
Reliable Message Delivery and Conditionally-Fast Transactions are not
Possible without Accurate Clocks

Mark A. Smith *

AT&T Labs Research
180 Park Ave. Florham Park, NJ 07932

mass 6 research .att .com

Abstract

In this paper we examine reliable transport level pro-
tocols for efficient transactions across a network. A
typical transaction is a request from a client and a re-
sponse from a server. The canonical example being re-
mote procedure call. Transport level protocols such as
TCP [14] and IS0 TP-4 [9] work well for data stream-
ing, but are inefficient for transactions. However, sev-
eral protocols [19, 11, 171 have been designed to meet
both needs, including a proposed extension of TCP call
T/TCP [4, 51. The goal of T/TCP is not to perform
efficient transactions all the time, but only under cer-
tain conditions. However, in examining T/TCP [18] we
observed that in certain situations the protocol may de-
liver the same message twice, even when efficient trans-
actions are not required. This observation lead us to
consider whether any protocol can deliver streams of
data reliablely and still have fast transactions under
the same conditions required by T/TCP. We present
a formal definition of what it means to provide both
services under the conditions proposed by the designers
of T/TCP, and prove that without “accurate” clocks, it
is impossible for any protocol to solve this problem. We
also present a precise formal model that we use to de-
scribe the system and present the proofs. The model is
a novel combination of a model with liveness properties
and a model that allows local clocks.

1 Introduction

TCP/IP transport level protocols are responsible for re-
liable delivery of data between users that are typically
application programs such as ftp, telnet, or email. On
the Internet packets sent from one user application to
another may get duplicated, lost, or arrive out of or-
der. Reliable transport level protocols like TCP [14]
and IS0 TP-4 [9] are designed to ensure that the appli-

‘Much of this work was done while the author was at the
M.I.T. Lab for Computer Saence, and was supported by ARPA
contract F19628.95-C-0118.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC 98 Puerto vallarta Mexico
Copfight ACM 1998 O-89791-977-7/98/ 6...$5.00

cation programs receive messages’ without duplication,
without loss, and in the correct order. While these pro-
tocols work well for data streaming, they do not work
well for transactions because they use a connection man-
agement mechanism that forces two round trips across
the network for a client application to send a request
and get a response from a server application. Ideally
the request and response should be done in one round
trip across the network. In order to have transactions in
one round-trip across the network, a one way trip across
the network must be sufficient for the server to deliver
a message from the client. TCP and IS0 TP-4 rely on
unique identifiers (UID’s) and a three-way handshake
protocol to establish connection and ensure reliable mes-
sage delivery. That is, to send a message the client first
generates a UID z which it sends to the server; when
the server receives this UID, it generates a UID y and
sends back (z, y) to the client; the client then sends the
request message together with y. In this way the server
knows the message is not a duplicate. The server can
then send the response with either z or y.

In order to ensure reliable delivery, hosts maintain
some state information for each incarnation of a connec-
tion. However, in typical network situations, client and
server hosts may have many different connections in par-
allel. Additionally, there may be different incarnations
of the same connection, as the connection is opened
closed and then opened again. Therefore, because of
the number of connections a host may be involved with,
this state information cannot be maintained forever.
Therefore, hosts will periodically quiesce, that is, delete
state information associated with a connection. In TCP
whenever a connection is closed the state information
associated with that connection is deleted. However,
if the server does not immediately quiesce when a con-
nection closes then timer-based mechanisms can be used
for reliable transport level protocols. For example, Wat-
son’s Delta-t protocol [19] relies on clocks that run at the
rate of real time and exploits the knowledge of the max-
imum packet lifetime (MPL) to achieve transactions in
one round trip across the network. For the Delta-t pro-
tocol, quiesce time is based on the MPL. If the client and
server hosts are assumed to have approximately syn-
chronized clocks, then the protocol by Liskov, Shrira,
and Wroclawski [ll] also only requires one round trip

‘We use the term “message” or “data” for user-meaningful
data and the term “packet” to denote ob.jects sent over the chan-
nels by a protocol

163

across the network for transactions, and quiesce time
depends on the message delivery time.

Braden and Clark [4, 51 have also designed a pro-
tocol to achieve efficient transactions and work well for
data streaming. Their protocol does not rely on ap-
proximately synchronized clocks or strict enforcement
of MPL. Their approach is based on the idea that some
information related to incarnations can be stored indefi-
nitely and efficiently in caches when a connection closes,
and that the protocol while ensuring efficient transac-
tions most of the time, is allowed to be inefficient in
some situations - typically after crashes. Their proto-
col is an extension of TCP, and because it is designed to
perform transactions efficiently, it is called T/TCP. In
most circumstances T/TCP can complete a transaction
in one round trip across the network. However, it reverts
to two round trips if the cached state is inappropriate.
In [17] Shankar and Lee design a class of “caching” pro-
tocols that are similar to T/TCP. However, the class
of protocols they design make explicit use of MPL and
other timing information. In studying T/TCP [18] we
noticed that under certain circumstance T/TCP may
deliver the same message twice if timing information is
not used. This observation lead us to consider whether
it is possible for any protocol to perform transactions ef-
ficiently under the same circumstances in which T/TCP
is required to perform efficient transactions and still de-
liver messages reliablely.

