
Efficient Asynchronous Distributed

Baruch Awerbuch * Lenore Cowen

Abstract

Thw paper considers symmetry-breakhg in an aayn-

chronoue d~tributed network. We present and ana-

lyze a randomized protocol that constructs a maximal

independent set in O(log n) expected time, and also

a protocol for the dining philosophers problem that

schedules a job that competes with 6 other jobs in ex-

pected 0(6) time, which is optimal. The beat previ-

ous algorithms for dining philosophers achieved only

0(62). In addition, the new protocols are 2-wait-/iwe

which means that delays at a process are only depen-

dent on processors or links at most distance two in the
communication graph.

1 Introduction

We consider an asynchronous distributed network of

processors with arbitrary network topology. This can

be represented as a graph, where vertices represent

proceaaors, and two vertices are connected by an edge

if the corresponding processors have a direct commun-

ication link. There is an arbitrary link delay function

on each edge: a message sent on link ij at time t,ar-

rives at some time fij (i!). No information about this

function (such as upper bounds on the maximum link

delay, for example) is assumed to be known to either

the algorithm designer, or the protocol. Since we are

interested in symmetry breaking, we do not assume

processors are given unique names, or IDs: if the un-

derlying network topology is a distance regular graph,

they are indistinguishable.

Typically, algorithm designers have designed dis-
tributed algorithms for such an asynchronous dk-
tributed network in two phases:

1. Design a round-based protocol that performs well

in a synchronous distributed network.

*Johns Hopkins University and Lab. for Computer Science,
M2T. Supported by Air Force Contract AFOSR F49620-92-J-
0125, NSF contract gl14440.CCR, DARPA contracts NOOO14-
91-J-16% aud NOO014J.92-1799, and a special grant from IBM.

t RUtg~ and Joh Hopkins Univexnit y. Supported by an
NSF postdoctoral fellowship.

$Lab. for Computer Science, M.I.T. Supported in part by an
AT&T Bell Labs Cooperative Research Fellowship.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title ot the publication and ‘k aaie appear, anti notice k given
that copying is by permission of the Association of Computing

Symmetry Breaking

t Mark Smith $

2. Implement a general synchmkzer which allows

the asynchronous network to simulate a syn-

chronous one.

In this paper, we will show that for a fundamen-

tal class of problems that includes the maximal in-
dependent set problem and the dining philosophers

problem, sometimes called symmetry breaking prob-

lems (because their solution relies either on unique

processor IDs, which we are not assuming, or random-

ness, which we will use) it is possible instead to design

the algorithms directly for the aeynchronoue network.

The new algorithms are nearly as simple as the syn-

chronous algorithms, and have similar complexity in

an asynchronous network (times the usual factor for

maximum link delay) as the old algorithms did in the

synchronous network. In addition, they will avoid all

the complexity, fault-sensitivity, and overhead involved

in setting up and maintaining even the beat known syn-

chronizers, especially when the network is allowed to

change dynamically. The only payment we have to

make for these new algorithms turn out to be in the

analysis: there is a hint of the adversarial in requir-

ing good performance for any possible link delay func-

tion. The delicate protocols that we present insure

both safety and fairness without ever resolving some

inherent ambiguity as to the order of events driven

by when messages are received. The challenge is the

probabilistic analysis of the protocols, where the coin

tosses of the algorithm can interact with the link delay

function and change the orders of events,

1.1 Our results

Our results include an O(log n) expected time solution

to the maximal independent set problem, and the first

optimal algorithm for the dining philosophers prob-

lem, where a job which competes with 6 others for re-

sources, is scheduled in 0(6) expected time. Both pro-

tocols are 2-wait-free which makes them robust against

faults. They also use constant space per edge, send.
ing messages of size at most O(log log n). We sketch

how the protocols are extended to work in the infinite

dynamic model considered for dining philosophers by

Awerbuch and Saks in 1990 [3]. (In this case, the pro-

tocols will be 3-wait-free, and the complexity bounds

Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

STOC 94- 5/94 Montreal, Quebec, Canada
@ 1994 ACM 0-89791 -663-819410005..W.5O

214

are still 0(6), where 6 = the maximum number of jobs

a job competes with at any point in time).

1.2 Previous work

For the maximal independent set problem, there are

the famous randomized synchronous algorithms of

Karp-Widgeraon [9] and Luby [10], 1 There is an ex-

tensive literature on the dining philosophers problem

and resource allocation (e.g. [7, 12, 16, 5, 11, 3, 6]) and

we survey these results at the beginning of Section 6.

1.3 Outline

The structure of this extended abstract is as follows.

We present the model in the next section. We then

focus on re-designing Luby’s elegant synchronous pro-

tocol for the maximal independent set problem, We

review Luby’s protocol in Section 3, demonstrate its in-

herent dependence on synchronous rounds, and discuss

drawbacks for implementations in an asynchronous

that employ a synchronizer. Section 4 presents our
new asynchronous algorithm, and proves safety. Sec-

tion 5 then analyzes the performance of the algorithm.

Section 6 gives the application to resource allocation

and the first optimal solution to the generalized dining

philosophers problem.

