I was able to use

my hand proof to see both the steps that were needed and which hypotheses would

be useful to perform the steps I made. It became something of a checklist of facts

needed to prove my conjecture.

In general, when doing the hand proof beforehand, it is best to go into as much

detail as possible, especially as to why a fact is known. This may pay significant

dividends later on, when doing the proof in LP.

On the other hand, since there are times when LP can accomplish difficult sections

of proof with little or no guidance, it does not really make sense to work out every

section in extreme detail beforehand. One possible approach is to make a sketch of

the proof by hand, and then begin LP. When LP gets stuck, stop working on it, and

work out the section in detail by hand before returning to LP.
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5.2 Breaking Down Proofs

In general, any significant proof cannot be carried out in one step, but must be

broken down into subproofs, each of which is easier that the whole proof. This section

discusses how to perform this breaking down process. It consists of three parts. The

first discusses the concept of breaking down a proof and describes a general approach,

the second discusses proof trees, and the third proof methods.

5.2.1 Top Down Proof Design

The analogy between proving theorems and software engineering is sometimes made.

This analogy holds to a certain degree. The LP user must be able to break down a

proof into more manageable pieces, just as a software engineer must break down a

program. Essentially, the process that the LP user goes through parallels top-down

design of the program. This section details how this process works, and the tools

which LP provides the user to perform the break down process. In general the act

of breaking down the proof consists of two parts. The first is splitting a large proof

obligation into two or more smaller obligations, and the second is proving the smaller

obligations. There are several ways of performing the first part, which may be more

or less appropriate, depending on the precise nature of the proof obligation to be

broken down. The next several paragraphs deal with some of the possible methods

that may be used on a proof obligation.

Conjunctions In many cases the proof obligation will be a conjunction. For exam-

ple, a A b. In these cases, the resume by /\ command (discussed in section 4.3.2 as

well as in [2] ) may be appropriate. While this is definitely useful when initially doing

a proof, it often makes the proof script longer than it need be, as it often produces

several very similar cases. Thus, it is sometimes a useful tool for doing the initial

proof, but may be eliminated in the polishing phases.

If-Then If the conjecture is of the form if a then b else c, then it is frequently

useful to employ the resume by if command. This breaks down the conjecture into
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two subgoals: b given a and c given -'a. It is much like the resume by /\ command,

in that it is useful when initially doing the proof, yet can often be eliminated in the

polishing stages. For more information about this command, see [2].

Separation into cases If a hand proof has been written, it is usually pretty easy

to tell when to employ this technique. It will, in general, follow the hand proof.

Unlike conjunction, it will almost always remain in the proof even after polishing.

There are two forms of breakdown into cases. The first is resume by case a, which

separates the proof into cases a and -a; and the second is resume by case a,b,c

which produces four subgoals: the conjecture with a, b, or c as a hypothesis, and that

a, b, and c are all the possible cases (the justification subgoal). Breakdown into cases

is also discussed in section 3.3 and [2].

Induction Induction is normally pretty clear. Use it when you use it in the hand

proof. However, there are some times when it is necessary to use it when you used

a case breakdown in the hand proof. For example, I ran into this difficulty when

I wanted to say omething about all the classes of an automaton. In general, it

is appropriate to use resume by induction rather than cases whenever the LSL

formalization shows that the case breakdown comes from a generated by statement.

Using lemmas Probably the most important aspect of the process of breaking

down proofs is using lemmas. In order to know when a lemma may be needed, it is

often .helpful to have a thorough hand proof. This will show you many of the times

when a particular lemma is helpful. For example, in algebraic manipulations, it is

good to know some of the intermediary steps in the manipulations in order to know

what to make a lemma. If your chain of reasoning went eqn ... eqni...eqn, then it

may be helpful to use eqni as a lemma in the proof of eqnn. Often, however, it is not

clear from the hand proof what lemma will be needed. At these times, I usually pick

something that I believe to be a reasonable lemma, and assert it. I then try to use

the lemma to prove the conjecture. If I can do so, then I subsequently try to prove

the lemma. If not, I look for another lemma.
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Once it's split

