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Abstract

In this thesis we present a formal abstract specification for TCP/IP transport level protocols
and formally verify that TCP satisfies this specification. We first verify a formal model of
TCP where we assume it has unbounded counters. With bounded counters, TCP requires
several timing mechanisms to function correctly. We also model TCP with these timing
mechanisms and verify that it also satisfies our specification. We also present a formal
description of an experimental protocol called T/TCP which is designed to provide the
same service as TCP, but with optimizations to make it efficient for transactions. FEven
with unbounded counters this protocol does not provide the same service as TCP as it may
deliver the same message twice. Even though the service provide by T/TCP is not exactly
the same as TCP, its behavior may be acceptable for some applications. Therefore, we
define a weaker specification that captures this behavior of T/TCP while maintaining the
other correctness properties of our initial specification. We then verify that T /TCP satisfies
this weaker specification.

Our specifications are presented using an untimed automaton model, and we present the
protocols using a timed automaton model. The formal verification is done using invariant
assertion and simulation techniques.

Because of our observation that in certain situations T /TCP does not satisfy our stronger
specification, we examine the question of whether any protocol can deliver streams of data
reliablely and still have fast transactions. In this thesis we present a formal definition of
what it means to provide both services, and then prove that it is impossible for any protocol
to provide both services if the processes do not have “accurate” clocks. The formal model
used to describe the system and present the proof is a novel combination of a model with
liveness properties and a model that allows local clocks.

Thesis Supervisor: Nancy A. Lynch
Title: Professor
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Chapter 1

Introduction

The original motivation for this work was to do a formal verification of an experimental
transport level protocol called T/TCP. This protocol, by Braden and Clark [8, 6, 7], is
designed to be a unified transport protocol in that it should work well for both transactions
and streaming. A transaction is typically a request from a client and a response from a
server. Streaming, on the other hand, is the sending of significant amounts of data. The
idea behind the design of T/TCP is to extend the Transmission Control Protocol (TCP) to

make it efficient for transactions (hence the name T/TCP).

1.1 Transport level protocols

TCP is the most commonly used transport level protocol on the Internet. The basic service
that it provides is reliable end-to-end delivery of data between application programs. On
the Internet packets sent from one user to another may get duplicated, lost, or arrive
out of order. TCP ensures that these packets are delivered to the application programs
without duplication, without loss, and in the correct order. While TCP works well for data
streaming, it does not work well for transactions because it has an open phase (the three-
way handshake protocol) that forces two round trips across the network for a client to send
a request and get a response from a server. Ideally we would like the request and response
to be done in one round trip across the network. T/TCP changes the open phase of TCP, so

that in most circumstances a three-way handshake protocol is no longer required, instead a
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two-way handshake protocol is used. The two-way handshake protocol allows a transaction

to be completed in one round trip across the network.

1.2 The correctness of T/TCP

The designers of T/TCP believed their protocol was correct since it is based on TCP,
but the changes they made were sufficiently complex to make them uncertain. Therefore,
they thought a formal correctness proof would be useful [8]. Our initial plan of attack for
verifying T /TCP was to assume the correctness of TCP and leverage off this correctness
in the verification of T/TCP. However, we could not find any work that verified TCP in
sufficient generality to use in our work. Other works have verified parts of TCP or protocols
similar to TCP. In [18, 35], Lampson, Lynch, and Sggaard-Andersen formally verify the
correctness the five packet handshake protocol of Belsnes [4] which forms the basis of the
open and close phase of TCP and ISO-TP4. However, this work does not verify enough
of TCP for us to use directly in the verification of T/TCP. Murphy and Shankar in [27]
also specify and verify a connection management protocol for the transport layer, but the
protocol is of their own design, not TCP. In that work they also compare their protocol to
TCP and they point out some problems in the TCP protocol as specified in the Internet
Standard [28]. We refer to these problems when we discuss related work in section 1.4.

In our formal presentation of TCP we do make some simplifications. For example, we do
not include security parameters or the congestion control aspect of TCP. We also assume a
client/server model which means one side is always active and the other passive, whereas in
full TCP either side can initiate communication. However, even with these simplifications,
we know of no other work that formally verifies TCP in the level of generality that we

present.

1.2.1 The specification of the problem

The informal specification of TCP [28, 30] is quite complicated, and an important contribu-
tion of this work is the presentation of a precise specification of the reliable transport level

problem that TCP is designed to solve. The specification can be viewed as a “black box”,
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which has a user interface that gets all the inputs that the protocol receives and sends out all
the outputs that we want the protocol to produce. The specification defines a relationship
on the inputs and outputs that gives precisely the desired behavior any protocol solving the

problem should have.

1.2.2 Verification of TCP

Our verification of TCP has two parts. First we assume that both the client and server of
TCP have unbounded counters that are stable, that is, they do not lose their values as a
result of crashes. We show that this version of TCP implements our specification. Next
we model TCP with bounded counters. In order for TCP with bounded counters to satisfy
our specification we need to assume certain properties about the bounded counters, and
the protocol has to now observe some timing restrictions. These restrictions take two basic
forms. Either a host has to wait a certain period of time before performing certain actions,

or a host times out and closes if it waits too long for a reply to a message.

1.2.3 Verification of T/TCP

After specifying the problem and formally verifying both versions of TCP, the next step in
our verification of T/TCP was to show that it implements TCP. As described in [8, 6, 7],
T/TCP does not require timeouts if responses are not received within specified time bounds.
We observed that under certain circumstances T/TCP without timeouts does not behave
the way TCP does, and in fact does not satisfy the specification we have for TCP. More
specifically, when there is a crash T /TCP may deliver duplicate data. The fact that T/TCP
can deliver duplicate data after crashes was shown by Shankar and Lee in [33]. However,
the designers of T/TCP and other network protocol designers that we spoke to do not
seem to think that this behavior of T/TCP is catastrophic, and they think that it may be
acceptable for some situations. Therefore, in our work we formulate a weaker specification
that allows these behaviors, and prove that T/TCP satisfies this specification.

In [33] Shankar and Lee present timing constraints which when incorporated into T /TCP

prevents the delivery of duplicate data after a crash. Their work indicates that with these
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timing constraints T/TCP may satisfy our stronger specification!. However, while TCP
needs only unbounded and stable counters, or more generally stable and infinite sets of
unique identifiers (uid’s) to satisfy the stronger specification, T/TCP even with stable and
infinite sets of uid’s still requires timing information in order to have fast transactions and

still satisfy the stronger specification.

1.2.4 Impossibility result

In fact we are able to prove a more general impossibility result about protocols that try to
achieve fast transactions and reliable data streaming. We first present a formal model for
systems for which the impossibility result holds. This model differs from the other models
used for the verifications in the thesis in that liveness issues that cannot be expressed in the
models used for verification must be taken into consideration for the impossibility result.
After presenting the model, we describe the client and server hosts in that framework. The
hosts are allowed to have infinite and stable sets of uid’s. We next present a formal definition
of the problem of “fast transactions” and reliable data delivery which T/TCP was designed
to solve. This definition differs from the specification of the reliable transport level problem
mentioned in Section 1.2.1 and presented in Chapter 4 in that it requires certain messages
to be delivered within a certain time bound under certain conditions. The messages that
are required to be delivered within the time bound, and the conditions under which these
messages are required to be delivered, depend on local state, the occurrence of crashes, the
accuracy of local clocks, and message delivery times. In Chapter 11 we precisely define the
assumptions about the system and precisely define the problem. We then prove that it is

impossible for any protocol to solve the problem.

1.3 Formal methods

We use invariant assertion and simulation (refinement) techniques to verify TCP and
T/TCP. We use the formalization of simulations developed in [24, 26] by Lynch and Vaan-

drager. These methods are used for proving trace inclusion relationships between concurrent

We do not verify this.
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systems. The methodology is developed in the context of very simple and general automaton
models for both untimed [24] and timed [26] systems. For timed systems we use a formula-
tion of the automaton model called General Timed Automata (GTA) presented in [21]. For
the impossibility result, we also use a special case of the GTA model called clock GTA [29],
which is used to model systems with local clocks. While the simple timed automaton model
is useful for proving safety and some liveness properties, for the impossibility result, we need
more general liveness properties than can be handled by the simple model. In particular
we want the model to have the receptiveness property. To get this property we use the live
automaton model developed in [31]. We elaborate on the basic model and methodology in

Chapter 3, and on the liveness issues in Chapter 11.

1.4 Related work

Simulation techniques are known to be quite useful in the verification of concurrent systems.
See, for example [1, 14, 16]. In [24, 26] Lynch and Vaandrager provide a clear framework for
applying these techniques. In [18, 35], Lampson, Lynch, and Sggaard-Andersen formally
verified the correctness of the five packet handshake protocol of Belsnes [4] which forms
the basis of the open and close phase of TCP and ISO-TP4; and the clock synchronization
protocol of Liskov, Shrira, and Wroclawski [19], using the methods developed in [24, 26, 12].
In verifying these protocols, Lampson et al. showed that simulation methods can be used
to verify relatively complex and practical protocols. Our work is an extension of this work
in that we use the methods to verify even more complex protocols.

Murphy and Shankar [27] also use a variation of the simulation technique to specify
and verify a connection management protocol for the transport layer. They specify the
connection management service for the transport layer using a state transition system and
by making certain fairness assumptions. They then specify a protocol and show that it
offers the service they specified for the transport layer. They use invariant assertions and
a stepwise refinement heuristic [32] for the verification. In that work they compare their
transport level protocol to TCP. They point out that the informal specification of TCP

given in the Internet Standard [28] and the Requirements for Internet Hosts [30] does
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not have the right timing constraints to correctly satisfy the intended service of reliable
transport level protocols. They give two of the correct timing constraints which are needed
for TCP with bounded counters to behave correctly. First, they point out that timeouts
are required if acknowledgments are not received within some waiting period. The informal
specifications [28, 30] say these timeouts are optional. Second, they point out that the period
of inactivity after crashes that is proposed in the informal specifications is not sufficient.
They give a period that is sufficient. The period of inactivity after a crash that they specify
requires that hosts have a bound on the maximum time it takes for a response to be generate
for a received packet. The informal specification also states that such a maximum response
time is optional. In our chapter on TCP with bounded counters, we show executions where
violation of these timing constraints could lead to duplicate delivery of messages. We also
show that some additional timeouts that Murphy and Shankar do not mention are needed

for TCP to work correctly with bounded counters.

In [33] Shankar and Lee discuss what they call “minimum-latency transport protocols.”
These protocols are called minimum-latency because they provide the minimum latency
desired for transaction-oriented applications — T /TCP fits into this category of protocols.
In their paper, they define a class of caching protocols and determine the minimum counter
size as a function of real-time constraints needed for such protocols. The protocols are called
caching protocols because clients and servers store information in caches in these protocols.
While not specifically referring to the correctness of T/TCP in their work, they do present
the same scenario that we observed that may cause protocols like T/TCP to deliver the

same message twice.

The impossibility result presented in the thesis is also related to the work of Shankar
and Lee [33] in that they show that some timing assumptions are necessary for T/TCP and
protocols like it to work correctly. The fact that these protocols require timing assumptions
led us to think about whether any protocol could solve the problem of fast transactions and
reliable message delivery and under what timing assumptions. Our impossibility result is in
some sense a generalization of their results in that we show that if some timing assumptions
do not hold, then it is impossible for any protocol to solve the problem of having fast

transactions while maintaining reliable message delivery. However, our proof is for the case
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where the client and server have infinite and stable sets of unique identifiers, but it does
not hold for the case where the client and server have unbounded counters. T/TCP and
the protocols of Shankar and Lee [33] use counters. While our proof does not work for the
case where protocols use counters, the counters do not seem to help in the case of T/TCP.
Therefore, we believe the results hold even if protocols use counters, but we do not yet have

a proof for this claim.

Most of the other theoretical work in the area of reliable message delivery has considered
somewhat different problems in different settings. Afek et al. and Fekete, Lynch, Mansour,
and Spinelli prove impossibility results for different types of reliable communication in a
purely asynchronous setting [2, 10]. In [3], Attiya, Dolev, and Welch attain further results
for the asynchronous model based on the minimum amount of information that must be
maintained between connections in the presence of crashes or between active incarnations
of a crashes. None of these papers examines the amount of time or number of trips across
the network required to reliably deliver messages. Instead they deal with the more general
question of whether reliable message delivery is possible under certain conditions regardless
of number of trips across the network. However, in [17] Kleinberg, Attiya, and Lynch exam-
ine the trade-offs between message delivery and quiesce times for connection management
protocols under various timing assumptions. They obtain several impossibility results for
the different timing situations they consider. The impossibility results presented in that
work are the closest to the impossibility result presented in this thesis. However, our result
differs from their results in that we consider a more restricted problem than the problems
considered in [17]. We also present a more formal development of the system for which we
prove the impossibility result than the development given in [17]. We elaborate on these

differences in Chapter 11 where we present the impossibility result.

1.5 Organization of the thesis

In Chapter 2 we present an informal description of TCP and T/TCP. Chapter 3 contains
descriptions of the formal models and methods used in the thesis. In Chapter 4 we present

two specifications for the reliable transport level problem. The first specification is the
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natural specification, but for reasons that we explain in the chapter, we also present an
intermediate specification of the problem. In Chapter 5 we describe the formal modeling of
the communication channels used for both TCP and T/TCP, and in Chapter 6 we present
the formal description of TCP with unbounded counters. Chapter 7 has the proof that
TCP with unbounded counters implements our specification. Chapter 8 presents TCP
with bounded counters and discusses the assumptions about the counters, and the timeouts
necessary for the correctness of this version of TCP. This chapter also contains the proof
that this version of TCP also satisfies our specification. In Chapter 9 we present the formal
description of T/TCP, and we prove that T/TCP does not implement TCP. In Chapter 10
we present a weaker specification for the transport level problem and show that T/TCP
implements this weaker specification. In Chapter 11 we prove that without the correct
timing assumptions it is impossible for any protocol to give the efficiency of T/TCP and
still satisfy our specification. Chapter 12 contains some concluding remarks.

The thesis also contains three appendices. Appendix A contains a description of the
basic notation used in the thesis and should be read before the rest of the thesis, and
Appendix B and C, contain proofs required for certain results in the main part of the

thesis.
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Chapter 2

Informal Description of Protocols

In this chapter we present informal descriptions of TCP and T /T CP. The description of TCP
we present is based on the official Internet Standard for TCP [28] and Comer’s presentation
in [9]. The description of T/TCP is based on Braden’s and Clark’s description of their
design in [8]. We also present some information on the TCP/IP protocol suite to give
the context in which these protocols are used. The description of the TCP/IP layering
model is also based on the presentation of Comer in [9]. Our presentation in this chapter is
intended to give the reader an intuitive understanding of the protocols, so that the abstract
specification and the formal abstract descriptions of the protocols, which we present later,

are easier to follow.

2.1 The TCP/IP layering model

In the TCP/IP layering model! there are four conceptual layers that build on a fifth layer
of hardware. Each layer relies on the layer below it. At the highest level is the Application
Layer. This layer consists of application programs that access services across a TCP/IP
internet. The applications interact with transport level protocol(s) to send and receive data.
Later in the thesis when we model the protocols we refer to “users” of the protocol. These
users we refer to correspond to application programs such as telnet, email, and ftp at this

level.

!The other main network layering model is the ISO 7-layer model.
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The Transport Layer is the next level of the hierarchy. This layer provides communi-
cation from one application program to another. This communication is often referred to
as end-to-end. This layer may also regulate the flow of information, and may, but does
not necessarily, ensure that data arrives without error and in sequence. TCP and T/TCP
belong to this layer and both protocols have the goal of ensuring reliable communication.
On the other hand, the user datagram protocol (UDP) is a transport level protocol that
provides unreliable delivery service. However, in this work we are only interested in trans-
port level protocols that provide reliable data delivery service, and when we present our
formal abstract specification for protocols for this layer, it is for protocols that guarantee

reliable data delivery.

The next layer is the Internet Layer and it handles communication between machines.
The internet layer accepts requests to send packets from a transport level protocol along
with the destination machine, and delivers the packet to the transport level protocol at the
destination machine. In between the source and destination machines the packets may be
routed through intermediate links. The Internet layer is responsible for the routing of the
packets. The Internet layer service is defined by the Internet Protocol (IP). 1t is one of the
two major protocols used in internetworking, the other being TCP. The IP packet delivery
system is unreliable, best-effort, and connectionless. By unreliable we mean that packets
can be lost, duplicated, delayed, or delivered out of order, but the service will not detect
such conditions. It is called connectionless because each packet is treated independently
from all others. Finally, the service is said to be best-effort because the protocol makes an
earnest attempt to deliver packets, so packets get lost, delayed, or duplicated only when
resources are limited or the underlying network fails. When TCP and T/TCP sends or
receives packets, its interaction is with IP. In our abstract model, our unreliable channels

corresponds to IP.

The fourth layer is the Network Interface Layer and is responsible for taking IP packets
and transmitting them over a specific network. We are not concerned with this layer in our

work.
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2.2 Overview of TCP and T/TCP

T/TCP is an extension of TCP so both protocols are quite similar. In this section we present
an overview of the general features that the protocols share. Since both protocols belong
to the transport layer, they receive packets from a service that may delay the delivery of
packets, deliver the packets out of order, deliver duplicates, or lose packets. On the other
hand, application programs above the transport layer often need to send large volumes of
data reliably from one computer to another. The sending of this data is often referred to
as data streaming because the data can be thought of as a stream of bits. By reliable we
mean data is delivered at-most-once and in the right order. The transfer of data is also full

duplex; that is, data can be transferred concurrently and independently in both directions.

TCP and T/TCP are designed to provide this type of reliable data stream service. The
idea behind the protocols is to give the communicating application programs the illusion
that there is a circuit between them. In order to achieve this illusion a connection must
be established between the two endpoints before data transfer can begin. This connection
is termed a wvirtual circuit connection. The connection involves synchronizing the state at
the endpoints. The endpoints of a connection are not the application programs themselves,
but are instead a pair of integers of the form (host, port) where host is the IP address for a
host and port is a port on that host. A connection is identified by its pair of endpoints. A
particular connection may open and close many times. Each time the connection is opened
we have what is called an incarnation of the connection. A single host can have several
different ports that form different connections. Our work focuses on a single connection be-
tween a client (the host that initiates the connection) and a server (the host that responds).

Therefore, we do not need to refer to the port numbers.

The signal from the user to the client TCP to initiate a connection is usually referred
to as an active open, and the signal from the user to the server TCP that it can accept

incoming requests to form a connection is called a passive open.

The unit of transfer between applications in both protocols is called a segment. Segments
are divided into two parts — the header followed by data. The header carries control

information. In practice, the IP layer may take a TCP or T/TCP segment and break it
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into multiple packets. However, in our modeling of the protocols, we assume that segments
are not broken into packets, so we use the terms interchangeably to denote objects sent
over the channels in an implementation. We use the terms message or data for user-
meaningful data. For the purpose of our modeling we assume the header information only
contains information indicating whether the segment is a SYN, FIN, or RST, segment, and
a sequence number and acknowledgment number. A SYN (synchronize) indicates that the
sender is sending information to try to synchronize the endpoints for the virtual circuit. A
FIN (final) segment indicates that the sending host has sent its last piece of data for the
current incarnation of the connection, and a RST (reset) segment indicates that the sender
received a segment that is not acceptable for its current state, so the other host should reset
its endpoint and try to re-synchronize. A segment may have neither of the SYN, FIN, or
RST control bits. Such a segment may contain valid data and/or valid a acknowledgment.
Also the SYN segment sent by the client does not contain an acknowledgment number.
Sequence numbers are used to number each SYN and FIN control signal, and each byte
of data in a segment. To simplify our modeling, we assume each segment only contains one
byte of data. The acknowledgment number is generated by a host when it receives a valid
segment. It is the sequence number of the received segment plus one. The acknowledgment
mechanism of the receiving host, along with retransmissions by the sender, ensures that
segments that are lost in the network get retransmitted and eventually delivered. That is,
the sender retransmits a segment after a suitable retransmission timeout (RTO) until an

acknowledgment is received for that segment.

2.3 Specifics of TCP

In TCP getting synchronized states at both end-points usually requires three phases: an

open phase, a bi-directional data transfer phase, and a close phase.

2.3.1 Open phase

The open phase is often referred to as the three-way handshake protocol because it requires

the sending of three segments between the client and the server. Figure 2-1 illustrates the
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three-way handshake protocol. When the client receives the signal to open a connection, it
chooses an initial sequence number (ISN) which will be the sequence number for the first
segment it sends. It also initializes the variables it will use for the life of the connection.
This set of variables is called the client’s transmission control block (TCB). The server also
initializes a TCB when it opens, but it does not choose an ISN until it receives an initial
message from the client. Note that both the client and server must be closed in order to
accept the active open and passive open signals respectively. To synchronize, the client and
server must agree on their ISN’s, so the client starts the three-way handshake by sending a
SYN segment with its ISN. When the server receives this segment it chooses its own ISN.
It also notes that the sequence number of the next segment it should receive is the ISN
of the client plus one. This is the acknowledgment number that the server sends on the
response segment. This response segment is also a SYN segment an includes the ISN of the
server. When the client receives this return segment, it verifies that the server did receive
its correct ISN, and notes the ISN of the server plus one. The final segment of the three-way
handshake is the segment the client sends in response. This segment has the next sequence
number for the client and an acknowledgment number of the ISN of the server plus one.
When the server receives this packet, it can confirm that it has the right ISN for the client
and that the client has its correct ISN. At this point both ends are synchronized and are in

what is called the established state.

2.3.2 Data transfer phase

Bi-directional data transfer takes place in this state. Once the client and server agree on
each other’s ISN, they increment their sequence numbers for each byte of data sent. The
sequence number is used to prevent the acceptance of old duplicate segments and also to
order segments that might be received out of order. Initial sequence numbers are chosen
such that the sequence numbers given to new segments for the new incarnation are not the
same as the sequence numbers of segments from previous incarnations that might still be
in the network. The acknowledgment of a segment means every segment up to that one has
been successfully received. We make the simplifying assumption that every segment must

get an acknowledgment before the next one is sent.
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Eventsat Client Eventsat Server

Send SYN seq = x

Receive SYN segment
Send SYN seq=y ACK x+1

Receive SYN + ACK segment
Send ACK y+1

Receive ACK segment
(server can now accept data)

Figure 2-1: An illustration of the three-way handshake protocol. The arrows represent packets across the
network.

2.3.3 Close phase

In TCP, when a host receives the signal to close from the local user it means that the user
will not send any more data for that connection. However, the local user can still receive
data. Therefore, both client and server must receive signals from their local users to close
before a connection can close. The close phase begins when either or both hosts receive
the signal to close from their local users. When a host receives the signal to close, it sends
any remaining data it has to send, and then sends a FIN segment. A host that receives a
FIN segment responds with an acknowledgment of the FIN segment. A host that sends a
FIN segment before it receives one, when it does receive the FIN segment, waits in what
is called timed-wait state before it closes. The duration of timed-wait state is 2 x MSL
(maximum segment lifetime). A host that receives a FIN segment before it sends one will
close immediately upon receiving the acknowledgment for its FIN segment. It can close
immediately because it must acknowledge the FIN segment it receives before it sends its
FIN segment. At least one of the hosts will close from timed-wait state, and both may if
they both send FIN segments before they receive one. The wait is to ensure that if a new
incarnation of the same connection is started, old duplicate segments have been dropped

from the network. Timed-wait state is also used to ensure the graceful close property. This
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property ensures that the host that sent the last piece of data receives confirmation that the
data is received before it closes. Timed-wait state gives this property because the host(s) in
that acknowledges the last piece of data waits 2 x MSL before it closes. This wait is much
greater than RTO, so if the acknowledgment got dropped and the host sending the last piece
of data retransmitted it, the host in timed-wait state can retransmit the acknowledgment.

In TCP, after a connection closes the transmission control blocks are deleted.

2.4 Specifics of T/TCP

T/TCP is designed to be a unified transport protocol (utp). That is, in addition to sup-
porting streaming as TCP does, it should also support efficient transactions. A transaction
is typically a sequence of two messages, one in each direction, interpreted as a request and
a response. The canonical example of a transaction is remote procedure call (RPC) where
the call to the remote procedure is the request and the return value of the procedure is the
response. TCP can be used for transactions, but because it has separate open and close
phases, it is inefficient for this purpose. When large amounts of data is being sent, the bulk
of the time is spent in the data transfer phase, so the overhead of the open and close phases
is not significant. However, when the data being sent is just a request and a response, this
overhead becomes significant. Ideally, for a transaction the time between when the client
requests a service and the time it gets a response from the server should be round trip time
(RTT) plus server processing time (SPT). Because of the three-way handshake in the open
phase of TCP, a transaction would take a minimum of 2RTT + SPT. Another efficiency
issue that comes up with transactions is that often we want to do many transactions in
quick succession for the same connection. Each transaction is considered a new incarnation
of the connection. Because of timed-wait state in the close phase of TCP, there has to be a
wait of at least 2 x MSL between transactions in TCP. The goal of the design for T/TCP is
to change TCP so that the open and close phases do not make it ineflicient for transactions,

while maintaining the things that make it good for data streaming.

T/TCP employs two optimizations to deal with these inefficiencies. These two optimiza-

tions essentially incorporate two techniques from the implementation of RPC by Birrell and
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Nelson [5] into TCP. The first optimization, known as TCP Accelerated Open (TAO), elimi-
nates the need for the three-way handshake protocol at the opening phase of communication
for most instances. Figure 2-2 illustrates the TAO mechanism. This optimization is accom-
plished by using a dual monotonic number scheme. That is, in addition to the sequence
number, each packet carries a second number that is constant during a single incarnation
and increases monotonically for each new incarnation. This second number is called a con-
nection count, and it identifies each incarnation for the particular connection. Each client
host has a connection count generator which is incremented every time a new incarnation
for any connection from that host is initiated. Recall that a single host may have several
different connections emanating from it. Associated with each connection endpoint at the
client is a persistent cache value of the last connection count sent for that connection. Per-
sistent state is state that is kept after a connection closes, but is volatile. That is, it is
affected by crashes. At the server endpoint of the connection a persistent copy of the last
connection count received from the client is also cached. Therefore, when a client wants to
start a new incarnation of a connection, the connection count generator is incremented and
the client sends the incremented connection count with the initial SYN packet containing
the request data. When the server receives this packet, it checks that the connection count
is greater than the last connection count it received for the connection, and can immediately
accept the new data if it is. The server responds with a packet that contains response data
and an echo of the client’s connection count. The client uses the echoed value to determine
if the response is valid. With TAQO, a transaction can be carried out in one round trip across

the network.

When a server crashes and recovers, it might have the cache value of the last connection
count it received undefined. Thus, upon receiving the first open request from a client, it
performs a three-way handshake to validate the received segment and if it is valid, updates

the connection count received value to the current connection count value sent by the client.

T/TCP also uses sequence numbers to order data, but since the initial sequence number
is not needed to distinguish data from different incarnations, the initial sequence number

can always start at one.

The second optimization is used to shorten the close phase of TCP. Specifically, the
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Eventsat Client Eventsat Server

Send SYN cc = x, datal \
If x > last_cc accept datal
Send echo_cc = x and data2
If echo_cc = cc accept data2 /

Figure 2-2: An illustration of TCP accelerate open, where datal is the request data and data2 is the
response data.

optimization reduces the mandatory wait between successive incarnations. The reduction
is achieved by allowing active and passive opens to truncate timed-wait state. Thus, if a
client while in timed-wait state gets an active open signal to initiate a new incarnation for
the same connection, it immediately ends timed-wait state and initiates the new connection
without explicitly closing the old incarnation. On the server side a passive open signal
is accepted from any of the “normal” states the server could be in while the client is in
timed-wait state. When the server accepts this passive open signal, it goes to a type of
“bridge” state between the previous incarnation and the new one that is being established.
For example, in the situation where the server receives the passive open signal while it is in
a state in which it is expecting an acknowledgment of a FIN segment, if it instead receives a
new SYN segment from the client, the server uses the SYN as an implicit acknowledgment
of the FIN and also has an explicit signal to start a new incarnation. Thus, in T/TCP
overlap of action and states for consecutive incarnations of a connection is allowed. This

overlap permits rapid successive transactions for the same connection.

2.5 Other simplifications

One important aspect of both TCP and T/TCP that we do not deal with in our work
is the sliding window mechanism. The basic idea of the sliding window mechanism is to

allow several packets (the number is determined by the window size) to be sent before an
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acknowledgment is required. The acknowledgment of a particular packet counts as an ac-
knowledgment of all the unacknowledged packet sent before it. When an acknowledgment
is received, the sender “slides” the window forward so that it covers only unacknowledged
packets and packets to be sent. In both protocols the window size is adjusted based on how
fast the network can transfer packets. With the sliding window mechanism the protocols
obtain much greater throughput than a protocol where every message needs an acknowl-
edgment. To incorporate the sliding window mechanism into the basic versions of TCP or
T/TCP basically requires the protocols to perform a lot more bookkeeping. In our work
we are primarily concerned with the reliability of data streaming, not throughput, so we
choose the simpler version of the protocols where the window size is one. If we included
the sliding window mechanism in the protocols, we believe the extra bookkeeping would
further complicate our proofs by requiring us to keep track of additional little details, but

that conceptually the proof would not change significantly.
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Chapter 3

Formal Models and Techniques

In this chapter we present definitions of the simple state machine models we use to describe
the specifications and protocols in the thesis. We also present the proof techniques we use
for formally verifying that the protocols implement the specification. These techniques are

nvariant assertions and simulations.

3.1 Automaton models

An automaton is a simple state machine or labeled transition system. We present automaton
models for both untimed and timed systems, and we also state properties of these models

and define operations on them.

3.1.1 Untimed automaton

The formal model we use to represent untimed systems is the Safe /0 Automaton model
of Sggaard-Andersen et al. in [35]. This model is the same as the 1/O Automaton model
of Lynch and Tuttle [22] except it does not have the fifth component of the Lynch/Tuttle
model. That fifth component is a partition of the locally controlled actions into countably
many equivalence classes. It is used to define fairness conditions on an execution of the
automaton. In this work we refer to the untimed model as automaton.

Definition 3.1 (Automaton)

An automaton, A, consists of four components:

29



1. A set states(A) of states.
2. A nonempty set start(A) C of states(A).

3. An action signature sig(A) = (in(A), out(A), and int(A)) a partition of the set of
actions into input actions, output actions and internal actions respectively. The union
of the in(A) and out(A) we denote as ext(A) the set of external actions. We denote by
local(A) the set out(A) U int(A) the set of locally-controlled actions, and by acts(A)
the set ext(A) U int(A).

4. A transition relation steps(A) Cstates(A) X acts(A) x states(A) with the property
that for every state s and input action « there is a transition (s,a,s’) in steps(A). A

is said to be input-enabled. O

An action a is enabled in a state s if there exists a state s’ such that (s, a,s’) is a step,
that is, (s, a,s’) € steps(A). When an automaton ‘runs’, it generates a string representing an
execution of the system the automaton models. An ezxecution fragment « of automaton A is
a finite or infinite sequence, sg, a1, $1, @2, ..., of alternating states and actions of A starting
in a state, and if the execution fragment is finite, ending in a state such that (s;, a;41,i+1)
is a step of A for every i. We denote by fstate(a) the first state of the execution fragment,
and if it is finite Istate(a) denotes the last state. We denote by frag*(A), frag” (A), frag(A)
the sets of finite, infinite, and all execution fragments of A respectively. An execution is an
execution fragment beginning with a start state. Denote by exec* (A4 ), exec” (A), exec(A) the
sets of finite, infinite, and all executions of A respectively. A state s is said to be reachable

of there exists a finite execution of A that ends in s.

A finite execution fragment ay = $g, @1, 51,...,0y, S, of A and an execution fragment
Q9 = Sp,Qpt1sSntls- .- 0f A can be concatenated. In this case the concatenation, written
as oq-ag, is the execution fragment sg, 1,81, ..., @ny Spy Qpb1y Spbly e« oo

If v is a sequence of actions, then 4 is the sequence obtained by deleting all the internal
actions of v. We denote the empty sequence as A. Suppose a = sg,aq,81,0a2,... IS an
execution fragment of A. Let v be the sequence consisting of the actions ay,a,.... Then
traces(a) or trace(a) if A is clear, is defined to be the sequence 4. That is, trace(a) is the

subsequence of a consisting of only the external actions. We say that 8 is a trace of A if
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there exists an execution « of A with trace(a) = 5. We write trace* (A ), trace” (A), trace(A)
for the sets of finite, infinite, and all traces of A respectively. Note that an infinite execution
might have a finite trace.

In specifying a complex distributed system, it is useful to be able to specify each process
individually and then obtain a specification of the entire system as the parallel composition

in this model

of the specifications of the processes. The parallel composition operator «||”

uses a synchronization style where automata synchronize on their common actions and
evolve independently on the others. The parallel composition operator is defined only for
compatible automata. Compatibility requires that each action be an output of at most one
automaton. Furthermore, to avoid action name clashes, compatibility requires that internal

action names be unique.

Definition 3.2 (Parallel composition of automata)

Automata Aq,..., A, are compatible if for all 1 < ¢,j < n with ¢ # j
1. out(A;) N out(A;) =10
2. int(A;) N acts(A;) = 0

The parallel composition Ay || --- || A, of compatible automata A4, ..., A, is the automata

A such that
1. states(A) = states(Ay) x --- X states(A,)
2. start(A) = start(Ay) X --- X start(A,)
3. out(A) = out(Ay) U---U out(A,)
4. in(A) = (in(A1) U---U in(A,)) \ out(A)
5. int(A) = int(A;) U---U int(A,)
6. ((S15-+-+80),0a,(8),...,5,)) € steps(A)iff forall 1 <i<n
(a) if a € acts(A;) then (s;,a,s!) € steps(A;)
(b) if a & acts(A;) then s; =, s/ a
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Parallel composition is typically used to build complex systems based on simpler com-
ponents. Some actions are meant to represent internal communications between the sub-
components of the complex system. The action hiding operator “\” allows us to change
some external actions into internal ones.

Definition 3.3 (Action hiding)
Let A be an automaton and let A be a set of actions such that A C local(A). Then define

A\ A to be the automaton such that
1. states(A\ A) = states(A)
2. start(A\ A) = start(A)
3. in(A\ A) = in(A)
4. out(A\ A) = out(4)\ A
5. int(A\ A) = int(A)U A
6. steps(A\ A) = steps(A) O

Another operation on automaton is action renaming. Action renaming can be used to

resolve name clashes that lead to incompatibilities in Definition 3.2.

Definition 3.4 (Action renaming)
A mapping p from actions to actions is applicable to an automaton A if it is injective and
acts(A) C dom(p). Given an automaton and a mapping p applicable to A, we define p(A)

to be the automaton such that
1. states(p(A)) = states(A)
2. start(p(A)) = start(A)
3. in(p(4)) = p(in(4))
1. out(p(4)) = p(out(4))
5. int(p(4)) = p(int(A))
6. steps(p(A)) = {(s.p(a). &) | (s.a,5') € steps(4)) 0
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Correctness

The notion of correct implementation of automata is based on trace inclusion. That is, an
automaton A is said to implement an automaton B with the same input and output actions
if all traces of A are also traces of B. This correctness notion ensures that whatever A does,
B could have done the same. That is, A does nothing wrong which means A satisfies the
safety requirements specified by B.

In this work we do not verify liveness properties. Therefore, our notion of correctness
does not guarantee that A does anything at all. However, since the focus of this work is to
verify specific implementations that we know do something, our goal is to prove that they
do nothing wrong.

Given two automata A and B such that in(A) = in(B) and out(A) = out(B), we say A

implements B if and only if traces(A) C traces(B) which we write as A C B.

3.1.2 General Timed Automaton

In this section we present the model we use for describing systems that use time. This model,
general timed automaton (GTA), is the one described by Lynch in [21], and we repeat the
definitions here for completeness. The notion of timed executions and timed traces are also
the same as the definitions of [21]. The model is based on the timed automaton model of
Lynch and Vaandrager [26]. A slight variation of the model in [26] is referred to by Segala
et al. in [31] as safe timed 1/O automaton. In [31] the safe timed I/O automaton is used as
part of new I/O automaton model that can be used to express and prove general liveness
properties. For most of this thesis we are not concerned with the issue of liveness. However,
for the results in Chapter 11 we will need liveness properties and we will discuss the model
of [31] in that chapter.

The definition of general timed automaton is similar to Definition 3.1, except that its
set of actions includes special time-passage actions v(t), t € RT, where R is the set of

positive reals. The time-passage action v(?) denotes the passage of time by an amount ¢.

Definition 3.5 (General Timed Automaton (GTA))

A GTA A consists of four components:
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1. A set states(A) of states.
2. A nonempty set start(A) C of states(A).

3. A timed action signature t-sig(A) = (in(A), out(A), int(A), time-passage(A)) a par-
tition of the set of actions into input actions, output actions, internal actions, and
time-passage actions respectively. The union of the in(A4) and out(A) is denoted as
vis(A) the set of visible actions. The set of external actions ext(A) is defined to be
the set vis(A)U time-passage(A). The discrete actions, disc(A) is the visible and in-
ternal actions, vis(A) U int(A). The set of locally-controlled actions, out(A) U int(A),
is denoted by local(A), and the set of all actions is denoted by acts(A4).

4. A transition relation steps(A) Cstates(A) X acts(A) x states(A). a

GTA’s are also input enabled and a GTA A is required to satisfy the following two

axioms.
Al: If (s,v(t),s") € steps(A) and (s',v(t'),s") € steps(A), then (s,v(t+1"),s") € steps(A).

A2: If (s,v(t),s') € steps(A) and 0 < ' < ¢, then there is a state s” such that (s, v(t'),s")
and (", v(t —1'),s") are in steps(A).

Axiom A1l allows repeated time-passage steps to be combined into one step, and Axiom

A2 is a kind of converse to Al; it says that any time-passage step can be split in two.

Timed executions

A timed execution fragment of a GTA A is a finite or infinite alternating sequence a =
S0, a1, 81,0z, ... , where, the s’s are states of A and the a’s are actions (either input, output,
internal, or time-passage) of A, and (s;, a;41, si41) is a step of A for every ¢. The sequence
must begin with a state, and if it is finite must end with a state. As with the untimed
automaton model, we denote by fstate(a) the first state of the timed execution fragment
a, and if it is finite Istate(cr) denotes the last state. We denote by t-frag*(A), t-frag” (A),
t-frag(A) the sets of finite, infinite, and all timed execution fragments of A respectively.

A timed execution is a timed execution fragment beginning with a start state. Denote
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by t-exec*(A), t-exec”(A), t-exec(A) the sets of finite, infinite, and all executions of A
respectively. The concatenation of timed execution fragments is the same as for untimed
execution fragments.

If a is a timed execution fragment and a; is any discrete action in «, then we say the
time of occurrence of a; is the sum of all the reals in the time-passage actions preceding
a; in a. For a timed execution fragment a define ltime(a ), the last time of a, to be the
supremum of the sum of all the time passage actions in a.

Timed executions and timed execution fragments can be partitioned into finite, ad-
missible, and Zeno timed executions and timed execution fragments. A timed execution
(fragment) « is defined to be, finite if it is a finite sequence and ltime(a) is finite. It is
defined to be admissible if ltime(a) = oo, and it is defined to be Zeno if it is neither fi-
nite or admissible. Denote by t-frag? (A) and t-exec”(A) the sets of Zeno timed execution
fragments and timed executions of a GTA A respectively.

The timed trace of a timed execution fragment a, written ¢-trace(a ), is the pair consisting
of the sequence of visible actions of a paired with their time of occurrence and the last time
of a. More formally, if o = sg, a1, 51, a9, ... is a timed execution fragment of a GTA A. For
each a; € time-passage(A), let t; be its time of occurrence. Now let § = (aq,?1)(ag,t2) - -
be the sequence consisting of the non-time-passage actions in « paired with their time of

occurrence. Then ¢-trace(a), is defined to be the pairt

t-trace(a) = (6 | (vis(A) x RZ°), ltime(a))

If we have timed execution fragments that differ only by splitting and combing time-
passage steps, then since we have Axioms A1l and A2 there is really not much difference
between such timed executions fragments. Therefore, an equivalence relation can be defined
on timed execution fragments that says they are the same except for time-passage. More
formally, we say that one timed execution fragment « is a time-passage refinement of another
timed execution fragment o’ provided that @ and o’ are identical except for the fact that in

a, some of the time-passage steps of o’ are replaced with finite sequences of time-passage

1Recall that the symbol | denotes the projection of a sequence on a subset of the domain of its elements.
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steps, with the same initial and final states and the same total amount of time passage. We
say timed execution fragments a and o’ are time-passage equivalent if they have a common
time-passage refinement.

The definitions for parallel composition, action hiding, and action renaming also apply

to GTA.

Correctness

The correctness notion for timed automata is similar to our notion for untimed automata,
the difference being that it is based on timed traces. Thus, given two timed automata A
and B such that in(A) = in(B) and out(A) = out(B), we say A implements B if and only

if t-traces(A) C t-traces(B) which we write as A C; B.

3.1.3 Embedding results

We give specifications for a reliable transport level service using untimed automata because
the problem description does not require the use of time. However, TCP and T/TCP
use time, so we present them as timed automata. The methods we use do not allow us
to show trace inclusion between timed and untimed systems, so we cannot directly show
TCP or T/TCP implements our untimed specifications. The same issue comes up in the
work of Spggaard-Andersen et al. [35] and they use the patient operator that converts an
untimed automaton to a timed automaton by adding arbitrary time passage steps. They
then show that the timed traces of the implementation are a subset of the timed traces
of the patient specification. The patient operator and the embedding theorem which we
present below are developed in the work of Segala et al. [31] to handle these types of untimed
specification /timed implementation situations. We present their definition of the patient

operator below.

Definition 3.6 (Patient automaton)
Let A be an automaton such that {v(¢) | t € Rt} Nacts(A) = (. Then define patient(4) to
be the GTA with

1. states(patient(A)) = states(A) x RZ°
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2. start(patient(A)) = start(A) x{0}

3. eat(patient(A)) = ext(A) U{v(t) |t € R*}
4. in(patient(A)) = in(A)

5. out(patient(A)) = out(A)

6. int(patient(A)) = int(A)

7. steps(patient(A)) consists of the steps

(a) {((s,1),a,(s',0)) | (5,a,5) € steps(A)}

(b) {((s, 1), v (), (s, ")) [T+ = 1"} O

For technical reasons which we discuss in Chapter 4, we have two versions of the specifi-
cation (both untimed) which we call S and D. We show D implements S, and in Chapter 6
we show that the low level protocol (TCP) implements patient(D). Using the fact that TCP
implements patient(D), we would like to say that TCP also implements patient(S). In order
to say this we need the Embedding Theorem of Segala et al. [31] which states that untimed
protocol A implements untimed protocol B if and only if patient(A) implements patient(B).

Formally this is stated as:
Theorem 3.1

Let A and B be automata such that {v(t) |t € R} N (acts(A)U acts(B)) = 0. Then AC B
iff patient(A) T, patient(B). |

This concludes the introduction to the basic models for untimed and timed systems we

use in this work.

3.2 Verification Techniques

The techniques we use in this work are invariant assertions and simulation methods. These
methods are used for proving trace inclusion relationships between concurrent systems. We
describe these methods for both the untimed and timed automata models. For the untimed

setting, the presentation we give here is based on the description of the techniques given

37



e . —». ——>0) ——»>0 —b—> C
Specification
Simulaton
Relation
a

Implementation —=—>0 — 0 —»0 —L -0

Figure 3-1: Example of a simulation. The horizontal arrows represent steps of the automaton. The
labels a, b and ¢ are external actions and the unlabeled arrows represent steps generated by internal
actions.

by Se¢gaard-Andersen et al. in [35]. That description is in turn based on the work of Lynch
and Vaandrager in [24]. For the general timed automata model, we use the formalization

of simulations developed in [26] by Lynch and Vaandrager.

3.2.1 Untimed Automata

In this section we present a number simulation techniques for untimed automata. We
also present a description of auziliary variables which are used to augment the simulation

techniques.

Simulation techniques

Let A be an untimed automaton representing a concrete implementation of a protocol and
B an untimed automaton representing an abstract specification of the protocol. If A and
B have the same input and output actions, a simulation from A to B is a relation between
states of A and states of B such that certain conditions hold. The conditions that hold
depend on the which of the two simulation methods we use. The methods are forward sim-
ulations (a special case of which is a refinement mapping) and backward simulations. Two
basic conditions that must be satisfied are, first, the start states of the two automata must
be related in a certain way, and second, each step of the implementation must “simulate”
some sequence of steps in the specification. That is, for each step in the implementation,
there must exist a sequence of steps in the specification between states related by the simu-

lation relation to the pre and post-state of the implementation step, such that the sequence

38



of specification steps contains exactly the same external actions as the implementation
step. How the sequence of specification steps is chosen depends on the simulation method
we use. Figure 3-1 is illustrates the second condition. In the figure, the external action a
of the implementation is simulated by the same external action and an internal action in
the specification; the next action of the implementation is internal and is simulated by the
empty action in the specification; b is simulated by an internal action and b; and finally ¢
is simulated by c.

Below, refinement mappings, forward simulations, and backward simulations are for-
mally defined. Further results about these simulations are presented in [24]. Since we only
need to consider the reachable states of specifications and implementations, we assert in-
variants on the states of the automata to restrict the states that need to be considered. An
invariant on an automaton A is defined to be a state formula over A that is satisfied by (at
least) all the reachable states of A. Another way to say this is that an invariant on A is a
property that is true for all reachable states of A.

In the definitions below and throughout the thesis we use the following notational

convention: if R is a relation over Sy x Sy and sy € Sy, then R[sy] denotes the set

{82 - SQ | (81,82) € R}

Definition 3.7 (Refinement mapping)
Let A and B be automata with in(4) = in(B) and out(A) = out(B) and with the invariants
14 and Ip respectively. A refinement mapping from A to B, with respect to I4 and Ip, is

a function r from states(A) to states(B) that satisfies:
1. If s € start(A) then r(s) € start(B)

2. If (s,a,s") € steps(A), s, s’ € 14, and r(s) € Ip, then there exists a € frag*(B) with

fstate(a) = r(s), Istate(a) = r(s'), and trace(a) = trace(s,a,s’).

We write A <p B if there exists a refinement mapping from A to B with respect to some

invariants I4 and Ig, and if r is such a mapping we write A <p B via r. a

Theorem 3.2 (Soundness of refinement mapping)

A<pB= ALCB.
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Proof: The proof of this theorem is presented in [24]. ]
A forward simulation is a generalization of a refinement mapping and is defined below.

Instead of having a mapping, a relation is defined on the states of the specification and

implementation.

Definition 3.8 (Forward simulation)

Let A and B be automata with in(4) = in(B) and out(A) = out(B) and with the invariants

14 and Ip respectively. A forward simulation from A to B, with respect to I4 and Ip, is a

relation f over states(A) x states(B) that satisfies:

1. If s € start(A) then f[s] N start(B) # 0.

2. If (s,a,8") € steps(A), s, € I4,and u € f[s] N Ip, then there exists a € frag*(B)

with fstate(a) = u, lstate(a) € f[s'], and trace(a) = trace(s,a,s’).

We write A <g B if there exists a forward simulation form A to B with respect to some
invariants I4 and Ig, and A <p B via f if f is such a simulation. a
Theorem 3.3 (Soundness of forward simulation)

A<g B= ALCB.

Proof: The proof of this theorem is presented in [15, 22, 36]. [

The word “forward” in a forward simulation refers to the fact that a high-level sequence
of steps is constructed from any possible pre-state in a forward direction toward the set of
possible post-states.

On the other hand, in a backward simulation the steps are constructed in a backward
direction. That is, a sequence of high-level steps ending in any state related to the low-level
post-state and starting in some some state related to the low-level pre-state has to be found.
Before we define a backward simulation we make the auxiliary definition of image-finiteness.
Definition 3.9 (Image-finiteness)

A relation R over S7 X S is image-finite if for each sy € 57, R[s1] is a finite set. O

Definition 3.10 (Backward simulation)
Let A and B be automata with in(4) = in(B) and out(A) = out(B) and with the invariants
14 and Ip respectively. A backward simulation from A to B, with respect to 14 and Ip, is

a relation b over states(A) X states(B) that satisfies:
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1. If s € I4 then b[s] N I # 0.
2. If s € start(A) then b[s] N Ip C start(B).

3. If (s,a,8") € steps(A),s,s € 14, and v’ € b[s'] N Ip, then there exists a € frag*(B)

with Istate(a) = v/, fstate(a) € b[s] N Ip, and trace(a) = trace(s,a,s’).

We write A <g B if there exists a backward simulation form A to B with respect to some
invariants T4 and Ig. Furthermore, if the simulation is image-finite, we write A <;p B. If b

is a backward simulation from A to B with respect to some invariants I4 and Ig, we write

A <p B (or A <;g B when b is image-finite) via b. O

Theorem 3.4 (Soundness of backward simulation)

A<,pB= ALC B.

Proof: The proof of this theorem is presented in [24]. ]

Auxiliary variables

In [1] Abadi and Lamport show that in some instances even though it is not possible to
find a mapping from A to B, by adding appropriate auziliary variables to A to get A,y., a
refinement mapping can be found from A4,,, to B. Since A can be shown to be equivalent to
Ague (that is, to have the same set of traces), the soundness of refinement mapping implies
A implements B. There are two types of auxiliary variables, history variables and prophecy
variables. We only consider history variables in this work. History variables are allowed to
record the past history of the system. Thus, history variables are allowed in each step to be
assigned a value based on all variables in the system, but must not affect the enabledness of
actions or the changes made to the other (ordinary) variables. Rules for syntactically adding
history variables to a system are easy to define and are presented by Sggaard-Andersen et
al. in [35]. The reader is referred to [35] for more details on auxiliary variables. In [24]
and [26] history and prophecy relations are defined, and shown to be abstract versions of
history and prophecy variables.

We use the following theorem in the proofs later in this work.
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Theorem 3.5
Let A" be obtained from untimed automaton A by adding history variables, and let B be an

untimed automaton. Then, if A" <p B then A C B.

Proof: The proof of this theorem is presented in [1, 24]. The proof in [24] is presented in

terms of history relations. [ |

3.2.2 Timed simulations

Simulation between timed automata is similar to simulation between untimed automata,
except now we are concerned with timed traces.

Definition 3.11 (Timed refinement mapping)

Let A and B be general timed automata with in(4) = in(B) and out(A) = out(B) and
with the invariants 14 and Ip respectively. A timed refinement mapping from A to B, with

respect to I4 and Ip, is a function r from states(A) to states(B) that satisfies:
1. If s € start(A) then r(s) € start(B)

2. If (s,a,8") € steps(A), s,s' € I4, and r(s) € Ip, then there exists a € t-frag*(B)
with fstate(a) = r(s), Istate(a) = r(s'), and t-trace(a) = t-trace(s,a,s’).

We write A <%, B if there exists a timed refinement mapping from A to B with respect to

some invariants [4 and Ig, and if r is such a mapping we write A <k B via r. O

Theorem 3.6 (Soundness of timed refinement mapping)

A<, B= AL, B.

Proof: The proof of this theorem is presented in [26]. ]

Definition 3.12 (Timed forward simulation)
Let A and B be general timed automata with in(4) = in(B) and out(A) = out(B) and
with the invariants 14 and Ip respectively. A timed forward simulation from A to B, with

respect to I4 and Ip, is a relation f over states(A) X states(B) that satisfies:
1. If s € start(A) then f[s] N start(B) # 0.

2. If (s,a,s") € steps(A),s,s’ € I4,and u € f[s] N Ip, then there exists a € t-frag*(B)

with fstate(a) = u, lstate(a) € f[s'], and t-trace(a) = t-trace(s,a,s’).
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We write A <% B if there exists a timed forward simulation form A to B with respect to
some invariants [4 and Ig, and A <% B via f if f is such a simulation. O

Theorem 3.7 (Soundness of forward simulation)

A< B= AL, B.

Proof: The proof of this theorem is presented in [26]. ]
Definition 3.13 (Timed backward simulation)

Let A and B be general timed automata with in(4) = in(B) and out(A) = out(B) and
with the invariants I4 and Ig respectively. A timed backward simulation from A to B, with

respect to I4 and Ip, is a relation b over states(A) x states(B) that satisfies:
1. If s € I4 then b[s] N I # 0.
2. If s € start(A) then b[s] N Ip C start(B).

3. If (s,a,s") € steps(A),s,s' € I4,and u’ € b[s'] N Ip, then there exists o € t-frag* (B)

with Istate(a) = o', fstate(a) € b[s] N Ip, and t-trace(a) = t-trace(s,a,s’).

We write A <3 B if there exists a timed backward simulation form A to B with respect to
some invariants 14 and Ig. Furthermore, if the timed simulation is image-finite, we write
A SfB B. If b is a backward simulation from A to B with respect to some invariants 4
and Ig, we write A <% B (or A <!z B when b is image-finite) via b. O
Theorem 3.8 (Soundness of timed backward simulation)

A<lp B=> AL, B.

Proof: The proof of this theorem is presented in [26]. ]
As is the case for untimed simulations, history variables can be added to general timed

automata, so that a timed refinement mapping can be found. The rules for adding history

variables to general timed automata are the same as in the untimed case.

Theorem 3.9

Let A" be obtained from general timed automaton A by adding history variables, and let B

be a general timed automaton. Then, if A" <;r B then A C; B.

Proof: The proof of this the theorem follows from a proof about history relations for timed

automata in [26]. ]
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Chapter 4

The Abstract Specifications

In this chapter we present two abstract formal specifications of the user visible behavior
for reliable transport level protocols of the TCP/IP Internet layering model. The first
specification 5 is the more natural one, while the second specification D is needed for
technical reasons. We discuss the reasons for specification D in Section 4.2. As discussed
in Chapter 2, the transport level layer is responsible for reliable communication between
application programs. By reliable we mean data is not duplicated, reordered, or lost (except
in the case of crashes or aborts).

A specification of a problem should describe precisely the essential behavior we want
the protocol solving that problem to exhibit. That is, the specification is rigorous enough
to prove theorems, but is not cluttered with unnecessary details. The specification can
be viewed as a “black box” which has a user interface that gets all the inputs that the
protocol receives and sends out all the outputs that we want the protocol to produce. The
specification defines a relationship on the inputs and outputs that gives precisely the desired
behavior any protocol solving the problem should have. The user interface for TCP and
our specifications, S and D, is shown in Figure 4-1.

The user interface for TCP in the Internet standard [28], has an explicit active-open
input and separate send-msg and close inputs. We combined these actions in our specifica-

tion into the single send-msg.(open, m, close) ! action on the client side because we want to

Yopen and close are boolean, and m € Msg U null, where the set Msg is the set of all possible finite
strings over some basic message alphabet that does not include the special symbol null.
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allow for the situation where the client side user opens the connection, sends just one mes-
sage, and closes immediately. The interface where the actions are combined facilitates such
a transaction without losing any of the functionality of the usual TCP interface. Braden
in [7] suggests a similar interface for T/TCP. We do not combine the three actions into one
action on the server side because that side is passive and cannot send any data until it has
formed a connection with the client. However, we combine the send-msg and close actions

to facilitate a reply message and an immediate close.

4.1 The specification S

4.1.1 Informal description of the specification S

Before we give the precise formal specification, we present an informal description of the
specification, give the intuition behind our choices, and informally explain why they work.
The specification we will present is loosely based on the specification given for the at-most-
once message delivery problem in [35].

The first important point about the specification is that it is not distributed in the true
sense even though it is presented as having a client and a server side. It is not distributed
because client side variables can be read by the server side and vice versa. In addition, there
are variables that can be written by either side. To capture the essence of at-most-once
delivery of messages, we use FIFO queues. Data is added to the back of a queue, and
removed from the front. Since the queues do not lose or duplicate data, we get the property
we want. If there is a crash, then some data can be nondeterministically removed from the
back of the queues.

The other significant feature we have to capture in our specification is that connections
may have multiple incarnations and that data sent in each incarnation must be separated.
This also means we have to capture a notion of the host being open or closed. To capture
the idea of the sides opening and forming a connection, we assign id’s from infinite sets to
the client and the server ends when they open, and then pair them to form an association.
To make sure associations are distinct, an id is never paired with more than one other id,

and each id is used only once. To guarantee that each id can only be chosen once and
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associate with only one other id, we have two infinite sets of id’s, one for the client side
(CID) and the other for the server side (S1D). We also have a set, which we call assoc, that

keeps track of the associations that have already been formed.

What we have described so far makes each incarnation unique, but it still does not
guarantee that data from different incarnations will be separated. To ensure the separation
of this data, we have two infinite arrays of FIFO queues. The queues are indexed by the id’s
of the client and server. That is, the client sends data on the queue indexed by its id, and
the server sends data on the queue indexed by its id. The array of queues that take data
from the client to the server we call queue.,, and the array of queues that take data from
the server to the client we call queues.. A host can only receive data from a queue if its
current id is associated with the id of the sender of the data, and since each id can only be
associated with one other id, a host can only receive data from a unique incarnation during
the life of that incarnation. Thus, there is no danger of receiving data from a previous

incarnation.

Associated with each queue.; and queue,. are the flags g-stat.s and ¢-stat,. respectively.
A queue’s status is dead if it has never been used to send messages, or if it has been used and
its receiving host has closed or crashed. Only queues with status 1ive can have messages
added and/or removed. Since we use id’s to indicate an open host, we use the special value
nil to indicate when a host is closed. That is, when a host has id value nil, it is closed. A
host should only close, barring a crash or an abort, when it has sent all its data (it received
a close signal from the local user) and when it has received all the data from the other
host. Here we use the fact that the specification is not distributed to have the remote host
determine when the other host has sent all its data. In the formal specification the internal
action to close the client side is set-nil.(j), where j is the value of a server side id paired
with the current client side id. Queues becomes dead when the receiving host crashes as
a matter of definition. Conceivably, the sender could still add data to a queue when the

receiver crashes, but this data can never be received, so in the specification we do not allow

it to be added.

A host may also close if it opened, but did not receive any data or form an association

and got the close signal from the user. In the formal specification the action to close in this
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send-msg(open, m, close) passive-open
g Specification S =send-msgs(m, close)
receive-msge(m) receivemsgg(m)
- recover c recoverg

Figure 4-1: The user interface for TCP/IP transport level protocols.

situation is reset-nil. A crash is represented as an input from an external source, and is
meant to indicate that something beyond the control of the specification has gone wrong.
An abort, on the other hand, is an internal action that has basically the same effects as a
crash. It is used to represent the fact that in low level implementations, a host my a decide
to abruptly close its end of the connection without receiving any external signal to do so.
This type of abrupt close usually happens in low level protocols when a host determines

that something may be wrong at the other host.

4.1.2 The formal specification S

We use the untimed automaton model described in Chapter 3 to formally present the
specification. We start by presenting the action signature, then the set of states with the
start states, and finally we present the set of steps. The steps are presented in a precondition,
effect style commonly used with I/O automata [22]. That is, the state during which an act
is enabled is given as a precondition, and the resulting state is given by the effects of the

action.

States and start states

In the specification we use the set Msg to represent the set of possible messages. That is,
the set Msg is the set of all possible strings over some basic message alphabet that does not
include the special symbol null. The symbol null indicates the absence of a message. We
also use two sets of unique identifiers (uid’s). Elements of these sets are used to uniquely

identify each incarnation. The client side uses a set called CID and the server side uses a set
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called SID. These sets can be arbitrary, but they must be infinite and they cannot contain

the special value nil. Elements of CID and SID are used to index the infinite arrays of

queues queue.s and queues. respectively. They are also used to index the array of flags

g-stat.; and ¢-stats. respectively. The first table below summarizes the type definitions,

and the other two tables describe all the variables we use, and also has the initial value of

each.

Type | Description

Msg The set of all possible strings over some basic message alphabet that does not include the
special symbol null.
CiD An infinite set that does not include the special value nil.
SID An infinite set that does not include the special value nil.
| Variable | Type | Initially Description
i, CID U {nil} nil A unique identifier for the client side of an
association pair.
ids SID U {nil} nil A unique identifier for the server side of an
association pair.
choose-sid | Bool false A flag that is set to true when the server re-
ceives the signal to open. It enables the server
to choose an 1d, and it is set to false after the
id is chosen.
mode, {active, inactive} | inactive The value active indicates that the client
has received the signal to open, and inactive
indicates that the client received the close
signal or is in the initial state.
modes {active, inactive} | inactive Symmetric to mode..
used-1d, 201D [} Set of id’s already used by the client side.
used-ud; 251D [} Set of id’s already used by the server side.
quene s an array indexed by | Vi€ CID, An infinite array of FIFO queues. Queues
CID, of Msg* queune, (i) = ¢ | from this array hold messages sent from the
client side.
queues, an array indexed by | V j € SID, An infinite array of FIFO queues. Queues
SID, of Msg* queune, (j) = € | from this array hold messages sent from the
server side.
g-stat.s an array indexed by Yie CID, An infinite array of flags. Each flag indicates
CID, of {dead, live} | queue, () = | the status of the element of quewue.s with the
dead same index. Data can only be placed on or
received from the queue if the flag is 1ive.
g-stats, an array indexed by Y jeSID, An infinite array of flags. Each flag indicates
SID, of {dead,1live} | queue, (j) = | the status of the element of queues, with the
dead same index. Data can only be placed on or
received from the queue if the flag is 1ive.

49




| Variable | Type | Initially | Description

assoc 9(CIDX5ID) ] A set of pairs of ¢d.’s and id,’s that contains
each association formed between client and
server.

rec. Bool false True if and only if the client side has crashed
and not yet recovered.

Tecs Bool false Symmetric to rec..

abrt. Bool false True if and only if the client side has aborted
and not yet shut down.

abri, Bool false Symmetric to abri..

We also define two derived variables. These variables, live-¢.; and live-q,., are sets that
contain the indices of members of ¢-stat., and g-stat,. respectively that have the value 1live
in a given state.

We use a dot (.) to refer to the value of variable in a particular state. For example,
w.mode, = active means that variable mode, has the value active in state w. If we do not

explicitly note the state, we mean the value of the variable in any state.

w.live-q,., = {i | u.q-stat (i) = live Ai € CID}

w.live-q,. = {i | u.q-stat,(j) = live Aj € SID}.

Action signature

Input: Internal:
send-msg. (open, m, close), choose-server-id(j), j € SID
m € Msg U{null}, open, close € Bool make-assoc(i,j}, i € CID, j € SID
crash, set-nil.(j)
passive-open set-nils (%)
send-msgs (m, close), reset-nil,
m € Msg U{null}, close € Bool reset-nil;
crashg abort,
abori,
Output: shut-down,
receive-msg:.(m) m € Msg shut-down,
receive-msgs(m) m € Msg lose.(I)
recover, loses (1)
Tecovers
Steps

The steps of the automaton for the specification, 5, are shown in Figures 4-2 and 4-3. In

the specification, if a side has crashed or aborted, then the actions for that side, except the
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ones having to do with crashes or aborts should be disabled. Thus, in the steps of 5, most
of the client side actions have as a precondition or as a condition on the effect clause that

=(rec. V abrt.). On the server the symmetric condition is =(rec, V abrt;).

When the send-msg.(open, m, close) action is received, there are several possibilities.
If open is true and the client is not sending or receiving messages, that is, id. is nil, then
the client side opens by choosing a new id. for its half of the association pair. We use
the notation :€ for assigning a variable a arbitrarily chosen element of a set. Once that
id is chosen, it is added to the set used-id. so that it will not be chosen again. Next a
queue is activated to send data from the client to the server for this incarnation by setting
g-stat.s(id.) to live. To indicate that the user can send data, mode,. is set to active. If
the m in send-msg.(open, m, close) is not null and the user can still send data (mode. =
active), then the message is added to the back of queue.s(id.) if it is 1ive. This queue
is the unique queue for messages associated with id.. If close is true, then mode, is set to

inactive.

On the server side, the passive-open, choose-server-id(j), and send-msgs(m, close) ac-
tions combine to do what is essentially the server side equivalent of what the send-msg. (open,

m, close) action does on the client side.

The passive-open input indicates that the server side is now able to form a connection
with an open client side. However, because in some low level protocols the server does not
actually choose an id until it receives a message from the client, in the specification the
server does not choose an id in the passive-open action. Instead, it is enabled to choose one
after the action is completed. When the server side receives this input, if it is not currently
sending or receiving messages, that is, ids is nil, it enables the choosing of an id by setting
the choose-sid flag to true, and it sets mode; to active to indicate that the server side

user may send data.

In the internal action choose-server-id(j), the server nondeterministically chooses an id
j from SID that has not already been used by the server side. This id is assigned to ids,
and is added to the set of used server id’s. The queue indexed by j is also made live.

In the send-msgs(m, close) action, if m # null, it is added to the back of the queue

indexed by the current id of the server. If close is true, mode, is set to inactive to indicate
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send-msg. (open, m, close)
Eff: if —(rec, V abrt,) then
if open A id. = nil then
id. :€ CID \ used-id.
used-id, = used-id. U {id.}
mode, := active
g-stats(id,) := live
if mode, = active A m # null A
g-stat.s(id.) = live then
queunes(id,) == quenes(id.)-m
if close then mode, := inactive

make-assoc(i,j)
Pre: i € used-id. N j € used-ids N\

Yk (i,k) & assoc AV 1 (1) & assoc
Eff: assoc := assoc U {(i,5)}

receive-msg(m)
Pre: —(rec. V abrt;) A
g-stats.(j) = live A (id.,j) € assoc A
quenes.(j) # € A head(queuesc(j)) = m
Eff: queuesc(j) := tail(queneo(5))

set-nil.(j)
Pre: —(rec. V abri, )A
id. #nil A mode, = inactive A
(id.,j) € assoc A queue, (j) =€ A
(modes = inactive V id; # j)
Eff: id, := nil
g-stats.(j) ‘= dead

reset-nil,
Pre: —(rec. V abrt;) A

id, # nil A mode, = inactive A

V j(ide, j) & assoc A queue, (id,) = ¢
Eff: id, := nil

g-stats(id,.) := dead

Passive-open
Eff: if —(recs V abrts) then
if 7d, = nil then
choose-sid := true
mode, := active

choose-server-id(j)
Pre: choose-sid = true A j € SID \ used-id;
Eff: choose-sid:= false

ds == j

used-id; := used-id; U {j}

g-stats.(j) = live

send-msgs (m, close)
Eff: if —(recs V abrts) then
if mode; = active A'm # null A
g-stats.(ids) = live then
queneg(ids) = queuesc(ids)-m
if close then mode; := inactive

receive-msgs (m)
Pre: —(recs V abrits) A
g-stat.s(i) = live A (4, id;) € assoc A
quenes (1) # € A head(queness(i)) = m
Eff: queue. () := tail(queune (7))

set-nils (%)
Pre: —(recs V abris)A
ids #nil A modes; = inactive A
(4,ids) € assoc A queue, (i) = € A
(mode, = inactive Vid, # i)
Eff: id, := nil
g-stat.s (i) := dead

reset-nil,
Pre: —(recs V abrits) A

ids # nil A mode; = inactive A

YV i(i,ids) € assoc A queue, (ids) = ¢
Eff: id, := nil

g-stats.(ids) := dead

Figure 4-2: Steps of the specification S. The client side actions are on the left and the server side
actions are on the right.
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crash,
Eff: if ¢d. # nil then
rec. := true
if 3js.t. (ide,j) € assoc then
YV jst(ide,j) € assoc,
YV jst(ide,j) € assoc,
g-stat,.(j) = dead

abort,
Pre: id, #nil
Eff: abri. := true
if 3js.t. (ide,j) € assoc then
YV jst(ide,j) € assoc,
queneg.(j) = ¢
YV jst(ide,j) € assoc,
g-stats.(j) ‘= dead

lose.(T)
Pre: (rec. V abrit,) A
I € suffizes(queue.s(id,.))
Eff: queue.s(id.) := delete(quene 5(id.), I)

recover,

Pre: rec.

Eff: rec. := false
mode, := inactive

ifV j(id., j) & assoc A queue, (id.) = ¢
then optionally ¢-stat.s(id.) := dead
id, == nil

shut-down,

Pre: abrit.
Eff: abrt, := false
mode, := inactive

ifV j(id., j) & assoc A queue, (id.) = ¢
then optionally ¢-stat.s(id.) := dead
id, == nil

crashg
Eff: if ¢d; #nil V mode; = active then
recs := true
if 3is.t. (4,ids) € assoc then
Vi st.(i,ids) € assoc,
queues(i) == €
Vi st.(i,ids) € assoc,
g-stats(7) := dead

abori,
Pre: ids; #nilV mode; = active
Eff: abri, := true
if 3¢s.t. (4,ids) € assoc then
Vi st.(i,ids) € assoc,
queunes(i) == €
Vi st.(i,ids) € assoc,
g-stat.s (i) := dead

loses (T)
Pre: (recs V abrts) A
I € suffizes(queues.(ids))
Eff: queues.(ids) := delete(queune . (ids), I)

TeCOVETs

Pre: recg

Eff: rec; := false
mode, := inactive

itV i(i,id,) € assoc A queune, (ids) = ¢
then optionally ¢-stats.(ids) := dead
id, ;= nil

shut-down,

Pre: abri,
Eff: abrt, := false
mode, := inactive

itV i(i,id,) € assoc A queune,, (ids) = ¢
then optionally ¢-stats.(ids) := dead
id, ;= nil

Figure 4-3: The rest of the steps of the specification S. Client side actions are on the left and
server side actions are on the right.
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that the server side user has stopped sending messages.

An association is formed when the internal action make-assoc(i,j) is performed. The
precondition for the action states that 7 and 7 must be in the set of id’s used by the client
and server respectively, and that neither ¢ nor j has formed any other associations. Under
normal conditions, the pair (7, ) is the current value of id. and id,. However, when there
is a crash and recovery on either side, there may be other types of pairs of id’s that can
form an association, so we allow the choice to be made nondeterministically. Even though

this action is shown on the client side in Figure 4-2, it is not a client or server side action.

The action receive-msg.(m) is enabled if there is data on queues.(j) to be passed to the
user and an association exists between id. and j. The precondition guarantees that during
any incarnation the client can only receive data from the queue for that incarnation. The

action receive-msg,(m) is symmetric.

The action set-nil.(j) sets id. to nil when the client has stopped sending and receiving
messages. The condition “mode, = inactive” checks that the client has stopped sending
data and “(mode;, = inactive V ids # j) A queue, (j) = ¢’ checks that the server has
stopped sending data and that the client has received all the data sent for that connection.

The queue indexed by id. is also flagged as dead. The action set-nily(¢) is symmetric.

Internal actions reset-nil. and reset-nil; set id. and id, respectively to nil if the re-
spective sides receive open and close signals without receiving any data and before the id’s

become part of an association pair.

The input action crash., models crashes on the client side and causes rec. to be set to
true, which means the client is in recovery mode, and messages can get lost. We do not
want this action to have any effect if the client is closed, hence, the condition in the effect
clause. For all queues from which the client can receive data, the crash. action sets these
queues to dead and all the messages are deleted. The messages are deleted because after the
crash, the client must start a new incarnation, so messages from the previous incarnations
are no longer valid. Invariant 4.1, which is defined and proved in the next section, states
that there is at most one queue from which the client can receive data in any given state.
On the server side crash; is not quite symmetric because the server can be open and id; is

nil. However, if the server is open, either id; # nil or mode, = active.
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The abort. action can be thought of as a client-controlled crash. It allows the client
side to immediately abort its side of the connection. That is, it allows the client to close
without making sure all the data it sent was delivered or that it received all the data sent
to it. This action is necessary because in the low level protocols we want to verify, a host
can abort its end of the connection due to conditions that are not based on any external
actions. In this action abri. is set to true, which means the client can lose messages, and
also enables the shut-down,. action. The inclusion of the abort actions in the specification
means that the specification does not have the liveness property that barring a crash,
messages are eventually delivered. However, in this work we do not verify liveness properties.
Furthermore, the low level protocols we study can technically also keep aborting connections
without ever delivering any messages. The actions aborts is symmetric to abort. except for

the precondition.

The action lose.(I) may occur after a crash or abort and before recovery or shut down on
the client side. [ is a set of indices from the queue s(id.). The suffizes of a queue is the set
of sets of indices that start from any index j in the queue and includes all the other indices
greater than j, that is, sets of consecutive indices at the end of the queue, and dom(queue)
is the set of indices of queue. The function delete(queue, I) deletes messages with indices
in I from dom(queue). More formally, for any queue g we define dom(q), suffizes(q), and
delete(q,1) as follows.

dom(q) £ {il1 <i<|ql}
suffizes(q) 2 {{ilj < i < |q|}0 < j < q|}

delete(q,I) £ (q[i] | i € dom(q) Ni ¢ I)

FElements are deleted form the back of queue.s(id.) because the server may still receive
messages from this queue, but once a message gets lost because of the crash, no message

after it may be delivered. On the server side loses([) is symmetric.

The actions recover. and recoverg signal that the client or server respectively has recov-
ered from a crash, and their effect is to reset variables to values that allow a new connection

to be opened. Also if the queue that is indexed by the current id of the host is empty and
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that id is not part of any association pair, then that queue can no longer be used to send
or receive data, so its status is made dead.

The actions shut-down, and shut-down, are essentially internal versions of the recover,
and recover, actions respectively. They are enabled after the abort. and abort; actions

respectively.

Invariants

We define three invariants for the specification 5. Recall that an invariant of 5 is a property
that is true of all reachable states of 5. We use the standard inductive technique for proving
the invariants. That is, we show that the invariants hold for the start states and then show
that for every step (u,a,u’) of S, if the invariant holds in state u then it also holds in state
u'. The state

The first invariant says that each client id may only be be paired with one server id and
vice versa.

Invariant 4.1

1. If (h,j) € assoc A (i,7) € assoc then h = 1.
2. If (¢,7) € assoc A (i,k) € assoc then j = k.

Proof: The proofis straightforward, by induction, from the description of the initial values
of the variables of S and of steps(.S). |

The next invariant says that all queues that have status dead are empty.
Invariant 4.2
1. Vi € CID, if g-stat, (i) = dead then queue ,(i) = €.

2.V j € SID,if g-stat,(j) = dead then queue, . (j) = €.

Proof: The proofis straightforward, by induction, from the description of the initial values
of the variables of S and of steps(.S). |

The third invariant says that the number of 1ive queues is always finite.

Invariant 4.3

|live-q. | and |live-q,,.| are both finite.
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Proof: The proof is by induction. We only show the proof for live-¢.,(¢) since the proof
for live-q,.(7) is symmetric. The base case is the initial state ug of S where for all ¢ € CID,
ug.g-stat (i) = dead. Thus, |ug.live-q,;] = 0. For the inductive step we assume the
invariant holds for state u; and show that it holds for state ugyi. By inspection of the
steps of S we see that for any step at most one element of ¢-stat,, is assigned the flag live.

Thus, |ug4q.live-q.| is bigger than |ug.live-q. | by at most 1, so it is still finite. ]

Invariant Ig is the conjunction of Invariants 4.1, 4.2, and 4.3.

4.2 Delayed-Decision Specification D

In our specification .5, messages in the system can be lost, but only if rec. or rec, or abrt. or
abrt, is true, that is, we can only lose messages between a crash and a recovery or between
an abort and a shut down. In some low-level protocols, whether a message gets lost or not
may not be decided until after the host has recovered from the crash or abort. This decision
is dependent on race conditions that may exist on the channels. For example, in TCP if the
client places a message on the channel and then crashes there are several possible scenarios
of what could happen to that message. If all copies of the message get dropped by the
channel, then it is lost. If it does not get dropped by the channel it may still be lost if the
client side recovers and tries to start a new connection. Since the channels are not FIFO,
this attempt at the new connection might arrive at the server before the message and cause
the server to abort the connection. However, if the message arrives at the server before any
other messages it is not lost.