1.1 Our work

In this paper we present a formal definition of the cor-
rectness requirements for protocols that are allowed to
keep data between incarnations indefinitely and allow
inefficient transactions sometimes, but must always de-
liver data reliably. Our formal definition of the problem
is based on the requirements for T/TCP. Let d be the
maximum time it takes for a packet to traverse the net-
work in an execution of the system. We prove that in
a system where the client and the server have UID’s
and local clocks, that even if we require fast delivery
only when the processes have appropriate state infor-
mation, the clocks are accurate, and packets are not
lost, then any protocol that takes time less than 2d for
the server to deliver a message from the client may not
deliver data reliably if the local clocks may sometimes
run at arbitrary rates. If there is no maximum packet
lifetime, then we prove that if the client and server have
clocks that run at the rate of real time, but whose val-
ues maybe shifted by some arbitrary amount, again it
is impossible to solve the problem without using a de-
livery time of at least 2d. The 2d bound means that it
is impossible for any protocol to complete transactions
in one round trip across the network and still deliver
messages reliably when the above mentioned timing un-
certainties exist, even when fast transactions are only
required under somewhat ideal conditions.

1.2 Related work

In addition to the practical work mentioned above,
there has also been significant theoretical work in the
study of reliable message delivery protocols. The ear-
lier work in the area considered just the possibility of

reliable message delivery and mostly in a purely asyn-
chronous setting. This is the case for the impossibility
results of Afek et al. [l] and Fekete, Lynch, Mansour,
and Spinelli [6]. In [a], Attiya, Dolev, and Welch at-
tain further results for the asynchronous model based
on the minimum amount of information that must be
maintained between incarnations of a connection in the
presence of crashes. None of these papers examines the
amount of time or the number of trips across the net-
work required to reliably deliver messages.

The closest results to the work presented in this pa-
per are the papers by Kleinberg, Attiya, and Lynch [lo]
and by Attiya and Rapport [3]. In [lo] several impos-
sibility results are obtained for connection management
for various timing and failure assumptions. Addition-
ally, upper and lower bounds are proved for trade-offs
between message delivery and quiesce times for connec-
tion management protocols. A recent paper by Mavron-
icoles and Papadakis [13] extends the results of [lo] by
improving the time bounds in some of the trade-offs.
Attiya and Rappoport [3] prove that in the absence of
crashes, in an asynchronous setting where the client and
server both have an infinite set of UID’s and must qui-
esce, a three-way handshake is necessary to guarantee
reliable message delivery. This result means that in such
a setting it is not possible to always have transactions
in one round across the network and still have reliable
message delivery. They also show that if the server re-
tains information between incarnations and there are no
crashes, or if the MPL is known then fast transactions
are possible.

The work presented in this paper differs form the re-
sults of [lo] and [3] and other works in the literature in
that we consider a more restricted problem. The prob-
lem is different because we do not require that trans-
actions are fast at all times. We also treat packet loss
differently. For example, in [lo] the results for the model
where packets may get lost are based the probability dis-
tribution of executions where packets are lost. In our
work we take a simpler approach to packet loss. Our
approach is to require fast transactions only if no pack-
ets are lost, and just eventual delivery otherwise. Our
model of the client and server processes is also different
than the models in [lo] and [3] in that we allow either
or both hosts to initiate a connection. In the models
of [lo] and [3] only the client can initiate a connection.
While the problem we define is different from typical
problem descriptions in the theoretical literature, it is
not a contrived definition as it is based on the require-
ments for T/TCP.

1.3 Organization of paper

The rest of the paper is organized as follows. In Sec-
tion 2 we present the formal model we use to describe
clients, servers, channels and protocols. Section 2 also
contains our formal definition of the problem. We state
and prove the impossibility results in Section 3, and we
make some concluding remarks in Section 4.

2 Formal models

In this section we present a brief overview of the for-
mal model used in this paper. For full details of the

164

model the reader is referred to [18]. The basic underly-
ing model is the general timed automaton (GTA) model
of Lynch [12]. A GTA A consists of four components;
a set,, states(A), of states; a nonempty set, start(A) C
states(A), of start states; a set, acts(A), of actions; and
a set., steps(A) c states(A) x acts(A) x states(A), of
steps. The set acts(A) can be partitioned into four dis-
joint sets of input actions, output actions, internal ac-
tions, and time-passage actions. Time-passage actions
are of the form v(t), t E R+, where R+ is the set of
positive reals. Parallel composition in this model uses
a synchronization style where automata synchronize on
their common actions and evolve independently on the
others.