2 The model

We model each process as a probabilistic timed 1/0 au-

tomaton (see [15, 13, 14] for formal definitions). The

algorithm begins when a process has an input action

from an external system that activates the process

(WAKEUP message). The input action message has

the neighbor set of the newly activated process. A pro-

cess that has received a wakeup message as an input we

will define aa active. A newly activated process maybe

connected (have in its neighbor set) any previously ac-

tive process. (We restrict the environment such that in

the set of legal inputs, the neighbor set included in the

input must consist only of active processes. Thus, the

first process to be activated will receive a null neigh-

bor set in its input.) We allow processes to wakeup

one by one, or all wakeup simultaneously, or anything

in between.

When a process gets activated, it sends a message

to its neighbors telling them it has joined the proto-

col. The communication links between a process and

1There has also been work on MIS in the asynchronous
PRAM model, but a shared memory makes coping with asyn-

cbrony a much easier problem. We note that our algorithm is

also an asynchronous PRAM algorithm, and its properties are
also of potential interest in this model.

its neighbors get activated when the process receives

its WAKEUP message with its neighbor set. Commu-

nication is only allowed between active processes.

Each process has an external action that has a value

that is the result of it running the protc)col. The out-

put set produced by active processes must have the

property that the activation of new processes does not

cause old processes to change their outputs.

2.1 The link delay function

We use the standard method to model link delays in

an asynchronous network, sometimes referred to as a

weak “oblivious adversary” model. We assume that for

each process i, there is a function Ci and for each di-

rected communication link from processor i to j, there

is a function Lij. More specifically Lij is defined ss

follows: If process i sends a c-bit messabge to process

j along link ij at time t, then that message arrives at

time L~j (t). Just as the delay functions 1, capture that

that link delay is oblivious to the content of the c-bit

messages sent, the process delay functions C’ captures

the notion that the time that processor i takes to com-

pute a particular function g (say, of k inputs) is not

dependent on the values of those k inputs. All delay

functions are assumed to take on positive, finite values,

but otherwise can vary arbitrarily with time.

We assume that messages sent at time t across link

ij arrive at time Lij (t) regardless of other messages on

other links for process j. If each process scans incom-

ing links in fixed order (which we can assume takes O

time, and instead factor the delay into the link delay

functions), without loss of generality we can assume

that messages do not arrive simultaneously.

2.2 Complexity measures

We use the standard method of measuring complex-

ity for asynchronous distributed algorithms. The algo-

rithm is said to run in time O(r) if, for any set of delay

functions, with maximum process delay p and maxi-

mum link delay v, it runs in time O(r(p + v)). (Note

that p and v are just for the purposes of analysis: the

protocol does not know anything about tlhe delay func-

tions, including any upper bound on maximum delays).

Alternately, when not reasoning specifically about ex-

act delays, the normalized delays can be used, namely
physical execution time divided by maximum link or

process delay. This is equivalent to measuring physical

time assuming message delay varies between O and 1
time units of a global clock [1, 8].

215

2.3 The problem specification

We define both a stable and an infinite dynamic ver-

sion of these problems; the infinite dynamic version in

anticipation of the application to dining philosophers.

In the stable version, it is assumed there is some con-

stant delay w (not know in advance to the protocol),

after the first process hsa woken up, after which all

active processes have awakened (i.e. no processors will

receive new neighbors after time w.) Then we mea-

sure the complexity of our programs after all active

processors have awakened.

In the infinite dynamic version, a process may get

new neighbors at anytime during an execution. It is

more difficult to pin down a good global measure of

complexity in this formulation, though we will see a lo-

cal measure that makes sense for the generalized dining

philosophers problem.

Notice that the difference in the two models is in how

we measure performance not correctness: in both the

infinite dynamic and stable cases, processes will wake

up while the protocol is already in progress, and thus

safety must in both cases be proved in a fully dynamic

model. However, in the stable case, we do not neces-

sarily require good performance while new processes

are entering on line, while in the infinite dynamic case,

we must in some sense continue to “make progress)’.

There is a condition on the types of problems that

can be solved in these models. If a process has already

produced an output, we do not want this result to be

invalidated by the addition of new processes. We call

the property dynamic expendability. Formally we say a

graph problem is dynamically eztendable if given some

problem P and a solution set S for P, then Vj @proc(I)

(a new input), such that Nj ~ proc(I), and Vvj, ~v~
such that S U {((j, Nj, vj), (~, v;))} SOIVSSP.

2.4 The MIS problem

An MIS on a graph is a subset of nodea such that no

two nodes in the subset are connected (independence)

and every node is either in this subset or has a neigh-

bor in the subset (maximal). If at some time t, new

processes stop entering the network, then our protocol
should produce an MIS on the active network. Pro-

ducing an MIS means each processor sets a flag O or
1 where the O output means the process is not in the

MIS, and the 1 output means the process is in the MIS.