A similar situation comes up in the work of Sggaard-Andersen et al. [35] and they de-
velop the idea of a Delayed-Decision Specification. They then present a backward simulation
from the Delayed-Decision Specification to their other specification which is similar to our
specification S. We use this idea of a Delayed-Decision Specification, and our specification
D is similar to the specification in their work. The need for the backward simulation is
suggested by the postponing of nondeterministic choices in the implementations. We show
a backward simulation from D to S and then show a refinement mapping from the im-

plementation to D. While we could have done the backward simulation directly from the
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implementation to S, we use D as an intermediate step because D is very similar to § so
the backward simulation from it to 5" is much simpler than one from the implementation to
S would be. Also backward simulations are generally much more complicated than refine-
ment mappings, so our two step simulation turns out to be easier than a direct backward
simulation would be.

The Delayed-Decision Specification D looks very much like 5, but instead of deleting
messages between a crash and a recovery or between an abort and a shut down, D marks
these messages. Marked messages can then be dropped at any time. Because only marked
messages can be dropped, only messages that were in the system at the time of a crash or

an abort can be deleted. Marked messages can still be delivered to users.

4.2.1 The automaton D

We define formally the automaton for the specification D. The specification is very similar
to that of 5 with the exception that messages are tagged, lose actions are replaced by drop

actions, and we have the additional internal actions that mark messages.

States and start states

The marks that we put on messages are taken from the following set:

Flag = {ok, marked}

We show only the states that differ from the states of 5. All other states are the same and

have the same initial values.

| Variable | Type | Initially

Description |

quene s an array indexed by Yie CID, An infinite array of FIFO queues. Queues
CID, of (Msg x Flag)"| queue, (i) = ¢ | from this array hold messages and their
tags sent from the client side. A tag of ok
means the message cannot get dropped,
while a tag of marked means the message
may get dropped.

queue, an array indexed by Y jeSID, Symmetric to queue.s with messages sent
SID, of (Msg x Flag)™| queue,.(j) = ¢ | by the server.

58



We use the normal record notation to extract components of a value or variable. For
instance, for an element e of queue.,(7), e.flag and e.msg extract the flag and message
respectively from that element. We say an element e of queue s(i) or queues.(7) is marked
if e.flag = marked.

The derived variables live-g.; and live-g,. are defined for D exactly as they are defined
for 5. We also have an additional derived variable for D. Let ¢p be a queue in the set (Msg
x Flag)*, that is, ¢p has the same type as queues in D. Then define #ok(¢p) to be the
number of elements e of gp with e.flag = ok. These derived variables are used in showing

the simulation from D to §.

Action signature of D

The user interface of D is the same as that of S. D has the additional internal actions
mark. (1), marks (1), drop. (I, k), and drops (I, ), and does not have the lose.(I) and lose,(I)

actions.

Steps

The steps of D that are not in 5 or are different are shown in Figure 4-4. The step rule
for mark. (1) and mark,(I) uses a function mark which is intended to mark messages with

indices in I. Formally, for any queue ¢ € (Msg x Flag)* and any set I C dom(q), define:

mark(q, 1) 2 {(if i € I then (q[i].msg,marked) else ¢[i]) | i € dom(q))

The steps for D are mostly the same as the steps for 5 expect for a few changes and
additions. The first change is that the messages are tagged, so when messages come in
from the users they are tagged with ok, and before they get delivered the tags are removed.
Note that even messages tagged with marked can be delivered. The other change is that
instead of having lose.(1), loses(I) actions that may delete messages between a crash and
a recovery or an abort and a shut down, there are now mark.(I), drop.(1,k), marks(I),
and drops(I,l) actions. Messages can get marked only between a crash and recovery or

between an abort and shut down, but can be dropped at anytime. The parameters k& and [
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send-msg. (open, m, close) send-msgs (m, close)

Eff: if —(rec. V abrt.) then Eff: if —(recs V abrts) then
if open A id. = nil then if mode; = active A m # null A
id. € CID\ used-id. g-statsc(ids) = live then
used-id, = used-id. U {id.} quenes.(ids) = quenesc(ids)-(m, ok)
mode, := active if close then mode; := inactive

g-stat.s(id,) := live
if mode, = activeA m # null A
g-stat.s(id.) = live then
queuecs(id,) = queunes(id.)-(m, ok)

if close then mode, := inactive
receive-msg(m) receive-msgs (m)
Pre: —(rec, V abri;)A Pre: —(recs V abrts)A
gucuc, () # A gueue, (i) # € A
g-statsc(j) = live A (id., j) € assoc A g-stat.s(7) = live A (i,id;) € assoc A
(head(queuesc(j))).msg = m (head(queue s(7))).msg = m
Eff: queues.(j) := tail(queunesc(j)) Eff: queue (i) := tail(queune (7))
mark.(I) marks(I)
Pre: (rec. V abrt.) A Pre: (recs V abris) A
I esuffires(queune.s(id.)) I € suffives(queunes.(ids))
Eff: queue s(id;) := mark(quenes(id.), I) Eff: queues.(ids) := mark(queues.(ids), I)
drop. (1, k) drops(1,1)
Pre: queue (k) = live A Pre: queues () = live A
I € suffizes(queunecs(k)) A I € suffizes(quenes.(1)) A
Vi €1 quene.s(k)[7].flag = marked Vi €1 queues.(I)[7].flag = marked
Eff: queue s(k) := delete(quene.s(k), I) Eff: queues () := delete(queunes(!), I)

Figure 4-4: Steps of the Delayed-Decision Specification D that differ from the steps of S.

in the drop actions allow nondeterminism in the queues from which messages get dropped.
Because messages can only be marked between a crash and a recovery or an abort and a
shut down, only messages from the queue indexed by the current id of the client or server
can be marked. However, because marked messages can be deleted anytime, the queue from
which the message is deleted may not be the queue indexed by the current id. Furthermore,
there may be several 1ive queues with marked messages. Therefore, the extra parameters
in the drop.(I,k) and drops(I,l) actions allow nondeterministic choice of the queue from

which to drop the message.
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4.2.2 The correctness of D

In this section we prove the correctness of D with respect to 5. In this work we use s to
refer to states of the low level protocol and u to refer to steps of the higher level abstract

specification. For this proof s refers to states of D and u to states of 5.

Invariants

Invariants 4.1, 4.2, and 4.3 which we proved for the states of 5" in Section 4.1.2 also hold for
the states of D. That is, the properties stated below are true for all reachable states of D.
Invariant 4.4

1. If (h,j) € assoc A (i,7) € assoc then h = 1.

2. If (¢,7) € assoc A (i,k) € assoc then j = k.
Proof: The proofis straightforward, by induction, from the description of the initial values
of the variables of S and of steps(D). |
Invariant 4.5

1. Vi € CID, if ¢-stat (i) = dead then queue (i) = «.

2.V j € SID,if g-stat, (j) = dead then queue,.(j) = €.
Proof: The proofis straightforward, by induction, from the description of the initial values
of the variables of D and of steps(D). |
Invariant 4.6

|live-q.| and |live-¢s| are both finite.

Proof: The proof is the same as the proof for Invariant 4.3. [ |

The Invariant Ip is the conjunction of Invariants 4.4, 4.5 and 4.6.

The simulation

We prove the correctness of D by showing an image finite backward simulation from D
to S. The proof is very similar to the one given in [35], and most of the definitions and

lemmas are the same. The main differences are that we have multiple queues going in both
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directions in both S and D instead of the single queues for each in [35], and we do not have
the status variable which is a significant part of the complexity of the simulation in [35].
Before we show the backward simulation we need a few preliminary definitions and lemmas.
Let gs be in the set Msg*, that is, gg has the same type as queues in 5.

Definition 4.1 (Explanation)

Define an explanation from gs to gp to be any mapping f : dom(qs) — dom(qp) that

satisfies the following four conditions:
1. fis total
2. fis strictly increasing
3. Vi € dom(qp)\ rng(f): qp[i].flag = marked
4. Y i € dom(qs): qp[f(i)].msg = ¢s[i] O

Intuitively this means if there exists an explanation from ¢s to ¢p, then ¢s can be obtained
from gp by first deleting some of the marked elements of ¢p and then removing the flags
from the remaining elements.

Lemma 4.1

If fis an explanation from qs to qp, then |qs| < |gp|.

Proof: Suppose |gs| > |gp|. Then it is impossible to find a mapping from dom(qs) to

dom(qp) that is total and strictly increasing, thus conditions 1 and 2 are violated, hence

lgs| < lap|. u

Lemma 4.2

If f is an explanation from qs to qp, then |qs| > #ok(qp).

Proof: Suppose |gs| < #0k(gp). Then conditions 1 and 2 of Definition 4.1 give us that
|rng(f)| = |gs| < #0k(gp), so there must exist indices ¢ in gp such ¢p[i].flag = ok and
i ¢ rng(f). However, this contradicts condition 3 of Definition 4.1, and therefore we can

conclude that |gs| > #0k(¢p). [

We are now ready to define Bpg over states(D) x states(S). See [35] for a discussion and

some intuition on how to define backward simulations in general.
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Definition 4.2 (Image-Finite Backward Simulation from D to S)
If s € states(D) and u € states(S), then define that (s,u) € Bpg if the following conditions
hold:

1. u.assoc = s.assoc
2. u.choose-sid = s.choose-sid

3. u.used-id. = s.used-id,
w.used-id, = s.used-id;

4. u.rec. = s.rec.
U.TECs = S.TEC

5. u.abrt. = s.abrt,
w.abrt, = s.abri

6. u.id, = s.id,
u.idy = s.id,

7. u.mode, = s.mode,
w.mode; = s.mode,

8. Vi € CID u.q-stat, (1) = s.q-stat (1)
V' j € S8ID u.g-stat, (j) = s.q-stat,.(j)

9. (Vi € CID) (3 explanation f; from u.queue, (i) to s.queue (7))
(Vj € S5ID) (3 explanation g; from u.queue, (j) to s.queue,.(j))

Each of the variables in 5 other than the queues is equal to its counterpart in D. In the
proof below when we write u.variables = s.variables we mean the eight sets of equations of
items one through eight in Definition 4.2.

We now state some preliminary lemmas that simplify the main proof. Let mazqueue be
a function of type: (Msg x Flag)* — Msg* such that for any ¢p, mazqueue(qp) is defined

to be the queue ¢g obtained by removing all flag components from ¢gp. Formally, we have

qs = mazqueue(qp) iff |gs| = |gp| and Vi € dom(qp): qs[i] = qpli].msg.

Lemma 4.3

The identity mapping f from dom(gqp) is an explanation from mazqueue(qp) to qp.

Proof: Conditions 1 and 2 of Definition 4.1 are satisfied since the identity mapping is both
total and strictly increasing. Condition 3 is also satisfied since rng(f) = dom(gp). Finally

from the definition of mazqueue we directly see that condition 4 is also satisfied. [ |
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Lemma 4.4

Let s € states(D). Then there exists a state u € states(S) such that (s,u) € Bps.

Proof: Let ¢s, = mazqueue(s.queue.s(i)) ¥V ¢ € CID, and q}gj = mazqueue(s.queues.(j))
V j € SID. Then by Lemma 4.3 there exists an explanation from g¢g, to s.queue, (¢) and
an explanation from q}% to s.queue, (7). Thus, if we have u.queue (i) = qs,, u.queue . (j)
= q}gj, and for all the other variables w.variables = s.variables, this gives a state u such that

(s,u) € Bps. |

Lemma 4.5

D <;g S via Bps with respect to Ip and Ig.

Proof: We first show that Bpg is image-finite and then check the three conditions of Defi-
nition 3.10 which we call non-emptiness, base case, and inductive case respectively.

Let s be an arbitrary state of D. We must show that there exists only finitely many states
w of S such that (s,u) € Bps. All the variables in s except for the queues are equal to their
counterparts in u, so these variables cannot cause infinitely many states. It now remains to
be shown that for a fixed but arbitrary s, that Vi € CID and V j € SID, s.queue,(¢) and
s.queue (j) can only take on finitely many values. We only show this for s.queue_(7) as the
proof for s.queue, () is symmetric. From Invariant 4.5 we know that if s.¢-stat (i) is dead,
then s.queue, (1) is empty. Thus, even though there are infinitely many of these queues,
since they all have only one possible value, these queues do not cause infinitely many states.
From Invariant 4.6 we know that there are finitely many s.queue (i) such that s.¢-stat . (7)
is 1ive. For each such queue, Lemma 4.1 gives us that |u.queue 4(i)| < |s.queue 4(7)|, thus,
there are only a finite number of lengths to choose from (s.queue (i) is finite). Also, there
exists only a finite number of mappings (explanations) between two finite domains. Finally,
condition 4 of Definition 4.1 gives us that values of the elements of the possible u.queue (7)
are uniquely determined by s.queue . (i) and the (finitely many) explanations. Hence, each
u.queue 4(1) can only take on finitely many values given s, and since there are only a finite
number of these queues, there are only finitely many states u. [ |
Non-emptiness

Non-emptiness follows immediately from Lemma 4.4
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Base Case
Let 5o be the (unique) start state of D. Then if (so,u) € Bpg, then u.variables = s.variables

and u.queue, (1) = u.queue, (j) = €. Thus, u is the unique start state of 9.

Inductive Case

Assume (s,a,s’) € steps(D) and let v’ be an arbitrary state of §' such that (s',u') € Bps.
Below we consider cases based on @ and for each case we define a finite execution fragment
a of § with Istate(a) = W/, (s, fstate(a)) € Bpg, and trace(a) = trace(a). In order to show
(s, fstate(a)) € Bpg, we need to show that the value of the state variables for state s and
fstate(a) = u are related according to our definition of Bps. In most of the cases below «
= (u,a,u’), and for these cases it is trivially true that for a state u such that (s,u) € Bps,
u.variables = s.variables. The interesting aspect of showing (s,u) € Bpg is showing that

we can find valid explanations from the queues in state u to the queues in state s.

a = send-msg.(open, m, close).

In this case we show that we can define w such that (u, send-msg.(open, m, close), u')
€ steps(S) and (s,u) € Bps. Clearly the step has the right trace. This step has eight
permutations depending on whether open and close are true or false and whether m is null
or not. The eight permutations gives eight subcases, but the only non-trivial subcases are
the ones where m # null, and in those subcases where s'.queue  (s'.id.) = s.queue 4(s.id.)
-(m, ok). For all other cases, the queues do not change, so the explanations that we know
exist because (s',u’) € Bpg are also explanations for (s, u), and w.variables = s.variables. In
all the non-trivial subcases we also have u.variables = s.variables, and the same construction

of the explanations works for all of them. We show this construction below.

Define u.queue  (u.id.) = init(v' .queue s(u'.id.)). We only need to find an explanation
from w.queue  (u.id.) to s.queue . (s.id.). (Since this action does not change u.queue (j)
nor s.queue, (j) ¥V j € SID nor u.queue (i) nor s.queue, (1) Vi € CID AN i # s.id,,
the explanations that exist between these queues in states s’ and u' are also explana-
tions between the same queues in states s and w.) Let f;'dc be an explanation from
u' queue (u'.id;) to s'.queue (s'.id;). Such an explanation exists since (s',u') € Bpg.

Since last(s’.queue  (s'.id.)).flag = ok, we have from Lemma 4.2 and the definition of an
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explanation that f;.dc(maxz’dac(u’.queuecs(u’.z'dc))) = mazidz(s'.queue ,(s'.id.)). Then

fia, = fig | dom(u.queue s(u.id.))

is clearly an explanation from u.queue  (u.id.) to s.queue (s.id.).

a = passive-open, choose-server-id(j).

For this case it is easy to see we can define u such that (u, passive-open, u') and (u,
choose-server-id(j), u') respectively € steps(S) and (s,u) € Bps. Such a state u has
u.variables = s.variables, and since the actions do not affect the elements of any queues, all

the explanations for (s',u') € Bpg are explanations for (s, u).

a = send-msgs(m, close).

For this case a = (u, send-msgs, u'). This action has four permutations and is similar to
the case for send-msg.(open, m, close). Like that case, the non-trivial subcases occur when
s.queue . (s.ids) changes as a result of a and u.queue  (u.ids) changes as result of a. We

can find an explanation

9id. = glz'ds [ dom(u.queues.(u.id,))

from u.queue, (u.ids) to s.queue (s.id,), where glz'd is the explanation we know exists from

u queue (u'.ids) to s'.queue  (s'.idy).

a = make-assoc(1,j).

This is another case where the action does not affect the queues, so it is easy to define u
such that o = (u, make-assoc(i,j), v') € steps(S) and (s,u) € Bps. Clearly the step has
the right trace (the empty trace). We let u.variables = s.variables and the explanations

that work from state u’ to s’ works from state u to state s.

a = receive-msg.(m).

For this case a = (u, receive-msg.(m),u’). We need to show that there is a state u such that
(s,u) € Bps. Let u.variables = s.variables. We only need to show the explanation from
u.queue,.(j) to s.queue () since all other queues are unaffected by the action. Let fI be

an explanation from u’.queue . (j) to s’.queue, (7). Then we can define f; in the following

66



way.

fi =+ 1) = (fi() + D)]i € dom(f)] U [1 1]

Intuitively f; relates the same elements in u.queue, (j) and s.queue, (j) that were related
by f]’ in «'.queue, (j) and ¢ .queue, () (these elements all have their indices increased by
one because of the new elements at the head of the queues), and relates the messages m

([1 — 1]). It is easy to see that f; is an explanation.

a = receive-msgs(m).

This case is symmetric to the case for receive-msg.(m).

a = set-nil.(j), reset-nil., recover., shut-down,.

For all theses cases a = (u,a,u’). In the state u such that (u,s) € Bps, u.variables =
s.variables and the explanations from queues of u’ to queues of s" are valid from u to s since

the actions do not affect the contents of any queues.

a = set-nily(i), reset-nils, recovers, shut-down.

These cases are symmetric to the cases for set-nil.(j), reset-nil., recover., and shut-down,

respectively.

a = crash,.

We can define u such (u, crash., u') € steps(S) and (s,u) € Bps. For this step u.variables
= s.variables and clearly the explanations from u’.queue, (i) to s'.queue ,(i) are also ex-
planations from u.queue, (¢) to s.queue (i) ¥V i € CID, and also the explanations from
u' . queuey (k) to ¢ .queue, (k) are explanations for u.queue, (k) to s.queue, (k) ¥V k €
SID A k # jsince the action does not affect these queues. We now define u.queue, () and
show that an explanation exists to s.queue,. (7). Let u.queue, (j) = mazqueue(s.queues.(j)),
then by Lemma 4.3 the identity mapping from dom(u.queues.(j)) to dom(s.queues.(j)) is

an explanation.

a = crashs.

This case is symmetric to the case for crash,.

a = abort..

For this case we define u such that (u, abort., u') € steps(S) and (s,u) € Bps. Clearly the
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traces are the same. For this step u.variables = s.variables, and since Vi € CID the elements
of s.queue, (1) and u.queue (1) are not affected by abort., the explanations between these
queues which we know exist are explanations in states s and u. Also the explanations
from u'.queue, (k) to s'.queue . (k) are explanations for u.queue (k) to s.queue, (k) V k €
SID A k # j since the actions do not affect the elements of these queues. Therefore,
we only need to show explanations from u.queue, (j) to s.queue,.(j). Let u.queue, (7) =
mazqueue(s.queues. (7)), then by Lemma 4.3, the identity mapping from dom(u.queues (7))

to dom(s.queues.(j)) is an explanation.

a = abort,.

This case is symmetric to the case for abort,.

a = mark.(I).

In this case we can define u and I” such that (u, lose.(I'), u') € steps(S) and (s,u) € Bps.
Clearly trace(a) = trace(a). Since ¥V j € SID s.queue,.(j) is not affected by mark.(I) and
u.queue (j) is not affected by lose.(I'); and ¥V ¢ € CID A i # s.id.,s.queue (i) is not
affected by mark.(I) and u.queue (i) is not affected by lose.(I"), the explanations between
these queues which we know exist are explanation in states s and u also. Therefore, we only
need to construct an explanation from w.queue  (u.id.) to s.queue (s.id.). Let u.variables
= s.variables and u.queue  (u.id.) = mazqueue(s.queues(s.id.)); then by Lemma 4.3, the
identity mapping is an explanation from w.queue ,(u.id.) to s.queue ,(s.id.).

We now need to show that lose.(I’) is enabled from state w in 5. Since w.variables
= s.variables and mark.(I) is enabled in s, we know s.rec. = u.rec. = true, and that
I € suffizes(s.queue,,(s.id.). To define an appropriate I’ we first observe that
mazqueue(s.queue . (s.id.)) = mazqueuve(s’.queuve . (s".id.)), and since u.queue, (u.id.) =
mazqueue(s.queue 4 (s.id.)), it is easy to see we can obtain u’.queue . (u'.id.) from u.queuve . (u.id.)
by deleting some (possibly zero) elements that are in suffizes(u.queue  (u.id.)). Thus, I is

an appropriate I’, that is, I' = I.

a = marks(I).

This action is symmetric to the previous case.
a = drop.(I,k).
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The corresponding action in 9 is the empty step, i.e., (s,u’) € Bps. Since drop.(I, k) is inter-
nal the empty step has the right trace. This action only affects s.queue (%), so we only need
to an explanation from u.queue, (k) to s.queue (k). Let f] be an arbitrary explanation
form u'.queue (k) to §'.queue (k) (we know one exists because (s',u') € Bpg). I contains
the indices of the elements of s.queue (k) that were deleted in the drop.(I, k) step. Then
|dom(s'.queue.s(k))| = |dom(s.queue.s(k))\ I|. Now let h be the unique bijective, strictly
increasing mapping from dom(s’.queue.s(k)) to dom(s.queue.s(k))\ I. Informally h maps
indices of elements in s'.queue. (k) to the indices the same elements had in s.queue (k).
Define fr = hof]. To Check that f is a valid explanation from u.queue (k) to s.queue.,(k),
we check conditions 1-4 of Definition 4.1.

Conditions 1 and 2

Since f; is total and strictly increasing from dom(u’.queue (k)) to dom(s’.queue . (k)) and
h is total and strictly increasing from dom(s’.queue.s(k)) to dom(s.queue.(k))\ I, fi is
total and strictly increasing from dom(u.queue.s(k)) to dom(s.queue.s(k)).

Condition 3

We have that the dom(s.queue,(k)) \ rng(ho f]) = I U h(dom(s'.queuecs(k))\ rng(f)).
Informally, this means if an element in s.queue.s(k) is not “hit” by fi, then this is because
it was either one of the elements that are deleted in drop.(I,k) or it was not “hit” by f;.
We know that the elements in I are marked because that is a precondition for them to be
dropped. Furthermore, since f] is an explanation we know that the elements in s".queue.,(k)
not hit by f; aremarked. Now since h maps indices of elements in s".queue (k) to the indices
the same elements had in s.queue.,(k), we know that these elements in s.queue.s(k) are
also marked.

Condition 4

By the fact that f] is an explanation (and therefore satisfies condition 4) and the fact that
h maps the index of an element to the index of the same element, it directly follows that

[ satisfies condition 4.

a = drops(1,1).

This action is symmetric to the previous case.

This concludes the backward simulation proof. [ |
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Theorem 4.1
The traces of D are a subset of the traces of 5, that is, D C S.

Proof: The proof follows directly from Lemma 4.5 and the soundness of backward simula-

tions (Theorem 3.4). |
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Chapter 5

The Communication Channels

In this chapter we present the formal definitions of the communication channels used by
TCP and T/TCP with stable and unbounded counters and TCP with bounded counters.
The formal definition is meant to be an abstract model of the service provided by the IP
layer of the TCP/IP Internet layering model. We use the term “communication channels”
because the service of IP we are interested in modeling is the same as what is generally
referred to as unreliable channels in the literature [35, 21]. That is, IP receives packets from
a sender and if a packet is not dropped, it is eventually delivered to a receiver. Also IP does
not create any spurious packets nor does it corrupt packets it receives. However, packets

can be lost, duplicated and reordered.

In order for TCP with bounded counters to work correctly, a maximum segment lifetime
(MSL) must be imposed on packets placed on the channels. That is, a packet that is placed
on a channel and does not get delivered within the MSI gets dropped from the channel.
We represent the value of the MSL as pu. Therefore, the automata for these channels are
represented as GTA. For TCP and T/TCP with unbounded counters, this property of
the channel is not required for correct behavior, so the channels for these protocols are

represented as untimed automata.

In Chapter 11 where we present the impossibility result, we define a slightly different
model for channels, that includes liveness properties that we do not needed for the verifi-

cation of the protocols.
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'
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Figure 5-1: Communication channels link the client and server.

5.1 The untimed channel automaton

In this section we describe the formal model for the channels used by TCP and T/TCP with
unbounded counters. These channels are presented as untimed automata. The channels are
parameterized with a set of possible packets P. Figure 5-1 shows the two channels we use
and their user interface. Channel Ch.,(P) is for packets from the client to the server and
Chge(P) is for packets in the other direction. We only specify Che,(P) since Ch.,(P) is

exactly symmetric.

5.1.1 States and Start States

As mentioned above, Ch.s(P) is parameterized with a set of possible packets P. The channel
automaton only only has one state variable in-transit.; which is a multiset of the packets
(including duplicates) currently in the channel. We use the notation B(S) to denote a

multiset or bag of all (finite or infinite) bags with elements from a set §.

| Variable | Type | Initially | Description |
| m-transit ., | B(P) | [} | A multiset of packets. |

Action Signature

Input: Internal:
send-seges(p), p € P drope; (p), p €P
duplicate.s(p), p € P
Output:
receive-segqs(p), p € P
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send-seges(p) recetve-seges(p)
Eff: in-transit.s := tn-transit.. U {p} Pre: (p) € in-transit..
Eff: in-transit.s := tn-transit.s \{p}

dropes(p) duplicatecs(p)
Pre: (p) € in-transit.. Pre: (p) € in-transit..
Eff: in-transit.s := tn-transit.s \{p} Eff: in-transit.s := tn-transit.. U {p}

Figure 5-2: The steps of Ches(P).

5.1.2 Steps

The steps of Chs(P) are straightforward and are shown in Figure 5-2. The send-seg.,(p)
input action comes from the external user of the channel, which in this case is the client of
the TCP or T/TCP host with stable and unbounded counters. The effect of this action is to
place the packet p in the multiset in-transit.s. The complimentary action, receive-seg.s(p),
removes a single element from the multiset and passes the packet p to the user (the server
TCP or T/TCP host). The internal actions duplicate.,(p) and drop.s(p) duplicate and

remove elements of in-transit.s respectively.

5.2 The channel GTA

In this section we present the GTA for the channel automaton for TCP with bounded
counters. Again we only specify the automaton for packets for the client to the server. The
specification is very similar to the specification for Ch.,(P). Now when a packet gets placed
on the channel, it is paired with the current time (its send time) and it must get dropped
when the difference between the current time and its send time is equal to p, and it may

get dropped even if its time on the channel has not exceeded p.

5.2.1 States and Start States

Because of the maximum segment lifetime we refer to the channel for packets from the
client to the server as ;1Ch.s(P) and the channel for packets from the server to the client
as (tChse(P). The channel pCh.s(P)is also parameterized with a set of possible packets P.
The type T ranges over the nonnegative real numbers and represents time. In addition to

now that represents real time, the other state variable is in-transit.; which is a multiset of
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send-seges(p)

Eff: in-transit.. := in-transitcs U {(p, (nowes + p)} receive-sege«(p)

Pre: (p,t) € in-transit.,

dropes(p.t) Eff: in-transit.. := in-transit.s \{(p, t)}

Pre: (p,t) € in-transit.,
Eff: in-transit.. := in-transit.. \{(p,t)}

v(t) (time-passage)
Pre: ¥(p,t') € in-transits : (now +¢ < t')
Eff: now.: := now.. + ¢

duplicatec.(p,t)
Pre: (p,t) € in-transit.,
Eff: in-transit.. := in-transit.. U {(p, 1)}

Figure 5-3: The steps of ypChes(P).

the packets (including duplicates) currently in the channel, paired with their send time.

| Variable | Type | Initially | Description |
NOW .5 T 0 Real time.
in-transit,s | B(P x T) [} A multiset of packets together with the time the
packets were sent.

Action Signature

Input:

send-seges(p), p € P Internal:

dropcs(pat)a pE PandteT
duplicatecs(p,t), pEP and t €T

Output:

receive-segqs(p), p € P Time-passage:

v(t),t € RT
5.2.2 Steps

The steps of pChes(P) are are shown in Figure 5-3. The send-seg.s(p) input action
comes from the external user of the channel, which in this case is the client host for TCP
with bounded counters. The effect of this action is to place the packet p paired with a
time-stamp (now) in the multiset in-transit.s. The complimentary action, receive-seg.s(p),
removes an element from the multiset, strips off the time-stamp and passes the packet p
to the user (the server TCP host). The internal actions duplicate.(p,t) and drop.s(p,t)
duplicates and removes elements of in-transit.; respectively. The precondition on the time
passage action v(?) ensures that packets that have been in the channel for the MSL, get

dropped from in-transit..
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Chapter 6

Transmission Control Protocol

In this chapter we give the formal presentation of TCP. It is specified as a general timed
automaton (GTA). The automaton is the timed composition of four component automata,
client and server automata, and the two channel automata described in the previous chapter.
Figure 6-1 shows the composed system. In this presentation we assume the client and
server have stable and unbounded counters for sequence number generation. In Chapter 8
we discuss the necessary modifications and timing assumptions needed to make TCP work
correctly with non-stable and bounded counters.

Before we describe the TCP automaton, we show in Figure 6-2 a slightly simplified
version of the TCP finite state machine (FSM) from the Internet Standard [28]. The
simplification comes from the fact that we do not allow both sides to simultaneously try
to initiate the connection as is permitted in [28]. The FSM is not meant to capture TCP
in its entirety, but mainly to show the state changes of the client and server TCP’s. Our
formal presentation has more of the details of how the protocol works, but we show the
standard FSM here to give some intuition for reading the steps of our automata. Since the
client and server TCP’s go through a lot of the same state changes, there is not a separate
FSM for both sides. Instead, one can trace through the states of the client from open to
close, and then separately trace out states of the server from open to close on the same
FSM. The paths are not the same, but overlap in many states. They both start in closed,
but the client goes from closed to syn-sent when it receives the signal to open (active

open). This cause the client to send a SYN segment to the server. When it receives an
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Figure 6-1: The user interface for TCP

acknowlegment of its SYN segment from the server, it goes to state estb. The server on
the other hand, goes from closed to listen when it receives the signal to open (passive
open). It goes from listen to syn-rcvd when it receives the SYN segment form the client.
Receiving the SYN segment causes the server to send an acknowlegment and its own SYN
segment. The server goes to estb when it receives from the client the acknowledgment of
its SYN segment. In state estb is where data transfer occurs. After state estb they both

can take any of possible paths shown in the figure back to state closed.

6.1 The formal model

We specify the client and server as GTA 7CP. and 7CP; respectively. Even though both
client and server can send and receive data, they are not quite symmetric since the client

side always initiates communication. Figure 6-1 shows the user interfaces of both.

6.1.1 States and start states

When the variable mode. = closed this means that there is no transmission control block
(TCB) for the client side, which means all the client variables except sn. which holds the
sequence number and now. which holds the current time, are undefined. Similarly, on the
server side, when mode; = closed the TCB on the server side is also undefined. In the
start state of the client automaton 7CP,., mode. = closed, sn. = 0, now. = 0, and all the
other variables are undefined; and in the start state of the server automaton 7CP,, mode,
= closed, sn; = 0, nows = 0, and all the other variables are undefined. For both 7CP.

and TCP, we use the set Msg to represent the set of possible messages. That is, the set
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passive-open / active-open / SYN
SYN/SYN + ack close /
—

SYN + ack / ack

FIN / ack

close / FIN
close / FIN
FIN / ack
ack /
—
ack /
FIN / ack time-out

Figure 6-2:  The TCP finite state machine. Fach host begins in the closed state. Labels on
transitions show the input that caused the transition followed by the output if any.

Msg is the set of all possible strings over some basic message alphabet that does not include
the special symbol null. The symbol null indicates the absence of a message. The type T
ranges over the nonnegative real numbers and represents time, and the type N ranges over
the non-negative integers.

The first table below summarizes the type definitions. In the other tables below we
describe the variables of 7CP. and 7CP,. A check in the S column means the variable is
stable and is unaffected by crashes. As we said in the previous paragraph the non-stable
variables are undefined in the start state. However, they are initialized when when the
respective host opens. The initial values given in the tables for non stable variables, are

values given to these variables when the transmission control blocks are initialized.
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Type definitions

| Type |

Description

Msg

The set of all possible strings over some basic message alphabet that does not include the
special symbol null.

T

The nonnegative real numbers — represents real time.

N

The set of non-negative integers.

Client variables

| Variable | Type | S | Initially | Description |
mode, {closed, closed The modes of the client. Mode closed indi-
syn-sent, estb, cates that the connection is closed, syn-sent
fin-wait-1, indicates that the client has begun the syn-
fin-wait-2, chronization process, estb indicates that
close-wait, the connection is established between the
last-ack, client and the server, fin-wait-1 indicates
closing, the host has received the close input after
timed-wait, the connection has been established and be-
rec, reset} fore receiving a FIN from the other host,

fin-wait-2 indicates that the host has re-
ceived an ACK for its FIN, but before re-
ceiving a FIN, closing indicates it received
a FIN after it sent it’s FIN, but before re-
ceiving an ACK for its FIN, close-wait in-
dicates that the host has received a FIN while
it was in estb mode, last-ack indicates that
the host has received a FIN and is waiting
for an ACK to its FIN after which it closes,
timed-wait indicates that the host has re-
ceived both a FIN and an ACK(FIN) from
the other host and will close in 2x MSL, rec
indicates the client is recovering from a crash,
and reset indicates that the client has re-
ceived a valid reset and will close.

ack, N U {nil} nil The acknowledgment number.

rst-seq. NU {nil} nil The number assigned to a reset segment.

ready-to-send, | Bool true A flag that when true indicates that the next
segment can be sent.

send-ack, Bool false A flag that enables the sending of an
acknowledgment.

send-fin, Bool false A flag that enables the sending of a FIN
segment.

rcvd-close, Bool false A flag that is set to true when the signal close
is received.

push-data. Bool false A flag that forces the client to only perform
the receive-msg.(m) action until rev-buf, is
empty after a FIN segment is received.

msg. Msg U {null} null The current message to be sent.
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Client variables

| Variable | Type | S | Initially | Description |

send-fin-ack. | Bool false A flag that is set to true when the client acknowl-
edges a FIN from mode closing.

send-rst, Bool false A flag that enables the sending of a reset segment.

now, T N The clock variable.

first(t-out.) TU o0 The lower bound on when the client can close after
starting timed-wait state.

time-sent, TU oo 0 Used to mark the time a segment is sent, so that
the segment can be resent after RTO if it is not
acknowledged.

send-buf . Msg* € The client buffer for messages to be sent.

rev-buf . Msg* € The client buffer for messages received.

5N, N N Client side sequence number.

Server variables

| Variable Type | S | Initially | Description

mode {closed, closed The server modes. Modes closed, estb,
listen, estb, fin-wait-1, fin-wait-2, close-wait,
syn-rcvd, last-ack, timed-wait, and rec indicate
fin-wait-1, the same behavior as in the client. Mode
fin-wait-2, listen indicates the server has received
close-wait, a passive-open input and is waiting for a
last-ack, SYN segment from a client, mode syn-rcvd
timed-wait, indicates the server has received the initial
rec} SYN segment.

send-buf Msg* € The buffer for messages to be sent.

rev-buf Msg* € The buffer for messages received.

5N N N Server side sequence number.

ack, NU{nil} nil The acknowledgment number.

rst-seqs N U {nil} nil Symmetric to rst-seq..

ready-to-sends | Bool true Symmetric to ready-to-send..

send-ack; Bool false Symmetric to send-ack..

send-fin Bool false Symmetric to send-fin,.

revd-close Bool false Symmetric to rcvd-close..

push-data Bool false Symmetric to push-data..

send-fin-ack g Bool false Symmetric to send-fin-ack,

send-rst; Bool false Symmetric to send-rst.

now, T v |0 The clock variable.

first(t-outs) TUoo e%) Symmetric to first(t-out,).

time-sent; TU 0 Symmetric to time-sent..
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6.1.2 Action signature

Client, 7CP.

Input:
send-msg. (open, m, close)

open, close € Bool, m € Msg U {null}

receive-segsc (SYN, sns, acks)
receive-segsc (sns, acks, msgs)
receive-segsc(sns, acks, msgs, FIN)
receive-segs. (RST, rst-seqs)
crash,

Output:
receive-msg.(m) m € Msyg
send-seges (SYN, sn.)
send-seges (sne, acke, msg.)
send-seges (sne, acke, msg., FIN)
send-seges (RST, rst-seq.)
recover,

Internal:
time-out,
prepare-msg.
shut-down,

Time-passage:
v(t), t € Rt

6.1.3 Steps

Server, 7CP;

Input:
Passive-open
send-msgs (m, close) m € Msg
receive-segcs (SYN, sn.)
receive-segs (sne, acke, msg.)
receive-seges (sne, acke, msg., FIN)
receive-seg.s (RST, rst-seq.)
crashg

Output:
receive-msgs (m), m € Msg
send-segs. (SYN, sns, acks)
send-segs. (sns, acks, msgs)
send-segs. (sns, acks, msgs, FIN)
send-segs. (RST, rst-seqs)
Tecovers

Internal:
time-out,
prepare-msgs
shut-down,

Time-passage:
v(t),te Rt

From Figure 6-2 it is easy to see that the modes that require estb as an antecedent are
fin-wait-1, fin-wait-2, close-wait, closing, last-ack, and timed-wait. Mode estb
and these modes are said to be synchronized states, because if the hosts are in any of these
states then, barring a crash, the endpoints are synchronized. In the steps of automaton 7CP
below, and for the rest of this thesis we denote the set, {estb, fin-wait-1, fin-wait-2,
close-wait, closing, last-ack, timed-wait}, as sync-states — the set of synchronized

states.

The steps for the timed automata for the client and server are shown in Figures 6-3, 6-
4, 6-5, 6-6, and 6-7. In each of these figures the client actions are on the left and the server
actions are on the right. The receive-seg(p) actions are shown opposite the corresponding

send-seg(p) actions, and symmetric internal actions are opposite each other.
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The open phase

The protocol starts when the client receives the action send-msg.(open, m, close) (Figure 6-
3) with open set to true (an active open) and the server receives a passive-open (Figure 6-3)
input. These two actions signal that both hosts can try to establish a connection with each
other. The active open and passive open are only valid if the hosts are closed. That is, the
client and server can only accept inputs from the users to start a new incarnations if they are
closed. When the client receives the active open it changes mode. to syn-sent. The client
also chooses an initial sequence number (ISN) by incrementing the sn.. This number is
incremented for each segment sent, except acknowledgment only segments, through the life
of the connection, and is used to order the sequence of messages. Note that the server does
not choose an ISN during passive open. The send-msg.(open, m, close) action might also
have data to be sent. If this is the case, the data is appended to the queue send-buf. which
is where the client keeps messages to be sent. If close is true this means the connection
should be closed and no more data should be accepted from the user to be sent. We discuss
what happens then in the discussion of the close phase.

Assuming the client does not open and close without receiving any data, the client per-
forms the action send-seg.s(SYN, sn.) (Figure 6-3), where sn. is the ISN, as the first step of
the three-way handshake. Note that this action, along with all the other send-seg(p) actions
have as a part of the precondition the predicate (now. — time-sent. > RTO). This predicate
controls the frequency of retransmission. That is, if an acknowledgment is not received for a
segment, at least RTO must elapse before the segment is retransmitted. When this segment
is received by the server, if it is in mode listen, it changes to mode syn-rcvd, chooses
its ISN by incrementing sn,, and also records the next sequence number it expects from
the client, sn.+1, in the variable ack,. If mode, is closed, send-rst; and rst-seqs are set
to generate a reset segment. Throughout the the protocol, whenever either host receives a
segment when it is closed, or if it is in an unsynchronized mode (syn-sent, listen, or
syn-rcvd) and it gets an invalid segment, a reset segment is generated. After it receives the
first segment of the three-way handshake, the server performs the action send-seg,.(SYN,
sng, acks) (Figure 6-3) which is the second segment of the three-way handshake. In this

segment sng is the server’s ISN. When the client receives this segment, if a reset is not
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generated, it sets send-ack. to true to enable the acknowledgment of this segment. If the
client is already in a synchronized state, this segment is either a duplicate created by the
channel or a retransmission of a segment previously acknowledged. Since the acknowledg-
ment might not have been received by the server, the retransmission of the acknowledgment
is enabled.

If the client is in mode syn-sent, and ack; = sn. 4+ 1, then it knows the server received
its correct ISN, and that the segment is an acknowledgment of the SYN segment it sent.
Thus, the client sets mode. to estb and makes assignments in preparation of sending the
final segment in the three-way handshake. First ack. is set to sns + 1 for the next expected
segment, and time-sent. gets set to 0. Then if there is data to be sent, send-ack, is set to
false, so that the acknowledgment is not sent until the data is prepared. If there is data in
send-buf ., the prepare-msg. (Figure 6-5) action increments the sequence number sn., sets
ready-to-send. to true and moves the head of the send buffer to msg. which gets sent with
the next segment. The final part of the three-way handshake is the action send-seg.,(sn.,
ack,, msg.) (Figure 6-4) or if the client had received a close input and had no more data to
send, send-seg.s(sn., ack., msg., FIN) (Figure 6-6). Both segments acknowledge the SYN
segment from the server. In the open phase, when the server receives this input, mode; is
syn-rcvd and it then changes to estb. If there is valid data in the segment, that is sn, =
ack, it is placed on the receive buffer and ack; is incremented. These actions are discussed

in more detail in sections on the the data transfer and close phases.

The data transfer phase

Data transfer is bi-directional, but since it is also symmetric we only discuss what happens
as data goes from client to the server. In this phase both the client and the server are
in mode estb. The client gets data from the user from the input action send-msg.(open,
m, close) when m is not null. This data is appended to the client’s send buffer. To
prepare data for sending, the internal action prepare-msg. increments the segment number,
sets ready-to-send. to true, and takes the first piece of data off the send buffer. If the
buffer becomes empty and a close input had been received (rcvd-close. is true), the client

begins the close phase which we discuss in the next subsection. The setting of ready-to-send..
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coupled with the fact that the client is in mode estb enables the send-seg.s(sn., ack., msg.)
action. This action sends the data and if there was data from the server to be acknowledged,
then ack. does that. In addition to the condition for retransmission, this actions has as
part of it precondition that ready-to-send.V send-ack. be true, and that the client be in a
synchronized state and that push-data. be false. The condition of push-data. is explained
in the section on the close phase. The condition ready-to-send.V send-ack,. is there because
the action can be sending data just data or data and a valid acknowledgment, in which
case ready-to-send. is true, or the segment could just have a valid acknowledgment. In this
case ready-to-send, is false and send-ack. is true. The action sets time-sent. to the current
time to start the retransmission timeout timer. Additionally, the action sets send-ack.
to false, so that if the segment has no valid data, that is, it is just for the purposes of
acknowledgment, then it does not get retransmitted. If mode. = timed-wait or closing
then additional assignments are made. We discuss these assignments in the discussion of

the close phase.

When the server gets the input receive-seg.(sn., ack., msg.) (recall we are discussing
the case where mode, € sync-states), it sets send-ack, to true to enable the retransmission
of the previous acknowledgment the server sent. It does not matter if the segment contains
valid data or not. If the data it contains is invalid, that is, the server has already sent
an acknowledgment for that data, then the fact that the server receives the segment again
could me that the acknowledgment for the data was not received by the client, so the server

will send it again. This is the only time acknowledgments are retransmitted.

If the data is valid (sn. = acky), it is enqueued on the server’s buffer for incoming
messages, rcv-bufs. Additionally, ack; is incremented for the acknowledgment of this data.
If the segment contains a valid acknowledgment (ack. = sns, + 1), then ready-to-send; is
set to false to stop the retransmission of the message acknowledged. If there is at least one
message on the send buffer, send-ack; is set to false. The setting of send-ack; to false
is done to delay the action send-seg.(sns, acks, msg,) (Figure 6-5) until data is prepared
to be sent. The acknowledgment piggy-backs on the data segment. If the server does not
have any data to send when it received the segment, or if the segment did not contain a

valid acknowledgment, only valid data, then send-ack; remains true and send-segs.(sns,
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acks, msg,) contains a valid acknowledgment and retransmitted data. If when the server
received the segment it contains duplicated data, but a valid acknowledgment, the server
sends a segment with new data if it has any to send, and an acknowledgment of the last
valid data it received. Data received by the server is passed to the user by the output action
receive-msgs(m) (Figure 6-4). If rcv-buf s is empty and push-datas is true then push-data,
is set to false to enable other actions. The flag push-data is set to true when the server
receives a valid FIN segment. This segment means the client has stopped sending data,
and that the server should send pass all the data it has to the user before doing anything
else. When the client receives the input action receive-segs.(sns, acks, msgs) (Figure 6-5), it
behaves in a manner symmetric to the server’s behavior when it received receive-seg.s(sn.,

ack., msg.).

The close phase

If the client receives the signal to close while it is still in mode syn-sent and its send buffer
is empty, it closes immediately. Similarly, if the server receives the signal to close while it
is in mode 1isten and its send buffer is empty, it also closes immediately. Otherwise, both
sides go through a sequence of steps to ensure a “graceful” close.

Either or both sides can initiate the close sequence. The hosts go through a series of
modes, that depend on the order in which they receive the close input from the user and
FIN segments from each other. The close signal from the user means it has stopped sending
data, but can still receive it.

When the client receives the input to close, send-msg.(open, m, true), it does not im-
mediately change modes. Instead the flag revd-close,. is set to true to mark that the close
signal has been received, while still allowing the client to proceed until it is ready to be-
gin the close sequence. Thus, if mode, is syn-sent and the send buffer is not empty, (if
the buffer is empty the client closes), the client goes through the normal open and data
transfer phases as described above. If prepare-msg. is enabled because rcvd-close. is true
and send-buf. is empty, then sn. is incremented once in the action, and indicates that the
next segment sent is just a FIN segment. However, if rcvd-close. is true and send-buf.

becomes empty in the prepare-msg. action, then sn. is incremented twice to indicate that
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the segment not only contains a FIN, but also valid data. In either case mode, is set to
fin-wait-1if it was estb or last-ack if it was close-wait, and the flag send-fin. is set to
true. The client is in mode close-wait if it has already received a FIN segment from the
server. These assignments enable the action send-seg.s (sn., ack., msg., FIN). The client
is in mode closing if it received a FIN segment from the server after going to fin-wait-1
in the prepare-msg. action, but before it performed send-seg.s(sn., ack., msg., FIN). When
the server receives this segment, it behaves almost the same as it does when it receives the
(sne, ack., msg.) segment. However, the mode changes are different, and this segment is
valid if sn. is > ack,. Also when the segment is received push-data, is set to true to disable

all local server action until it has send all the data to the user.

If the segment also contains a valid acknowledgment, then if mode; is syn-rcvd, it is set
to estb, and if it is fin-wait-1, it is set fin-wait-2. Also if there is more data to be sent
from the server, the assignments are done for that. If the segment had valid data, whether
it had a valid acknowledgment or not, that data is placed on rcv-buf,. Also the fact that
the segment is a valid FIN causes mode, to change to close-wait if it was previously estb,
closing if it was previously fin-wait-1, and timed-wait if it was previously fin-wait-2.
The server responds with either the action send-segs.(sns, acks, msgs) or send-segs. (sns,
acks, msgs, FIN) (Figure 6-7). If the server sends the send-segs.(sns, acks, msgs) segment
from mode closing then send-fin-ack, is set to true to indicate that the acknowledgment of
the FIN has been sent. When the client receives this segment, it if it is in mode fin-wait-1,
it changes to mode fin-wait-2. If it is in mode last-ack, it closes. It can close from
mode last-ack because this mode means it has sent and received a FIN segment and is
only waiting for an acknowledgment of the FIN segment it sent. Since this segment is an
acknowledgment of that FIN, it closes. If the client had received a FIN segment from the
server before it received this segment, then it would have gone from mode fin-wait-1 to
closing. Now when it receives the acknowledgment, it goes to mode timed-wait and if
it already sent the acknowledgment for that FIN, that is, if send-fin-ack. is true, it sets
first(t-out.) to now. 4+ 2u. Timed-wait state ensures the graceful close property because
the host that is in timed-wait state waits long enough, so that if the host that sent the

final piece of data did not receive the acknowledgment for that data and retransmits that
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FIN segment, the host in timed-wait state receiving the retransmitted FIN segment can
retransmit the acknowledgment.
After waiting for a period of 2u a host in mode timed-wait times out and closes. The

actions are timeout. and timeouts (Figure 6-6) for the client and server respectively.

Other actions

The actions send-seg.s(RST, rst-seq.) and send-segs.(RST, rst-seq,) (Figure 6-7) are en-
abled when client or server host respectively receives an inappropriate segment while in a
non synchronized state. The variables rst-seq. and rst-seq. are use to validate the segments
respectively. When the client or server receives a valid reset segment, it sets mode. or mode..
respectively to reset. The setting of mode. or mode. to reset enables the shut-down, or
shut-downy actions respectively (Figure 6-7) which causes the resepective host to close.

Crash action crash. (Figure 6-6) causes the client to change mode, rec. In TCP with
bounded and unstable counters, a quiet time of gt is observed after a crashes to ensure
that after recovery there are no old duplicate packets are in the network. However, since
crashes do not affect the counters in formal model of TCP we are presenting, quiet time is
not needed.

The corresponding recovery action recover. closes the client. The crash and recovery

action are symmetric for the server.

6.2 The specification of the TCP automaton

As depicted in Figure 6-1, the TCP automaton consists of the client, the server and the two
channels, so we first define 7CP’ to be the parallel composition of these automata. That
is,
TCP' & TCP||TCP||Ches(P)|| Chso(P).
The set P of possible packets of the channels is instantiated with the packets that TCP.
and 7CP; can send and receive. By the definition of parallel composition, the different

send-seg.s(p) and send-segs.(p) actions of TCP. and 7CP; respectively and the receive-
seges(p) and the receive-seg,(p) actions of Ches(P) and Chy(P) respectively are output

86



actions in 7CP’. Since these actions are not output actions in the specifications S and D,
we need to hide these actions. Thus, we use the action hiding operator defined in Chapter 3.

Let

Ar 2 {receive-segs.(SYN, acks, sns)} U
{receive-segs.(sns, acks, msgs )} U
{receive-segs.(sns, acks, msgs, FIN)} U
{receive-segs.(RST, rst-seqs )} U
{send-seg.s (SYN, sn.)} U
{send-seg.s (sn., ack., msg.)} U
{send-seg.s (sn., ack., msg., FIN)} U
{send-seg.s (RST, rst-seq.)} U
{receive-seges (SYN, sn.)} U
{receive-seges (sne, ack., msg.)} U
{receive-segcs (sne, acke, msg., FIN)} U
{receive-seg.s (RST, rst-seq. )} U
{send-segs. (SYN, sns, acks)} U
{send-segs.(sns, acks, msg; )} U
{send-segs.(sns, acks, msgs, FIN)} U
{send-segs. (RST, rst-seqs )}

The complete general time automaton model for TCP, 7CP, is defined as:

TCP 2 TCP'\ Ar.

This definition gives a timed automaton with the same set of input and output actions as

S and D which is necessary for doing a simulation from 7CP to any of the specifications.

6.3 Derived variables for 7CP

We define four derived variables for 7CP. These variables are needed for the verification of

TCP which we present in the next chapter.

The first two derived variables are cur-msg. and cur-msg;. These are the “current

message” being sent by the client and server respectively. They are defined as follows.
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(s.msg.,ok) if s.mode. ¢ {rec,reset, closed, syn-sent} A
((s.sne = s.acks) A —(s.revd-close. N s.send-buf, = ¢€))
V(s.sne. = s.acks + 1)

€ otherwise

A
S.cur-msg,. —

(s.msgs,o0k) if s.mode; & {rec,reset, closed, listen, syn-rcvd} A
((s.sns = s.acke) A= (s.rcvd-closes A s.send-buf ., = €))
V(s.sns = s.ack. + 1)

€ otherwise

A
S.CUr-msg, —

The current message is the message that is about to be sent or is being sent, but has
not yet been received. For the client side the condition s.sn. = s.acks A =(s.rcvd-closes A
s.send-buf ;, = €) holds when a message on a non FIN segment has not yet being received.
If the current message is on a FIN segment, then the condition s.sn. = s.ack; + 1 holds
until the message is received. When the message is received, cur-msg. message becomes the
empty string, because when a message is received the acknowledgment variable is assigned
the value of one plus the sequence number of the received segment. The current message
derived variables are used to hold one copy of a message that might be in both a send buffer
and on a channel. When the message is received, we know precisely where one copy of the
message is, so we do not need the value to be held in a current message variable. In the
next section when we define the refinment mapping, we will see why this is useful. The
message is paired with the value ok, to match variables on the queues in D, which again is

needed for the refinement mapping.

The next two variables we define are p-pair. and p-pair, for the client and server side
respectively. These variables are “possible pairs.” The term “pair” is used because the
variables are sets of pairs. Fach pair is of the form (i, m) where ¢ is a sequence number, and
mis message. That is, ¢ € Nand m € Msg. The term “possible” is used because the sequence
number and message that form a pair comes from segments that are on the channel, where
there is a possibility that the message m may or may not get delivered. These segments
exists when the sender of the segment crashes before the segment is received. That is, they

are segments that contain the message from the “current message” derived variables, if the
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sender crashes or resets. There is possibility that the message may not be delivered because
the sender can no longer retransmit the segments that contain the message. Therefore, if
all copies of segments with this message get dropped the channel, then the message will not
be delivered. Also if the receiving host crashes or closes before the message is received, then
the message will also not get delivered. If all copies do not get dropped, and the receiving
host does not crash or close, then the message will get delivered. Recall that in Chapter 4
the reason we gave for defining the Delay Decision Specification, was that in the low level
protocols, whether a message gets lost because of crash may not be determined until after
recovery. We define possible pairs such that the messages in the pairs are messages that

may be lost after a crash and recovery. The formal definitions are given below.

For any segment p on in-transit., or in-transits., define sn(p) to be the sequence number
of the segment, ack(p) to be the acknowledgment number of the segment, and msg(p) to be
the message of the segment. For example, for a segment p = (sn,, ack., msg.) where sn. =i
and ack, = j, and msg. = m, sn(p) = i, ack(p) = j, and msg(p) = m. If the p is of the form
(SYN, sn.) or (SYN, sns, acks) then msg(p) = null and if p is of the form (SYN, sn.) then
ack(p) = nil. Let s be any state in 7CP, then

{(i,m) | 3 p € s.in-transit.s s.t. sn(p) =i A msg(p) = m Am # null}
if s.mode. € {rec,reset,closed, syn-sent} A
s.p-pair, = (i = s.acks A pisnot a FIN segment) V
(i =s.acks +1 A pis a FIN segment)

¢ otherwise,

{({,m) | I p € s.in-transit;. s.t. sn(p) =1 A msg(p) = m A m # null}
if s.mode; € {rec,reset, closed, listen, syn-rcvd} A
s.p-pair, = (i = s.ack. A pisnot a FIN segment) V
(i =s.ack.+1 A pisa FIN segment)

0  otherwise.

The variables are sets of pairs as opposed to just being segments or sets of segment
because there can be segments on the channels with the same sequence numbers and mes-
sages, but different acknowledgment numbers. Invariant 7.37, which we define in the next

chapter, tells us that segments with the same sequence number must have the same message.
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Therefore, the possible pair set has one element for each message that might get delivered.
If we use segments or sets of segments in the definitions this would not be the case. Because
in our model of TCP each message must receive an acknowledgment before another is sent,
we can show that p-pair. and p-pair, always have at most one element. The this claim
follows from Invariants 7.37, 7.62 and 7.64 also defined in the next chapter.

There are two types of segments with messages — segments with or without the FIN
bit. That is why we have the two cases (aside from the empty case) in the definition of
possible segments. In order for the message on a non FIN segment to be accepted, its
sequence number must be equal to the acknowledgment number of the receiving host, and
in order for the message on a FIN segment to be accepted, its sequence number must be
equal to the acknowledgment number plus one of the receiving host. Also a message on a
segment might possibly be delivered after the sender crashes and recovers, but only if the
sender has not gotten back to a synchronized state after the crash. This is the case because
after a host crashes, TCP forces the other side to reset before they can both be synchronized
again. Therefore, if the sender got back to a synchronized state, it means a new incarnation
has started, so the message cannot be delivered because it is from the previous incarnation.

In the next chapter were we present the verification of 7CP, we use the operator data to
extract the the message from element of the possible pair set, so for example if s.p-pair, =
{(s.msg., s.sn.)}, then data(s.p-pair.) = s.msg.. If s.p-pair = {} then data(s.p-pair.) = e.

The formal modeling of TCP is now complete, and in the next chapter we prove that

TCP implements a patient version of our specification 5.
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send-msg. (open, m, close)
Eff: if mode, = closed A open then {
mitialize TCB,
time-sent, := 0
mode. := syn-sent
sn, .= sn. + 1
}
if =revd-close, A m # null A
mode, € {syn-sent, estb, close-wait}
then send-buf. .= send-buf.-m
if close then {
revd-close, := true
if mode, = syn-sent A send-buf, = €
then mode, := closed

send-seges (SYN, sn.)

Pre: (now,. - time-sent, > RTO) A
mode, = syn-sent A — send-rst,

Eff: time-sent, := now,

receive-segsc (SYN, sns, acks)
Eff: if (mode, = closed) V
(mode, = syn-sent A acks; # sn. + 1)

then {
send-rst, ;= true
rst-seq. ‘= acks
}
else {
send-ack, := true
if mode. = syn-sent then {
mode, := estb
ack, == sny; + 1
time-sent. := 0

ready-to-send. :=— false
if send-buf . # € then
send-ack, := false
}

1

Passive-open

Eff: if mode; = closed then {
mitialize TCB,
mode, := listen

1

send-msgs (m, close)
Eff: if ~revd-close; A m # null A
modes € {syn-rcvd, estb, close-wait}
then send-bufs := send-buf s-m
if close then {
revd-closes = true
if modes; = listen A send-buf; = ¢
then mode, := closed
}

receive-segcs (SYN, sn.)
Eff: if mode; = listen then {
modes := syn-rcvd
sng = sn, + 1
acks == sn, + 1
time-senty :== 0
}

if mode; = closed then

send-rst; := true
rst-seqs = 0
acks := sn,+1

send-segs. (SYN, sns, acks)

Pre: (now; - time-sent; > RTO) A
modes = syn-rcvd A = send-rst,

Eff: time-sent, := nowy

Figure 6-3: Steps from the open phase of TCP, and TCP,. The client steps are on the left and

the corresponding server steps are on the right.
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send-seges (sne, acke, msg.)

Pre: (now, — time-sent, > RTO)A

(ready-to-send, V send-ack )N

mode, € sync-states A —push-data,

time-sent,. := now,

send-ack, := false

if mode, = closing then
send-fin-ack. := true

if mode, = timed-wait then
first(t-out.) := now., + 2u

Eff:

receive-msg(m)
Pre: mode, & {rec,reset} A rev-buf, # ¢
Ahead(rev-buf ) = m
Eff: rev-buf, := tail(rev-buf.)
if push-data, A rcv-buf,. = € then
push-data. := false

v(t) (time-passage)
Pre: t€ Rt
Eff: now. := now, + ¢

receive-segs (sne, acke, msg.)
Eff: if (mode; € {closed,listen}) V
(modes; = syn-revd A ack. # sns + 1)

then {
send-rst; = true
rst-seqs = ack.

else if mode; ¢ {rec,reset} then {

if msg. # null then
send-ack, := true

if sn. = acks then {
acks == sn, + 1
time-sent, ;= 0
rev-bufs := rcv-buf;-msg.

}

if ack. = sns + 1 then {
msgs := null
ready-to-send; :=— false
send-fin, := false
if mode; = syn-rcvd then

mode, := estb

if send-buf; # ¢ then
send-ack, := false

if mode; = fin-wait—-1 then
mode, := fin-wait-2

if mode; = last-ack then
mode, := closed

if mode; = closing then {
mode, := timed-wait

if send-fin-ack then
first(t-out; ) := now, + 2

}
}

receive-msgs (m)

Pre: mode; & {rec,reset} A rcv-buf, # ¢

Ahead(rev-buf ) = m

rev-buf s := tail(rev-buf )

if push-datas A rcv-buf, = € then
push-data; := false

Eff:

v(t) (time-passage)
Pre: t € RT

Eff: now; := nows; + ¢

Figure 6-4: The basic message sending step of the client and the corresponding step to receive this
segment at the server. Also the steps for TCP,. and 7CP, that pass messages to the users, and the

time-passage steps.
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receive-segsc (sns, acks, msygs)

Eff: if mode. € {closed, syn-sent} then {
send-rst, ;= true

rst-seq. ‘= acks

else if mode. ¢ {rec,reset} then {
if msgs # null then
send-ack, := true
if sny = ack, then {
ack, == sn, + 1
time-sent. := 0
rev-buf . := rcv-buf. -msg;
}
if acks = sn. + 1 then {
msg. := null
ready-to-send. := false
send-fin. := false
if send-buf, # ¢ then
send-ack, := false
if mode, = fin-wait-1 then
mode, := fin-wait-2
if mode, = last-ack then
mode, := closed
if mode. = closing then {
mode, := timed-wait
if send-fin-ack. then
first(t-out. ) := now, + 2u

prepare-msg,.
Pre: —push-data, A ~ready-to-send, A
mode, € {estb, close-wait} A
(send-buf ., # €V revd-close,)
ready-to-send. := true
if send-buf. # ¢ then {
sn, ;= sn. + 1
msg. := head(send-buf.)
send-buf . := tail(send-buf.)
}
if rcvd-close, A send-buf. = ¢ then {
sn, ;= sn. + 1
ready-to-send,. := false
send-fin. ;= true
if mode, = estb then

Eff:

mode, := fin-wait-1
else if mode, = close-wait then
mode, := last—ack

send-segs. (sns, acks, msgs)

Pre: (nows; — time-sent; > RTO)A
(ready-to-send, V send-ack ;)\
modes € sync-states A —push-data,

Eff: time-sent, := now;
send-ack; := false
if mode; = closing then

send-fin-acks := true
if mode; = timed-wait then
first(t-outs ) = now,s + 2

prepare-msgs
Pre: —push-data, A —~ready-to-send A
mode; € {estb,close-wait} A
(send-buf ; # € V revd-closey)
ready-to-send; := true
if send-buf; # ¢ then {
sng = sn, + 1
msgs = head(send-buf ;)
send-buf s := tail(send-buf ;)
}
if rcvd-closes A send-bufs = ¢ then {
sng = sn, + 1
ready-to-sends :=— false
send-fins := true
if mode; = estb then

Eff:

mode, := fin-wait-1
else mode;, = close-wait then
mode, := last—ack

Figure 6-5: The basic message sending step of the server and the corresponding step to receive this
segment at the client. Also the steps that prepare messages to be sent.
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send-seges (sne, acke, msg., FIN)

Pre: (now, — time-sent, > RTO) A mode, €
{fin-wait-1,last-ack, closing}
A send-fin, N\ —pdata,

Eff: time-sent. := now,

time-out,

Pre: mode, = timed-wait A
now, > first(t-out,)

Eff: mode, := closed

crash,
Eff: if mode, # closed then
mode, := rec

recover,
Pre: mode, = rec
Eff: mode, := closed

receive-seges(sn., ack., msg., FIN)
Eff: if (mode; € {closed,listen}) V
(modes = syn-rcvd A ack, # sns + 1)

then {
send-rsty = true
rst-seqs = ack.

else if mode; & {rec,reset} then {
send-ack, := true
if sn. = acks V sn. = acks + 1 then {
push-data; := true
time-senty :== 0
if ack. = sns + 1 then {
msgs := null
ready-to-send; :=— false
send-fin, := false
if mode; = syn-rcvd then
mode, := estb
if send-buf; # € then
send-ack, := false
if mode; = fin-wait—-1 then
mode, := fin-wait-2
}

if sn, = ack, + 1 then
acks == sn, + 1

rev-bufs = rcv-buf s-msgs
if mode; = estb then
mode, := close-wait
else if mode; = fin-wait—1 then
modes := closing
else if mode, = fin-wait-2 then
mode, := timed-wait

}
}

time-out,

Pre: mode;, = timed-wait A
nows > first(t-outs)

Eff: mode, := closed

crashg

Eff: if mode; # closed then
mode, := rec

recover;

Pre: mode, = rec
Eff: mode, := closed

Figure 6-6: The steps for the client to send a FIN segment and the receiving of that segment at

the server. Also the time-out steps and the crash and recovery steps.
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receive-segsc(sns, acks, msgs, FIN)
Eff: if mode. € {closed, syn-sent} then {
send-rst, := true
rst-seq. .= acks
}
else if mode. ¢ {rec,reset} then {
send-ack,. := true
if sng = ack. V sns = ack. + 1 then {
push-data,. := true
if mode, = estb then
mode, := close-wait
else if mode, = fin-wait-1 then
mode, := closing
else if mode, = fin-wait-2 then
mode, := timed-wait
if sny; = ack, + 1 then
rev-buf . .= rcv-buf. -msg;
ack. == sn, + 1
time-sent, := 0
if acks; = sn. + 1 then {
if mode, = closing then
mode, := timed-wait
msg. := null
ready-to-send. :=— false
send-fin. := false
if send-buf, # ¢ then

send-ack, := false
}

}
}

send-seges (RST, acke., rst-seq.)

Pre: mode. € {closed, syn-sent}
Asend-rst, = true

Eff: send-rst, := false

receive-segsc (RST, acks, rst-seqs)
Eff: if mode, # rec A rst-seq, = ack, V
(rst-seqs = 0 A acks = sne + 1)
then mode, := reset

shut-down,
Pre: mode, = reset
Eff: mode. := closed

send-segs. (sns, acks, msgs, FIN)

Pre: (nows; — time-sent; > RTO) A mode; €
{fin-wait-1,last-ack, closing}
A send-fin, A —push-data,

Eff: time-sent, := now;

receive-seg.s (RST, ack., rst-seq.)
Eff: if mode; # rec A rst-seq, = ack; then
mode, := reset

send-segs. (RST, acks, rst-seqs)

Pre: mode; € {closed, listen, syn-rcvd}A
send-rst; = true

Eff: send-rst; := false

shut-down,
Pre: mode; = reset
Eff: mode, := closed

Figure 6-7: The steps for the server to send a FIN segment and the receiving of that segment at
the client. Also the steps that send resets, the receiving of these resets, and the closing because of

the reset.
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Chapter 7

Verification of TCP

In this chapter we prove the correctness of TCP with respect to a patient version of Specifi-
cation 5. We need to show correctness with respect to a patient version of S because TCP
is a GTA and 5 is an untimed automaton. Instead of doing a complex backward simulation
directly from 7CP to patient(S), we take the second! intermediate step of showing a refine-
ment mapping from 7CP to a patient version of D. However, we cannot find a refinement
mapping from 7CP to patient(D) without first adding history variables to 7CP. We call

the resulting automaton 7CP", and we denote patient(D) as DP.

7.1 7TCP with history variables

We add several history variables to 7CP. The first two history variables we add are isn.
and isng. These variables correspond to id. and id, respectively in D, and they record the
initial sequence numbers chosen by the client and the server respectively for an incarnation
of the connection. These variables are not stable, but instead of being deleted with the rest
of the TCB when a host closes, they take the special value nil. We also add the history
variable isn? which records the value of isn, when the server receives a SYN segment from
the client. It’s symmetric counterpart is isnS. Variables used-id., used-id;, and assoc are
stable and are meant to correspond to the variables of the same names in D. We also add

another stable set we call estb-pairs which is the set of initial sequence numbers of the client

!The first intermediate step being the backward simulation from D to S presented in Chapter 4.
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Variable | Type | S

Initially | Description |

5N, N Unil nil The initial sequence number chosen when the client
opens.

1505 N Unil nil The initial sequence number chosen when the server
receives a SYN segment from the client.

wsng N Unil nil Records the initial sequence number of the client as a
server side variable.

w50 I Unil nil Symmetric to sn;.

used-id. oN NaN The set of initial sequence numbers used by the client.

used-id; oN NaN The set of initial sequence numbers used by the server.

assoc oI NaN A set of pairs of isn’s for each incarnation of the
connection.

estb-pairs 21 NaN The set of initial sequence numbers the client has ev-

ery time it reaches mode estb, paired with the initial
sequence number received from the server.

choose-isn. | Bool false A flag that is set to true when the client first chooses
an ISN for an incarnation and set to false when the
client sends a segment with this ISN.

choose-isn, | Bool false Symmetric to choose-isn...

paired with the initial sequence number the client receives from the server after the second
step of the three-way handshake. We add this set because there are executions where the
client gets to mode estb and sends the third segment of the three-way handshake protocol,
but closes before the segment is received by the server. This segment may cause the initial
sequence number that the client had when it sent the segment to form an association pair
with the initial sequence number of the server. Thus, estb-pairs records pairs that indicates
the second leg of the three-way handshake as been successfully completed. We also add the
history variables choose-isn. and choose-isns. These history variables are flags that become
true in the step that causes the client and server respectively to choose initial sequence
numbers. They become false in any subsequent steps. The table below provides more
details on the history variables. Recall that the type N represents the set of non-negative

integers.

As discussed in Chapter 3, history variables are allowed at each step to be assigned a
value based on all variables in the system, but must not affect the enabledness of actions or
the changes made to other (ordinary) variables. In Figure 7-1 we show where assignments

to the history variables should be placed in the effect clauses of 7CP to get TCP". We omit
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the assignments to the original variables (by writing ... instead) but outline the if-then-else
statements. The first addition is to the send-msg.(open, m, close) step. The variable isn.
is assigned the value of sn. after sn. is incremented. The flag choose-isn. is also set to true
in this step. This flag is used to indicate that the client has just chosen an initial sequence
number. We use the fact that this flag is true immediately after this step and then set
to false on subsequent steps, to prove certain properties about the client’s initial sequence

number when it is first chosen.

When the client performs the send-seg.s(SYN, sn.) action, choose-isn. is set to false.
When the server receives a SYN segment from the client via the receive-seg.,(SYN, sn.)
action, it sets choose-isng to true, and assigns the isn, history variable the incremented
value of sns;. The history variable isn? is also assigned to [sn.] in this step. This history
variable is used to record the value of what the server believes is the initial sequence number
of the client. This value on the SYN segment will be paired with the new value of isn, to
form an association pair, if the received segment is indeed a valid attempt my the client to
start a new incarnation and not an old duplicate. If the pair is actually added to assoc when
the server performs either the receive-seg.s(sn., ack., msg.) or receive-seg.(sn., ack., msg.,
FIN) action, the current value of isn. might be nil if the client is currently closed, or it
might be different from the value the server received in the (SYN, sn.) segment, if the client
closed and reopened. Therefore, in the receive-seg.s(sn., ack., msg.) and receive-seg.s(sn.,

ack., msg., FIN) action, when the pair is added to assoc, it is the pair (isn?, isn,).

After the server receives the (SYN, sn.) segment, it responds with the send-seg,.(SYN,
sns, acks) action. In this step it sets both choose-isn. and choose-isn, to false. These
settings, are again to facilitate the proof of invariants about the values of initial sequence
numbers relative to sequence and acknowledgment numbers of other segments on the chan-

nels.

When the client receives the (SYN, sn,, acks) segment from the server, it assigns isn§ to
[sns] which it believes is the initial sequence number of the server. This assignment is made
if [acks] = sn. 4+ 1, which means the server received the correct initial sequence number of
the client. It also means that the initial sequence number of the client and [sn,] will form an

association pair if the third step of the three-way handshake is successful. A record of this
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pair is added to history variable estb-pairs. If the client crashes or receives a reset after it
sends the third segment of the three-way handshake protocol, but before it is received by the
server, neither the client nor server knows that the second leg of the three-way handshake
is successful. The history variable estb-pairs keeps a record of this fact.

When the client performs the receive-seg.s(sn., ack., msg.) and receive-seg.s(sn., ack,,
msg., FIN) actions, choose-isn, is set to false. Again this is to facilitate the proof of

properties about initial sequence numbers.
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send-msg. (open, m, close) receive-segcs (SYN, sn;)

Eff: (* Effect clause from 7CP, *) Eff: (* Effect clause from 7CP; *)
if mode, = closed A open then { if mode; = listen then {
choose-isn,. := true choose-isn; = true

sn, .= sn. + 1 sng = sng + 1

1SN, 1= SN, 1SN 1= SN

used-id, = used-id. U {isn,} isnS 1= sn,

} used-id; := used-id; U {isn,}

send-seg.s (SYN, sn;)

Pre: (* Precondition clause from 7CP, *) send-segs. (SYN, sns, acks)
Eff: (* Effect clause from 7CP, *) Pre: (* Precondition clause from 7CP; *)
choose-isn, := false Eff: (* Effect clause from T7CP; *)
choose-isn, := false

choose-isn, := false
recetve-segsc (SYN, sns, acks)
Eff: (* Effect clause from 7CP, *)

if mode, = syn-sent A acks = sn.+1 receive-segs (Sne, acke, msg;)

then { Eff: (* Effect clause from T7CP; *)
1SNy = SN, .
esth-pairs:= estb-pairs U {(isn., isnt)} else if mode; # rec then {

if sn. = ack; then
send-seges (sne, acke, msg.)

Pre: (* Precondition clause from 7CP, *) if mode; = syn-rcvd then {
Eff: (* Effect clause from 7CP, *) assoc = assoc U {(isn?, isns)}
choose-isn, := false
send-seges (sne, acke, msg., FIN) receive-seges (sne, acke, msg., FIN)
Pre: (* Precondition clause from 7CP, *) Eff: (* Effect clause from 7CP; *)
Eff: (* Effect clause from 7CP, *) o
choose-isn; = false else if mode; # rec then {

if sn. = acks V sn,. = acky + 1 then
if ack. = sns + 1 then {

if mode; = syn-rcvd then {
assoc = assoc U {(isn?, isns)}

Figure 7-1: Steps where TCP" differs from TCP. The client side is on the left and the server side
on the right.
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7.2 Invariants

During the process of performing a simulation proof it becomes clear that certain invariants
are needed. This happens when the simulation relation does not hold for some situation, but
it turns out the situation happens in an unreachable state. Thus, an invariant that avoids
these “bad” states is found. In this section we present the invariants we need for the refine-
ment mapping from 7CP" to DP. The proofs for these invariants are given in Appendix B.
We present the invariants before we present the simulation because for correctness they are
needed before the simulation. However, we discovered most of the invariants we need while
carrying out the simulation.? Some of the invariants presented below have several parts.

The invariant is the conjunction of the different parts. The properties stated below are true

of all reachable states of TCP".

The first set of invariants, Invariants 7.1 through 7.12, state basic properties about the
relationships between sequence numbers, sequence numbers on segments, acknowledgment
numbers, acknowledgment numbers on segments, and initial sequence numbers. These
invariants are mainly used in the proofs of other more complicated invariants.

Invariant 7.1

1. For all segments p € in-transit., sn. > sn(p).

2. For all segments p € in-transits., sns > sn(p). ]

Invariant 7.2

1. If ack, € N then ack, < sn. + 1.

2. If ack. € N then ack, < sng + 1. [ ]
Invariant 7.3

1. For all segments p € in-transity., ack(p) < sn. + 1.

2. For all segments p € in-transit.s, ack(p) < sns + 1.

Invariant 7.4

1. If mode. = syn-sent then for all non-SYN segments p € in-transit.;, sn(p) < isn,.

?In terms of understanding the correctness proof in this chapter, it might be better to start reading
Section 7.3 on the simulation first, and only read the invariants as they are referred to in that section.
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2. If mode; = syn-rcvd then for all non-SYN segments p € in-transits., sn(p) < isn,. W

Invariant 7.5

1. isn. # nil if and only if mode. # closed.
2. isng # nil if and only if mode. ¢ {closed, syn-sent}.

3. isns #nil V isn # nil if and only if mode; ¢ {closed,listen}. ]

Invariant 7.6

1. If isn? # nil then isn? < sn,.
2. If isn? # nil then isn < acks.

3. If isn] # nil then isng

IN

sN.
4. If isn; # nil then isn{ < ack..
5. If isn. # nil then isn. < sn..