A timed execution fragment of a GTA A is a finite
or infinite alternating sequence a = so,al, sl,az, . . ,
where, the s’s are states of A and the a’s are actions
of A, and (sl, ol+l, s,+l) is a step of A for every i. The
sequence must begin with a state, and if it is finite must
end with a state. For a timed execution fragment cy,
define ltime(cr), the last time of (Y, to be the supremum
of the sum of all the time passage actions in cr. A timed
execution fragment (Y is defined to be finite if it is a
finite sequence and Ztime(cu) is finite. It is defined to be
admissible if Itime = co.

Let cx be a timed execution fragment of a timed au-
tomaton that is the parallel composition of timed au-
tomata, and let A be one of the component timed au-
tomata. We define the projection of a on A to be the
sequence obtained by projecting all states of the com-
posed system onto those of A and removing actions not
belonging to A. We use the notation CYIA for the re-
sult of this operation. Informally, cuJA is automaton
A’s view of timed execution fragment LY. If crlA differs
from &IA only because of the splitting and combing
of time-passage actions, then these are essentially the
same views, and are said to be time-passage equivalent.

2.1 The clock GTA model

In the system we want to model, the client and server
have access to local clocks, but are not able to use real
time. However, a standard GTA automaton has ac-
cess to real time. Thus, to get the “local clock” prop-
erty, we use the clock general timed automaton (CGTA)
model of De Prisco [15] which is a special case of the
GTA model. A CGTA, A, is a GTA with a special vari-
able clockA that has type R>’ and is the local time of
that automaton. The local time may or may not be the
same as real time. A CGTA A has the following three
axioms: (1) clockA changes only with time passage ac-
tions, (2) ClockA is monotonically non-decreasing, and
(3) if (s,v(t), 8’) is a step then V t' > 0, (s, v(t'), s’) is
also a step. Since clockA is supposed to represent, the
local time of a process, real time should not affect the
actions of the process in any manner. This property
is captured by the third axiom. We also refer to this
property as real time independence.

We introduce clock junction3 to specify the values
that ClockA takes on for a timed execution fragment for
a given a CGTA A. These functions take real time as
input and return values for the clockA variable of A. A
clock function cf : R2’ + R must be monotonically
non-decreasing and it must be unbounded. Let A,f be
the CGTA we get by applying the clock function cf

to A.

2.2 Liveness

The general timed automaton model is useful for prov-
ing safety properties and some liveness properties. How-
ever, for the impossibility results we prove, we need
more general liveness properties than can be expressed
by the GTA model. In particular, we want the automa-
ton to not block time. To get this property we use a
model defined by Segala et al. in [16]. We call it the
live GTA model because its first component is a GTA.
The second component of the model is a liveness condi-
tion. A liveness condition L for a GTA A is a subset of
the timed execution fragments of A such that any finite
timed execution of A has an extension in L. Thus, a
live GTA is a pair (A, L) where A is a GTA and L is a
liveness condition. For each live GTA we describe later
in this work, the liveness condition is equal to the set of
admissible timed executions of the GTA. Thus, we do
not allow protocols that solve the problem by blocking
time.

To get the liveness property we want and local clocks
in the model, we combine the CGTA with the liveness
property from the live GTA model to get the live CGTA
model. For the proofs later in this work, we need a live-
ness property that relates admissible timed executions
of live GTA to clock functions. Thus, our definition for
a live CGTA is the following:

Definition 1 (Live CGTA)
A live CGTA is a pair (A, L) such that for every clock
function cf, (A,!, L) is a live GTA. 0

2.3 Channels and client/server processes

We model the client and server as live CGTA and the
channels as live GTA. When we describe a particular
execution of the system, we apply clock functions to the
CGTA to get values for clock variables. The parallel
composition of the client,, channels, and server forms
the system. Because parallel composition of live GTA
is closed [16], the resulting composed system is also a
live GTA.

The communication channels have the following
properties: packets placed in a channel are delivered
in FIFO order; packets are not duplicated; and if in-
finitely many copies of a packet p get sent on a channel,
then infinitely many copies of p are received. The last
property is the strong loss limitation (SLL) property
of channels defined by Lynch in [12]. If the channels
have a maximum packet lifetime, /.A, we refer to them
as p-SLL-FIFO channels, otherwise we refer to them as
SLL-FIFO channels. The channels we describe here are
more reliable than the typical representation of unre-
liable network channels in that they are FIFO and do
not duplicate packets. Thus, our results are technically
stronger than results that require non-FIFO channels
that may duplicate messages.

The client and server processes are modeled by live
CGTA (C, ~5) and (S, L’) respectively, where L is the set
of admissible timed executions of C and L’ is the set of
admissible timed executions of S. The client and server
each has a set of UID’s. We model the UID’s by aug-
menting the state of C and the state of S with the addi-

165

tional components Zc and Is respectively. These com-
ponents are infinite sets of abstract identifiers. Since
only the internal component of the states of a process
is reset after it crashes, the sets of UID’s are not af-
fected by crashes. The UID’s can be copied and in-
cluded in packets. However, each process can only per-
form the following operations on its own set: generate0
which nondeterministically returns a new UID from the
host’s set of UID’s and removes that id from the set,
and same(x, y) which returns true if and only if 5 = y,
where z and y are UID’s, and false otherwise.