When a proof goal has been split into easier subgoals, there are several places where

work can be done, namely on each the subgoals, or using the subgoals to prove the

main goal. This last section (integrating the subgoals to prove the main goal) may not

always be present, either because it can be viewed as just another subgoal or because

it is trivial. Since there are several places to work, the user will generally have a

choice to make about what to work on. I recommend asserting each of the subgoals

temporarily. In this way, the process of using LP to prove a theorem amounts to

repeatedly taking an assertion, breaking it down into subgoals, temporarily asserting

these in order to use them to prove the goal, and eliminating assertions that can be

proved. The proving process ends when there are no more assertions left to eliminate.

5.2.2 Proof Tree

Essentially you can think of a proof as a tree of subproofs, each of which proves some

portion of the general conjecture. In practice, this means that an incomplete proof

will include several sections of proof that are not complete, but that may be almost

done.

Proof Methods

When I first came to understand the idea of using resume by /\ and resume by =>,

I found that most of my work using LP consisted of me typing a command based

solely on the structure of the conjecture. While this was easy, and made me feel

that I was accomplishing a lot without too much mental strain, there is a more

efficient way of doing things: proof methods. A proof method is a technique that LP

automatically attempts to apply to any conjecture before giving up and getting a

command from the user (or the script that it is running). For example, if the proof

method is /\, then LP will always break down conjunctions and attempt to prove each

conjunct separately before giving up and surrendering control to the user. The main

use of proof methods arises from the fact that you can have multiple proof methods.
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For example, you could have /\, =>, normalization as a proof method. With this

method, all conjectures would be broken down by all of these methods before the user

was asked for input. The methods are applied in the order provided. In many cases

this is irrelevant, as a conjecture cannot be both a conjunction and an implication,

but it is definitely relevant in the instance of normalization. In general, I like to

apply normalization last, as this will make the proof log somewhat easier to read.

While I was working on the draft of the proof, I used /\, =>, if, normalization

as my proof method. Although this usually produces more cases than necessary, it

means that in any situation where input was needed, I knew that I would only be

dealing with a simple proof obligation (in the sense of it not being a union of two

other obligations). This means that I did not have to deal with the issue of proving

both halves of a conjunct at once or similar issues. Although this led to a longer

proof script, it meant the precise goal I was working on was somewhat more clear in

my mind than it would otherwise have been. Proof methods are also discussed in [2].

5.3 Pitfalls in LP Use

This section deals with some of the issues that caused me enduring trouble when I

was working on my proof. Almost universally, these difficulties resulted from missing

axioms. For these problems, I found that I could never quite manage to prove any

properties involving the axioms. I would leave several assertions that seemed very

similar to me in the proof script, because I did not know how to eliminate them. It

turned out that they were multiple instances of the same missing axiom. The easiest

way to deal with problems like this is to try to modify each assertion in the proof

script that you cannot otherwise eliminate so that it is a statement that is clearly

true in general rather than one that relies on the specific details of your system. For

example, in my proof I was missing the axiom:

a < ba+c< b+c
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In all instances when I needed this in my algebra, I could not get LP to accept the

proof as complete, but asserting the specific fact derived from this would be sufficient

to perform the proof. For example, when I needed to get equation 4.10 I could never

get the proof to go through, because I kept trying to prove this statement was true

because one could simply "add s'.basic.count cl to both sides of the inequality," but

LP refused to believe this could be done, because it was missing the axiom.