6. If isng # nil then isng < sn,. [ |
Invariant 7.7

If modey, = syn-rcvd then acky = isn? + 1. [ ]

Invariant 7.8

If (¢,7) € assoc then ¢ < sn. A j < sn. [ |

Invariant 7.9

1. If ésn. # nil A choose-isn. = true then isn. # isn].

2. If isng, # nil A choose-isns = true then isng # isng. ]

Invariant 7.10

1. If mode. = syn-sent then sn. = isn..

2. If mode. = syn-rcvd then sny; = isn,. [ ]

Invariant 7.11
1. If choose-isn. A isn. = ¢ then V SYN segments p € in-transit.s, sn(p) < 1 A
V SYN segments ¢ € in-transits., ack(q) < i+ 1.
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2. If choose-isnsNisng = i then V SYN segments p € in-transit., sn(p) < jAV segments ¢ €

in-transit.s, ack(q) < i+ 1. |

Invariant 7.12

1. For all i € NU{nil}, (4,nil) ¢ estb-pairs.
2. For all j € NU{nil}, (nil,j) ¢ estb-pairs.
3. For all i € NU {nil}, (¢,nil) ¢ assoc.

4. For all j € NU{nil}, (nil,j) ¢ assoc. [

Invariant 7.13 is directly used to in the simulation proof. It states that if a host has
started the close phase (indicated by its mode), it must have received the signal to close
from the user (rcvd-close. or rcvd-close, is true), and it must have sent all the data it

received from the user (the send buffers are empty).

Invariant 7.13
1. If mode. € {fin-wait-1,fin-wait-2, closing, timed-wait, last-ack} then send-buf.

€ A rcvd-close, = true.

2. If mode; € {fin-wait-1, fin-wait-2, closing, timed-wait, last-ack} then send-buf,

€ A revd-close, = true. [ ]

Invariant 7.14, is also used directly in the simulation proof. It states that before the
server gets to a synchronized state, it does not accept any messages, so its receive buffer is
empty.

Invariant 7.14

If modes; € {listen, syn-rcvd} then rev-buf, = e. m

The next invariant that is directly referred to in the simulation proof is Invariant 7.30.
The invariants up to that one are needed for its proof and/or the proof of subsequent
invariants. Invariant 7.15 is about the three-way handshake protocol. It states that if the

client has sent the segment for the final leg of the protocol (ack(p) > sn,), and neither it
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nor the server closed since the first segment for the protocol was sent (isn. = isn?), then

the client cannot be in mode syn-sent.

Invariant 7.15
If isn. = isn® and there exists p € in-transit.s such that ack(p) > sns then mode. #

syn-sent. [ |

Parts one and two of the next invariant states that before the client or server gets to
a synchronized state, there initial sequence number is not part of an association pair, and
Parts three and four states that when the client and server first choose initial sequence

numbers, the number is not part of a pair in the set estb-pairs.

Invariant 7.16

1. If modes; = syn-rcvd then for all ¢, (7, isns) € assoc.
2. If mode. = syn-sent then for all j, (isn.,J) ¢ assoc.
3. If mode; = syn-rcvd A choose-isn, then for all 4, (7, isny) &€ estb-pairs.

4. If mode, = syn-sent then for all j, (isn.,j) ¢ estb-pairs. [

Invariant 7.17 states that the client’s initial sequence number becomes part of a pair in
estb-pairs if and only if the client is in a synchronized mode, unless it crashed or received
a reset.

Invariant 7.17

1. If mode. € sync-states then (isn.,isng) € estb-pairs

2. If (isn.,isng) € estb-pairs A mode. ¢ {rec,reset} then mode. € sync-states. ]
The next invariant states that if the initial sequence number of the client and the initial
sequence number of the server form an association pair, then the initial sequence number

of the client, and what the client believes to be the initial sequence number of the server

- . .
isnS are a pair in estb-pairs.
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Invariant 7.18

If (isng, isng) € assoc N\ mode, ¢ {rec,reset} then (isn.,isn;) € estb-pairs. |

Invariants 7.19 and 7.20 are about the open phase of the protocol. Informally speaking,
they imply that during this phase of the protocol, the client and server are not out of
synch, unless there is a crash or a reset. Invariant 7.19 states that when the client is in
mode syn-sent, and the server has received the client’s initial sequence number, the server
cannot yet be in a synchronized mode, and in mode syn-rcvd, and Invariant 7.20 states
that if the server is in mode syn-rcvd it knows the client’s initial sequence number and the
client knows the server’s initial sequence number, then the client must be in a synchronized
state.

Invariant 7.19

If mode. = syn-sent A isn. = isn then mode; &€ sync-states. [ ]

Invariant 7.20
If isn. = isnl A isn, = isn A modes; = syn-rcvd A mode. ¢ {closed,rec,reset} then

mode. € sync-states. [ |

Invariant 7.21 is needed for the proof of Invariant 7.22 which is in turn needed for the
proof of Invariant 7.23. Invariant 7.23 states that whenever the client has an acknowledg-
ment number, it is greater than or equal to the acknowledgment number of any segment
on the out going channel of the client. The acknowledgment number of the client gets a
non-nil value when the client receives a valid SYN segment from the server. The value is the
sequence number plus one of this SYN segment. Invariant 7.22 states that the value of this
sequence number is greater than or equal to the acknowledgment number of any segment on
the out going channel of the client. The sequence number of this segment was the sequence
number of the server in mode syn-rcvd, so Invariant 7.21 states that when the server has
this sequence number it is greater than or equal to any acknowledgment number on the out
going channel of the client.

Invariant 7.21
If mode. = syn-sent A mode; = syn-rcvd A acks; = sn. + 1 then for all segments p €

in-transit.s, sns > ack(p). ]
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Invariant 7.22
If mode, = syn-sent then for all SYN segments p € in-transity. such that ack(p) = sn. +1,
sn(p) > ack(q) for all ¢ € in-transit,,. |
Invariant 7.23

If ack. € N then for all p € in-transit.s, ack. > ack(p). ]

Invariant 7.24 states that under certain conditions the acknowledgment number at the
server is always bigger than the acknowledgment number of any segment on the out going
channel of the server. This property is almost symmetric to the property expressed in In-
variant 7.23. However, there are more conditions in the premise of this invariant because if
the server receives an old duplicate SYN segment from the client, it may set its acknowl-
edgment number to a value less than the acknowledgment number of some segments on its
out going channel. The conditions in the premise rule out this case.

Invariant 7.24
If isn. = isnl A isn, = isnS A mode. € sync-states A mode; ¢ {rec,reset} then for all

segments p € in-transit,., acks > ack(p). ]

One important property of the protocol is that if the client’s and server’s initial sequence
numbers are in assoc or estb-pairs then the client knows the correct initial sequence number
of the server and vice-versa. This property is stated as Invariant 7.28. Invariants 7.25, 7.26,
and 7.27 are used for the proof of this property. Invariant 7.25 states that if the client is in a
synchronized mode and there is a segment from the server on the channel that has data that
the client can accept (sn(p) > ack.), then either the server is not in mode syn-rcvd, or if it
is in mode syn-rcvd, it is out of synch with the client, so it cannot receive a valid ack from
the client because ack. < isns. Invariants 7.26, and 7.27 are straightforward. Basically,
they state that in the states leading up to when the pair (isn., isns) pair is added to either
assoc, or estb-pairs, the client and server know the other’s initial sequence numbers.
Invariant 7.25
If mode, € sync-states A modes ¢ {closed,rec,reset} A isn. = isn} and there exists a non-
SYN segment p € in-transits. such that sn(p) > ack., then mode, # syn-rcvdV ack, < isns.
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Invariant 7.26

If mode;, = syn-rcvd A isn. = isnd A ack. = isns, + 1 then isng = isng. [ ]

Invariant 7.27
If modey, = syn-rcvd A isn. = isn’ and there exists a non-SYN segment p € in-transil.,
such that ack(p) = isns + 1 then isng = isng. |
Invariant 7.28

1. If (isne, isn,) € assoc then isnS = isng A isnl = isn,..

2. If (isne, isns) € estb-pairs then isn = isn, A isnd = isn.. |

Invariant 7.29 is very similar to Invariant 7.24. It gives different conditions under which
the acknowledgment number at the server is greater than or equal to the acknowledgment
number of any out going segments.

Invariant 7.29

If (isne, isns) € assoc A mode, ¢ {rec,reset} then for all segments p € in-transity., acks >

ack(p). |

Invariant 7.30 is a key one. The conditions in the premise of the invariant are basically
the conditions under which a host prepares a message to be sent. Thus, the invariant states
that the hosts only prepares new messages if the previous message has been acknowledged
(sn. < acks or sng < ack.).

Invariant 7.30
1. If mode,. € {estb, close-wait}A-ready-to-send, Amodes ¢ {rec,reset}A(isn,, isns) €

estb-pairs A isn = isn, then sn. < ack;.

2. If mode, € {estb, close-wait}A—ready-to-send, Amode. ¢ {rec,reset}A(isn., isn,) €

assoc then sn, < ack,.. [ ]

Invariant 7.33 is another key invariant. It expresses an essential correctness property of
the protocol. It states that an initial sequence number from the client can only be paired
with a unique initial sequence number from the server, and vice-versa. Invariants 7.31

and 7.32 are used for the proof of this invariant.
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Invariant 7.31

1. If (¢, isn,) € assoc then isnd = 1.

2. If (isnZ, j) € assoc A mode, € sync-states then isn, = j. [

Invariant 7.32

If (isn?,j) € assoc A isns # j A modes ¢ {rec,reset} then mode, = syn-rcvd. ]

Invariant 7.33

1. If (h,j) € assoc A (i, ) € assoc then h = i.

2. If (¢,7) € assoc A (i, k) € assoc then j = k. |

Invariant 7.34 is also used directly in the simulation proof. It states that if the client
is in a synchronized state and the initial sequence number of the server is part of a pair in
the set estb-pairs, then the other part of the pair must be the initial sequence number of
the client.

Invariant 7.34
If modes; € {syn-rcvd} U sync-states A mode. € sync-states and there exists ¢ such that

(i, isng) € estb-pairs then ¢ = isn.. |

Invariant 7.36 is also important, it says that if the message at a host is not null, and
there is a segment with the same sequence number as the host, then the segment must
have the same message as the host. Invariant 7.37 is another key invariant that express an
essential correctness property. It states that if two segments on the same channel have the
same sequence number, it the messages on the segments are not null, then they must have
the same message. Invariant 7.35 is a preliminary step in the proof of Invariant 7.37. It
states that if the message at the host is different from the message on a segment, then the
sequence number of the segment is strictly less than the current sequence number of the
host.

Invariant 7.35
1. If there exists p € in-transit.; such that msg(p) # msg. then sn(p) < sn. V msg. =

null.
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2. If there exists p € in-transits. such that msg(p) # msgs then sn(p) < sny, V msgs =
null. ]

Invariant 7.36
1. If msg. # null and there exists p € in-transit.; such that sn(p) = sn. then msg(p) =

msge.

2. If msgs # null and there exists p € in-transit,. such that sn(p) = sn, then msg(p) =
msgs. ]

Invariant 7.37
1. If there exists segments p and ¢ on in-transit., such that sn(p) = sn(q) A msg(p) #

null A msg(q) # null then msg(p) = msg(q).

2. If there exists segments p and ¢ on in-transit,. such that sn(p) = sn(q) A msg(p) #

null A msg(q) # null then msg(p) = msg(q). |

Invariant 7.38 states a property that is easy to see and prove. This property is used

directly in the simulation proof.

Invariant 7.38

If mode, € sync-states then (isng, isns) € assoc. [ ]

Invariant 7.47 states a similar property about the client. It states that when the client
is in a mode that indicates it has received a FIN segment from the server, then its initial
sequence number is part of an association pair. However, to prove the property for the
client side requires a few more steps. When the server first gets to a synchronized mode,
its initial sequence number is paired with isn] and added to assoc. In order to prove
that the client’s initial sequence number also becomes a part of an association pair, we
have to prove that when the pair is added to assoc, that isn} = isns. This property is
stated in Invariant 7.44. To prove this property, we examined properties that are true if
isn # isns. The main property that we show when isn} # isn, is stated in Invariant 7.41.
This invariant states that if the client is in a synchronized state and the server is in mode
syn-rcvd, and if isnd # isn,, then there are no segments on the channel that can cause the

server to go to a synchronized mode and to add a pair to assoc. To prove Invariant 7.41 we
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use Invariant 7.40 which states that the acknowledgment number of the client is less than
sns + 1 under the same conditions. To prove Invariant 7.40 we use Invariant 7.39 which
states that the segment that causes the client to go to a synchronized mode, has sequence
number (on which the acknowledgment number of the client is based) that is strictly less
than the sequence number of the server when isn. # isn’.

Invariant 7.39

If mode, = syn-sent A modes; = syn-rcvd A isn. # isn? then for all SYN segments p €
in-transits. such that ack(p) = sn. + 1, sn(p) < sns. |
Invariant 7.40

If mode. € sync-states A\ modes = syn-rcvd A isn. # isn. then ack. < sns + 1. [ ]

Invariant 7.41
If mode. € sync-states A mode; = syn-rcvd A isn. # isnd then for all segments p €

in-transit.s, ack(p) < sns + 1. [

Invariant 7.43 is also used in the proof of Invariant 7.44. It states that when the client
first becomes established for an incarnation, the server is not yet in a synchronized mode.
To prove Invariant 7.43 we use Invariant 7.42 which states if there is a segment on the
incoming channel of the server that can cause it to go to a synchronized mode, then the
client cannot be in mode syn-sent, because it needs to be in a synchronized mode in order
to send this segment, or if the client is in mode syn-sent, then it must have closed and
reopened, so there are no segments from the server that can acknowledge the new sequence
number of the client.

Invariant 7.42
If modes = syn-rcvd and there exists p € in-transit.s such that ack(p) = sns + 1, then
mode. # syn-sent or for all SYN segments ¢ € in-transit,., ack(q) # sn. + 1. [
Invariant 7.43
If mode. = syn-sent and there exists SYN segment p € in-transits,. such that ack(p) =
sn. + 1, then mode, ¢ sync-states and for all ¢ € N (4, isns) € assoc. [
Invariant 7.44

If mode. € sync-states A (isn?, isn,) € assoc then isn. = isnf. [ ]
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Once we have Invariant 7.44 we can use it along with Invariant 7.45 and some previously
defined invariants to prove Invariant 7.46 which is the invariant directly used in the proof
of Invariant 7.47. Invariant 7.46 states that if there is a segment on the incoming channel of
the client that can cause it to be in one of the modes in the premise of Invariant 7.47, then
the initial sequence number of the client is already part of an association pair. Invariant 7.45
says when the client first gets to a synchronized mode, there are no additional segments on

the channel that can cause it to change modes.

Invariant 7.45
If mode. = syn-sent and there exists a SYN segment p € in-transits. such that ack(p) =

sn. + 1 then for all non-SYN segments ¢ € in-transit,., sn(q) < sn(p)+ 1. |

Invariant 7.46
If mode. € sync-states and there exists a non-SYN segment p € in-transits. such that

sn(p) > ack. then there exists j such that (isn.,j) € assoc. [

Invariant 7.47
If mode. € {close-wait,closing, last-ack,timed-wait} then 3 j such that (isn.,j) €

assoc. |

The next invariant that is used directly in the simulation proof is Invariant 7.52. It
states that if a host is in a mode that indicates it has received a FIN segment, and its initial
sequence number is paired with the other host’s initial sequence number, then that other
host must be in a mode that indicates that it sent the FIN segment. That is, if a host
accepts a FIN segment, it must be a legitimate FIN segment for the current incarnation of
the connection. To prove Invariant 7.52, we use Invariants 7.49 and 7.51. Invariant 7.49
states that before the server gets to a synchronized state, the client could not have already
received a legitimate FIN segment, and Invariant 7.51 states that when there is a legitimate
FIN segment from the server on the way to the client, the server must be in a mode that
indicates it sent this segment. To prove Invariant 7.49 we use Invariant 7.48 which says
essentially the same thing as Invariant 7.49, but the condition in the premise about the
state from which the client sends the segment mention in the premise of Invariant 7.49. To

prove Invariant 7.51 we use Invariant 7.50 which says if there is a legitimate FIN segment
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from the client to the server before the server gets to a synchronized mode, the client must

be in a mode that indicates that it sent a FIN segment.

Invariant 7.48
If modes = syn-rcvd A isn. = isnd A ack. = isns+1 then mode. ¢ {close-wait, closing,

last-ack, timed-wait}. ]

Invariant 7.49
If mode; = syn-rcvd A isn. = isn and there exists a non-SYN segment p € in-transit.,
such that ack(p) = sns + 1 then mode. ¢ {close-wait, closing, last-ack, timed-wait}.

Invariant 7.50

If modes = syn-rcvd A mode, ¢ {closed,rec,reset} and there exists a non-SYN segment
p € in-transit.s such that ack(p) = sn, + 1 and there exists a FIN segment ¢ € in-transit.,
such that (sn(q) > max(acks, sn(p)+1)V(p = gAsn(q) > ack,)) then mode, € {fin-wait-1,

fin-wait-2, closing, timed-wait, last-ack}. ]

Invariant 7.51
1. If mode. € sync-states A mode, ¢ {rec,reset} A (isn.,isns) € assoc and there exists
a FIN segment p € in-transits. such that sn(p) > ack. then mode, € {fin-wait-1,

fin-wait-2, closing, timed-wait, last-ack}.

2. If mode; € sync-states N\ mode, ¢ {rec,reset} A (isn.,isns) € estb-pairs A isn. = isn?
and there exists a FIN segment p € in-transit.s such that sn(p) > acks then mode. €

{fin-wait-1, fin-wait-2, closing, timed-wait, last-ack}. [

Invariant 7.52
1. If mode, € {close-wait, closing, last-ack, timed-wait} A modes ¢ {rec, reset} A
(isn.,isns) € assoc then mode, € {fin-wait-1, fin-wait-2, closing, timed-wait,

last-ack}.

2. If modey € {close-wait,closing, last-ack, timed-wait} A mode. ¢ {rec, reset} A
(isn.,isns) € estb-pairs A isn. = isnS then mode. € {fin-wait-1, fin-wait-2,

closing, timed-wait, last-ack}. [ |
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Invariant 7.53 also expresses a key correctness property. It states that when a host
receives a segment from which it may accept data (sn(p) > ack. or sn(p) > ack,), then the
sender has not changed its sequence number from the time it sent this segment. Another way
to state the property expressed by the invariant is: sequence numbers do not get changed
until the data sent with that sequence number is acknowledged.

Invariant 7.53

1. If modes; € {syn-rcvd} U sync-states A mode. € {rec,reset} U sync-states A isn. =

isnd A isn, = isnS and there exists p € in-transit.s such that sn(p) > ack,, then

sn. = sn(p).

2. If mode. € sync-states A (isn., isns) € assoc and there exists p € in-transits. such that

sn(p) > ack., then sng = sn(p). |

Invariants 7.54, 7.55, and 7.56 state an important correctness property. They state that
segments that cause the the value of the message variable on the segment to be added to
the receive buffer, contains valid messages. That is, they contain messages that are not

null.

Invariant 7.54
1. If modes € {syn-rcvd} U sync-states A mode. € sync-states A (ready-to-send, V
send-fin,) N (isng, isng) € estb-pairs A isnl = isn. A ((sn. = acks A\ =(rcvd-close, N

send-buf . = ¢)) V sn, = acks + 1) then msg, # null.

2. If mode, € sync-states A (isn, isns) € assoc N (ready-to-send, V send-fing) N ((sns =

ack.) A =(revd-closeg A send-buf, = €))V (sns = ack. + 1) then msg, # null. ]

Invariant 7.55
1. If mode; € sync-states and there exists non-FIN segment p € in-transit.s such that

sn(p) = acks or a FIN segment p € in-transit,s such that sn(p) = acks + 1 then

msg(p) # null.

2. If mode. € sync-states and there exists non-FIN segment p € in-transit;. such that
sn(p) = ack, or a FIN segment p € in-transit,. such that sn(p) = ack. + 1 then
msg(p) # null. |
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Invariant 7.56

If modes; = syn-rcvd and there exists non-FIN segment p € in-transit.s such that sn(p) =
acks or a FIN segment p € in-transit.s such that sn(p) = acks+ 1 and ack(p) = sns;+ 1 then
msg(p) # null. |

The next invariant is also used directly in the simulation proof. It states that when a
host is in a mode that indicates that it received a FIN segment, then if the other host has not
closed since sending the FIN segment, its sequence number is less than the acknowledgment
number of the host that received the FIN segment. The reason for this is that once a host
sends a FIN segment it does not send any more data before it closes, so it does not increase
its sequence number, and the host that receives the FIN segment sets its acknowledgment

number to the sequence number plus one of the FIN segment.

Invariant 7.57
1. If mode. € {close-wait,closing, last-ack, timed-wait} A mode, ¢ {rec,reset}

A (isng, isns) € assoc then sng < acke.

2. If modes € {close-wait, closing, last-ack, timed-wait} A mode. ¢ {rec,reset}

A (isng,isns) € estb-pairs A isn. = isn] then sn. < acks. ]

When a host closes normally in TCP, it closes either from mode last-ack, or from mode
timed-wait after wait for a period of 2u. Invariant 7.59 states that when a host closes from
mode last-ack its receive buffer is empty, and Invariant 7.61 says the buffer is empty if
the close is from timed-wait state. That is, hosts pass all the data to the user before they
close under normal conditions. To prove Invariant 7.59 we use Invariant 7.58 which states
that when the host is in a mode that indicates that it has received a FIN segment, either
a flag (push-data,. or push-datay) is set that forces the host to pass all the data to the user
before it does anything else, or the receive buffer is empty. In the proof of Invariant 7.61 we
use Invariant 7.60. This invariant states that if a host that sent a FIN and also received a
FIN (mode is closing) then if it has already sent an acknowledgment for the received FIN

segment (send-fin-ack. or send-fin-acks is true), its receive buffer must already be empty.
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These conditions (mode is closing and send-fin-ack. or send-fin-ack, is true) must be true
before a host starts timed-wait state.
Invariant 7.58

1. If mode. € {close-wait,closing, timed-wait}Amodes € {rec,reset} A (isn., isns) €

assoc then push-data, = true V rcv-buf,. = €.

2. If If mode; € {close-wait, closing, timed-wait} Amode, ¢ {rec,reset} A (isn., isn,) €
estb-pairs N isn. = isn’ then push-data, = true V rcv-buf, = e. |
Invariant 7.59

1. If mode. = last-ack Amodes; € {rec,reset} A (isn.,isns) € assoc then rcv-buf . = e.

2. If modes = last-ack Amode. ¢ {rec,reset} A (isn.,isns) € estb-pairs A isn. = isn?

then rev-buf, = e. ]

Invariant 7.60

1. If mode. = closing A send-fin-ack, = true then rcv-buf . = e.

2. If mode; = closing A send-fin-ack, = true then rev-buf, = e. ]

Invariant 7.61

1. If mode. = timed-wait A first(t-out.) € T then rcv-buf, = €.

2. If mode; = timed-wait A first(t-out;) € T then rcv-buf, = €. [ ]

The remaining invariants are about situations where the hosts have formed an incarna-
tion or are about to form one, but one of the host may have closed since the incarnation
was formed. When it is the server that may have closed, it is indicated in the invari-
ants as the property mode. € sync-states and there exists j such that (isn.,j) € assoc,
and when it is the client that may have closed, it is indicated by the property mode; €
{syn-rcvd} U sync-states and there exists i, such that ¢ = isn? A (¢,1isns) € estb-pairs.

Invariant 7.62 is used directly in the simulation proof. The property it expresses is
important for the p-pair. and p-pair, derived variables. The invariant states that when a
host receives a segment that may have acceptable data (sn(p) > ack. or sn(p) > acks), then

all other segments ¢ on the channel have sn(q) < sn(p). This means that if the message was
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a part of a possible pair, the set becomes empty after this message is received because when
the segment is received the acknowledgment number of the receiving host is set to sn(p)+ 1.
This invariant and Invariant 7.64 also gives the property that in any state there is at most
one element in the possible pairs sets. Invariant 7.64 states that there cannot be segments
on the channel at the same time that have sequence number equal to the acknowledgment
number of the receiving host plus one, and also segments that have sequence number equal
to the acknowledgment number of the receiving host. Invariant 7.63 is used in the proof
of Invariant 7.64. It states that if the actual sequence number of the sending host is equal
to the acknowledgment number of the receiving host plus, then there are no segments on
the outgoing channel of the sender that has sequence number equal to the acknowledgment

number of the receiving host.

Invariant 7.62
1. If mode. € sync-states and there exists j such that (isn.,j) € assoc and there exists
a non-SYN segment p € in-transits. such that sn(p) > ack., then for all non-SYN

segments g € in-transits. sn(q) < sn(p).

2. If modes € {syn-rcvd}Usync-states and there exists ¢, such that ¢ = isn? A (¢, isns) €
estb-pairs and there exists a non-SYN segment p € in-transit., such that sn(p) > acks,,

then for all non-SYN segments ¢ € in-transit.s sn(q) < sn(p). |

Invariant 7.63
1. If mode. € {rec,reset} U sync-states A modes € {syn-rcvd} U sync-states A isn. =
isns A (isne, isns) € estb-pairs A sn. = acks + 1 then for all non-SYN segments p €

in-transit.s, sn(p) # acks.

2. If mode. € sync-states A (isn.,isns) € assoc A sns = ack. + 1 then for all non-SYN

segments p € in-transit,., sn(p) # ack,. [

Invariant 7.64
1. If mode. € sync-states and there exists j such that (isn.,j) € assoc and there exists
anon-SYN segment p € in-transity. such that sn(p) = ack. + 1, then for all non-SYN

segments ¢ € in-transits., sn(q) # ack..
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2. If modes € {syn-rcvd}Usync-states and there exists ¢, such that ¢ = isn? A (¢, isns) €
estb-pairs and there exists a non-SYN segment p € in-transit.s; such that sn(p) =

acks + 1, then for all non-SYN segments ¢ € in-transit., sn(q) # acks. [

Invariant 7.65 is similar to Invariant 7.57, and serves a similar purpose. However, in this
invariant, since the sending host may have closed, the property expressed by the invariant

compares the sequence number of segments as opposed to the actual sequence numbers.

Invariant 7.65
1. If mode. € {close-wait,closing, last-ack, timed-wait} and there exists j such

that (isn.,j) € assoc then for all non-SYN segments p € in-transit,., sn(p) < ack,.

2. If mode; € {close-wait,closing, last-ack,timed-wait} and there exists i, such
that ¢ = isn A (i,1isns) € estb-pairs then for all non-SYN segments p € in-transit.s,

sn(p) < ack,. |

Invariants 7.66 and 7.67 are similar to Invariants 7.58 and 7.59 respectively. The differ-
ence being that the properties are expressed for the situation where one of the hosts might
have closed after the connection is formed.

Invariant 7.66
1. If mode. € {close-wait,closing, timed-wait} and there exists j such that (isn.,j) €

assoc then push-data, = true V rev-buf, = e.

2. If If modes € {close-wait, closing, timed-wait} there exists ¢ such that (i, isn,) €
estb-pairs N isn. = isn’ then push-data, = true V rcv-buf, = e. [ |
Invariant 7.67

1. If mode. = last-ack and there exists j such that (¢sn.,j) € assoc then rcv-buf . = e.

2. If mode;, = last-ack and there exists ¢, such that ¢ = isn] A (4,isn,) € estb-pairs

then rev-buf, = e. ]

The final significant invariant is Invariant 7.70. It is used directly in the simulation

proof, and it states that if a host is in mode that indicates that it received a FIN segment,
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then the other host must either have the flag set that indicates it received a close signal
from its user, or if the flag is not set to true, it must be because the host closed after sending
the FIN segment. Invariants 7.68 and 7.69 are used in the proof of this invariant. They are

similar to Invariants 7.50 and 7.51 respectively.

Invariant 7.68
If mode; = syn-rcvd and there exists a non-SYN segment p € in-transil.s such that
ack(p) = sny, + 1 and there exists a FIN segment ¢ € in-transit.s such that (sn(q) >

max(acks, sn(p)+ 1)V (p = ¢ A sn(q) > ack,)) then rcvd-close, = true V isn, # isnl. ®

Invariant 7.69
1. If mode. € sync-states and there exists j such that (isn.,j) € assoc and there exists a
FIN segment p € in-transits. such that sn(p) > ack. then rcvd-close; = true Visns #

J.

2. If mode, € sync-states and there exists ¢ such that (¢, isn,) € estb-pairs At = isn] and
there exists a FIN segment p € in-transit.s such that sn(p) > ack, then rcvd-close, =

true V isn, # 1. ]

Invariant 7.70
1. If mode. € {close-wait,closing, last-ack, timed-wait} and there exists j such

that (isn.,j) € assoc then rcvd-closes; = true V isng # j.
2. If modes; € {close-wait,closing,last-ack,timed-wait} and there exists ¢ such

that (¢, isns) € estb-pairs A i = isn] then rcvd-close. = true V isn. # 1. [ |

The conjunction of all the above invariants is itself an invariant, and we call this Invariant

Ir.

7.3 The simulation proof

In this section we define a mapping from states of 7CP" to states of D?, and then prove

that it is a timed refinement mapping with respect to Invariants I7 and Ip.
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7.3.1 The refinement mapping

We define a function Ryp from states(TCP") to states(DP). In the definition, when we

write, for example, “(send-buf.

x ok)”, we mean the element of (Msg x Flag)* obtained

from send-buf. by pairing every message with ok. If send-buf. is undefined or empty then

“(send-buf . x ok)” is the empty string.

Definition 7.1 (Refinement Mapping from 7CP" to DP)
For our mapping the CID and SID are instantiated by the set of non-negative integers. If

s € states(TCP") then define Ryp to be the state u € states(DP) such that:

1. w.now = s.now

2. wu.choose-sid = (s.mode; = listen)

3. u.rec; = (s.mode, = rec)
u.recs = (s.mode; = rec)

4. w.abrt, = (s.mode, = reset)
u.abrt; = (s.mode; = reset)

5. u.used-id, = s.used-id.
w.used-1d; = s.used-1d,

6. wu.id. = s.sn,.
u.id, = s.isn,

7. u.assoc = s.assoc

8. wu.mode, = active
= inactive

u.mode; = active
= inactive

9. wu.g-stat, (i) = live
= dead

u.q-statsc(j) = 1live
= dead

if s.rcvd-close, = false
if s.rcvd-close. = true V mode. = closed
if s.rcvd-close; = false
if s.rcvd-close; = true V mode; = closed

if (sisne = @ A YV j (i,4) € s.estb-pairs) V ((i,s.isn;) €
s.estb-pairs A s.isnd =i A s.modes; € {rec,reset})

otherwise

if (s.isns = j AV 4,(4,§) & s.assoc) V ((s.isng,j) € s.assoc A
s.mode. € {rec,reset})

otherwise
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10, u.queness(i) = ¢ if (sisne # ¢ AV j (4,)) € s.estb-pairs) V
((1,7) € s.estb-pairs A (s.isnd £ iV s.modes €

{rec,reset})) (A)
= (s.send-buf, x ok) if sisne = ¢ AY § (i,5) € s.esth-pairs A
s.mode. € {syn-sent,rec,reset} (B)
= concatenation of: if s.isne = ¢ A s.mode, € {rec,reset} A
o(s.rcv-buf, x ok) (i,s.isns) € s.estb-pairs A s.snd = i@ A
o s.current-msg. s.modes; € {rec,reset} (C)
o(s.send-buf , x ok)
= concatenation of: if (s.isne # ¢V s.mode, € {rec,reset}) A
o(s.rcv-buf, x ok) ((i,s.isng) € s.estb-pairs A sisnd = & A
o(data(s.p-pair,) s.mode; & {rec,reset}) (D)
x marked)
11, u.quenes.(j) = ¢ if (s.isng £ j A Y i,(4,j) € s.assoc) V ((1,5) €
s.assocN(s.isne # iV s.mode, € {rec,reset}))
(A)
= (s.send-buf, x ok) if s.isng = j AV i,(4,7) & s.assoc A s.modes €
{syn-rcvd,rec,reset} (B)
= concatenation of: if siisn; = j A s.mode; ¢ {rec,reset} A
o(s.rcv-buf . X ok) (s.isn., j) € s.assoc A s.mode, ¢ {rec,reset}
o s.currenl-msg, (C)
o(s.send-buf ; x ok)
= concatenation of: if (s.isns; # jV s.mode; € {rec,reset}) A
o(s.rcv-buf . X ok) ((s.isng, j) € s.assocAs.mode, & {rec,reset})
o(data(s.p-pair,) (D)
x marked)

We present some intuition behind the mapping. The choosing of initial sequence num-
bers by the client and server in 7CP", corresponds to the choosing of ids by the client and
server in DP. In TCP", when the server opens it does not immediately choose an initial se-
quence number, but chooses one when it receives a SYN segment from the client. Therefore,
we map the state where mode, is listen in 7CP", to the state where choose-sid is true in
the specification. The mapping of s.now, s.used-id., s.used-ids, and s.assoc are all straight-
forward. When s.mode. = rec and s.mode; = rec obviously correspond to the the states in
the specification where w.rec. and u.recs respectively, are true. Similarly, s.mode. = reset
and s.mode; = reset correspond to the states where u.abrt. and w.abrt; respectively are
true.

In the specification, a host is active when it receives an open input, but has not yet
received a close input for the current incarnation. In 7CP" when the client or server receives
the signal to open revd-close,. or rcvd-closeg respectively, is initialized to false. When the

signal to close is received, rcvd-close. or rcvd-closeg is set to true. Therefore, revd-close.
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or rcvd-close; having the value false maps to the respective host in DP having its mode
be active in the specification, and rcvd-close,. or rcvd-closes having the value true or the
host being closed corresponds to the respective host having its mode be inactive in the
specification. We need to map the mode of the host being closed in 7CP" to the mode of the
host being inactive in the specification because rcvd-close. and rcvd-closeg are undefined

when a host is closed.

In 7CP" there are four variables that correspond to parts of the abstract queue for
messages going in a particular direction. For example, messages from the client to the server
may be in send-buf., msg., in-transit.s, and rcv-buf ;. If any of these variables contain a
valid message, then the abstract queue to which that variable is mapped must be 1ive. For
example, when the client opens and assigns isn. the value 7, it may also add a valid message
to sbuf., so the abstract queue, queue.s(7), becomes 1live. This abstract queue remains
live as long as the client has isn. = ¢. Even if client crashes, receives a reset, or closes,
queue s(¢) remains 1ive if (7, isn,) € estb-pairs) and (isni = i) and (mode, ¢ {rec,reset}).
The queue, remains live in this situation because there might still be a messages from the
client in in-transit.; and rcv-buf that the server may deliver to its user. For this case we
use the condition (¢, isns) € estb-pairs as opposed to (¢, isns) € assoc because the client may
close while there is a segment on the channel with a valid message, which if it arrives at
the server and the server has not crashed or closed, causes the pair (¢, isns) to be added to
assoc, and the message to be delivered. In these situations the queue becomes dead if the
server crashes or closed, because if the server crashes or closes no more data can be received
from the corresponding abstract queue. However, in the situation before the client’s initial
sequence number is paired with an initial sequence number from the server and added to
estb-pairs, it does not matter if the server has crashed or closed, so the queue is live.
For the variables that map to an abstract queue, queue,.(7), that take messages from the
server to the client, the situation is essentially symmetric, except that (isn.,j) € assoc is
the condition required for messages to be still valid if the server crashes, resets, or closes

after choosing isn; = j.

We break the different states of 7CP" that maps to states of DP where a queue is live

into three different cases for abstract queues in each direction. We also have a fourth case
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Spec D Abstract queue for datafrom client to server (u.queuggi))

A A A A

Refinement
Mapping

TCP send buffer of client (s.send—bt@‘) s.cur-msg receive buffer of server (s.rcv-bug)

Figure 7-2: Example of the mapping of variables of TCP to the abstract queue of the specification.

for queues in each direction, which corresponds to the situation where the abstract queue
is dead. We refer to the cases as (A), (B), (C), and (D), for queues in each direction.

For queue, (i) the first case, (A), is the situation where the states of 7CP”* maps to
g-stat ., being dead. For this situation queue () is empty.

The second case, (B), is the situation where the client first assigns isn. to ¢, and before
mode. gets to estb. For this case the queue is just (s.send-buf. x ok) even if the client is
in recovery or reset mode.

Case (C) occurs when the client is in a synchronized mode, ((isn., isns) € estb-pairs),
the server knows the current initial sequence number of the client (isn? = i), and the server
is not in recovery or reset mode. This case is illustrated in Figure 7-2. This situation, where
the client and server are either synchronized or are about to become synchronized, is the
typical data transfer state of the protocol . In this situation it is clear that the send buffer
of the client should map to a suffix of the abstract queue, and that the receive buffer of
the server should map to a prefix of the abstract queue. The tricky part to deal with is
the current message being sent, msg., because it may have duplicates on the channel and
another duplicate in the receive buffer of the server. Our definition of cur-msg,. handles this
situation because while the message is being sent and before it is received by the server,
copies on the channel are ignored in the mapping, and cur-msg, is msg, paired with ok.
However, when the message is received by the client and placed on rcv-buf,, cur-msg,
becomes the empty string.

The duplicates on the channel are ignored until there is a crash, reset, or close at the
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client which brings us to the fourth case, (D), for the mapping to queue (7). If there
is a crash or the client has received a valid reset but has not yet closed, then mode. €
{rec,reset}, This is the first set of states for case (D). If the client closes upon recovery
from the crash, or closes for any other reason then (isn. # ¢) which gives us the second
set of states for case (D). In both these situations messages on send-buf . are lost and the
message in s.cur-msg, is either lost or becomes message(p-pair,). The server can also still
deliver messages from its receive buffer, so the variables that map to the abstract queue in
this situation are (msg(p-pair,) x marked) and (s.rcv-buf, x ok). The message in p-pair,
is paired with marked because it may get dropped.

The four cases for the mapping to queues that take data from the server to the client,
queue (), is essentially symmetric, to the mapping to queue (7).

Note for the mapping of the queues, that the conditions that determine whether a queue

is in a particular group makes the groups mutually disjoint.

7.3.2 Simulation of steps

In this section we prove that the mapping Rip defined in the previous section is indeed
a timed refinement mapping from 7CP" to D? with respect to Ip and Ir. This claim is

stated as the following lemma.

Lemma 7.1

TCP" <t DP via Ry,

Proof: We prove that Rp is a timed refinement mapping from 7CP" to DP with respect
to Ip and It by showing that the two cases of Definition 3.11 are satisfied.

Base Case

In the start state so of 7CP" we have sg.mode. = sg.modes = closed, sg.now = 0,
sp.used-id., so.used-ids, and sg.assoc = (. It is clear that Rip(sp) is the unique start

state ug of DP.

Inductive Case
Assume (s,a,s") € Steps(TCP"). Below we consider cases based on a and for each case we

define a finite execution fragment a of S such that fstate(a) = Ryp(s), Istate(a) = Rop(s'),
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and t-trace(a) = t-trace(s,a,s’). For the steps of the proof below we do not include the
time of occurrence and last time in the timed traces of (s,a,s") or a, so as not to clutter the
proof. However, it is clear that since the time-passage steps in D? are arbitrary, if we show
trace(a) = trace(s,a, s') then t-trace(a) = t-trace(s,a,s’). We use u and v to denote Ryp(s)
and Rqp(s’) respectively. For symmetric steps we only show the proof correspondence of

one of the actions since the proof of correspondence of the other will be symmetric.

a = send-msg.(open, m, close).

This step has eight variations depending on whether open and close are true or false, and

whether m is null or not. We examine each variation as a separate case.

1. The first variation we examine is send-msg.(true, null, false). For this case, a =
(u,a,u’). If s.mode. = closed then s’'.mode. = syn-sent, s'.isn. = s.sn.+1, s'.used-id,
s.used-id.U{s .isn.}. The corresponding execution fragment « in DP causes u’.mode,
to be active, u'.id. to be ¢ € CID, u'.used-id. to be w.used-id. U {u'.id.}, and
u.q-stat,(u'.id.) to be live. These states are the correct ones as defined by the

mapping Rrp.

2. The second variation is send-msg.(false, null, false). For this subcase a = (u,a,u’).

The action ¢ has no effect on state s nor does it have an effect on state u.

3. The third variation is send-msg.(true, m, false) where m # null. For this case
a = (u,a,u’), and the correspondence for u'.mode., v'.id., v'.q-stat ,(u'.id.), and
u’.used-id, is the same as for the first variation. However, this step has the additional
effect that m gets concatenated to the end of s.send-buf. in TCP" if s.revd-close,
is false. Since s'.isn, # nil and s’.mode. # rec, we have case (B) or (C) for
u'.queue (u'.id.). If s.rcvd-close. is false, then in the corresponding state of DP,
u.mode. = active. Therefore, if m gets concatenated to s.send-buf, in TCP", then
o in DP causes (m,ok) to be concatenated to the end of u.queue ,(u.id.) in D",
so the resulting states correspond. If m does not get concatenated to s.send-buf,
because s.rcvd-close. is true, then (m,ok) doe not get concatenated to the end of

u.queue,4(u.id.) in D", because u.mode. = inactive. If m does not get concatenated
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to send-buf, because mode. ¢ {syn-sent,estb,close-wait}, then Invariant 7.13

tells us that s.rcvd-close. is true.

. The fourth variation is send-msg.(false, m, false). Again a = (u,a,u’). The only
effect this step can have is to to add m to s.send-buf.. The correspondence is shown

as in the previous case.

. The fifth variation is send-msg.(true, m, true). Again we have o = (u,a,u’). This
case is the same as that for variation send-msg.(true, m, false), except if s.mode. €
{estb, syn-sent, close-wait}, then s'.rcvd-close. = true. In D?, « sets u'.mode,
to inactive. If s.mode. € {estb, syn-sent, close-wait} then having s'.rcvd-close.
set to true corresponds to u'.mode. = inactive, and if s.mode. ¢ {estb, syn-sent,
close-wait}, that corresponds to uw.mode. = inactive, so we still get the correct

mapping with u'.mode. = inactive.

. The sixth variation is send-msg.(false, m, true). This case is similar to the previous
case, with the difference being it does not have the changes in state that could occur

if open is true. Thus, a = (u,a,u’), and the correspondence is preserved.

. The seventh variation is send-msg.(true, null, true). The case can be broken down

into two subcases.

(a) The first subcase occurs when s.mode, € {closed, syn-sent} and s.send-buf is
empty. After a, s’.mode. = closed and s'.rcvd-close. = true. For this subcase,
a = (u, send-msq.(true, null, true), u”, reset-nil,, u'). The traces are clearly
equal, so we need to show that a is enabled in DP and that it produces the a
state that corresponds to s’ in our mapping. Since send-msg,. (true, null, true)
is an input action it is always enabled. After this step, u”.mode. = inactive,
u”.id. has a value from CID, no association is formed with w.id. as yet, and
u” . queue,  (u”.id.) is empty. These are precisely the preconditions for enabling
the internal action reset-nil.. After a, v’.id. = nil and v'.¢-stat ,(u.id.) = dead.

This is the correct state for our mapping.
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(b) The second subcase occurs for all other states and can be treated like the case
five (send-msg.(true, m, true)), except for the fact that the message buffers do

not change. For this subcase o = (u,a,u’).

8. The final variation is send-msg.(false, null, true). If s.mode. = syn-sent and
s.send-buf . is empty, then we have o = (u, send-msg. (false, null, true), u”, reset-nil.,
u'), and the correspondence can be shown as in the previous case. If we are not in
this state, then we have a = (u,a,u’). The only change that may be caused by this
step is if s.mode. € {estb, syn-sent, close-wait}, then s'.rcvd-close. = true. This
was one of the possibilities for variation five, and the proof that the states correspond

is the same as that case.

a = passive-open.

For this step @ = (u,a,u’). The effect of this step in 7CP" is to cause s'.mode; to be
listen and to initialize TCB,. In DP the passive-open action causes u’.mode; = active

and u’.choose-sid = true, so the mapping between states is preserved.

a = send-msgs(m, close).

This step has four variations, each of which we present has a separate case. For all variations

a only changes the state of 7CP" if s.mode, € {listen, syn-rcvd, estb, close-wait}.
1. The first variation is send-msgs(null, true). For this variation there are two subcases.

(a) The first subcase occurs when s.mode, = listen and s.send-buf s is empty. For
this subcase o = (u, send-msgs (€, true), u”, reset-nils, v’ ). Clearly the traces are
the same, and after a s'.mode, = closed and s’.isn, = nil, and after a, v'.id, =
nil and u'.¢-stat,.(u.ids) = dead. Thus, we only need to show that « is enabled
in DP. After send-msgs(null, true), u”.mode, = inactive, u”.ids has a value
from SID, no association has been formed with u”.id; as yet (since s.modes =
listen and for the corresponding state u there is no association formed with
the current w.id. as yet), and u”.queue . (idy) is empty. These are precisely the

preconditions for the action reset-nil;.

127



(b) The second subcase is for all other states s. The corresponding a in DP is
(u,a,u’). The action ¢ may have an effect on state s only if s.mode; € {syn-rcvd,
estb, close-wait}. The effect is to make s'.rcvd-closes; true. After a in DP

u’.modes = inactive, which gives us the correct correspondence of states.

2. The second variation is send-msgs(null, false). For this case a = (u,a,u’), and a has

no effect on 7CP" and a has no effect on DP.

3. The third variation is send-msgs(m, true) where m # null. Again we have a =
(u,a,u’). If s.modes; € {syn-rcvd, estb, close-wait} A =s.rcvd-closes, then after a,
in 7CP" we have s'.send-buf , = s. send-buf ; concatenated with m and s'.rcvd-close,
= true. In the corresponding state of DP, u.mode; = active, then after a we
have u'.modes; = inactive and u'.queue,.(v'.id;) = w.queues.(u.id;) concatenated
with (m,ok). For all other states s of 7CP", a has no effect because Invariant 7.13
tells us that s.rcvd-closes is true for these states. Since s.rcvd-closeg is true, the
corresponding states u of DP, w.modes; = inactive. Thus, a has no effect in these

states, which gives us the correct correspondence of states.

4. The final variation is send-msgs(m, false). Again a = (u,a,u’). The possible effect
of a is to add m to s.send-buf,. For the corresponding state u, a adds (m,ok) to

u.send-buf .. Thus, correspondence of states is maintained.

a = send-seg.s(SYN, sn.).

The corresponding execution fragment a = (u, A, u’) (recall that A is the empty action
sequence). The action a does not affect any variables involved in the mapping, so the

correspondence of states is maintained.

a = receive-seqg.s(SYN, sn.).

This effects of this step can be divided into two cases.

1. The first case occurs if in TCP" s.mode, = listen. For this case the corresponding
a = (u, choose-server-id(j), u'). Tn TCP" if s.mode; = listen, then s'.mode;, =
syn-rcvd, s'.ack; = [sn.]) + 1, s'.sng = s.sng + 1, siisn, = §'.sng, §.used-id; =

s.used-ids U {s'.isn.}. After the corresponding execution fragment « in D?, u'.id; =

128



Jj € SID, v'.used-id. = u.used-id. U {u .isn.}, and u.¢-stat,.(u'.ids;) = live. These
states are the correct ones as defined by the mapping Rrp. If s.mode; = listen then

in the corresponding state u, u.choose-sid = true, so the choose-server-id(j) action is

enabled.

2. The second case occurs for all other values of s.mode;. For this case the corresponding
a = (u, A\, u'). If s.modes = closed, then s'.send-rsts gets set to true and '.rst-seq;
gets set to 0, and s'.ack; is set to [sn.] + 1. However, none of these assignments affect

the mapping, so u = u’. For all other values of s.modes a has no effect.

a = send-segs.(SYN, sn., acks).

The only effect of this step is to add the segment (SYN, sn., acks) to s.in-transit,. which

does not affect the mapping, so the corresponding execution fragment is o = (u, A, u').

a = receive-segs.(SYN, sn., acks).

For this step the the corresponding a = (u,A,u’). Let the received segment be p. If
s.mode. = syn-sent and ack(p) = sn. + 1, this step changes mode. to estb, and ack.
to sn(p) + 1. It also adds (isn., sn(p)) to estb-pairs. These changes affect the mapping
to queue, (1), where ¢ = isn., because after the these changes, we may have case (C) of
the mapping, where in state s, we had case (B). Therefore, to show that the mapping is
preserved after a and a, we need to show that u.queue (1) = u'.queue 4(7). To do this we
need to show that s'.rcv-buf ; and s'.cur-msg, are both empty. If we do have case (C) of the
mapping to queue_,(7) then by Invariant 7.19 we know s’.mode; = syn-rcvd. If s’.mode, =
syn-rcvd, then Invariant 7.14 tells us that s'.rcv-buf, = €. From Invariant 7.6 we know

s'asn? < s'.ackg, and from Invariant 7.10 we know that s.isn. = s.sn. = s.isnf. Since

S

. we know that after this step s'.sn. < s'.ack.

this step does not change isn., sn., or isn

Therefore, s'.cur-msg, is empty. Thus, u.queue (i) = u'.queue 4(7).

a = prepare-ms(..

For this step of 7CP" the corresponding execution fragment , v, in D is (u, A, u/). Tt is
clear that both a and a have the empty trace. We now show that Ryp(s') = u = u'. The
action a changes sn. and may change mode., msg. and send-buf,.. It may change mode,

to fin-wait-1, or last-ack, but only if s.rcvd-close. = true which means w.mode. =
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u’.mode, = inactive. The changes to sn., msg., and send-buf ., may change the mapping
of u.queue (i), but only for case (C) because the changes do not affect the mapping for
cases (A) and (D), and states where a is enabled clearly do not overlap with case (B) because
the precondition on action a requires s.mode. € {estb, close-wait}.

Therefore, we need to show that u'.queue (i) = u.queue (1) for case (C). If we are
in case (C) for u.queue  (¢) then (¢,isns) € s.estb-pairs A s.isni = ¢ A s.modes ¢
{rec,reset}, and if a is enabled then ((s.mode. € {estb,close-wait}) A (s.send-buf. #
eV s.revd-close, ) A —s.ready-to-send ). Therefore, by Invariant 7.30 we know s.ack, > s.sn.,
but we also know by Invariant 7.2 that s.ack; < s.sm. + 1. Therefore, we know that
s.acks = s.sn. + 1, which means s.cur-msg, is empty. If s.send-buf . is not empty then after
a, s'.sn. = s'.acks or §'.sn, = s'.acks + 1, so s'.cur-msg, = (head(s.send-buf .) x ok). How-
ever, s'.send-buf, = tail(s.send-buf ). Thus, u'.queue (i) = u.queue, (i), so the mapping
is preserved. If s.send-buf . is empty, s'.cur-msg, is also empty, so again we get u’.queue (1)

= u.queue 4(1).

a = prepare-msgs.

This step is symmetric to a = prepare-msg., and the correspondence between this step and

the empty step can be shown in a symmetric manner.

a = send-seg.s(sn., ack., msg.).

This is another step where the corresponding o = (u, A, '), since a does not change any

states that affect the mapping.

a = receive-seq.s(sn., ack., msg.).

Let p be the segment received in this action. The effects of this step can be broken down

into three cases based on the value of s.mode;,.

1. Case one occurs if s.modes = syn-rcvd and ack(p) = s.sn;+ 1, then the corresponding
a of DP is (u, make-assoc(i,j), u'), where i is w.id. that corresponds to s.isn. and j
is u.idg that corresponds to s.isn,. Both a and « have the empty trace. The action
make-assoc(i,j) is enabled in D because s.isn. € s.ucid A s.isns € s.used-ids, so
correspondingly in DP w.id. € w.uctd A w.ids € w.used-id;, and by Invariant 7.33

neither s.isn. nor s.isn, are part of any pair already in s.assoc, so in the corresponding
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state neither u.id. nor u.idy are part of any pair already in u.assoc. After a and a we
have the correct correspondence between s’.assoc and u’.assoc. The other variables
that could get changed here are acks and rcv-buf, if sn(p) = s.acks. The changes
being s'.acks = s.acks + 1 and s'.rcv-buf , = s.rcv-buf ;-msg.. These changes affect the

mapping of u.queue (i) for cases (C) and (D).

If we are in case (C), then Invariant 7.53 tells us that sn. = sn(p). Therefore, the
change of acks; means s.cur-msg, is (s.msg., ok) and s’.cur-msg, is empty. Invari-
ant 7.36 tells us that if s.msg. # null and sn(p) = s.sn., then msg(p) = s.msg..

Therefore, since §'.rcv-buf; = s.rcv-buf ;-msg(p), u.queue (1) = u'.queue (7).

For case (D), Invariant 7.62 tells us that there are no other segments on the chan-
nel with sequence number greater than sn(p). Therefore, the change in ack, means
s.p-pair, is {(msg(p), sn(p))} and s'.p-pair, is the empty set. However, as for case
(C), since s'.rcv-buf , = s.rcv-buf ;-msg(p) and Invariant 7.37 tells us that any segment
with sequence number sn(p) has the same message or the message is null. However,
Invariants 7.55 and 7.56 tell us that any segment with sequence number sn(p) has a

message that is not null, so u.queue, (1) = u'.queue (7).

. Case two occurs if s.mode; = last-ack and ack(p) = sn, + 1. For this case a is
(u, set-nil;, u'). Clearly a and a both have the empty trace. We must show that
set-nils is enabled in state u of DP. Since s.mode; = last-ack, from our mapping
we know wu.ids # nil and from Invariant 7.13 we know that u.modes = inactive .
The third part of the precondition requires that 3 7 s.t. (¢, u.ids) € w.assoc. From
Invariant 7.38 we know that since s.mode; = last-ack, and there exists 7 such that
(i,s.isns) € s.assoc, so that part of the precondition holds for the corresponding state

Uu.

The fourth part of the precondition requires u.queue ,(¢) to be empty. We only need
to show this for cases (C) and (D) of the mapping to u.queue (i) because we know
that there exists ¢ such that (¢, s.isns) € s.assoc, which rules out queues for the other

two cases.
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We first examine case (C). Recall that the states for this case are states where s.isn, =
i A s.mode. ¢ {rec,reset} A (i,isns) € s.estb-pairs A s.isn; = 1 A s.mode;, ¢
{rec,reset}. To show that this queue is empty, we need to show that s.send-buf,,
s.cur-msqg,, and s.rcv-buf ; are all empty. If s.mode; = last-ack, and u.queue,(7)
is defined for case (C) then Invariant 7.52 tells us that s.mode. € {fin-wait-1,
fin-wait-2, closing, timed-wait, last-ack}, which coupled with Invariant 7.13
means s.send-buf, is empty. From Invariant 7.57 we know that that s.sn. < s.acks,
which means s.cur-msg, is empty. Finally, Invariant 7.59 indicates that s.rcv-buf, is
empty. Therefore, u.queue, (¢) is empty.

Case (D) of the mapping to u.queue_4(i) occurs when (s.isn. # ¢ V s.mode. € {rec,
reset})A((4, isns) € s.estb-pairs As.isnf = iNs.mode, ¢ {rec, reset}). To show that
this queue is empty, we need to show that s.p-pair. and s.rcv-buf, are empty. From
Invariant 7.65 we that for all non-SYN segments ¢ € s.in-transit.s, sn(q) < s.acks
which means s.p-pair, is empty, and from Invariant 7.67 we know that s.rcv-buf, is

also empty.

The fifth and final part of the precondition for the set-nil; action in DP states that
(u.mode. = inactive V w.id, # ). From Invariant 7.70 we know this condition is

true in state u.

After a, s'.mode; = closed, and after a, w'.id. = nil. Therefore, the mapping
is preserved for this variable. The changes caused by a, and by a do not affect the
mapping to ¢-stats.(7). Since, we know there exists ¢ such that (¢, s.isns) € s.assoc, and
that s.mode, = last-ack, only queues for case (C) of the mapping to u.queue.(j),
may exist in state s. However, since for this case, s’.mode, = closed, s’.isn, = nil,
and $'.acks, s'.msgs and §'.send-buf, are all undefined, u.queue,, (s.isn,) is affected
by these changes. These chages take s’ into the set of states for case (D) of the
mapping for queue, (7). However, since a does not change u.queue, (s.id;), we need
to show that w.queue,.(s.ids) = u'.queue, (s.ids). In order to show this we need
to show that s.curmsg, and s.sbufs are empty and that s'.p-pair, is the emptyset.
From Invariant 7.13 we know s.send-buf, = €. Also since [ack.] = s.sn, + 1 and from

Invariant 7.23 we know that ack. > [ack.], so s.cur-msg, = €. Since [ack,] = s.sns+ 1
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and from Invariant 7.23 we know that ack. > [ack.] and from Invariant 7.1 we know
that for all p € in-transit,. sns > sn(p), we know s'.p-pair, is the empty set, so

w.queue (s.ids) = v .queue  (s.idy).

3. The third case is for all other states s. The corresponding @ = (u, A, u). For this
case, acks and rcv-buf, may change as in case one, and modes; may change from
fin-wait-1 to fin-wait-2, or from closing to timed-wait. The proof that the
mapping for u.queue i (1) is preserved is the same as case 1, and the possible changes

to mode; in TCP" do not affect its mapping to mode, in DP.

a = send-segs.(sns, acks, msgs).

This is symmetric to a = send-seg.s(sn., ack., msg.).

a = receive-segs.(sns, acks, msgs).

This step is not quite symmetric to the step with a = receive-seg.s(sn., ack., msg.). This
step has two case instead of three. However, the two cases are is basically symmetric to

cases two and three of the symmetric step.

1. Case one occurs if s.mode, = last-ack and [ack;] = sn.+ 1. For this case a is (u, set-
nil.,u’). Clearly a and a both have the empty trace. The proof that set-nil. is enabled
in state u uses the same invariants as the proof that set-nil; is enable for the second
case of the step with a = receive-seg.s(sn., ack., msg.) except that Invariant 7.46 is

needed to show that there exists a j such that (isn.,j) € assoc.

To show that the mapping is preserved for case (C) of u.queue_(s.isn.) after this
step is also not quite symmetric to the proof that the mapping is preserved for case
(C) of u.queue (s.isns) shown above for the symmetric step. We still have the queue
going from case (C) to (D), and the proof that s.send-buf, is empty is symmetric.
However, to show that s.cur-msg,. is empty and s'.p-pair, is the empty set is not quite
symmetric. To show both we use the fact that from Invariant 7.1 we know that for all
p € in-transit.s sn. > sn(p), and from Invariant 7.24 we know that in the set of states
were we have case (C) of the mapping to queue_,(7), s.acks > [acks]. Therefore, since
[acks] = sn. + 1, we know that s.sn. < s.acks, and for all segments p € §'.in-transit.,

s'.acks > sn(p). Therefore, s.cur-msg, = € and s'.p-pair, is the empty set.
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2. Case two is for all other states s. The corresponding o = (u, A, ). For this case the
step may changed ack. and recv-buf . if sn(p) = s.ack.. The changes being s'.ack, =
s.ack. + 1 and §'.rev-buf. = s.rcv-buf .-msg.. These changes affect the mapping of

u.queue(j) for cases (C) and (D).

If we are in case (C), then Invariant 7.53 tells us that sn, = sn(p). Therefore, the
change of ack. means s.cur-msg, is (s.msgs, ok) and s'.cur-msg, is empty. Invari-
ant 7.36 tells us that if s.msg, # null and sn(p) = s.sn,, then msg(p) = s.msg;.

Therefore, since s'.rev-buf, = s.rcv-buf .-msg(p), u.queue  (j) = u'.queue ().

For case (D), Invariant 7.62 tells us that there are no other segments on the chan-
nel with sequence number greater than sn(p). Therefore, the change in ack, means
s.p-pair, is {(msg(p),sn(p))} and s'.p-pair, is the empty set. However, as for case
(C), since s'.rcv-buf . = s.rcv-buf .-msg(p) and Invariant 7.37 tells us that any segment
with sequence number sn(p) has the same message or the message is null. However,
Invariants 7.55 and 7.56 tell us that any segment with sequence number sn(p) has a

message that is not null, so u.queue, (j) = v .queue, (7).

a = receive-msg.(m).

For this step the corresponding a = (u,a,u’). We first need to show that receive-msg.(m)
is enabled in state u. This step only affects the mapping of u.queue,.(j), for cases (C) or
(D). Since we have s.mode. ¢ {rec,reset} A head(s.rcv-buf,.) = m A m # null, it is clear
that in the corresponding state we have —u.rec, A head(u.queue, (7)) = m A m # null.
For both cases (C) and (D) (s.isn.,j) € s.assoc. Therefore, in the corresponding state
(u.id.,7) € u.assoc, and u.q-stat,.(j) is 1ive. Therefore, this action is enabled in state u.

It is easy to see that the mapping to queue,.(j) is preserved after this step.

a = receive-msgs(m).

For this step the corresponding a = (u, a,u’). Showing that we can simulate this step in D?
is not quite symmetric to the previous case because the conditions for cases (C) and (D) for
the mapping to queue . (¢) is not symmetric to the same cases for the mapping to queue, ().
Since we have s.mode; ¢ {rec,reset} A head(s.rcv-buf,) = m A m # null, it is clear that

in the corresponding state we have —u.rec, A head (u.queue (i) = m A m # null. Since for
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these cases we know mode; ¢ {closed,rec,reset}, and we know from Invariant 7.14 that
if modes; € {listen,syn-rcvd} that rcv-buf, is empty, we know s.modes; € sync-states.
For both cases Invariants 7.38 and 7.44 tells us that (¢,isns) € assoc. Therefore, in the
corresponding state (¢, u.ids) € u.assoc, and u.g-stat (i) is 1ive. Therefore, this action is
enabled in state u. It is easy to see that the mapping to queue (¢) is preserved after this

step.

a = send-seg.s(sn., ack., msg., FIN).

The effects of this step do not affect the mapping, so the corresponding « is (u, A, u’).

a = receive-seq.s(sn., ack., msg., FIN).

This step affects the mapping in a manner similar to the step with a = receive-seg.,(sn.,
ack., msg.). However, since none of the possible effects of this step causes the server to

close, we only have two cases. Let p be the segment received in this step.

1. This case is if s.mode;, = syn-rcvd and sn(p) > s.acks and ack(p) = s.sns + 1. The
corresponding a = (u, make-assoc(i,j), u'). The proof of correspondence is the same

as for first case of a = receive-seg.s(sn., ack., msg.)

2. Case two is for all the states. For this case @ = (u, A, u'). The proof of correspondence

is the same as the proof for case three of a = receive-seg.s(sn., ack., msg.).

a = send-segs.(sns, acks, msgs, FIN).

This step does not affect the mapping, so the corresponding a is (u, A, u').

a = receive-segs.(sns, acks, msgs, FIN)

For this case @ = (u, A, u'). This step affects the mapping is the same manner as the second
case for the step with a = receive-segs.(sns, acks, msg;). The proof that the mapping is

preserve by after « is the same as the proof for that case.

a = timeout..

The corresponding «a is (u, set-nil.,u'), and both steps have the empty trace. The resulting
states also clearly correspond. The difficulty in showing the correspondence, as it was for
case for a = receive-seg,.(sns, acks, msgs), is in showing that set-nil. is enabled in state u.

The same conditions that were true for that case holds for this case except one. We need
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a different invariant to show that s.rcv-buf. is empty. We know that s.rcv-buf, is empty

because of Invariant 7.60.

a = timeout,.

This step is symmetric to a = timeout,.

a = crash,.

The corresponding « in the delayed specification automaton DP? is the following sequence
of steps (u, crash., W', mark. (1), v, drop.(I',k), «'). Clearly, a has the same trace as a
since crash. is the only external action in the sequence.

First we show that this sequence of steps is enabled in DP. After crash,, rec. is true, so
mark,. (1) is enabled, and drop.(I’, k) is enabled if I’ and k are defined correctly. We define
I, I', and k below and show that Ryp(s') is indeed the state u’ we get after the sequence
of steps a.

The only change in state caused by a is that s’.mode. = rec. This change affects the
mapping of uw.mode., u.q-stats.(j), u.queues.(j), and u.queue.4(7). It is easy to see that
the mapping of mode. is preserved. We have s’.mode. = rec and u'.rec. = true, which
is correct by Ryp. For w.g-stat, . (j) and u.queue . (j), o preserves the mapping because if
(s.isn.,j) € assoc then u'.¢-stat,.(j) is dead and u'.queue,.(j) is empty, which is correct
by Ryp. Otherwise, o does not change u.¢-stat,.(j) or u.queue, . (j), and a does not affect
the mapping. To show that the mapping of u.queue_,(7) is preserved is more complicated.
We break the possible states into two cases. We define I and I’ for each case. Note that
the mark. (1) and drop.(I',k) actions do not affect the mapping of u.mode., u.q-stat,.(j),

or u.queue,.(j), so these mappings are not affected by the different values of I, I, and k.

1. The first case is for cases (A),(B) (D) of the mapping to queue . (¢). For these cases
I=1=0andk = i, so a does not change u.queue (7). The correspondence of states
is preserved because a does not affect the mapping for these queues. It is obvious that
for case (A) of the mapping to queue_ (i) a has no effect. This is also the case for
case (B) because a only changes s.mode, to rec which is one of the modes in which
u.queue, (1) exists. For case (D) of the mapping to queue (i), the fact that ¢ changes

s.mode. to rec could change the queue because it could cause s.p-pair, to go from the
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empty set to having an element. This change only happens for in this case if s.isn. # ¢,
since the other set of conditions for case (D) requires that s.mode, already be in the
set {rec,reset}. However, if s.isn. # i A (1, s.isns) € s.estb-pairs A s.isn] = i then
Invariant 7.34 tells us that s.mode. € {rec,reset,closed, syn-sent}, so assigning

s'.mode. to rec does not affect the mapping for this case.

. We now examine case (C) of the mapping to queue ,(i). If the we are in case (C)
of the mapping in state s, then after action a we go to case (D) of the mapping to
queue (7). We can break this case into two subcases based on whether s'.p-pair, is
empty or not. For both subcases ¢ = k. We use the following preliminary definition:
suffiz.y, = {il|s.rev-buf ;| < i < mazindex(u.queue, (7))}. That is, suffiz,, is the suf-
fix of u.queue (i) that starts with the element that maps to the first element after

s.rev-buf .

(a) If there exists a segment p € s.in-transit.s, where p is of type (sn., ack., msg.)
and sn(p) = s.ack, or there exists a segment ¢ € s.in-transil.;, where ¢ is of type
(sne, ack., msg., FIN) and sn(q) = s.acks + 1, then &' .p-pair, # (. Therefore,
I = suffizy, and I' = suffiv,y [ mavindex(suffiz,; ). I' is the suffix of u.queue, ()
that starts with the element that maps to the second element after s.rcv-buf,
which is also the first element after s'.p-pair,. After a, we have case (D) of the
mapping to queue (i), but since « deletes all the elements after s'.p-pair., we

get the right corresponding state.

(b) Case two occurs for all other states for case (C). That is, states where s'.p-pair, =
(. For this case I = I' = suffiz;,. After a u'.queue (i) corresponds to the
& .rev-buf ;. However, this still satisfies the mapping of u’.queue (i) for case (D)

because s'.p-pair, is empty.

a = crashs.

This step is symmetric to @ = crash., except in the arguments required to show that

case (D) of the mapping to queues.(j) is preserve. For this case we need to show the

symmetric thing. That is, changing mode; to rec does not affect the mapping for this
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case. Therefore, we need to show that if s.isn, # j A (s.isn., j) € assoc then s.mode, €
{closed,listen, syn-rcvd,rec,reset}. From Invariants 7.38 and 7.44 we know that if
modes € sync-states then (isn.,isns) € assoc, and from Invariant 7.33 we know isn. is
only paired with on value of j. Therefore, since for this case we know isng; # j, we know

s.modeg; € sync-states. Thus, the mapping is preserved for this case.

a = Tecover,.
The corresponding a of DP is (u, mark.(I), v, drop.(Lk), ", recover,, u'). Since only
recover. is external, the traces of @ and a are clearly the same. We first show that this
sequernce of steps is enabled in DP. The action recover, is enabled in 7CP" if s.mode, =
rec. This state maps to w.rec = true in which case mark.(I) is enabled and drop.(Lk)
is also enabled. Since neither mark.(I) nor drop.(Lk) changes w.rec, then recover, is also

enabled. We define I and k appropriately below.

We now show that the state of DP we get after o is the same as Rqp(s’). After a,
¢ .mode. = closed. This change affects the mapping for u.rec., w.id., u.queue.s(7), and
w.q-stat, (). After a u'.rec. = false and u'.id. = nil, so the mapping is preserved for
those variables. For u.queue (i) the mapping is only affected by a if state s is in case (B) of
the mapping to queue (1), because case (C) does not hold if s.mode. = rec, and for cases
(A) and (D) the action does not affect the mapping. It does not affect the mapping for
case (A), because the change of mode. from rec to closed does not affect the conditions
for this case. It does not affect the the mapping for case (D) because the change can only
cause the condition for this case to go from s.mode. = rec to s.isn. # i, but this does not
change the fact that it is case (D), nor does it change the contents of the queues. Therefore,

w.queue (1) for cases (A) and (D), I = 0 and k = 1.

For case (B) of the mapping to u.queue . (7), after action a it is in group (A). Let [
= dom(u.queue.s(i)) and k = i. The mapping is preserved because after a, s.send-buf,
is deleted and after a all the elements are deleted. Finally, to show that the mapping
for g-stat.s(¢) is preserved we note that if i = s.isn, A (¢,s.isn.) € s.assoc, then af-
ter a, u'.q-stat.,(1) maps to dead. For this state s, the corresponding state u satisfies

V j(u.id.,j) € u.assoc, and in u”.queue (i) = € . Therefore, after a u'.¢-stat (i) = dead.
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a = TECOVET.

This step is symmetric to a = recover,.

a = drop.s(p) (from the Ch.s(P) component of ’TCPh).

There are two case for this step.

1. The first case occurs if p is the only copy of itself in s.in-transit.;, s.mode. € {rec,
reset, closed, syn-sent}, and if p is not a FIN segment sn(p) = s.acks and if
it is a FIN segment sn(p) = s.acks + 1. That is, if {(sn(p), ms¢(p))} = s.p-pair,,
and it is the last copy of this segment on s.in-transit.;. For this case the corre-
sponding « is (u, drop.(I,k),u’). Since both actions are internal, the traces are the
same. This is a case where a message that exists during crash. may get lost after
recover. which is why we used the Delayed Decision Specification. From our defini-
tion s.p-pair. only exists if s.mode. € {rec,closed,syn-sent}. The action a only
affects the mapping of u.queue () for case (D). Let I = mazindex(u.queue . (7)) and
k = ¢. This is the last element of the queue and it is also the element that corresponds
to (message(s.p-pair,) X marked). Since this element is a suffix of u.queue_ (7) and it

is marked, drop.(I, k) is enabled and clearly produces the right corresponding state.

2. The second case is for all other states. For these states the corresponding o = (u, A, v').
Clearly the traces are the same, and for these states of 7CP", a does not affect the

mapping, so the resulting states correspond.

a = drops.(p) (from the Chy.(P) component of ’TCPh) )

This step is symmetric to a = drop.s(p).

a = duplicate.s(p) (from the Ch.s(P) component of ’TCPh).

The corresponding « is (u, A, u’). Since « is internal we have the same trace. The only
aspect of the mapping one might think ¢ would affect is s.p-pair,. However, since s.p-pair,

is a set, duplication has no effect.

a = duplicates.(p) (from the Chs.(P) component of ’TCPh).

This step is symmetric to a = duplicate.;(p).
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a = v(t) (time-passage)

The corresponding « in DP is (u,v(t),u’), the time-passage action of the patient Delayed

Decision Specification.

a = send-segs.(RST, acks, rst-seqs).

For this step the corresponding step a of DP is (u, A, u’). Clearly the traces are the same,
since send-segs.(RST, acks, rst-seqs) is an internal action. The only change made by a to

the state is that s’.send-rst; is false. This variable does not affect Rip, so u = u'.

a = receive-segs.(RST, acks, rst-seqs).

For this step we have two cases based on the value of s.mode.. The two cases are as follows.

1. The first case occurs if s.mode. = closed or s.rst-seq, # s.ack, or if s.rst-seq, = 0
and s.acks # s.sn. + 1. For this case a = (u, A, u’). This is correct because in this

state, a has no effect.

2. Case twois for all other states. For this case the corresponding « in D? is the following
sequence of steps (u, abort., v, mark.(I), v, drop.(I',k), v'). Clearly, a has the
same trace as a, since all the actions of & are internal and « is internal. Since abort. is
enabled if u.id, # nil it will be enabled from state u, and since it sets abrt., mark.(I)
is enabled in u"'. After mark.(I), drop.(I', k) is enabled for the appropriately defined

I’ and k in state u”. We define I, I’, and k below and show that mapping is preserved.

The change caused by a is to make s’.mode. = reset. Apart from the fact that this
change affects the mapping to abrt. and not rec., other effects on the mapping of this
change is exactly the same as the changes caused by the crash. action. Furthermore,
abort, has the exact same effect has crash. in specification D. Therefore, we can
define I,I’, and k, as they are define for the case of ¢ = crash., and the proof that

the mapping is preserved after « is also the same as for that case.

a = send-seg.s(RST, ack., rst-seq.).

This step is symmetric to a = send-segs.(RST, acks, rst-seqs).

a = receive-seqg.s(RST, ack., rst-seq.).

This step is not exactly symmetric to a = receive-segs.(RST, acks, rst-seqs), but is quite

140



similar. For this step we have two cases based on the value of s.mode;.

1. Case one occurs if s.mode, € {closed,rec} or s.rst-seq, # s.acks. For this case a is

(u, A, u’). This simulation is clearly correct since for this state action a has no effect.

2. Case two is for all other reachable states. This case is symmetric to case 2 for a =

receive-segs.(RST, acks, rst-seqs).

a = shut-down,.

The corresponding « of D? is (u, mark.(I), v, drop.(Lk), u", shutdown., u'). Since only
shut-down, is internal, and all the actions in « are also internal the traces of ¢ and « are
clearly both the empty trace. We first show that this sequence of steps is enabled in DP. The
action shut-down, is enabled in 7CP" if s.mode. = reset. This state maps to u.abrt = true
in which case mark, (1) is enabled and drop.(1,k) is also enabled. Since neither mark, (1) nor
drop. (Lk) changes abrt., then shut-down, is enabled in state u”. We now need to define T
and &, and show that the Ry is preserved in state u'.

The effect of shut-down, in TCP" is exactly the same as the effect of recover, in TCP",
and the effect of shut-down,. in DP is exactly the same as the effect of recover. in DP except
for the fact that shut-down, sets abrt. to false and recover, sets rec. to false. Therefore,
we can define I and k exactly as they are define for the above case of a = recover,, and the

proof that the mapping is preserved remains the same.

a = shut-down.

This case is symmetric to the case for ¢ = shut-down,.

This concludes the simulation proof. [ |

7.3.3 Proof of trace inclusion

We can now proof that the GTA model of TCP, 7CP, implements a patient version of

Specification 5.

Theorem 7.1
TCP C; patient(5).
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Proof: From Lemma 7.1 we get that 7CP" <t DP, which because of the soundness of
timed refinement mapping (Theorem 3.6) and the soundness of adding history variables
(Theorem 3.9) implies that 7CP C; DP. From Theorem 4.1 we know D C S. Using the
Embedding Theorem of [31] presented in Chapter 3 we now get DP C; patient(S). Thus, we
now have 7CP C; D? and D? C; patient(.S). Therefore, since the subset relation and thus

the implements relation is transitive we get 7CP C; patient(S). |
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Chapter 8

TCP with bounded counters

In the previous chapter we proved the correctness of TCP if the protocol uses unbounded
and stable counters. These counters guarantee that whenever a new incarnation is started,
the segments for the incarnation are numbered with sequence numbers that had never been
used before. The uniqueness of these sequence numbers prevented confusion with segments
from previous incarnations. Therefore, old duplicate segments are not accepted and current
segments are not rejected.