In an admissible timed execution where clock values
are determined by clock functions, after a crash there
is an eventual recovery that returns the crashed host to
an initial state. We assume that local clocks are not
affected by crashes. Since we are concerned only with
the delivery of messages by the server, and for our proofs
we need to allow crashes only at the server, we use the
following user interface actions: send(m) is the input
action at the client to send a message m, deliver(m) is
the output action at the server that delivers m, crash is
the input action that signals a crash at the server, and
recover is the output action that indicates the server has
recovered from a crash. Additionally, both client and
server can place packets on and receive packets from
the channels.

2.4 Formal definition of the problem

We now present a formal abstract definition of the prob-
lem that T/TCP was designed to solve. We call it
the conditionally-fast reliable message delivery problem.
Recall that T/TCP is only expected to have fast trans-
actions if the client and server have sufficient state in-
formation. Otherwise, the protocol is just required to
deliver messages reliably. In T/TCP, if the server suc-
cessfully delivers a message, and there has not been a
crash since the delivery of that message, then there is
enough state information to perform subsequent trans-
actions in one round trip. Thus, in our formal definition
we use the successful delivery of a message as the user
visible indication of sufficient state information for fast
transactions. Let d be the maximum packet delay on
the channels. We define the delivery of a message to be
fast if the server delivers the message in time strictly
less than 2d from the time the client receives the input
to send the message. For fast transactions, a delivery
time of less than or equal to d is actually needed. How-
ever, for our proof we only need fast to be less than 2d,
which makes our results technically stronger.

Definition 2 (The Conditionally-fast reliable
message delivery problem)
Reliable delivery. Messages are always delivered at
most once and in the right order. That is, for every ex-
ecution there exists a function cause that maps deliver
actions to preceding send actions such that for every
deliver action rr, x and cause(n) have the same message
argument; cause is one-to-on; and for any two deliver
events ~1 and 7r2, if ?ri precedes 1~2, then cause(rrr) pre-
cedes cause(r2).
Eventual delivery. In an admissible timed execution
where clock values are determined by clock functions the
following two conditions hold. If there are no crashes
then all messages are delivered, and if there are finitely

many crashes, messages sent after the last crash action
and the subsequent recover action are eventually deliv-
ered.
Conditionally-fast delivery. For any admissible
timed execution in which there is a deliver(m’) action
(for any message m’) and the client subsequently re-
ceives a send(m) input, if the following conditions hold:

the clocks of the client and server always run at
the rate of real time;

both sides are recovered at the time of the
deliuer(m’) action, and there are no crash or re-
cover events after the send(m) input;

any packet sent by the client or server after the
client receives the send(m) action from the user
takes time at most d to arrive at its destination;

then the server performs deliver(m) in time strictly less
than 2d after the client receives the send(m) input. Cl

3 Impossibility results

3.1 Maximum packet lifetime exists

The first result is for the case where there is a maximum
packet lifetime, /.A. We get an impossibility result for this
situation if the clocks of the client an the server may run
at arbitrary rates.

Theorem 1 No system consisting of p-SLL-FIFO
channels and client/server processes can solve the
conditionally-fast reliable message delivery problem.

Proof: Our proof strategy is to construct executions
that behave as required by the problem definition, and
then show that we can construct another execution that
is a sort of combination of the previous executions, but
where the new execution has incorrect behavior.

We start by assuming we have a protocol that solves
the conditionally-fast reliable message delivery problem,
and show that this assumption leads to a contradiction.
Throughout the proof we mention the real time at which
different events occur even though the client and server
do not have access to real time. The local clocks are
clockc and clocks for the client and server respectively.
In an execution, the values for these clocks are deter-
mined by the clock functions we describe. In all the
executions we construct clockc is equal to real time;
that is, the clock function of the client is the identity
function for all executions.

The first execution we construct, oi, is shown in Fig-
ure 1. It is an admissible timed execution as are all the
executions we construct for this proof. In this execu-
tion, clocks is also equal to real time. Since both the
client and server are recovered at time 0, cyi is an admis-
sible timed execution, and there are no crash or recover
actions after the send(m’) input, the eventual delivery
property results in the server action deliver(m’). Let
clocks = p, which is also real time p, be the time of
this action. Only the packets required for the delivery
of m’ are received up to time p. Execution cri continues
as follows. At real time p + 26, where E is an arbitrary
constant greater than 0, the client receives a send(m)
input and all packets sent by both the client and server

166

client server client server

Figure 1: Execution cy1 is on the left and execution cr2 is on the right. The numbers outside the time lines represent real time,
the dashed lines represent packets, and the “. . . ” between packets represents a finite number (whatever the protocol needs) of
packets in both directions. The numbers on the dashed lines represent the time it takes the packets to traverse the channel.
Execution al is the same as 012 except that additional packets are dropped from the channels in 02.

after this input action take time d to arrive. Because
the value p+2t appears in several subsequent executions
we construct, to simplify the notation we let r = p+ 2.5.
Since we assume the protocol satisfies the conditionally-
fast delivery property, at some real time t < r + 2d the
server delivers the message m. For execution cyl, let UT
and U: be the set of UID’s used by the client and the
server respectively.