Lemma 2.1 The MIS problem is dynamically expend-

able. ❑

2.5 k-wait-freedom

We say that a protocol is k-wait-free if for any process

i, if all the procesaea in the distance k neighborhood

of i stop receiving new neighbors and continue to take

steps, then i will accomplish its task, that is, i will

produce an appropriate output value.

k-wait-freedom not only protects against stopped

processors far away in the network; it also protects

against slow ones. If a k-wait-free algorithm has i pro-

ducing an output in O(r(p+v)) steps, in fact the global

p and v can be replaced by Pi and vi where these are

the maximum delays among links and processors in the

k-neighborhood of i.

3 Review of Luby’s protocol

Luby’s synchronous MIS protocol, as given in [10] pro-

ceeds in rounds. In each round, process i flips a coin

c~, where

{

1 with probability l/(2di)
ci =

O otherwise,

where di is the degree of node i in the underlying graph.

Process i then compares the value of its coin to the

coins of its neighbors, and enters the MIS if its coin is 1,

and for all its neighbors, j, such that dj z di, j’s coin

is O. When a process gets in the MIS, all its neighbors

also get removed from the protocol. Luby shows that

in O(log n) expected rounds, this constructs an MIS.

3.1 The difficulty of asynchrony

Even in a static asynchronous environment, it is not

clear how to implement a protocol like Luby’s. With-

out a global clock, there is no way to insure that pro-

cesses flip at the same rate. If we do not control the

rate a process flips as compared to its neighbors, many

things can go wrong. For instance, a fast-flipping pro-

cess might have multiple chances to flip a 1 and kill

slower-flipping neighbors (see Figure 1). Luby’s prot~

CO1worked because in each round every process only

had one chance to kill a neighbor that flipped 1. With

aaynchrony this is no longer guaranteed. One could in-

stead try adding, for example, the a synchronizer of [2]
to generate global pulses, but this may add an over-

head of O(D) for the first step in the protocol, where
D is the diameter of the network. In the dynamic case,

this O(D) could have to be paid repeatedly.

4 The new MIS protocol

In this section we present the new asynchronous MIS

protocol. For ease of presentation, in this section and

216

X%0

2&ea

Figure 1: The ditliculty of asynchrony. Why Luby’s pro-
tocol does not work in the asynchronous network. Process j with
degree bigger than that process i communicates quickly with i,
while the link between s’ and k is slow. We cannot have j just
freeze, whenever i is waiting to to hear from k, without causing
deadlocks. However, while i waits to hear from k that it is safe to
enter the MIS, j fltps again many times and finally flips a 1, killing
i’s chances of getting in the MIS. An adversary can set link delays

to cause such bad performance.

the next, we will present the protocol for the stable

model (see section 2.3). We then talk about extensions

to an infinite dynamic measure of complexity for dining

philosophers at the end of section 6.

The protocol presented will include messages where

processors aend the value of their degrees in the graph.

Thus the messages will be of size O(log n). We show an

easy way to reduce this to messages of size O(log log n),

while only increasing the expected running time by a

constant factor, below.

4.1 Main ideas

Somehow, without paying for the delays of a global

network pulse, we would like to control the flipping

rates of neighboring processors: namely, a process i

which flips a 1 would like its neighbors to have flipped

O, to “freeze” and not try to enter the MIS until it

checks to see if it survives. Except, if we allow each of

j’s neighbors to freeze j in turn, j can stay frozen a

long time with no chance to enter the MIS. This can

lead to deadlocks.

Our solution lies in two simple ideaa, which we call

● The snapshot freeze

● The near-equivelant rate.

The snapshot freeze means that instead of allowing

processes i to each freeze j in turn, when j flips a O, j

will take it upon itself as a “public citizen” to take a

“snapshot” look at the current coins of all its neighbors
(it queries each neighbor to find out the current value

of the neighboring coin, at the time when the query

reaches the neighbor). Based on coins in this snapshot,

j will freeze until the last neighbor i which had a 1

has entered the MIS and flipped a new coin (and the

snapshot is expired for j). If any neighbor j7ips a new

coin after the snapshot is taken which is a 1, j does not

freeze further for this new coin. When j is unfrozen

by its tardiest neighbor, j flips again.

The near equivelant rate, means that we will show

based on the snapshot freeze, while we will not be able

to insure that each neighbor flips once ito every one of

i’s flips, we will be able to insure that each neighbor

in some sense has only two chances to flip against each

one of i’s flips.2 Thus, we adjust the probability that a

node tries to enter the MIS down by a constant factor

from Luby’s algorithm.

4.2 The code

We start by describing the internal variables used by
the process.

d represents the degree of process i. It is updated when i
flips a coin. It is set to CCIif i enters the MIS.

Coin: the current value of i’s flipped coin.

Coin(j): records information about neighbor j’s coin. It
has three possible values, UNSET if ,process i’s coin
was just flipped and neighbor j’s coin is unknown; Oif
‘to the best of i’s knowledge”, (dJ < di and coin = 1)
or (j’s coin = O); and 1 if, to the best of i’s knowledge,

(dj ~ d, and j’s coin = 1) or (j’s coin = 1 and coin =
o).