However, in practice there is no infinite source of uid’s, and TCP uses a bounded cyclic
number space for sequence numbers. TCP uses a clock based counter for initial sequence
number (ISN) selection, and the number space is sufficiently small and the rate of change
of the clock sufficiently fast that cycling through the number space is not uncommon.
Additionally, in TCP the same number space that is used for the ISN’s is also used for
sequence numbers for each segment. That is, after an ISN is chosen, each subsequent packet
is numbered starting from that ISN. Here again it does not require extreme conditions for a
TCP host to send enough segments to cause the number space to cycle. In addition to being
bounded, the counter used for ISN selection and the local sequence number variable of a host
may not be stable. Therefore, after a crash a host may not know the last sequence number
used, and the clock based counter may get reset to some arbitrary number. Consequently,
when a new sequence number is chosen for a TCP segment, one cannot guarantee that
this number has never been used before. However, uniqueness of new sequence numbers,

as we will show, is not necessary for the protocol to behave correctly. A weaker property
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is sufficient. The property that is needed is that when a sequence number is chosen for
a segment, there should not be a different segment with the same sequence number on
the outgoing channel, nor a segment on the incoming channel that acknowledges the new
sequence number, nor should the other host be able to acknowledge the new sequence
number before it receives a new segment with that number. Having an unbounded counter
that is increased for every new segment obviously achieves this property, but TCP uses a
combination of the three-way handshake protocol and several timing mechanisms to achieve
the same property. The timing mechanisms are used to ensure that when a sequence number
is reused, old segments that have the same number are dropped from channels. The property

is what is referred to as the “id not-in-use” condition in [27].

8.1 Timing constraints

Along with the three-way handshake protocol, TCP relies on timing properties of the
bounded counters and the channels, and various timeouts to guarantee the id not-in-use
condition. We first present the set of properties related to the counter used for ISN se-
lection. Initial sequence numbers are chosen using 32 bit clock based counters. The low
order bit of the clocks are incremented roughly every four microseconds. Thus, it takes
approximately 4.5 hours for the clocks to cycle. The rate of change of the clocks must be
faster than the time it takes to start a new incarnation of a connection. That is, it must
take more than four microseconds for a host to close and reopen. Thus, between the closing
and reopening of a host the clocks must tick at least once. Once an ISN is chosen, it is also
the starting point for numbering segments sent by the host for the incarnation. In order
for the protocol to work correctly, there must be a bound on the maximum rate of data
transmission. This bound gives a bound on how fast the generation of new sequence num-
bers can cause the number space to cycle. The bound that is needed here goes back to the
id-not-in use property. TCP host should not be able to send data at a rate where a number
may be reused while an old segment with that sequence number or an old acknowledgment

of a segment with that sequence number might still be on the channel.

The next timing property TCP relies on for correctness is the maximum segment lifetime
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(MSL). The maximum segment lifetime is maximum period a segment can stay on a channel
before it is dropped or delivered. For TCP this period taken to be two minutes. In practise
the maximum segment lifetime in the net is not likely to exceed a few tens of seconds [28],
and the maximum segment lifetime of two minutes is not strictly enforced in the net.
However, for correctness purposes we assume this maximum is enforced. We refer to the
duration of the maximum segment lifetime as p.

In addition to the properties of the counters and the MSL, the following timeout mech-

anisms to ensure correct behavior in TCP.

1. When a connection closes normally (without a crash, reset, or timeout), one or both
hosts remain in timed-wait state for a period of 2u. Therefore, a new incarnation of
the connection cannot be formed before all the segments from the previous incarnation

are dropped from the channels.

2. When a host sends a segment that requires an acknowledgment, it starts a timer, and
if a period of wt passes and it does not receive an acknowledgment of that segment,
it stops sending the segment for a period of u. If it still does not get a response in

that period it closes. We refer to wt as the mazimum wait time.

3. When a hosts receives an input that needs a response, it can wait for a maximum
period of rt, before sending a response. The client also has a maximum delay of rt,
before it must send a SYN segment after it receives the active open input from the

user!. We refer to rt as the mazimum response time.

4. The cycle time, maximum wait time, maximum response time, and MSL have the

following relationship: ¢t > 2(wt 4 rt 4+ p).

5. If data is sent at a maximum rate, then the time to cycle through the number space

is greater than wt 4+ rt + 2u.

6. When a host receives a reset segment, it stops performing any actions for a period of

at least p before it closes.

!Technically, there is no need for a maximum delay for a response to this input. However, there must
be a maximum wait before the client times out if it does not get a response to a SYN segment after it gets
this input. Having a maximum response to this input coupled with the wait timeout of wt gives a maximum
wait after the active open input of wt + rt.
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7. Finally, after it crashes, a hosts must observe a quiet time, ¢t, where gt > 2u+rt 4+ wt,

in which it does nothing before it is allowed to reopen.

To prove that under normal close situations at least one host remains in timed-wait,
is very complicated. Therefore, we make the assumption that when a host closes from
mode last-ack there must be a period greater than p before it is allowed to reopen. This
assumption means that whenever a host closes and reopens, there are not segments from
the previous incaranation on the outgoing channel.

The informal TCP specification [28, 30] states the cycle time of the clock based counter,
states the time it takes for a host to cycle through the sequence number should be greater
than the maximum segment lifetime, and gives the maximum segment lifetime of two min-
utes. It also recommends that the quiet time after a crash be the MSL. However, in [27]
Murphy and Shankar point out that this period of time is not sufficient to guarantee that
old duplicates are not received after a crash, and they state that the duration of ¢t that
we present above is needed. Because this duration of quiet time is necessary, it means that
TCP hosts must also have rt and wt timeout values. However, these values are not clearly
specified in the informal TCP specification.

In [28] it states that when a connection is opened, the user has the option to include
a timeout for all data submitted to TCP. If the data is not submitted to the destination
within the timeout period, the connection is aborted. If the user does not specify a timeout,
a global default of five minutes is used. In [30] which specifies host requirements for TCP, it
says there must be two thresholds R1 and R2 for handling excessive retransmission of data
segments. These values can be either time or number of retransmission. When the first
threshold is reached or exceeded, the IP layer is notified, and when the second threshold is
reached or exceeded the connection is closed. Applications (external users), must be able
to set the value for R2 for a particular connection. In [30] an interactive application is cited
as an example where R2 might be set to “infinity,” giving the user control over when to
disconnect. Such a setting for R2 would mean that there is no correct setting for ¢t as we
defined it. However, the maximum wait timeout we present is only for the acknowledgment
of data. Therefore, in the interactive situation when data is received by a host, even if

response data is required, the host can still immediately send an acknowledgment. Once
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the acknowledgment is received the timer is turned off at the sender, and the application
can wait indefinitely for the response data.

Having timeouts for excessive retransmission means that the protocol does not have the
liveness property that if there are no crashes then all data gets delivered. For example, a
channel can drop all the segments it receives for the maximum wait period. In this situation,
the data on that segment does not get delivered even though there are no crashes. However,
in practice the probability that a channel drops all segments sent for a period of wt is very
low unless there is a partition in the network.

As for a maximum response time, the closest mention of this in the informal specification
is in [30] where the issue of delaying acknowledgments is discussed. Delaying acknowledg-
ments increases efficiency in “real” TCP which uses the sliding window protocol where each
segment does not have to get an acknowledgment. In [30] it states that the delay must be
less that 0.5 seconds. This is essentially a maximum response delay.

In practice five minutes is a reasonable default value for wt since by [30], a value less
than 0.5 seconds for rt is required and RTO is usually much smaller than MSL which is
two minutes. However, one wants to allow for the possibility that the data segment and the
response segment take the full two minutes of the MSL. On the other hand, it is important
for wt to be as low as is reasonable since the quiet time after a crash should be minimized.
A value of five minutes for wt also satisfies the property that ¢t > 2(wt + rt + p).

The waiting period of u that we require a TCP host to observe after a maximum wait
timeout or after a reset is needed so that the host cannot reopen before all the segments it
sent for the previous incarnation are gone from the channels. This wait serves essentially the
same purpose has timed wait state after a normal close. In the informal specification [28, 30]

such a wait is not mentioned.

8.2 Duplicate delivery without timeouts

In this section we present some scenarios where the timeouts mentioned in the previous
section are needed to prevent duplicate delivery of data. There are basically two types of

situations where there is the potential for duplicate delivery of data — crash situations
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and long-lived connections. A long-lived connection is one that remains open for a period
greater than or equal to ¢t. For some applications such as telnet, long-lived connections are
not uncommon. If a connection is open for a period less than the cycle time and there are no
crashes, then because a host cannot send data faster than the rate at which the clock counter
ticks, if the connection is reopened the new ISN will be bigger than any sequence number
from the previous incarnation. However, when the clock counter has cycled during the life
of the connection, the new ISN might be equal to or less than sequence numbers of segments
from the previous incarnation that might still be in the channels. Therefore, segments from

the old incarnation might get confused with segments from the new incarnation.

In this section we present four examples of executions that may cause incorrect behavior
if the right timeouts are not in place. The first three examples involve long-lived connec-
tions, and they require the client to choose the same ISN for successive incarnations. While
certainly possible, the probability of the client choosing the same ISN for successive incar-
nations is extremely low. Therefore, the examples we show here are not likely to happen in
practice, even without the proper timeouts, but are certainly possible. The fourth example
involves an execution where after a crash, if the duration of quiet time is equal to the MSL,

then data from a previous incarnation is delivered in a current incarnation.

The first example is shown in Figure 8-1. In this execution the client and server both
receive the signal to open and then for a period that is very close to ¢t neither side sends a
packet. When the client opens it reads the value ¢ from the clock counter for its new ISN.
When almost ¢t time has elapsed since the client received the signal to open there is a burst

of activity.

The client sends a SYN segment to the server with sequence number ¢. That is, it sends
a segment of the type (SYN, sn.) where sn. = i. When the server receives this segment, it
reads its clock counter and gets ISN, 5. It then sends a SYN plus acknowledgment segment
to the client, (SYN, sn,, acks), where sny = j and acks = i+1. Next the client acknowledges
the SYN segment from the server and sends some data d1 by sending a (sn., ack., msg.)
segment, where sn. = ¢+ 1, ack. = 7+ 1, and msg. = d1. The server responds with a FIN
segment that has sequence number j 4+ 2, and data d2. When the client receives the FIN

segment it goes to mode close-wait, and when it receives the signal to close it goes to
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Figure 8-1: Example one. An execution where a long delay after the open signals are received,
causes the same message to be delive

mode last-ack. The client also delivers data d2 and sends a FIN segment with sequence
number ¢ + 2. When the server receives the FIN segment it goes to mode timed-wait and
sends and acknowledgment segment. When the client receives this segment it can close
immediately. Next the client gets a new signal to open, and because the clock counter has
cycled since the last time the client chose an initial sequence number, it reads ¢ again. The
client can immediately send a SYN segment with ISN ¢. After it sends this segment, it
receives a duplicate of the (SYN, j, i+1) segment the server sent earlier. It is possible that
such a duplicate may still be on the channel because in this execution, a period of less than
i has elapse since the segment was first sent. When the client receives this segment, it

accepts it as a valid acknowledgment of its SYN segment, and sends an acknowledgment to



the server. After sending this segment the client receives a second duplicate segment from
the previous incarnation. This segment is the FIN segment with data d2. When the client

receives this segment, it is also accepted and the client may deliver data d2 again.

This duplicate delivery of data does not happen if the client has to send the SYN segment
within rt of receiving the the open input, and times out if it does not get a response after

a period of wt of sending the segment.

The second example is shown in Figure 8-2. In this execution, the client and server
perform the three-way handshake immediately after they receive the signals to open. After
the opening phase, neither side sends any segment for a period that is approximately equal to
the cycle time ct. After this period of inactivity, the client gets an input to send message m
from the user. It sends the data with a (sn., ack., msg.) segment, where sn. = i +1, ack. =
j+ 1, and msg. = m. When the server receives this segment, it sends an acknowledgment
that gets dropped from the channel. The server also passes m to the user. After the data is
passed to the user, the server crashes, and after the recommended quiet time of i the server
recovers and goes to mode closed. Meanwhile, the client repeatedly retransmits the (sn.,
ack., msg.) segment because it has not received an acknowledgment from the server, and
each retransmission is dropped from the channel. However, after the server recovers, one of
the retransmitted segments does not get dropped and arrives at the closed server. Because,
the server is closed when the segment arrives, a reset is generated. Before, the reset reaches
the client, it sends another copy of the (sn., ack., msg.) segment which gets delayed on
the channel. After sending the reset, the server re-opens. The client closes when it receives
the reset, but immediately gets the open input from the user. The new open input from
the user comes just as the clock counter cycles, so the client reads isn. = ¢ again. Thus,
the client again sends (SYN, sn.) where sn, = 7. When the server receives this segment, it
also reads its clock counter for a new ISN. However, because there was a crash, the server’s
clock counter was reset, so that the server reads j again. Therefore, the response segment
that the server sends is (SYN, sns, ack;), where sny = j and ack, = i + 1. After sending
the response, the server receives the last retransmission of the (sn., ack., msg.) segment,
where sn. =1+ 1, ack. = j + 1, and msg. = m. The server can accept this data and pass

it to the user. Thus, we have duplicate delivery of the same data.
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Figure 8-2: Example two. Another execution where a long-lived incarnation results in the delivery
of the same message twice.

The scenario in the second execution does not occur if a TCP host times out after a
duration of wt when it sends a segment with data and does not receive an acknowledgment,
and if quiet time is extended. The extension of quiet time to ¢t and the maximum wait
timeout means that when the server crashes in the above scenario, it does not recover until
all copies of the (i 4+ 1, j+ 1, m) segment have drained from the channel.

The third example demonstrates why after a timeout a host must wait for a period of
i before it closes. This execution starts out like example two, but instead of the server
crashing and the client closing because of a reset, they both close because the maximum
wait time has elapsed. However, right before it times out, the client sends another copy

of the (i 4+ 1, j 4+ 1, m) segment that does not get dropped. After it closes the client
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Figure 8-3: Example three. This execution demonstrates why a wait of p is needed after timeouts.

immediately gets the signal to open and sends a SYN segment with sequence number .

The server also receives the signal to open, and when it receives the SYN segment from the

client reads ISN j from the clock counter. The server acknowledges the SYN segment of the

client and sends its own SYN with the (SYN, j, i+ 1) segment. After sending this segment,

the server receives the duplicate copy of the (i + 1, j + 1, m) segment sent right before the

client timed out. The server can accept this segment and can pass m to its user again. For

this scenario, the duplicate delivery does not occur if the client waits for a period of p after

the timeout before it closes, so that when it reopens, any segment sent before the timeout

has been dropped from the channel bec

ause of the MSL.

The fourth and final example we present does not involve a long-lived connection, but
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shows how a crash may cause data from a previous incarnation to be accepted in a current
incarnation. It is shown in Figure 8-4. In this example the client and server start with the
three-way handshake as in the previous example. After the client sends the third segment
in three-way handshake, it immediately crashes. This segment takes time p to reach the
server. Therefore, immediately after the segment arrives at the server the client can send
a recover output and reopen. Right before the server receives this segment, it sends a final
retransmission of the (SYN, j, i4+1) segment. When the client reopens, because of the crash
it reads ¢ from the clock counter again and sends the (SYN, i) segment again. This segment
is dropped from the channel, but after this segment is sent, the client receives the (SYN, j,
i+ 1) segment that was sent by the server. When the client receives this segment it sends
an acknowledgment which also gets dropped. However, after it sends the acknowledgment,
it receives a segment from the server with sequence number 7 + 1 and data m. The server
sent this segment after it received the acknowledgment the client sent from the previous
incarnation. Because this segment has sequence number j + 1, the client accepts it and can

pass message m to the user.

This situation does not happen if the period after the crash is long enough. The problem
that occurred with this execution is that a response to a segment sent before the crash is
still in the channel after the crashed host recovers. If a host crashes immediately after
sending a segment, that segment can take time p before it arrives. After it arrives, it may
take the receiving host rt to respond, and it might retransmit the response segment for a
period of wt. The last retransmitted segment may take time p to arrive. Therefore, after a
host crashes, a segment that is a response to a segment sent before the host crashed might
be in the channel up to time 2u 4+ wt 4+ rt after the crash. Hence we set quiet time such

that gt > 2u + wt + rt.

8.3 The formal model

To formally model TCP with bounded counters and the additional timeout mechanisms
needed to ensure correctness, we make some changes to the 7CP automaton. The new

client side and server side automata are B7CP. and BTCP; respectively.
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Figure 8-4: Example four. An execution where a crash causes a message from a previous incar-
nation to be delivered in the current incarnation.

The action signature for B7CP, remains the same as for 7CP, except for the addition
of the internal action clock-counter-tick.. This internal action increments the client’s clock
counter. Similarly the action signature of BTCP; is the same as it is for TCP,, but with
the addition of the internal action clock-counter-ticky, which increments the server’s clock

counter.

8.3.1 States and start states

The set of states and start states are different because B7CP. and B7CP, have some
additional variables not in 7CP and the type of some variables also change. While not
stable, the clock counter variables clock-counter. and clock-countery are different from the
other variables in that when the respective hosts are closed, they are not deleted, and are
not reset when the hosts reopen to the initial values given in the table. All the other
variables in the table are undefined when the connection is closed, and take on the initial
values in the table when TCB, or TCB; is initialized. A full description of the changed and
new variables is given in the tables below. All other variables remain the same as they are
for TCP,. and TCP,. The first table summarizes the different types used, and the second

table summarizes the constants used.
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Type definitions

| Type | Description

Msg

The set of all possible strings over some basic message alphabet that does not include the
special symbol null.

T The nonnegative real numbers — represents real time.

BN The range of the bounded counters — {i|0 < i < 237},
Constants

Constant | Description

7 Maximum Segment Liftime — 2 minutes.

ri Maximum response time — 0.5 seconds.

wit Maximum time to wait for a response — b minutes.

qt Quiet time after a crash — ¢t > 2u + vt 4+ wi.

ct The cycle time of the clock counter — 4.5 hours.

clock-rate | The speed at which the clock counters change — 4.5/23%.

data-rate The maximum speed at which host can increment its sequence number — (wt + rt +

241)/2%2.

Client variables

| Variable | Type | S | Initially | Description

clock-counter, BN nil The clock counter that the client reads for initial se-
quence numbers.

SN, BN Unil nil The seqence number of the client.

ack, BN Unil nil The acknowledgment number at the client.

wait-1_o, TUoo o0 Used to mark the time after which the client will stop
sending a segment if it does not get a response to that
segment.

last(response.) | T 0 The upper bound on when the client must send a re-
sponse to an input that needs one.

first(reset.) TUoo o0 The lower bound on when the client can close after
receiving a valid reset.

first(recov,) TUoo o0 The lower bound on the time when the client can re-
cover after crashing.

first(prep-msg.) | T data-rate | The lower bound on when the client can next prepare
a message to be sent.

first(tick.) T v/ | elock-rate | The lower bound on when the clock counter can be
incremented.

last(tick,) T v/ | clock-rate | The upper bound on when the clock counter should be
incremented.

first(open, ) T v |0 The lower bound on the time when the client can open

after 1t closes.
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Server variables

| Variable | Type | S | Initially | Description |
clock-counter, BN nil The clock counter that the server reads for initial se-
quence numbers.
Sns BN Unil nil The seqence number of the server.
acks BN Unil nil The acknowledgment number at the server.
wait-t_o; TU oo 00 Symmetric to wait-t_o. .
last(response;) | T Uoo e%) Symmetric to last(response, ).
first(resets) TUoo e%) Symmetric to first(reset,. ).
first(recov, ) TUoo e%) Symmetric to first(recov, ).
first(prep-msgs) | T data-rate | Symmetric to first(prep-msg. ).
first(ticks) T V| clock-rate | Symmetric to first(tick. ).
last(ticks) T V| elock-rate | Symmetric to last(tick, ).
first(opens) T v |0 Symmetric to first(open, ).

8.3.2 Steps

Several steps of TCP,. and TCP, have to be changed to get the correct behavior for BTCP,
and BTCPs;. We include only the steps of 7CP. and 7CP; that are changed. In the
changed steps we outline the if-then-else statements, but omit the assignments to the original
variables of 7CP. and 7CP; (indicated by ...) unless they change in BZCP. or BTCP;.
The steps of BTCP. and BTCP, that are different from the steps with the same action in
TCP. and TCP, are shown in Figures 8-5, 8-6, and 8-7.

The first changes occur for steps with the send-msg.(open, m, close) action. Firstly, the
client is not allowed to open unless the current time is greater than or equal to first(open.).
This variable is initially 0, but is set to the current time plus the clock rate whenever the
client closes. This means at least one clock tick must occur before the client is allowed to
reopen after closing. Steps with the passive-open action on the server side have the same
restriction. Also new in the send-msg.(open, m, close) step, is that instead of incrementing
the sn. variable to get a new initial sequence number, the number is read from the clock
based counter clock-counter.. The other change in this action is that the new variable
last(response.) is assigned to now. + rt. This assignment forces the client to perform the
send-seg.s (SYN, sn.) action within time r¢ of receiving this input because time is not
allowed to advance beyond this time, unless last(response.) is set to oo in this step. The
lower bound of last(response.) on when the client must perform the step with the send-

seges (SYN, sn.) action coupled with the wt bound that the client sets when it performs the
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action means that if the client does not get a response to the SYN segment within time

wt + rt of receiving the send-msg.(open, m, close) input, it times out.

As mentioned before, the client starts the maximum wait timer in send-seg.s(SYN, sn.)
step. The test that wait-t_o. is oo means the timer is set only when the segment is first
sent, and not on every retransmission. To prevent the sending of the segment after the
wt period has expired, the action includes in the precondition that now. < wait-t_o.. All
other actions to send segments on the client side have this precondition also, and the send
segment actions on the server side have a symmetric condition. In the send-seg.,(SYN, sn.)
action, last(response.) is also set to 0 to indicate that the client has responded to the last
input. When the server receives the receive-seg.;(SYN, sn.) action, it reads a new initial

sequence number from its clock counter and sets its maximum response timer.

The server responds to the receive-seg.s(SYN, sn.) action with the send-segs.(SYN, sns,
ack,) action. Since it is sending a response, the server resets last(response,;) to oo in this
action. It also starts the maximum wait timer in this action. When the client receives
this segment with the receive-seg,.(SYN, sn,, acks) action, if wt time has not elasped since
the open input, the sever resets wait-t_o. to oo, so that a timeout does not occur, and it
sets last(response.) to start the response timer. The client sends a response to the (SYN,
sns, ack, ) segment with either the send-seg.s (sn., ack., msg.) or send-seq.s(sn., ack., msg.,
FIN) actions. In both actions it resets last(response.) to stop the response timer, and sets
the maximum wait timer. In the send-seg.(sn., ack., msg.) action, the ready-to-send,
variable is checked before the timer is set, because the timer should only be set if the client

is sending a segment that needs a response; that is, a segment with valid data.

When the server receives the (sn., ack., msg.) segment, it sets the response timer,
last(responses), if the segment needs a response. That is, if sn. = ack,. The response timer
is also set in the receive-seg.s(sn., ack., msg., FIN) action. In both the receive-seg.s(sn.,
ack., msg.) and receive-seg.s(sn., ack., msg., FIN) actions the server also resets wait-t_o,
if ack. = sns + 1, that is, if the segments have valid acknowledgments. If the this segment
causes the server to close from mode last-ack then first(opens) is set to the current time
plus the clock rate, to ensure that at least one clock tick must happen before the client

re-opens.
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The send-segs.(sns, acks, msgs) and send-segs.(sns, acks, msgs, FIN) actions are sym-
metric to their client side counterparts, and the corresponding receive-segs.(sns, acks, msgs)
and receive-segs.(sns, acks, msgs, FIN) actions are symmetric to their server side counter-

parts.

The prepare-msg. and prepare-msg, actions change to restrict the rate at which a host
can send new messages. In the actual protocols the rate depends on network speeds and
the rate at which the other hosts responds. In our model the channels are allowed to deliver
segments in 0 time, so to model the limitations on the rate at which segments can be sent
we include a lower bound on how often the prepare-msg. and prepare-msg, actions can be
enable. Thus, in order for the prepare-msg. action to be enabled now. must be greater than
or equal to first(prep-msg.), and first(prep-msg.) is set to now. + data-rate in the step.

The automaton for bounded TCP has two new internal actions that are not present
in unbounded TCP, these actions are clock-counter-tick. and clock-counter-tick;. The steps
with these actions control the ticking of clock-counter, and clock-counter, respectively. The
upper and lower bound for the next time the clock-counter-tick. action is enable are both
set to now, + clock-rate in this set. These settings mean clock-counter, is incremented every
clock-rate seconds, if the client is not in recovery mode. The symmetric settings occur in

the clock-counter-tick, step.

As mentioned above, in the time-passage action (v(¢)) on both sides , the precondition
is changed so that time does not advance beyond the upper bound on when a response
should be sent, before the response is sent. Time is also not allowed to pass beyond when

the next tick of the clock counters should occur unless there is a crash.

The time-out. and time-out; also change. The preconditions on these step change to
reflect the fact that in bounded TCP timeouts do not only occur at the end of timed-wait
state. There can also be a timeout if the the maximum wait timeout has expired. If the
timeouts occur in this situation, the mode of the host is set to reset to enable the shut
down actions, and the timing variable is set, so that there is period of inactivity of at least
1 before the host close.

In the receive-segs. (RST, acks, rst-seqs) and receive-seg.s(RST, ack., rst-seq. ) actions if

the segments are valid reset then the respective timing variables are set, so that there is a
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period of inactivity of at least p before the host is allowed it to close via the shut-down,. or
shut-downg actions. In steps with the shut-down, action, first(open.) is set to ensure that at
least one clock counter tick happens before the client is allowed to re-open. The symmetric
assigment happens in steps with the shut-down, action.

The crash and recover actions also change, so that hosts must wait a period of at least
gt after a crash before they recover. The recover actions also assign the clock counters an
arbitrary value. Because the client closes after recover., first(open.) is set to the current
time plus the clock rate, to ensure that at least one clock tick must happen before the client

re-opens. The server side is symmetric.

8.3.3 Specification of the bounded TCP automaton

The specification of the bounded TCP automaton proceeds along the same lines as the
specification of 7CP. That is, we first define an automaton B7CP’ that is the parallel
composition of the client, server and channel automata. However, for bounded TCP we use
the channels, defined in Chapter 5, that enforce the maximum segment lifetime. Figure 8-8

shows the composed system. The composed system is formally defined as follows:

BTCP' 2 BTCP||BTCP||jtChes(P)||jt Chye(P).

To get the user interface that will enable us to show a simulation from the bounded TCP
automaton to the abstract specifications, we need to hide the set of actions A7 defined in

Section 6.2. Thus, the general timed automaton model for TCP with bounded counters is

defined as:

BTCP £ BTCP'\ Ar.

8.4 Verification of B7CP

BTCP does not implement 7CP presented it in Chapter 6. It does not implement 7CP
because the steps of BTCP with time-out, or time-out, actions are enabled when certain

timeouts expire, whereas in 7CP these steps are only enabled if the respective host is in
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send-msg. (open, m, close)
Eff: (* Effect clause from 7CP, *)
if mode, = closed A open A
now, > first(open, ) then {
mitialize TCB,
sn. = clock-counter,
last(response.) ‘= now, + rt
first(prep-msg. ) := now, + clock-rate

send-seges (SYN, sn.)
Pre: (* Precondition clause from 7CP. *) A
now, < wait-1_o.
Eff: time-sent. := now,
last(response.) := oo
if wait-t_o. = oo then
wait-t_o, := now,. + wt

receive-segsc (SYN, sns, acks)
Eff: (* Effect clause from 7CP, *)
if mode, = syn-sent A ack; = sn.+ 1

then {
last(response.) ‘= now, + rt
wait-t_o, := o0

send-seges (sne, acke, msg.)

Pre: (* Precondition clause from 7CP. *) A
now, < wait-1_o.

Eff: (* Effect clause from 7CP, *)

last(response.) := oo
if ready-to-send, N wait-i_o, = oo
then watt-t_0,. := now, + wt

prepare-msg.

Pre: (* Precondition clause from 7CP, *) A
now, > first(prep-msg.)

Eff: (* Effect clause from 7CP, *)
first(prep-msg.) := now, + data-rate

Passive-open
Eff: if mode, = closed A
nows > first(opens ) then {
mitialize TCB,
mode, := listen

1

receive-segcs (SYN, sn;)
Eff: (* Effect clause from 7CP; *)
if mode; = listen then {
sns = clock-counter
last(response; ) := now; + 1t
first(prep-msg.) := nows + clock-rate

send-segs. (SYN, sns, acks)
Pre: (* Precondition clause from 7CP; *) A
nows < wait-t_og
Eff: time-sent, := nowy
last(response; ) 1= oo
if wait-t_o; = oo then
wait-t_o, 1= now, + wt

receive-segs (Sne, acke, msg;)
Eff: (* Effect clause from 7CP; *)

else if mode; # rec then {
if sn. = acks then {
last(responses) = now;s + 1t

}
if ack. = sns + 1 then {

wait-t_o, 1= o0

if mode; = last-ack then {
mode, := closed

first(opens ) := nows +

prepare-msg,

Pre: (* Precondition clause from 7CP; *) A
nows > first(prep-msgs )

Eff: (* Effect clause from 7CP; *)
first(prep-msg.) := now, + data-rate

Figure 8-5: Steps of BTCP that differ from the steps of TCP. The client (BTCP.) steps are on

the left and the server (BT CP;) steps are on the right.
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receive-segsc(sns, acks, msgs)
Eff: (* Effect clause of 7CP, *)

else if mode. # rec then {
if sny = ack, then {
last(response.) ‘= now, + rt

.-

if acks = sn, + 1 then {
wait-t_o, := o0

if mode. = last-ack then {
mode, := closed
first(open.) := now, + p

send-seges (sne, acke, msg., FIN)
Pre: (* Precondition clause from 7CP. *) A
now, < wait-t_o.
Eff: (* Effect clause from 7CP, *)
last(response.) := oo
if wait-t_o. = oo then
wait-t_o, := now, + wt

receive-segsc(sns, acks, msgs, FIN)
Eff: (* Effect clause from 7CP, *)

else if mode. # rec then {
if sny > ack, then {
last(response.) ‘= now, + rt

}
if acks = sn, + 1 then {

wait-t_o, := o0

clock-counter-tick,

Pre: mode, # rec A now, > first(tick;)
Eff: clock-counter, := clock-counter, + 1
first(tick.) := now. + clock-rate
last(tick. ) := now, + clock-rate

send-segs. (sns, acks, msgs)

Pre: (* Precondition clause of 7CP; *) A
nows < wait-t_og

Eff: (* Effect clause from 7CP, *)

last(response; ) 1= o0
if ready-to-send, A wait-t_o, = co
then wait-t_o, := now, + wi

receive-seges(sn., ack., msg., FIN)
Eff: (* Effect clause from 7CP, *)

else if modes # rec then {
if sn. > acks then {
last(response; ) := now; + 1t

}
if ack. = sns + 1 then {

wait-t_o, = 00

send-segs. (sns, acks, msgs, FIN)
Pre: (* Precondition clause of 7CP; *) A
nows < wait-t_og
Eff: (* Effect clause from 7CP, *)
last(response; ) 1= o0
if wart-t_o; = oo then
wait-t_o, := now, + wt

clock-counter-tick,

Pre: mode; # rec A now, > first(ticks)
Eff: clock-countery := clock-counter, + 1
first(ticks ) := now,s + clock-rate
last(ticks ) := nows + clock-rate

Figure 8-6: Other steps of BTCP, and BTCP;
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v(t) (time-passage)

Pre: t € RT A
now, +t < last(response;) A
((mode, # rec A now, +t < last(ticks))
V mode, = rec)

Eff: now,. := now, + ¢

time-out,

Pre: mode. € {rec,reset,closed} A
(mode, = timed-wait A
now, > first(t-out.)) vV
(now, > wait-t_o.)

Eff: if (mode, = timed-wait A
(now, > first(t-out.)) then {

mode, := closed

}

else mode, := reset

recetve-segs. (RST, acks, rst-seqs)
Eff: if mode, # rec A rst-seq, = ack, V
(rst-seqs = 0 A acks = sn. + 1) then
mode, := reset

shut-down,

Pre: mode. = reset

Eff: mode, := closed
first(open.) := now, + p

crash,

Eff: if mode, # closed then
mode, := rec
first(recov;) := now, + ¢t
first(open.) = now, + ¢t

recover,

Pre: mode. = rec A
now, > first(recov,)

Eff: mode, := closed
clock-counter, :€ BN
first(tick.) := now, + clock-rate
last(tick.) := now, + clock-rate

v(t) (time-passage)

Pre: t € RT A
nows +t < last(responses ) A
((modes # rec A now, +t < last(ticks))
V mode; = rec)

Eff: nows := now, +1

time-out,

Pre: mode; & {rec,reset,closed} A
(modes = timed-wait A
nows > first(t-outs)) Vv
(nows > wait-1_0;)

Eff: if (mode; = timed-wait A
(nows > first(t-out;)) then {

mode, := closed

1

else mode, := reset

receive-seg.s (RST, ack., rst-seq.)
Eff: if mode;, # rec A rst-seq, = ack; then
mode, := reset

shut-down,

Pre: mode;, = reset

Eff: mode, := closed
first(opens ) := nows +

crashg

Eff: if mode; # closed then

mode, := rec

first(recovs ) := now, + qt

first(opens ) := now; + ¢t
recovers

Pre: mode;, = rec A
nows > first(recovs)

Eff: mode, := closed
clock-counter, :€ BN
first(ticks ) := nows + clock-rate
last(ticks ) := now, + clock-rate

Figure 8-7: The remaining steps of BT CP. and BT CP; that differ from their counterparts in 7CP.
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Figure 8-8: The different components of TCP with bounded counters

timed-wait state. Therefore, these steps of B7CP cannot be simulated by 7CP. That
is, BTCP closes in situations where 7CP does not. However, we can change 7CP slightly
so that B7CP implements this slightly modified version of the protocol. We describe the
changes to 7CP in the next section. This new version of 7CP must still implement pa-
tient(S) in order for us to conclude that B7CP implements the specification if we show
it implements the new version of TCP.? We prove that it does in the next section. We
define the modified version of 7CP and show that B7CP implements this protocol because
it is easier to show than directly showing a simulation relation from B7CP to the abstract

specification.

8.4.1 Non-deterministic TCP

The change we make to 7CP is simple. We add two internal actions set-reset. and set-
resets; which non-deterministicically sets mode. and mode; respectively to reset. We call
this version of TCP, N'7CP, and with the same history variables as 7CP" we call it NTCP".
The new steps with the actions set-reset, and set-reset; are shown in Figure 8-9. To show
that N'7CP implements patient(S), we need to show that the set-reset. and set-reset; steps
can be simulated in DP. That is, we prove the following lemma:

Lemma 8.1

NTCP" <y DP via Ryp.

Proof: The proof for this lemma is the same as the proof for Lemma 7.1 except we need to

add prove of correspondence for the cases with @ = set-reset. and a = set-reset;. We only

2Recall that in Chapter 3 we defined a patient version of an untimed automaton to be one where arbitrary
time passage steps are added.
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set-reset. set-resety
Pre: mode, ¢ {rec,closed} ||Pre: mode, € {rec, closed}
Eff: mode, := reset Eff: mode, := reset

Figure 8-9: The new set-reset steps for NTCP.

show the case for a = set-reset,. since the proof for set-reset, is symmetric.

a = set-reset..

For this step the corresponding « is (u, abort., w"', mark.(I), v, drop.(I' k), u'). The

proof that this execution fragment preserves the correspondence of states is the same as for

Case 2 for the step with @ = receive-seg,.(RST, acks, rst-seqs) in the verification of 7CP

presented in Chapter 7. [ |
We can now prove that A"7CP, implements a patient version of Specification 5. That

is, we prove the following theorem:

Theorem 8.1
NTCP C, patient(S).

Proof: The proof is essentially identical to the proof of Theorem 7.1. From Lemma 8.1
we get that NTCP" <% DP, which because of the soundness of timed refinement mapping
(Theorem 3.6) and the soundness of adding history variables (Theorem 3.9) implies that
NTCP C; DP. From Theorem 4.1 we know D C 5. Using the Embedding Theorem of [31]
presented in Chapter 3 we now get D? C; patient(S). Thus, we now have N7CP C, D? and
DP T, patient(S). Therefore, since the subset relation and thus the implements relation is

transitive we get NTCP C; patient(S). ]

Derived variables for N7CP

To verify the correctness of BTCP we will show a timed forward simulation from the states
of BTCP to NTCP. To facilitate the description of the timed forward simulation, we
define a set of derived variables for N7CP. The first two variables maz-sn.,, and max-sn,.
are the maximum of all the sequence numbers for segments in in-transit.s and in-transits,

respectively. Similarly we define max-ack.s, and maz-ackg. to be the maximum of all the
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acknowledge numbers for segments in in-transil.; and in-transits. respectively. Let s be any

state of N'7CP, then these variables are formally defined as follows:

a {max(sn(p),for all p € s.in-transil,s) if s.in-transit,s £ 0,
S.MAT-5N s =

0 otherwise.

a max(sn(p), for all p € s.in-transits.) if s.in-transits. # 0,

5. MaAT-SN s, )
otherwise.

s.maz-ack )
0 otherwise.

L2 max(ack(p), for all p € s.in-transits.) if s.in-transits. Z 0,

s.maz-ack )
0 otherwise.

2 {max (ack(p),for all p € s.in-transit.s) if s.in-transit,s Z 0,

We also define max-u-sn. which is the maximum of max-sn.; and maz-ack,. — 1. This
variable represents the maximum sequence number we can deduce the client sent, based
solely on information on the channels. We use maz-acks. — 1 because it represents the
maximum sequence number acknowledged by a segment from the server that is still in

in-transits.. The symmetric variable is max-u-sn.

A
s.maz-u-sn, = max(s.mar-snes, s.mar-acks. —1).

A
s.maz-u-sns = max(s.mar-sng., s.mar-ack.s — 1).

8.4.2 BTCP with history variables

Before we define the relation between the states of B7CP and N7CP, we need to add
some history variables to BTCP. We denote BTCP with history variables as BTCP". The
history variables are mainly used to facilate proofs of invariants of the state protocol of the
protocol. In particular, because there are correctness properties that rely on the rate of the
clock counters and the rate at which new segments can be sent, we add history variables

that record the last time a the clock counter has a value, and the last time the sequence
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number variable has a value. These variables are Ist-time-cc. and [st-time-cc, for clock
counter values, and Ist-time-sn. and [lst-time-sn; for sequence number values. We also have
[st-time-ack,. and Ist-time-ack that mark the last time the ack. and ack, respectively, have
particular values. The times of the last crashes at the client and server are stored in the
[st-crash-time. and Ist-crash-time, variables respectively. It is also important that when a
new initial sequence number is chosen or the sequence number is incremented that these
numbers cannot be confused with sequence numbers of segments on the channel. To mark
the steps when a new initial sequence number is chosen, or when the sequence number is
incremented, we add flags new-isn. and new-isn, when new initial sequence numbers are
read, and new-sn. and new-sns;, when new sequence numbers are generated. Since long-
lived connections are a potential source of problems for TCP with bounded counters, we
add a history variables con-stri-time. and con-stri-time, that record the start time of the
connection on the client and server side respectively, so the duration of the connection can
be calculated. We also have history variables just-esth and ack-from-syn to indicate when
certain events occur. They are used to facilitate the proofs of some invariants of BTCP.

The tables below provides more details on the history variables.

| Variable | Type | S | Initially | Description |
Ist-time-cc, an array indexed | /| V i € BN, The last time the client side clock
by BN, of T. Ist-time-cc (i) = ( counter has value .
Ist-time-cc; an array indexed | / | V j € BN, Symmetric to lst-teme-cc..
by BN, of T. Ist-time-ccs(j) =
Ist-time-sn, an array indexed | / | V ¢ € BN, The last time sn, has value 1.
by BN, of T. Ist-time-sn. (i) =
Ist-time-sng an array indexed | /| ¥V j € BN, Symmetric to Ilst-teme-sn..
by BN, of T. Ist-time-sns(j) = 0
Ist-time-ack, | an array indexed | v/ | V ¢ € BN, The last time ack, has value i.
by BN, of T. Ist-time-ack (i) =|0
Isi-time-acks | an array indexed | v/ | V j € BN, Symmetric to Ist-time-ack..
by BN, of T. Ist-time-acks(j) = 0
new-sn. Bool false A flag that is set to true when the
client chooses a new sequence number,
and 1s set to false when this sequence
number is used.
new-sn; Bool false Symmetric to new-sn..
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Variable | Type | S | Initially

Description

new-isn, Bool false A flag that is set to true when the
client chooses a new initial sequence
number, and is set to false when this
sequence number is used.

new-isn Bool false Symmetric to new-isn..

con-stri-time, | T 00 The time when the client chooses an
intial sequence number.

con-stri-time, | T 00 The time when the server chooses an
initial sequence.

Ist-crash-time, | T N The time of the last crash at the client.

Ist-crash-timeg | T v |0 Symmetric to [st-crash-time..

ack-from-syn Bool Unil nil A flag that is set to true when the

client sets its acknowledgment num-
ber based on a SYN segment form
the server and set to false when the
acknowledgment number is base on a
non-SYN segment.

Steps of BTCP"

In Figures 8-10 and 8-11 we show the steps where BTCP" differs from BTCP. As always
we omit the assignments to the original variables of B7CP (again indicated by ...) but
outline the if-then-else statements. The first addition is to the send-msg.(open, m, close)
step. In this step the con-strt-time, is assigned to the current time, new-isn,. is assigned to
true to indicate that a new sequence number is assigned in this step, and Ist-time-sn.(sn.)
is set to now, to record the time sn. gets the value read from clock-counter. . The new-isn,
variable is set to false in the send-seg.; (SYN, sn.) step.

When the server performs the receive-seg.s (SYN, sn.) step, it sets it’s version of the
connection start time, con-strt-times to the current time, assigns new-isng to true, and
Ist-time-sns(sns) to the current time. The server assigns new-isn, to false, when it per-
forms the send-segs.(SYN, sns, acks) action. When the client receives the segment via the
receive-segs.(SYN, sng, acks) action it sets just-estb to true and ack-from-syn to true.
Ist-time-ack.(ack.) to the current time.

In the prepare-msg. step, the client assigns new-sn. to true, and the server assigns
new-sng; to true in the prepare-msg; step. These assigns are make because the client
increments its sequence number in the the prepare-msg. step, and the server increments its

sequence number in the prepare-msgs step. In the the prepare-msg. step just-estb is set to
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false because this may be the next set the client performs after it gets to mode estb. set
to

After the client or server increments their respective sequence numbers in the prepare-
msg. or prepare-msgs steps, they are enabled to send segments. When they send these
segments (send-seg.s(sn., ack., msg.) and send-seg.s(sn., ack., msg., FIN) for the client
and the symmetric steps for the server) new-sn. and new-sny are set to false respectively.

When either host receives a segment with valid data, it increments the value of its
acknowledgment variable. The time that the acknowledgment variable gets the new value
is recorded in the [st-time-ack,. history variable on the client side and the Ist-time-ack;
variable on the server side.

In the clock-counter-tick. and recover. steps the server assigns lst-time-cc.(clock-counter,)
to the current time to record the last time the clock counter has a particular value. The

clock-counter-ticks; and recover, steps are symmetric on the server side.

Derived variables for B7CP"

We also define two derived variables for B7CP". They are con-duration. and con-duration,,
and they represent the connection duration from the prespective of the client and server

respectively. We formally defined them below.

) s | s.now— s.con-stri-time, if s.mode, # closed,
s.con-duration, =

otherwise.

, s | s.now— s.con-stri-time; if s.mode; ¢ {closed, listen},
s.con-duration, =

otherwise.
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send-msg. (open, m, close)
Eff: (* Effect clause from BT CP, *)
if mode, = closed A open then {

con-stri-time,. 1= now,
new-isn. = true
Ist-time-sn.(sn.) := now,

send-seg.s (SYN, sn;)

Pre: (* Precondition clause from B7CP,. *)

Eff: (* Effect clause from BT CP, *)
new-isn. = false

recetve-segsc (SYN, sns, acks)
Pre: (* Precondition clause from B7CP,. *)
Eff: (* Effect clause from BT CP, *)

if mode. = syn-sent then {

Just-esth := true
ack-from-syn = true

ack. ;== sn, + 1
Ist-time-ack.(ack.) := now,

1

send-seges (sne, acke, msg.)
Pre: (* Precondition clause from B7CP,. *)
Eff: (* Effect clause from BT CP, *)
Just-esth .= false
new-sn. = false

prepare-msg,
Pre: (* Precondition clause from 7CP, *)
Eff: (* Effect clause from 7CP, *)
new-sn, := true
Just-esth := true

if send-buf. # ¢ then {

.-

if rcvd-close. A send-buf. = ¢ then {

.-

Ist-time-sn.(sn;) ‘= now,

receive-segcs (SYN, sn;)
Eff: (* Effect clause from B7CP; *)
if mode; = listen then {

con-stri-time, 1= now

new-isng = true
{st-ttme-sn, = now,
{st-time-ack, := now,

send-segs. (SYN, sns, acks)

Pre: (* Precondition clause from B7 CP; *)

Eff: (* Effect clause from B7CP; *)
new-isng = false

receive-segs (Sne, acke, msg;)
Eff: (* Effect clause from B7CP; *)

if sn. = acks then {
acks == sn, + 1
Ist-time-acks(acks) := nows

prepare-msg,

Pre: (* Precondition clause from 7CP; *)

Eff: (* Effect clause from 7CP; *)
new-sn; = true

if send-buf; # ¢ then {

1

if rcvd-closes A send-bufs = ¢ then {

.-

Ist-time-sns(sns) := now,

Figure 8-10: Steps where BTCP" differs from BT CP.
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receiv-segse (Sns, acks, msgs)
Eff: (* Effect clause from BT CP, *)

if sny = ack, then {
ack. ;== sn, + 1
Ist-time-ack.(ack.) := now,
ack-from-syn .= false

send-segs. (sne, acke, msg., FIN)
Pre: (* Precondition clause from B7CP,. *)
Eff: (* Effect clause from BT CP, *)
new-sn. = false
Just-esth .= false

receive-segsc(sns, acks, msgs, FIN)
Eff: (* Effect clause from BT CP, *)

if sny; = ack, + 1 then
ack. ;== sn, + 1
Ist-time-ack.(ack.) := now,
ack-from-syn .= false

clock-counter-tick,
Pre: mode. # rec A now, > first(tick.)

Eff: clock-counter, := clock-counter, + 1
first(tick.) := now, + clock-rate
Ist-time-cc.(clock-counter,) := now

crash,

Eff: ...

{st-crash-time, := now
recover,

Pre: mode, =rec A now, > first(recov.)
Eff: mode. := closed
clock-counter, :€ BN
Ist-time-cc.(clock-counter,) := now

send-segs. (sns, acks, msgs)
Pre: (* Precondition clause from B7 CP; *)
Eff: (* Effect clause from B7CP; *)

new-sng = false

receive-segsc (sne, acke, msg., FIN)
Eff: (* Effect clause from B7CP; *)

if sn, = ack; + 1 then
acks == sn, + 1
Ist-time-acks(acks) := nows

send-segs. (sns, acks, msgs, FIN)
Pre: (* Precondition clause from B7 CP; *)
Eff: (* Effect clause from B7CP; *)

new-sng = false

clock-counter-tick,
Pre: mode; # rec A now, > first(ticks)

Eff: clock-countery := clock-countery + 1
first(ticks ) := now, + clock-rate
Ist-time-ccs(clock-counters) := now

crashg

Eff: ...

Ist-crash-time, := now
recover;

Pre: mode; = rec A nows > first(recovs)
Eff: mode;, := closed
clock-counter, :€ BN
Ist-time-ccs(clock-counters) := now

Figure 8-11: The other steps

where BT CP" differs from BTCP.
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8.4.3 Invariants

As is the case for 7CP, we need to prove a set of invariants on the reachable states of
BTCP in order to limit the states we need to consider for the simulation proof. The proofs
for the invariants are presented in Appendix C. In the definition of the invariants of BTCP
and in the proofs, when we talk about a sequence number or acknowledgment number
being bigger than another we use the following definition. In BTCP, ¢ > j if and only if
i€ {j+1,...,5+ (21 = 1)}, where the additions are modulo 2°2. The properties stated
below are true of all reachable states of BTCP".

The first group of invariants, Invariants 8.1 through 8.4, state properties about the rela-
tionship between the connection start time, the timestamp on segments, sequence numbers
and acknowledgment numbers.

Invariant 8.1 says that when the client is in mode syn-sent, and the server is in mode
syn-rcvd, any segment sent after the respective connection start times has the same se-
quence number as the current sequence number of the sending host.

Invariant 8.1

1. If mode. = syn-sent and for (p,t) € in-transit.;, t — p > con-strt-time. then sn. =

sn(p).

2. If modes = syn-rcvd and for (p,t) € in-transit,., t — p > con-strt-times then sn, =

sn(p). |

Invariant 8.2 states a property that is easy to see. It says that when the client or server
chooses a new initial sequence number, any segments on the respective outgoing channels
must have been sent before the connection start time (the current time).

Invariant 8.2

1. If mode. = syn-sent A new-isn,. then for all (p,t) € in-transit.;, t—p < con-strt-time..
2. If mode, = syn-rcvd A new-isng then for all (p, 1) € in-transits., t—p < con-strit-time.

Invariant 8.3 says that any segment on the outgoing channels when a host is not closed

must have been sent after the host reopened.
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Invariant 8.3

1. If mode. # closed then for all segments (p,t) € in-transit.s, t > con-strt-time. + p.

2. If modes; # closed then for all segments (p,t) € in-transit,., t > con-stri-times + p.

Invariant 8.4 says if a host in a synchronized state receives a segment with data it
accepts, and the sending host still has the same sequence number as the sequence number

on the segment, then the segment must be from the current incarnation.

Invariant 8.4
1. If modes € sync-states and there exists segment (p,t) € in-transit.s such that sn. =

sn(p) and sn(p) = acks then t — p > con-stri-time..

2. If mode. € sync-states and there exists segment (p,t) € in-transits. such that sn, =

sn(p) and sn(p) = ack. then t — u > con-stri-time.. |

Invariants 8.5 through 8.12 state properties that are true before the hosts become syn-
chronized. These properties are key correctness properties, and together they basically say
that the sequence numbers on segments sent during the three-way handshake part of the
protocol do not get confused with sequence numbers of old duplicate segments.

Invariant 8.5 says that when the client chooses a new initial sequence number, the
other host cannot already have an acknowledgment number that acknowledges that new
sequence number. For the client side, the server’s acknowledgment number may actually
acknowledge the sequence number, but the server cannot be in mode syn-rcvd withnow <
wait-1_o,. That is, the server cannot send a SYN segment with the acknowledgment number.
Invariant 8.6 is similar to Invariant 8.5. It states that when the client chooses a new initial
sequence numbers, there cannot already be a segment that acknowledges this new sequence

number on the incoming channel.

Invariant 8.5
If mode. = syn-sent A new-isn. = true A acks € BN then sn. > acks V ~(mode;, #

syn-rcvd A now < wait-t_oy).
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Invariant 8.6
If mode, = syn-sent A new-isn. = true then for all SYN segments (p,t) € in-transits,,

sn. > ack(p).

Invariants 8.7 and 8.8 are symmetric to Invariants 8.5 and 8.6 respectively.
Invariant 8.7

If modes; = syn-rcvd A new-isn; = true A ack. € BN then sn; > ack.. [ ]

Invariant 8.8
If modes = syn-rcvd A new-isn, = true then for all segments (p,t) € in-transit.s, ack(p) <

sngs + 1. [ |

Invariant 8.9 says that if the client is in mode syn-sent, then any segment that ac-
knowledges the sequence number of the client, must contain a sequence number that has
not already been acknowledged by a segment already on the channel to the server. In other
words, the client has to receive the second segment of the three-way handshake before it can
send the third. Invariant 8.10 is along the same lines. It says that the sequence number on
the second segment of the three-way handshake must be bigger than the sequence number
on any non-SYN segment on the same channel at the same time. That is, the server cannot
send a segment with data that the client will accept before the server receives the third
segment of the three-way handshake.

Invariant 8.9
If mode. = syn-sent then for all SYN segments (p,t) € in-transits. such that ack(p) =
sn. + 1, sn(p) > ack(q) for all (¢,t') € in-transit.. |

Invariant 8.10
If mode. = syn-sent and there exists SYN segment (p,?) € in-transits. such that ack(p) =

sne. + 1 then sn(p) > sn(q) for all non-SYN segments (¢,?') € in-transit,,. |

Invariant 8.11 says that the acknowledgment number of the server when it is in mode
syn-rcvd is always less than the sequence number of the server plus one when the server is

not closed.
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Invariant 8.11

If modes; = syn-rcvd A now < wait-t_o; A mode. # closed then acks < sn. + 1. [ ]

Informally, Invariant 8.12 says that when the client receives the second segment in the
three-way handshake, if the sequence number of the server is such that it can send a segment
the client can accept (sn, € {ack., ack. + 1), then the server must be in mode syn-rcvd,
which means it can only send SYN segments. The client does not accept SYN segments if

mode, = estb.

Invariant 8.12

If just-estb = true A sng € BN then ack, > sn;. [ ]

Invariants 8.13 through 8.18 deal with the id not-in-use property once the connection has
been established. Invariant 8.13 says that once the connection is established, the sequence

number at the hosts is at least as big as the sequence number on any out going segment.

Invariant 8.13

1. If mode. € sync-states then for all segments (p,t) € in-transit.s, sn. > sn(p).

2. If mode, € sync-states then for all segments (p,t) € in-transits., sns > sn(p). [ |

Invariants 8.14 and 8.15 are similar. Invariant 8.14 says that the sequence number plus
one at a host in a synchronized state is always greater than or equal to the acknowledgment
number at the other host, and Invariant 8.15 says the sequence number plus one is also

greater than or equal to the acknowledgment number on any incoming channel.

Invariant 8.14

1. If mode. € sync-states A acks; € BN then sn. + 1 > acks.

2. If mode; € sync-states A ack. € BN then sng; + 1 > ack,. [ ]

Invariant 8.15
1. If mode. € sync-states A new-sn. = true then for all segments (p,t) € in-transit,.,

sne + 1 > ack(p).
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2. If modes € sync-states A new-sns, = true then for all segments (p,?) € in-transit,.s,

sns + 1 > ack(p). |

Invariant 8.16 says the host are in synchronized states, there acknowledgment numbers
are greater than or equal to the acknowledgment number of any segment on the respective

outgoing channels.

Invariant 8.16

1. If mode. € sync-states then for all (p,t) € in-transit., ack. > ack(p). [ ]

2. If mode; € sync-states then for all (p,t) € in-transits., acks > ack(p). [ ]

Invariant 8.17 expresses a key correctness property. It states that when a host receives
a segment from which it may accept data (sn(p) > ack. or sn(p) > acks), then the sender
has not changed its sequence number from the time it sent this segment. Another way to
state the property expressed by the invariant is: sequence numbers do not get changed until
they are acknowledged.
Invariant 8.17

1. If mode, € {syn-rcvd} U sync-states A mode. € {rec,reset} U sync-states and there

exists (p,t) € in-transit.s such that sn(p) > acks, then sn. = sn(p).

2. If mode. € sync-states and there exists (p,t) € in-transity. such that sn(p) > ack,

then sns = sn(p). |

Invariant 8.18 states that when a host receives a segment from which it accepts data,
there cannot be another segment on the same channel from which it will accept new data
before the old data is acknowledged.

Invariant 8.18
1. If modes; € {syn-rcvd} U sync-states and there exists (p,t) € in-transit.s such that

sn(p) > acks, then for all other non-SYN segments (¢,t') € in-transit.;, sn(q) < sn(p).

2. If mode. € sync-states and there exists (p,t) € in-transity. such that sn(p) > ack,

then for all other non-SYN segments (¢, ') € in-transits., sn(q) < sn(p). |
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The conjunction of all the above invariants is itself an invariant, and we call this invariant

Ip.

8.4.4 The Simulation

In this section we define a relation from states of BZCP" to states of 7CP, and then prove

that it is a timed forward simulation with respect to Invariants I and Ip.

The timed forward simulation

We define a relation Fiy (Definition 8.1) from states(BTCP") to states(N'TCP). Because
NTCP has many variables, we have many cases for the timed forward simulation. The
many cases makes the relation look more complicated than it actually is. We discuss the
intuition behind relation Fgy before we present it, so that it will be easier for the reader to
understand the formal definition.

Since BTCP" works in the same basic manner as N'7CP, the relation defines most of the
variables of BTCP" to be equal to their counterparts in A7CP. However, since 87 CP" has
a bounded number space for sequence numbers and acknowledgment numbers and N7CP
has an unbounded number space for these variables, we cannot make these variables equal
in the relation. Reset numbers are also bounded in BZ7CP", but we are not concerned
with these numbers because we will simulate resets in BTCP" with set-reset actions in
NTCP. Since set-reset. and set-reset, are almost always enabled, we do not have to match
the settings of the send-rst., send-rsts, rst-seq., and rst-seq, variables. Therefore, in the
relation the allowable values of these variables in N7CP is independent of their values in
BTCP". Basically, these variables never get set in N'7CP.

For sequence numbers and acknowledgment numbers, the related values may not be
equal because in B7CP the numbers are generated by bounded counters, while in N'7CP
they are generated by an unbounded counter. However, the actual numbers of the individual
corresponding variables is not what is important in the protocols, but whether they are equal
to, or less than, or greater than the numbers of other variables. This is the key idea in how
the relation is defined for these variables.

For the client side sequence number, u.sn., we have three cases. The first case is always
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true of the states of N7CP(Invariants 7.1, 7.2 and 7.3). It is the rule used to define
the allowable values of u.sn. if the other two cases are not true, or if s.mode. = closed.
In BTCP" when a host is closed, the sequence number variable is undefined. In N'7CP
sequence numbers are stable, and always have a value. Therefore, when a host is closed
in BTCP", in the set of related states on NTCP the sequence number of the host must
have a value. We define the set of allowable values to be numbers greater than or equal to
the maximum of the maximum sequence number used as reflected by the channels and the
acknowledgment number of the other host minus one. The intuition here is that right before
a host closes in BTCP", its sequence number will at least be this value. The other two cases
illustrate the fact that it is whether variables are equal to each other or greater than another
variable, and by how much, that is important. The second case is if s.sn. = s.ack;. This
relationship is important because it means the client can send a segment with messages that
may be accepted by the server. However, since the client only send messages on non-SYN
segments, it is only relevant when the client is in a synchronized state. Also, since the server
only accepts messages if it is in a synchronized state it is only relevant if the server is in
a synchronized state. The third case for w.sn, is the situation where the client can send a

FIN segment with data. The definition for w.sn, is essentially symmetric.

The client side acknowledgment number in N"7CP, u.ack., is nil or undefined when the
corresponding variable in BTCP" is nil, or undefined. Otherwise, it must be equal to, or
less than w.sng + 1 when s.ack, is less than or equal to s.sng+ 1. The important relationship
is whether s.ack. = s.sns + 1, because the server can send a valid acknowledgment if this
is the case. When the sequence number of the server in B7CP” is either undefined, or is
nil, and if the s.ack, # nil, then in the related states of N7TCP, u.ack. < u.sns + 1, which
we know by Invariant 7.2 is always true in the reachable states of N 7CP. For u.ack, the
relation is not quite symmetric. The first non-symmetric aspect is that we specify that
whenever s.mode; = closed, then w.acks is undefined. We need to specify this here because
the server may set s.acks to 0, when it generates a reset for a SYN segment received when
it is closed. However, since we will simulate resets in B7CP" with the set-reset actions in
NTCP, changes associated with generating reset segments do not change the related values

for variables in N'7CP. It is also important that if s.ack; = s.sn.+1 that v.ack, = u.sn.+1.

177



However, since only a SYN segment can acknowledge the sequence number of the client when
it is in mode syn-sent, it only matters that u.ack; = uw.sn. + 1 when the client is not in

mode syn-sent, or if it is in mode syn-sent, that the server is in mode syn-rcvd.

We now discuss the relationship between in-transit., and in-transit,, in BTCP" and the
same variables in N 7CP. The relation between these variables is the most complicated
part of Fgpy. However, it is not as complicated as it looks in the formal definition. It looks
complicated because it is somewhat difficult to present formally and precisely the relatively
simple idea behind this part of the relation. We start with the case for in-transit.;. The
basic idea is that each non-RST segment (p',t') € s.in-transit.; is related to a segment
p € w.in-transit.s that has the same message and is the same type (SYN, or FIN, or neither),
but there is no timestamp, and the sequence number, and/or the acknowledgment number
may be different. As is the case for sequence numbers and acknowledgment numbers, what
is important is how the numbers relate to other variables. For sequence numbers of non-
RST segments in s.in-transil.s, the related sequence numbers for segments in u.in-transit.; is
determined in a manner similar to how the related values for client side sequence numbers are
determined. The first case is always true of the reachable states of N7CP, and is used when
the other cases do not hold (Invariant 7.1). The variables the sequence numbers are related
to in the relation reflect how the sequence numbers are generated or used in the protocols,
so because when segment (p',t') is added to s.in-transit., for the first time, sn(p’) = s.sn., in
the set of corresponding states sn(p) = u.sn.. However, we do not want sequence numbers
of segments from a previous incarnation to be equal to the current sequence number, even
if they are in BZCP", so we have the added restriction that the timestamp on the segment
must indicate that it was placed on the channel after the connection started; that is, (t—pu) >
s.con-strt-time.. The sequence numbers of segments related to segments from a previous
incarnation are always less than u.sn.. Also if the sequence number of the segment in BTCP"
is actually less than s.sn., then the sequence number of the related segment is also less than
u.sn.. It is also important that if on a non-SYN segment (p/,t) that if sn(p’) = s.ack, or
sn(p') = s.acks+ 1, the same relation holds for the corresponding segment p. It is important
because such a segment has data the server may accept. However, if s.mode; = syn-rcvd,

the server only accepts the data if ack(p’) = s.sns + 1.
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Acknowledgment numbers are treated in a similar manner. For non-SYN segments it
is important that if ack(p’) = s.sns + 1, then ack(p) = w.sns + 1, because when the server
receives a segment it checks if the acknowledgment number has this value. However, since
the server does not check if ack(p’) = s.sn, or any value less than that, we do not need
to be as precise with the relationship between acknowledgment numbers that are less than
or equal to the sequence number of the receiving host. We also have an invariant rule, for
when the other conditions do not hold. That is, ack(p) < u.sn, + 1.

The relation for in-transit,. is essentially symmetric, except that SYN segments in this
channel have acknowledgment numbers, so they are treated in a slightly different manner.
Also, because the server may assign an acknowledgment number based on an old duplicate
SYN segment from the client, it is only important that the acknowledgment number of the
segment is equal to the acknowledgment number of the server, if the segment was sent after

the connection started at the server. We now present the formal definition of Fgy.

Definition 8.1 (Forward Simulation from B7CP" to NTCP)
If s € states(BTCP") then define Fyy to be the state u € states(NTCP) such that:

1. w.now = s.now

2. w.ready-to-send, = s.ready-to-send,
u.ready-to-send, = s.ready-to-send,

3. w.send-ack. = s.send-ack.
u.send-ack. = s.send-ack,

4. u.send-fin, = s.send-fin,_
u.send-fin, = s.send-fin,

5. w.push-data, = s.push-data,
w.push-data, = s.push-data,

6. u.msg. = 5.msg.
U.MSGYs = $.1MSYGs

7. u.send-fin-ack, = s.send-fin-ack,
u.send-fin-ack, = s.send-fin-ack,

8. u.time-sent. = s.time-sent.
w.time-sents = s.time-sents

9. u.send-buf_ = s.send-buf_
u.send-buf . = s.time-sent.

10. w.rcv-buf_ = s.rcv-buf,
w.rev-buf . = s.rcu-buf,

11. w.mode. = s.mode.
w.modes = s.mode;
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12.  w.send-rst.
u.send-rst.

13.  wu.rst-seq,
u.rst-seq,

14. w.sn. 2>
15. w.sn, 2>
16. w.ack. =
<

<

17. w.acks =
is

<

<

18. Segment p €

sn(p) <
<
ack(p) =
<
<

= false if s.mode. # closed
is  undefined if s.mode. = closed
= false if s.modes # closed
is  undefined if s.mode. = closed
= nil if s.mode. # closed
is  undefined if s.mode. = closed
= nil if s.modes # closed
is  undefined if s.mode. = closed

max(u.maz-u-sne, w.acks — 1)

w.acks

w.acks + 1

max(u.mag-u-sne, w.acke — 1)

w.acke

w.acke. + 1

s.acke
u.8n: + 1
u.8n: + 1
U. 8N

s.acks

undefined
u.sn. +1
u.sn. +1

U. 8N

w.in-transit.s
.81,
.81,
.81,
w.acks

cacks +1

cacke
sn. + 1

sn. + 1

.8Ns

if s.ack. =nil

if s.modes € {closed,

if s.ack. = s.sns+1
if s.ack. < s.s8n;.

if s.acks = nil
closed

if s.mode: =
if s.mode.

if s.acks =

s.modes =

if s.mode. € {closed syn-sent} V s.sn. ¢
{s.acks, s.acks + 1}.

if  s.sne s.acks A s.mode. &
{closed, syn-sent} A (s.modes # syn-rcvd V
(s.modes = syn-rcvd A s.ack. = sn. + 1)).

if s.sn. s.acks + 1 A s.mode. &
{closed, syn-sent} A (s.modes # syn-rcvd V
(s.modes = syn-rcvd A s.ack. = sn. + 1)).

if s.mode, € {closed,listen, syn-rcvd} V s.sn. &

{s.ack.,s.ack. + 1}.

if  s.sn. = s.ack. A s.modes &
{closed, listen, syn-rcvd}
if  s.sn. = s.ack. + 1 A s.modes &

{closed, listen, syn-rcvd}

listen} A s.ack. # nil

closed A s.acks # nil
s.sn.+1 A (s.mode. # syn-sentV (s.mode. = syn-sent A
syn-rcvd))

if s.acks < s.8nc \/(s.modec = syn-sent A ﬁ(s.modes = syn-rcvd A

wait-t_o. < now))

if s.mode. = closed

= p’ for non-RST segment (p',¢) € s.in-transit.s but, with:

v sn(p') € {s.acks, s.acks + 1}

if s.sn. = sn(p') A (t —p) > s.con-stri-time..
if s.mode; # closed A (sn(p’) < s.8n. V (t—p) < s.con-stri-time.).

if sn(p’) = s.acks A

syn-rcvd V (s.mode; = syn-rcvd A ack(p’) = s.sn. + 1)).
if sn(p’) = s.acks+1A (p',1)is a non-SYN segment and
syn-rcvd V (s.mode; = syn-rcvd A ack(p’) = s.sn. + 1)).

if ack(p') = acke

(p',1) is a non-SYN segment and (s.mode, #

)
(s.modes #
)

if s.mode. € {closed, syn-sent} A s.modes € {closed, listen}V

ack(p’) # s.acke.

if ack(p') = s.sn. + 1

if ack(p') < s.sn,.

19. Segment p € u.in-transit,. = p' for non-RST segment (p’,¢) € s.in-transitsc, but with:
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sn(p) < w.sng if s.mode, € {closed, listen} V sn(p') &€ {s.acke, s.ack. + 1}.
= w.sn. if s.sns = sn(p') A (t — ) > s.con-stri-time,.
< u.8ns if s.mode; € {closed,listen} A (sn(p') < s.sn. V (t —p) <
con-strt-time.).
=  wu.ack. if sn(p") = s.ack. A (p', ) is a non-SYN segment.
= w.acke+1 if sn(p') = s.acke +1A (p',) is a non-SYN segment.
ack(p) = w.acks if ack(p') = acks A (t— p) > s.con-stri-times,
< w.sn.+1 if s.mode; € {closed, listen} A s.mode. = closed V ack(p') #
s.acks.
= u.sn.+1 if ack(p') = s.snc+1 A (p',t) is a SYN segment.
= u.sn.+1 if ack(p') = s.snc+1 A s.mode. # syn-sent A (p',t) is a non-SYN
segment.
< w.sne if ack(p') < s.snc A (p',t)is a SYN segment.
< w.sne if ack(p’) < s.sn. V s.mode, = syn-sent A (p',t) is a non-SYN
segment.

The simulation of steps

In this section we proof that Fpy is indeed a timed forward simulation from the states of

BTCP" to the states of NTCP by showing the correspondence of actions.

Lemma 8.2

BTCP" <t NTCP via Fpy.

Proof: We prove that Fyy is a timed refinement mapping from B7CP" to NTCP with
respect to It and I by showing that the two cases of Definition 3.12 are satisfied.

Base Case

In the start state sg of BTCP" we have sg.mode, = closed, sg.mode; = closed, sg.now = 0,
sg.in-transit., = (), sg.in-transit,, = @, and and all other variables undefined. The start
state, ug of N'7CP has ug.mode. = closed, ug.mode, = closed, ug.now = 0 ug.sn. = 0,
ug.sn, = 0, ug.in-transit., = 0, ug.in-transit,., = (), and all other variables undefined.

Therefore, it is clear that Fuy(so) N ug # 0.

Inductive Case

Assume (s, a,s') € Steps(BTCP"). Below we consider cases based on a and for each case we
define a finite execution fragment a of S such that fstate(a) = Fun(s), Istate(a) = Fpy(s'),
and t-trace(a) = t-trace(s,a,s’). For the steps of the proof below we do not include the
time of occurrence and last time in the timed traces of (s,a,s") or a, so as not to clutter the
proof. However, it is clear that since the time-passage steps in N'7CP have no restrictions,

if we show trace(a) = trace(s,a,s’) then t-trace(a) = t-trace(s,a,s’). We use u and v’ to
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denote Fpy(s) and Fuy(s') respectively. If an action has a symmetric counterpart from the

other host we will not show the proof of correspondence for that action.

a = send-msg.(open, m, close).

For this case, & = (u,a,u’). There are two interesting cases for this step. The first is if
s.mode. = syn-sent A s.send-buf, = ¢ and close is true. The second interesting case for
this step is when s.mode. = closed and open is true. For all other states, since the steps
only affect variables that are equal to each other in the relation, or have no effect, it is easy

to see that after a the resulting state, u’, is in Fpy(s').

1. The case where s.mode. = syn-sent A s.send-buf,. = ¢ and close is true is interesting
because after the step s’.mode. = closed, so the set of allowable values for u’.ack,,
u'.in-transit.s, and u'.in-transits., may change. For u'.ack, the relation is affected if
s.acks = s.sn. + 1. In the corresponding set of states w.ack; = w.sn. + 1. After the
steps u'.ack, should be less than or equal to u'.sn. + 1. This is clearly true. For
segments p € u'.in-transit.s, after a, sn(p) should be less than or equal to u'.sn..
Since s.mode, = syn-sent and Invariant 8.1 tells us that all segments (p,t) with
t — pu > s.con-strt-time. have sn(p) = s.sn., by Fuy, we know that all segments
p € w.in-transit.s, sn(p) < u.sn.. Since the step does not change u.in-transit.; or u.sn.,
we have sn(p) < u'.sn. for p € w'.in-transit.;. For a segment ¢ € u.in-transit,., the
relation is affected if the corresponding segment (¢',t) € s.in-transits. has ack(q') =
s.sn. + 1, or ack(q’) < s.sn.. After step (s,a,s’), Fan, says that all segments ¢ €
u'.in-transits, must have ack(q) < u'.sn. + 1. Since, in the states corresponding to
state s, we know that ack(q) < u.sn.+ 1, we clearly have the right correspondence for

this variable.

2. For the case where s.mode. = closed and open is true, the difficulty in showing u’
is in the set of states defined by Fgy, lies in showing that «’.ack,, u'.in-transit.s, and
u’.in-transit,. have values that are in the set of values defined by Fyy. The criterion
used by Fyy for defining the set of allowable values for u’.ack; may change after step
(s,a,s') if s'.mode; # closed A s'.acks # nil. Since s.acks does not change in

BTCP" after (s,a,s'), nor does u.ack, change after a in N'7CP, we need to show
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that even if the criterion changes, u.acks is in the set of allowable values for u’.ack
as defined by Fgzy. The change in criterion comes about because s.mode. = closed
while s’.mode. = syn-sent. By Fuy, u.acks; < u.sn. + 1. From Invariant 8.5 we know
that if s’.mode; = syn-rcvd then s'.acks < §'.sn.. Therefore, by Fgy, w'.acks should

be less than or equal to u'.sn. which we know to be true because v’.sn. = u.sn. + 1.

The criterion used by Fpy for defining the set of allowable values for the sequence
numbers of segments p € wu.in-transit.s changes after step (s,a,s’) if s.mode; €
{closed,listen}. Because the sequence numbers do not change after the step, we
need to show that the values are in the new set of allowable values. If s.mode. =
closed and s.mode, € {closed,listen}, then by Fuy for all segments p, sn(p) <
u.81.. Since the timestamp minus u of every segment in s.in-transit.s, is less than
s'.con-strt-time. (Invariant 8.2), by Fpy, for all segments p, sn(p) < u'.sn., which is

clearly true.

For segments p € w.in-transity., the criterion used for determining the allowable values
for ack(p), changes after step (s,a,s’) if s.mode; € {closed,listen}. Because the
acknowledgment numbers do not change after the step, we need to show that the
values are in the new set of allowable values. If s.mode. = closed and s.mode, €
{closed, listen}, then by Fgy for all segments p, ack(p) < u.sn. + 1. After the step,
we know by Invariant 8.6, that for all SYN segments (p',t) € ¢'.in-transits., ack(p') <
s'.sn.. After step (u,a,u’), since w'.sn. = u.sn. + 1, we know that ack(p) < u’.sn,,
which is in the set of allowable values defined by Fzy. For non-SYN segments, since
¢ .mode. = syn-sent, we again have by Fgy that ack(p) should less than or equal to

u'.sn., which we know is true.

a = passive-open.

For this step the corresponding o = (u,a,u’). It is easy to see that u’ € Fpy(s'), because

the step does not change any variables that are not equal in the relation.

a = send-msgs(m, close).

For this step the corresponding a = (u,a,u’). This is another step that only changes

variables that are equal in the relation, so it is easy to see that u’ € Fpy(s').
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a = send-seg.s(SYN, sn.).

For this step, the corresponding a = (u,a,u’). Step (s,a,s’) adds a SYN segment (p',1)
to s.in-transit.s with sn(p’) = s.sn., and a adds a SYN segment p to u.in-transit.; with

sn(p) = w.sn.. Clearly u'.in-transit.s is in the set of allowable states as defined by Fpy.

a = receive-seqg.s(SYN, sn.).

We break the proof of correspondence for this step into two cases.

1. The first case is if s.mode; = closed. For this case the corresponding « is the
empty step. In Chapter 3 we defined A to be the empty action, so we have a =
(u, A,u'). For this case, after step (s,a,s’), s'.send-rst; = true, s.acks = [sn.] + 1,
and ¢'.rst-seq, = 0. However, since s'.mode; = closed. The empty step gives the

right set of corresponding states.

2. The second case is for all other states, s. For this case a = (u,a,u'). Let (p',t')
be the SYN segment received by (s,a,s’) and p be the SYN segment received by «a.
This step is interesting if s.mode; = 1isten. For most variables it is clear that their
values in state u’ are in the set of allowable values defined by Fgzy. The interesting
cases are for u'.ack,, u'.sn., u'.ack., v'.in-transit,., and v .in-transit.;. We know
w.ack, = nil by Fpy. After a, in BTCP", if s'.mode. # closed and s'.ack, = s'.sn.+1
or s'.acks < §'.sn., then sn(p') = s'.sn. or sn(p') < s'.sn.. We know from Invariant 8.3
that if sn(p’) = s'.sn. then t — p > s'.con-stri-time., so in the corresponding set
of states sn(p) = w'.sn.. If sn(p’) < s'.sn., then we know from Invariant 8.1 that
t—p < s'.con-strt-time., so in the corresponding set of states sn(p) < u’.sn., so we have
the correct value for this case. From Invariant 8.11 we know that if s’.mode. # closed
then s’.ack; < s’.sn.+ 1. Therefore, the only other possibility is if s’.mode. = closed,

then u'.acks < u'.sn. + 1, which by Invariant 7.2 we know is true.