Now consider the execution CYZ, shown in Figure 1.
This execution is exactly the same as execution (~1 ex-
cept that all the packets sent by the server after the
send(m) event get dropped by the channel, and all pack-
ets sent by the client at or after time r + d also get
dropped from the channel. However, from time 0 up to
and including time t, r3pl.S is time passage equivalent to
culls. Thus, at time t in execution CYZ the server can
deliver m. The bound of less than 2d on delivery time
is important here because it forces the server to deliver
the message even though the client has not received any
packets from the server since the send(m) event.

The next execution cr3 is shown in Figure 2. Let U,”
be the set of UID’s used by the client, and let Uz be
the set used by the server. For parts of this execution
clocks runs at the rate of real time and for other parts
it runs faster than the rate of real time. We define the
clock function for the server by giving the rate of clocks
relative to real time for different real time intervals. For
the real time interval [O,p], clocks runs at the rate of
real time and looks like execution CXZ, except for the
fact that the UID’s used may be different. However,
because the only two operations that can be performed
on UID’s are generate0 and same, if in execution 02
a host receives a packet with UID u and performs the
operation same(u,v) for some UID v, and if at the same
time in execution ~3, the same host receives a packet
with UID x and performs the operation same(x,y) for

some UID f, then same(u,u) = same(x, y). Thus, the
fact that U, and Up are used in execution cr3 does not
affect the behavior of cy3 relative to (~2 up to time p.
Therefore, in execution (~3, at time p the server can
perform the deliuer(m’) action.

Throughout the rest of this proof we compare exe-
cutions where packets are sent and received at the same
local clock time, but where the packets may have dif-
ferent sets of UID’s. The argument just presented can
be applied to all these comparisons to show that the
use of different sets of UID’s cannot cause the client or
server to behave differently in our model under these
circumstances.

After the deliver(m’) action and up to real time p+e,
that is, for the interval (p,p + E], clocks runs at (2~ +

--- ---

Time ---
. . .

Figure 2: Execution cys. Values of clocks are shown under
the corresponding real time values.

167

Time

deliver(m) ,, I---- clock, = t’+d

--- --
---2 .- --__ --__ --3-

---_ --- ----
--- _- r + 2d

Figure 3: Execution ad is on the left and execution ~15 is on the right. Execution ~14 is an extension of as to include some
additional sending and receiving of packets. It also includes an additional send action and the subsequent delivery. Execution
ag demonstrates how the reliable delivery property can be violated. It combines parts of executions 02 and 014.

2d)/c times the rate of real time, and from time p + c

through the rest of the execution, that is, the interval
(p + e, co), clocks runs at the rate of real time again.
Now let the server receive a crash input at real time p+~.

Because of the rate of clocks for the interval (p, p+~], at
real time p + L, clocks = p + 2~ + 2d = r + 2d. Since (~3
is an admissible timed execution and clockc and clocks
are determined by clock functions, the server eventually
recovers. The time of recovery is determined by the
protocol, but it must happen after the crash event. Let
k be the clocks time between crash and recovery. Since
clocks is now running at the rate of real time, k is also
the difference in real time between the crash input and
the recover output. Thus, the recovery happens when
clocks = r + 2d + k, which is real time p + e + k.

The next execution, (~4, shown in Figure 3, starts
out like execution CYQ except the client and server use
the sets of UID’s U,” and Vi respectively, and the clock
function of the server is different from the clock function
in execution (~3. The clock functions are the same for
the real time interval [O,p + e). However, for the real
time interval (p + e,p + 2~1, clocks runs at k/e times
the rate of real time. Therefore, in execution a4 when
clocks = r + 2d + k it is real time r. Because of the real
time independence property, we know that when clocks
= r + 2d + k in this execution, the server can perform
the recover action. After the recover action through real
time r+2d+k, that is, the real time interval (r, r+2d+k],
clocks runs at d/(2d + k) times the rate of real time.
Therefore, at real time r + 2d + k, clocks = r + 3d + k.