Another difficulty, in the same vein, that I had resulted from the lack of invariants

in the initial formalization of I/O Automata. This kept me stuck in various places for

several weeks. I would have in my hand proof "(something) is obviously true," but I

could not seem to prove it in LP. This was because the "(something)" was an invariant

of the automaton which was true in any reachable state. However, the formalization

we had at the time did not contain the concept of an invariant, much less the specific

invariant I needed. So we were forced to add invariants to the formalization. As

a result of this, I would heartily recommend that during the hand proof the writer

pay careful attention to invariants that are being used. Then, when it is complete, a

list may be drawn up and incorporated into the formalization of the automaton. In

general, it is better to include an invariant than not to. Remember that to get the

proof obligations for invariants, you must run the LSL checker on the automaton's

LSL file. The LP output produced will include the necessary obligations and the

axioms with which to prove them.

A final, very different difficulty resulted from working with long proof scripts.

Every notable proof has many subgoals, many of which require commands to prove

them. To the user, it is obvious that a specific command is intended to solve a

particular goal, rather than necessarily being applicable to all of the goals in the

proof. To LP, however, the proof script is simply a list of commands. Thus, it is

sometimes possible for the proof script to get "out of sync" with the proof goals. For

example, say a change in the axioms is made, which causes a sequence of commands

that used to prove a particular subgoal to fail to do so. Now LP will continue to

perform commands, but the commands it is doing were not intended for this goal.

LP will continue to execute the script, until it stops for some other reason, such as
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referring to a hypothesis that does not exist. At this time, it will tell the user why

it stopped, but the reason it stopped will have nothing to do with the real problem.

Worse still, it is very difficult to find the original problem, as LP has died in a

completely different section of proof.

Fortunately, LP provides a mechanism to get around this difficulty. It is called

Box-Checking. If box-checking is on, then whenever LP completes the proof of a

subgoal, it looks for a line that begins with the symbol []. Furthermore, whenever

it starts working on a new subgoal, it looks for a line that starts with <>. If it fails

to find the line it is looking for, then it stops immediately. Furthermore, if it sees a

line that starts with either of these symbols at any other time, it immediately stops.

Thus, one merely needs a proof script that contains these lines. Fortunately, LP

automatically inserts these lines into its record of the commands it executed in the

".lpscr" file.

Unfortunately for box-checking, it can be tedious to work with while developing a

proof. For example, if you add in some new commands that prove a lemma rather than

simply asserting it, there is a good chance that you will forget to add the necessary <>

and ] lines. If so, then LP will needlessly'stop execution to tell you this. Despite its

problems, however, using box-checking will save you a tremendous amount of time,

as you will always be informed if the commands you thought would prove a subgoal

did not do so.

5.4 Getting Stuck

The most frustrating time during the course of a proof is when you are trying to prove

something that seems atomic. In other words, the goal to be proved cannot seem to

be broken down any more, and seems to follow immediately from known facts. It

seems to you that a conjecture should have been proved, but for some reason LP

just does not accept the proof. At times like this, I often found myself staring at the

screen in frustration and not actually doing anything. This section presents things to

do, so that you can learn why LP does not understand the proof you have given it.
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At this time, the best thing to do is to think about why the proof is true. From

what facts does it follow? Try to find each of these facts. For this step, it is often

helpful to use LP's display command and class facilities. For example, you might use

a command such as

display cont-op(a) / cont-op(b)

where a and b are two constants found in the formulae you are interested in. If you

cannot find one of the known facts, consider where in the LSL formalization it should

be. Check that file for it. If LP has all the facts but you still cannot prove the goal,

try to piece together the facts as LP does (i.e.: using rewrite rules) and prove the

goal.

Some other useful things to do or tools to use:

* show normal-form of a crucial fact that never seems to appear. Perhaps it is

normalized away.

* set immunity on particularly if some facts are being normalized (see section

3.3.1 for more about this).

* set trace-level x, where x is some level between 5 and 8. This will give

you many facts about what exactly is going on, such as why the facts you are

looking for cannot be proved. Make sure you have a very long scrollbar!

5.5 Slogans

Here is a small set of slogans that I think are good to follow, and will make your

life as an LP user somewhat easier. Most of them are mentioned elsewhere in this

chapter, but I have gathered them here for convenience.

* a careful hand proof pays big dividends later, especially in sections where you

expect LP to have difficulties.