Ikeze(j): when coin = O, this variable keeps track of
whether i froze its current coin for m~eighbor j, has
already frozen and then unfrozen its current coin for
neighbor j, or has not yet frozen for j. These notions
correspond to the values 1, 0, and UNMARKED re-
spectively.

Neighbors: set of adjacent vertices not known to be in
the MIS nor to have a neighbor in the MIS.

MIS-flag: flag that indicates i’s status in the MIS.

Update-flag(j): flag that indicates that j is no longer in
the protocol and should be removed from the neighbor
set of i.

All flags have initial value UNSET.

Below is a description of messages received by the pr~
teas.

WAKEUP, (N, v): message from the environment to be-
come active in the protocol.

2we say t~in ~ome ~en~e$~ because aa will be seen in the ZZIal-

ysis section, there is interaction between the random coirdlips

of the protocol and the link delay function, so that which two
flips me the two flips which count can be influenced by the ad-
versary; we show however, that the probability y of a neighbor

killing a process’s 1 will stilf only increase from the synchronous

protocol by a constant. See the analysis section for details.

217

(New,j): message from neighbor j saying than it is newly
activated.

(Query, F, d,): message from neighbor j indicating j’s
coin = F, j’s current degree, and also that this is
a query message, requesting the value of i’s coin.

(ACK,F, dj): message from neighbor j indicating j’s coin
= F, j’s current degree, and also that this ia an ack
message in response to a query.

(InMIS,j): message from j saying it is in the MIS.

(Remove,j): message from neighbor j saying that it has
a neighbor in the MIS and should be removed from
the set of active nodes.

The code for a process i is shown in below in figure 2.

4.3 Safety

Lemma 1 If i has MIS-.llag = 1, then for all neighbors

j of i, j has MIS-jlag = 0.

Proof. In the protocol, a process i will join the MIS

only if Vj such that dj ~ di, Coin(j) = O and it has

set Coin = 1. Assume, by contradiction, that two

neighbors i and j, both enter the MIS. Let winneri

be the last coin that i flipped before joining the MIS,

and let winnerj be the last coin that j flipped be-

fore joining the MIS. Then there must be some time

tiat which i flips the coin winneri and similarly d+

fine time tj. Notice that by definition of the coins
winner~ = winnerj = 1. Assume without 10SSof gen-
erality, that tiis before tj.Notice that winneri is the

flip on which i enters the MIS, by definition, and so i

doesn’t flip again, and so i doesn’t update its degree

d after time ti(except to maybe enter the MIS). Thus

until i enters the MIS, i hss d = di the value of its

degree at time ti,which is fixed. NOW detine ti+qto

be the time at which i’s query to find out the value j’s

current coin reaches j. There are several cases.

1. tj is before time i?i+~. Notice, as above, that j’s

degree becomes fixed at time tj,and then doesn’t

change. Denote its degree at time tj and follow-

ing by dj. At time ti+q, j sends a message to i

saying its coin is 1, and degree is dj. When i re-
ceives this message, i sets the flag Coin(j), and i

will not update its setting of this flag again, since
by assumption j doesn’t flip again. Thus, since

i enters the MIS, it must have set Coin(j) to O,

which implies that di > dj. But j must also query

i after time tj,and set the flag Coin(j) before it
can enter the MIS. But since ti was before tj, j
will learn that i flipped a 1, and i’s degree is di,

or that i is in the MIS, and its degree is co. In

either csse i’s degree is greater than j’s so j will

set its flag Coin(i) to 1. But this prevents j from

entering the MIS with coin winnerj.

2. tj is after time ti+q.Define tj+gto be the time at

which j’s query to find out the value i’s current

coin reaches i. Notice that both i’s degree and j‘s

degree are fixed after time tj: call their degrees at

this time di and dj. If i has already entered the

MIS by time tj+g,then i will have already sent

an InMIS message to j which will reach j before

it receives an ACK from i by the FIFO property
of the links, and so j will never enter the MIS.

Otherwise, if j queries with dj ~ di, since it is
also the case that j’s coin winnerj is 1, i resets

coin(j) to 1 (see protocol): j never flips again by

definition, so the flag coin(j) will prevent i from

entering the MIS. Otherwise, dj < di, and so j will

set coin(i) to 1 (and never reset it since i never

flips again) and this prevents j from entering the
MIS with coin winnerj. 0

5 Analysis of the algorithm

We now show, for the protocol of the previous section,

that a constant fraction of the processors expect either

enter the MIS or have some neighbor enter the MIS

within a constant times the length of the maximum

link delay to distance two of the process. We present

the analysis for the stable model (see section 2.3),

which means that we can measure performance afler

the active network has stabilized, so all process degrees

can assumed to be fixed. We sketch how to general-

ize this to a protocol for dining philosophers with a

infinite dynamic measure of complexity, at the end of

section 6.