After that time through the rest of the execution, that
is, the real time interval (r + 2d + k, co), clocks runs
at the rate of real time. After the recover event at the
server, the client gets the send(m) input at real time
r at which time clocks = r + 2d + k. However, all of
the packets that both the client and server send from
real time r up to, but not including real time r + 2d + k
(clocks = r $ 3d + k) are dropped from the channels.
All packets sent by the client and server starting at real
time r +2d+ k do not get dropped from the channels and
take time 0 and d to arrive respectively. Execution (~4
is an admissible timed execution, clockc and clocks are
determined by clock functions, and m is sent after the
last crash and recover actions. Therefore, since the pro-
tocol satisfies the eventual delivery, property the server
must eventually perform the deliver(m) action. Let real
time t’ and clocks = t’ + d be the time of this event.

Finally, we construct an execution 05 where the
server delivers the same message twice. This execu-
tion is shown in Figure 3. In the execution, clocks runs
at the rate of real time for the whole execution. The
client uses the set of UID’s U,” and the server uses the
set Uz. On the client side, except for the use of a dif-
ferent set of UID’s, execution 05 is exactly the same
as execution CY~, so send(m’) happens at time 0, and
send(m) happens at real time r. However, in execution
cy5 the packets the client sends after the send(m) input
and before time r + d are not dropped from the channel.
On the server side, except for the use of a different set
of UID’s, from time 0 to time t execution CYC, looks the

168

same as execution oz. That is, modulo the UID’s, for
the time interval [0, t] execution cr5lS is time passage
equivalent to oz/S. Therefore, since in execution (~2 the
server performs deliver(m’) at time p and deliver(m) at
time t, in execution (~5 it can do likewise.

For the rest of ~35, the packets the client sends at or
after time r + d until, but not including time r + 2d + k,
are dropped from the channel, and on the server side at
time r +2d a crash input occurs. For the real time inter-
val [r+2d,r+2d+k], cr5IS is time passage equivalent to
a4 IS. Therefore, because of the real time independence
property, at clocks = r + 2d + k, the server can per-
form the recover output action. Any packet sent by the
server after the recover event up to, but not including
time r+3d+ k is dropped from the channel. The packets
that the client sends starting at time r+2d+k take time
d to arrive at the server, and the packets that the server
sends starting at time r + 3d + k take time 0 to arrive
at the client. Except for the fact that packets sent and
received may have different UID’s, in the clocks inter-
val [r + 2d, t’ + dj in execution cyg the server receives
exactly the same inputs as in the same clocks interval
in execution CY~. Since the recover action returns the
server to an initial state where it does not remember
any previous actions in both executions, modulo packet
UID’s, crs/S is time passage equivalent to (~41s for the
clocks intervals [r + 2d, t’ + d]. Because of the real time
independence property of the server, we know that at
clocks = t’ + d the server can perform the deliver(m)
action. Since m was already delivered, we have dupli-
cate delivery which contradicts our assumption that the
protocol delivers messages reliably. n

3.2 No maximum packet lifetime

If there is no MPL, then we get the impossibility re-
sult with a more realistic clock model. Here we assume
that the local clocks of the client and server always
run at the rate of real time, but their values may be
shifted by an unknown amount. We call these shifted
clocks. If the values of clockc and clocks in an exe-
cution are determined by the clock functions cf, and
cf s respectively, then our assumption can be expressed
by saying that for all values tl and t2 of real time,
cf,(h) - cf,(tz) = cf,(h) - c”f,(tz) = t1 - h.

Theorem 2 No system consisting of SLL-FIFO chan-
nels and client/server processes with shifted clocks can
solve the conditionally-fast reliable message delivery
problem.

Proof: The proof is very similar to the proof of Theo-
rem 1. First we construction an execution were fast de-
liver occurs. This execution, pi is similar to execution
oz and is shown in Figure 4. Execution pi is an admissi-
ble timed execution as are all the executions constructed
in this proof. For this execution both the clock of the
client and the clock of the server run at the rate of real
time. Since both the client and server are recovered at
time to when the client receives a send(m’) input and
there are no crash or recover actions after this input,
the eventual delivery property results in server action
deliver(m’). Let this be real time p, which for this ex-
ecution also means clocks = p. In this execution the
packets sent by the client after the input at time to up

--- --- P

--- ---
--... --- ---_ ---_ --_

I, <r+2d
--_

Time
t

Figure 4: Execution 01. This execution is similar to exe-
cution ~3iz.

to last packet required for the delivery of m’ take time
2d+ k to arrive, and the packets sent by the server takes
time 0 to arrive. At some time r where r > p+2d+k, the
client receives a send(m) input and all packets it sends
from that time, up to, but not including time r + d take
time d. All packets sent at or after time r + d by the
client get dropped, as do all the packets sent by the
server after the send(m) input. However, as we demon-
strated in the proof of Theorem 1, because the protocol
must satisfy the conditionally-fast delivery property, at
some real time tl < r + 2d the server delivers the mes-
sage m.