If s'.ack. = s'.sns + 1, then the criterion used by Fyy for defining the set of allowable
values for u'.sn. changes if s'.sn, = s'.ack, or s'.sn. = s'.ack; + 1. However, since
s'.mode; = syn-rcvd, Invariant 8.7 tells us that if s’.ack. # nil, then s'.ack. < s'.sn,.
Therefore, the criterion for defining the allowable values for this variable does not

change. For u'.ack., we already know that if s'.ack. # nil, then it is less than or
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equal to s’.sn.. Since s.mode, = listen by Iy, w.ack. < u.sng; + 1. By Fgy v'.ack.
should be less than or equal to u’.sn,. Since u.ack. < u.sn,+1, and v'.sn, = u.sny+ 1,

u’.ack, is indeed less than or equal to u’.sn,.

The criterion used by Fpy for defining the set of allowable values for the sequence
numbers and acknowledgment numbers of segments ¢ € w.in-transit;. changes af-
ter step (s,a,s’) if s.mode. € {closed,syn-sent}. Because the numbers do not
change after the step, we need to show that the values are in the new set of al-
lowable values. We first examine the sequence numbers. If s.mode; = listen and
s.mode. € {closed, syn-sent}, then by Fuy for all segments ¢, sn(q) < wu.sn,. Since
the timestamp minus g on every segment must be less than s'.con-stri-times (In-
variant 8.2), by Fuy, for all segments ¢, sn(q) < u'.sns, which is clearly true. Also
because the timestamp minus p on every segment must be less than s'.con-stri-times,
the allowable values for acknowledgment numbers of segments on u’.in-transit,. is not

affected.

The criterion used by Fgy for defining the set of allowable values for the acknowledg-
ment numbers of segments ¢ € w.in-transit.s also changes after this step if s.mode. €
{closed, syn-sent}. It does not change for sequence numbers because we know from
Invariant 8.8, that for all segments ¢’ € s'.in-transit.s, ack(q) < s'.sns. For acknowl-
edgment numbers, since s.mode; = listen, if s.mode; € {closed, syn-sent}, then
by Fpy for all SYN segments ¢, ack(q) < u.sns + 1. After the step, we know by Invari-
ant 8.8, that for all segments ¢’ € s'.in-transit.;, ack(q) < s'.sn,. After step (u,a,u’),
since u'.sns = u.sns + 1, we know that ack(q) < w’.sn,, which is in the set of allowable

values defined by Fpy.

a = send-segs.(SYN, sns, acks).

For this step the corresponding a = (u,a,u’). Let (p',t') be the SYN segment added
by (s,a,s") and p be the SYN segment added by «. Thus, we have sn(p) = u'.sn, and
ack(p) = v'.acks; and sn(p’) = s'.sns and ack(p) = s'.acks. Since s.mode;, = syn-rcvd
when this step is enabled, the sequence number of p is right as defined by Fgy. If in
BTCP", ack(p') = s'.sn. + 1 or ack(p') < §'.sn., then by Fuy, ack(p) should be equal to
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u'.sn. + 1 or ack(p) should be less than u'.sn. respectively. Since if s.acks = s.sn. + 1 then
w.acks = u.sn. + 1 or if s.acks; < s.sn. then u.ack; < u.sn., we clearly have the right set of

values.

a = receive-segs.(SYN, sn., acks).

For this step we have two cases.

1. The first case is if s.mode. = closed V s.mode. = syn-sent A ack(p') # s.sn. + 1.
For this case the corresponding « is the empty step. Since for this case (s,a,s’) only
changes s.send-rst. and s.rst-seq,, it is clear that the empty step gives the right set

of corresponding states.

2. The second case is for all other states. For this case o = (u,a,u’). Let (p',t) be
the segment received in step (s,a,s’), and p be the segment received in step a. If
s.mode, = syn-sent A ack(p’) = s.sn. + 1, then after step (s,a,s’), s’.mode. = estb
and s’.ack. = sn(p')+1. In the corresponding state of N7CP, u.mode. = syn-sent A
ack(p) = u.sn. + 1, and after a, v'.mode. = estb and v'.ack, = sn(p)+ 1. We need
to show that this value of u'.ack. is in the set of acceptable values as defined by Fgy.
If s.mode; € {closed,listen} then u'.ack. < u'.sn; + 1 which we know to be true
by Invariant 7.2. If s’.mode, ¢ {closed,listen} then the allowed values for u’.ack.
depend on the relationship of sn(p’) to s'.sns. If s'.ack. = s'.sn,+1 or s'.ack, < s'.sn,,
then by Fypy, u'.ack, should have the same relationship to u'.sn,. If s'.ack. = s'.sny+1
or s'.ack. < §'.sn. then sn(p') = s'.sn, or sn(p’) < s'.sny respectively. We know
from Invariant 8.3 that if sn(p’) = s’.sn, then t — u > s'.con-strt-times, so in the
corresponding set of states sn(p) = u'.sns. If sn(p’) < ¢'.sns, then we know from
Invariant 8.1 that ¢t — pu < s'.con-strt-timeg, so in the corresponding set of states

sn(p) < u'.sns, so we have the correct set if values for this case also.

The change of s.ack, from nil to sn(p’)+ 1, may also change the criterion used by Fay
for defining the set of allowable values for u'.sny, if s.mode; ¢ {closed,listen, syn-rcvd}.
However, from Invariant 8.12 we know that if s’.sn; € {ack., ack.+ 1} then s'.modes =
syn-rcvd, so the criterion does not changes. This change may also change the set

of allowable values for acknowledgment numbers of segments in u’.in-transit.,, and
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sequence numbers of non-SYN segments in «'.in-transits.. For acknowledgment num-
bers of segments in s'.in-transit.s, the change may have an effect for any segment
q € u'.in-transit.s that has corresponing segment (¢',t') such that ack(p’) # s'.sns.
However, we know by Invariant 8.9 that sn(p’) > ack(q’) for any segment (¢',t') €
s.in-transit.s. Therefore, we know that s'.ack. > ack(q’). From Invariant 7.3 we know
that for any corresponding segments ¢ € u'.in-transit.;, ack(q) < u'.sns+1, so we have
the correct correspondence of states. If s.modes € {closed,listen}, the change of
s.ack. from nil to sn(p)+ 1 may change the allowable set of values for sequence num-
bers for non-SYN segments in u’.in-transit,.. However, from Invariant 8.10 we know
that for all non-SYN segments (¢',t') € s'.in-transits., sn(q') ¢ {s'.ack.,s".ack. + 1},
and from Invariant 7.1 we know sn(p) < u’.sn., so we have the correct correspondence

of states.

a = prepare-ms(..

For this step a = (u,a,u’). It is easy to see that for most variables the relationship is
maintained after . The difficulty lies in showing that the relationship is preserved for
u'.sn., u'.ack,, u'.in-transit.;, and u'.in-transit,.. We first examine the case for u'.sn.. By
Invariant 8.14 we know that s.sn.+ 1 > s.acks, if s.acks # nil As.modes; # closed. If after
this step s'.sn. = s'.acks, or s'.sn. = s'.acks + 1 (if sn. is incremented twice), then it must
be that s.ack; = s.sn. + 1. By Fgy, in the related set of states u.ack; = u.sn. + 1, so after
a, v .sn. = v .ack, or v'.sn. = v'.ack; + 1 respectively. If s.sn. > s.ack; V s.ack, = nil Vv
s.mode; = closed then after (s,a,s’), s'.sn. = . acks + 1 or §'.sn. & {s'.acks,s'.acks + 1}.
After o we know u'.sn. = v'.acks + 1, and/or w’.sn. > max(u'.maz-u-sn., v’ .acks — 1), which
is the set of allowable values for this state.

For the case of u'.ack,, we know that if s.acks # nil As.modes; # closed then s.sn.+1 >
s.acks (Invariant 8.14). Therefore, after this step s'.acks < s’.sn.. In the corresponding set
of states we know u.ack; < u.sn. + 1, so after a, v'.acks < u'.sn., which gives the correct
correspondence of states.

For sequence numbers of segments p € u’.in-transit.;, the set of allowable values may
change if after (s,a,s’) there is a segment (p',t) € s'.in-transit., with sn(p') = ' .sn..

However, from Invariant 8.13 we know that this is not the case. By Invariant 8.15 we know
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that ack(p') < s.sn.+ 1, for segments (p',t) € s.in-transit,.. Therefore in the corresponding
set of states, for segments p € u.in-transits., ack(p) < u.sn. + 1. Therefore, after this step

the correspondence is maintained.

a = prepare-msgs.

This step is symmetric to a = prepare-msg..,

a = send-seg.s(sn., ack., msg.).

For this step a = (u,a,u’). Let (p/',t') be the segment added by (s,a,s’) and p be the
segment added by a. Thus, we have sn(p) = u'.sn. and ack(p) = u’.ack.; and sn(p') = s'.sn.
and ack(p) = s'.ack.. If in BTCP" sn(p') = s'.acks or sn(p') = s'.acks + 1, then by Fyy,
sn(p) should be equal to u'.acks or sn(p) should be equal to u'.acks + 1 respectively. Since
if s.sn. = s.acks; then u.sn. = u.acks, or if s.sn. = s.acks + 1 then u.sn. = w.ack; + 1,
we clearly get the correct corresponding states. Also, if in BZTCP" ack(p’) = s'.sns + 1
or ack(p’) < §.sns, then by Fgy, ack(p) should be equal to u'.sns + 1 or ack(p) should
be less than w'.sn; respectively. Since if s.ack. = s.sn, + 1 then w.ack. = u.sn, + 1 or if

s.ack. < s.sng then uw.ack. < w.sng, we clearly have the right set of values.

a = receive-seq.s(sn., ack., msg.).

We break the proof of correspondence for this step into the usual two cases.

1. The first case is if (s.mode; € {closed,listen})V (s.mode, = syn-rcvd A ack(p') #
s.sns + 1). For this case the corresponding « is the empty step. It is clear that the

empty step gives the right set of corresponding states.

2. The second case is for all other states. For this case o = (u,a,u’). Let (p',t) be the
segment received in step (s,a,s’) and p be the segment received by in step a. We
break the second case into several subcases. The subcases are not necessarily disjoint

set of states.

(a) The first subcase occurs if sn(p') = s.ack,. After a,in BTCP", ' .ack, = sn(p')+
1. In the corresponding set of states sn(p) = wu.acks, and after o u'.ack; =
sn(p)+ 1. We need to show that w'.acks, u'.sn., v'.in-transit.s, and u'.in-transit,.

all have allowable values after . We first look at the case for u'.acks. If s’.acks =
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s'.sn.41 then sn(p’) = s.sn.. By Invariant 8.4 we know that if sn(p’) = s.acks; and
sn(p') = s.sn., then t—p > &' .con-stri-time.., so in the corresponding set of states
sn(p) = w.sne. If &' acks < s'.sn. then sn(p') < s.sn., so in the corresponding set
of states sn(p) < u.sn.. Thus, the correspondence holds in either of these cases.
If s.mode. = closed, the u'.ack, should be less than or equal to u’.sn. + 1. From

Invariant 7.2 we know this is true.

If s.mode. # closed, then the criterion for determining allowable values for
u’.sn. may change. However, we know from Invariant 8.17 that if s’.mode. €
sync-states, then sn(p') = s'.sn.. Therefore, after step (s, a,s’) either s'.mode, €
{closed,syn-sent} or s'.sn. & {s".ack,, s'.acks+ 1}. Therefore, the criterion for

the allowable values for this variable does not change.

For non-SYN segments in «’.in-transit.s the criterion for determining allow-
able values for sequence numbers may change if there is a non-SYN segment
(¢',t") € s.in-transit.s with sn(q’') € {s'.acks, s .acks + 1}. However, from In-
variant 8.18 we know that for all non-SYN segments (¢',t') € s .in-transit.s,
sn(q') & {s'.acks, s’ .acks+1}, and from Invariant 7.1 we know that sn(q) < u’.sn.
for segment ¢ € u'.in-transit.;. For u'.in-transits., if there exists a segment
(¢',t) € .in-transits. with ack(q') = ¢ .acks, then the corresponding segment
q € u'.in-transits. should have ack(q) = u'.ack;. However, from Invariant 8.16

we know there are no such segments (¢',t') € s'.in-transit,..

The second subcase occurs if ack(p') = s.sn, + 1 and s.mode; = last-ack. For
this case, after step (s, a,s'), s.mode; = closed, and after a, u'.modes = closed.
This change may affect the states of N7CP related to s'.sn,, s'.sn., s.ack.,
s'.in-transit,., and s'.in-transit.;.

We first look at the case for u'.sn;. After a, u'.sng, should be greater than or
equal to max(u'.maz-u-sns,u.ack. — 1). From Invariants 7.1, and 7.3 we know
this is true. If s.sn. = s.acks or s.sn. = s.ack, + 1 the criterion for the allowable
values for u.sn. changes after a, because s'.ack, is undefined. However, again
from Invariants 7.1, and 7.3 we know u’.sn. > max(u'.maz-u-sn., v .ack, — 1),

which is in the set of correct corresponding states. After, a, it is also clear that
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u'.ack. < u'.sn, + 1, which by is the correct set of allowable values for u’.ack..

The criterion used by Fyy for defining the set of allowable values for the sequence
numbers and acknowledgment numbers of any segment ¢ € w.in-transit;. changes
after this step if s.mode. € {closed, syn-sent}. After this step, by Fpy, any
q € u'.in-transit,., should have sn(q) < u'.sns, and ack(q) < w'.sn. + 1. By

Invariants 7.1 and 7.3 we know that this is true.

The criterion used by Fpy for defining the set of allowable values for the se-
quence numbers and acknowledgment numbers of segments ¢ € u.in-transit.,
also changes after this step if s.mode. € {closed, syn-sent}. After this step, by
Fay, any ¢ € u'.in-transit.s, should have sn(q) < u'.sn., and ack(q) < u'.sns + 1,

again by Invariants 7.1 and 7.3 we know that this is true.

(¢) The fourth subcase is for all other states that does not involve any of the changes
of the previous subcases. In these states, if any changes are made it only involves
variables that are equal to each other in the relation, so the correspondence of

states is preserved after (s,a,s’) and a.

a = send-segs.(sns, acks, msgs).

This is symmetric to a = send-seg.s(sn., ack., msg.).

a = receive-segs.(sns, acks, msgs).

For this step a = (u,a,u’). This step is symmetric to a = receive-segqs(sn., ack., msg.),

except that there is no subcase symmetric to subcase 2(a) of that step.

a = receive-msg.(m).

For this step the corresponding a = (u,a,u’). It is easy to see that v’ € Fyy(s').

a = receive-msgs(m).

For this step the corresponding o = (u, a,u’). It is easy to see that u' € Fuy(s').

a = send-seg.s(sn., ack., msg., FIN).

For this step a = (u,a,u’). The proof of correspondence for this step is the same as the

proof for a = send-seg.s(sn., ack., msqg.).
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a = receive-seq.s(sn., ack., msg., FIN).

The proof of correspondence for this step is essentially the same as the proof for the step
with @ = receive-seg.s(sn., ack., msg.). The only exception is that there is no case 2(b) for

this step.

a = send-segs.(sns, acks, msgs, FIN).

For this step @ = (u,a,u’). This case is symmetric to the case for ¢ = send-seg.s(sn., ack,

msg., FIN).

a = receive-segs.(sns, acks, msgs, FIN)

For this step a = (u,a,u’). This case is symmetric to the case for a = receive-seg.s(sn.,

ack., msg., FIN).

a = time-out,.

We break the proof of correspondence for this step into two cases.

1. The first case occurs when s.mode, = timed-wait A now > first(t-out.). For this case
the a = (u,a,u’). After step (s,a,s'), s’.modes = closed, and after a, u'.mode; =
closed. The proof that u' is in the set of states that are related to s', is the same as

the proof for subcase 2(b) for the step with a = receive-seg.s(sn., ack., msg.).

2. The second case is for all other states of BZTCP". For these states a@ = (u, set-resets,

u'). It is easy to see that v’ € Fpy(s'), for this case.

a = timeout..

This step is symmetric to a = timeout,.

a = crash,.

For this step a = (u, a,u’). It is easy to see that u' € Fyy(s).

a = crashs.

This step is symmetric to a = crash,.

a = TECOVEr;.

For this step a = (u,a, ). After this step, s’.modes; = closed. The proof that ' is in the

set of states that are related to s, is the same as for subcase 2(b) for the step with a =

receive-seg.s(sns, acks, msgs ).

191



a = TECOVET..

This step is symmetric to a = recovers,.

a = drop.s(p',t) (from the pCh.,(P) component of BTCP").

For this step we have two cases. The first case is if (p/, ) is a reset segment. For that case
a is the empty step and it is clear that we get the correct corresponding states. The second
case is if (p/,1) is not a reset segment. For this case o = (u, drop.s(p),u’), where p is the

segment constructed from (p’) by relation Fgy. It is easy to see that u' € Fyy(s).

a = drops.(p't) (from the pChs.(P) component of B’TCPh) )

This step is symmetric to ¢ = drop.s(p’,1).

a = duplicate.s(p',t) (from the pCh,,(P) component of BTCP").

For this we have two cases. The first case is if (p/,7) is a reset segment. For that case o
is the empty step and it is clear that we get the correct corresponding states. The second
case is if (p/,t) is not a reset segment. For this case a = (u, duplicate.;(p),u’), where p is

the segment constructed from (p’) by relation Fuy. It is easy to see that u' € Fpy(s').

a = duplicate,.(p',t) (from the Ch,.(P) component of 7CP").

This step is symmetric to a = duplicate.,(p’,1).

a = v(t) (time-passage)

The corresponding a = (u,v(t),u'). It is easy to see that v’ € Fpy(s).

a = send-segs.(RST, acks, rst-seqs).

For this step we have two cases. a is the empty step, and it is easy to see that u’ € Fyy(s).

a = receive-seqg.s(RST, acks, rst-seq.).

For this step we have two cases.

1. The first case is if it is not a valid reset segement. For that case, a is the empty step,

and it is easy to see that u' € Fyy(s').

2. The second case is if the segment contains a valid reset. For this case o = (u, set-reset,,

u'). Tt is easy to see that u’ € Fyy(s'), for this case.

a = send-seg.s(RST, ack., rst-seq.).

For this step a is the empty step, and it is easy to see that v’ € Fun(s).
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a = receive-segs.(RST, acks, rst-seqs).

The proof of correspondence for this step is symmetric to the proof of correspondence for

the step with @ = receive-seg.(RST, acks, rst-seq.).

a = shut-down.

For this step a = (u,a, ). After this step, s’.modes; = closed. The proof that ' is in the
set of states that are related to s', is the same as for subcase 2(b) for the step with a =

receive-seg.s(sns, acks, msgs ).

a = shut-down,.

This case is symmetric to the case for a = shut-down,.

a = clock-counter-tick. and a = clock-counter-tick,

For these steps the corresponding step o of NTCP is (u, A, u'). Clearly the traces are
the same, since clock-counter-tick. and clock-counter-tick; are internal. Since this step of

NTCP does not affect any variables that affect relation Fay, it is clear that u' € Fay(s').

This concludes the simulation proof. [ |

8.4.5 Proof of trace inclusion

We can now proof that the GTA model of TCP with bounded counters, BT CP, implements
a patient version of Specification 5.

Theorem 8.2

BTCP C; patient(S).

Proof: From Lemma 8.2 we get that BZ7CP" <L N'TCP, which because of the soundness
of timed forward simulation (Theorem 3.7) and the soundness of adding history variables
(Theorem 3.9) implies that B7CP C; NTCP. From Theorem 8.1 we know N7CP C
patient(S). Thus, we now have BTCP C; NTCP and NTCP T, patient(S). Therefore,
since the subset relation and thus the implements relation is transitive we get BTCP C;
patient(S). |

This concludes our work on TCP. In the next chapter we start the examination of

T/TCP.
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Chapter 9

T/TCP

In this chapter we present the general timed automaton for T/TCP. The automaton we
specify has the TCP accelerated open (TAO) mechanism, but does not include the features
to truncate timed-wait state. We do not include the features to truncate timed-wait state,
because, first the TAO mechanism is the more important and the more interesting of the
two features incorporated into T/TCP, and second, even with just this one new feature
the protocol is sufficiently different from TCP to make its verification interesting. We also
show in this chapter that T/TCP behaves differently from TCP. In particular, there are
executions of T/TCP where the same data is delivered twice.

T/TCP is an extension of TCP, so the formal model for T/TCP is an extension of
the formal model for T/TCP. Thus, is will include many of the same state variables and
actions. Recall from our informal description of T/TCP in Chapter 2 that it uses a dual
monotonic numbering scheme (connection counts paired with sequence numbers), and per-
sistent caching to accelerate the opening phase of TCP and bypass the three-way handshake
protocol. However, if the cache data is lost, T/TCP reverts back to the three-way hand-
shake. Because T/TCP has the TAO mechanism, but must still be able to perform the
three-way handshake when necessary, it is more complex that TCP. The TAO mechanism
introduces partially synchronized states that do not exist in TCP. Partially synchronized
states are states of the server where is has accepted data and is thus synchronized, but the
client may not yet be in a state where it can accept data, and is thus unsynchronized. The

TAO mechanism also introduces a special state of the client where it send a SYN control
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Figure 9-1: The T/TCP finite state machine. Each host begins in the closed state. Labels on
transitions show the input that caused the transition followed by the output if any. The starred
states are states not in the TCP FSM.

E

t

signal, send data, and send the FIN control signal all in one segment.

Figure 9-1 shows the T/TCP finite state machine which is an extension of the TCP
FSM of Chapter 6. It is a slight simplification of the FSM presented by Braden in [7].
As was the case with the TCP FSM, the T/TCP FSM presented here does not have all
the details of the protocol, but is presented as an aid to understanding the steps of the
T/TCP general timed automaton. For the presentation given in this chapter we assume
that the connection count generator along with the sequence number of the client and the
server are unbounded and stable. Other variables that are assigned values based on the

connection count generator are also unbounded, but are not stable. Because we assume
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Figure 9-2: The user interface for T/TCP which is the same as the interface for TCP

that the connection count generator is stable and unbounded, we do not include in our
formal model the special steps taken by the client after a crash to alert the server that the

connection count value has been lost due to the crash.

9.1 T/TCP client and server

Like the automaton for TCP, the automaton for T/TCP also has four components — client
and server automata and two channels. The structure of the composed system and the
user interface is also the same as the structure and user interface for TCP and is shown in
Figure 9-2. In this section we present the T/TCP client and server timed automata. We
call these timed automata 77CP,. and 7T7CP; respectively. The channels use for T/TCP
are the same as the ones used for TCP. They are presented as timed automata Ch.,(P) and

Chs.(P) in Chapter 5.

9.1.1 States and start states

One of the main difference between TCP and T/TCP is that T/TCP has persistent state.
Recall that persistent state means some variables retain their value even when the con-
nection is closed. Persistent state is different from stable state in that persistent variables
are affected by crashes, whereas stable variables are not. Thus, in T/TCP when mode.
and modeg are closed, not all the other variables are undefined. In the actual T/TCP
protocol, a persistent copy of the last connection count used for a successful connection is
kept at the server. However, because we assume the connection count generator is stable

and unbounded, we do not have this persistent variable in our model. The only persistent
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variable we have is cache_cc on the server side. On the client side cc_gen, now., and sn.
are stable, and on the server now, and sn, are stable. The other variables on the client
are undefined when mode. is closed. Similarly, the non-stable and non-persistent variables
on the server side are undefined when modes is closed. The values given as the initial
value for non-stable and non-persistent variables in the tables below are the values they
are initialized to when a host opens and initializes its transmission control block. Thus, in
the start state of the client side automaton, 77CP., mode. = closed, cc_gen = 0, now,
= 0, sn. = 0, and all other variables are undefined; and in the start state of the server side
automaton, 77CP,, mode; = closed, now. = 0, sny; = 0, cache_cc = oo, and all other

variables are undefined.

As is the case for the 7CP automaton, we use the set Msg to represent the set of possible
messages. That is, the set Msg is the set of all possible strings over some basic message
alphabet that does not include the special symbol null. The symbol null indicates the
absence of a message. The type T ranges over the nonnegative real numbers and represents

time.

The first table below summarizes the type definitions. In the other tables we describe
the variables of 77CP, and T7CP,. A check in the S column means the variable is stable
and a check in the P means the variable is persistent. Because T/TCP is an extension of
TCP, the tables below also include many of the same variables defined for 7CP,. and 7CP,.

We repeat the descriptions here for completeness.

Type definitions

Type | Description

Msg The set of all possible strings over some basic message alphabet that does not include the
special symbol null.

T The nonnegative real numbers — represents real time.

N The set of non-negative integers.

Client variables
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| Variable | Type | S | P | Initially | Description
mode, {closed, v | closed The modes of the client. The new mode,
syn-sent, syn-sent* means the client wants to estab-
estb, lish a connection, send a message, and send
fin-wait-1, the FIN bit. All the other modes have the
fin-wait-2, same interpretation as in TCP
close-wait,
last-ack,
closing,
timed-wait,
rec, reset,
syn-sent*}
send-tao-syn Bool false A flag that enables the sending of a SYN
during TAO even if there is no data to be
sent as yet.
tao-syn-sent Bool false A flag that indicates the client has started
sending SYN segments for TAO.
cc_gen N N4 0 The connection count generator.
cc_send i 0 The connection count for the current
incarnation.
5N, N N4 0 Client side sequence number.
msg. Msg U {null} null The current message to be sent.
send-buf . Msg* € The client buffer for messages to be sent.
rev-buf . Msg* € The client buffer for messages received.
ack, NU{nil} nil The acknowledgment number.
rst-seq. NU{nil} nil The number assigned to reset segments.
now. T Vv 0 The clock variable.
ready-to-send. | Bool true A flag that when true indicates that the

next segment can be sent.
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Client variables

| Variable | Type | S | P | Initially | Description |
send-ack, Bool false A flag that enables the sending of an
acknowledgment.
send-fin, Bool false A flag that enables the sending of a FIN
segment.
rcvd-close, Bool false A flag that 1s set to true when the signal close
is received.
push-data. Bool false A flag that forces the client to only perform the
receive-msg.(m) action until rev-buf. is empty
when a FIN segment is received.
send-rst, Bool false A flag that enables the sending of a reset
segment.
send-fin-ack. | Bool false A flag that is set to true when the client ac-
knowledges a FIN from mode closing.
first(t-out.) TUoo e%) Used to mark the start of timed-wait state.
time-sent, TU oo 0 Used to mark the time a segment is sent, so
that the segment can be resent after RTO if it
is not acknowledged.
Server variables
| Variable | Type | S | P | Initially | Description |
modes {closed, v | closed The server modes. The new modes
listen, for T/TCP are estb*, fin-waitlx
syn-rcvd, close-wait#, closing¥, last-ack*.
estb, These “starred” modes indicate that the
fin-wait-1, client is in a partially synchronized state.
fin-wait-2, That 1s, these modes have the same inter-
close-wait, pretation has their non-starred versions
last-ack, except that the server gets to these modes
timed-wait, after a successful TAO which means the
rec, reset, client may not have synchronized as yet.
estb*,
fin-waitil*,
close-wait#,
closing¥,
last-ack#}
5N N N4 0 Server side sequence number.
send-rst; Bool false Symmetric to send-rst.
now, T N4 0 The clock variable.
first(t-out;) | TU oo e%) Symmetric to first(t-out,).

Server variables

200



| Variable | Type | S | P | Initially | Description

time-sent; TU oo 0 Symmetric totime-sent.,.

send-buf Msg* € The buffer for messages to be sent.

rev-buf Msg* € The buffer for messages received.

ack, NU{nil} nil The acknowledgment number.

rst-seqs N U {nil} nil Symmetric to rst-seq..

ready-to-sends | Bool true Symmetric to ready-to-send..

send-ack; Bool false Symmetric to send-ack..

send-fin Bool false Symmetric to send-fin,.

revd-close Bool false Symmetric to rcvd-close..

push-data Bool false Symmetric to push-data,

send-fin-ack g Bool false Symmetric to send-fin-ack..

cc_rcvd N 0 The value of the connection count received
from the client for the current incarnation.

cache_cc il NAES A persistent cached copy of the last connec-
tion count number received from the client.
The initial value co represents an undefined
cache state.

temp-data Msg U {null} null Temporary data variable. This variable
stores data that the server cannot accept
as yet because the TAO test failed.

fin-revd Bool false A flag that records that a FIN bit was sent
on a segment that failed the TAO test.

9.1.2 Action Signature

Client side, T7CP.

Input actions:
send-msg. (open, m, close)

open, close € Bool, m € Msg U{null}
receive-segsc (SYN, ce_revd, sns, acks)
receive-segsc (SYN, ce_rcvd, sns, acks, msygs)
receive-segsc (SYN, ce_revd, sng, acks, msgs, FIN)
receive-segs. (ce_revd, sns, acks, msgs,)
receive-segsc(ce_revd, sns, acks, msgs, FIN)
recetve-segs. (RST, acks, rst-seqs)
crash,
Output actions:
receive-msg.(m), m € Msy
send-seges (SYN, cc_send, sn., msg.)
send-seg.s (SYN, cc_send, sn., msg., FIN)
send-seg.s (cc_send, sn., ack., msg;)
send-seg.s (cc_send, sn., acke, msg., FIN)
send-seges (RST, acke., rst-seq.)
recover,
Internal actions:
time-out,
prepare-msg.
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shut-down,
Time-passage actions:
v(t), t € Rt

Server side, T7CP;

Input actions:

Passive-open

send-msgs (m, close)

receive-seg.s (SYN, cc_send, sn., msg.)
receive-seg.s (SYN, cc_send, sn., msg., FIN)
receive-segys (cc_send, sn., ack., msg.)
receive-segys (cc_send, sn., ack., msg., FIN)
receive-seg.s (RST, ack., rst-seq.)

crashg

Output actions:

receive-msgs (m), m € Msg

send-segs. (SYN, cc_revd, sng, acks)
send-segs. (SYN, cc_revd, sng, acks, msgs)
send-segs. (SYN, cc_revd, sng, acks, msgs, FIN)
send-segs. (cc_revd, sns, acks, msgs)
send-segs. (cc_revd, sng, acks, msgs, FIN)
send-segs. (RST, acks, rst-seqs)

Tecovers

Internal actions:

time-out,

prepare-msgs

shut-down,

Time-passage:

vty , te Rt

9.1.3 Steps of T/TCP

The steps for the timed automata for T/TCP are shown in Figures 9-3, 9-4, 9-5, 9-6, 9-7, 9-
8, 9-9, and 9-10. In all the figures the steps of the client automaton, 77CP,. is on the left
and the steps of the server automaton, 77CP; is on the right. The receive-seg(p) actions
are shown opposite the corresponding send send-seg(p) actions, and symmetric internal
actions are also opposite each other. Because there are many possible ways an execution
can proceed, the steps of the protocol presented in the figures should not be thought of
as being in a sequential order. Instead, the appropriate steps are referred to as possible
executions are described.

In T/TCP if the TAO mechanism works, there may not be distinct open, data transfer,

and close phases for a connection. If the TAO mechanism fails, then T /TCP has these three
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phases, and the open phase is the three-way handshake protocol. The description of the
steps of the automata presented here is divided into two cases based on whether the TAO

mechanism fails or not. However, both cases have commonalities which we present first.

A connection is always started in the same manner. That is, the client gets the send-
msg. (open, m, close) input when mode. is closed, and the server gets passive-open when
mode, is closed (Figure 9-3). If open is true on the client side, then the transmission
control block is initialized, cc_gen and sn. are incremented, cc_send is assigned the value
of cc_gen, and mode.. is set to syn-sent. On the server side TCB; is initialized and mode;

gets set to listen.

As is the case with 7CP the retransmission of segments is determined by the retrans-
mission timeout (RTO). Therefore, all the send-seg.s(p) actions have as a part of the pre-
condition that now.— time-sent. is greater that or equal to RTO. This precondition and the
setting of time-sent. to the value of now, in the effect clause of these actions means the ac-
tions are not enabled again until RTO passes or an acknowledgment is received. Because, of
this precondition in the send-seg.s(p) actions, in the receive-seg,.(p) actions if the incoming
segment is a segment that needs to be acknowledged, that is, if the sequence number, [sny],
on the incoming segment is greater than or equal to the acknowledgment number ack. of
the client, time-sent. is set to 0. The setting of time-sent. to 0 allows the first transmission
of a response segment without the RT'O delay. On the server side, the send-seg,.(p) and

receive-seg.s(p) actions are symmetric.

The basic mechanism for acknowledging segments is also the same as it is in TCP. That
is, to acknowledge a segment with sequence number i, a host returns a segment with the
ack. or ackg variable set to ¢ 4+ 1. In all the receive-seg,.(p) and receive-seg.s(p) actions, if
segment p is an old duplicate and the receiving host is in an unsynchronized state, or if the
receiving host is closed, then assignments are made to generate a reset segment. Namely,
the send-rst. or send-rsty is set to true, and the rst-seq. or rst-seq, is set to either 0 or
[acks] or [ack.] respectively.

The steps with other actions in the 77CP. and T7CP; general timed automata, such
as time-out,, time-out,, crash. and crashs; and recover, (Figure 9-9) are the same as for the

TCP timed automaton described in Section 6.1.3. The recover; step is slightly different in
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that cache_cc is assigned oo in this step. The steps with the reset and the shut down actions
(Figure 9-10); and the time passage actions (Figure 9-5) are also the same as for the TCP

timed automaton. The reader is referred to Chapter 6 for a description of these steps.

TAO test fails

When the TAO test fails, the protocol reverts to the three-way handshake to synchronize
the end-points. That is, the protocol behaves like TCP in the open phase. We describe the
workings of the formal model in this situation. When the client receives the send-msg.(open,
m, close) input action (Figure 9-3), if mode. = closed and open is true, it prepares to send
a SYN segment. If m # null, it is added to the send buffer and ready-to-send. is assigned
to false in order to enable the prepare-msg. action and send-tao-syn is set to false to
ensure that the SYN segment is not sent until the message is ready. This is the only
situation where the prepare-msg. action is enabled as a consequence of the send-msg. (open,
m, close) action. If the client has already sent a SYN segment when the m is received, that
is, tao-syn-sent = true, then the prepare message action is not enabled until a response
is received. Likewise, if there is no message to send, m = null, then the prepare-msg,
action should not be enabled. It is for these reasons that the assignment of ready-to-send.
is conditioned on m not being null and tao-syn-sent being false.

If the prepare-msg. action is enabled (Figure 9-4) it means there is data to send in SYN
segment. In this step sn. gets incremented, ready-to-send. is set to true, and msg. is as-
signed to the head of send-buf . If the close signal had been received and send-buf. = ¢, the
sequence number is incremented again to note the sending of a FIN segment, ready-to-send.
is set to false to disable the sending of the segment without the FIN signal while send-fin,
is set to true to enable the sending of the FIN segment. Since we are describing the opening
phase of an execution, in this situation mode. is syn-sent, so it would get set to syn-sentx.

If the closed signal was not received, then if there was no data to send, or if there was data
then after the prepare-msg. action, the send-seg.(SYN, sn., ack., msg.) action (Figure 9-3)
is performed. If there was data to be sent, and the close signal was also received, the send-
seges (SYN, sn., ack., msg., FIN) action (Figure 9-8) is performed. When the server receives

the (SYN, sn., ack., msg.) segment (Figure 9-3) if it is in mode listen, it firsts assigns
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cc_revd to ce_send, increments its sequence number, and make the assignments necessary
for an acknowledgment segment. Since we are examining an execution where the TAO test
fails, either cache_cc is undefined or cache_cc > cc_send. When this happens mode; is set
to syn-rcvd, cache_cc is reset to 0, and temp-data is assigned msg.. If the (SYN, sn., ack.,
msg., FIN) segment is received by the server instead, the same assignments are made and

additionally fin-rcvd is set to true to indicate that a FIN has been received.

With modes; = syn-rcvd the next action enabled on the server side is send-seg,.(SYN,
ce_revd, sng, acks) (Figure 9-4). When the client receives this segment, if a reset is not gen-
erated, it sets send-ack. to true to enable the acknowledgment of this segment. If the client
is already in a synchronized state, this segment is either a duplicate created by the channel
or a retransmission of a segment previously acknowledged. Since the acknowledgment might
not have been received by the server, the retransmission of the acknowledgment is enabled.
If mode. € {syn-sent, syn-sent*}, and ack; = sn. + 1, then the client knows the server
received its correct initial sequence number, and that the segment is an acknowledgment of
the SYN segment it sent. It also sets msg. to null to indicate the acknowledgment of that
message. The client also changes mode to either estb or fin-wait-1, and prepares to send
a response. First ack, is set to sns; + 1 for the next expected segment, and time-sent,. gets
set to 0. Then if there is data to be sent, the flag ready-to-send. is set false to enable the

prepare-msg, action.

The final part of the three-way handshake is the action send-seg.(sn., ack., msg.)
(Figure 9-6) or if the client had received a close input and had no more data to send, send-
seges(sn., ack., msg., FIN) (Figure 9-7). Both segments acknowledge the SYN segment
from the server. In the open phase, when the server receives either of these segments it is
in state syn-rcvd. It first checks that they are not old duplicates, that is, if [cc_send] is
equal to cc_rcvd, and [ack.] = sns+ 1. If the segment in either action is valid the server can
now update cache_cc, so it sets it to cc_send. If temp-data is not null it is concatenated
to rcv-buf s, and then set to null. For the receive-seg.s(sn., ack., msg.) step, mode; is set
to close-wait if fin-rcvd is true, and estb if it is false. For the receive-seg.s(sn., ack.,
msg., FIN) step, modey is set to close-wait. The remaining assignments adds [msg.] to

the receive buffer if it is not null and enables the prepare-msgs (Figure 9-4) action if there
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the server has data. The client and server are now both in synchronized states and data

transfer either starts or continues.

The data transfer phase of T/TCP is very much like the data transfer phase of TCP
described in Chapter 6. The client gets data from the user via the send-msg.(open, m,
close) input action and the server gets data via the send-msg.(m, close) action. The client
prepares to send data in the prepare-msg. action, and sends data and acknowledgments with
the send-seqg.s(sn., ack., msg.) or the send-seg.s(sn., ack., msg., FIN) actions. The server
side is almost symmetric: it prepares to send data in the prepare-msg. action and sends data
and acknowledgments with the send-segs.(cc_rcvd, sns, acks, msg,) action (Figure 9-9) and
the send-segs.(cc_revd, sn, acks, msgs, FIN) action (Figure 9-10) when it is ready to close.
Data received by the client is passed to the user by the receive-msg.(m) action (Figure 9-5).

The symmetric action of the server side is receive-msgs(m) (Figure 9-5).

The close phase of T/TCP is also like the close phase of TCP. The main difference
is that the server has several partially synchronized modes now associated with the close
phase (fin-waiti*, close-wait*, closing#, last-ack*). However, in executions where
the TAO mechanism does not work, the server does not get to these partially synchronized
modes. Either side can begin the close phase. A host starts the close phase when it receives
a close signal from the user, send-msg.(open, m, close) on the client side and send-msg;(m,
close) on the server side with close true for both, or when it receives a FIN segment from
the other host. When the client receives the signal to close, it sets rcvd-close; to true, but
it does not start the close phase until it sends all the messages that are in its send buffer.
The client prepares to send a FIN segment by incrementing sn., in the prepare-msg. action,
once if the FIN segment does not have valid data or twice if it does. In that action send-fin.
is also set to true to enable the sending of the FIN segment, and the mode of the client
is set to fin-wait-1 if it was previously estb, or if the client had already received a FIN
segment from the server and thus was in mode close-wait, it changes to mode last-ack.
The action at the client to send the FIN segment is send-seg.s(sn., ack., msg., FIN). When
the server receives this segment its actions are almost the same as when it receives the data
segment (sn., ack,, msg.) except now the message is valid only if [sn.] = acks+1, and it also

changes mode. The server responds with the send-segs.(cc_rcvd, sng, acks, msgs) action if
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it is just acknowledging the FIN segment, or it can acknowledge the FIN segment and send
its own FIN with the send-segs.(cc_rcvd, sns, acks, msgs, FIN). The hosts close when one
or both sides timeout after waiting 2 X g in mode timed-wait, and if only one side closes
from timed-wait state, the other closes after receiving an acknowledgment while in mode

last-ack.

TAO test succeeds

In executions where the TAO mechanism works, there are three possibilities for the SYN
segment the client sends. The segment can either have no valid data, or have valid data, but
no FIN bit, or it can have valid data and a FIN bit. Similarly, the server can respond with a
SYN segment that contains no valid data, valid data without a FIN, or valid data and a FIN.
In a typical transaction, that is, one where the client sends one piece of request data and
gets one piece of response data in return, the first segment the client sends has valid data
and a FIN bit, and the server responds with a similar segment. We describe the sequence of
steps in T7CP,. and T7TCP, for such an execution. On the client side the execution starts
exactly as executions where TAO does not work, described above. The differences start
when the server compares cache_cc to [cc_send] in the receive-seq..(SYN, sn., ack., msg.,
FIN) step (Figure 9-8). Here TAO is successful because cache_cc < [cc_send], so cache_cc
is updated to cc_send. Then since msg. # null, the message is added to the receive buffer
of the server. Next mode, is assigned the value close-wait*, and push-data, is set to true
to ensure that the data is passed to the user before the server closes. The data is passed to
the server side user with the receive-msgs(m) action (Figure 9-5), and since it is the only
piece of data, the receive buffer becomes empty after it is passed to the user, so push-data
is set to false. For the type of execution we are describing, after it passes the data to the
user, the server gets response data and the signal to close in the send-msgs(m, close) input
action. Now the prepare-msg, action (Figure 9-4) is enabled. In this action the message is
removed from the send buffer to the msg, variable, sng is incremented twice, send-fin, is set
to true, and mode; changes from close-wait* to last-ack*. Next the server performs the
the send-segs.(SYN, cc_revd, sng, acks, msgs, FIN) action (Figure 9-10). When the client

receives the segment, it checks that cc_rcvd is equal to cc_send. If it is, the client changes
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form mode syn-sent* to timed-wait, assigns push-data. to true, puts the message on its
receive buffer, and make other assignments to send an acknowledgment. The client passes
the data to its user with the receive-msg.(m) action (Figure 9-5) which also sets push-data.
back to false. With push-data. false, the send-seg.s(cc_send, sn., ack., msg.) action
(Figure 9-6) is now enabled. When the client performs this action it starts the timer for
timed-wait state. When the server receives the segment with the receive-seg.,(cc_send, sn.,
ack., msg.) action, it changes from mode last-ack#* to closed. After waiting for 2 x p,
the client closes with the internal action time-out,.

Several other variations of execution sequences are possible when the TAO mechanism
works. For example, the TAO mechanism may work, and the client user wants to send more
than one piece of data, so it does not send the signal to close immediately . In this case the
connection has a data transfer phase and a close phase that is essentially the same as the
data transfer phase and close phase when TAQO does not work. Another possible variation is
that the client user may just want to send one piece of request data, but the server user has
lots of response data. For such a scenario, again there is a data transfer and close phase.
All the other possibilities are variations on the execution sequences we describe above, so

we do not describe them here.
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send-msg.(open, m, close)
Eff: if mode. = closed A open then {
initialize TCB.
time-sent. := 0
cc_gen := cc_gen+ 1
sne 1= sn.+ 1
ce_send := cc_gen
mode. := syn-sent
send-tao-syn := true
}
if mode. € {syn-sent, estb, close-wait}
A = revd-close. A m # null then {
send-buf. := send-buf.-m
if mode. = syn-sent A m = null A
—tao-syn-sent then {
ready-to-send, := false
send-tao-syn := false
}
}
if close then {
rcvd-close. := true
if mode. = syn-sent A msg. = null A
—tao-syn-sent N send-buf_ = € then
mode. := closed

}

send-seg..(SYN, cc_send, sn., msg.)
Pre: (now. — time-sent. > RTO) A
A(ready-to-send, V send-tao-syn)
mode. = syn-sent A —send-rst.
Eff: time-sent. := now.
tao-syn-sent := true

passive-open

Eff: if mode; = closed then {
initialize TCB.
mode. := listen

}

send-msg.(m, close)
Eff: if mode, € {estb, estbx,
close-wait, close-wait*} A
= revd-closes A m 7 null then
send-buf. := send-buf.-m
if close then {
rcvd-close, := true
else if mode, = 1listen A
send-buf_ = ¢ then
mode. := closed

recetve-seges (SYN, cc_send, sn., msg.)
Eff: if mode; = listen then {
ce_rcvd := cc_send
SNe = sne. + 1
acks ;= sn. + 1
time-sents := 0
send-acks := true
if cache_cc < cc_send then {
cache_cc := cc_send
ready-to-send, := false
if msg. # null then
rcv-bufs := rcv-bufs-m
mode. := estb*
if send-buf. # € then

send-ack. := false
}

else {
mode, := syn-rcvd
cache_cc := oo
temp-data := msg.
}
}

if mode. = closed then
send-rst, ;= true
rst-seq. := 0

Figure 9-3: Steps from the open phase of TTCP, and TTCP;. The client steps are on the left and
the corresponding server steps are on the right.
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recetve-segsc(SYN, cc_rcvd, sne, acks)
Eff: if (mode. = closed) V (mode. € {syn-se
syn-sent*} A cc_rcvd # cc_send) then {

send-rst. ;= true

rst-seq. := ack
else {

send-ack. := true

nt,

if mode. € {syn-sent, syn-sent*} then {

acke. ;= sn, + 1

time-sent. := 0

msg. := null

ready-to-send. := false

if mode. = syn-sent then
mode. := estb

if mode. = syn-sent* then
mode. := fin-wait-1

if send-buf. # € then

send-ack. := false

prepare-msg.

Pre: —push-data_, N —ready-to-send, A
mode. € {syn-sent, estb,close-wait}
A (send-buf, # € V rcvd-close.)

Eff: ready-to-send. := true
if send-buf. # € then {
SNe = sn. + 1

msg. := head(send-buf.)
send-buf. := tail(send-buf.)

if rcvd-closec A send-buf. = € then {

SNe = sn. + 1

ready-to-send. := false

send-fin. := true

if mode. = syn-sent then
mode, := syn-sentx*

if mode. = estb then
mode. := fin-wait-1

if mode. = close-wait then
mode. := last-ack

send-segs.(SYN, cc_rcvd, sng, ack.)
Pre: (nows - time-sent, > RTO) A

modes = syn-rcvd A - send-rst.
Eff: time-sent: := now,

prepare-msgs

Pre: —push-data, A —ready-to-send, N
(send-buf, # € V rcvd-closes) A
modes € {estb,estb* close-wait,
close-wait*}

Eff: ready-to-send; := true
if send-bufs # ¢ then {
SNe = sns + 1

msg. := head(send-buf.)
send-buf. := tail(send-buf.)
if rcvd-closes A send-bufs = ¢ then {
SNe = sns + 1
ready-to-sends := false
send-fins := true
= estb then
= fin-wait-1
= estb* then
= fin-waiti*

if mode.
mode

if mode,
mode

else mode. = close-wait then
mode. := last-ack

else mode, = close-wait* then
mode. := last—-ack#*

Figure 9-4: The first pair of steps complete the three-way handshake in T/TCP and the next pair
are the steps that prepare messages to be sent.
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recetve-segs.(SYN, cc_rcvd, sn., acks, msy.) send-seg..(SYN, cc_rcvd, sng, acks, msgs)
Eff: if mode. = closed V (cc_rcvds # cc_send. ||Pre: (now. — time-sents > RTO) A

A mode, € {syn-sent, syn-sent*}) then { modes € {estb* close-wait*} A
send-rst. := true (ready-to-send, V send-acks )N
rst-seq. := ack —push-data,

} else { Eff: time-sents := nows
send-ack. := true

mode. € {syn-sent, syn-sent#*} then {
acke ;= sns + 1
time-sent. := 0
msg. := null
ready-to-send. := false
send-fin. := false
if mode. = syn-sent then

mode. := estb
if mode. = syn-sent# then
mode. := fin-wait-2
if msgs # null then
rcv-buf. := rcv-buf.-msgs
if send-buf. # € then
send-ack. := false
}
}
recetve-msge(m) recetve-msgs(m)
Pre: mode. & {rec,reset} A rcv-buf_ #¢ Pre: modes & {rec,reset} A rcv-buf, #e¢
A head(rcv-buf.) = m Ahead(rcv-buf ) =m
Eff: rcv-buf. := tail(rcv-buf.) Eff: rco-buf. := tail(rcv-buf.)
if push-data. A rcv-buf, = € then if push-datas A rcv-buf, = € then
push-data. := false push-data; := false
v(t) (time-passage) v(t) (time-passage)
Pre: t € Rt Pre: t € RT
Eff: now. := now. +1 Eff: now: := now:+ ¢

Figure 9-5: The steps in which the server sends a SYN segment in response to a successful TAO,
and the receiving of that segment on the client side. The second pair of steps pass messages to the
users, and the third pair are the time-passage actions.
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send-sege.(cc_send, sn., ack., msg.)
Pre: (now. — time-sent. > RTO)A
((ready-to-send, V send-ack.)A
mode. € sync-states A - push-data,
Eff: time-sent. := now.
send-ack. := false
if mode. = closing then
send-fin-ack. := true
if mode. = timed-wait then {
first(t-out.) := now,
time-sent. := oo

}

recetve-seges(cc_send, snc, ack., msg.)
Eff: if (modes = syn-rcvd A
(cc_send # ccrcvd Vooack. # sne + 1))V
modes € {closed,listen} then {
send-rsty ;= true
rst-seqs 1= ack.
}
else if mode, ¢ {rec,reset} A
cc_send = ce_revd then {
if msg. # null then
send-acks := true
if acke = sn. + 1 then {
msgs := null
ready-to-send; := false
send-fin, := false
if mode, = syn-rcvd then {
cache_cc := cc_send
if temp-data # null then {
rcv-bufs := rcv-bufs-temp-data
temp-data = null
}
if fin-rcvd then
mode. := close-wait
else mode. := estb
}
if send-bufs # € then
send-ack: := false
if mode, = estb*
then mode, := estb
if mode, € {fin-wait-1,fin-wait1*}
then mode, := fin-wait-2
if mode, € {last-ack, last-ack*}
then mode. := closed
if mode, € {closing, closing*} then {
mode. := timed-wait
if send-fin-ack, then
first(t-out:) := now,
}

if sn. = ack. then {
acks ;= sn. + 1
time-sents := 0
rcv-bufs := rcv-bufs -msg.

Figure 9-6: The basic message sending step for TTCP, is on the left and the corresponding step
to receive the segment for TTCP; is on the right.
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send-segc.(cc_send, sn., ack., msg., FIN)
Pre: (now. — time-sent. > RTO) A
send-fin_ A mpdata. A modec €
{fin-wait-1, last-ack, closing}
Eff: time-sent. := now.

recetve-seges(cc_send, sn., ack., msg., FIN)
Eff: if (mode. = syn-rcvd A
(cc_send # ccrcod Voacke # sne + 1))V
modes € {closed,listen} then {
send-rst, ;= true
rst-seqs := ack.
}
else if mode, & {rec,reset} A
cc_send = cc_rcvd then {
if msg. # null then
send-acks := true
if sn. = acks V sn. = acks + 1 then {
push-datas := true
time-sents := 0
if ack. = sns + 1 then {
msgs := null
ready-to-send; := false
send-fin, := false
if mode, = syn-rcvd then {
cache_cc := cc_send
mode. := close-wait
if temp-data # null then {
rcv-bufs := rcv-bufs-temp-data
temp-data = null
}
}
if send-bufs # € then
send-ack, := false
if mode. = estb* then
mode. := estb
if mode, € {fin-wait-1 fin-waitl#*}
then mode, := fin-wait-2
}
if sn. = ack. + 1 then
rcv-bufs := rcv-bufs-msgs;
acks ;= sn. + 1
if mode. = estb then
mode. := close-wait
if mode, = fin-wait-1 then
mode. := closing
if mode, = fin-wait-2 then

mode. := timed-wait

Figure 9-7: The basic step for sending a FIN segment for TTCP .. is on the left and the corresponding

step to receive the segment for TTCP; is on the right.
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send-segeo(SYN, cc_send, sn., msg., FIN) recetve-seges(SYN, cc_send, sn., msg., FIN)
Pre: (now. — time-sent. > RTO) A send-fin, Eff: if mode. = listen then {
A mode. = syn-sent* A cc A —send-rst. cc_rcvd = cc_send
Eff: time-sent. := now. Sne 1= sne. +1
acks ;= sn. + 1
time-sents := 0
send-acks := true
if cache_cc < cc_send then {
cache_cc := cc_send
ready-to-send, := false
if msg. # null then
rcv-buf s := rcv-bufs-msg.
mode. := close-wait#*
push-datas := true
if send-bufs # € then
send-ack: := false
else {
mode,s := syn-rcvd
cache_cc := oo
temp-data := msg.
fin-rcvd := true

}

receive-segs.— }
(SYN, cc_revd, sne, acks, msgs, FIN) if mode: = closed then
Eff: if ccorcvd = cc_send A send-rst, ;= true
mode. € {syn-sent, syn-sent#*} then { rst-seqs := 0
send-ack. := true
acke. ;= sn, + 1 send-segsc—
time-sent. := 0 (SYN, cc_revd, sn., acke, msgs, FIN)
msg. := null Pre: (nows - time-sent, > RTO) A
ready-to-send. := false send-fin, A ~push-data,
push-data, := true Amode, € {fin-waitl* last-ack#*}
send-fin, := false Eff: time-sent. := nows
if mode. = syn-sent then
mode. := close-wait
if mode. = syn-sent* then
mode. := timed-wait
if msgs # null then
rcv-buf. := rcv-buf.-msgs
if send-buf. # € then
send-ack. := false

}

if mode. = closed V (cc_rcvdS # cc_send.
A mode. € {syn-sent,syn-sent*}) then
send-rst. ;= true
rst-seq. := ack

Figure 9-8: Steps for T/TCP accelerated open. The client (on the left) sends the SYN, data, and
FIN in one segment. The server responds with a segment that contains an echo of the cc value the
client sends.
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recetve-segs.(cc_rcvd, sns, acks, msgs)
Eff: if mode. € {closed, syn-sent, syn-sent*}

then {
send-rst. := true
rst-seq. := acks

else if mode. & {rec,reset} A
cc_rcvds = cc_send. then {
if msg. # null then
send-ack. := true
if sn. = ack. then {
acke. ;= sn, + 1
time-sent. := 0
rcv-buf. := rcv-buf. -msgs

if ack, = sn. + 1 then {
msg. := null
ready-to-send. := false
send-fin, := false

if send-buf. # € then

send-ack. := false

if mode. = fin-wait-1 then
mode. := fin-wait-2

if mode. = last-ack then
mode. := closed

if mode. = closing then {
mode. := timed-wait

if send-fin-ack,_ then
first(t-out.) := now.

}
}

time-out.

Pre: mode. = timed-wait A
now. — first(t-out.) > 2 x p

Eff: mode. := closed

crash.

Eff: if mode. # closed then
mode. := rec

recover

Pre: mode. = rec
Eff: mode. := closed

send-segsc(cc_rcvd, sne, acks, msgs)
Pre: (nows — time-sents > RTO)A
((ready-to-send, V send-acks)A
modes € sync-states A\ mpush-data,
Eff: time-sents := nows
send-ack. := false
if modes = closing then
send-fin-acks := true
if mode, = timed-wait then {
first(t-out:) := now,
time-sents := oo

}

time-outs
Pre: mode. = timed-wait A

nows — first(t-out:) > 2 x p
Eff: mode. := closed

crashs
Eff: if modes # closed then
mode. := rec
recovers
Pre: mode, = rec
Eff: cache_cc := oo
mode. := closed

Figure 9-9: The first pair of steps is the basic message sending step for the server and the corre-
sponding step to receive the segment for the client. Also the time-out, crash, and recovery steps
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recetve-segsc(cc_rcvd, sne, acks, msge, FIN)
Eff: if (mode. € {closed, syn-sent}) then {
send-rst, ;= true
rst-seqs := acks

else if mode. & {rec,reset} A
(cc_send. = ccrcud,) then {
send-ack. := true
if sns = ack:V sns = ack. + 1 then {
push-data. := true
if mode. = estb then
mode. := close-wait
else if mode. = fin-wait-1 then
mode. := closing
else if mode. = fin-wait-2 then
mode. := timed-wait
if sn, = ack. + 1 then
rcv-buf. := rcv-buf.-msgs
acke. ;= sn, + 1
time-sent. := 0
if acks = sn. + 1 then {
if mode. = closing then

mode. := timed-wait
msg. := null
ready-to-send. := false

send-fin, := false
if send-buf. # € then

send-ack. ;= false

}
}
}

send-seg..(RST, acke, rst-seq.)

Pre: mode. € {closed, syn-sent}
NAsend-rst. = true

Eff: send-rst. := false

recetve-segs(RST, acks, rst-seq.)
Eff: if mode. # rec A rst-seq, = ack. V
(rst-seqs = 0 A acks = sn. + 1)
then mode. := reset

shut-down.
Pre: mode. = reset
Eff: mode. := closed

send-seg..(cc_rcvd, sng, acks, msg., FIN)

Pre: (nows — time-sents > RTO)A
send-fin, A —push-data N
modes € {fin-wait-1 last-ack
closing}

Eff: time-sents := nows

recetve-seg.s(RST, acke, rst-seq.)
Eff: if mode. # rec A rst-seq, = acks then
mode. := reset

send-segs.(RST, acks, rst-seq.)

Pre: mode. € {closed, listen, syn-rcvd}A
send-rst, = true

Eff: send-rst, := false

shut-downs
Pre: mode, = reset
Eff: mode. := closed

Figure 9-10: The basic FIN segment from the server is on the right, and the corresponding action
to receive this segment at the client is on the left. Also the reset and shut down steps.
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9.2 The specification of 77CP

Asis the case with the specification of TCP, we compose the client and server automata with
channel automata described in Chapter 5. We define 77 CP’ to be the parallel composition

of these automata. That is,

TTCP £ TTCPCHTTCP,sHChcs(P)HChSC(P)

The set P of possible packets of the channels is instantiated with the packets that 77CP.
and TTCP, can send and receive. To match the user interface of specifications S and D, we
want the send-seg..(p) and send-segs.(p) actions of 77CP. and 77CP; respectively and
the receive-seg.s(p) and the receive-segs.(p) actions of Ch.s(P) and Chs.(P) respectively
which are output actions in 77CP’ to be internal actions. Thus, we use the action hiding

operator defined in Chapter 3 to “hide” these actions. Let

Arr 2 {receive-segs.(SYN, cc_rcvd, sn., ack.)} U {receive-segec(cc_rcvd, sn., acks, msg.)} U
{receive-segs.(SYN, cc_rcvd, sn., acks, msg.)} U
{receive-segs.(SYN, cc_rcvd, sn., acks, msg., FIN)} U
{receive-segs.(cc_rcvd, sng, acks, msgs, FIN)} U
{receive-segs.(RST, acks, rst-seqs)} U {send-seg..(RST, acke, rst-seq.)} U
{send-seg..(SYN, cc_send, sn., msg.)} U
{send-seg..(SYN, cc_send, sn., msg., FIN)} U
{send-segc.(cc_send, sn., ack., msg.)} U {receive-seg..(cc_send, sn., ack., msg.)} U
{send-seg..(cc_send, sn., ack., msg., FIN)} U
{receive-sege. (SYN, cc_send, sn., msg.)} U
{receive-segcs (SYN, cc_send, sn., msg., FIN)} U
{receive-seg..(cc_send, sn., ack., msg., FIN)} U
{receive-seges(RST, ack., rst-seq.)} U {send-seg.c(SYN, cc_rcvd, sn., ack:)} U
{send-seg..(SYN, cc_rcvd, sn., acks, msg:)} U {send-seg..(sns, acks, msgs, FIN)} U
{send-seg..(SYN, cc_rcvd, sn., acks, msgs, FIN)} U
{send-seg..(sns, acks, msg:)} U {send-seg.c(RST, acks, rst-seq.)}

The general timed automaton for T/TCP, 77CP is defined as:

TTCP 2 TTCP\Arr.
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This definition gives a GTA with the same set of input and output actions as .5 and D.
This completes our formal modeling of T/TCP. When we first started doing this work,
we initially though the next step in the verification of T/TCP would be to show a simulation
from the model for T /TCP, to the model for TCP. However, in trying to do that simulation
we observed that T/TCP does not behave like TCP, and no such simulation exists. Shankar
and Lee in an earlier work [33] discovered the same situation, but we were unaware of their

work when we made the observation. In the next section we describe this situation.

9.3 T/TCP behaves differently

In this section we show that no simulation exists from 77CP to TCP by describing an
execution where the external user sees different behavior between the protocols. This be-
havior of TTCP also violates our specification in that the same data is delivered twice. The
duplicate delivery in T/TCP occurs because the TAO mechanism bypasses the three-way
handshake protocol in an effort to achieve efficient transactions. We first describe informally
the situation where T /TCP behaves differently from TCP by delivering the same message
twice, and then give the execution fragment of 77CP that cannot be simulated by any

sequence of TCP.

9.3.1 Duplicate delivery in T/TCP

The situation where the TAO mechanism cause T/TCP to deliver the same message twice
is as follows. The T/TCP client gets a message to send from its user. When it gets this
message all the persistent variables have values which allow it to sent a SYN segment for
TCP accelerate open (TAO). The client sends the SYN segment and when the server receives
it, the TAOQO test is successful. The server accepts the data and passes it to the user. Before
the server can send a response a crash occurs. After the server recovers it reopens, and
receives a retransmission of the segment it received before the crash. Since the crash might
have caused the server to lose its persistent variables, it initiates a three-way handshake,
by sending the second segment of the three-way handshake protocol to the client. When

the client receives this segment, it cannot tell that the server accepted a previous copy of
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T/TCP Client T/TCP Server
listen

syn-sent (syn, data, CC=Xx) - esth

(data accepted)
(passes data to user)

cl ose w

listen —gl@SSive-open

TN syn-rcvd
(data not accepted)

(after RTO) (syn, data, CC=x)

estb (syn, ack(syn))

(ack(syn)) . esth
(data accepted)

TCP Client TCP Server
syn-rcvd
estb (Syn, ack(syn). data), — ogtp
(data accepted)

(passes data to user)

cl ose <M

listen -gl@ssive-open
(after RTO)  (syn._ack(syn). datay, listen

(data not accepted)

(reset)

cl ose -
active-opery, syn-sent (syn) B syn-rcvd
(syn, ack(syn))

(syn, ack(syn), dataL est b
(data accepted)

estb -

Figure 9-11: The top figure shows T/TCP in the situation data is retransmitted after a crash and
the bottom figure shows TCP in the same situation.

the segment, and that the response is to a duplicate. Therefore, it sends the final segment
of the three-way handshake. When the server receives this segment, it can accepted the
data in the first segment and pass it to its user. This second delivery of the data means
that the server delivers old duplicate data from the previous incarnation, which violates our
specifications.

The sequence of actions in 77CP that gives the behavior described above is as fol-
lows. The client with s.mode, = closed gets the send-msg.(true, datal, false) input. The
client then sends a SYN segment for TAQ. The server, also in mode closed opens via
the passive-open input. Next the client performs the prepare-msg. action followed by the

send-seg.s (SYN, cc_send, sn., datal) action. The server gets this segment via the receive-
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seges (SYN, cc_send, sn., datal) action. For this execution the server has s'.cache_cc <
s'.cc_send, so datal is concatenated to s'.rcv-buf,. Next the server passes the data to the
user with the receive-msgs(datal) action. Immediately after that action, the server receives
a crashs input. After a period of time the server recovers by issuing the recover; action.
While the server is in recovery mode, the client repeatedly retransmits the (SYN, cc_send,
sn., datal) segment.

After the server recovers, it receives the passive-open input from the user again and
goes to mode listen. It next receives one of the retransmitted (SYN, cc_send, sn., datal)
segments. Since there was a crash, cache_cc is not defined, so the TAQ test fails. Therefore,
the server assigns datal to temp-data and initiates the three-way handshake with the send-
segs. (SYN, cc_rcvd, sng, acks) action. The client receives the segment with the receive-
segs. (SYN, sng, acks) action and responds with the send-seg.s(sn., ack., datal) action. The
server receives the segment with the receive-seg.s(sn., ack., datal) action. Since temp-data
has the value null, datal is concatenated to rcv-bufs. The server then performs the output
action receive-msg,(datal) again. Thus, the same data is delivered twice. We claim that
this behavior is not allowed by TCP or by the specifications 5 or D.

The trace of the execution sequence described above is: send-msg. (true, datal, false),

passive-open, receive-msgs(datal), crashs, recovers, passive-open, receive-msgs(datal).

9.3.2 No duplicate delivery in TCP

The trace just presented in the previous section, where datal is delivered twice, is not
possible in specifications S or D. Thus, by Theorem 7.1 it is not possible in TCP. We know
the trace is not possible in specifications S or D because after the server crashes in the
specifications, all the data associated with the queue from which the server was receiving
data is deleted and the queue becomes dead. Therefore, data can no longer be received
from that queue. In order for the server to receive new data after it recovers and re-opens,
the client must add data to a new queue and an association must be formed with the new
id of the server and a new id chosen by the client. However, the client can only choose a
new id, if it closes and then receives the send-msg.(open,m,close) input from the user. This

open input means the trace is different.
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9.4 The next step

Since we now know that T/TCP does not implement TCP, there are two possible ways we
could proceed with our work. The first way is to say that T/TCP is wrong and leave it
at that or try to fix it. The second way to is to try to get a better understanding of the
behavior of T /TCP. When we discussed the different behavior of T/TCP with the designers,
they did not think this behavior was necessarily wrong. They though for some applications
it might not matter that after a crash there is duplicate delivery. Therefore, we decided to
proceed with the second option. To get a better understanding of the behavior of T /TCP,
we decided to write a specification that captures the behavior of T/TCP and then show

that the protocol satisfies this specification. The next chapter contains this work.

221



222



Chapter 10

Verification of T/TCP

Initially when we set out to verify T/TCP we thought we could show that it implements
TCP, and since we prove TCP implements our specification of reliable transport level pro-
tocols (Chapters 6 and 8), by the transitivity of trace inclusion, we would have a proof
that T/TCP also implements our specification. However, as we showed in Chapter 9, the
user-visible behavior of T/TCP is different from that of TCP. One way to look at the fact
that T/TCP exhibits different behavior from TCP and does not satisfy our specification is
to say that it is wrong and should be corrected. Another way to look at this fact is to say
that it is different, but not necessarily wrong for the type of applications the designers have
in mind. In fact the designers of T/TCP and other network protocol designers that we have
spoken to do not seem to think that this behavior of T/TCP is necessarily wrong. One
argument they present as to why this behavior may not be wrong is that whatever effect
receiving the message may have had on the user is probably lost after the crash, so receiving
a second copy of the message is not exactly like receiving a duplicate. Therefore, in order
to clearly understand the different behavior of T/TCP, we formulate a weaker specification

that captures this behavior.

10.1 'Weaker specifications

In specification S the same data is not allowed to be delivered twice under any circumstances.

As we showed in the Chapter 9, in T/TCP a crashed host may reopen and receive duplicate
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data from the sender. Thus, we need to change specification 5, so that it allows this
behavior. However, we still want to maintain the other correctness properties of specification
S — data is delivered in order; data is delivered without loss, except in the case of crashes;
and data from different incarnations are separated. We also want to allow duplicate delivery

only after crashes and aborts.

10.1.1 The primary changes

We make two primary changes to specification 5 to get a weaker version. The first of these
changes in the weaker version of the specification is that we relax the rules for starting new
incarnations. More specifically, we allow a host to continue with the same incarnation it
had before a crash or an abort when it reopens after the crash or abort. The way we allow
this to happen in the weaker version of specification 5 is by allowing the host to choose the
same id it had before the crash or abort when it reopens after either event. However, if a
host chooses a different id the first time it reopens after the crash or abort, then it cannot
again choose the id it had at the time of the crash or abort. That is, if the host chooses
to start a new incarnation immediately after the crash or abort, it cannot later choose to
continue the previous incarnation.

Recall that in specification S every time a host re-opens it chooses a new id. Incarnations
in specification 5" are identified by unique pairings of these id’s. By unique pairings we mean
an id is only allowed to be paired with a unique id from the other host. We call these pairs
associations. Hosts are only allowed to accept data from a sender whose id is paired with
the id of the receiving host. Thus, in specification 5 if the receiving host crashes, when it
reopens it cannot accept data from the sending host unless the sender also closes and they
both choose new id’s that are paired together. In the weaker version of specification 5, the
pairings of id’s are still unique, and a host can still only accept data from a sender whose
id is paired with the id of the receiving host. However, because a host can choose the same
id it had before a crash when it reopens after the crash, it can still accept data from the
sending host even when the sending host does not close and reopen.

The second conceptual change is to allow duplicate delivery of data. We do not want to

allow a piece of data to be delivered more than once in any arbitrary situation. We want
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to allow this to happen only on the last piece of data delivered for an incarnation, and only
if the receiving host crashed or aborted after the delivery.

To incorporate these two ideas into the new specification, we need variables to keep
track of the id a host has at the time of a crash or abort, so that it may be reused after the

crash or abort, and we need to store the last piece of data delivered to a user.

10.1.2 Secondary changes

In specification S when a host crashes or aborts, the queue from which it is receiving data
is emptied and the status is assigned dead. We do this because we know that in TCP after
a crash or reset a host cannot receive any more data from the incarnation it was a part of
before the crash or reset. Since data in each abstract queue represents data from a particular
incarnation, killing and emptying the queue in specification 5 explicitly indicates that no
more data from that incarnation should be received in the concrete implementations.
Since in T/TCP after a host crashes and reopens it may still receive data from the
incarnation that it was receiving data from before the crash, in the new specification that
captures the behaviors of T/TCP we cannot just kill and empty the abstract queues when
the receiving hosts crash. Therefore, in our new specification we need to make some sec-
ondary changes to allow a host, after it reopens from a crash, to receive data from the same

queue it received data from before the crash. The changes are as follows:

1. Queues are not emptied and killed when the receiving host crashes or aborts.
2. After crashes or aborts data may be lost from the front of queues.

3. Queues that are killed when the receiving host crashes or aborts in specification S,
but are not killed in the weaker version of the specification, are now killed when the
sender closes if data can no longer be received from these queues and they are still
live. If data may still be received from these queues when the sender closes, they are
killed by the receiving host when it is determined that data can no longer be received

from these queues.

The reason why the weaker specification must now allow data to be lost from the front

of queues after crashes or aborts is that in low level protocols when a receiving host crashes,
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it may lose its receive buffer. The receive buffer in a low level protocol corresponds to data
from the front of an abstract queue. In specification 5, queues that represent data going
in one direction for an incarnation are killed when it is determined that no more data can
be delivered from that queue. In the weaker specification these queues are killed when it
is determined that no more data can be added to these queues and no more data can be
received from these queues. If data can be received or added, these queues are not killed in

the weaker specification.

In specification 5, even if we did not kill and empty the queue when the receiving host
crashed, the receiving host still could not receive any more data from that queue. The
reason is that in specification S whenever a host crashes or aborts it must close and reopen
before it can receive data again. When it reopens it must choose an new id, and the new id
cannot be paired with the id of the queue that it was receiving data from before the crash
because that id is already paired with the id the receiving host had before the crash. Since
a host can only receive data from a queue indexed by an id that is paired with its current
id, when the host reopens after the crash or abort, it cannot receive data from that queue.
The reason why we chose to empty and kill the queue in specification 5 is that it makes
the property more explicit, and it makes our refinement mapping for the simulation proof

simpler.

When we make all these changes to S we get a weaker specification. The specification
is weaker in that it allows more behaviors that specification 5. We called this weaker

specification for reliable TCP /TP transport level protocols WS.

10.1.83 States and start states of WS

The states and start states of WS remains the same as the state and start states of 9
except for the addition of four new variables. These variables record the crash id’s of each
host, and keeps track of the last messages passed to the users. We elaborate on these new

variables in the table below.
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| Variable | Type | Initially | Description |

crash-id, | CID U {nil} | nil The id. value the client has at the last crash. or
abort. event. If the client closes normally, it is set
to nil.

crash-ids | SID U{nil} | nil Symmetric to crash-id,.

last-msg, | Msg U {null} | null The most recent message passed to the user by the

client. If there is a crash or an abort this message
may be re-delivered.
last-msgs | Msg U {null} | null Symmetric to last-msyg..

The derived variables live-¢.s and live-¢,. are defined for WS exactly as they are defined
for § in Chapter 4.
The action signature for WS remains the same as for S presented in Section 4.1.2,

except for the lose actions, which in WS have the form lose.(1,.J,i) and loses(1,.J,i).

10.1.4 The steps

The steps of WS are shown below in Figures 10-1, 10-2, and 10-3. The effect of the send-
msg. (open, m, close) action in WS changes to reflect that fact that crash-id. might be
reused, but if it is not used, in the incarnation immediately after the crash or abort, it
cannot be reused, so it is added back to the set of used client id’s. Additionally, when
crash-id. is not reused when the client reopens, if it is part of an association pair, but the
server no longer has the id which crash-id, is paired with, then the queue indexed by the id
that crash-id. is paired with is emptied and killed. The queue is killed because the server
is no longer adding data to that queue, and since the current id of the client is not the id
paired with that queue, the client can no longer receive data from it. The variable crash-id.
is also assigned to nil in this step when the client opens whether it was reused or not,
because once the client reopens, there is not longer a crash id until the next crash or abort.
In the effect clause of the choose-server-id(j) symmetric assignments are made.

The preconditon of the make-assoc(i,j) action changes to allow crash-id. and crash-id,
if they are not nil, to be part of association pairs, and not just the ids in the set of used
id’s. The reason for this change is that after a crash or an abort an id might get removed
from the set of used id’s, so it can be used again. However, we still want to allow that id to
be able to form an association pair if it is not already part of a pair. When an id is reused,

if it is already part of an association pair, no new association has to be formed for data to
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be sent and delivered on the queue indexed by that id. We still only allow id’s to be paired

with one other id.

The receive-msg.(m) and receive-msgs(m) steps in WS save a copy of the last message
the client and server respectively passed to the user. This allows that message to be passed

to the user again in the event that there is a crash.

The set-nil.(j) step is changed to include the assignment of queue.s(id.) to € and
g-stat.s(id.) to dead if the queue is live and id; # j A j € used-id;. These assign-
ments are made in this step because if the current id of the server is not the id that is
paired with 2d. and the id that is paired with id. is used, then the server must have closed
since id. and j formed an association. If they server closes “normally,” that is, with the
set-nils(j) action, then it kills ¢-stat.s(id.). However, if the server closes because of a crash
or an abort, it does not kill this queue, because the client might still add data to it after
the crash or abort and when it reopens the server might still receive data from this queue.
When the server crashes or aborts its id removed from the set of used id’s, so the client will
not kill the queue if the server as not reopened from a crash or an abort. The set-nil(7)
step is symmetric to set-nil.(j), and the effects of reset-nil. and reset-nil. actions remain

unchanged from specification 5.

The crash. and abort. steps assign id. at the time of the crash or abort to the crash-id.
set. In order to allow this id to be chosen by the client again, it is removed from the set of
used client id’s. Also if the queue from which the client is able to receive data before the
crash or abort event is 1live, and last-msg. is not null, then last-msg,. is added to the front

of this queue to allow duplicate delivery of this message.

The crash. and abort. steps set rec. and abrt. to true respectively. Fither assignment
enables the lose.(1,.J,j) action. This action changes to reflect the fact that after a crash
at the client in WS not only may data be lost from the back of the queue on which the
client has been putting data, but if there is a queue from which the client has been able to
receive data that is still 1ive, then data may be lost from the front of this queue. In this
actions the set of indices J is an element of the set of prefixes of this queue. The definition

of prefizes is analogous to the definition of suffizes in Chapter 4. That is, for any queue ¢
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we define

prefizes(q) = {{ill < i< j}H0 <5 < gl

The fact that data may now be lost from the front of this queue is reflected in the
precondition ((¢d.,j) € assoc Agstats.(j) = 1ive A J € prefizes(queues.(j))) V(=((ide,7) €
assoc N\ q-stat,.(j) = live) A j € SID A J = ). That is, if there is a 1live queue from
which the client is able to receive data, elements may be lost from the front of that queue.
Otherwise J is the empty set and j takes an arbitrary value. The crash; aborts, and
loses(1,J,1) events are symmetric to their client side counterparts.