Before delving into the analysis, to motivate the

reader to stick with us through a careful probabilistic

analysis, we wish to give some intuition of the sort of

interaction between coins and the link delay function

that can make the analysis difficult. Figure 3 gives an

example where the timing of i’s next coinflip can be

influenced by processor j in a negative way: if proces-

sor j flips a 1, then i reflips immediately, however if

processor j flips a O, the link delay function can force

j to flip again and have a new coin by the time i flips

again. Thus i can be more likely to flip again when a

neighbor is holding a 1 coin than a O coin, and since
this incresses the possibility that i’s 1 coin is killed

and i does not then enter the MIS, the reader should

be worried about flips and link delay interactions. In

Lemma 5.7 below, we bound the number of extra flips

per coinflip the situation in Figure 3 can cause. First

we prove some additional lemmas.

Lemma 5.1 (The Flip Again Lemma). Let wj be an

upper bound on the maximum link delay plus process

delay to distance 2 from j in the graph, Then j gets

218

—
Prngram RECEIVE(C):

C = Wakeup

/“ program on procese i “j

Effect : Neighbom c- N
d - INI
~o; Neighbom put in send-buffer(j)

o
Vj E ;eighbom

Coin(j) + UNSET
Fkeeze(j) + UNMARKED
put (Query, Coined) in send-buffer(j)

c ;fl~:w~)
Neigbbom - Neighbom + {j}
if MIS-flag = 1, put In-MIS in send-buffer(j)
if MIS-flag = O, put Remove in send-buffer(j)
if MIS-flag = UNSET, put (Query,Coin,d) in send-buffer(j)

C = Query(F, d,)
Effect : put (ACK,Coin,d) in send-buffer(j)

if Freeze(j) = 1,
then Freeze(j) -0

if dj ~ d and F = 1 and Coin = 1 and Coin(j) = O,
then Coin(j) -1

C = ACK(F, dj)
Effect: if Coin = 1

ifdj<dor F=O,
then Coin(j) t O
else Coin(j) - 1

if Vk Coin(k) = O,
then Ent@r-HIS
else if Vk Coin(k) # UNSET,

then Vk Freeze(k) -0
if Coin = O,

then Coin(j) .- F
if Coin(j) = 1,

then Freeze(j) t 1
else Freeze(j) * O

C = Remove(j)
Effect :

C =IIIIS(j)

FlipCoin
Precondition:
Effect :

SENDj (m)
Precondition:
Effect :

updatdlag(j) - 1

MIS-flag -0
Vk E Neighbom, put Remove in send-buffer(k)

Vk Freeze(k) = O
Vj s.t. upd&.e-flag(j) = 1, Neighbors t Neighbors - {j]
d = lNeighborsl
Coin = 1 with probability l/8d

= O otherwise
Vj G Neighbom

Coin(j) t UNSET
Freeae(j) - UNMARKED
put (Query, Coined) in send-buffer(j)

m E semd-buffer(j)
send-buffer(j) t send-buffer(j) - m

procedure Enter-HIS
MIS-flag + 1
d+w
Vj E Neighbom put InMIS in send-buffer(j)

Figure 2: MIS Algorithm

219

$ q’”
k El

(0) (*

121%$’
0ji
k

Figure 3: A pathological case. Assume all nodes have the
same degree. The link from i to k k slow. (a) i has flipped a O,
and needs to talk to all neighbors and hear back, in order to know
whether to flip again or freeze. i has already bean frozen by j’s 1,
and then unfrozen again, as j has heard from all j’s neighbors, and
been prevented from entering the MIS by 1. (b) i’s message still

has not reached k. k now flips again, and flips O. j now flips again,
and k will take his current coin value from j’s new coin. (c) If j

flips a 1, then k’s current coin will freeze for j at O. Thus i will

not freeze for k, i will flip a 1, and be killed by j. (d) If j flips O,

howaver, j will not freeze k, wh~h can then flip 1. i will now freeze

for k. Wkn k’s 1 is killed (not pictured) i will flip again, and j

will have a mcond chance to try to kill i’s coinflip, even though j

has already “lost” by flipping a O..

to jlip again (i.e. try to enter the MIS) in time at

most !hj, if neither j or any of its neighbors have yet

managed to enter the MIS.

Proof. Omitted. ❑

Definition 5.2 Suppose processor i flips a 1. Process

i then quem”es all neighbors to jind out their current

coins, at the time that the quey reaches them. Dejine

cj be this value of j‘s current coin as he reports it to
processor i and define raeztj be the value of j ‘S coin on

j‘s nezt j?ip.

Lemma 5.3 Suppose processor i flips 1. Then if Cj
and nextj are both O for all neighbors j of i such that

dj z d~, then i will enter the MIS in time 2wj.

Proof. Omitted. ❑

Definition 5.4 Dejine the function Ii(t) to be the

time it takes for i to flip again, if i flips a 1 at time t.

Proposition 5.5 ii(t) depends only on the delay
functions. •l

Proposition 5.6 The function l~(t) is a lower bound

on how soon i jlips again, if i j7ips a 1 at time t. 0

Lemma 5.7 Consider any possible ezecution of the

protocol, where at time to processor i jlips O. Con-

sider i‘s nezt /lip, and let cj be defined as above, in

relation to processor i‘s nezt jlip. Then the probability
that cj is O for all j such that dj ~ di is at least

n (1- +)’.
jldj~di

Thus the probability that cj and nextj are both O for

all j such that dj > di is at least

n (1- +)’.
jldj~d,

Proof. Fix a partial execution E to time to We give an

algorithmic definition for a set of executions E’, which

are a subset of the executions compatible with E. (We

remark that the construction of Et is needed for anal-

ysis only: it is defined in terms of the functions li(t)

which are defined in terms of the link delay functions.)