The next execution we construct, /3z is similar to ex-
ecution execution CY~ and is shown in Figure 5. In this
execution the clock of the server is shifted forward by
2d+k. That is, at any real time t, clocks = t+2d+k. In
execution 02, the client still gets the send(m’) input at
real time to. However, this time the packet it sends take
time 0 to arrive at the server. At clocks = to, which is
real time to - 2d - k, the server starts sending packets
that take time 2d + k to arrive at the client. Because
of the shift in the clock of the server, and the differ-
ences in times the packets take to traverse the channels,
for the clocks interval between to and p, modulo packet
UID’s, execution ,& looks the same as execution /3i to
the server. That is, for the clocks interval [to,p], /&IS
is time passage equivalent to PiIS. Therefore, because
of the real time independence property, we know the
server can deliver m’ at clocks = p in execution /32.
After the deliver(m’) event, the server receives a crush
input at clocks = r + 2d which is real time r - k. At
clocks = r+2d+k the server recovers. After the recover
event at the server, the client gets the send(m) input at
real time r at which time clocks = r + 2d + k. All of
the packets that both the client and server send from
real time r up to, but not including real time r + 2d + k
(clocks = r + 4d + 2/c) are dropped from the channels.
All packets sent by the client and server starting at real

169

client server client server

---_ --- IO -2d-k

F

--- -̂-

---_ _-
,>.I. cc clock, = $, --- ---

r+2d+k

r+4d+21

0 ____ -- ---- -A-
Zd+_k/ - * -

:----=-
c------e-

‘--_

‘---_

‘-.-_

.-w_

p-2d-k
clock. = D

-_ --_ -4

--~~~~d&rr(,ii)~ p

.--_ ---

d ---_ _--

---_ _-- . . . ---_ --__

crash - ’

-t-
r-k ---

clock, = r+2d ---

= -::-, _____

0
- - - - - - - - - - -

2d+k _ - - -
--

*--- . . .

recwYe*
r+2d+k _ _ r+ld+k

-- - - - -

t

_ zd+k

---_ ----
0 - - A r+4d+2k ----e----s- r

0 ---------ed’-*
C- c-

cc-C

Time
‘2+2d+k

Figure 5: Execution & is on the left and execution ,& is on the right. These executions are similar to executions 014 and 05
respectively,

time r + 2d + Ic do not get dropped from the channels
and take time 0 and 2d + k to arrive respectively. Exe-
cution /3z is an admissible timed execution, clockc and
clocks are determined by clock functions, and m is sent
after the last crash and recover actions. Therefore, since
the protocol satisfies the eventual deliztery, property the
server must eventually perform the deliver(m) action.
Let real time tz and clocks = TV + 2d + k be the time of
this event.

The final execution we construct for this proof is p3.
It is similar to execution cys and is shown in Figure 5.
Here the clock of the server is again the same as real
time. On the client side, except for the possible use
of different UID’s, execution ps is exactly the same as
execution pz. Thus, send(m’) happens at real time to
and send(m) happens at real time r. However, in the
this execution, for the real time interval [to, ti - d), the
packets sent by the client have same delivery times as
packets sent by the client in execution pi. Similarly, on
the server side, modulo UID’s, for the interval [to, tl],
ps1.S’ is time passage equivalent to /3r IS. Therefore, at
time p and time tl the server can deliver m’ and m
respectively.

For the rest of /33, the packets the client sends at
or after time r + d until, but not including time t +

2d + k, are dropped from the channel, and on the server
side at time r + 2d a crash input occurs. For the real
time interval [r + 2d, r + 2d + k], PaIS is time passage
equivalent to @J/S. Therefore, because of the real time
independence property, at clocks = r+2d+k, the server
can perform the recover output action. Any packet sent
by the server after the recover event up to, but not
including time r + 4d + 2k is dropped from the channel.
The packets that the client sends starting at time r -i-
2d + k take time 2d + k to arrive at the server, and the
packets that the server sends starting at time r + 4d +
2k take time 0 to arrive at the client. Except for the
fact that packets sent and received may have different
UID’s, in the clocks interval [r + 2d, tz + 2d + k] in
execution /3s the server receives exactly the same inputs
as in the same clocks interval in execution ,&. Since
the recover action returns the server to an initial state
where it does not remember any previous actions in both
executions, modulo packet UID’s, p315’ is time passage
equivalent to /321S for the clocks intervals [r + Zd, t2 +
2d + k]. Because of the real time independence property
of the server, we know that at clocks = tz + 2d + k
the server can perform the deliver(m) action. Since m
was already delivered, we have duplicate delivery which
contradicts our assumption that the protocol delivers

170

messages reliably.
In the executions in the proof, the delay on some

packets is 2d + k. Since k may be some arbitrary value
set by the server, the proof requires that there is no
MPL. n

4 Conclusion

There has been significant theoretical results [l, 6, 2,
3, 10, 131 on the limitations of connection management
and reliable message delivery protocols under various
timing and failure assumptions. Our work adds a new
dimension to traditionally studied problems by adding
conditional requirements. In our work we formally de-
fine what we call the conditionally-fast reliable message
delivery problem. The definition is based on require-
ments for T/TCP which is a TCP/IP transport level
protocol designed to support both reliable data stream-
ing and fast transactions. When there is a maximum
packet lifetime, we proved that it is impossible for any
protocol to solve this problem if the local clocks may
sometimes run at arbitrary rates. If there is no MPL,
we prove that if the clocks run at the rate of real time,
but may be shifted from real time by some arbitrary
amount, then again it is impossible to solve the prob-
lem. The problem definition and the proofs are pre-
sented in a carefully developed formal model, which is
a novel combination of a model with liveness properties
and a model that allows local clocks.