* use box-checking.
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* break it down (as much as possible, and merge the cases later).

* assert first and prove later.

· Check your axioms if it stays broken.

5.6 Polishing the Proof

The idea of polishing a proof goes back to the original motivation for using automatic

verification. Ideally, we would like to be able to publish an LP proof rather than a

hand proof. To this end, we need to make the proof as lucid as possible, yet have it

not be too long, or incomplete on any details. The ideal medium for this would be

a hypertext format, as this would allow the proof to be complete and detailed, yet

not require users to read through any details they did not need. Furthermore, the

tree structure of the proof allows a mechanical method for deciding where one can

click to see more information. At any particular level, each goal would be displayed,

and clicking on it would display all the subgoals (and how they collectively prove the

goal), but not how the subgoals themselves are proved. Additionally, clicking on any

rewrite rule's name could display that rule. Happily, all this information is available

in the proof log. Thus, it is possible to write a "compiler" from the proof log to a

hypertext viewer format.

For the interim, however, we have taken the attitude that "brevity is the soul of

wit." Often proof scripts seem to run very long, and still not provide a very clear

picture of what is happening in the proof. Thus, we have attempted to shorten the

proof script as much as possible. In this way, we can still afford to insert manual

comments, as I did in chapters 3 and 4. In general, we have been very successful in

shortening proofs. In the case of the example proof, the original was 616 lines and the

polished form was 173. Many techniques were brought to bear on the proof, many

by Steve Garland rather than me. Here I will discuss some of the most powerful ones

that I am familiar with.

One of the easiest techniques is eliminating box-checking. In our case, this saved
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about 25 percent of the length of the full proof. This increases the responsibility of

the user for making the proof lucid, as the user must now give a context for each

command, but the user will be able to do this much more coherently and in less space

than the boxes and diamonds.

Another technique, which I have spoken of before, is combining conjuncts or cases.

This can be very useful if the two cases or conjuncts are very similar. The following

sections come from the example proof. They show an example of how space can be

saved by polishing the proof.

The following is the original script to prove condition 1 of the forward simulation.

set proof-method A , •, if, normalization

set name ForwardTheorem

prove start(s: TC$States) =. 3 u (start(u) A f(s, u))

resume by specializing

u to [[false], 0, update({},class(report), a.first),

update({},class(report), a.last)]

resume by case 0 < k

set immunity ancestor

instantiate c:C$Classes by decrementC in *Hyp

instantiate c:C$Classes by decrementC in *Hyp

crit *ImpliesHyp with AutomatonReport

crit *ifhyp with lemma

crit *ImpliesHyp with AutomatonReport

crit *ifhyp with lemma

crit *ifhyp with lemma

crit *ifhyp with lemma

%%now do k = 0 case:

instant c:C$Classes by reportC in *hyp

instant c:C$Classes by reportC in *hyp

crit *ImpliesHyp with AutomatonReport

crit *ifhyp with lemma
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crit *ImpliesHyp with AutomatonReport

crit *ifhyp with lemma

crit *ifhyp with lemma

crit *ifhyp with lemma

qed

The remainder is the polished version of the above script. It proves the same

condition, but in about half the number of lines. Most of the savings here come from

combining conjunctions and "if-then-else"s that had similar requirements and moving

some operations to before a case statement, so that both cases can see the results

without performing the operations individually.

set name theorem

set proof-methods =., normalization

prove start(s: TC$States) = 3 u (start(u) A f(s, u))

make immune conjecture % NOTE: Optimization to save time.

resume by specializing

u to [[false], 0, update({},class(report), a.first),

update({},class(report), a.last)]

instantiate c:C$Classes by reportC in *hyp

instantiate c:C$Classes by decrementC in *Hyp

resume by case k = 0

resume by induction on c:R$Classes

critical-pairs *hyp with AutomatonReport

resume by induction on c:R$Classes

critical-pairs *hyp with AutomatonReport

qed
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Chapter 6

Conclusions

Initially, we wished to explore three questions about automatic verification of proofs

involving the timing properties of MMT automata. First, is it possible? Second, is. it

feasible to do easily? Third, can we find a way to create a proof that is lucid enough

to publish? The answer to the first is certainly yes, although we always expected that

it would be. The answer to the second is that it is somewhat feasible at present. The

environment has improved immensely during the course of my work with it, and it

will continue to do so as the tools develop. The remaining sections discuss directions

of future development. Finally, publishing these proofs appears to be feasible. We

will now need some tools to automate this process, as well.