We then show that for executions in E’, cj is O for all

j such that dj ~ di. We then show that an execution

falls in the set E’ with probability at least ~j,~j~di (1 –

+)2.

Here’s how we define an execution in E’. At time to,

compute li (to). (This depends only on the delay func-

tions by Proposition 5.5 so is computable independent

of later coin tosses). We now simulate the protocol

from time to up to time li(to) with processes j flip-

ping coins as required as follows:

● For j such that j is not a neighbor of i, or a neigh-

bor j for which dj < di, we flip any new coin aa

before: 1 with probability l/8dj and O otherwise.

. For neighbors j such that dj ~ di, if j is to flip

a coin at time tk, we ask if lj(t~) > li(to). If

not, j just flips an ordinary coin as above. If SO,

however, j deterministically sets its coin at tk to

o.

Now consider the resulting execution to time l~(to).

The time when i flips again, and thus the time when i

learns cj occurs after li(to) by Proposition 5.6. Notice,

however, that this time is completely determined by the
delay function and coins already jlipp.d by time li(to)

(This is because i will freeze or not freeze based on

the values of neighbors coins, and it has heard back

from all neighbors by time Ii(to). Neighbors it freezes

for hold 1s, which never freeze in turn; thus if they do

not enter the MIS, they will flip again and unfreeze i

in time dependent only on the link delay functions).

Call tf” the time at which i learns the coin cj. (The

superscript E* is simply a reminder that this time does

depend on coins flipped before time li(to).)

Here is the rest of the simulation from time li(i?o)j

where processors j flip coins as follows:

●

●

For j such that j is not a neighbor of i, or a neigh-

bor j for which dj < di, we flip any new coin as

before: 1 with probability l/8dj and O otherwise.

For neighbors j such that dj ~ di, if j is to flip a

coin at time tk, we ask if it is the first time for j

that lj (tk) > t?”. If not, j just flips an ordinary

coin as above. If so, j deterministically sets its

coin at tk to 0.

This ends the definition of E’.

Claim 5.8 An execution will belong to the class E’

with probability at least ~~, >~, (1 – (1/8dj))2.

The first claim is true, because for each such j, we

are deterministically setting at most two coins, one

coin flipped before time li (to)and one coin flipped

after. We only set one coin after Ii(to) by definition,

we set the first coin such that lj (I!k) > tf”. Before

time li(to), we Set a coin O if lj(tk) > Ii(tO). We

claim that the next coin j flips must be flipped after

time li(to), since lJ (t k) is a lower bound on the time
j will flip again by Proposition 5.6.

Claim 5.9 In an execution dejined above, cj will be O

for all j with dj ~ di.

To see the second claim, we work backward. If the

coin cj was flipped at time tk after time Ii(to), then it

must be the case that lJ (tk) > tf”,otherwise j would

flip again before time tf” and a later coin would be cj.

Also cj must be the first coin for which lj (tk)> tf”,

because if there was an earlier coin flipped at time ty

for which lj (ty)> tf”, then that coin would still be

current, by Lemma 5.6. Thus we have set Cj = O. If

the coin cj was flipped before time li (to)but after time

to,then the coin that was current is the coin that was

current after time to,which we have set to O, by design.

Finally, if j does not flip a coin at all between times

toand tf” then cj is the coin current at time to. Can

this be a 1? No, because then j hss to flip again before

time tf” in any execution, because such a 1 would be

current at time li (to) and thus freeze i.

Finally, nedj is the next coin processor j flips after

cj, an independent cointoss which is O with probability

(1 – l/8dj) for each j. ❑

Now an analysis similar to [10], using Lemma 5.7
that for a constant fraction of the nodes i, we expect

that some neighbor k of i flips 01, while all same or

higher degree neighbors j of k flip Cj, and ~e~~j all

O. (Details omitted for lack of space, they appear in

Authors Response time Waii~J

[121 o(c~) 0(6) 1
‘[5j O(nj

‘3
O(nj

[17] 0(6-3) O(logb)

[3] 0(62) 0(6)

This paper 0(6) 2

Lower bound Q(6) 1

Figure 4: Our Resource allocation algorithm versus existing ones;

c is the number of colors used to color the network graph, n is the

number of nodes in the netwc+k, and 6 is the number of conflicting

jobs.

the full paper). Then Lemma 5.3 guarantees that k

will enter the MIS at time t+ tij entirsly independent

of van”ation in link delays. Lemma 5.1 showed that

a node k will always reflip in time 5wj, again entirely

independent of variation in link delays. Thus inde-

pendent of the link delay function, a constant fraction

of the nodes will enter the MIS in time 7W (5w time

to re-flip, and then a delay of 2W to get ACKS from

all neighbors.) Notice also, from Lemmas 5.1 and 5.3,

that when a node j will enter the MIS is only depen-
dent on wj, its local link and process delay to distance

2 in the graph. Normalizing maximum link and pro-

cess delays to lie between O and 1, we thus have proved

the following theorem.