Acknowledgments
Nancy Lynch was a source of very useful comments and
discussions for this work. Her comments were particu-
larly insightful in discussions of the formal model.

References

[II

PI

131

[41

[51

@I

AFEK, Y., ATTIYA, H., FEKETE, A., FISCHER,
M., LYNCH, N., MANSOUR, Y., WANG, D.-W.,
AND ZUCK, L. Reliable communication over unre-
liable channels. Journal of the ACM 4f,6 (Novem-
ber 1994), 1267-1297.

ATTIYA, H., DOLEV, S., AND WELCH, J. Connec-
tion management without retaining information.
Technical Report LPCR 9316, Laboratory for Par-
allel Computing Research, Dept. of Computer Sci-
ence, The Technion, June 1993.

ATTIYA, H., AND RAPPOPORT, R. The level of
handshake required for managing a connection. In
The 8th International Workshop on DistributedAl-
gorithms (September/October 1994), G. Tel and
P. Vitanyi, Eds., no. 857 in Lecture notes in Com-
puter Science, Springer-Verlag, pp. 179-193.

BRADEN, R. Extending TCP for transactions -
concepts. Internet RFC-1379, November 1992.

BRADEN, R., AND CLARK, D. Transport proto-
cols for transactions and streaming. Unpublished
manuscript, March 1993.

FEKETE, A., LYNCH, N., MANSOUR, Y., AND
SPINELLI, J. The impossibility of implementing re-
liable communication in the face of crashes. Jour-
nal of the ACM40,5 (November 1993), 1087-1107.

[71

PI

PI

[lOI

[ill

PI

[I31

Cl41

[I51

[161

[I71

[=I

[W

GAWLICK, R., SEGALA, R., S~GAARD-ANDERSEN,
J., AND LYNCH, N. Liveness in timed and untimed
systems. Technical Report MIT/LCS/TR-587,
Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, 02139,
December 1993.

GAWLICK, R., SEGALA, R., SBGAARD-ANDERSEN,
J., AND LYNCH, N. Liveness in timed and untimed
systems. In Automata, Languages and Program-
ming (21st International Colloquium, ICALP’94,
Jerusalem, Israel, July 1994) (1994), S. Abiteboul
and E. Shamir, Eds., vol. 820 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 166-177.
Full version in [7]. Also, submitted for publication.

INTERNATIONAL STANDARDS ORGANIZATION. Con-
nection Oriented Transport Protocol Specification,
1986. International Standard 8073, ISO.

KLEINBERG, J., ATTIYA, H., AND LYNCH, N.
Trade-offs between message delivery and quiesce
times in connection management protocols. In
Proceedings of 3rd Israel Symposium on Theory of
Computing and Systems (Tel-Aviv, Israel, January
1995), pp. 258-267.

LISKOV, B., SHRIRA, L., AND WROCLAWSKI, J.
Efficient at-most-once messages based on synchro-
nized clocks. ACM Transactions on Computer Sys-
tems 9, 2 (May 1991).

LYNCH, N. Distributed Algorithms. Morgan Kauf-
mann Publishers, Inc, 1996.

MAVRONICOLAS, M., AND PAPADAKIS, N. Trade-
off results for connection management. In Proceed-
ings FCT’97 (September 1997), pp. 340-351.

POSTEL, J. Transmission Control Protocol -
DARPA Internet Program Specification (Internet
Standard STC-007). Internet RFC-793, Septem-
ber 1981.

PRISCO, R. D. Revisiting the Paxos algorithm.
Master’s thesis, Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute
of Technology, Cambridge, MA 02139, 1997.

SEGALA, R., GAWLICK, R., SBGAARD-ANDERSEN,
J., AND LYNCH, N. Liveness in timed and untimed
systems, 1997. Submitted for publication. An ear-
lier version appears in [7] and a shortened version
appears in [8].

SHANKAR, A. U., AND LEE, D. Minimum-
latency transport protocols with modulo-n incar-
nation. IEEE/A CM Transactions on Networking
3, 3 (June 1995), 255-268.

SMITH, M. Formal Verification of TCP and
T/TCP. PhD thesis, M.I.T., 1997.

WATSON, R. W. The delta-t transport protocol:
Features and experience. In IEEE 14th Confer-
ence on Local Computer Networks (October 1989),
pp. 399-407.

171