Perhaps the most telling question is "how does computer aided proving compare

with conventional proving by hand?" Both have their strengths and weaknesses. The

major strength of LP is that, with it, the user is virtually guaranteed a correct proof,

whereas a hand proof has a very high chance of having some omission. Furthermore,

most sections are much easier to prove with LP than by hand. However, with the

present state of the tools there are also some sections that are much harder to do

with LP than by hand, particularly if the user is inexperienced. Also, commenting

an LP proof for a reader is much easier if there is a hand proof to refer to. As the

tools develop, however, the balance will increasingly swing in favor of LP, as it will

retain its advantages, and the problems will become increasingly minor.
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6.1 Future Work

Most of the future work I see comes in two forms: using the tools and improving

the tools. At the present time, the environment we have described here is certainly

usable, but contains many annoyances that make it overall somewhat harder to use

than simply writing a hand proof. Still, some hardy souls are pressing forward with

newer and more difficult proofs. Currently there is an effort to verify a correctness

proof of Fischer's mutual exclusion algorithm [6]. In order to alleviate the difficulties

currently faced in proof verification, work is being done to improve the tools. Here

are some examples of ideas for future work on support.

To aid with formalization, we have considered an I/O automaton to LSL compiler.

This would enable the user to suppress most of the details of using LSL, as it would

no longer be necessary to write traits directly. However, there are certainly problems

with this approach. The primary problem is that it would need very complete error

checking, as any error messages generated by the LSL checker due to problems with

the traits generated by the compiler would leave the user bewildered, as error messages

would not make much sense. Perhaps a better first step is some sort of macro facility

that would eliminate the necessity of entering the entire trait.

This sort of macro facility might, for example, offer the ability to automatically

insert a new action. At present, inserting a new action and its class requires the

addition of seven lines in the trait describing the automaton. However, only two of

these require information beyond the action and its class. Thus, the macro facility

could. automatically create the other five lines. This would save considerable time in

the formalization of automata with many actions.

However, most of the benefit to be gained from improvements to the environment

is in the proving process, as the user spends much more time proving than formalizing.

These improvements fall into two categories. The first is developing more powerful

traits, which will generate better axioms. This process has certainly begun with

my example, but the next few proofs carried out may also find rough edges in the

axioms to be polished. The second category of improvements to the proving process
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is improvements to LP. Some possible improvements (in various degrees of readiness)

are

* to offer better support for arithmetic and algebra

* to improve the front end.

* to extend the critical pairs command to statements containing quantifiers. This

would be useful in many places where dealing with quantifiers is currently nec-

essary, as these require much more expertise.

* to offer support for using a case statement rather than induction to signify all

the classes or actions of an automaton.

There are also many more improvements that will be made to LP in the future, as it

has a dedicated set of programmers.

For presentation, there are two kinds of improvements that might be useful. For

paper proofs, there could be some sort of customizable facility that allows the user to

automatically generate a reasonable paper proof from an on-line proof. For viewing

proofs on-line, one might use a hypertext proof viewer such as the one described in

Chapter 3.

6.2 Vision of Paradise

The way I see it, the ultimate goal of all of this is to make an environment where the

entire proving process can be carried out on-line. Thus, the necessity for writing a

hand proof will be eliminated. Furthermore, proof assistants will be able to take care

of everything besides the highest level strategy. This is currently very close to reality

when the proof is very easy, but the difficult cases are still much harder to handle in

LP than by hand.
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