Theorem 5.10 The asynchronous protocol is 2-wait-

free, and produces an MIS in O(log n) expected time.

•l

We remark the above protocol uses only constant

space per edge (each process only stores a (O, 1) value

for j’s coin, and a 3-valued (0,1, or UNSET) special

flag called Freeze, for each neighbor j. However, the

above protocol involves sending messages of size up to

log n, since nodes communicate their current degrees

in the communication graph. To reduce this, instead,

each node could round its degree up to the next largest

power of two, and try to enter the MIS with probability

inversely proportional to the same constant times the

rounded value, rather than its precise degree. This will

only increase the expected running time by a constant;

and the rounded degrees can be communicated with

messages of size log log n.

6 Dining philosophers

6.1 History and definitions

The dining philosophers problem, and its extensions,

model resource allocation in a distributed system. We

221

consider the generalized dining philosophers problem,

as modeled in [3], first in the stable model defined in
section 2.3, and then extend this below. The dining

philosophers problem, studied by Dijkatra and others

[7, 12, 16,5, 11,3, 6], models a set of reaourcea (such

as printers, disk drives) which can only be used by one

competing process at a time. The situation can be

represented by a graph on the set of processors called

the conjlict graph, with an edge between two nodes if

they share some resource. In this formulation, which

is the standard one, we are assuming that the conji:ct

gmph is a subgraph of the communication graph. The

intuition behind the notion of a conflict gmph is that

if two jobs are local to the same disk, for example,

then they are also local to each other, so they can

communicate. Each processor may handle a sequence

of jobs, but tries to schedule only one job at a time;

each job has a resource requirement which is a subset

of the resources accessible to that processor. For a job

to be executed, all of the required resources must be

available for exclusive use by its processor.

We are interested in bounding the response time of a

job. The response time is the time between when a job

is assigned to a processor, and when it is executed. We

will modify the MIS protocol of the previous sections

to construct a dining philosophers schedule with opti-

mal expected response time of 0(8j) for job j, where fij

is the number of jobs that compete with j. This meets

the lower bound, where the best known previous alg~

rithms had response times 0(62). (The best known de-

terministic algorithms for dining philosophers are still

[3] with a response time of 0(62 log n) or [6] with a re-

sponse time of 0(62) (special hardware assumptions)).

It is also worth mentioning a recent paper of Bar-Ilan

and Peleg [4] who have a variety of algorithms, includ-

ing optimal algorithms for dining philosophers in the

synchronotis model.

We point out again that all the above bounds are
stated under the normalizing assumption that job ex-

ecution time, and the maximum link delay, or time it
takes for a message sent by one processor to be received

by its neighbor, are both less than 1 unit of time. If

p is an upper bound on the maximum length of time

it takes a job to complete execution and v is an upper

bound on the maximum link delay, then our protocol

has more precisely expected response time less than

O(Jjp + ~j~), for job j. (And the lower bound is sim-
ilarly $2(6j (p + v))). In fact, we get the 2-wait-free

property and v and p can be replaced by the local

delays VI and pl.

6.2 The reduction from asynchronous

MIS

Using our asynchronous protocol, we get the optimal

expected response time for dining philosophers. The

relation betwmn dining philosophers and MIS was no-

ticed earlier by [4]. Our protocol is quite simple and

worka as follows. Each process with no neighbor in

the MIS and with an unscheduled job, runs the MIS

protocol of Section 4. When a process enters the MIS,

it first sets its ID to 00, so that none of its neighbors

can enter the MIS while its job is running. The job is

then scheduled. When the job is finished executing, it

senda a done message to all its neighbors, which then

remove that job from their neighbor set.

We now analyze our algorithm. We note that safety

and follows from the corresponding proof of MIS; we

now prove that a job j will execute in expected 0(6j)

time.

Theorem 6.1 Let v(k) be an upper bound on the link

delay of the neighbors of job k, and let ~j be the max.

over all neighbors k of job j of v(k). Let pj be an

upper bound on the amount of time it takes to execute

any of j‘s neighboring jobs. Then job j will execute in

0(6j (vj + pj)) time.

Proof: Let llo denote the event in Lemma 5.7, that is,

j flips 01, and Ci, and nezt~ are both O for all neighbors

i of j such that di z dj then,

If E. occurs, then by Lemma 5.3 j will enter the MIS

in 2(Pj + Vj) time. Thus with normalized link de-

lays j gets scheduled in expected 326j time, which is

0(6j). The link delays, by Lemmas 5.1 and 5.3, are
bounded by vj; and the execution delay of j’s neigh-

bors is bounded by definition by pj; yielding the result.
❑

We remark that the dependence on local link delays
and job execution times in Theorem 6.1 shows that our

dining philosophers algorithm is 2-wait-free.