The recover, and shut-down. steps like set-nil.(j) sets queue.s(id.) to empty, and its
status to dead if the queue is 1ive and id, # j Aj € used-id;. The recovers and shut-downg

actions are symmetric.

Invariants of WS

Invariants 4.1, 4.2, and 4.3, defined for 5 in Section 4.1.2, also hold for WS. The properties

stated below are true of all reachable states of WS.

Invariant 10.1
If (h,j) € u.assoc A (i, ) € u.assoc then h = 1.

If (¢,7) € w.assoc A (i, k) € u.assoc then j = k.

Proof: The proofis straightforward, by induction, from the description of the initial values
of the variables of WS and of steps(WS). |
Invariant 10.2

Vi € CID, if u.g-stat (i) = dead then u.queue (i) = ¢

YV j €SID,if u.g-stat,.(j) = dead then u.queue,.(j) = €

Proof: The proofis straightforward, by induction, from the description of the initial values
of the variables of WS and of steps(WS). |
Invariant 10.3

For any state u of WS, |u.live-q,,| and |u.live-q, | are both finite.

Proof: The proof is the same as the proof for Invariant 4.3. [ |

The conjuction of the above invariants is itself an invariant which we call Iy g.
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send-msg. (open, m, close)
Eff: if —(rec. V abrt.) then
if open A id, = nil then
id. € CID\ used-id.
used-id, = used-id. U {id.}
if id, # crash-id, A
crash-id. # nil then
used-id, = used-id. U {crash-id,}
Y js. t. (crash-id., j) € assoc
ifids #37 A
g-stat . (j) = live then
g-stats.(j) == €
g-stats.(j) = dead
crash-1d, := nil
last-msg. := null
mode, := active
g-stat.s(id.) := live
if mode, = active A m # null A
g-stat.s(id,) = live then
queunes(id,) .= quenes(id.)m
if close then mode, := inactive

make-assoc(i,j)

Pre: i #nil A i € used-id, U {ecrash-id.} A
J#£nil A j € used-id; U {crash-ids} A
V k(i k) & assoc AV I (1) & assoc

Eff: assoc := assocU{(7,))}

receive-msg(m)

Pre: —(rec, V abri;) A
g-stats.(j) = live A (id.,j) € assoc A
quenes.(j) # € A head(queues.(j)) = m

Eff: last-msg, := head(quene.(j))
queneg.(§) := tail(queunes (7))

set-nil.(j)
Pre: —(rec, V abri;)A
id, #nil A mode. = inactive A
(id.,j) € assoc A queue, (j) =€ A
(modes = inactive V id; # j)
Eff: if ¢-stat.s(id;) = live A
ids £j N j € used-ids then

quenes(id,) == ¢
g-stats(id.) ;= dead
id, == nil

g-stats.(j) = dead

Passive-open
Eff: if —(recs V abrts) then
if 7d, = nil then
choose-sid := true
mode, := active
last-msgs := null

choose-server-id(j)
Pre: choose-sid = true A j € SID \ used-id;
Eff: choose-sid:= false
wds = j
used-id; := used-id; U {j}
if ids # crash-idg A crash-ids # nil then
used-id; 1= used-ids U {crash-id}
Vis. t. (i, crash-ids) € assoc
if ide 4 A g-stat. (i) = live then
g-stats(7) == ¢
g-stats(7) := dead
crash-id, := nil
g-stats.(j) = live

send-msgs (m, close)
Eff: if —(recs V abrts) then
if mode; = active A'm # null A
g-statsc(ids) = live then
queneg(ids) = quenes.(ids)-m
if close then mode; := inactive

receive-msgs (m)

Pre: —(recs V abrity) A
g-stat.s(7) = live A (i,id;) € assoc A
quenes (1) # € A head(queneys(i)) = m

Eff: last-msgs = head(queune5(7))
quenes(i) = tail(quene (7))

set-nils (%)
Pre: —(recs V abris)A
ids £nil A modes; = inactive A
(,ids) € assoc A queue, (i) = € A
(mode, = inactive Vid. # i)
Eff: if g-stats.(ids) = live A
td. #1 N t € ucid then

queneg (ids) == €
g-statsc(ids) := dead
id; ;= nil

g-stats(7) := dead

Figure 10-1: Steps

of the specification WS.
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reset-nil,
Pre: —(rec, V abri;) A

id, # nil A mode, = inactive A

V j(ide, j) & assoc A queue,(id,) =€
Eff: id,. := nil

g-stats(id,) := dead

crash,
Eff: if ¢d. # nil then
rec. := true
crash-id, = id.
used-id.:= used-id, \ id.
V js.t. g-stat, . (j) = live A
(id.,j) € assoc
if last-msg, # null then
quenes.(§) := last-msg, - queue (j)

abort,
Pre: id, # nil
Eff: abri. := true
crash-id, = id.
used-id,:= used-id, \ id.
Y js.t. g-stat, (j) = live A
(id., j) € assoc
if last-msg, # null then
queunes.(j) 1= last-msg,-queue . (j)

losec(1,.7,5)
Pre: (rec. V abrit) A
(I € suffizes(queune s (ide))) A
(((¢de, j) € assoc A ¢-stat (j) = live A
J € prefizes(quenes.(j))) V
(=((id;, §) € assoc A g-stat, (j) = live)
AjeSID NJ=10))
Eff: queue.s(id.;) := delete(quene s(id.), I)
if (id., j) € assoc A
g-stat, . (j) = live then
queneg.(j) := delete(queue, (j), J)

reset-nil,
Pre: —(recs V abrity) A

ids # nil A mode; = inactive A

Y i(i,ids) & assoc A queue, (ids) = ¢
Eff: id, := nil

g-stats.(ids) := dead

crashg
Eff: if ¢d; #nil V mode; = active then
recs 1= true
if ids # nil then
crash-id, := id;
used-ids:= used-ids \ id
Vist. g-stat, (i) = live A
(4,ids) € assoc
if last-msg, # null then
queunes(i) = last-msg,-queue (i)
abori,

Pre: id; #nil V mode; = active
Eff: abri, := true
if ids # nil then
crash-id, = 1id,
used-ids:= used-id; \ id
Vist. g-stat, (i) = live A
(4,ids) € assoc
if last-msg, # null then
queues(i) = last-msyg,-queue . (%)

loses (1,7,1)
Pre: (recs V abrts) A
(I € suffives(queuesc(ids))) A
(((¢,idy) € assoc A g-stat, (i) = live) A
J € prefizes(queune s(i)))V
(=((4,1d5) € assoc A g-stat . (i) = live)
ANi€ CID NJ =0))
Eff: queues.(ids) := delete(quenes.(ids), I)
if (¢,id;) € assoc A
g-stat, (i) = live then
quenes(i) = delete(queune .4 (4),J)

Figure 10-2: Other steps of the specification WS.
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recover, recovers

Pre: rec. Pre: recg
Eff: rec. := false Eff: rec; := false
mode, := inactive mode, := inactive

ifV j(id., j) € assoc A queue  (id.) =€
then optionally g¢-stat.s(id.) := dead

if 35 s.t. (ide,j) € assoc A

g-stat . (id.) = live A

ids 7 N j € used-ids then

itV i(i,ids) & assoc A queune, (ids) = ¢
then optionally g-stats.(id,) := dead

if 3is.t. (4,ids) € assoc A

g-stat . (ids) = Llive A

id. £ i N i € used-id, then

quenes(id;) == € queneg (ids) = €
g-stats(id,) := dead g-stats.(ids) == dead
id, == nil id; ;= nil

shut-down, shut-down,

Pre: abrt, Pre: abri,
Eff: abrt, := false Eff: abrt, := false
mode, := inactive mode, := inactive

ifV j(id., j) & assoc A queue, (id.) = ¢
then optionally g¢-stat.s(id.) := dead

if 35 s.t. (ide,j) € assoc A

g-stat . (id.) = live A

ids 7 N j € used-ids then

itV i(i,ids) & assoc A queune, (ids) = ¢
then optionally g-stats.(id,) := dead

if 3is.t. (4,ids) € assoc A

g-stat . (ids) = Llive A

id. £ i N i € used-id, then

quenes(id;) == € queneg (ids) = €
g-stats(id,) := dead g-stats.(ids) == dead
id, == nil id; ;= nil

Figure 10-3: The rest of the steps of the specification WS.

10.1.5 The weaker version of D

To get the weaker version of specification D, which we call WD, we change WS in the
same manner in which we changed S to get D. That is, messages are tagged when they are
received in the send-msg.(open, m, close) and send-msgs(m, close) steps, and the tags are
removed before the messages are passed to the users in the receive-msg.(m) and receive-
msgs(m) steps. Also instead of enabling lose actions, crashes and aborts enable mark actions
which mark the messages instead of deleting them. The marked messages maybe deleted
in the drop(l, J, k, 1) actions. These actions now reflect the fact that marked messages
can be dropped from the front of a some queues as well as the back of queues as in D.
Thus, the action drop.(1, J, k, 1) is enabled not only when there is a queue.s(k) which a

suffix of marked messages, but also if there is queues.(I) with a prefix of marked messages.
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Depending on which condition causes the action to be enabled, the appropriate messages
are deleted. The changed steps for WD are shown in Figures 10-4 and 10-5.

The derived variables live-q.s, live-¢s., and #o0k(qp), where ¢p is a queue in the set
(Msg x Flag)*, are defined for WD as they are defined for D. Similar to gp, let gs be a

queue in the set Msg®, that is, has the same type as queues in WS.

send-msg. (open, m, close)
Eff: if —(rec. V abrt.) then
if open A id. = nil then
id. € CID\ used-id.
used-id, = used-id. U {id.}
if id, # crash-id, A
crash-id. # nil then
used-id, = used-id. U {crash-id.}
Y js. t. (crash-id., j) € assoc
ifids #j A
g-stat,.(j) = live then
g-stats.(j) == €
g-stats.(j) = dead
crash-1d, := nil
last-msg. := null
mode, := active
g-stat.s(id,) := live
if mode, = activeA m # null A
g-stat.s(id.) = live then
queuecs(id,) = queunes(id.)-(m, ok)
if close then mode, := inactive

receive-msg(m)

Pre: —(rec, V abri;) A quene, (j) £ € A
g-statsc(j) = live A (id., j) € assoc A
(head(queuesc(j))).msg = m

Eff: last-msg, ‘= head(quene.(j))
quenes.(j) = tail(quenes.(4))

send-msgs (m, close)
Eff: if —(recs V abrts) then
if mode; = active A'm # null A
g-statsc(ids) = live then
quenes.(ids) = quenesc(ids)-(m, ok)
if close then mode; := inactive

receive-msgs (m)

Pre: —(rec, V abrts) A queue (i) # € A
g-stat.s(7) = live A (i,id;) € assoc A
(head(queue s(7))).msg = m

Eff: last-msgs = head(queue (7))
quenes(i) = tail( queune (7))

Figure 10-4: Steps of WD that differ from the steps of WS.
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mark.(1,J, j) marks(I,J, 1)
Pre: (rec. V abrit,) A Pre: (recs V abris) A
(I € suffizes(queunes(id;))) A (I € suffives(queuesc(ids))) A
(((ide, j) € assoc A ¢-stat, (j) = live A (((¢,ids) € assoc A g-stat, (i) = 1ive) A
J € prefizes(quenes.(j))) V J € prefizes(queune.s(1)))V
(—=((id;, §) € assoc A g-stat,.(j) = live) (=((4,1d;) € assoc A ¢-stat, (i) = 1live)
AjeSID NJ=10)) ANie CID NJ =0))
Eff: queue.s(id.;) := mark(queue.s(id.), I) Eff: queues.(ids) := mark(queunes.(ids), I)
if (ide,j) € assoc A g-stat, (j) = live if (¢,id;) € assoc A g-stat, (i) = live
then queues.(j) := mark(queue, (j),J) then queue.s(7) := mark(queue, (i), J)
drop. (1, J,k,1) drops(1,J, 1 k)
Pre: (¢-stat.s(k) = live A Pre: (g-stats.(l) = live A
I € suffives(queness(k)) A I € suffives(quenesc (1)) A
Vi €1 queue, (k)[i].flag = marked) Vi €1 quenes.()[¢].flag = marked)
V (g-stat, (I) = live A V (¢g-stat, (k) = live A
J € prefizes(quenesc (1)) A J € prefizes(queune.s(k))
vV j €J queue, (I)[j]-flag = marked) AY j €J queue, (k)[j].flag = marked)
Eff: if (¢-stat.s(k) = live A, Eff: if (¢-stat;c(l) = live A
I € suffives(queness(k)) A Vi €1 I € suffives(quenes. (1)) AV i €1
queue ., (k)[].flag = marked) then queue (1)[i].flag = marked) then
queunes(k) = delete(queune .s(k), I) queunes.(l) := delete(queune (1), I)
if (g-stat, () = live A if (g-stat,, (k) = live A
J € prefives(queues (1)) AV j € J, J € prefizes(queune.s(k)) AY j €,
queue ;,()[j].flag = marked) then queue ., (k)[j].flag = marked) then
queunes. (1) := delete(queune (1), J) quene s (k) = delete(quene .s(k), J)

Figure 10-5: The other steps of WD that differ from the steps of WS.

10.1.6 The correctness of WD

In this section we prove the correctness of WD with respect to WS. We start by defining
invariants on the states of WD. The invariants are the same as Invariants 10.1 through 10.3.

The properties stated below are true of all reachable states of WD.

Invariant 10.4
If (h,j) € u.assoc A (i, ) € u.assoc then h = 1.

If (¢,7) € w.assoc A (i, k) € u.assoc then j = k.

Proof: The proofis straightforward, by induction, from the description of the initial values

of the variables of WD and of steps(WD). [ ]
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Invariant 10.5
Vi € CID, if u.q-stat (i) = dead then u.queue (i) =€

YV j €SID,if u.g-stat,.(j) = dead then u.queue,.(j) = €

Proof: The proof is the same as the proof for Invariant 10.2. [ |

Invariant 10.6

For any state u of WS, |u.live-q,,| and |u.live-q, | are both finite.

Proof: The proof is the same as the proof for Invariant 4.3. [ |

The conjuction of the above invariants is itself an invariant which we call Iy p.

The simulation

We prove the correctness of WD by showing an image finite backward simulation from WD
to WS. The proof is very similar to the one given in Chapter 4 for showing an image finite
backward simulation from D to 5. We will also use most of the definitions and preliminary
lemmas from that proof.

We define Bypws over states(WD) x states(WS ). Definition 4.1 defines an explanation.

Definition 10.1 (Image-Finite Backward Simulation from WD to WS)
If s € states(D) and u € states(S), then define that (s,u) € Bypws if the following
conditions hold:

1. u.assoc = s.assoc
2. u.choose-sid = s.choose-sid

3. u.used-id. = s.used-id,
w.used-id, = s.used-id;

4. u.rec. = s.rec.
U.TECs = S.TEC

5. u.abrt. = s.abrt,
w.abrt, = s.abri

6. u.id, = s.id,
u.idy = s.id,

7. u.mode, = s.mode,
w.mode; = s.mode,
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8. u.crash-id, = s.crash-id,
w.crash-id, = s.crash-id

9. u.last-msg, = s.last-msg.
u.last-msg, = s.last-msg,

10. Vi € CID u.gq-stat (i) = s.q-stat, (1)
V' j € S8ID u.g-stat, (j) = s.q-stat,.(j)

11. (Vi € CID) (3 explanation f; from u.queue (i) to s.queue (7))
(V j € SID) (3 explanation g; from u.queue . (j) to s.queue . (j))

Each of the variables in W& other than the queues is equal to its counterpart in WD.
In the proof below when we write w.variables = s.variables we mean the eleven sets of
equations of items one through nine in Definition 10.1.

Recall that in Chapter 4 we define mazqueue be a function of type: (Msg x Flag) —
Msg* such that for any ¢p, mazqueue(qp ) is defined to be the queue ¢s obtained by removing

all flag components from ¢p.

Lemma 10.1

Let s € states(WD). Then there exists a state u € states(WS) such that (s,u) € Bywpws-

Proof: Let ¢s, = mazqueue(s.queue.s(i)) ¥V ¢ € CID, and q}gj = mazqueue(s.queues.(j))
V j € SID. Then by Lemma 4.3 there exists an explanation from g¢g, to s.queue, (¢) and
an explanation from q}gj to s.queue, (7). Thus, if we have u.queue (i) = qs,, u.queue . (j)
= q}gj, and for all the other variables w.variables = s.variables, this gives a state u such that

(s,u) € Bwpws. ]

Lemma 10.2

WD <;g WS via Bypws with respect to Iyyp and Iys.

Proof: We first show that Bypws is image-finite and then check the three conditions of
Definition 3.10 which we call non-emptiness, base case, and inductive case respectively.
Let s be an arbitrary state of WD. The proof that there are only finitely many states
u of WS such that (s,u) € Bwpws is the same as the proof that for an arbitrary state s’
of D, there exists only finitely many states u’ of S such that (s',u’) € Bwpws presented in

Section 4.2.2, so we do not repeat it here.
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Non-emptiness

Non-emptiness follows immediately from Lemma 10.1

Base Case

Let so be the (unique) start state of WD. Then if (sg,u) € Bwpws, then u.variables =
s.variables and wu.queue (i) = u.queue,.(j) = €. Thus, u is the unique start state of WS.
Inductive Case

The proof for the inductive case for this lemma is has many of the same steps as the proof
for the inductive case for Lemma 4.5. We note the cases that are the same here, but do not
repeat the arguments when this is the case.

Assume (s,a,s") € steps(WD) and let v’ be an arbitrary state of WS such that (s',u') €
Buwpws. Below we consider cases based on ¢ and for each case we define a finite execution
fragment o of 5 with Istate(a) = v/, (s, fstate(a)) € Bwpws, and trace(o) = trace(a). In
order to show (s, fstate(a)) € Bwpws, we need to show that the value of the state variables
for state s and fstate(a) = u are related according to our definition of Bwpws. As is the
case for Lemma 4.5, the interesting aspect of showing (s,u) € Bwpws is showing that we
can find valid explanations from the queues in state u to the queues in state s.

a = send-msg.(open, m, close).

The proof for this case is the same as the proof for the same case of Lemma 4.5.

a = passive-open, choose-server-id(j).

The proof for these cases is the same as the proof for the same cases of Lemma 4.5.

a = send-msgs(m, close).

The proof for this case is the same as the proof for the same case of Lemma 4.5.

a = make-assoc(1,j).

The proof for this case differs from the proof for the same case of Lemma 4.5, because
now the step with this action may change the queues. For this case a = (u, make-
assoc(i,j), v'). We now define u such that a € steps(S) and (s,u) € Bypws. We let
u.variables = s.variables. The only queues that change because of this step are s.queue (k)
Vk#jst. (i,k) € assoc and s.queue () V I # ¢ s.t. (I,j) € assoc. For all other queues,

the explanations from these queues in state u’ to state s’ are also explanations from state
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u to state s. For the other queues that change in this step, V k # j s.t. (i, k) € assoc
let w.queue, (k) = mazqueue(s.queue,s(k)), then by Lemma 4.3 the identity mapping
from dom(u.queues.(k)) to dom(s.queues.(k)) is an explanation. Also let u.queue, (1) =
mazqueue(s.queue.s(1)),¥ 1 # is.t.(l,]) € assoc, then by Lemma 4.3, the identity mapping

is an explanation from wu.queue (1) to s.queue,(1).

a = receive-msg.(m), receive-msgs(m).

The proof for these cases is the same as the proof for the same cases of Lemma 4.5.

a = reset-nil., reset-nil, recover,, recovery, shut-down., shut-downs.

The proof for these cases is the same as the proof for the same cases of Lemma 4.5.

a = set-nil.(j).

For this case let @ = (u, make — assoc(i,j),u’). The proof for this case also changes, because
in WD and WS the step now affects may now affect s.queue,,(s.id.). Again u.variables
= s.variables and for all other queues, the explanations that exist from state u’ to s’ also
hold from state u to state s. Let w.queue. (u.id.) = mazqueue(s.queue s(s.id.)), then by
Lemma 4.3, the identity mapping from dom(u.queue.s(u.id.)) to dom(s.queues(s.id.)) is

an explanation.

a = set-nily(7).

The proof for this case is symmetric to the proof for a = set-nil.(j).

a = crash,.

We can define u such (u, crash., u') € steps(WS) and (s,u) € Bwpws. For this step
w.variables = s.variables. This step only affects queue,.(j) if s.¢-stat,.(j) = live A
(s.id.,j) € s.assoc. For all other queues the explanations that exists from state u' to
state s', also exists from state u to state s. Let f]’ be an explanation from u'.queue (j) to

s'.queue (7). Then we can define f; in the following way.
=l (f]'(z +1)-1)li e dom(fj’) \ mazindex(u'.queue, (j))]

Intuitively f; relates the same elements in u.queue, (j) and s.queue . (j) that were re-

lated by f}in u'.queue,.(j) and s'.queue, (j) (these elements all have their indices decreased
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by one because of the elements removed from the head of the queues). It is easy to see that

f; is an explanation.

a = crashs.

This case is symmetric to the case for crash,.

a = abort..

For this case we define u such that (u, abort., v') € steps(WS) and (s,u) € Bypws. Clearly
the traces are the same. The proof for this case is the same as the proof for ¢ = crash,
because the effects of these actions are essentially the same.

a = abort,.

This case is symmetric to the case for abort,.

a = mark.(I,J, 7).

In this case we can define w, I’, and J' such that (u, lose.(I',.J',7), v') € steps(WS) and
(s,u) € Bwpws. Clearly trace(a) = trace(a). Let w.variables = s.variables. The action
mark.(I,J,j) only affects s.queue.s(s.id.) and s.queues.(j) where (((s.id.,j) € s.assoc A
s.q-stat,.(j) = live) = J € prefives(s.queues.(j)). Similarly the action lose.(I',J', )
only affects u.queue  (u.id;) and u.queues.(j) where (((u.id., j) € u.assoc A\ u.g-stat,(j) =
live) = J € prefizes(u.queue,(j)). Therefore, for all other queues the explanations
that exists from state u’ to state s’, also exists from state u to state s. Therefore, we need
to construct explanations from w.queue g (u.id.) to s.queue, (s.id.) and from u.queues.(j)
to s.queues.(j). Let u.queue (u.id.) = mazqueue(s.queue.s(s.id.)) and u.queue  (j) =
mazqueue(s.queue . (j)); then by

Lemma 4.3, the identity mapping is an explanation from u.queue . (u.id.) to s.queue (s.id.)
and from u.queue,.(j) to s.queue (7).

We now need to show that lose.(I',.J, j) is enabled from state u in WS. Since u.variables
= s.variables and mark.([,J,j) is enabled in s, we know s.rec. = wu.rec. = true, and
that I € suffives(s.queue,(s.id.) and (((s.id.,j) € s.assoc A s.¢-stat, (j) = live) =
J € prefizes(s.queue,,(j)). To define an appropriate I’ and J' we first observe that
mazqueue(s.queue . (s.id.)) = mazqueuve(s’.queue . (s'.id.)) and mazqueue(s.queue, (7)) =

mazqueue(s’.queuve,,(j)). Since u.queuve  (u.id.) =
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mazqueue(s.queue . (s.id.)) and u.queue  (j) = mazqueue(s.queue, (7)), it is easy to see we

can obtain u'.queue . (u'.id.) from u.queue ,(u.id.) and u'.queue . (j) from u.queue . (j) by

deleting some (possibly zero) elements that are in suffizes(u.queue . (u.id.)) and prefizes(s.queue, (j))
respectively. Thus, I is an appropriate I’ and J is an appropriate J’. That is, I’ = I and

J =J.

a = marks(1,J, 7).

This action is symmetric to the previous case.

a = drop.(1,J,k,1).

The corresponding action in WS is the empty step, i.e., (s,u’) € Bypws. Since drop.(I,J,k,1)
is internal the empty step has the right trace. This action only affects s.queue_ (k) and
s.queue. (1), so we only need explanations from w.queue (k) to s.queue. (k) and from
u.queue (1) to s.queue (1). In the proof of Lemma 4.5 for the case of the drop.(I, k) action,
it is shown that if we let f; be an arbitrary explanation form u’.queue (k) to s'.queue (k)
(we know one exists because (s',u') € Bwpws), and let h be the unique bijective, strictly
increasing mapping from dom(s’.queuve.s(k)) to dom(s.queve.s(k))\ 1, then fr = ho fl isa
valid explanation from wu.queue (k) to s.queue (k).

Now we only need to show an explanation from w.queue (1) to s.queue . (I). The same
technique used for finding an explanation from wu.queue_ (k) to s.queue, (k) can be used
here. Let f/ be an arbitrary explanation form u'.queue (1) to s'.queue . (1) (we know one
exists because (s',u') € Bypws). J contains the indices of the elements of s.queue, (I) that
may be deleted in the drop.(I, J, k,1)step. Then |dom(s’.queue,.(1))] = |dom(s.queues.(1))\
J|. Now let ¢ be the unique bijective, strictly increasing mapping from dom(s’.queue,.(1))
to dom(s.queues (1)) \ J. Informally, ¢ maps indices of elements in s'.queue, () to the
indices the same elements had in s.queue, (I). Define f; = go f/. The proof that f; is a

valid explanation is the same as the proof that f; is a valid explanation.

a = drops(1,J,1, k).

This action is symmetric to the previous case.

This concludes the backward simulation proof. [ |

240



Theorem 10.1
The traces of WD are a subset of the traces of WS, that is, WD C WS.

Proof: The proof follows directly from Lemma 10.2 and the soundness of backward simu-

lations (Theorem 3.4). |

10.2 77CP with history variables

To verify that 77CP implements the weaker specification, we follow the same general set
of steps used for the verification of TCP. That is, we want to show a simulation relation
from the states of T7CP to the states of WS. However, because of the non-determinism
in the actual T/TCP protocol we use the intermediate weak Delayed Decision Specification
WD. Thus, we would like to show a refinement mapping from 77CP to WD, but since
WD is an untimed automaton and 77CP is a timed automaton we first need to apply the
patient operator to WD to get the patient(WD ) denoted as WDP. Before we can define a
refinement mapping from the states of 77CP to the states of WDP we also need to add
some history variables to 77CP. We call the resulting automaton history T/TCP, denoted
as TTCP". Most of the history variables are equivalent to variables with the same names in
WD. These history variables are id., ids, used-id., used-ids, crash-id , last-msg., last-msg,
and assoc. In T/TCP the server echos back the value of the connection count to the client to
verify that segments are from the current incarnation, so the connection count issued by the
client is really the only value used to identify an incarnation in T/TCP. Thus, the history
variable id. is the cc_send value of the client when it opens, and the history variable id is
the cc_rcvd value of the server, but only when the connection is established. That is, when
the server knows that the [cc_send] value it receives on a segment is not an old duplicate.
We also add history variables isn;, which is the initial sequence number of the server for
an incarnation. We need this history variable, because if the TAO test fails at the server, a
three-way handshake is initiated, and the initial sequence number of the server is important
in deterimining if the three-way handshake is valid. Related to the isn; history variable
is the estb-cc history variable. This variable is similar to the history variable estb-pairs of

TCP". Tt is the set of id. values of the client paired with the isng values of the server after
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the second step of the three-way handshake. Thus, estb-cc records pairs that indicate the
second leg of the three-way handshake as been successfully completed. We also have the
history variable sent-tao-cc which records all the id. values of client when it sends SYN
segments with data. The history variable choose-isns; becomes true in the step that causes
the server to choose an initial sequence number, and becomes false in any subsequent steps.

The type and initial value of the history variables are shown in the table below.

Variable | Type | S | Initially | Description |

1d, N Unil nil The connection count each time the client opens.

1d g N Unil nil The cc_send whenever a connection is successfully es-
tablised at the server.

1505 N Unil nil The server side intial sequence number.

used-id. o NaN The set of 1d’s used by the client.

used-id; o NaN The set id’s used by the server.

crash-id, N NAN The id. value whenever the client crashes or resets.

crash-id; N N Symmetric to crash-id..

last-msg. Msg* null The last message passed to the user on the client side

last-msg, Msg* null Symmetric to last-msg,

assoc PILERY NaN A set of pairs of id’s for each incarnation of the
connection.

estb-cc PLEY ¢ The set of pairs of id . values the client has paired with

the initial sequence number of the sever, whenever the
gets to mode estb as a result of receiving the second
segment in the three-way handshake.
choose-isny | Bool false A flag that is set to true when the server first chooses
an ISN for an incarnation and set to false when the
server sends a segment with this ISN.

sent-tao-cc nil e set of connection count values o segments
i oN i The set of ti t values of SYN segment
that the client sends valid data.

10.2.1 Steps of TTCP"

The steps of T77CP" that differs from 77CP are show In Figures 10-6, 10-7, and 10-8.
As always we omit the assignments to the original variables of 77CP (again indicated by
...) but outline the if-then-else statements. The first addition is to the send-msg.(open,
m, close) step. When the client opens for an incarnation, id, is assigned the new value of
cc_send. In this step in specification WD, several variables that have corresponding history
variables in 77CP" get assigned, so the corresponding assignments are made for 77 CP".

Thus, id,. gets added to used-id., crash-id, is assigned nil, and last-msg. is assigned null.
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In the passive-open step last-msg, is assigned null.

When the client performs the step with the send-seg.s(SYN, cc_send, sn., msg.) or
send-seg.s (SYN, cc_send, sn., msg., FIN) actions, if msg. # null then cc_send is added
to the set sent-tao-cc. When the server receives either of these segments, it increments its
sequence number, assigns the incremented value to isng, and sets choose-isng to true. If the
TAOQO test is successful, then the received cc_send value becomes the new id,; value of the
server. Additionally, all the assignments that take place when a new id; value is assigned
at the server in specification WD, happen in this step. In this situation the connection
is also now established, so the pair (ids, id,) is added to assoc. We use this pair because
ids = [cc_send], and we know that [cc_send] is the id. value of the client when the segment
was sent. However, it might not be the id, value of the client when the segment is received.
Thus, the id. and ids value that form an association pair may not overlap. In TCP the
initial sequence number pairs that form an association always overlap in time.

If the TAO test is not successful when the server receives one of these segments, it
responds with the send-segs.(SYN, cc_revd, sng, acks) step. In this step choose-isng is
assigned to false. When the client receives this segment, if the acknowlegment number
on the segment correctly acknowledges the sequence number of the client, then the pair
(id.,[sns]) is added to the set estb-cc. In response to this segment, the client performs the
send-seg.s(cc_send, sn., ack., msg.) or send-seg.s(cc_send, sn., ack., msg., FIN) step as the
third leg of the three-way handshake. When the server receives either of these segments, if
it completes the three-way handshake, the server assigns ids to cc_rcvd and adds the pair
(ids, ids) to assoc. The server also makes the other assignments associated with choosing a
new id, value.

In the receive-msg.(m) and receive-msgs(m) steps, last-msg. and last-msg, respectively
are assigned the message m. In the crash and reset actions, the id’s at the time of the crash

or reset is added to the set of crash id’s and and removed from the set of used id’s.
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send-msg. (open, m, close)
Eff: (* Effect clause from 77CP,. *)
if mode, = closed A open then {

id, = cc_send
used-id, := used-id. U {id.}
if id, # crash-i1d, A
crash-id. # nil then
used-id, = used-id. U {crash-id,}
crash-id, := nil
last-msg. := null

send-seg.s (SYN, cc_send, sn., msg.)
Pre: (* Precondition clause from 77CP, *)
Eff: (* Effect clause from 77CP,. *)
if msg, # null then
sent-tao-cc := sent-tao-cc U {cc_send}

send-seg.s (SYN, cc_send, sn., msg., FIN)
Pre: (* Precondition clause from 77CP, *)
Eff: (* Effect clause from 77CP,. *)
if msg, # null then
sent-tao-cc := sent-tao-cc U {cc_send}

Passive-open
Eff: if mode; = closed then {
last-msgs := null

receive-seg.s(SYN, cc_send, sn., msg.)
Eff: (* Effect clause from 7CP; *)
if mode; = listen then {

sng = sng + 1
18N 1= SN
choose-isn, := true

if cache_cc < cc_send then {
id, = cc_send
used-id; := used-id; U {id}
if ids # crash-ids A
crash-ids # nil then
used-id; 1= used-ids U {crash-id}
crash-id, := nil
assoc = assoc U {(ids, ids)}

receive-segqs (SYN, cc_send, sn., msg., FIN)
Eff: (* Effect clause from 7CP; *)
if mode; = listen then {

sng = sng + 1
18N 1= SN
choose-isn, := true

if cache_cc < cc_send then {
id, = cc_send
used-id; := used-id; U {id}
if ids # crash-ids A
crash-ids # nil then
used-id; 1= used-ids U {crash-id}
crash-id, := nil
assoc = assoc U {(ids, ids)}

Figure 10-6: Changes made to TTCP . and TTCP; to get history T/TCP.
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receive-segsc (SYN, ce_revd, sns, acks)
Eff: (* Effect clause from 77CP, *)
else {
send-ack, := true
if mode, € {syn-sent, syn-sent*}
then {
esth-cc 1= estb-cc U {(id;, sns)}

1

send-seg.s (cc_send, sn., ack., msg.)
Pre: (* Precondition clause from 77 CP,. *)
Eff: (* Effect clause from 77CP, *)

send-seg.s (cc_send, sn., ack., msg., FIN)
Pre: (* Precondition clause from 77 CP,. *)
Eff: (* Effect clause from 77CP, *)

send-segs. (SYN, cc_revd, sns, acks)
Pre: (* Precondition clause from 77 CP; *)
Eff: (* Effect clause from 77CP, *)

choose-isn, := false

receive-seg.s (cc_send, sng, ack., msg.)

Eff: (* Effect clause from 77CP; *)

else if mode;, # rec A cc_send = ce_revd

then {
if ack. = sns + 1 then {

if mode; = syn-rcvd then {
id, := cc_send
used-ids 1= used-ids U {id;}
if ids # crash-ids A
crash-ids # nil then
used-id; := used-ids U {crash-id}
crash-1d, := nil
if {(ids,ids)} & assoc then {
assoc = assocU {(ids, id;)}

receive-seg.s (cc_send, sn., ack., msg., FIN)
Eff: (* Effect clause from 7CP; *)

else if mode;, # rec A cc_send = ce_revd

then {
if ack. = sns + 1 then {

if mode; = syn-rcvd A
id, := cc_send
used-ids 1= used-ids U {id;}
if ids # crash-ids A
crash-ids # nil then
used-id; := used-ids U {crash-id}
crash-1d, := nil
if {(ids,ids)} & assoc then {
assoc = assocU {(ids, id;)}

Figure 10-7: Other changes made to TTCP for history T/TCP.
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receive-msg(m) receive-msgs (m)
Pre: (* Precondition clause from 77 CP. *) ||Pre: (* Precondition clause from T7CP, *)
Eff: (* Effect clause from 77CP, *) Eff: (* Effect clause from 77CP; *)
last-msg. ;= m last-msgs := m
receive-segs. (RST, acks, rst-seqs) receive-seg.s (RST, ack., rst-seq.)
Eff: if mode, # rec A rst-seq, = ack, V Eff: if mode; # rec A rst-seq, = ack; then
(rst-seqs = 0 A acks = sn. + 1) mode, := reset
mode, := reset if ids # nil then
crash-id, = id. crash-id, := id;
used-id, 1= used-id. \ id. used-ids 1= used-id; \ id;
crash, crashg
Eff: (* Effect clause from 77CP, *) Eff: (* Effect clause from 7CP, *)
if mode,. # closed then if modes; # closed then
crash-id, == id, if ids # nil then
used-id, 1= used-id. \ id. crash-id, = id,
used-ids 1= used-id; \ id;

Figure 10-8: The last set of changes made to TTCP for history T/TCP.

10.2.2 Derived variables for 77CP"

We define several derived variables for 77CP". They are used in the formal verification
of the protocol. The first two derived variables we define for 77CP" are cur-msg. and
cur-msg,. These are the “current message” being sent by the client and server respectively
that have not yet been received. They are similar to the derived variables with the same
names defined for 7CP. One main difference between these variables and the variables
defined for 7CP, is that if the receiving host crashes or resets after the current message is
received, but before it is acknowledged, the variable goes from being empty to the value
it had before the message was received. The reason for this is that, after a crash or reset,
the receiving host when it reopens, may accept this message again. This is the duplicate
delivery that is allowed in our weaker specification. The variables are formally defined as

follows.
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(s.msg., ok) if s.mode, ¢ {rec,reset, closed} A s.msg.# null A
((s.cc_send > s.cache_cc) A (s.mode, € {syn-sent, syn-sent*})) V
((s.ccesend = s.ccrevd) A ((s.sne = s.acks + 1) V
(= (s.revd-close, A s.send-buf, =€) As.sn, = s.acks)))
(s.msg.,marked) if s.mode, ¢ {rec,reset,closed} A s.msg. # null A
((s.id., j) € s.esthb-cc A (s.isns £ j V s.modes € {rec,reset})) V
((s.id,l) € s.assoc A (s.ids #£ 1V s.mode; € {rec,reset}))

€ otherwise

A
S.Cur-msqg,. =

(s.msgs, ok) if s.modes ¢ {rec,reset,closed, listen, syn-rcvd} A s.msg; # null
A ((s.ccorevd = s.ce_send) A (s.mode, € {syn-sent, syn—sent*} A
s.mode; € {estb* fin-waitl# close-wait#, last-ack*}) V
(—(s.revd-closes A s.send-buf, =€) A(s.sns = s.ack.))
(s.sns = s.ack. + 1)) V

(s.msgs,marked) if s.mode; & {rec,reset,closed, listen, syn-rcvd} A s.msgs; # null
A ((k,s.ids) € s.assoc A (s.mode, € {rec,reset} V s.id. # k))

€ otherwise

A
S.cur-msg, —

In the formal definition for cur-msg., we have the condition that mode. ¢ {rec, reset,
closed} A msg. # null, because the client does not send messages if these conditions
are true. When the client is not in one of these modes, there are three basic types of
situations where the client is ready to send or is sending valid data that has not yet been
received. The first situation occurs when the message is being sent on a SYN segment. In
this situation s.mode. € {syn-sent,syn-sent*} and the data is accepted at the server if
s.cc_send > s.cache_cc. If the client is not sending a SYN segment, then in order for the
data on the segment to be accepted, s.cc_send must be equal to s.cc_revd. If the non-SYN
segment is non-FIN segment; that is, =(s.rcvd-close. A s.send-buf. = €), then the data is
accepted at the server if s.sn. = s.ack;. If the segment is a FIN segment, then the data is
accepted if s.sn. = s.ack; + 1. These, are the “normal” conditions for the existence of the
cur-msg. variable, and the messages are paired with the value ok, to match variables on
the queues in WD.

In the situation mentioned above in which the server crashes or resets after receiving the
message that the client is sending, neither of the three conditions holds. However, in this

situation we want the cur-msg, variable to have the value it had before the message was
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received at the server. Thus, we have the additional conditions of ((s.id.,J) € s.estb-cc A
(s.isns # j V s.modes € {rec,reset})) V ((s.id,l) € s.assoc A (s.ids # |V s.modes €
{rec,reset})) for the existence of this variable. The (s.id.,j) € s.estb-cc and (s.id.,l) €
s.assoc parts of this condition are needed because one or both of these conditions must hold
in order for a message from the client to have previously being delivered to the server. The
(s.isng # j V s.mode; € {rec,reset}) and (s.id, # [V s.mode;, € {rec,reset}) parts
of the condition reflects the fact the server may close and reopen after the crash or reset,
but the current message may still be delivered. However, since the message may not get
delivered if the client receives an acknowlegment, the message is paired with marked in this

situation.

The definition for the server side version of the current message derived variable is
essentially symmetric. However, the server has a valid message only if s.mode; ¢ {rec,
reset, closed, listen, syn-rcvd} and s.ccorcod = s.cc_send; and it sends a valid SYN
segment with data that may get accepted if s.modes € {estb*, fin-waitl*, close-waitx,

last-ack*} and s.mode. € {syn-sent, syn-sent*}.

The next two variables we define are p-triple (k) and p-triple,. These variables are
“possible triples” and are similar to the “possible pairs” defined for 7CP. The term “triple”
is used because the variables are sets of triples of the form (k,7, m) where k is a connection
count, ¢ is a sequence number, and m is a message. Like the possible pairs of TCP,
the possible triples of 77CP" represents segments that contain messages that might get
delivered after the sender crashes or receives a reset. Another way of looking at possible
triples is that they represents the segments that contain the messages from the “current
message” derived variable, after the sender crashed or reset. However, whereas in 7CP there
is at most one segment from the client (and duplicates of it) that may still be delivered in
this situation, in 77CP" there may be several of these segments. Thus, for T77CP" the
possible triple variable for segments from the client to the server is an array indexed by the
connection count of the segment. For segments from the server to the client there is a most
one possible triple, so this variable is not an array. The executions that can cause several
different possible triples from the client to the server are executions where the client sends

a segment with data that will pass the TAO test if it arrives at the server, crashes or resets
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after sending this segment, and then reopens and send a new segment with an incremented
connection count that will also pass the TAO test if it arrives at the server. This process
may be repeated several times, and each time it is repeated a new segment is added that
can be delivered.

For any segment p on in-transit.; or in-transits., recall that in Chapter 6 we define
sn(p) to be the sequence number of the segment, ack(p) to be the acknowledgment number
of the segment, and msg(p) is the message of the segment. Segments sent by the client
and server in 77 CP" also have connection counts. For segments from the client this is the
cc_send value, and for segments from the server this is the cc_rcvd value. For a segment
p € in-transit.s, cc_send(p) is the value of cc_send on that segment, and if p € in-transit,.,
ce_rcvd(p) is the value of cc_rcvd on that segment.

Let s be any state in 77CP". Then define possible triples as follows.

{(k,i,m) | 3 p € s.in-transit.s s.t. ccount(p) = k A sn(p) =1 Amsg(p) = m}
if (s.mode, € {rec,reset,closed} V s.cc.send # k) A

a (k > cache_cc A m #null A pisa SYN segment) V

N (k=s.cccrevd A i =s.acks A pisnot a FIN or SYN segment) V

(k=s.cccrevd AN i=s.acks+1 A pisanon-SYN FIN segment)

0  otherwise

s.p-triple (k)

{(,j,m) | 3 p € s.in-transits, s.t. ccount(p) = [ A sn(p) = j A msg(p) = m}
if s.mode; € {rec,reset,closed, listen, syn-rcvd} A [ = s.ccsend A
(s.mode, € {syn-sent,syn-sent*} A m #null A pisa SYN segment) V
(j = s.ack, A pisnot a FIN or SYN segment) V
(j =s.ack.+ 1A pis anon-SYN FIN segment)

0  otherwise

s.p-triple, =

In the formal definition for s.p-triple (k), the fact that the client must have crashed or
reset after sending segment p is indicated by the condition s.mode. € {rec,reset,closed} V
s.cc_send # k. The case where s.cc_send # k occurs if the client closes and re-opens after
the crash or reset. There are three types of segments from which a possible triple variable can
be derived. The three types here are basically segments that are sent in the three situations
we have for current messages. The first type is SYN segments. For a SYN segment that has

a message that is not null, that message may still be accepted if & > s.cache_cc. The second
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type is segments that are not SYN or FIN segments. These segments may be accepted if
(k = s.ccorevd At = s.ackg). The third type is non-SYN that are FIN segments. Theses
segments have acceptable data if (k = s.ccorevd N @ = s.acks 4 1).

For s.p-triple,, the conditions are slightly different. First, there is no situation where
there are multiple different segments with messages from the server that the client may
accept after the server crashes or resets. This is because the client always initiates the com-
munication for a connection, and the TAQO test only happens at the server. Second, the client
only accepts the message on the segment if [ = s.cc_send. After the server crashes or resets,
the message may still be delivered if modes € {rec,reset,closed,listen, syn-rcvd}. If
the server is in any other mode, it means it has started a new incarnation with the client,
so the client will not accept messages from the previous incarnation. The basic three types
of segments for which this possible triple variable is derived is the same.

The fifth derived variable is the temporary message. The formal definition follows.

s.temp-msg =

~ | (s.temp-data,ok) if s.temp-data # null
€ otherwise

This derived variable is similar to the current message, in that it is a single message
paired with ok or it is the empty string. This variable is only defined for the server side,
and it is the pairing the message in temp-data with ok until the message is added to the

server’s receive buffer. After that temporary message becomes the empty string.

10.3 Invariants of 77CP"

As we did for the other simulation proofs in this thesis, we need to prove a set of invariants
on the reachable states of 77CP" in order to limit the states we need to consider for the
simulation proof. For 77CP, the set of synchronized states for the server side grows to
include the set of partially synchronized states. Thus, in the statement of the invariants the
set sync-states = {estb, fin-wait-1, fin-wait-2, close-wait, last-ack, timed-wait,
estb*, fin-waitl*, close-wait*, closing*, last-ack*}. We do not present the proofs

for these invariants, but the proofs are similar to the proofs in B.
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Invariants 10.7, 10.8, and 10.9 state some basic properties of sequence numbers, connec-

tion count numbers, and the sets estb-cc, and assoc.

Invariant 10.7

1. For all segments p € in-transit., sn. > sn(p).
2. For all segments p € in-transits., sns > sn(p).

3. For all segments p € in-transit.s, cc_send > cc_send(p). [

Invariant 10.8

1. If mode. # closed then cc_send = id..
2. If mode; € sync-states then cc_rcvd = id;.

3. If there exists a segment p € in-transit.s such that cc_send(p) = k, then k € used-id, U
{crash-id.}. ]

Invariant 10.9

1. For all i € NU {nil}, (4,nil) ¢ estb-cc.

2. For all j € NU{nil}, (nil,j) ¢ estb-cc.

3. For all i € NU {nil}, (¢,nil) ¢ assoc.

4. For all j € NU{nil}, (nil,j) ¢ assoc. [

Invariant 10.10 states that the values of some server side variables are determined by

the value of mode;.
Invariant 10.10

1. If modes € {listen, syn-rcvd} then rcv-buf, = e.

2. If mode, € {1isten,syn-rcvd} then msg; = null.

3. If modes € {1isten, syn-rcvd} then last-msgs = null.

4. If mode; € sync-states then temp-data = null. [ |
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Invariant 10.11 states conditions under which the id’s of the client and/or the server,
and the initial sequence number of the server, are not part of an assoc or an estb-cc pair.
Invariant 10.12 does the opposite, it states conditions under which we know the id’s of the
client and/or the server, and the initial sequence number of the server, are part of an assoc
or an estb-cc pair.

Invariant 10.11
1. If modes = listen and there exists a segment p € in-transit.s such that cc_send(p) >

cache_cc then (cc_send(p), cc_send(p)) ¢ assoc.
2. If mode, € {syn-sent, syn-sent*} then for all j, (id.,j) ¢ estb-cc.

3. If mode. € {syn-sent,syn-sent*} and there exists a segment p of the form (SYN,
ce_revd, sng, acks ) or (SYN, cc_revd, sns, acks, FIN)in in-transits. such that cc_revd(p) =

cc_send and ack(p) = sns + 1 then for all j, (id.,j) ¢ assoc.

4. If modes; = syn-rcvd A choose-isng then for all k, (k,isns) & estb-cc. [ ]

Invariant 10.12

1. If modes = syn-rcvd and there exists a segment p € in-transit.s such that cc_send(p) =

ce_revd A ack(p) = sng + 1, then (ce_send(p), isng) € estb-ce.

2. If mode. € sync-states or there exists a segment p of type (SYN, cc_revd, sns, acks,
msgs, ) or (SYN, ccorevd, sng, acks, msgs, FIN) with cc_rcvd(p) = ccsend then
(id.,id.) € assoc.

3. If modey € sync-states then (idy, ids) € assoc.

4. If (k,ids) € assoc and there exists j such that (k,j) € estb-cc then j = isn,. [ ]

Invariants 10.13 and 10.14 are about the open phase of the protocol. They basically say
that unless there is a crash or reset, the client and server are not out of synch.
Invariant 10.13
If modes; € sync-states A cc_send = cc_rcvd and there exists a non-SYN segment p €

in-transit,s with cc_send(p) = ccorcvd A ack(p) = sns + 1 then mode. ¢ {syn-sent,

syn-sent*}. ]
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Invariant 10.14
If mode. € {syn-sent,syn-sent*} and there exists a SYN segment p € in-transit;. such
that cc_rcvd(p) = cc_send Nack(p) = sn.4+1 A sn(p) = isn, then modes € {syn-rcvd, rec, reset}.

Invariant 10.15 states that if a host has started the close phase (indicated by its mode),
it must have received the signal to close from the user (rcvd-close. or rcvd-close, is true),

and it must have sent all the data it received from the user (the send buffers are empty).

Invariant 10.15
1. If mode. € {syn-sent*, fin-wait-1, fin-wait-2, closing, timed-wait, last-ack}

then send-buf . = € A rcvd-close, = true.

2. If modes; € {fin-wait-1, fin-waitl*, fin-wait-2, closing, closing#*, timed-wait,

last-ack, last-ackx} then send-buf, = ¢ A rcvd-closes = true. |

Invariants 10.16 and 10.17 are about the relationship between msg. and temp-data. They
state that in certain states msg. = temp-data. They are important because, in situations
where temp-data gets lost because of a crash or reset. They show that the message that
temp-data held may still be delivered.

Invariant 10.16
If temp-data # null Amsg. # null A((id.,isns) € estb-cc V(id.,id,) € assoc) Asn. < acks

then msg. = temp-data. [ |

Invariant 10.17
If mode, € {syn-sent, syn-sent*} A temp-data # null and there exists a SYN segment
p € in-transit,. such that ccorevd(p) = cc_send A ack(p) = sn. +1 A sn(p) = isns then

msg. = temp-data. [ |

Invariants 10.18, 10.19, and 10.20 state properties that are important for the situations
when a host crashes or resets. Informally, Invariant 10.18 says that if all the messages

received by a host has been passed to the user, then the last message passed to the user
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is the same as the last message sent by the sending host. Invariant 10.19, says that if all
the messages have not been passed to the user, then the message at the back of the receive
buffer is the same as the last message sent by the sending host. Invariant 10.20 says that if
there has not been a message passed to the user as yet, but the sender sent a message that
is received, then that message must still be on the receive buffer.
Invariant 10.18

1. If rev-buf . = € A last-msg, # null A msgs, # null A (id.,ids) € assoc A sng < ack.

then msg, = last-msg,.

2. If rev-buf, = € A last-msg, # null A msg. # null A (id,,id,) € assoc A sn. < acks

then msg. = last-msy,. [ |

Invariant 10.19
1. If rev-buf, # ¢ A msgs # null A (id.,ids) € assoc A sns < ack. then msg, =
last(rbuf,).

2. If rev-buf, # ¢ N msg. # null A (id.,ids) € assoc A sn. < acks then msgs =
last(rbufs). |

Invariant 10.20

1. If last-msg, = null A msgs # null A (id.,id,) € assocAsns < ack, then rcv-buf . # e.

2. If last-msg, = null A msg. # null A (id.,ids) € assocAsn. < ack, then rcv-buf ; # €.

Invariants 10.21, 10.22, and 10.23 deal with properties of messages at the hosts and on
segments. Invariant 10.21 states that if the message at a host is not null, and there is a
segment with the same sequence number as the host, then the segment must have the same
message as the host. Invariant 10.22 is another key invariant. It states that if two segments
on the same channel have the same sequence number and the messages on the segments
are not null, then they must have the same message. Invariant 10.23 states that segments
that cause the the value of the message variable on the segment to be added to the receive

buffer, contains valid messages. That is, they contain messages that are not null.
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Invariant 10.21

1. If msg. # null and there exists p € in-transit.; such that sn(p) = sn. then msg(p) =

msge.

2. If msgs # null and there exists p € in-transit,. such that sn(p) = sn, then msg(p) =

mMsgs. [ |

Invariant 10.22
1. If there exists segments p and ¢ on in-transit., such that sn(p) = sn(q) A msg(p) #

null A msg(q) # null then msg(p) = msg(q).

2. If there exists segments p and ¢ on in-transit,. such that sn(p) = sn(q) A msg(p) #

null A msg(q) # null then msg(p) = msg(q). |

Invariant 10.23

1. If mode, € {syn-rcvd}Usync-states and there exists p € in-transit.; such that sn(p) =
acks then msg(p) # null.

2. If mode. € sync-states and there exists p € in-transits. such that sn(p) = ack. then

msg(p) # null. |

Invariant 10.24 states that whenever the client has an acknowledgment number, it is
greater than or equal to the acknowledgment number of any segment on the out going
channel of the client, and Invariant 10.25 states that under certain conditions the acknowl-
edgment number at the server is always bigger than the acknowledgment number of any
segment on the out going channel of the server.

Invariant 10.24

If ack. € N then for all p € in-transit.s, ack. > ack(p). ]

Invariant 10.25
If mode. € {syn-sent, syn-sent*} A (id.,ids) € assoc N\ modes ¢ {rec,reset} then for

all segments p € in-transit,., acks > ack(p). ]
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Invariant 10.26 expresses a key correctness property. It states that sequence numbers
do not get changed until the data sent with that sequence number is acknowledged.
Invariant 10.26

1. If there exists a SYN segment p € in-transit,s such that cc_send(p) = cc_send and

cc_send(p) > cache_cc then sn, = sn(p).

2. If mode,; € {syn-rcvd} U sync-states A mode, € {rec,reset} U sync-states and there
exists p € in-transit,, such that (cc_send(p), isns) € estb-cc N cc_send(p) = cc_rcvd A

sn(p) > acks, then sn. = sn(p).

3. If mode. € sync-states A (isn., isns) € assoc and there exists p € in-transits. such that

sn(p) > ack., then sng = sn(p). |

Invariant 10.27 states that if a host is in a mode that indicates it has received a FIN
segment, and its id is paired with the other host’s id, then that other host must be in a
mode that indicates that it sent the FIN segment. That is, if a host accepts a FIN segment,

it must be a legitimate FIN segment for the current incarnation of the connection.

Invariant 10.27
1. If mode. € {close-wait,closing, last-ack, timed-wait} A mode, ¢ {rec,reset}
A (id.,ids) € assoc then modes € {fin-wait-1, fin-waitl*, fin-wait-2, closing,

closing*, timed-wait, last-ack, last-ack#*}.

2. If modes € {close-wait, close-wait*, closing, closing*, last-ack, last-ackx,
timed-wait} A mode. € {rec,reset} A (id.,isns) € estb-cc V (id.,ids) € assoc then
mode. € {syn-sent*, fin-wait-1, fin-wait-2, closing, timed-wait, last-ack}.

Invariants 10.28 and 10.29 are similar. Invariant 10.28 states that when a host is in a
mode that indicates that it received a FIN segment, then if the other host has not closed
since sending the FIN segment, its sequence number is less than the acknowledgment number
of the host that received the FIN segment. Invariant 10.29 states that in the same situation

as Invariant 10.28, but where the sending host may have closed, the sequence number on
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any sent segment is less than the acknowledgment number of the host that received the FIN
segment.
Invariant 10.28

1. If mode. € {close-wait,closing, last-ack, timed-wait} A mode, ¢ {rec,reset}

A (id.,ids) € assoc then sngs < ack..

2. If modes € {close-wait, close-wait*, closing, closing*, last-ack, last-ackx,
timed-wait} Amode. ¢ {rec,reset} A (id.,isns) € estb-cc V (id.,ids) € assoc then

sne < acks. [ ]

Invariant 10.29
1. If mode, € {close-wait,closing,last-ack,timed-wait} and there exists [ such

that (id.,!) € assoc then for all non-SYN segments p € in-transits., sn(p) < ack..

2. If modes € {close-wait, close-wait*, closing, closing*, last-ack, last-ackx,
timed-wait} and there exists k, such that (k,isns) € estb-cc V (k,id,) € assoc then

for all non-SYN segments p € in-transit., sn(p) < ack.. [ |

Invariant 10.30 expresses a property that is important for the p-triple.(k) and p-triple
derived variables. The invariant states that when a host receives a segment that may have
acceptable data (sn(p) > ack. or sn(p) > acks), then all other segments ¢ on the channel
have sn(q) < sn(p). This means that if the message was a part of a possible triple, the
set becomes empty after this message is received because when the segment is received the
acknowledgment number of the receiving host is set to sn(p) + 1.

Invariant 10.30

1. If mode. € {syn-sent,syn-sent*} and there exists j such that (id.,j) € assoc and

there exists a SYN segment p € in-transity, such that cc_rcvd(p) = cc_send then for

all segments ¢ € in-transits, such that cc_rcvd(q) = cc_send, sn(q) < sn(p).

2. If mode. € sync-states and there exists j such that (id.,7) € assoc and there exists
a non-SYN segment p € in-transits. such that cc_rcvd(p) = ccsend N sn(p) > ack,

then for all non-SYN segments ¢ € in-transits. sn(q) < sn(p).
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3. If modes € {syn-rcvd}Usync-states and there exists ¢, such that ¢ = isn? A (¢, isns) €
estb-pairs and there exists a non-SYN segment p € in-transit., such that sn(p) > acks,,

then for all non-SYN segments ¢ € in-transit.s sn(q) < sn(p). |

Invariants 10.31 and 10.32 state that when a host closes from mode last-ack or
last-ack* its receive buffer is empty. Invariant 10.31 is for the situation where the other
host has not closed, and Invariant 10.32 is for the situation where the other hosts might
have closed after the connection is formed.

Invariant 10.31

1. If mode. = last-ack A modes € {rec,reset} A (id.,ids) € assoc then rcv-buf . = e.

2. If mode; € {last-ack,last-ack*} A mode. ¢ {rec,reset} A (id.,isns) € estb-cc V

(id.,1ds) € assoc then rcv-buf, = ¢. |

Invariant 10.32

1. If mode. = last-ack and there exists [ such that (id.,[) € assoc then rcv-buf, = e.

2. If mode; € {last-ack,last-ack*} and there exists k, such that (k,isns) € estb-cc V

(k,id,) € assoc then rev-buf ; = e. |

The final invariant, Invariant 10.33, states that if a host is in mode that indicates that
it received a FIN segment, then the other host must either have the flag set that indicates
it received a close signal from its user, or if the flag is not set to true, it must be because

the host closed after sending the FIN segment.

Invariant 10.33
1. If mode, € {close-wait,closing,last-ack,timed-wait} and there exists [ such

that (id.,l) € assoc then rcvd-closes; = true Vid, # [.

2. If modes € {close-wait, close-wait*, closing, closing*, last-ack, last-ackx,
timed-wait} and there exists k such that (k,isns) € estb-ccV (k,id.) € assoc then

revd-close. = true Vid. # k. [ |
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The conjunction of all the above invariants is itself an invariant, and we call this invariant

10.4 The simulation proof

In this section we define a mapping from states of 77CP" to states of WDP, and then prove

that it is a timed refinement mapping with respect to invariant Iy p and Iryp.

10.4.1 The refinement mapping

We define a function Rrrwp states(’TTCPh) to states(WDP ).

Definition 10.2 (Refinement Mapping From 77CP" to WDP)
For our mapping the CID and SID are instantiated by the set of non-negative integers. If
s € states(TTCP") then define Ripyp to be the state u € states(WD?) such that:

1. w.now = s.now

2. w.id. = s.id.
w.ids = s.1d,

3. u.choose-sid = (s.modes € {listen, syn-rcvd})

4. w.recc = (s.mode. = rec)
u.recs = (s.mode, = rec)

5. w.abrt. = (s.mode. = reset)
w.abrt. = (s.mode; = reset)

6. w.used-id. = s.used-id.
w.used-ids; = s.used-id,

7. w.crash-id. = s.crash-id.
w.crash-id. = s.crash-id,

8. w.assoc = s.assoc

9. w.last-msg, = s.last-msg,
w.last-msg, = s.last-msg,

10. w.mode. = active if s.rcvd-close. = false
= inactive if s.rcvd-close. = true V mode. = closed

w.mode. = active if s.rcvd-closes = false
= inactive if s.rcvd-close; = trueV mode. = closed

11, w.g-stat, (k) = 1live if (s.ide = kA VY j(k,j) & s.estb-cc A (k, k) & s.assoc) V ((k, k) €
s.assocA(s.ids = kVs.id. = k))V((k, s.isn) € s.estb-cc As.ccorcod =
k) Vv (k € s.sent-tao-cc A (k, k) € s.assoc)

dead otherwise

w.g-stats.(I) = 1live if (s.ids =1)V ((s.id.,1) € s.assoc)

dead otherwise
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12, w.queuecs(k) = € if ((s.ide £ k) A

(Vg (k,j) & s.estb-cc N (k,k) & s.assoc) V
((k, k) € s.assoc Ns.ids # k) V

((k,g) € s.estb-cc N\ s.isng # j)) V

(

(

s.mode; € {rec,reset} A

s.mode. € {rec,reset} V s.id. # k)) (A)

= concatenation of: if (s.ide = k) A

e s.cur-msg, ((V g (k,j) & s.estb-cc A (k, k) & s.assoc) V
o(s.send-buf, x ok) (s. modec ¢ {rec,reset}) A
((k,g) € s.estb-cc A (s.isn. # j V s.modes € {rec,reset}))
V ((k, k) € s.assoc A (s.id: #kV s.mode; € {rec,reset}))
()
= concatenation of: if (s.1 k) A (s.mode. & {rec,reset}) A
o s.temp-msg ((k,s isns ) € s.estb-cc V (k, s.id;) € s.assoc))
o(s.rcv-buf, X ok) A (s.mode. & {rec,reset}) (©)
es.cur-msg,
o(s.send-buf, x ok)
= concatenation of: if (s.id. # k V s.mode. € {rec,reset}) A
o s.temp-msg ((k, s.isn.) € s.estb-cc vV (k,s.id.) € s.assoc)
o(s.rcv-buf, X ok) A (s.mode. & {rec,reset}) (D)
o(data(s.p-triple (k))
x marked)
= (data(s.p-triple (k)) if (s.id. # k V s.mode. € {rec,reset}) A
x marked) ((k, s.isn.) & s.estb-cc N (k,s.id.) & s.assoc) A
(k € s.sent-tao-cc ANk > s.cache_cc) (E)
13, wu.queues(l) = ¢ f(s.ids #UN (s.idc, 1) & s.assoc) V
(s.mode. € {rec,reset} A
(s.modes € {rec,reset} V s.id. # 1)) (A)
= concatenation of: if (s.ide =) A ((I,1) & s.assoc) V
es.cur-msg, (s.modes & {rec,reset} A (1) € s.assoc A
o(s.send-buf, x ok) (s.mode. € {rec,reset} V s.id. #1))) (B)
= concatenation of: if (s.ide = ) A ((s.ide, 1) € s.assoc) A (s.mode. &
o(s.rcv-buf, x ok) {rec,reset}) A (s.mode. & {rec,reset}) (©)
es.cur-msg,
o(s.send-buf, x ok)
= concatenation of: if (s.ide #1V s.mode, € {rec,reset}) A (s.id., 1) €
o(s.rcv-buf, x ok) s.assoc A s.mode. & {rec,reset} (D)
o(data(s.p-triple,)
x marked)

We now present some intuition behind the mapping Rirwp. The mapping is similar to
the refinement mapping R,y presented in Chapter 7. Most of the equations in the mapping
are straightforward. The interesting cases are for w.g-stat,  (k), u.q-stat (1), u.queue ,(k),
and u.queue . (1).

There are four sets of states of 77CP" for which we want u.g-stat (k) to be live, in
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the corresponding set of states of WDP. These sets are not disjoint. The first set of states
occurs when the client opens and assigns id. the value k. This corresponds to the situation
where the client first opens in WD? and chooses k from CID and makes the queue indexed
by k live. This is before k is paired with any isn; value and added to estb-cc or paired
with itself and added to assoc. Once k has been paired with itself and added to assoc; that
is, (k, k) € assoc, then if the client still has id. = k, it may still send data for incarnation
k., or if the server has id; = k, it may still receive data for this incarnation. Therefore,
in this situation the abstract queue is still 1ive if id. = kV id; = k. The third set of
states occur when (k,s.isn,) € s.estb-cc N k = s.cc_rcvd, this condition may be true for
the second set of states, but there are cases where this condition is true and the second is
not and vice versa. This set of states represents the situation where the second phase of the
three-way handshake has been successful, and the server may accept data from the client,
even if s.id. # k. The fourth set of states are states where the client sends a SYN segment
for TAO (k € sent-tao-cc), but the segment has not yet been received ((k, k) ¢ assoc). The

data on the abstract queues in this situation may or may not be deliverable.

The conditions for u.g-stat,.(I) to be 1ive are much simpler. They are the symmetric
situation to the first two set of cases for u.g-stat (k). That is, when the server first assigns
1ds the value [, or if [ is paired with the current id of the client. We have these simpler
conditions because the server can only send messages for incarnation [ if it has id. = [, and

the client only accepts data for this incarnation if (s.id., ) € s.assoc.

For u.queue . (k), there are five cases for the mapping of variables of T77CP" to this
variable. The first case corresponds to the states that map the status of the abstract queue
to dead, or if the server has crash or reset, and the client has also crashed or reset or is
closed after the crash or reset, or has reopened after the crash or reset (id. # k). For this

case we want the abstract queue to be empty.

The second case, (B), corresponds to two different sets of states. The first set of states
occurs when the client has just open and its id. value is not part of an assoc or estb-cc pair.
In this situation, the abstract queue corresponds to just send buffer of the client, and the
current message the client might be sending. The second set of states where the abstract

queue again corresponds to the concatenation of cur-msg. and (send-buf . X ok) occurs when
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the server crashes or resets after id; was paired with id., or its isng value was paired with
id.. In this situation, any part of the abstract queue that is represented by variables at the
server are no longer deliverable, so these variables are lost. Thus, the abstract queue is only
represent by the variables at the client. This is the situation where cur-msg. may go from
being empty to having a message after the server crashes or resets that we discussed in the

presentation on the cur-msg. derived variable in Section 10.2.2.

Case (C) is the normal message delivery situation. That is, the client has not crashed,
reset or closed since it opened and assigned id. value k for the incarnation, so (s.id. =
k)N s.mode. ¢ {rec,reset}. Also the client has formed an association pair with the id
of the server, (k, s.id,) € s.assoc, or is about form such a pair, (k, s.isns) € s.estb-cc, and
the server has not crashed or reset. For this situation, data that corresponds to parts of
the abstract queue may be in the temp-data, the receive buffer at the server, msg., and
the send buffer of the client. If the server crashes or resets in this situation, the mapping

reverts to case (B). If the client crashes or resets, we get case (D).

For case (D), since the client has crashed or reset after being in case (C), the parts of the
abstract queue that corresponded to variables on the client side are lost. However, the msg.
variable in cur-msg. may be on a segment on the channel that might still get delivered.
This message is data(p-triple.(k)). However, because there is a possibility it might not be

delivered, it is paired with marked.

The fifth and final case, (E), is the set of states where a crash or reset occurs while
TTCP" is in the first set of states of case (B). This is also the situation where we get
multiple possible triple variables for different incarnations that may be delivered to the
server. These queues contain at most one element, and it is marked because it may not get

delivered.

The four cases for the mapping to u.queue (1) are basically the symmetric counterparts
to the first four cases for the the mapping to w.queue_ (k). The fact that the conditions
are simpler reflect the fact the conditions for u.queue, (I) being 1ive are simpler than the
conditions for w.queue (k) being live. They also reflect the fact and that there is no
temporary data on the client side, and that there is only a one possible triple variable in

any given state.
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10.4.2 Simulation of steps

In this section we prove that the mapping Rirwp defined in the previous section is indeed a
timed refinement mapping from TTCP" to WDP with respect to Iyyp and Ir7. This claim

is stated as the following lemma.

Lemma 10.3
TTCP" <L, WDP via Rypwo.

Proof: We prove this lemma by showing that the two cases of Definition 3.11 are satisfied.
Base Case
In the start state so of 77CP" we have sg.mode. = sg.mode, = closed, sg.now = 0, and

sp.assoc = (). Tt is clear that Rrrwp(so) is the unique start state ug of WDP.

Inductive Case

Assume (s, a,s') € Steps(TTCP"). Below we consider cases based on a and for each case
we define a finite execution fragment a of 5 such that fstate(a) = Ropwp(s), Istate(a) =
Ropwo(s'), and t-trace(a) = t-trace(s,a,s’). For the steps of the proof below we do not
include the time of occurrence and last time in the timed traces of (s,a,s’) or a, so as
not to clutter the proof. However, it is clear that since the time-passage steps in WD?
are arbitrary, if we show trace(a) = trace(s,a,s’) then t-trace(a) = t-trace(s,a,s’). We
use u and v’ to denote Ryrwp(s) and Rrprwp(s’) respectively. We do not show the proof of
correspondence for every action a of 77CP" becasue some of proofs are very similar to the
proofs of correspondence for similar actions of 7CP" presented in Chapter 7, and others
are very similar to the proofs of some to the steps we do show. We focus on the steps that
have proofs of correspondence that depend on features of specification WD that differ from
specification D.

send-msg.(open, m, close), a = passive-open, and a = send-msg.(open, m, close).

The proof of correspondence for these steps is straightforward, and is similar to the proof

of correspondence for the same steps in the proof of Lemma 7.1.

a = send-seg.s(SYN, cc_send, sn., msg.).

The proof of correspondence for this step is straightforward.
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a = receive-seqg.s(SYN, cc_send, sn., msg.).

Let p be the segment received in this step, and let cc_send(p) = k. We have two cases
based on whether s.modes; = listen or not. If s.mode; # listen then a has no effect on
the state of the server. Therefore, the corresonding timed execution fragment o of WD?
is (u, A, u') the empty step. If s.mode; = listen then there are two subcases based on

whether & > cache_cc.

1. If k > cache_cc then o = (u, choose-server-id(j), v, make-assoc(i,j), u", drop.(,
J, h, 1), v') where both ¢ and j are equal to k, and «”, drop.(I, J, h, 1), u’') rep-
resents a sequence of steps. The sequence of steps is of the form «"”, drop.(I, J, h,
), ', drop.(I’, J°, h°, '), ..., w’). There is a drop. action for every h such that
h <k, (h,h) ¢ s.assoc, and s.p-triple.(h) # (. For each h, the corresponding [
= dom(queue.s(h), J = 0, and [ :€ n. The drop action is enabled for these queues

because queues only contain one element, and the element is marked.

Both «, and (s,a,s’) have the empty trace. We need to show that a is enabled
in state u. Since s.mode; = listen, we know that u.choose-sid = true, so the
choose-server-id(j) action is enabled in state u. By Invariant 10.8 we know that in
k € s.used-id. U {s.crash-id.}, so in the corresponding state w, ¢ € w.used-id. U
{u.crash-id.}. After the choose-server-id(j) action we know j € u”.used-id;. From
Invariant 10.11 we know that in state v,V o (i,2) & u".assoc AV y (y,J) & u'.assoc.
Therefore the make-assoc(i,j) action is enabled. We now need to show that «’ is the
correct corresponding state. For most variables it is clear that we get the correct
correspondence. The interesting case is for u'.queue . (k) if msg(p) # null. Since by
Invariant 10.9 we know that in state s, (k,s.isns) € s.estb-cc N (k,s.id,) ¢ s.assoc,
we know that u.queue _ (k) falls into either case (B) or (E) of the mapping to abstract
queues. After step (s,a,s’) the rule for the mapping changes from either (B) to (C)
or (E) to (D). For either case, since a does not change the abstract queues, we need
to show that u.queue (k) = u'.queue  (k), as defined by the Rypwp. For the states
where w.queue (k) fits into case (B), we know that s.id. = k. Since s.rcv-buf; = «,
s'rev-buf ;. = s.rev-buf ;-msg(p), and s.temp-data = s'.temp-data = null, to show

that w.queue, (k) = u'.queue, . (k), we need to show that msg(p) = s.cur-msg. and
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that s'.cur-msg,. = €. Since after this step, we know s'.cesend = s'.cache_cc and by
Invariant 10.26 we know that s.sn. = sn(p); thus, s’.sn. < §'.acks, so §'.cur-msg, = e.

Invariant 10.21 tells us that if s.msg. # null and sn(p) = s.sn., then msg(p) = s.msg..

For the states where u.queue_ (k) fits into case (E), after step (s, a,s'), since (k, k) €
¢ .assoc, we know that ¢ .p-triple (k) = 0, and since s.rcv-buf, = €, §.rcv-buf, =
s.rev-buf ;-msg(p), and s.temp-data = s'.temp-data = null, we clearly have u.queue (k) =
u'.queue (k) for this case. For u.queue . ,(h) where h < k, that also fits into case (E),
after (s,a,s"), s’.p-triple (h) = (). Since the single element in these queues is dropped

after step a, the mapping is preserved.

2. If k < cache_cc then a = (u, drop.(1, J, h,1), v') . For this case, after step (s,a,s’),
s'.mode, = syn-rcvd, cache_cc = 0o, and s'.temp-data = msg(p). Again ", drop. (I,
J, h, 1), u') represents a sequence of steps. There is a drop. action for every h
such that (h,h) € s.assoc, and s.p-triple.(h) # (. For each h, the corresponding [
= dom(queue.s(h), J = 0, and [ :€ n. The drop action is enabled for these queues
because the queues only contain one element, and that element is marked. If msg(p) #
null, then this change may affect the mapping to w.queue . (i), where s.id. = 1.
However, from Invariant 10.9 we know (¢, s.isns) ¢ s.estb-cc, so the mapping is not

affected.

a = send-segs.(SYN, cc_rcvd, sng, acks).

The proof of correspondence for this step is straightforward.

a = receive-segs.(SYN, cc_revd, sns, acks).

For this step the the corresponding a = (u,A,u’). Let the received segment be p. If
s.mode. € {syn-sent,syn-sent*}, cc_rcvd(p) = s.cc_send, and ack(p) = s.sn. + 1, this
step changes mode. to estb or fin-wait-1, and ack. to sn(p) 4+ 1. It also assigns msg.
to null, and adds (id., sn(p)) to estb-cc. These changes affect the mapping to queue ,(k),
where k = id., because after the these changes, we may have case (C) of the mapping,
where in state s, we have the first set of states of case (B). We only have the first set of
states for case (B) because from Invariant 10.11 we know that s.id. is not yet part of an

association pair nor is it part of an estb-cc pair. To show that the mapping is preserved after
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a and a, we need to show that u.queue (k) = v'.queue (k). Since s’.msg. = null we know
¢ .cur-msg, is empty, so to show u.queue (k) = u'.queue (k) it is sufficient to show that
s'.rev-buf , is empty, and that if s.temp-msg, is not empty, then s.msg. = s'.temp-data. If we
do have case (C) of the mapping to queue_ (k) then by Invariant 10.14 we know s'.mode; =
syn-rcvd. If s’.mode; = syn-rcvd, then Invariant 10.10 tells us that s’.rcv-buf, = ¢. From
Invariant 10.17 we know that s.msg. = s.temp-data, and since temp-data does not change

in this step, we know s.msg. = s'.temp-data. Thus, u.queue_ (k) = v'.queue, (k).

a = prepare-ms(..

The proof of correspondence of actions can be shown in much the same way as was for the

same action in T%.

a = prepare-msgs.

The proof of correspondence of actions can be shown in much the same way as was for the

same action in T".

a = send-segs.(SYN, cc_rcvd, sng, acks, msgs).

The proof of correspondence for this step is straightforward.

a = receive-segs.(SYN, cc_revd, sns, acks, msgs ).

Let p be the received segment, and let cc_rcvd(p) = k. For this step we have two cases.

1. The first case occurs if s.mode. € {syn-sent,syn-sent*}, s.msg. # null, and
ccrevd(p) = s.cc_send, and state s is in the second set of states for case (B) of
the mapping to w.queue (k). That is, if (k,k) € s.assoc A (s.ids # k V s.modes €
{rec,reset}). For this case a = (u, drops(I, J, |, k), v'), were I =, J = {1}, and
l :€ N. Step (s,a,s’) changes mode. to estb or fin-wait-1, ack. to sn(p) + 1, and
msg. to null. Thus, cur-msg, goes from being (msg.,marked) to being the empty
queue. However, since in «, the first element of u.queue (k) gets dropped, we get the
right corresponding state. If msg(p) # null, then, s'.rcv-buf. = s.rcv-buf -msg(p).
This change may affect case (D) of the mapping to u.queue, (k). Since this queue
does not change in step «a, we need to show that in state u’ as defined by Rypwp,
u'.queue, (k) = u.queue, (k). This is easy to see, because by definition of s.p-triple,,

msg(p) = data(s.p-triple,). Also by definition and Invariant 10.30, since s'.mode. €
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{estb,fin-wait-1} and s'.ack. = sn(p) + 1, s'.p-triple, = €. Thus, v'.queue (k) =

u.queueg (k).

2. The second case is for all other states. For these states the corresponding o = (u, A, v').
Thus, if state s is not in the set of states of case one, then we know s.id, = k. If
s.mode. € {syn-sent,syn-sentx}, cc_rcvd(p) = s.cc_send, then this step changes
mode. to estb or fin-wait-1, ack. to sn(p) + 1, and msg, to null, and if msg(p) #
null it gets concatenated to the end of rcv-buf.. From Invariant 10.12 we know
that for these states, (k,k) € s.assoc. We also know that if we are not in the set
of states for case one, then s.id, = k. Therefore, we have case (C) of the mapping
to u.queue (k). Invariant 10.26 tells us that sn; = sn(p). Therefore, the change of
acks means s.cur-msg, is (s.msgs, ok) and s'.cur-msg, is empty. Invariant 10.21 tells
us that if s.msgs # null and sn(p) = s.sn,, then msg(p) = s.msgs. Therefore, since
§rev-buf ; = s.rev-buf -msg(p), u.queue, (k) = u'.queue, (k). The change of msg. to
null in this step may also affect the mapping to u.queue_,(k) for case (C), since it
may affect cur-msg,. However, for states other than the set of states of case one of this
proof of correspondence, we know by Invariant 10.25 that s.acks > ack(p). Therefore,
since ack(p) = s.sns + 1, we know that s.cur-msg, = €. Thus, the change of msg. to

null does not affect the mapping for this queue.

a = send-seg.s(cc_send, sn., ack., msg.).

The proof of correspondence for this step is straightforward.

a = receive-seq.s(cc_send, sn., ack., msg.).

Let p be the segment received in this action, and let cc_send(p) = k. We have several cases.

1. The first case is if s.mode, = rec V (s.mode; = syn-rcvd A(cc_send(p) # s.ccorcvd V
s.ack. # s.sns+ 1))V s.modes; € {closed,listen} . For this case the corresponding

a is the empty step. It is easy to see that we get the correct correspondence of states.

2. Case two occurs if s.mode; = syn-rcvd, ack(p) = s.sns+ 1, and (k, k) ¢ s.assoc, then
the corresponding a of WDP? is (u, choose-server-id(j), v, make-assoc(i,j), v') where

both ¢ and j are equal to k. This case is similar to case two of of the step with a
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= receive-seg.s(SYN, cc_send, sn., ack., msg.). From Invariant 10.10 we know that
for this case s.msg, = null, so cur-msg, is not affected by this step for this case.
Thus, the interesting part of the proof of correspondence is show that u.queue (k) =
u'.queue (k), as defined by the Ripwp. The mapping for this queue is affected if
s.temp-data # null and/or sn(p) = s.acks. If s.temp-data # null, it is concatenated
to s.rcv-buf ; and then assigned null. If sn(p) = s.ack, then msg(p) is concatenated to
s.rev-buf ; and acks is incremented. These changes affect the mapping of u.queue (k)
for cases, (C) and (D). Cases (A), (B) and (E) do not apply here because we know by

Invariant 10.12 that (k, isn,) € estb-cc.

For case (C), if s.temp-data # null and sn(p) # s.acks, it is easy to see that the
mapping is preserved, because from Invariant 10.10 we know that s.rcv-buf, = e.
Therefore, since for this stituation s.temp-data is concatenated to s.rcv-buf ., and then
assigned null, we get the correct mapping. If sn(p) = s.acks, then since s'.acks =
s.acks+1, s.cur-msg,.. could go from being (s.msg., ok) to being empty. It is easy to see
that s.temp-msg is handled in the right way whether it is empty or not. If we are in case
(C), then s.id. = k. Invariant 10.26 tells us that sn. = sn(p). Therefore, the change
of acks; means s.cur-msg,. is (s.msg., ok) and §'.cur-msg, is empty. Invariant 10.21
tells us that if s.msg. # null and sn(p) = s.sn., then msg(p) = s.msg.. Therefore,

since §'.rcv-buf ; = s.rcv-buf -msg(p), u.queuve (k) = v’ .queue (k).

For case (D), Invariant 10.30 tells us that there are no other segments on the channel
that has sequence number greater than sn(p). Therefore, the change in ack, means
s.p-triple (k) is {(k, msg(p),sn(p))} and &' .p-triple (k) is the empty set. However,
as for case (C), since s'.rcv-buf, = s.rcv-buf ;-msg(p) and Invariant 10.22 tells us
that any segment with sequence number sn(p) and connection count k& must have
the same message or the message is null. However, Invariant 10.23 tells us that any
segment with sequence number sn(p) has a message that is not null, so u.queue (k) =

u'.queue . (k).

. The third case is the same as the second case except with (k, k) € s.assoc. For this

case a = (u, choose-server-id(j), u'). The proof of correspondence is essentially the
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same as for case two.

4. The fourth case occurs if s.mode, € {last-ack,last-ack*} and ack(p) = sn, + 1.

We futher divide this case into two subcases.

(a) The first subcase occurs if (s.msg; = null V (s.mode. € {rec,reset} As.id, =
s.ids). This condition means that either s.cur-msg, = €, or the second set of
states for case (B) of the mapping to u.queue,, is not include in this subcase.
The reason why be have the two subcases becomes clear when we discuss the
second subcase, which is defined by the negation of the condition that defines
this subcase. For this subcase «a is (u, set-nils, u'). Clearly a and « both have
the empty trace. We must show that set-nil; is enabled in state u of WDP. Since
s.modes € {last-ack,last-ack*}, from our mapping we know u.id; # nil, and
from Invariant 10.15 we know that u.mode; = inactive. The third part of the
precondition requires that 3 ¢ s.t. (¢, u.ids) € wu.assoc. From Invariant 10.8 we
know s.id; = s.cc_revd, and from Invariant 10.12 we know that since s.mode; €
{last-ack,last-ack*} and k = cc_rcvd, then (k,s.id;) € s.assoc, so that part

of the precondition holds for the corresponding state u.

The fourth part of the precondition requires u.queue (k) to be empty. We only
need to show this for cases (C) and (D) of the mapping to u.queue_ (k) because
we know that (k,s.ids) € s.assoc, which rules out cases (A) and (E). From
Invariant 10.12 we know from that if there exists j, such that (k,j) € s.estb-cc,
then j = s.isns, which along with the fact that (k, s.id;) € s.assoc and s.mode; €

{last-ack, last-ack#}, rules out case (B).

We first examine case (C). Recall that the states for this case are states where
(s.id. = k) A (s.mode. ¢ {rec,reset}) A ((k,s.isns) € s.estb-cc V (k,s.id,) €
s.assoc)) N (s.mode; ¢ {rec,reset}). To show that this queue is empty,
we need to show that s.send-buf,, s.cur-msg,, s.rcv-buf,, and s.temp-msg are
all empty. Invariant 10.10 tells us that s.temp-msg is empty. If s.mode; =
last-ack, and w.queue (k) is defined for case (C) then Invariant 10.27 tells us

that s.mode. € {syn-sent*, fin-wait-1, fin-wait-2, closing, timed-wait,
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last-ack}, which coupled with Invariant 10.15 means s.send-buf,. is empty.
From Invariant 10.28 we know that that s.sn. < s.acks, which means s.cur-msg,
is empty. Finally, Invariant 10.31 indicates that s.rcv-buf, is empty. Therefore,

u.queue, (k) is empty.

Case (D) of the mapping to w.queue_ (¢) occurs when (s.id. # k V s.mode. €
{rec,reset}) A ((k,s.isns) € s.estb-cc V (k,s.ids) € s.assoc) A (s.mode; ¢
{rec,reset}) . To show that this queue is empty, we need to show that s.tmsg,
s.p-triple (k) and s.rcv-buf ; are empty. From Invariant 10.10 we know s.temp-msg
is empty. From Invariant 10.29 we that for all segments ¢ € s.in-transit.s,
sn(q) < s.acks which means s.p-triple (i) is empty, and from Invariant 10.32

we know that s.rev-buf, is also empty.

The fifth and final part of the precondition for the set-nil; action in WD? states
that (w.mode, = inactive V wu.id. # ). From Invariant 10.33 we know this

condition is true in state u.

After step (s,a,s’), s'.mode; = closed, and after o, «'.id. = nil. Therefore,
the mapping is preserved for this variable. If u.g-stat,, = live and u.id. # @
then u'.queue  (u.id;) = € and u'.¢-stat,, = dead. These values are the correct
corresponding values as defined by Rrrwp. For this case, after step (s, a,s’),
s'.mode; = closed, §'.acks, s'.msgs and s'.send-buf, are all undefined. Since
we know from Invariant 10.12 that (s.id,,s.ids) € s.assoc, only cases (B) and
(C) for the mapping to of w.queue, (), where if s.id, = | may be affected.
However, condition (s.msgs = null V (s.mode. ¢ {rec,reset} A s.id. = s.id;)
which we assume holds for this subcase means that if we have case (B) then
s.cur-msg, = €. After this step u'.queue, (l) falls under case (A) which means
it should be empty. From Invariant 10.15 we know s.send-buf, = ¢, so making
the buffer undefined in state s’ does not affect the mapping to queue, () for this
case. Also since s.cur-msg, = € we know u'.queue, (1) is empty. For case (C)
of the mapping, after the step we have case (D). We know from Invariant 10.15
that s.send-buf, = e. From Invariant 10.24 we know that ack. > ack(p), and

since ack(p) = s.sns + 1, we know that for case (C) of the mapping u.queue, (1),
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s.cur-msg, = ¢. Thus, in order to show that the mapping is preserved after
(s,a,s) for this situation, we only need to show that s'.p-triple, is empty. Since
ack(p) = s.sng + 1 and from Invariant 10.24 we know that ack, > ack(p) and
from Invariant 10.7 we know that for all p € in-transits. sns > sn(p), we know
s .p-triple, is the empty set, so the mapping to queue, (1) is preseverved for this

case.

(b) The second subcase occurs when (s.msgs # null A (s.mode. € {rec,reset} V
s.ad. # s.idg). For this subcase a is (u, drops(1, J, Lk), u", set-nils, v’'). The
proof of correspondence for this subcase is exactly the same as the proof of cor-
respondence for the previous subcase, except in how we show that the mapping
is preserved for case (B) for the mapping to u.queue (). For case (B) the con-
ditions for this subcase define a situation where s.cur-msg, = (s.msgs,marked).
Thus, for this subcase I = @, J = {1}, and k is any arbitrary element of N.
We know the drops (I, J, |, k) action is enabled in state u, because s.cur-msg,
corresponds to the first element of u.queue, (1), and it is marked. From Invari-
ant 10.15 we know s.send-buf, = €, so after a, u'.queue, (1) is empty, which is

the correct state as defined by Rrrwo.

5. The fifth and final case is for all other states s. Like the previous case, we also divide
this case into two subcases based on whether ack(p) = s.sng + 1 A s.cur-msg, =
(s.msgs,marked) or not. If ack(p) = s.sns + 1, we know by Invariant 10.24 that
s.ack. > s.sng. We also know by Invariant 10.13 that if s.cc_send = s.cc_rcvd then
s.mode. ¢ {syn-sent, syn-sent*}. Therefore, by definition, s.cur-msg, = €, or

s.cur-msg, = (s.msgs,marked).

(a) For the first subcase ack(p) # s.sns+1V s.cur-msg, # (s.msgs,marked). For this
subcase the corresponding a = (u, A, u’). For this case, acks and rcv-buf, may
change as in case two, except we know from Invariant 10.10 that temp-data =
null. Also mode; may change from fin-wait-1 or fin-waitl* to fin-wait-2,
or from closing or closing* to timed-wait. The proof that the mapping for

u.queue, (k) is preserved is the same as case two, and the possible changes to
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modes in TTCP" do not affect its mapping to mode, in WDP.

(b) For the second subcase ack(p) = s.sng + 1 A s.cur-msg, = (s.msgs,marked).
For this subcase o = (u, drops(I, J, Lk), v'). Here I = 0, J = {1}, and k is
any arbitrary element of N. We know the drop, (I, J, I, k) action is enabled in
state u, because s.cur-msg, corresponds to the first element of u.queue,.(!), and
it is marked. The proof of correspondence is like the previous subcase, but for
this subcase u.queue (1) is affected by the step since msg, becomes null, which
means s'.cur-msg, = ¢. However, the fact that it is dropped by step « preserves

the mapping.

a = send-segs.(cc_rcvd, sns, acks, msgs ).

The proof of correspondence for this step is straightforward.

a = receive-segs.(cc_rcvd, sng, acks, msgs).

Let p be the segment received in this action, and let cc_rcvd(p) = I. This step is not quite
symmetric to the step with a = receive-seg.s(cc_send, sn., ack., msg.), because the client
is not assigned an id, value in this step, nor is a pair added to assoc in this step. However,
the effect on the mapping of the queues when a valid message is received, and when this
segment causes the client to close, is basically symmetric to the situtations on the server
side when the receive-seg.s(cc_send, sn., ack., msg.) action causes a valid message to be
delivered or the server to close. For this step we break the proof of correspondence into two

cases.

1. The first case occurs when s.cc_send = cc_rcvd(p), s.mode. = last-ack and ack(p) =
sne. + 1. As for the symmetric step, we break this case into two subcases, base on

where s.cur-msg, = (msg.,marked) or not.

(a) For the subcase where s.cur-msg,. # (msg.,marked), a = (u, set-nil., v’ ). Clearly
a and a both have the empty trace. We must show that set-nil. is enabled in
state u of WDP. The only part of showing that this action is enabled in state
u that is not symmetric to the case for the symmetric action is in showing that

u.queue (1) is empty. We only have to show w.queue, (1) = € for cases (C) and
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(D). For case (C) we have to show that s.send-buf,, s.cur-msg,, and s.rcv-buf,
are all empty. From Invariants 10.27 and 10.15 we know s.send-buf , is empty.
From Invariant 10.28 we know that that s.sng < s.ack., which means s.cur-msg,
is empty. Finally, Invariant 10.31 indicates that s.rcv-buf, is empty. Therefore,
u.queue, (1) is empty. For case (D) of the mapping to u.queue,.(l), we know
from Invariant 10.29 that for all segments ¢ € s.in-transit., sn(q) < s.ack, which
means s.p-triple, is empty, and from Invariant 10.32 we know that s.rcv-buf, is

also empty.

To show that after step (s, a, s’) and « we get the correct corresponding states can
be shown in a symmetric manner to the symmetric case, except that in showing
s.acks > ack(p) for p € in-transits., is not symmetric to showing s.ack. > ack(p)
for p € in-transit.;. We need to show s.acks > ack(p) for the set of states where
case (C) of the mapping to u.queue_ (k) goes to case (D) after the step. For the
set of states where we have case (C) of the mapping for this queue, Invariant 10.25

tells us that s.acks > ack(p).

(b) For this second subcase s.cur-msg. = (msg.,marked). For this subcase o = (u,
drop.(I, J, k, 1), u", set-nil., v'). Here I = (, J = {1}, and [ is any arbitrary
element of N. The proof of correspondence for this subcase is the same as the
previous subcase, except that drop.(I, J, k, 1) action ensures that we get the

correct corresponding state for u'.queue (k).

2. The second case is for all other states. We divide these states into two subcases bases
whether cc_rcvd(p) = s.cc_send N ack(p) = s.sn.+ 1A s.cur-msg, = (s.msg.,marked)

or not.

(a) For the subcase where the condition is false, @ = (u,A,u'). This subcase
is interesting if s.mode. ¢ {closed, syn-sent, syn-sent*, rec, reset}, and
ce_revd(p) = s.cc_send A sn(p) = s.ack,, because msg(p) gets concatenated to
s.rev-buf . and ack, gets incremented in this situation. These assignments affect
the mapping for cases (C) and (D) of w.queue, (), where [ = cc_rcvd(p), which

we know by Invariant 10.8 is also equal to s.id.. The other two cases are not
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affected because we know by Invariant 10.12 we know that (I,1) € s.assoc.
For case (C), the fact that ack, gets incremented may cause s.cur-msg, could go
from being (s.msgs,ok) to being empty. However, Invariant 10.26 tells us that
sn. = sn(p). Therefore, the change of ack. means s.cur-msg, is (s.msgs, ok) and
s'.cur-msg, is empty. Invariant 10.21 tells us that if s.msgs # null and sn(p) =
s.5ng, then msg(p) = s.msgs. Therefore, since s'.rcv-buf, = s.rcv-buf .-msg(p),
w.queue, (1) = u'.queue (1).
For case (D) of the mapping, Invariant 10.30 tells us that there are no other
segments on the channel that has sequence number greater than sn(p). Therefore,
the change in ack. means s.p-triple, is {(k, msg(p), sn(p))} and s'.p-triple (k) is
the empty set. However, as for case (C), since &' .rcv-buf. = s.rcv-buf .-msg(p)
and Invariant 10.22 tells us that any segment with sequence number sn(p) and
connection count [ must have the same message or the message is null. However,
Invariant 10.23 tells us that any segment with sequence number sn(p) has a
message that is not null, so u.queue,. (1) = u'.queue (1).

(b) For the case where the condition is true, a = (u, drop.(I, J, k, 1), v'). Here
I=10,J={1}, and [ is any arbitrary element of N. The proof of correspondence
for this subcase is the same as the previous subcase, except that drop. (I, J, k, 1)

action ensures that we get the correct corresponding state for u’.queue (k).

a = send-seg.s(cc_send, sn., ack., msg., FIN).

The proof of correspondence for this step is straightforward.

a = receive-seq.s(cc_send, sn., ack., msg., FIN).

The proof of correspondence for this step is basically the same as cases one, two, three, and

five of the step with a = receive-seg.s(cc_send, sn., ack., msg.).

a = send-segs.(cc_rcvd, sns, acks, msgs, FIN).

The proof of correspondence for this step is straightforward.

a = receive-seq.s(cc_rcvd, sng, acks, msgs, FIN).

The proof of correspondence for this step is basically the same as cases one, two, and four

of the step with a = receive-seg.s(cc_rcvd, sng, acks, msgs)
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a = receive-msg.(m).

The proof of correspondence for this step is basically the same as the proof of correspondence

for the same step in 7CP".

a = receive-msgs(m).

The proof of correspondence for this step is basically the same as the proof of correspondence
for the same step in 7CP".

a = crash,.

The corresponding a in WDP? is the following sequence of steps (u, crash., ", mark.(I,
J, j), ', drop.(I', J' k1), «'). Clearly, a has the same trace as a since crash. is the only
external action in the sequence.

First we show that this sequence of steps is enabled in WD?. After crash,., rec. is true,
so mark.(I, J, j) is enabled, and drop.(I', J', k,1) is enabled if I', J',k and [ are defined
correctly. We define I,.J,1',J', 5, k, and [ below and show that Ropwp(s’) is indeed the state
u’ we get after the sequence of steps a.

The changes in state caused by step (s,a,s’) is that s'.mode. = rec, s'.crash-id, =
s.id., and s'.used-id. = s.used-id. \ s.id.. After o in WDP, we have u'.mode. = rec,
u'.crash-id. = u.id., v'.used-id, = w.used-id, \ w.id.. It is clear that the mapping is pre-
served for u'.mode.,u .used-id. , and u’.crash-id.. The interesting part of the proof of cor-
respondence lies in showing the mapping is preserved for u'.queue . (1) and for u'.queue . (j)
if there exists j such that (u.id.,j) € u.assoc and u.¢-stat,.(j) = live. If there is no such
j, then 7 € N, J and J' is equal to the empty set, and [ € N. Now assume there is such
a j. We examine the correspondence of u'.queue  (u.id.) and u'.queue,.(j) separately. We
can separate the examination of these variables because effect of the mark.(I, J, j) and
drop.(I',J', k,l) actions on the queues are independent.

We start with u'.queue. (7). For this variable the proof of correspondence is similar to

the proof present in Chapter 7 for this variable and this step in the proof of Lemma 7.1.

1. The first case is for cases (A), (D), and (E) of the mapping to u.queue, (7). For these
cases [ = I' = 0 and k = 7, so o does not change u.queue, (7). The correspondence of

states is preserved because step (s, a, s’) does not affect the mapping for these queues.
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2. The second case is for case (B) of the mapping to w.queue  (¢) if ((k,7) € s.estb-cc A
(s.isng # j V s.modes € {rec,reset})) V ((k,k) € s.assoc A (s.ids # kV s.mode, €
{rec,reset})). For this case, after step (s,a,s’), u'.queue 4(7) should be the empty
set. Thus, for this case I = I’ = dom(u.queue ,(i)), and k = 1. We clearly get the

correct correspondence of states.

3. We now examine case (C) of the mapping to u.queue (). If u.queue_(¢) falls under
case (C), after step (s, a,s'), v'.queue () falls under case (D). We can break this case
into two subcases based on whether s'.p-triple (i) is empty or not. For both subcases
i = k. We use the following preliminary definition: suffiz,,; = {i||s.rcv-buf,| < i <
mazindex(u.queue 4(1))}. That is, suffiz,, is the suffix of u.queue, (¢) that starts with

the element that maps to the first element after s.rcv-buf,.

(a) If there exists a segment p € s.in-transit.;, such that after the crash. action,
s .p-triple (i) # 0. Therefore, I = suffiz,, and I' = suffiz,; /mazindex(suffiz,y).
I" is the suffix of u.queue . (7) that starts with the element that maps to the second
element after s.rcv-buf; which is also the first element after s'.p-triple (i). After
a, we have case (D) of the mapping to queue_.,(7), but since a deletes all the

elements after s'.p-triple (i), we get the right corresponding state.

(b) Case two occurs for all other states for case (C). That is, states where s'.p-triple, =
0. For this case I = I' = suffiz;,. After a v .queue i (i) corresponds to the
s'.rev-buf ;. However, this still satisfies the mapping of w'.queue (i) for case (D)

because s'.p-triple (i) is empty.

Now we examine the case for v’.queue.(j), where (u.id., j) € u.assoc and u.q-stat, (j) =

live. For this variable the mapping is affected if we have case (C) or (D) for u’.queue,.(j).

1. If we have case (D), then after step (s,a,s’), u'.queue,.(j) should be empty. For
this case let J = J' = dom(u'".queue . (j)) and let | = j. Therefore, after «a,

u.queue, (j) = €.

2. If u.queue . (j) is in case (C) of the mapping, then after step (s,a,s’), u'.queue,.(7),

is in case (B). We use the following preliminary definition: prefiz,, = {i|]l > i <
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|s.rcv-buf .|}. That is, prefiz., is the prefix of u.queue, (7) that consists of the elements

of s.rev-buf .. For this case we have two subcases.

(a)

The first subcase occurs if s.cur-msg, = € and s'.cur-msg, = (s'.msgs, ok). We
know that if w.last-msg, # null it is added to the front of u.queue,.(j) in the
(u, crash., u") step of a. Thus, if u.last-msg, # null, u"”.queue,(j) is the
concatenation of s.last-msg,, (s.rcv-buf, x ok), and (s.send-buf, x ok), since
s.cur-msg, = ¢. For this case J = J' = prefizyy. If s.rev-buf . = €, then J =, so
no element of u"”.queue, (7) gets marked or dropped. Since by mapping Rrrwp
u'.queue . (7)is the concatenation of s'.cur-msg, and (s'.send-buf ; x ok), we need
to show that s'.cur-msg, = s.last-msg.. We know this is true by Invariant 10.18.
If s.rcv-buf . # €, then because an extra element is added to the front of the queue
in this situation where u.last-msg, # null, prefiz,, is the prefix of u"”.queue, (7)
up to, but not including the last element of s.rcv-buf,.. In order to show that
the mapping is preserved for this scenario, we must show that the last element
of s.rev-buf . is equal to s'.cur-msg,. Invariant 10.19 tells us that this is true.

If u.last-msg, = null, then no element is added to the front of u.queue,.(j)
in the (u, crash., ") step of a. Therefore, u".queue . (j) is the concate-
nation of (s.rcv-buf, x ok), and (s.send-buf, x ok). For this case we know
that s.rcv-buf, # €, because of Invariant 10.20. For this situation J = J' =
prefizy, \ mazindex(prefiz, ), that is J is the prefix of u".queue,.(j) up to, but
not including the last element of s.rcv-buf,.. Again by Invariant 10.19 we know

that this element is the same as s'.cur-msg;.

The second subcase occurs if s.cur-msg, # €, or s'.cur-msg, = €. In the case
where s'.cur-msg, = ¢, we know that s.cur-msg, also equals ¢, because step
(s,a,s’) cannot make cur-msg, go from not being empty to being empty. There-
fore, for this subcase, whether s.cur-msg, # €, or s.cur-msg, = €. cur-msqg,
does not change after step (s,a,s’), so we need to delete all the elements that
are ahead of s.cur-msg, in the abstract queue. Therefore, if u.last-msg. # null,
J = J" = prefiz,;, U {mazindex(prefiz,,) + 1}. That is, J includes w.last-msg,

and all of s.rcv-buf .. If u.last-msg. = null, then J = J' = prefiz,;.
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a = crashs.

The proof of correspondence for this step is almost symmetric to the case for a = crash,.
The corresponding a = (u, crashs, «", marks (I, J, j), &', drops(I', J', k1), ') is symmetric,
and the proof of correspondence for u'.queue,.(j) where j = u.id; is essentially symmetric
to the case for u'.queue (i) where i = wu.id. for the a = crash. step. It is in the proof
of correspondence for «'.queue (1), for this step, where the non-symmetry occurs. The
mapping for this queue is affected if u.queue ,(7) falls under case (C) or (D) for the mapping
of this variable. The non-symmetry comes from the fact that in the mapping for these two
cases, includes the temp-msg derived variable and there is no symmetric counterpart for
u.queue (7). However, the proof of correspondence proceeds in much the same manner.

Thus, we have two cases.

1. If we have case (D), then after step (s,a,s’), u'.queue_ (i) should be empty. For this
caselet J = J' = dom(u'".queue, (7)) and let [ = i. Therefore, after a, u'.queue (i) =

€.

2. If u.queue, () is in case (C) of the mapping, then after step (s, a,s’), u'.queue (7), is
in case (B). We can break this case into subcases based on whether s.temp-msg = ¢
or not. If s.temp-msg = ¢, then the proof of correspondence is symmetric to the case
for u'.queue, (j) of the step with a = crash.. Therefore, we only show the proof of
correspondence for the case where s.temp-msg # €. From Invariant 10.10 we know
that if s.temp-msg # € then s.last-msg, = null, so we do not have to worry about

u.last-msg, getting added to the front of u.queue (). We have two subcases.

(a) The first subcase occurs if s.cur-msg, = € and s'.cur-msg, = (s'.msg.,marked).
For this case J = {1} and J' = (), we know we get the right corresponding state

because Invariant 10.16 tells us that in this situation s.temp-msg = s'.cur-msg..

(b) The second subcase occurs if s.cur-msg, # €, or s'.cur-msg, = €. Since step
(s,a,s’) cannot make cur-msg, go from not being empty to being empty, for this
subcase cur-msg, does not change. Thus, we need to delete s.temp-msg from the
front of the queue, so J = J' = {1}. This clearly gives the correct corresponding

state.
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(4 = recover,..
The proof of correspondence for this step is also very similar proof of correspondence present

in Chapter 7 for this this step of 7CP" in the proof of Lemma 7.1

The corresponding a of WDP is (u, mark.(1, J, j), ", drop.(1,J,k,1), ", recover., u').
Since only recover. is external, the traces of ¢ and a are clearly the same. We first show
that this sequence of steps is enabled in WDP. The action recover, is enabled in 77 CP" if
s.mode. = rec. This state maps to u.rec = true in which case mark.(I, J, j) is enabled,
and drop.(I,J,k,1) is also enabled. Since neither mark. (I, J, j) nor drop.(I,J,k,) changes

w.rec, then recover, is also enabled. We define I, J, k, [ below.

After step (s,a,s’), s’.mode. = closed and s'.cache_cc = oco. This change affects the
mapping for w.rec., u.id., u.queue.s(7), and u.g-stat (i), where i = s.id.. After step a,
u'.rec, = false and u'.id. = nil, so the mapping is preserved for those variables. Since
u.queue,.(j) is not affected by this step, J = () and j and k are any arbitrary values in N.
For u.queue . (7) the mapping is only affected by step (s, a,s’) if state s is in case (B) of the
mapping to queue (), because case (C) does not hold if s.mode, = rec, and for cases (A),
(D), and (E) the action does not affect the mapping. Therefore, u.queue_ (i) for cases (A),
(D), and (E) I =0 and k = 1.

For case (B) of the mapping to u.queue (i), after step (s,a,s’) it is in group (A). Let
I = dom(u.queue.4(7)) and k = i. The mapping is preserved because after a, s.send-buf,
is deleted and s'.cur-msg, is empty. Finally, to show that the mapping for u.¢-stat_,(7) is
preserved we note the mapping for this variable is affected for two cases. The first case
is if 7 ¢ s.estb-cc A (i,i) ¢ s.assoc then because s.id, = 1, u.¢-stat. (i) is live. After
step (s,a,s’), u'.q-stat, (7) should be dead since s'.id. = nil. For this case u.queue . (7)
is in case (B) of the mapping to abstract queues, so after the mark and drop actions
this queue is empty. In the (u”, recover.,u') step of a, u”.queue (i) is empty and for all
J, (u".d.,j) & u".assoc, then u'.¢-stat (i) = dead, so we get the correct corresponding
state. The other case where u.¢-stat (i) is affected is if (i,7) € s.assoc A s.ids # 1.
Again this is a case where u.g-stat (i) = live and u'.¢-stat (i) should be dead. This is
another case where u.queue () is in case (B) of the mapping to abstract queues, and again

after the (u”, recover.,u') step of a, u'.¢-stat (i) = dead. Therefore, we have the correct
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correspondence of states.

a4 = recovers.

This step is essentially symmetric to a = recover,. Except that because after step (s, a,s)
cache_cc = oo, this steps affects the mapping for case (E) of u.queue_,(h). Thus, for this
step a = (u, marks (1, J, j), «"", drops(1.J,k,1), ", drop.(I’, J’, h, 1), W', recovers, ).
Here again u”, drop.(I',.J',h,l),u’) represents a sequence of steps. There is a drop, action
for every h such that (h,h) & s.assoc, and s.p-triple.(h) # 0. For each h, the corresponding
I' = dom(queuess(h), J' = 0, and | :€ n. The drop action is enabled for u.queue ,(h)
because the queues only contain one element, and the element is marked. After (s,a,s’),
s .p-triple.(h) = 0. Since the single element in these queues is dropped after step «, the

mapping is preserved.

a = timeout..
The proof of correspondence for this step is basically the same as case one of the proof of

correspondence for the step with a = receive-segs.(cc_revd, sng, acks, msgs ).

a = timeout,.
The proof of correspondence for this step is basically the same as case four of the proof of

correspondence for the step with a = receive-segs.(cc_send, sn., ack., msg.).

a = dropes(p) and a = drop,.(p) (from Chs(P) and Ch,(P) respectively).

The proof of correspondence for these step is basically the same as the proof of correspon-

dence for the same step in 7CP".

a = duplicate.s(p) and a = duplicates.(p) (from the Ch(P) component Chy(P) respec-

tively).
The proof of correspondence for these steps is basically the same as the proof of correspon-

dence for the same step in 7CP".

a = v(t) (time-passage)

The corresponding a in WD? is (u,v(t),u’), the time-passage action of the patient WDP.

a = send-segs.(RST, acks, rst-seqs).

The proof of correspondence for this step is straightforward.
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a = receive-segs.(RST, acks, rst-seqs).

The proof of correspondence for this step is basically the same as the proof of correspondence

for the a = crash, step.

a = send-seg.s(RST, ack., rst-seq.).

The proof of correspondence for this step is straightforward.

a = receive-seqg.s(RST, ack., rst-seq.).

The proof of correspondence for this step is basically the same as the proof of correspondence

for the a = crash; step.

a = shut-down,.

The proof of correspondence for this step is basically the same as the proof of correspondence

for the a = recover, step.

a = shut-down.

The proof of correspondence for this step is basically the same as the proof of correspondence

for the a = recovers step.

This concludes the simulation proof. [ |

10.4.3 Proof of trace inclusion

We can now proof that the GTA model of T/TCP, 77CP, implements a patient version of
Specification WS.

Theorem 10.2

TTCP C; patient(WVS).

Proof: From Lemma 10.3 we get that 77CP" <L WDP, which because of the soundness
of timed refinement mapping (Theorem 3.6) and the soundness of adding history variables
(Theorem 3.9) implies that 77CP LT, WDP. From Theorem 10.1 we know WD C WS.
Using Embedding Theorem of [31] presented in Chapter 3 we now get WD? C; patient(WS).
Thus, we now have 77CP T, WDP and WD?P C; patient(WS). Therefore, since the subset

relation and thus the implements relation is transitive we get 77CP L, patient(WWS).
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Chapter 11

An Impossibility Result

11.1 Introduction

The duplicate delivery in T/TCP (presented in Chapter 9) occurs because the TAO mecha-
nism bypasses the three-way handshake protocol in an effort to achieve efficient transactions.
The observation the the TAO mechanism may cause duplicate delivery lead us to consider
whether any protocol could deliver streams of data reliablely and still have fast transactions,
and under what conditions.

Shankar and Lee [33] show that some timing assumptions are needed for T/TCP and
protocols that work in the same general manner to provide fast transactions and still deliver
data without duplication. They assume that the protocols use counters. In this chapter
we prove that if the hosts do not have “accurate” clocks it is impossible for any protocol
to satisfy our specification and still provide “fast” transactions. We elaborate on what
we mean by “accurate” clocks, “fast” transactions later in the chapter. In the proof of
the impossibility result, the hosts are allowed to have infinite and stable sets of unique
identifiers (UID’s), but not counters.

T/TCP is designed to be a reliable transport lever protocol that also support efficient
transactions. An efficient transaction is one that is completed in round trip time (RTT)
plus server processing time (SPT), where RTT is the the time it takes for a packet to make
a round trip across the network and SPT is the time the server takes to process the request

and produce a response. In order for a transaction to be completed in this amount of time,
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it is necessary that the client can send a message to the server that can be accepted using

only one trip across the network.

In typical network situations, client and server hosts may have several different connec-
tions in parallel. Additionally, there may be different incarnations of the same connection,
as the connection is opened closed and then opened again. In order to ensure reliable deliv-
ery, hosts maintain some state information for each incarnation of a connection. However,
because of the number of connections a host may be involved with, this state information
cannot be maintained forever. Therefore, hosts will periodically quiesce, that is, delete state
information associated with a connection. Kleinberg, Attiya, and Lynch in [17] prove trade-
offs between quiesce time and message delivery. They prove that in the absence of crashes,
in an asynchronous setting where the client and server both have an infinite set of unique
identifiers (UID’s) and must quiesce, a three-way handshake is necessary to guarantee reli-
able message delivery. In an environment where there are crashes, Kleinberg et al. [17] show
that even in a system with synchronized clocks, if the server does not remember the time

of the last crash, then a three-way handshake is necessary for reliable message delivery.

Another approach to the design of reliable transport level protocol is to use timer-based
mechanisms. For example, the Delta-t protocol [37] relies on clocks that run at the rate
of real time and exploits the knowledge of the maximum segment lifetime (MSL). In this
type of environment, Kleinberg et al. show that either it takes a three-way handshake to
deliver a message, or at least the maximum packet lifetime must elapse before quiescence.
If the MSL is unknown, then they show that the three-way handshake is required. If the
client and server hosts are assumed to have approximately synchronized clocks, then the
protocol by Liskov, Shrira, and Wroclawski [19] only requires one trip across the network
for the server to deliver a message from the client, and quiesce time depends on the message

delivery time.

Braden and Clark [8, 7], as we have seen, takes a different approach in there design
of T/TCP. Their approach does not rely on approximately synchronized clocks or strict
enforcement of MSL. Their approach is based on the idea that some information related to
incarnations can be stored indefinitely and efficiently in caches when a connection closes,

and that the protocol while ensuring efficient transactions most of the time (when the caches
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have the appropriate state), is allowed to be inefficient in some situations — typically after
crashes. T/TCP uses counters, but we know form the work of Sggaard-Andersen et al. [35],
that reliable at-most-once delivery can be achieved using just infinite and stable sets of
UID’s. We also know from the work of Shankar and Lee [33], that some timing information
is needed inorder for protocols like T/TCP to have fast transactions and reliable delivery.
We know that in T/TCP if a message from the client is successfully delivered by the server
and there has not been a crash since the delivery of this message, then the state of the
caches are appropriated. Therefore, we can weaken the preformance criteria for protocols
that allow efficient transactions and reliable data delivery to require the following. If a
message from the client user is successfully delivered by the server and there has not been a
crash since the delivery of this message, then the next message from the client to the server
should be delivered in one trip across the network. We want this performance only if the
clocks of the client and server are running at the rate of real time. However, since protocols
that rely only on the fact that the client and server have UID’s can guarantee at-most-once
message delivery, we want the at-most-once delivery property to hold even when the timing
assumptions do not hold.

We formally state the properties of the system the protocol should work in and the

properties we want to protocol to exhibit in the next section.

11.2 The underlying formal model

In this section we present the underlying formal model used for the impossibility result
in this chapter. We start with the general timed automaton (GTA) model presented in

Chapter 2 and make several additions until we get the model we need.

11.2.1 The clock GTA model

In the system we want to model, the client and server have access to local clocks, but are
not able to use real time. However, a GTA A does have access to real time. To get this
“local clock” property, we use the clock general timed automaton (CGTA) model of [29].
A CGTA, A, is a GTA with a special variable clock s (or just clock if A is clear from the
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context) that has type R2° and is the local time of that automaton. A CGTA A has the

following three axioms.
1. clock 4 changes only with time passage actions (v(¢),t € RT).
2. clock 4 is monotonically non-decreasing.
3. If (s,v(t),s") is a step then V ¢/ > 0,(s,v(t'),s') is also a step.

The clock 4 variable is used to model local time which may not be the same as real time.
However, we want clock 4 to be like real time in that it only changes when time changes
and it does not go backwards. The first two axioms capture these properties. Since clock 4
is supposed to represent the local time of a process, real time should not affect the actions
of the process in any manner. This property is captured by the third axiom. We also refer

to this property as real time independence.

11.2.2 Clock functions

Given a CGTA A, we may want to specify the values that clock s takes on for a timed
execution fragment. To specify the values we introduce clock functions. These functions
take real time as input and return values for the clock variable of a CGTA A. A clock

function ¢f : R2% — R has the following properties:
1. It is monotonically non-decreasing.
2. It is unbounded.

We use clock functions and the fiz-clock operator to fix values of clock variables relative to

real time for a timed execution fragment of a CGTA. We define fiz-clock below.

Definition 11.1 (fix-clock)
Let A be a CGTA and ¢f be a clock function such that 3 s € start(A) such that s.clock =
cf(0). Then define fiz-clock(A, cf), denoted as A, to be the CGTA with a now variable

that gives real time, such that:
1. states(A.) = {(s,u) | u € RZ® A s.clock = cf (u)}.
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2. start(A.r) = {(s,u) € states(Ayf) | s € start(A) ANu =0},
3. (in(Aep), out( Agp), int(Aep)) = (in(A),out(A), int(A)).
4. steps(A.) consists of the steps:

(a) {((s,u),m,(s",u)) | (s,m,8") € steps(A) A ((s,u) and (s',u) € states(Ay)) A7 €
disc(A)}

(b) {((s,u),v(t), (s, utt)) | (s,v(t),s") € steps(A)A((s,u) and (s, u+t) € states(A))}.

O

The states of A.; are obtained by pairing each state s of A with the real time such that
the clock function applied to that real time is the value of clock in state s. The set of start
states of A.; is the set of states of A.; such that the first component of each state is an
element of the set of start states of A and the second component is 0. In order for A.s
to be a GTA, start(A.) must be non-empty and real time must be 0 for every element of
the set of start states. That is why we have the restriction that the fix-clock operator can
only be applied to a CGTA A and a clock function ¢f if there exists a start state of A such
that the value of clock in that start state is equal to ¢f(0). The third component of Ay,
the partition of the actions, is the same for A,y as it is for A. The final component of Ay,
the set of steps, can be partitioned into two sets — steps that have discrete actions and
steps that have time-passage actions. The steps that have a discrete action 7 are obtained
by taking any step of the form (s,w,s’) € steps(A4), and having a transition, via 7, from
states of A that have s as the first component, to states of A.s that have s' as the first
component. The second component of the pairs remains the same for both states of A ;
because discrete actions cannot change the clock variable of A. For time-passage actions,

the second component of the states of A.;y must change to reflect the length of time passage.

11.2.3 Liveness

The general timed automaton model is useful for proving safety properties and some liveness
properties. However, for the impossibility result we prove, we need more general liveness

properties than can be handled by the GTA model. In particular, we want the automaton
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to not block time. To get this property we use a model defined in [31, 35]. We call it the live
G'TA model' because its first component is a GTA. Before we define the live GTA model
we need some preliminary definitions. The reader is referred to [31] for more complete

definitions and more discussions of the model.

11.2.4 Timed executions

Recall that in Chapter 2 finite, admissible, Zeno, and all timed executions of a GTA A,
denoted by t-exec*(A), t-exec”(A), t-exec?(A), and t-exec(A) respectively, are defined. Also
defined in that chapter are finite, admissible, Zeno, and all timed execution fragments de-
noted by t-frag*(A), t-frag”(A), t-frag?(A), and t-frag(A). We are particularly concerned
with Zeno timed execution fragments because these can block time. Intuitively, Zeno timed
executions can block time in two ways. The first occurs if there are infinitely many occur-
rences of non-time-passage actions, but for which there is a finite upper bound on the last
time of the execution fragment. The second occurs if there are finitely many occurrences of
non-time-passages actions and infinitely many time passage actions, but with a finite upper

bound on the last time of the execution fragment.

11.2.5 Live GTA

Since the GTA model allows Zeno timed executions, liveness conditions are needed if we do
not want to allow these types of executions. A liveness condition L for a timed automaton
A is a subset of the timed execution fragments of A such that any finite timed execution
of A has an extension in L. Formally, I C t-exec(A) such that for all a € t-exec”(A) there
exists an o € t-frag(A), such that a-a’ € L.

For a live GTA, we want to ensure that the automaton behaves properly independently
of the behavior of the environment. This property is know as receptiveness and a formal
definition can be found in [31]. Intuitively, one can think of a game between the timed
automaton and its environment where each has turns to make moves. The moves of the
environment are input actions the GTA, while the moves of the timed automaton are internal

and output actions. A timed automaton is receptive if and only if it has a winning strategy

'In [31] the model is called live timed 1/0 automaton.
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against its environment. A strategy in the timed model is a pair of functions (g, f). Function
f takes a finite timed execution and decides how the system behaves till its next locally-
controlled action under the assumption that no inputs are received in the meantime; function
g decides what state to reach whenever some input is received. A winning strategy does
not collaborate with its environment to generate a Zeno timed execution. A strategy is
called Zeno-tolerant if it guarantees that the system never chooses to block time in order
to win its game against the environment. That is, a Zeno-tolerant strategy produces Zeno
timed executions only when applied to a Zeno timed environment, but the system does not
respond to Zeno inputs by behaving in a Zeno fashion. Denote by t-eaveth(A) the set of
Zeno-tolerant timed executions of A. The reader is referred to [31] for all the details.

We can now define a live GTA. It is a pair (A, L) where Ais a GTA? and L C t-evec”(A),
such that the pair (A, L U t-exzec?!(A)) is receptive. This definition of the liveness property
L is more general than is needed for our work. For the work in this chapter we only require
and use the special case where the liveness property L = t-exec”( A). Therefore, for each live
GTA we describe later in this work, the liveness condition is equal to the set of admissible
timed executions of the GTA.

In Chapter 3 we defined what it means for two GTA’s to be compatible, and we also
defined the parallel composition operator, ||, for compatible GTA’s. Two live GTA’s (Ao, Lo)
and (Ay, L1) are compatible if Ay and A; are compatible. We would also like to be able to
perform parallel composition on compatible live GTA’s, and the operation should be closed.
That is, if (Ao, Lo) and (Ay, L) are compatible and (Ag, Lo)||(A1, L1) = (A, L), then (A, L)
should also be alive GTA. In [31] the parallel composition operator is defined for live GTA’s

and the proof that the operator is closed is also presented there.

11.2.6 Live CGTA

To get the liveness property we want and local clocks in the model, we combine the CGTA
with the liveness property from the live GTA model to get the live C'GTA model. For the
proofs later in this work, we need a liveness property that relates admissible timed executions

of live GTA to clock functions. Informally speaking, we want that for every clock function

In [31] Ais called safe timed 1/O automaton.
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that can be applied with the fix-clock operator to a CGTA, if the environment is non-Zeno,
then there exists a timed execution where the time of the local clock is not blocked. This

requirement is captured formally in the following definition of live CGTA.

Definition 11.2 (Live CGTA)
A live CGTA is a pair (A, L) such that for every clock function ¢f, (fiz-clock(A, cf), L) is
a live GTA. O

We model the client and server as live CGTA and the channels as live GTA. When we
describe a particular execution of the system, we apply clock functions to the CGTA to get
values for clock variables. The parallel composition of the client, channels, and server forms
the system. Because parallel composition of live GTA is closed [31], the resulting composed

system is also a live GTA.

11.2.7 The projection operation

Before we describe the different components of the system, we define the projection oper-
ation on timed execution fragments that are from timed automata that are formed by the
composition of timed automata. Let o be a timed execution fragment of a timed automaton
that is the composition of timed automata, and let A be one of the component timed au-
tomata. Define the projection of a on A to be the sequence obtained by projecting all states
of the composed system onto those of A and removing actions not belonging to A. We use
the notation, a|A, for the result of this operation. Informally, a|A is automaton A’s view
of timed execution fragment a. If a|A differs from o'|A only because of the splitting and
combing of time-passage actions, then these are essentially the same views. Recall that in
Chapter 3 we defined what it means for two timed execution fragments to be time-passage
equivalent. Later in the chapter we refer to the time passage equivalence of projections of

timed execution fragments.

11.2.8 p-SLL-FIFO channels
The communication channels have the following properties.
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1. Packets® placed in a channel are delivered in FIFO order.
2. Packets are not duplicated.

3. There is a maximum packet lifetime p which is an upper bound on how long a packet

can stay on a channel before it is either received or dropped.

4. If infinitely many copies of a packet p get sent on a channel, then infinitely many
copies of p are received. This property is the strong loss limitation (SLL) property of

channels given by Lynch in [21].

11.2.9 The client and server hosts

The client and server hosts are modeled by live CGTA (C, L) and (5, L") respectively,
where I, is the set of admissible timed executions of C' and I’ is the set of admissible timed

executions of 5. The CGTA’s ' and § have the following properties.

1. Fach has an infinite and stable set of UID’s on which it can perform only the following

operations:

(a) generate() which nondeterministically returns a new UID from the hosts’ set of

UID’s and removes that id from the set, so it cannot be used again, and

(b) same(z,y) which returns true iff 2 = y, where 2 and y are UID’s.

2. In an admissible timed execution where clock values are determined by clock functions,
after a crash there is an eventual recovery that returns the crashed host to an initial

state. We assume that the local clock is not affect by the crash.

Since we are concerned only with the delivery of messages from the client to the server,
and for our proofs we need to allow crashes only at the server, we use the following user

interface actions.
e send(m) is the input action at the client to send a message m.

e deliver(m) is the output action at the server that delivers m.

FWe use the term “packet” to denote objects sent over the channels by a protocol, and the terms “message”
or “data” for user-meaningful data.
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e crash is the input action that signals a crash at the server.
e recover is the output action that indicates the server has recovered from a crash.

Additionally, both client and server can place packets on and receive packets from the
channels. For the rest of this chapter of the thesis, when we use the term client and server

we mean specifically the model described in this section.

11.3 The problem

We now present a formal definition of the problem that T/TCP was designed to solve. We

call it the at-most-once fast delivery problem.

Definition 11.3 (The at-most-once fast delivery problem)
at-most-once, in order delivery Messages from the client user are always delivered at
most once and in the right order. That is, for every execution there exists a function
cause that maps deliver actions to preceding send actions such that:
1. For every deliver action 7, © and cause(w) have the same message argument.
2. cause is one-to-one (at-most-once property).
3. For any two deliver events m; and o, if 71 precedes 72, then cause(my) precedes

cause(ms) (in order property).

eventual delivery In an admissible timed execution where clock values are determined
by clock functions the following conditions hold:
1. If there are no crashes then all messages are delivered.
2. If there are finitely many crashes, messages sent after the last crash action and

the subsequent recover action are eventually delivered.

fast delivery For any admissible timed execution in which there is a deliver(m’) (for any
message m') action at the server and the client subsequently receives a send(m) input,

if the following conditions hold:
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1. The clocks of the client and server always (through the whole execution) run at
the rate of real time. That is, the clock function for both the client and the

server is the identity function.

2. Both sides are recovered at the time of the deliver(m’) action, and there is no

crash or recover event on either side after it.

3. Any packet sent by the client or server after the client receives the send(m) action

from the user takes time at most d to arrive at its destination.

Then the server performs deliver(m) in time strictly less than 2d after the client

receives the send(m) input. a

Notice that we weaken the delivery requirement from the one trip across the network
(d) required for efficient transactions, to strictly less than 2d. We can weaken the problem
statement in this manner because the key property we need in our proof is that there are
executions where the client does not receive any packets from the server, after it gets the
send(m) input, before it finishes sending the packets that cause the message to be delivered
within time 2d. We are not requiring quiescence on the part of the server as is the case
in the models presented in [17]. However, there are executions in the model where all the
packets sent by the server after the last deliver event and before the send(m) input get
dropped from the channel, and any packets sent by the server after the send(m) input takes
time d to arrive at the client. In such an execution, even though the server does not quiesce,
the client does not receive any packets from the server after it gets the send(m) input and

before it finishes sending the packets that cause the message to be delivered within time 2d.

11.4 Impossibility of at-most-once fast delivery

We can now state and prove the impossibility result.

Theorem 11.1
No system consisting of p-SLL-FIFO channels and client/server hosts can solve the at-

most-once fast delivery problem.
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Proof: In our proof we use the general strategy employed by Kleinberg et al. in [17]. That
is, we construct executions that behave as required by the problem definition, and then
show that we can construct another execution that is a sort of combination of the previous

executions, but where the new execution has incorrect behavior.

We start by assuming we have a protocol that solves the at-most-once fast delivery
problem, and show that this assumption leads to a contradiction. Throughout the proof
we mention the real time at which different events occur even though the client and server
do not have access to real time. The local clocks are clocks and clockg for the client and
server respectively. In an execution, the values for these clocks are determined by the clock
functions we describe. In all the executions we construct clocks is equal to real time; that is,

for all the executions we construct, the clock function of the client is the identity function.

The first execution we construct, ay, is shown in Figure 11-1. In this execution clockg is
also equal to real time, which means the clock function of the server is the identity function.
The client receives a send(m’) input at real time 0. All packets sent by both the client and
server take time d. The parallel composition of the client, the channels, and the server forms
the system. Since each component is a live GTA, we know by the closure result of [31] that
the composed system is also a live GTA. Therefore, since the environment in execution ay
is non-Zeno, we know that ay is an admissible timed execution. The same argument holds

for all the subsequent executions we construct in this proof.

Since both the client and server are recovered at time 0, oy is an admissible timed
execution, and there are no crash or recover actions after the send(m’) input, the eventual
delivery property results in the server action deliver(m’). Let clocks = p, which is also real
time p, be the time of this action. For this execution the client and server uses the set of

id’s usedids! and usedids! respectively.

Now we construct a second execution ag shown in Figure 11-2. Again in this execution
clocks is equal to real time. This execution starts out the same as execution «y. That
is, the client receives a send(m') input at real time 0, and packets sent by the client and
server starting at time 0 take time d to arrive. However, execution «g starts to differ from
execution aq after time p —2d on the server side and p— d on the client side. The difference

is that packets sent strictly after time p—2d on the server side get dropped from the channel
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Figure 11-1: Execution «;. The numbers outside the time lines are real time, the dashed lines
represent packets, and the “ -.” between packets represents a finite number (whatever the protocol
needs) of packets in both direction. The numbers on the dashed lines represents the time it takes
the packets to traverse the channel.

and packets sent strictly after p—d on the client side also get dropped from the channel. In
this execution the client uses the set usedids? of UID’s and the server uses the set usedids?,
where usedids® and usedids! are disjoint and usedids® and usedids. are also disjoint. During
the time interval from the send(m') input to the real time p — d, the client can receive
the same number of packets from the server as it did in execution aq because packets that
arrive at the client by time p — d must be sent by the server no later than time p — 2d.
Similarly, in the real time interval [0, p] the server can receive the same number of packets
in this execution as it did in execution a; because packets that arrive by time p must have
been sent by the client by time p — d.

The packets sent between the client and server in this execution have different id’s from
the packets sent in execution aq, but the id’s can be used in the same way. Recall that
client and server can only generate id’s from their infinite set of UID’s, and can only test if
a received id is the same as some other id. Because of these restrictions on how id’s can be
used, a host cannot know before it receives any packets from the other host what id’s the
other host is going to use. Also, after a host receives a series of packets, the most information

it can have about the id’s that are going to be on subsequent packets is whether they should
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Figure 11-2: Execution «y. Same as execution «y, except dashed lines that do not go all the
way across represent packets dropped by the channels.

be the same as and/or different from id’s already received. Therefore, if in execution ag a
host receives a packet with id u and performs the operation same(u,v) for some id v, and if
at the same time in execution ay, the same host receives a packet with id x and performs
the operation same(z,y) for some id y, then same(u,v) = same(z,y). Thus, the fact that
usedids? and usedids? are used in execution ay does not affect the behavior of ay relative
to ay. Therefore, in execution g, at time p the server can perform the deliver(m’) action.

Throughout the rest of this proof we compare executions where packets are sent and
received at the same local clock time, but where the packets have different sets of UID’s.
The argument just presented can be applied to all these comparisons to show that the use
of a different set of id’s cannot cause the client or server to behave differently.

The next execution we construct is as. It is shown in Figure 11-3. Again clockg is equal
to real time. This execution starts out the same as execution ay. That is, the client gets a
send(m') input at real time 0 and sends packets that take time d to arrive with packets sent
after time p — d being dropped from the channel. On the server side the packets sent up to
time p — 2d also take time d to arrive and packets sent after are dropped. For this execution
the client uses the set usedids? of UID’s and the server uses the set usedids®. Apart from

the difference in id’s used, for the real time interval [0, p] a3|C time passage equivalent to
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Figure 11-3: Execution «s. This execution is an extension of «y that includes a second deliver
action.

ay|C', and for the real time interval [0, p] @3]S time passage equivalent to ay|S. Therefore,

at time p the server can perform the deliver(m’) action.

Execution as continues as follows. At real time p + 2¢, where ¢ is an arbitary constant
greater than 0, the client receives a send(m) input and all packets sent by both the client
and server after this input action take time d to arrive. Because the value p+ 2¢ appears in
several subsequent executions we construct, to simplify the notation we let r = p+4 2e. Since
we assume the protocol satisfies the fast delivery property, at some real time t < r 4 2d the

server delivers the message m.

Now consider the execution a4, shown in Figure 11-4. This execution is exactly the
same as execution ag except that the client and server use the set of UID’s usedids? and
usedids? respectively, all the packets sent by the server after the send(m ) event get dropped

by the channel, and all packets sent by the client at or after time r 4+ d also get dropped
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Figure 11-4: Execution «4. This execution is the same as «as except that additional packets are
dropped from the channels.

from the channel. However, from time 0 up to and including time ¢, modulo the id’s, ay|9
time passage equivalent to as|5. The executions look the same to the server for that time
interval because it receives the same number of packets from the client and at the same time
in both executions. Also for both executions the packets sent by the client cannot contain
any information about packets received from the server that were sent at or after time r
because all the packets that the client sends that arrive at the server by time ¢t must have
been sent before time r + d; therefore, in both execution asz and execution a4, these packets
are sent before any packet sent by the server after the deliver(m’) event is received by the
client. Thus, at time ¢ in execution a4 the server can deliver m. The bound of less than 2d
on delivery time is important here because it forces the server to deliver the message even

though the client has not have received any packets from it since the send(m) event.
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The next execution aj is shown in Figure 11-5. For parts of this execution clockg runs
at the rate of real time and for other parts it runs faster than the rate of real time. We
define the clock function for the server by giving the rate of clockg relative to real time
for different real time intervals. For the real time interval [0, p], clockg runs at the rate of
real time. In execution as the client uses the set of UID’s usedids? and the server uses the
set usedids?. Even though in this execution the id’s used by the client and server after the
send(m') are different from the ones used in execution agy, again at time p the server can

perform the deliver(m’) action.

After the deliver(m’) action and up to real time p + ¢, that is, for the interval (p,p+ €],
clocks runs at (2¢ + 2d)/e times the rate of real time, and from time p + € through the rest
of the execution, that is, the interval (p + ¢, 00), clocks runs at the rate of real time again.
Now let the server receive a crash input at real time p + €. Because of the rate of clockg
for the interval (p,p + €], at real time p + €, clocks = p + 2¢ + 2d = r 4 2d. Since a5 is an
admissible timed execution and clocks and clocks are determined by clock functions, the
server eventually recovers. The time of recovery is determined by the protocol, but it must
happen after the crash event. Let k be the clockg time between crash and recovery. Since
clockg is now running at the rate of real time, k is also the difference in real time between the
crash input and the recover output. Thus, the recovery happens when clocks = r+ 2d + k,

which is real time p + ¢ + k.

The next execution, ag, shown in Figure 11-6, starts out like execution as except the
client and server use the sets of UID’s usedids® and usedids® respectively, and the clock
function of the server is different from the clock function in execution «s. The clock functions
are the same for the real time interval [0, p+¢); that is, for the real time interval [0, p] clock g
runs at the rate of real time, and for the real time interval (p, p+€], clocks runs at (2¢42d)/¢
times the rate of real time. However, for the real time interval (p 4 €, p + 2¢|, clocks runs
at k/e times the rate of real time. Therefore, in execution ag when clockg = r + 2d + k it
is real time r. Because of the real time independence property, we know that when clockg

= r+ 2d + k in this execution, the server can perform the recover action.

After the recover action through real time r + 2d 4 k, that is, the real time interval

(r,7+2d+ k], clocks runs at d/(2d + k) times the rate of real time. Therefore, at real time
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Figure 11-5: Execution «s. Values of clocks are shown in parenthesis. Dashed lines are packets,
and dashed lines that do not go all the way across are dropped packets. Vertical ellipses represent
a finite series of packets.

r+2d+ k, clocks = r + 3d + k. After that time through the rest of the execution, that
is, the real time interval (r + 2d + k, ), clocks runs at the rate of real time. All of the
packets that both the client and server send from real time r up to, but not including real
time r 4+ 2d + k are dropped from the channels. However, starting at real time r + 2d 4+ &
all packets sent by the client and server do not get dropped from the channels and take
time 0 and d to arrive respectively. Note that when the server receives the packet form the
client at clocks = r + 3d + k it cannot perform the deliver(m) for any m at or after this
time. It cannot perform this action because send(m’) is the only send action in ag, so any
cause function has to map both deliver(m) and deliver(m’) to send(m’) which violates the

at-most-once property which we assume the protocol satisfies.

The next execution a7 is shown in Figure 11-7. This execution starts out like ag, but
the client and server use the sets usedids’ and usedids? of UID’s respectively. The server’s

clock function for this execution is the same as for execution ag. That is, it runs at the rate
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Figure 11-6: Execution «g. This execution Iis an extension of «y to include some additional
sending and receiving of packets, and the clock function of the server is also different.

of real time for the interval [0, p], at (2¢ + 2d)/e times the rate of real time for the real time
interval (p,p+ €], at k/e times the rate of real time for the real time interval (p + €, p + 2¢],
at d/(2d + k) times the rate of real time for the real time interval (r,r 4+ 2d + k], and at
the rate of real time for the interval (r 4+ 2d + k, 00). Here again the server can perform the

recover action when clocks = r + 2d + k.

After the recover action is where a7 begins to differ from ag. After the recover event at

the server, the client gets the send(m) input at real time r at which time clocks = r+2d+k.

301



However, as in ag, in a7 all of the packets that both the client and server send from real
time 7 up to, but not including real time r + 2d + k (clocks = r + 3d 4 k) are dropped from
the channels. For the clockg interval [0, 7 4 3d + k], ag|S time passage equivalent to az|S.
Thus, up to clocks = r 4+ 3d 4+ k in a; the server cannot deliver m, because m cannot be

delivered in ag.

Again, as in ag, all packets sent by the client and server starting at real time r+2d+k do
not get dropped from the channels and take time 0 and d to arrive respectively. Execution
a7 is an admissible timed execution, clocks and clockg are determined by clock functions,
and m is sent after the last crash and recover actions. Therefore, since the protocol satisfies
the eventual delivery property the server must eventually perform the deliver(m) action.

Let real time ¢ and clocks = ' + d be the time of this event.

Finally, we construct an execution ag where the server delivers the same message twice.
This execution is shown in Figure 11-8. In the execution clockg runs at the rate of real time
for the whole execution, that is, the clock function of the server is also the identity function.
In execution ag the client uses the set of UID’s usedids® and the server uses the set usedidsS.
On the client side, except for the use of a different set of id’s, execution ag is exactly the
same as execution ar, so send(m’) happens at time 0, and send(m) happens at real time r.
However, in execution ag the packets the client sends after the send(m) input and before
time r + d are not dropped from the channel. On the server side, except for the use of a
different set of id’s, from time 0 to time t execution ag looks the same as execution .
That is, modulo the id’s, for the time interval [0, t] execution ag|$ time passage equivalent
to a4]S. Therefore, since in execution ay the server performs deliver(m’) at time p and

deliver(m) at time ¢, in execution ag it can do likewise.

For the rest of ag, the packets the client sends at or after time r + d until, but not
including time r + 2d + k are dropped from the channel, and on the server side at time
r + 2d a crash input occurs. For the real time interval [r 4+ 2d,7 + 2d + k], ag|$ time
passage equivalent to a7|S. Therefore, because of the real time independence property, at
clocks = r + 2d + k, the server can perform the recover output action. Any packet sent
by the server after the recover event up to, but not including time r + 3d + k is dropped

from the channel. The packets that the client sends starting at time r + 2d 4+ k take time
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Figure 11-7: Execution «7. This execution is the same as execution g except it includes a
send(m) action and the subsequent delivery of m.
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Figure 11-8: Execution «g. This execution demonstrates how the at-most-once delivery property
can be violated.
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d to arrive at the server, and the packets that the server sends starting at time r + 3d + k
take time 0 to arrive at the client. Except for the fact that packets sent and received have
different id’s, in the clockgs interval [r+2d, ' 4 d] in execution ag the server receives exactly
the same inputs as in the same clockg interval in execution a7. In this interval it receives a
crash input from the environment, and the inputs from the channel (packets from the client)
are the same (except for the id’s) because modulo packet id’s, ag|C' time passage equivalent
to az|C, and the only packets from the client that reach the server in the clockg interval
[r + 2d, t' 4+ d] in both executions, are the ones that the client starts sending from time
r 4+ 2d 4+ k. These packets start arriving when clocks = r+ 3d+ k in both executions. Since
the recover action returns the server to an initial state where it does not remember any
previous actions in both executions, modulo packet id’s, ag|$ time passage equivalent to
ar|S for the clocks intervals [r+2d, t' 4 d]. Because of the real time independence property
of the server, we know that at clocks = t' + d the server can perform the deliver(m) action.
Since m was already delivered, we have duplicate delivery which contradicts our assumption

that the protocol solves the at-most-once fast delivery problem. [ |

11.5 Discussion of proof

In this section we provide some intuition for the proof by explaining the reasons for the
times we choose to have events occur in executions a7 and ag. In execution a7 we want the
protocol to deliver m, so the send(m) event must occur at or after the recover event. In as
the send(m) event should happen at the same real time as in a;. However, now we want m
to be delivered as it was in execution ay. This delivery takes time strictly less than 2d after
the send(m) event. The delivery must be followed by a crash and recovery. The recover
event happens at least clocks = k time after the delivery of the message. The crash and
recovery in ag must happen at the same clocks time as in a7;. Therefore, since in ag the
clock function of the server is the identity function, the recover event in oy and the recover
event in ag are at least 2d + k apart in real time. Therefore, in a7 at the time of the recover

event, clocks must be ahead of real time by at least 2d + k.

In a7 messages by the client after time r and up to time r + 2d + k get dropped because

305



this is the time frame in ag where the server delivers the message, crashes, and recovers.
Packets sent at or after real time r + 2d + k do not get dropped in a; because the server
recovers at this time in ag, so packets received by the server in both executions at or after
this time are the first packets the server receives after recovering. In order for the proof
to work, the packets sent by the client at or after real time r + 2d + k£ must arrive at the
server at the same clockg time in both executions a7 and ag. Similarly, the packets sent by
the server at or after real time r + 2d + k must arrive at the client at the same clocks time
in both executions. Since clocko remains unchanged in both executions while clockg does
change, the delivery time of the packets sent at or after real time r 4+ 2d + k in ag must
be different from the delivery time of packets sent at or after real time r + 2d + k in a7 in
order for them to arrive at the same clocks and clocks times in both executions. In «ar at
or after real time r 4+ 2d + k, clockg is ahead of real time by a fixed amount, z, and in ag
clockg is equal to real time. Therefore, in ag packets sent by the client at or after real time
r 4 2d 4+ k must take the additional time of x to arrive at server. Similarly, packets sent by
the server at or after real time r + 2d + &k in o7 must be sent at the same clockg time in ag.
Therefore, in ag, they are sent later in real time by z, which means for them to arrive at
the client at the same time in both executions, their time on the channel in ag must be z
less that their time on the channel in «x.

In our proof we let & = d. Thus, in order to allow d to be any value from 0 to p, we set
the delivery time for packets from the client and the server at or after real time r 4+ 2d + k
in a7 to be 0 and d respectively. If we did not want to allow 0 time delivery of packets in
the model, we can let < d. For example, if we let 2 = 0.5d, then we can let the delivery
time for packets from the client and the server at or after real time r + 2d + k in a7 to be
0.5d and d respectively. Then in ag the delivery times would be d and 0.5d respectively.

While it is impossible for any protocol to solve the at-most-once fast delivery problem,
in practice an even weaker correctness condition may be sufficient. In the next chapter we
present a weaker specification for the problem T /TCP is supposed to solve, and shows that

T/TCP implements this specification.
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Chapter 12

Conclusion

12.1 Summary

In this thesis we presented three very large case studies of the use of simulation and in-
variant assertion techniques for the formal verification of complex distributed protocols.
We verified two versions of TCP and a version of the experimental transport level protocol
called T/TCP. T/TCP is designed to provide the reliable data streaming of TCP, while
being more efficient for transactions. However, under certain circumstances T/TCP may
deliver the same message twice. We showed in the thesis that it is in fact impossible for
any protocol to provide reliable data service and fast transactions if the client and server

have clocks that may run at arbitrary rates.

12.1.1 Verification of protocols

TCP is designed to provide reliable transport level service. The first step in verification is
to write a precise formal specification for this problem. We write the specification using the
untimed automaton model [24]. The key idea in the abstract specification is to represent
data sent during an incarnation of a connection as elements of a FIFO queue. Fach of the
client and server has an infinite array of these queues. The array of queues at the client and
server are indexed by the infinite set of unique identifiers (uid’s) at the client and server
respectively. For each new incarnation the client and server both chose a new id. The client

uses its id as the index for the queue on which it sends data for that particular incarnation,
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and the server does likewise. To form a connection, id’s chosen by the client and server are
non-deterministically paired together. Fach id can only be paired with one other id from
the other host. A host can only receive data from a queue if its current id is paired with
the id of the sender of the data, and since each id can only be associated with one other id,

a host can only receive data from a unique incarnation during the life of that incarnation.

After presenting the specification for the reliable transport level problem, we presented
a formal model for TCP, but with the assumption that it has unbounded and stable coun-
ters. The protocol is described using the General Timed Automaton model [21]. We then
use simulation techniques [24, 26] to formally verify that TCP with unbounded counters
implements the specification for the reliable transport level problem. However, in reality
TCP does not have unbounded and stable counters. It instead uses a 32 bit clock based
counter that cycles in approximately 4.5 hours for initial sequence number generation. It
also uses a 32 bit number cyclic space for numbering each byte of data sent. Therefore, in
practice TCP relies on timing properties of the counters, the maximum segment lifetime,
and a series of timeouts to give the illusion of an unbounded set of sequence numbers. In the
thesis we clarify the timing properties that are needed, and show executions where incorrect
behavior results if the correct timeouts are not used. The official TCP references [28, 30] are
somewhat unclear on which timeouts are necessary for correct behavior. Both references
describe timeouts that are necessary for correct behavior as being optional. The duration
of quiet time after crashes specified in [28] is also not long enough and can lead to incorrect

behavior in some situations.

We described TCP with bounded counters and the correct timeouts using the GTA
model, and then used a forward simulation to show that it implements a slightly modified
version of TCP with unbounded counters. The modification allows non-deterministic time-
outs in TCP, and we show the modified version of TCP still implements the specification.
Thus, TCP with bounded counters and timeouts implement the specification for the reliable

transport level problem.

After defining a specification for the problem and formally verifying both versions of
TCP we next sought to show that T/TCP implements TCP. However, we observed that even

with unbounded and stable counters, T/TCP does not satisfy the at-most-once semantics
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required of reliable transport level protocols. This fact had been shown earlier by Shankar
and Lee in [33]. The designers of T/TCP and other network protocol designers think that
in some situations it is acceptable for the same data to be delivered twice, so the behavior of
T/TCP is not necessarily wrong. Therefore, in the thesis we present a weaker specification
for the transport level problem. This weaker specification captures the different behaviors of
T/TCP. The key differences in the weaker specification is that we allow the hosts to resume
an incarnation after a crash or an abort, and we allow some data to be delivered more than
once. In the stronger specification after a crash or abort new incarnations must be started.
After presenting the weaker specification we formally verify that T/TCP implements this
specification. The verification of this protocol follows the same pattern as the verification

of TCP with unbounded counters.

12.1.2 Impossibility result

T/TCP does not solve the reliable transport level problem because the optimizations that
make it efficient for transactions may also cause it to deliver duplicate messages after a
crash. This observation caused us to wonder whether it is possible for any protocol to
perform transactions efficiently and still have reliable data streaming. In the thesis we
prove that under certain specific circumstances it is impossible for any protocol to do both.
The formal automaton models we used for the verifications in the thesis are not sufficient
for presenting the impossibility result. For the impossibility result we had to deal with the
issue of liveness, since we do not want to allow protocols that solve the problem by blocking
time. We also had to deal with issue of the client and server having local clocks, but no
access to real time. The formal model used to describe the system and present the proof of
impossibility is a novel combination of the live GTA model of Segala et al. [31], which can
handle liveness issues, and the clock GTA model of De Prisco [29], which allows local clocks.
We prove that in a system where the client and the server have local clocks and infinite
and stable sets of unique identifiers, but not counters, that even if we require fast delivery
only when the clocks are accurate and not immediately after crashes, it is impossible to
have fast delivery and still satisfy the the at-most-once delivery property if the local clocks

sometimes run at arbitrary rates.
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12.2 Evaluation

The thesis has clearly demonstrated that simulation and invariant assertion techniques can
be used to verify the correctness of complex real world protocols. We believe our abstract
modeling of TCP and T/TCP captures the most significant aspects of the protocols related
to safety. However, we do make some simplifying assumptions about the protocols. Most
of the simplifications we make are related to the performance of the protocols. In our
abstract model, every segment contains at most one byte of data. We also do not include
the sliding window mechanism, so each byte of data needs to be acknowledged before new
data is sent. The fact that in the real protocols segments can contain more than one byte of
data, and that the sliding window mechanism allows multiple segments to receive a single
acknowledgment are performance issues that we do not believe are critical to the safety
of the protocols. Thus, even though we do not verify versions of TCP and T/TCP that
include all the complexities, we believe our models for these protocols capture the essential

properties related to safety.

Even though we do not include all the details of the protocols, the proofs are still very
long. In particular, the verification of each of the three protocols require the proving of a
large number of invariants. We often found that in order to prove one key invariant, several
other auxiliary invariants that essentially “lead up” to the invariant we want to prove had
to be proved before. For example, if we wanted to prove that when a segment with a certain
sequence number is on a channel certain conditions are true, we often had to prove an some
invariants about conditions in the states from which that segment could be sent. Many
times we had to prove a sequence of three or four invariants before we could prove one key
invariant. We found that a lot of the difficulty in the invariant proofs had to do with finding
the right auxiliary invariants. Once the correct sequence of auxiliary invariants was found,

the actual proof of each piece tended not to be too difficult.

However, even though each little piece of the proof may not be too difficult, the sheer
size of the proofs may make protocol designers reluctant to use the formal methods used
in this thesis. Therefore, the continued development of tools that automate the process of

proving simulation relations and especially the proof of invariants is important for making
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the methods more practical. Formal verification methods are most interesting to protocol
designers when they reveal flaws in protocols. In doing the work for this thesis we found
that the formal methods we use can reveal flaws in the protocol even before all the small
details are worked out. For example, our observation that T/TCP may deliver the same
data twice occurred while we were trying to simulate the accelerated opening of T/TCP
by a sequence of TCP steps. The observation came before we started to proving low level
invariants of that protocol. Therefore, the formal methods used in the thesis can be useful

to protocol designers even before all the details of the proofs are worked out.

12.3 Future Work

In the short term, we would like redo at least parts of the proofs in this thesis using
an existing automated tool such as the Larch Prover [11]. We are particularly interested
in using automated tools for the proofs of low level invariants. The precise structure of
these proofs make them particularly amenable to automated verification. There are already
several examples where the Larch Prover has been used for these types of proofs [34, 20].
Another short term project is to show that the impossibility result holds even when the
client and server are allowed to use unbounded counters. Since T/TCP has duplicate
delivery even though it uses unbounded counters, we believe counters do not help for any
protocol. However, the proof we use in the thesis does not hold in the case where the process
may have counters. The reason the proof as we have it now does not work for counters is
that when the different executions are combined, the hosts many be able to distinguish the
combined executions from the other excutions if they can do more sophisticated comparisons
of the id’s in addition to testing whether two id’s are the same. With counters, the host are

able compare whether one id is greater than, or less than other id’s.

In the long term we would like to work on developing more tools for automating simu-
lation and invariant assertional proofs. We are also interested in using the formal methods
to verify additional network protocols. We not only want to use the methods to verify
safety properties, but also want to use the formal methods to verify performance properties

of protocols. The issue of quality of service guarantees is almost as important as safety
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for transport level protocols, and we believe the formal methods used in the thesis can be
enhanced to analyze performance characteristics of protocols. In our work we find that the
formal methods provide valuable insights into how protocols work and what aspects of the
protocols are essential for correctness, so we believe these methods can be useful in the
designing of protocols. Therefore, in the future we want to work on the design of protocols,

where formal verification methods are incorporated in the design process.
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Appendix A

A.1 Sets

We use standard notation for sets. A set consisting of the elements ey, eq,... we write as
{e1,€9,...}.

The empty set is denoted by @), set membership by €, and C and C denote proper subset
and subset relations respectively. We also use the standard set operators.

U Union

N Intersection

~ Complement (with respect to some given set)

\ Set minus.