6.3 The infinite model

We now discuss extending this protocol to the dynamic

non-stable case considered by [3] (see also section 2.3),

where new jobs can be added online to the neighbor

222

set of old jobs throughout the protocol, and we re

quire that a job j is scheduled in time O(6j), where

6j is the maximum number of jobs that conflict with j

at any point in time. Because of space requirements,

we will only be able to give a sketch of the modifica-

tions. Safety is proved in a fully dynamic model for

the stable case already, so there is nothing to be ar-

gued in terms of correctness. We need to show that a

job still expects to be scheduled in time 0(6). If we

try to follow the same analysis as for the stable case,

Lemma 5.1, and Propositions 5.5 and 5.6 go through

unchanged. Lemma 5.3 is replaced by a more compli-

cated statement where up to two coins per neighbor,

both of which are flipped when the neighbor’s degree

is greater than processor i, are set to O implies that i

will enter the MIS. However, when we try to present

a subset of legal executions which will set the proper

coins to O, to mimic the argument in Lemma 5.7, we

run into trouble because since at to,the time at which

processor i flips again can be influenced by how we set

subsequent coins, we do not know processor i’s degree

when i flips again!

We fix this by modifying the protocol: when new

processes first come in, a non-new process i’s degree

is not updated to account for them on i’s next coin

flip, but rather on i’s following coinflip. Unitl all new

processes non-new neighbors have flipped again twice,

new proc- have their coins set deterministically to

O. We make three remarks. First, this modification

does not influence safety (as new processes all hold O

coins), Second, i’s degree is always set less than or

equal to its actual degree in the conflict graph, but

even when not yet updated to reflect new neighbors, it

is set greater than or equal to the number of neighbors

that can compete with ion i’s current coin flip. Third,

process i knows what its degree will be at its next coin

flip when it flips its current coin, so we can mimic the

argument in Lemma 5.7 (see the full version of the

paper). However, note that since a new process can

have a non-new neighbor frozen at O, this means the

delay for a new processor to initially begin competing

can depend up to delays up to distance 3 in the graph.

Thus the protocol is now 3-wait-free for new jobs to

enter the protocol, and 2-wait-free thereafter.

Acknowledgement

Many thanks to Nancy Lynch for most helpful com-

ments and suggestions, along with careful reading of

preliminary drafts, and in particular, for her help in

nailing down a precise synchronous model and a for-

mal framework for probabilistic

Mike Saks for helpful comments.

analysis. Thanks to

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

B. Awerbuch. Complexity of network synchronization.
J. of the ACM, 32(4):804–823, Oct. 1985.

B. Awerbuch. Complexity of network synchronization.
J. of the ACM, 32(4):804-823, Oct. 1!185.

B. Awerbuch and M. Saks. A dinhg philosophers al-
gorithm with polynomial response time. In Proc. 91st
IEEE S~mp. on Found. of Comp. Science, 1990.

J. Bar-Ilan and D. Peleg. Distributed raource allo-

cation algorithms. In 6th international Workshop on

Distributed Algorithms, Nov. 1992.

K. Chandy and J. Misra. The drinking phdosophers
problem. ACM TOPLAS, 6(4):632-646, October 1984.

M. Ghoy and A. Singh. Efficient fault tolerant algo-

rithms for resource allocation in distributed systems.

In Proc. 24th ACM Symp. on Theor~/ of Computing,

1992. to appear.

E. Dijkstra. Hierarchical ordering of sequential pro-

cesses. A CTA ln~ormatica, pages 115--138, 1971.

R. G. Gallager, P. A. Humblet, and P. M. Spira. A
distributed algorithm for minimum-weight spanning
trees. ACM Trans. on Programming Lang. and Syst.,

5(1):66-77, Jan. 1983.

R. M. Karp and A. Wigderson. A fast parallel alg~

rithm for the maximal independent set problem. J. oj

the ACM, 32(4):762-773, Oct. 1985.

M. Luby. A simple parallel algorithm for the maxi-

mal independent set problem. SIAM J. on Comput.,

15(4):1036-1053, Nov. 1986.

J. Lundelius and N. Lynch. Synthesis a,f efficient drink-

ing philosophers algorithms. unpublished manuscript,

Jan. 1988.

N. Lynch. Upper bounds for static resource allocation

in a distributed system. Journal Of Computation And

Systems Sciences, 23(2):254-278, October 1981.

N. Lynch and H. Attiya. Using ma]ppings to prove

timing properties. Distributed Computing, 6(2), 1992.

N. Lynch and R. Segala. Notes on prc)bababfistic au-

tomat a. Unpublished manuscript., 1993.

N. A. Lynch and M. R, Tut tie. An introduction to in-

put/output automata. CWI Quarterly, 2(3):219-246,

1989.

M. Rabin and D. Lehmann. On the advantages of free

choice: a symmetric and fully distributed solution to

the dining philosophers problem. In Proceedings of 8tlJ

POPL, pages 133-138, 1981.

E. Styer and G. Peterson. Improved algorithms for dis-

tributed resource allocation. In Proe. 7th ACM SVmp.
on Principles of Distrib. Computing, pages 105–116.

ACM SIGACT and SIGOPS, ACM, 1.988.

.

223