We also use the notation :€ to assign an arbitrary element of a set to a variable. That is,

v:€ {e1,€9,...} Mmeans v = e Or vV = €9, ....

A.1.1 Cardinality

The cardinality of a set 5, is written |5| and is defined as

5| A nif S has n elements

oo if 5 has infinitely many elements

A.2 Bags (Multisets)

For bags we use the following operations from the previous section:

|s],U, N, €,\
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|s| counts the total number of elements including duplicates of s.

A.2.1 Bag Type

For any set 5, denote by B(.9) the set of all (finite or infinite) bags with elements from 5.

A.3 Queues

A queue g consisting of the elements ey, e5,... we write in one of the following ways

qg= (e1,€2,...)
q—=¢€1,€2,...

g = €1€2,....

We denote the empty queue by .

A.3.1 Length

The length of a queue ¢ = (eq,ez,...), written |¢|, is defined as:

n  if ¢ is finite and ends in e,
A
gl =
oo if ¢ is infinite.

A.3.2 Head, Tail, Last, Init
If g = (e1,e3,€3,...) is nonempty, define

head(q) £ e

tail(q) £ (ez,es,...).
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If ¢ is finite and ends in e, then define

last(q) = e,

init(q) £ (e, €9, ..., €n_1).

A.3.3 Cross product

The cross product of a queue ¢ = (e1,e€z,...,€,) and a constant ¢ written ¢ X ¢ returns a

queue where each element is paired with ¢. That is,

qgxc2 ((er,c),(eg,¢)y...,(€n,c))

A.3.4 Concatenation

Concatenation of two queues [y and [y written [;-l5 or sometimes [{/5, is defined when [y is

finite. If [ = (eq,...,€e,) and Iz = (€41, €n42...), then define

A
11'12 = <617' <9 €ny€nt1,€nt2 .. >

A.3.5 Indexing

If ¢ = (eq,ez,...), then define for all i with 1 <7 < |q

1A

qli] = e

We let dom(q) denote the set of indices of any queue ¢. Thus,

dom(q) £ {i]1 <i < |q|}.
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We denote as suffizes(q) the set of sets of consecutive indices at the end of any queue g.

Thus,

suffives(q) & {{ilj < i< |q|}1<j <lql}.

We denote as prefizes(q) the set of sets of consecutive indices at the begininig of any queue

q. Thus,
prefizes(q) = {{i]1 <1 < j}0 < j <|ql}.
If ¢ is nonempty, we denote by mazindez(q) the maximum index in ¢. Thus,
mazindez(q) 2 |q|.

The function delete(q, 1) deletes elements of ¢ with indices in the, possibly empty, set [
from dom(q). Thus,

delete(q, 1) = (q[i] | i € dom(q) N i & I).

A.4 Functions and Mappings

We use the term “function” and “mapping” synonymously. We use standard notation for
function definition and application. When explicitly defining the mapping from elements

to elements we use notation like

or equivalently [i — 27 | 1 <7 < 8.
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A.4.1 Function Type

A function f mapping elements from set A to set B has the type

A— B

We only deal with total functions, that is, f(a) is defined for all elements ¢ € A. A is

referred to as the domain of f.

A.4.2 Domain and Range

For any function f, dom(f) denotes the domain of f. The range of f, denoted as rng(f), is
defined as

rng(f) 2 {f(e) | e € dom(f)}.

A.4.3 Operations of Functions

For a function f: A — Band g : C' — D with B C (', define the composition fog: A — D
such that for all @ € A,

(fog)(a)= flg(a)).

For any function f: A — B and set S, f | S denotes the function of type (AN S) — B
such that for all a € AN S,
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Appendix B

Invariance proofs for TCP"

In the proofs of the invariants we use brackets “[ |” to refer to the value of variables received
in a segment from the channels as opposed to the actual value of the variable at the host.
For example, if the client gets the input receive-segs.(sns, acks, msgs), we write [sns] to refer
to the value of the variable sn, the client gets in the segment. We make this distinction
because it is possible that the value of a variable at a host might have changed since it was
sent out on a segment. We also use the operators sn and ack to return the sequence number
and acknowledgment number respectively of a segment on a channel.

We use the standard inductive technique for proving the invariants. That is, we show
that the invariants hold for the start states and then show that for every step (s,a,s’) of
TCP", if the invariant holds in state s then it also holds in state s’. The invariants are
typically of the form “if P (premise) then C' (consequence)”, where P might be true, so we
only need to consider actions that could cause P to go from false to true or could cause C'
to go from true to false. We call these actions critical actions.

Below when we say a proof is symmetric we mean that the actions are the same except
with different subscripts, so for example, crashs is symmetric to crash, and send-seges(sn.,
ack.,msg.) is symmetric to send-segs.(sns, acks, msgs). In the symmetric proofs, state
values remain the same, except where indicated.

Invariant 7.1

1. For all segments p € in-transit., sn. > sn(p).
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2. For all segments p € in-transits., sns > sn(p).

Proof: In the start states in-transit.; and in-transits. are both empty, so the invariant

holds for the base case.

1. We now consider the critical steps for Part 1.

a = send-seg.s(p)

Any step that places a segment in in-transit.; is critical. However, for any such
segment the sequence number of the segment is the current sequence number of the
client, so Part 1 is not violated.

a = duplicate.s (p)

This step also adds segments to in-transit.;. However, since p must be an exact
duplicate of a segment already in in-transit.s, if Part 1 holds in state s it also holds

in state s’.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant 7.2
1. If ack, € N then ack, < sn. + 1.
2. If ack. € N then ack, < sng + 1.

Proof: In the initial state ack; and ack. are both undefined, so the invariant holds for this

case.

1. We consider the critical steps for Part 1.

a = receive-seg.s(p)

Any step where the client receives a segment p may assign ack; a non-nil value.
However, the value assigned is always sn(p) + 1. Segment p must have been in in-
transit., in state s, and since the step doesn not change the value of sn(p), we know

from Invariant 7.1 that sn. > sn(p). Therefore, Part 1 holds.

2. The proof for Part 2 is symmetric. [ |
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Invariant 7.3
1. For all segments p € in-transity., ack(p) < sn. + 1.
2. For all segments p € in-transit.s, ack(p) < sns + 1.

Proof: In the start states in-transit.; and in-transits. are both empty, so the invariant

holds for the base case.

1. We now consider the critical step for Part 1.

a = send-segs.(p)

Any step that places a segment in in-transits. is critical. For any such segment p,
ack(p) = acks, and from Invariant 7.2 we know that acks < sn. 4+ 1. Therefore Part 1
holds after this step.

a = duplicateg.(p)

This step also adds segments to in-transits.. However, since p must be an exact
duplicate of a segment already in in-transits., if Part 1 holds in state s it also holds

in state s'.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant 7.4
1. If mode. = syn-sent then for all non-SYN segments p € in-transit.;, sn(p) < isn,.
2. If mode; = syn-rcvd then for all non-SYN segments p € in-transits., sn(p) < isns.

Proof: In the start state mode. and mode; have the value closed, so the invariant holds

in this state. We consider critical steps of the form (s, a, s") below.

1. a = send-msg.(open, m, close)

This step can make the premise of the invariant go from false to true. However, if this
assignment is made, then sn. gets assigned s.sn.+1. We know from Invariant 7.1 that
s.sn. > sn(p) for any p in s.in-transit.;. Since this step does not add any segments
to in-transit.,, we know after this step s'.isn. > s.sn. > sn(p) for all segments p in

n-transit ..
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a = send-seq.s(sn., ack., msg.) and a = send-seg.s(sn., ack., msg.)

Both these steps can make the consequence of the Part 1 go from true to false. How-
ever, both actions are only enabled if mode. # syn-sent, and neither changes mode..,

so Part 1 holds after either of these steps.

2. a = send-seg.s(SYN, sn.)

This step is symmetric to ¢ = send-msg.(open, m, close) for Part 1.

a = send-segs.(sns, acks, msg,) and a = send-segs.(sns, acks, msgs)

The proof for these steps is symmetric to the case for the symmetric steps of Part 1.

Invariant 7.5
1. isn. # nil if and only if mode. # closed.
2. isnS # nil if and only if mode, ¢ {closed, syn-sent}.
3. isns #nil Visn # nil if and only if mode; ¢ {closed,listen}.

Proof: In the start state isn, = nil, isn{ = nil, and isn, = nil, so the invariant holds in

the base case. We now consider the critical steps for Part 1.

1. a = send-msg.(open, m, close)

This step may change isn. from nil to a non-nil value. However, if this change is
made, then mode,. also changes to syn-sent. This step may also change mode. to

closed, but by definition mode,. being closed means isn. is nil, so Part 1 holds.

a = receive-segs.(sns, acks, msgs), a = timeout., a = recover., and a = shut-down,

These steps may change mode. to closed, which again by definition, means isn. is

nil, so Part 1 holds.

2. We consider the critical steps for Part 2.

a = recejve-segs.(SYN, sng, acks)

This step may change ¢sn from nil to a non-nil value. However, if this change is

made, then mode,. also changes to estb.
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The steps with a = receive-segs.(sns, acks, msgs), a = timeoul., a = recover,, and a
= shut-down,. may all change mode. to closed, but by definition mode. being closed

means ¢sng is nil.

3. We consider the critical steps for Part 3.

a = receive-seqg.s(SYN, sn.)

This step causes isn, to go from nil to a sn. and isn? to also go to a non-nil value.

However, this step also changes mode; to syn-rcvd, so Part 3 holds.

a = send-msgs(m, close)

This step may change mode; to closed. However, by definition if mode; is closed,

then isn, and isn? are both nil.

a = receive-Seq.s(sn., ack., msg.), a = timeouts, a = recovers, and a = shut-down,

These steps may change modes to closed. [ |

Invariant 7.6

1. If isn] # nil then isn?

IN

SNe.
2. If isn? # nil then isn? < acks.

3. If isn] # nil then isng

IN

5.
4. If isn; # nil then isn{ < ack..
5. If isn. # nil then isn. < sn..

6. If isng # nil then isng < sn,.

Proof: In the start state isn}, isng, isn., isns are all equal to nil, so the invariant holds in

this state. We examine the critical steps below.

1. a = receive-seq.;(SYN, sn.)

In this step isnf is assigned [sn.]. For this assignment to happen [sn.] must have been
in s.in-transit.;. Since Invariant 7.1 holds in state s, we know s.sn. > [sn.]. Therefore,

sne > isnl.
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2. For Part 2 the critical step is:

a = receive-seqg.s(SYN, sn.)

In this step isn? is assigned [sn.]. However, ack; is assigned to [sn.] + 1, so Part 2

holds after this step.

3. For Part 3 the critical step is:

a = recejve-segs.(SYN, sng, acks)

In this step isn® is assigned [sn,]. For this assignment to happen [sns] must have
been in s.in-transits.. Since Invariant 7.1 holds in state s, we know s.sng > [sns].

Therefore, sn, > isng.

4. For Part 4 the critical step is:

a = recejve-segs.(SYN, sng, acks)

In this step isnS is assigned [sng]. However, ack, is assigned to [sns] + 1, so Part 4

holds after this step.

5. For Part 5 the critical step is:

a = send-msg.(open, m, close)

In this step isn. is assigned sn.; therefore, Part 5 holds after this step.

6. For Part 6 the critical step is:

a = receive-seqg.s(SYN, sn.)

In this step isng is assigned sng; therefore, Part 6 holds after this step. [ |

Invariant 7.7

If modey, = syn-rcvd then acky = isn? + 1.

Proof: In the start state mode; = closed, so the invariant holds in this state. We consider
critical steps of the form (s,a,s") below.

a = receive-seqg.s(SYN, sn.)

This step assigns mode; to syn-rcvd, but also assigns acks to [sns] 4+ 1 and isn’ to [sns], so
the invariant holds after this step.

a = receive-seq.s(sn., ack., msg.)

This step may change acks, but since we assume the invariant holds in state s, either
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s.mode; # syn-rcvd, and this step does not change it to syn-rcvd, or if s.modes; =
syn-rcvd, after this step s’.modes; = estb, so the invariant holds after this step.

a = receive-seq.s(sn., ack,, msg., FIN)

The proof is the same as the case for a = receive-seg.s(sn., ack., msg.) except that if

s.mode, = syn-rcvd, after this step s’.mode; = close-wait. [ |

Invariant 7.8

If (¢,7) € assoc then ¢ < sn. A j < sn.

Proof: In the start state assoc is the empty set, so the invariant holds in this state. We
consider critical steps of the form (s, a,s’) below.

a = receive-seq.s(sn., ack., msg.) and a = receive-seqg.s(sn., ack., msg.,FIN)

These steps may add the pair (isn?,isns) to assoc. However, from Invariant 7.6 we know

that isn’ < sn. and isn, < sng, so the invariant holds after these steps. [ ]

Invariant 7.9
1. If ésn. # nil A choose-isn. = true then isn. # isn].
2. If isng, # nil A choose-isns, = true then isng # isng.

Proof: In the start state isn, = nil and #sny; = nil, so the invariant holds for the base

case.

1. We consider the critical steps for Part 1.

a = send-msg.(open, m, close)

In this step usn. is assigned s.sn.+ 1 and choose-isn,. is assigned true. If s.isn] = nil
then Part 1 holds. If s.isn? # nil, then from Invariant 7.6 we know s.isn? < s.sn,.
Since s'.isn. = s.sn.+ 1, and this step does not change isn?, we know s'.isn. > s'.isn?,
so Part 1 holds after this step.

a = receive-seqg.s(SYN, sn.)

In this step isn is assigned [sn.|, but choose-isn. is also assigned false, so Part 1

holds after this step.

2. We consider the critical steps for Part 2.

a = receive-seqg.s(SYN, sn.)
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In this step isn, is assigned s.sny+ 1, and choose-isng is assigned true. If s.isni = nil
then Part 2 holds. If s.isng # nil, then from Invariant 7.6 we know s.isnS < s.sns.
Since s'.isn; = s.sns+ 1, and this step does not change isng, we know s'.isn; > s'.isnS,

so Part 1 holds after this step. [ |

Invariant 7.10

1. If mode. = syn-sent then sn. = isn..

2. If mode. = syn-rcvd then sny; = isn,.

Proof: In the start state mode. and mode; have the value closed, so the invariant holds

in this state.

1. We examine the critical steps for Part 1.

a = send-msg.(open, m, close)

This step assigns mode, to syn-sent and increments sn., but also assigns isn. to sn..
Therefore, Part 1 holds after this step.

a = prepare-msg,

This step increments sn., but it is only enabled if mode. € {estb, close-wait}. Since

we assumed the invariant holds for state s, this step is not enabled in state s.

a = receive-segs.(sns, acks, msgs), a = timeout., a = recover., and a = shut-down,

These steps may change isn. to nil, because they may set mode. to closed, so Part

1 holds after these steps.

2. We consider the critical steps for Part 2

a = receive-seqg.s(SYN, sn.)

This step assigns mode; to syn-rcvd and increments sng, but also assigns isn, to sng.
Therefore, Part 2 holds after this step.

a = prepare-msgs

Symmetric to the case for a = prepare-msg. of Part 1.

a = receive-Seq.s(sn., ack., msg.), a = timeouts, a = recovers, and a = shut-down,

These steps may change isng to nil, because they may set mode; to closed, so Part

1 holds after these steps. [ |
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Invariant 7.11

1. If choose-isn. A isn. = ¢ then V SYN segments p € in-transit.s, sn(p) < 1 A

V SYN segments ¢ € in-transits., ack(q) < i+ 1.

2. If choose-isnsNisng = i then V SYN segments p € in-transit., sn(p) < jAV segments ¢ €

in-transit.s, ack(q) < i+ 1.

Proof: In the initial state choose-isn. = false and choose-isn, = false so the invariant

holds for the base case. We examine critical steps of the form (s,a,s") for Part 1 below.

1. a = send-msg.(open, m, close)

This step can make the premise of Part 1 go from false to true. In this step choose-isn,
may get assigned true and isn. may get assigned s.sn.+1. We know from Invariant 7.1
that s.sn. > sn(p) for any pin s.in-transit.s. Since this step does not add any segments
to in-transit.;, we know after this step s'.isn. > s.sn. > sn(p) for all segments p in
in-transit.s. From Invariant 7.3, we know that for any segment ¢ in s.in-transit,.,
ack(q) < s.sn. 4+ 1. Since s'.isn. = s.sn. + 1, we know that for any ¢ € s'.in-transit,.,
ack(q) < s'.isn. + 1. Therefore, Part 1 holds after this step.

a = send-seg.s(SYN, sn,.)

This step adds a segment to in-transit.s, but it also sets choose-isn. to false, so Part
1 holds after this step.
a = send-seqs.(SYN, sns, ack)

This step adds segments to in-transits., but it also sets choose-isn. to false, so Part

1 holds after this step.

2. We examine the critical steps for Part 2 below.

a = receive-seqg.s(SYN, sn.)

The proof for this case is symmetric to the proof for a = send-msg.(open, m, close)

of Part 1.

a = send-seqs.(SYN, sns, ack)

This step sets choose-isng to false.

a = send-seq.s(sn., ack., msg.) and a = send-seg.s(sn., ack., msg., FIN)

These steps set choose-isng to false. [ |
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Invariant 7.12
1. For all i € NU{nil}, (4,nil) ¢ estb-pairs.
2. For all j € NU{nil}, (nil,j) ¢ estb-pairs.
3. For all i € NU {nil}, (¢,nil) ¢ assoc.
4. For all j € NU{nil}, (nil,j) ¢ assoc.

Proof: . In the start state estb-pairs and assoc are both the empty set. We consider critical

actions of the form (s, a, s’) below.

1. a = receive-seg,.(SYN, sns, acks)

In this step (isn., sns) gets added to estb-pairs, if mode. = syn-sent. However, from
Invariant 7.5 we know that if mode. # closed then isn,. # nil, so Part 1 holds after

this step.
2. The proof for Part 2 is the same as the proof for Part 1.

3. a = send-seq.s(sn., ack., msg.) and a = send-seg.s(sn., ack., msg., FIN)

These steps may add (isng, isns) to assoc, but from Invariant 7.5 we know neither

element of the pair is nil, so Part 3 holds after these steps.

4. The proof is the same as for Part 3. [ |

Invariant 7.13

1. If mode. € {fin-wait-1,fin-wait-2, closing, timed-wait,last-ack} then send-buf,

€ A rcvd-close, = true.

2. If mode; € {fin-wait-1,fin-wait-2,closing, timed-wait, last-ack} then send-buf, =

€ A revd-close, = true.

Proof: In the start state mode. and mode, have the value closed, so the invariant holds

in this state. We consider critical actions of the form (s, a,s’) below.
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1. a = send-msg.(open, m, close)

This step can change the consequence of Part 1 from true to false by adding a message

to send-buf .. However, the message is added only if mode. € {syn-sent, estb, close-wait},
so Part 1 holds after this step.

Steps that cause the client to close also change the consequence of Part 1 from true to

false. However, the premise of Part 1 is also obviously false after any of these steps.

a = prepare-msg,

This step may cause the premise of Part 1 to go from false to true by changing
mode, to fin-wait-1 or last-ack. However, the change is made only if send-buf, =

€ A revd-close. = true. Therefore, Part 1 holds after this step.

2. a = send-msg,(m, close)

This step can change the consequence of Part 2 from true to false by adding a message

to send-buf ;. However, the message is added only if mode. € {syn-rcvd, estb, close-wait},
so Part 2 holds after this step.

Steps that cause the server to close also change the consequence of Part 2 from true

to false. However, the premise of Part 2 is also obviously false after any of these steps.

a = prepare-msgs

Symmetric to the case for a = prepare-msg. for Part 1. [ |

Invariant 7.14

If modes € {listen, syn-rcvd} then rcv-buf, = e.

Proof: In the start state mode, = closed so the invariant holds in this state. We consider
critical steps of the form (s, a,s’) below.

a = passive-open

This step may cause the premise of the invariant to go from false to true. However, in this
step rcv-buf , is initialized to €, so the invariant holds after this step.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps may cause the consequence of the invariant to go from true to false. However,

after these steps mode; ¢ {listen, syn-rcvd}, so the invariant holds. ]
Invariant 7.15
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If isn. = isn® and there exists p € in-transit.s such that ack(p) > sns then mode. #
syn-sent.

Proof: In the start state in-transit.; is empty, so the invariant holds in this state. We
consider critical steps of the form (s, a,s’) below, but before we do, we point out that a =
receive-seg.s(SYN, sn.) is not a critical step, because Invariant 7.11 tells us that after this
step there are no segments p € in-transit.s such that ack(p) > sn,.

a = send-msg.(open, m, close)

This step may change the consequence of the invariant from true to false, but from Invari-
ant 7.9 we know that if this happens isn. # isnl. Therefore the invariant holds after this
step.

a = send-seges(sn., ack., msg.) and a = send-seqg.s(sn., ack., msg., FIN)

These steps add a segment to in-transit.s, but requires mode. # syn-sent. [ |

Invariant 7.16
1. If modes; = syn-rcvd then for all ¢, (7, isns) € assoc.
2. If mode. = syn-sent then for all j, (isn.,J) ¢ assoc.
3. If mode; = syn-rcvd A choose-isn, then for all 4, (7, isny) &€ estb-pairs.
4. If mode, = syn-sent then for all j, (isn.,j) ¢ estb-pairs.

Proof: In the start state mode; = closed and mode. = closed, so the invariant holds in

this state. We consider the critical steps below.

1. a = receive-seq.;(SYN, sn.)

This step changes modes to syn-rcvd and assigns isng to s.sng+ 1. Since this step does
not add any elements to assoc, if there exists ¢, such that (7, isn,) € assoc, then the
pair must be in assoc in state s. From Invariant 7.8 we know that if (¢, isn,) € assoc
then isn, < s.sn;. However, after this step isng; = s.sny + 1. Therefore, we know that

there cannot exist an ¢ such that (¢, isny) € assoc.

a = receive-seg.s(sn., ack., msg.)

This step may add the pair (isn?,isny) to assoc. However, if the pair is added, mode,
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is also assigned estb.

a = receive-$eg.s(sn., ack., msg., FIN)

This step may add the pair (isn?,isny) to assoc. However, if the pair is added, mode,

is also assigned close-wait.

. We consider the critical steps for Part 2 below.

a = send-msg.(open, m, close)

This step changes mode. to syn-sent and assigns isn. to s.sn.+1. Since this step does
not add any elements to assoc, if there exists j, such that (isn.,j) € assoc, then the
pair must be in assoc in state s. From Invariant 7.8 we know that if (isn., j) € s.assoc
then isn. < s.sn.. However, after this step isn. = s.sn. + 1. Therefore, we know that

there cannot exist an j such that (isn.,j) € s.assoc.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

If [ack.] = sns 4 1, these steps may add the pair (isn?,isny) to assoc. Thus, if isnd =
1sn., the consequence of the invariant goes from true to false. However, Invariant 7.15
tells us that if isn® = isn. and there exists p € s.in-transit., such that ack(p) > sns,
then s.mode. # syn-sent. Since these steps do not change the value of mode., Part

2 holds after these steps.

. a = receive-seq.s (SYN, sn.)

This step changes modes to syn-rcvd, assigns choose-isng to true, and assigns isng

to s.sns + 1. Clearly after this step (7, isns) € estb-pairs, so Part 3 holds.

a = recejve-segs.(SYN, sng, acks)

This step adds a pair to estb-pairs, but also sets choose-isn to false, so Part 3 holds

after this step.

. a = send-msg.(open, m, close)

This step changes mode. to syn-sent, assigns choose-isn. to true, and assigns isn,

to s.sn. + 1. Clearly after this step (isn.,j) & estb-pairs, so Part 4 holds.

a = recejve-segs.(SYN, sng, acks)

This step adds a pair to estb-pairs, but also sets mode. to estb. [ |
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Invariant 7.18
If (isng, isng) € assoc N\ mode, ¢ {rec,reset} then (isn.,isn;) € estb-pairs.
Proof: We examine the critical steps.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

In these steps the pair (isng, isns) may be added to assoc. These steps make the premise of
the invariant true, if s.isn. = s.isn?, [ack.] = s.sns + 1, and s.mode; = syn-rcvd. Thus, by
Invariant 7.15 we know s.mode. # syn-sent, and by Invariant 7.5 we know s.isn] # nil,
which means isn. # nil. Thus, again by Invariant 7.5, we know s.mode. # closed. Since
the premise of the invariant has mode. € {rec,reset}, the only other possible values for
mode,. is a value in sync-states. From Invariant 7.17 we know that if mode. € sync-states

then (isn.,isnS) € estb-pairs. Therefore, the invariant holds after these steps. [ |

Invariant 7.17

1. If mode. € sync-states then (isn.,isnS) € estb-pairs

2. If (isn.,isng) € estb-pairs A mode. ¢ {rec,reset} then mode. € sync-states.

Proof: In the start state mode. = closed and estb-pairs is empty, so the invariant holds

in this state. We consider critical steps of the form (s, a,s’) below.

1. a = receive-seg,.(SYN, sns, acks)

In this step mode. is assigned estb, but (isn., isn;) also gets added to estb-pairs, so

Part 1 holds after this step.

2. a = receive-segs.(SYN, sn,, acks)

In this step (isn., isnS) gets added to estb-pairs, but mode. is assigned estb, so Part

2 holds after this step.

The steps that cause the client to go to either mode closed, rec, or reset, may
change the consequence of Part 2 from true to false, but they also change the premise

to false, so Part 2 holds after these steps. [ |

Invariant 7.20

If isn. = isnd A isn, = isn A modes; = syn-rcvd A mode. ¢ {closed,rec,reset} then
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mode. € sync-states.

Proof: In the start state mode,. = closed, so the invariant holds. Before we consider the
critical steps for this invariant, we point out that a = receive-seg.s(SYN, sn.) is not critical,
because after this step mode; = syn-rcvd and choose-isng; = true, which by Invariant 7.9
means isn. # isnS. We consider critical steps of the form (s, a, s’) below.

a = receive-segs.(SYN, sng, acks)

This step assigns isn to [sns]. However, it also assigns mode. to estb, so the invariant
holds after this step.

The steps that can take mode. out of sync-states are all critical, but when they do they add
mode, to the set {closed,rec,reset}, so it is obvious that the invariant holds after these

steps, therefore, we do list all these steps here. [ |

Invariant 7.19

If mode. = syn-sent A isn. = isn then mode; ¢ sync-states.

Proof: In the start state mode,. has the value closed, so the invariant holds in this state.
We consider critical steps of the form (s,a,s’) below.

a = receive-seqg.s(SYN, sn.)

This step may cause the premise of the invariant to go from false to true, but after this step
modes; = syn-rcvd, so the invariant holds.

a = receive-seq.s(sn., ack., msg.) and a = receive-seqg.s(sn., ack., msg.)

These steps can make the consequence of the invariant go from true to false if [ack.] = sns+1.
However, if this condition is true, then we know from Invariant 7.15 that mode. # syn-sent,

so the invariant holds after these steps. [ |

Invariant 7.21

If mode. = syn-sent A mode; = syn-rcvd A acks; = sn. + 1 then for all segments p €
in-transit.s, sns > ack(p).

Proof: In the start state mode; = closed, so the invariant holds in this state. We consider
critical steps of the form (s,a,s") below.

a = receive-seqg.s(SYN, sn.)

This step assigns mode; to syn-rcvd, acks to [sns] + 1, and sng to s.sng + 1. From Invari-
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ant 7.3 we know that for all p € s.in-transit.s ack(p) < s.sns; + 1. Therefore, after this step,
§.sng > ack(p).

a = send-seges(sn., ack., msg.) and a = send-seqg.s(sn., ack., msg., FIN)

These steps can change the consequence of the invariant from true to false by adding a
segment p to in-transit., with ack(p) > sns. However, the actions are only enabled if
s.mode. # syn-sent, and they do not change the value of mode., so the invariant holds

after either of these steps. [ |

Invariant 7.22

If mode, = syn-sent then for all SYN segments p € in-transity. such that ack(p) = sn. +1,
sn(p) > ack(q) for all ¢ € in-transit,,.

Proof: In the start state mode; = closed, so the invariant holds in this state. We consider
critical steps of the form (s,a,s") below.

a = send-msg.(open, m, close)

This step assigns mode. to syn-sent, but we know from Invariant 7.11 that when this
assignment is made that there are no SYN segments p € in-transity, such that ack(p) =
sne + 1, so the invariant holds after this step.

a = send-segs.(SYN, sns, acks)

This step adds a SYN segment to in-transit,., so it can change the consequence of the
invariant from true to false if the added segment has ack(p) = sn. + 1, but sn(p) < ack(q)
for some segment ¢ € in-transit.s. This action is only enabled if mode; = syn-rcvd.
Therefore, we know from Invariant 7.21 that if this steps adds a segment that causes the
consequence of the invariant to be false, then mode. # syn-sent.

a = send-seg.s(sn., ack., msg.) or a = send-seg.s(sn., ack., msg., FIN)

These steps can change the consequence of the invariant from true to false by adding a
segment ¢ to in-transit.s with ack(q) > sn(p). However, the actions are only enabled if
s.mode. # syn-sent, and they do not change the value of mode., so the invariant holds

after either of these steps. [ |

Invariant 7.23

If ack. € N then for all p € in-transit.s, ack. > ack(p).
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Proof: In the start state ack. is undefined, so the invariant holds in this state. We consider
critical steps of the form (s,a,s’) below. We point out that a = receive-segs.(sns, acks,
msgs) and a = receive-seg.(sns, acks, msgs, FIN) are not critical because they increment
ack,.

a = send-segs.(SYN, sns, acks)

This step may change the premise of the invariant from false to true by assigning ack. to
[sns] + 1 if [acks] = sn. + 1 and mode. = syn-sent. However, we know from Invariant 7.22
that [sns] > ack(p) for all p € in-transit.s, so the invariant holds after this step.

Steps that cause the client to close are also critical, but they also make ack. undefined, so

the invariant holds after any of these steps. [ |

Invariant 7.24

If isn. = isnl A isn, = isnS A mode. € sync-states A mode; ¢ {rec,reset} then for all
segments p € in-transit,., acks > ack(p).

Proof: In the initial state mode. = closed, so the invariant holds in this state. We examine
the critical steps of the form (s, a,s") below.

a = receive-segs.(SYN, sng, acks)

If s.mode. = syn-sentAlacks] = s.sn.+1, this step assigns isn§ to [sns], ack. to [sns]+1, and
mode. to estb. From Invariant 7.10 we know that since s.mode. = syn-sent, then s.isn. =
s.sn.. We also know from Invariant 7.6 that ack, > isn] = isn.. Since by Invariant 7.3 we
know that for all p € in-transits., ack(p) < sn.+ 1, we know that ack, > ack(p) for all such
p. Thus, the invariant holds after this step.

a = receive-seqg.s(SYN, sn.)

This step assigns acks to [sn.]+ 1, so may change the consequence of the invariant from true
to false. However, this step also assigns isns to a non-nil value and assigns choose-isn; to
true. Therefore, from Invariant 7.9, we know isn, = isng, so the invariant holds after this

step. ]

Invariant 7.25
If mode, € sync-states A modes ¢ {closed,rec,reset} A isn. = isn? and there exists a non-

SYN segment p € in-transits. such that sn(p) > ack., then mode, # syn-rcvdV ack, < isns.
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Proof: In the start state mode,. has the value closed, so the invariant holds in this state.

We consider critical steps of the form (s, a,s’) below.

a = send-seg.s(SYN, sn.)

This step may make the premise of the invariant go from false to true by assigning isn’ to
1sn.. This step also assigns modes; to syn-rcvd, and increments sn; and assigns it to isn,.
From Invariant 7.4 we know that for all non-SYN segments p € transits. sn(p) < isns.
Therefore, if there exists a non-SYN segment p € in-transit,. such that sn(p) > ack., which
must be the case if the premise of the invariant is true, then after this step ack. < isn,, so
the invariant holds.

a = receive-segs.(SYN, sng, acks)

This step may cause the premise of the invariant to go from false to true if [acks] = sn. + 1.
Given that modes; ¢ {closed,rec,reset}, Invariant 7.19 tells us that mode, must be
syn-rcvd. Thus, if there exists a non-SYN p € in-transit,. such that sn(p) > ack., we know
that ack. < isn, because Invariant 7.4 tells us that sn(p) < isns. Therefore, the invariant
holds after this step.

a = send-segs.(sns, acks, msgs) and a = send-segs.(sns, acks, msgs, FIN)

These steps may also cause the premise of the invariant to go from false to true. However,
they are only enabled if modes # syn-rcvd.

a = receive-segs.(sns, acks, msgs) and a = receive-segs.(sns, acks, msgs, FIN)

These steps may change the consequence of the invariant from true to false if s.mode; =
syn-rcvd, and the steps assign ack. to a value greater than or equal to isn;. However,
from Invariant 7.4, we know that if mode, = syn-rcvd, then isn, > sn(p) for any non-SYN
segment p € in-transit;.. Therefore, the premise of the invariant must also be false if these

steps cause the consequence of the invariant to become false. [ |

Invariant 7.26

If modes = syn-rcvd A isn, = isn] A ack. = isng + 1 then isn, = isn.

Proof: In the start state mode; has the value closed, so the invariant holds in this state.
We consider critical steps of the form (s, a, s’) below. The steps with a = receive-segs.(sns,
acks, msgs) and a = receive-seg,.(sns, acks, msgs) even though they may change ack., are

not critical. They are not critical because they change ack. only if mode. € sync-states and
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sn(p) > ack,., so Invariant 7.25 tells us the after these steps either mode; # syn-rcvd Vv
ack, # isns + 1.
a = receive-seqg.s(SYN, sn.)

This step may cause the consequence of the invariant to go from true to false. However,
from Invariant 7.2 we know that after this step ack. < isn; 4+ 1, so the invariant holds after
this step.

a = receive-segs.(SYN, sng, acks)

This step assigns ack. the value [sng] + 1 and isnS the value [sng]. Thus, if ack. = sns + 1
after this step, then clearly isng, = isnS. If isns # isn{ after this step, then clearly the

premise of the invariant is also false. [ |

Invariant 7.27

If modey, = syn-rcvd A isn. = isn’ and there exists a non-SYN segment p € in-transil.,
such that ack(p) = isns + 1 then isng = isnt.

Proof: In the start state mode; has the value closed, so the invariant holds in this state.
We consider critical steps of the form (s, a,s’) below.

a = receive-seqg.s(SYN, sn.)

This step is critical because it can cause the consequence of the invariant to go from true
to false, by assigning isn’ a value that is not equal to isn.. However, from Invariant 7.2
we know that after this step ack. < isng; + 1, and since Invariant 7.23 tells us that for all
p € in-transit.s ack. > ack(p), we know that the premise of the invariant also becomes false
after this step if the consequence becomes false.

a = receive-segs.(SYN, sng, acks)

This step assigns ack. the value [sng] + 1 and isn the value [sns]. Thus, it can make the
consequence of the invariant false if [sns] # isn,. If modes; = syn-rcvd, then Invariant 7.10
tells us that sng; = isn;. We also know from Invariant 7.1 that sns; > [sng]. Therefore, if
[sns] # isng, then [sn,] < isng, which means ack, < isn; + 1. From Invariant 7.23 we know
that for all segments p € transit.s, ack. > ack(p). Therefore, after this step there cannot
be a segment p € transit., with ack(p) = isns + 1. Therefore, the invariant holds after this
step.

a = send-seges(sn., ack., msg.) and a = send-segs.(sn., ack., msg., FIN)
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These steps may also cause the premise of the invariant to go from false to true by adding
a non-SYN segment p to in-transit., with sn(p) = isns + 1. For these steps to have this
affect, it must be that in state s, ack. = isns + 1. Thus, by Invariant 7.26, s.isns = s.isng.

Since these steps do not change either isn, or isng, the invariant holds after the steps. =

Invariant 7.28
1. If (isne, isns) € assoc then isnS = isng A isnd = isn,.
2. If (isn.,isns) € estb-pairs then isn§ = isn;

Proof: In the start state assoc and estb-pairs are both the empty set, so the invariant holds

in this state. We consider critcal steps of the form (s, a,a’) below.

1. a = receive-seq.;(SYN, sn.)

This step is critical because it can cause the consequence of the invariant to go from
true to false, by assigning ¢sn) a value that is not equal to isn.. However, Invariant 7.16
tells us that in state s, (isn., isns) € assoc, and since the step does not add any pairs

to assoc, we know (isn., isns) ¢ assoc after the step.

a = recejve-segs.(SYN, sng, acks)

This step is critical because it can cause the consequence of the invariant to go from
true to false, by assigning isn{ a value that is not equal to isn,. However, again by

Invariant 7.16 we know (isn., isns) ¢ assoc after the step, so Part 1 holds.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps can cause the premise of Part 1 to go from false to true by adding the pair
(isng, isng) to assoc if s.mode; = syn-rcvd and if [ack.] = sny + 1. If this assignment
is made then clearly isnd = isn.. From Invariant 7.27 we know that s.isn; = s.isn,.

Since neither of these variables changes in these steps, Part 1 holds after thesse steps.

All the steps that cause the client or server to close can also make the consequence of
Part 1 go from true to false. However, those steps also make isn. or isn; go to nil,

so by Invariant 7.12 the premise of Part 1 is also false after any of these steps.

2. a = receive-seq.s(SYN, sn.)

This step is critical because it can cause the consequence of the invariant to go from
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true to false, by assigning isn? a value that is not equal to isn.. Since it also assigns
choose-isng to true, Invariant 7.16 tells us that in state s, (isn., isn,) € estb-pairs, and
since the step does not add any pairs to estb-pairs, we know (isn., isns) ¢ estb-pairs

after the step.

a = recejve-segs.(SYN, sng, acks)

This step can cause the premise of Part 2 to go from false to true, and it can cause
the consequence of Part 2 to go from true to false. For either case it is clear that Part

2 holds after this step.

All the steps that cause the client or server to close can also make the consequence of

Part 2 go from true to false. As for Part 1, we know Part 2 holds after these steps. m

Invariant 7.29

If (isne, isns) € assoc A mode, ¢ {rec,reset} then for all segments p € in-transity., acks >
ack(p).

Proof: In the initial state assoc is the empty set, so the invariant holds in this state. We
examine the critical steps of the form (s, a,s’) below.

a = receive-seqg.s(SYN, sn.)

This step may make the consequence of the invariant go from true to false, but after this step
modes = syn-rcvd, and from Invariant 7.16 we know that (isn.,isns) ¢ assoc. Therefore,
the premise of the invariant is also false after this step.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps add the pair (isn?,isns) to assoc if s.mode; = syn-rcvd. Thus, it can make
the premise of the invariant go from false to true. If the premise of the invariant is true,
Invariant 7.28 tells us that isny = isng A isn = isn.. We also know from Invariants 7.17
and 7.18 that if the premise is true, mode. € sync-states. Therefore, by Invariant 7.24 we
know that for all segments p € s.in-transits., s.acks > ack(p). Since these steps do not

change the elements of in-transily., the invariant holds after these steps. [ |

Invariant 7.30

1. If mode,. € {estb, close-wait}A-ready-to-send, Amodes ¢ {rec,reset}A(isn,, isns) €

estb-pairs A isn = isn, then sn. < ack;.
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2. If mode, € {estb, close-wait}A—ready-to-send, Amode. ¢ {rec,reset}A(isn., isn,) €

assoc then sn, < ack,..

Proof: In the initial state mode. and mode, are closed, so the invariant holds in this state.

We consider the critical steps of the form (s, a,s’) for Part 1 below.

1. a = send-msg.(open, m, close)

This step may cause the consequence of Part 1 to go from true to false by incrementing

sne, but if it does, it also assigns mode. to syn-sent, so Part 1 holds after this step.

a = prepare-msg,

This step is critical because it increments sn. and may change ready-to-send. to false.
However, either sn. is incremented, and ready-to-send. is set to true, or sn. is incre-
mented, ready-to-send, is set to false, and mode, is set to fin-wait-1 or last-ack.

In either case Part 1 still holds after this step.

a = recejve-segs.(SYN, sng, acks)

This step changes mode, to estb, adds (isn., isns) to estb-pairs, and sets ready-to-send..
to false. However, these changes are only made if [acks] = sn. + 1. Since Invari-

ant 7.24 tells us that [ack;] < acks, we know Part 1 holds after this step.

a = receive-segs.(sns, acks, msgs) and a = receive-seg,.(sns, acks, msgs, FIN)

These steps may change ready-to-send. to false. However, this change is only made
if [acks] = sn. + 1 and mode. € sync-states. Since by Invariant 7.24 we know that

[acks] < acks, Part 1 holds after these steps.

2. We now consider the critical steps for Part 2.

a = receive-seqg.s(SYN, sn.)

This step increments sng, but it also sets mode; to syn-rcvd, so Part 2 holds after

this step.

a = prepare-msgs

The proof that Part 2 holds after this step is symmetric to the proof that Part 1 holds

after the (s, prepare-msg., s') step.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

340



These steps may change ready-to-send. to false. However, this change is only made
if [acks] = sn. 4+ 1. From Invariants 7.18 and 7.17, we know that mode. # syn-sent,
so we know ack, € N. Therefore, by Invariant 7.23 we know that [ack.] < ack,., so Part

2 holds after this step. [ |

Invariant 7.31
1. If (¢, isn,) € assoc then isnd = 1.
2. If (isnZ, j) € assoc A mode, € sync-states then isn, = j.

Proof: In the start state assoc is the empty set, so the invariant holds in this state. We

consider critical steps of the form (s, a,s’) below.

1. a = receive-seq.;(SYN, sn.)

This step may assign isn. a value other than ¢ and isn, the value j. However, if
these assignments are made, mode; is also assigned the value syn-rcvd. Thus, from

Invariant 7.16 we know that (¢, 7) ¢ assoc.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps may add the pair (isn?, isns) to assoc, so Part 1 clearly holds after these

steps.

2. a = receive-seq.s(SYN, sn.)

This step may assign isn, a value other than j. However, this step also assigns mode

the value syn-rcvd, so Part 2 holds after this step.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps may change the premise of Part 2 from false to true by adding (isnZ, isns)
to assoc. However, the consequence is also obviously true after the pair is added, so

Part 2 holds after these steps. [ |

Invariant 7.32
If (isn?,j) € assoc A isns # j A modes ¢ {rec,reset} then mode, = syn-rcvd.

Proof: In the start state assoc is the empty set, so the invariant holds in this state. We
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consider critical steps of the form (s, a,s’) below.

a = receive-seqg.s(SYN, sn.)

This step may assign isn’ the value 7 and isn, a value other than j. However it also assigns
modes to syn-rcvd.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps may change the consequence of the invariant from true to false by assigning
modes to estb or to close-wait. If this change is made the pair (isn?, isn,) is also added to
assoc. However, we know from Invariant 7.31 that if (isng, j) € assocA modes € sync-states,
then isng; = j. Therefore, the premise, of the invariant is also false after these steps, so the

invariant holds. []

Invariant 7.33
1. If (h,j) € assoc A (i, ) € assoc then h = i.
2. If (¢,7) € assoc A (i, k) € assoc then j = k.

Proof: In the start state assoc is the empty set, so the invariant holds in this state. We

consider critical steps of the form (s, a,s’) for Part 1 below.

1. a = receive-seg.s(sn., ack., msg.) and a = receive-seg.s(sn., ack., msg., FIN)

These steps may add the pair (isn?,isns) to assoc. Without loss of generality assume
the pair (h,j) € s.assoc then these steps can make the premise of Part 1 go from false
to true if s.isnd = ¢ and s.isn, = 7. However, from Invariant 7.31 we know that if
(h,7) € s.assoc A isn, = j then s.isn® = h. Therefore, h = i, so Part 1 holds after

these steps.

2. We next consider the critical steps for Part 2.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps may add the pair (isn?,isns) to assoc. Without loss of generality assume
the pair (7,7) € s.assoc then these steps can make the premise of Part 2 go from
false to true if s.isn? = ¢ and s.isn, = k. If the pair is added, then after these steps
s'.mode; € {estb,close-wait}, and since the step does not change isng, s'.isn;, = k.

From Invariant 7.32, we know that if (4,j) € assoc A isn = i A isng # j A modes ¢
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{rec,reset}, then mode; = syn-rcvd. Since mode; # syn-rcvd, the premise of
Invariant 7.32 must be false. The only clause in the premise that can be false is
isng # j. Therefore isng = j, which means k = j. Therefore, Part 2 holds after these

steps. ]

Invariant 7.34

If modes; € {syn-rcvd} U sync-states A mode. € sync-states and there exists ¢ such that
(i, isng) € estb-pairs then ¢ = isn..

Proof: In the start state estb-pairs is the empty set, so the invariant holds in this state.
We consider critcal steps of the form (s,a,a’) below.

a = send-msg.(open, m, close)

This step may cause the consequence of the invariant to go from true to false by assiging
151, to a value other than 7. However, when this assignment is made, mode. is also assigned
the value syn-sent, so the invariant holds after this step.

a = receive-segs.(SYN, sng, acks)

This step may cause the premise of the invariant to go from false to true by adding (¢, isns)
to estb-pairs and changing mode. to be in sync-states. The invariant holds after this step

becasue 7 = isn,. [ ]

Invariant 7.35

1. If there exists p € in-transit.; such that msg(p) # msg. then sn(p) < sn. V msg. =
null.

2. If there exists p € in-transits. such that msg(p) # msgs then sn(p) < sny, V msgs =

null.

Proof: In the start state in-transit.s and in-transit,. are both empty, so the invariant holds

in this state. We consider critical steps of the form (s, a,s") for Part 1 below.

1. a = prepare-msg,

This step assigns msg. to head(send-buf.). However, it also increments sn. once

or twice. Therefore, s'.sn. > s.sn.. From Invariant 7.1, we know that for all p €

343



s.in-transit.s, s.sn. > sn(p). Since this step does not change any elment of in-transit,,,

we know s'.sn. > sn(p), so Part 1 holds after this step.

a = receive-segs.(sns, acks, msgs) and a = receive-seg,.(sns, acks, msgs, FIN)

These steps may cause the premise of Part 1 to go from false to true because they

may change msg. to null. However, the consequence also clearly becomes true.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant 7.36

1. If msg. # null and there exists p € in-transit.; such that sn(p) = sn. then msg(p) =

msge.

2. If msgs # null and there exists p € in-transit,. such that sn(p) = sn, then msg(p) =

mMsgs.

Proof: In the start state in-transit.s and in-transit,. are both empty, so the invariant holds

in this state. We consider critical steps of the form (s, a,s’) for Part 1 below.

1. a = send-seqg.s(sn., ack., msg.) and a = send-seg.s(sn., ack., msg., FIN)

These steps may change the premise of Part 1 from false to true by adding a segment
p to in-transit.s with sn(p) = sn.. However, for segment p, msg(p) = msg., so Part 1

holds after these steps.

a = receive-segs.(sns, acks, msgs) and a = receive-seg,.(sns, acks, msgs, FIN)

These steps may cause the consequence of Part 1 to go from true to false because they

may change msg. to null. However, the premise also clearly becomes false too.

a = prepare-msg,

This step may cause the consequence of Part 1 to go from true to false by assigning
a new value to msg.. However, when this assignment is made sn. is incremented, so

from Invariant 7.1 we know sn(p) # sn., so Part 1 holds after this step.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant 7.37
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1. If there exists segments p and ¢ on in-transit., such that sn(p) = sn(q) A msg(p) #

null A msg(q) # null then msg(p) = msg(q).

2. If there exists segments p and ¢ on in-transit,. such that sn(p) = sn(q) A msg(p) #

null A msg(q) # null then msg(p) = msg(q).

Proof: In the initial state in-transit.; and in-transit,. are both empty, so the invariant

holds for this case. We consider critical steps of the form (s,a,s’) for Part 1 below.

1. a = send-seqg.s(sn., ack., msg.) and a = send-seg.s(sn., ack., msg., FIN)

These steps add a segment to in-transit.;. If these steps make the premise of Part
1 go from false to true, then it must be that in s.sn. = sn(q) for some segment
q € s.in-transit.s. From Invariant 7.35 we know that since s.sn. = sn(q), s.msg. =

msg(q) V s.msg. = null. Therefore, Part 1 holds after these steps.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant 7.38

If mode, € sync-states then (isng, isns) € assoc.

Proof: In the start state mode; = closed, so the invariant holds in this state. We examine
critical steps of the form (s, a,s’) below.

a = receive-seq.s(sn.,ack., msg.) and a = receive-seqg.s(sn.,ack., msg., FIN)

In these steps modes; may be assigned to an element of sync-states. However, if this assign-

ment is made, (isn?, isns) is added to assoc. |

Invariant 7.39

If mode. = syn-sent A mode; = syn-rcvd A isn. # isn’ then for all SYN segments p €
in-transits. such that ack(p) = sn. + 1, sn(p) < sns.

Proof: In the start state mode. = closed, so the invariant holds in this state. We consider
critical steps of the form (s,a,s") below.

a = send-msg.(open, m, close)

This step can change the premise of the invariant from false to true. However, we know

from Invariant 7.11 that when this happens there are no segments p € in-transit,. such that
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ack(p) = sn. + 1. Therefore, the invariant holds after this step.
a = receive-seqg.s(SYN, sn.)

This is another step that can change the premise of the invariant from false to true. However
from Invariant 7.1 we know that s.sn, > sn(p) for all p € s.in-transits.. After this step
s.sng < 8'.sng, and since the step does not change s.in-transit.s, we know s'.sng > sn(p) for

all p € §'.in-transity., so the invariant holds after this step.

a = send-segs.(SYN, sns, acks)

This step can change the consequence of the invariant from true to false by adding a SYN
segment to in-transits.. However, we know from Invariant 7.7 that if mode; = syn-rcvd
then ack; = isn? 4+ 1, and we know from Invariant 7.10 that if mode. = syn-sent then
isn. = sn.. Therefore, if ack; = sn. + 1 then isn. = isnf, so the premise of the invariant is

also false. []

Invariant 7.40

If mode. € sync-states A\ modes = syn-rcvd A isn. # isn. then ack. < sns + 1.

Proof: In the start state mode. = closed, so the invariant holds in this state. We consider
critical steps of the form (s, a,s’) below.

a = receive-seqg.s(SYN, sn.)

This step that can change the premise of the invariant from false to true. However, after this
step s'.sn, = s.sn, + 1, and we know from Invariant 7.2 that s.ack. < s.sn. + 1. Therefore,
after this step s’.ack. < §'.sns + 1, so the invariant holds.

a = receive-segs.(SYN, sng, acks)

This step may also change the premise of the invariant from false to true, if [acks] = sn. + 1
and mode. = syn-sent. However, we know by Invariant 7.39 that [sns] < sng, and since
this step assigns ack. to [sns] + 1, we know the invariant holds after this step.

a = receive-seq.s(sn., ack., msg.) or a = receive-seg.s(sn., ack., msg., FIN)

These steps may cause the consequence of the invariant to go from true to false, but only
if s.mode; # syn-rcvd, or if s.mode; = syn-rcvd, the steps change mode; to estb, and

close-wait respectively, so the invariant holds. [ |

Invariant 7.41
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If mode. € sync-states A mode; = syn-rcvd A isn. # isnd then for all segments p €
in-transit.s, ack(p) < sns + 1.

Proof: In the start state mode. = closed, so the invariant holds in this state. We consider
critical steps of the form (s, a,s’) below.

a = receive-seqg.s(SYN, sn.)

This step that can change the premise of the invariant from false to true. However, by
Invariant 7.11 we know the consequence is also true.

a = receive-segs.(SYN, sng, acks)

This step may also change the premise of the invariant from false to true, if [acks] = sn. + 1
and mode. = syn-sent. This step also assigns ack. to [sns] + 1. From Invariant 7.23 we
know that for all p € in-transit.,, ack. > ack(p), and from Invariant 7.1 we know sns > [sns].
Therefore, after this step we know ack(p) < sns + 1.

a = send-seg.s(sn., ack., msg.) or a = send-seg.s(sn., ack., msg., FIN)

These steps can change the consequence of the invariant from true to false by adding a
segment p to in-transit., with ack(p) > sn(p). However, from Invariant 7.40 we know that
if mode, € sync-states N mode; = syn-rcvd A isn. # isn? then ack. < sns + 1. Therefore, if
ack. > sng + 1 then the premise of the invariant must be false, so the invariant holds after

either of these steps. [ |

Invariant 7.42

If modes = syn-rcvd and there exists p € in-transit.s such that ack(p) = sns + 1, then
mode. # syn-sent or for all SYN segments ¢ € in-transit,., ack(q) # sn. + 1.

Proof: In the start state mode; = closed, so the invariant holds in this state. We consider
critical steps of the form (s, a,s’) below.

We know the step where mode, is assigned syn-rcvd is not critical because Invariant 7.11
tells us that there are no segments p € in-transit.s such that ack(p) = sns + 1 when this
assignment is made.

a = send-seg.s(sn., ack., msg.) or a = send-seg.s(sn., ack., msg., FIN)

These steps may change the premise of the invariant from false to true. However, if these
actions are enabled in state s, then we know s.mode. # syn-sent, and neither of these

steps changes mode.. Therefore, the invariant holds after these steps.
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From Invariant 7.11 we know that the step where mode, is assigned syn-sent is not critical,
because when that assignment is made, there are no SYN segments ¢ € in-transits. with
ack(q) = sn. + 1.

a = send-segs.(SYN, sns, acks)

This step may change the consequence of the invariant from true to false, if s.mode; =
syn-rcvd and s.acks = s.sn.+ 1. However, if these conditions hold in state s, Invariant 7.21
tells us that for all p € s.in-transit.;, s.sns > ack(p). Therefore, after this step the premise

of the invariant is also false, so the invariant holds. [ |

Invariant 7.43

If mode. = syn-sent and there exists SYN segment p € in-transits,. such that ack(p) =
sn. + 1, then mode, ¢ sync-states and for all ¢ € N (4, isns) € assoc.

Proof: In the start state mode. = closed, so the invariant holds in this state. We consider
critical steps of the form (s, a,s’) below.

a = send-segs.(SYN, sns, acks)

This step can make the premise of the invariant go from false to true by adding a SYN
segment with ack(p) = sn. + 1 to in-transit,.. However, this step is only enabled if
mode; = syn-rcvd and we know from Invariant 7.16 that if mode; = syn-rcvd then for
all 7, (4,isns) ¢ assoc. Since this step does not add any elements to assoc, we know the
invariant holds after this step.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps can make the consequence of the invariant go from true to false by adding
(isn?,isns) to assoc and assiging modes to a value in sync-states. These assigments hap-
pen if s.mode. = syn-rcvd and there exists a segment p € s.in-transit.s with ack(p) =
s.sng + 1. From Invariant 7.42 we know that if these conditions are true in state s, then
either s.mode. # syn-sent or there are no SYN segment p € s.in-transils. such that
ack(p) = s.sn. + 1. Since these steps do not change mode. or in-transits., we now the

invariant holds after this step. [ |

Invariant 7.44

If mode. € sync-states A (isng,isng) € assoc then isn. = isng.
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Proof: In the start state mode. = closed, so the invariant holds in this state. We consider
critical steps of the form (s,a,s’) below. Because of Invariant 7.43, we know a = receive-
segs. (SYN, sns, acks) is not a critical step.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps can make the premise of the invariant go from false to true by adding (isn?, isns)
to assoc. This assigment happens if s.mode. = syn-rcvd and there exists a segment p €
s.in-transit.s with ack(p) = s.sns + 1. From Invariant 7.41 we know that if this is the case
in state s, then s.isn, = s.isnl. Since these steps do not change either isn. or isn?, we know
the invariant holds after these steps.

a = send-msg.(open, m, close)

This step can make the consequence of the invariant go from true to false, but if this
happens, mode. is also assigned to syn-sent, so the invariant hols after this step.

a = receive-seqg.s(SYN, sn.)

This can also make the consequence of the invariant go from true to false. However, from

Invariant 7.16, we know that (isn?, isns) ¢ assoc, so the invariant holds after this step. m

Invariant 7.45

If mode. = syn-sent and there exists a SYN segment p € in-transits. such that ack(p) =
sn. + 1 then for all non-SYN segments ¢ € in-transit,., sn(q) < sn(p)+ 1.

Proof: In the start state mode. = closed, so the invariant holds in this state. We consider

critical steps of the form (s,a,s") below.

a = send-segs.(SYN, sns, acks)

This step may change the premise of the invariant from false to true by adding a SYN
segment to in-transit.s. However, from Invariant 7.1 we know that sns; greater than or

equal to sn(q) for ¢ € in-transit,., so the invariant holds after this step.

a = send-segs.(sns, acks, msgs) and a = send-segs.(sns, acks, msgs, FIN)

These steps add non-SYN segments to in-transit,. if s.mode; € sync-states, so they can
make the consequence of the invariant go from true to false. From Invariant 7.43 we know
that if s.mode, is in the set of synchronized states, then the premise of the invariant is also

false. []
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Invariant 7.46

If mode. € sync-states and there exists a non-SYN segment p € in-transits. such that
sn(p) > ack. then there exists j such that (isn.,j) € assoc.

Proof: In the start state mode. = closed, so the invariant holds in this state. We consider
critical steps of the form (s, a, s") below. We know that « = receive-segs.(SYN, sns, acks) is
not critical even though it may assign mode, to estb, and ack, to [sns]+1. These assignment
are made if s.mode. = syn-sent and [acks] = sn. + 1. However, from Invariant 7.45 we
know that in state s, all non-SYN segments ¢ € s.in-transity., have sn(q) < [sns]+ 1. Thus,
the premise of the invariant does not become true after this step.

a = send-segs.(sns, acks, msgs) and a = send-segs.(sns, acks, msgs, FIN)

These steps add a non-SYN segment to in-transit,. if s.modes € sync-states, so they can
make the premise of the invariant go from false to true. From Invariant 7.38 we know that
if modes € sync-states then there exists ¢ such that (¢,isns) € assoc. From Invariant 7.31
we know that if (¢,isns) € assoc then ¢ = isn?, and from Invariant 7.44 we know that

isn. = isn.. Therefore, the invariant holds after these steps. [ |

Invariant 7.47

If mode. € {close-wait,closing, last-ack,timed-wait} then 3 j such that (isn.,j) €
assoc.

Proof: In the start state mode. = closed, so the invariant holds in this state. We examine
critical steps of the form (s, a,s’) below.

a = receive-segs.(sns,acks, msqs, FIN)

This step can make the premise of the invariant go from false to true. However, from

Invariant 7.46, we know that the consequence is also true, so the invariant holds. [ |

Invariant 7.48

If modes = syn-rcvd A isn. = isn® A ack. = isns + 1 then mode. ¢ {close-wait,
closing,last-ack, timed-wait}.

Proof: In the start state mode; has the value closed, so the invariant holds in this state.
We consider critical steps of the form (s,a,s’) below. The a = receive-segs.(sns, acks,

msgs ) step is not critical even though it may cause ack. to be assigned [sn;] + 1. We know
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it is not critical because Invariant 7.25 tells us that if this assignment is made, then either
modes # syn-rcvd or ack. < isns + 1.

a = receive-segs.(SYN, sng, acks)

This step may assign ack. the value sns; + 1. However, mode, is also assigned estb, so the
invariant holds after this step.

a = receive-segs.(sns, acks, msgs, FIN)

This step may cause the consequence of the invariant to go from true to false. This change
happens if s.mode. € {estb,fin-wait-1,fin-wait-2} and [sns] > ack.. However, form
Invariant 7.25 we know that if these conditions are true in state s, then either mode, #

syn-rcvd or ack. < isn; + 1. [ ]

Invariant 7.49

If mode; = syn-rcvd A isn. = isn} and there exists a non-SYN segment p € in-transit.,
such that ack(p) = sns + 1 then mode. ¢ {close-wait,closing, last-ack,

timed-wait}.

Proof: In the start state mode; has the value closed, so the invariant holds in this state.
We consider critical steps of the form (s,a,s’) below.

a = send-seges(sn., ack., msg.) and a = send-seqg.s(sn., ack., msg., FIN)

These steps may cause the premise of the invariant to go from false to true. However, we
know from Invariant 7.48 that the consequence is also true after these steps.

a = receive-segs.(sns, acks, msgs, FIN)

This step may cause the consequence of the invariant to go from true to false. This change
happens if s.mode. € {estb,fin-wait-1,fin-wait-2} and [sns] > ack.. However, form
Invariant 7.25 we know that if these conditions are true in state s, then either mode, #
syn-rcvd or ack. < isns+ 1, and from Invariant 7.23 we know ack. > ack(p) for any segment

p € in-transit.;. Therefore, the invariant holds after this step. [ |

Invariant 7.50

If mode; = syn-rcvd A mode, ¢ {closed,rec,reset} and there exists a non-SYN seg-
ment p € in-transit.; such that ack(p) = sns + 1 and there exists a FIN segment ¢ €
in-transit,s such that (sn(q) > max(acks, sn(p)+ 1)V (p = g A sn(q) > acks,)) then mode. €
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{fin-wait-1,fin-wait-2, closing, timed-wait, last-ack}.

Proof: In the start state mode, is closed, so the invariant holds in this state. We consider
critical steps of the form (s,a,s’) below. We know a = receive-msg.s(SYN, sn.) where
mode is assigned syn-rcvd is not critical because Invariant 7.11 tells us that after this step
there are no segments p € in-transit.s such that ack(p) = sny, + 1. We also know that a =
send-seges(sn., ack., msg.) is not critical because Invariant 7.1 tells us that there cannot
be a segment ¢ € in-transit.; with sn(q) > [sn.], which must be the case if this step makes
the premise of the invariant true.

a = send-seg.s(sn., ack., msg., FIN)

This step adds a FIN segment to in-transit.s, but only if mode, € {fin-wait-1, closing,
last-ack}, so the invariant holds after this step.

Steps that cause modes to be in the set {closed,rec,reset} are also critical because the
cause the consequence of Part 1 to go from true to false, but the premise also clearly becomes

false after any of these steps, so the invariant still holds.

Invariant 7.51

1. If mode. € sync-states A mode, ¢ {rec,reset} A (isn., isn,) € assoc and there exists a

FIN segment p € in-transity. such that sn(p) > ack. then mode, € {fin-wait-1,fin-wait-2, closing, ti

2. If mode, € sync-states N\ mode, ¢ {rec,reset} A (isn.,isns) € estb-pairs A isn. = isn?
and there exists a FIN segment p € in-transit.s such that sn(p) > acks then mode. €

{fin-wait-1,fin-wait-2, closing, timed-wait, last-ack}.

Proof: In the start state mode. and mode, are closed, so the invariant holds in this state.
We consider critical steps of the form (s, a, s’) below. We know that a = receive-seg,.(SYN,
sns, acks) is not critical even though it may assign mode. to estb, and ack. to [sns] + 1.
These assignment are made if s.mode. = syn-sent. From Invariant 7.16 we know that if
s.mode. = syn-sent, then (isn., isns) ¢ assoc. Thus, the premise of the invariant does not
become true after this step. Steps with a = receive-seg.s(sn., ack., msg.) and a = receive-
seges(sn., ack., msg., FIN) may cause (isn.,isns) to be added to assoc if [ack.] > sns.
However, these steps do not make the premise of Part 1 go from false to true, because from

Invariant 7.23 we know that ack. > [ack.], and from Invariant 7.1 we know sns > sn(p) for
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all p € in-transit,.. Therefore, if these steps cause (isn., isn;) to be added to assoc then we

know there are no segments p € in-transits. such that sn(p) > ack..

1. a = send-segs.(sns, acks, msgs, FIN)

This step adds a FIN segment to in-transit,., but only if s.modes € {fin-wait-1,

last-ack, closing}, so Part 1 obviously holds after this step.

Steps that cause modes to be in the set {closed, rec,reset} are also critical because
the cause the consequence of Part 1 to go from true to false, but the premise also

clearly becomes false after any of these steps, so Part 1 still holds.

2. For Part 2 we know that a = receive-seg,.(SYN, sns, ack,) is not critical even though
this step may cause (isn,, isns) to be in estb-pairs if mode. = syn-rcvd. However, we
know from Invariant 7.19 that if this is the case in state s, then modes ¢ sync-states,

so the premise does not become true after this step.

a = send-seqg.s(sn., ack., msg., FIN)

Symmetric to the case for a = send-seg,.(sns, acks, msgs, FIN) of Part 1.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps may cause mode; to be in sync-states if s.mode; = syn-rcvd. However,
we know from Invariant 7.50, that if this is the case, then the consequence of Part 2

is also true.

Steps that cause mode, to be in the set {closed, rec,reset} are also critical because
the cause the consequence of Part 2 to go from true to false, but the premise also

clearly becomes false after any of these steps, so Part 2 still holds. [ |

Invariant 7.52
1. If mode. € {close-wait,closing, last-ack, timed-wait} A mode, ¢ {rec,reset}
A (isng,isns) € assoc then mode, € {fin-wait-1,fin-wait-2, closing,
timed-wait,last-ack}.
2. If modes € {close-wait, closing, last-ack, timed-wait} A mode. ¢ {rec,reset}
A (isng,isns) € estb-pairs A isn. = isn® then mode. € {fin-wait-1,fin-wait-2,

closing, timed-wait,last-ack}.
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Proof: In the initial state mode; and mode. are closed, so the invariant holds. We
consider critical actions of the form (s, a,s’) below. For Part 1 we know that a = receive-
seges(sn., ack., msg.) and a = receive-seg.s(sn., ack., msg., FIN) are not critical even
though they may cause the pair (isn.,isns) to be added to assoc. The pair is added if
s.modes = syn-rcvd A [ack.] = s.sn; + 1. However, if these conditions are true in state s,
then Invariant 7.49 tells us that s.mode. ¢ {close-wait, closing, last-ack, timed-wait},

and since these steps do not change mode., we know the premise does not become true.

1. a = receive-segs.(sns, acks, msgs, FIN)

This step may cause the premise of the invariant to go from false to true. This change
happens if s.mode. € sync-states and [sns] > s.ack.. Therefore, from Invariant 7.51
we know that s.mode; € {fin-wait-1,fin-wait-2, closing,

timed-wait, last-ack}. Since step does not change modes, we know Part 1 holds

after this step.

Steps that cause modes to be in the set {closed, rec,reset} are also critical because
the cause the consequence of Part 1 to go from true to false, but the premise also

clearly becomes false after any of these steps, so Part 1 still holds.

2. For Part 2 we know that a = receive-seg,.(SYN, sns, ack,) is not critical even though
this step may cause (isn,, isns) to be in estb-pairs if mode. = syn-rcvd. However, we
know from Invariant 7.19 that if this is the case in state s, then modes ¢ sync-states,

so the premise does not become true after this step.

a = receive-$eg.s(sn., ack., msg., FIN)

The proof that Part 2 holds after this step is symmetric to the proof that Part 1 holds

after a = receive-segs.(sns, acks, msgs, FIN).

Steps that cause mode, to be in the set {closed, rec,reset} are also critical because
the cause the consequence of Part 2 to go from true to false, but the premise also

clearly becomes false after any of these steps, so Part 2 still holds. [ |

Invariant 7.53
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1. If modes; € {syn-rcvd} U sync-states A mode. € {rec,reset} U sync-states A isn. =
isnd A isn, = isnS and there exists p € in-transit.s such that sn(p) > ack,, then

sn. = sn(p).

2. If mode. € sync-states A (isn., isns) € assoc and there exists p € in-transits. such that

sn(p) > ack., then sng = sn(p).

Proof: In the start state mode. and modeg; have the value closed, so the invariant holds
in this state. We consider critical steps of the form (s,a,s’) for Part 1 below. The step
with a = receive-seq.,(SYN, sn.) is not critical for Part 1 because after this step isn, # isn
(Invariant 7.9). The step with a = receive-segs.(SYN, sn,, ack,) is also not critical. This
step causes mode. to be in sync-states and isnS to be isn; only if s.mode, = syn-sent
and [acks] = s.sn. + 1. From Invariant 7.1 we know sn. > sn(p) for all p € in-transit.,,
and from Invariant 7.10 we know that s.isn. = s.sn.. Finally, form Invariant 7.6 we know
acks > isnS. Since isn® = isn., s.isn. > sn(p) for any p € s.in-transit.s, and acks > isn?, we
know that after this step there are no segments p € in-transit.s such that sn(p) > ack,. The
steps where a = crash. or a = receive-seg,.(RST, acks, rst-seqs) make change mode. from
syn-sent to rec, or reset respectively. However, these steps are not critical, because if
s.mode. = syn-sent then s.isn is equal tonil, but since mode; € {syn-rcvd}Usync-states,
we know isng # nil (Invariant 7.5). Therefore, these steps do not make the premise go

from false to true.

1. a = send-msg.(open, m, close)

This step may change the consequence of the invariant from true to false by incre-
menting sn.. However, if this change happens in this step, then mode. is assigned

syn-sent, so the invariant holds after this step.

a = prepare-msg,

This step is enabled if s.mode. € {estb, close-wait} A —s.ready-to-send,. We know
from Invariant 7.30 that if this condition is true in state s, then s.sn. < s.ack;. From
Invariant 7.1 we know s.sn. > sn(p) for any p € s.in-transit.s. Therefore, the premise

of the invariant, is false before and after this step.

a = send-seq.s(sn., ack., msg.) and a = send-seg.s(sn., ack., msg.)
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These steps can make the premise of the invariant go from false to true, by adding
a segment p to in-transit.s such that sn(p) > acks. However, sn. = sn(p), so the

invariant holds after these steps.

2. Before we examine the critical actions for Part 2, we point out that a = receive-
segs.(SYN, sns, acks) is not critical because from Invariant 7.16 we know that (isn., isn,) ¢
assoc before and after this step. We also know that a = receive-seqg.,(sn., ack., msg.)
and @ = receive-seqg.s(sn., ack., msq., FIN) are not critical even though these steps
can cause (isn., isn,) to be added to assoc if [ack.] = sn, + 1. We know these steps are
not critical because from Invariant 7.29 we know that ack. > [ack.] and from Invari-
ant 7.1 we know that for any segment p € in-transits., sn, > sn(p). Therfore, after

these steps we know there are no segments p € in-transits. such that sn(p) > ack..

a = receive-seqg.s(SYN, sn.)

This step may change the consequence of Part 2 from true to false, but from In-
variant 7.16 we know that (isn.,isns) € assoc, so the premise is also false after this

step.

a = prepare-msgs

The proof that the Part 2 holds after this step is symmetric to the proof for ¢ =

prepare-msg. for Part 1.

a = send-segs.(sns, acks, msg;) and a = send-seg.s(sns, acks, msgs)

These steps can make the premise of the invariant go from false to true, by adding
a segment p to in-transit.s such that sn(p) > acks. However, sn, = sn(p), so Part 2

holds after these steps. [ |
Invariant 7.54

1. If modes € {syn-rcvd} U sync-states A mode. € sync-states A (ready-to-send, V
send-fin,) N (isng, isng) € estb-pairs A isnl = isn. A ((sn. = acks A\ =(rcvd-close, N

send-buf, = ¢)) V sn, = acks + 1) then msg, # null.

2. If mode, € sync-states A (isn, isns) € assoc N (ready-to-send, V send-fing) N ((sns =
ack.) A =(revd-closeg N send-buf, = €)) V (sns = ack. + 1) then msg, # null.
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Proof: In the start state mode. and modeg; have the value closed, so the invariant holds

in this state. We consider critical steps of the form (s, a,s") for Part 1 below.

1. a = prepare-msg,

This step may cause the premise of the invariant to go from false to true, but msg,
also gets assigned to head(send-buf.), so it is not equal to null. Therefore, Part 1

holds after this step.

a = receive-segs.(sns, acks, msgs) and a = receive-seg,.(sns, acks, msgs, FIN)

These steps may cause the consequence of Part 1 to go from true to false. However,

they also make the premise false, so Part 1 holds after these steps.

2. The proof for Part 2 is symmetric. [ |

Invariant 7.55

1. If mode; € sync-states and there exists non-FIN segment p € in-transit.s such that

sn(p) = acks or a FIN segment p € in-transit,s such that sn(p) = acks + 1 then

msg(p) # null.

2. If mode. € sync-states and there exists non-FIN segment p € in-transit;. such that

sn(p) = ack, or a FIN segment p € in-transit,. such that sn(p) = ack. + 1 then

msg(p) # null.

Proof: In the start state mode. = mode, = closed, so the invariant holds in this state. We

examine critical steps of the form (s,a, s") below.

1. a = send-seqg.s(sn., ack., msg.) and a = send-seg.s(sn., ack., msg., FIN)

These can make the premise of the Part 1 go from false to true by adding a segment
to in-transit.; that satisfies the properties of Part 1. From Invariant 7.54 we know

that if, the consequence of Part 1 is also true.

2. The proof for Part 2 is symmetric. [ |
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Invariant 7.56
If modes; = syn-rcvd and there exists non-FIN segment p € in-transit.s such that sn(p) =
acks or a FIN segment p € in-transit.s such that sn(p) = acks+ 1 and ack(p) = sns;+ 1 then

msg(p) # null.

Proof: The proof is the same as the proof of Part 1 of Invariant 7.55. [ |

Invariant 7.57

1. If mode. € {close-wait,closing, last-ack, timed-wait} A mode, ¢ {rec,reset}

A (isng, isns) € assoc then sng < acke.

2. If modes € {close-wait, closing, last-ack, timed-wait} A mode. ¢ {rec,reset}

A (isng,isns) € estb-pairs A isn. = isnS then sn. < acks.

Proof: In the initial state mode; and mode. are closed, so the invariant holds. We
consider critical actions of the form (s, a,s’) below. For Part 1 we know that a = receive-
seges(sn., ack., msg.) and a = receive-seg.s(sn., ack., msg., FIN) are not critical even
though they may cause the pair (isn.,isns) to be added to assoc. The pair is added if
s.modes = syn-rcvd A [ack.] = s.sn; + 1. However, if these conditions are true in state s,
then Invariant 7.49 tell us that s.mode. ¢ {close-wait, closing, last-ack, timed-wait},

and since these steps do not change mode., we know the premise does not become true.

1. a = receive-seq.;(SYN, sn.)

This step may cause the consequence of Part 1 to go from true to false by assigning
sns to a value greater than ack.. However, we from Invariant 7.16 that when this

assignment happens, (isn., isns) ¢ assoc, so the invariant holds after this step.

a = recejve-segs.(SYN, sng, acks)

This step may cause the consequence of Part 1 to go from true to false by assigning
ack. a value less than or equal to sns;. However, we know from Invariant 7.16 that
when this assignment happens, (isn.,isns) € assoc, so the invariant holds after this

step.

a = receive-segs.(sns, acks, msgs, FIN)

This step may cause the premise of Part 1 to go from false to true if [sns] > ack.. From
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Invariant 7.53 we know that sns = [sn,], and this step also assigns ack, to [sn,] + 1,

therefore Part 1 holds after this step.

a = prepare-msgs

This step may also cause the consequence of Part 1 to go from true to false by assigning
sns to a value greater than ack.. This step is enabled if mode; € {estb, close-wait}.
However, from Invariant 7.52 we know that if mode, is in this set, then the premise

of Part 1 is also false.

2. We consider the critical actions for Part 2 below. The proof is mostly symmetric to
the proof for Part 1. We know that a = receive-seg,.(SYN, sns, acks) is not critical
even though this step may cause (isn., isns) to be in estb-pairs if mode. = syn-rcvd.
However, we know from Invariant 7.19 that if this is the case in state s, then modes ¢

sync-states, so the premise does not become true after this step.

a = send-msg.(open, m, close)

This step may cause the consequence of Part 2 to go from true to false by assigning
sns to a value greater than ack.. However, we from Invariant 7.16 that when this

assignment happens, (isn., isns) ¢ estb-pairs, so the invariant holds after this step.

a = receive-seqg.s(SYN, sn.)

This step may cause the consequence of Part 2 to go from true to false by assigning
ack; a value less than or equal to sn.. However, we know from Invariant 7.16 that
when this assignment happens, (isn., isns) ¢ estb-pairs, so the invariant holds after

this step.

a = receive-$eg.s(sn., ack., msg., FIN)

The proof for this case is symmetric to the case for a = receive-segs.(sns, acks, msgs,

FIN) of Part 1.

a = prepare-msg,

The proof for this case is symmetric to the case for a = prepare-msg, of Part 1. m

Invariant 7.58
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1. If mode. € {close-wait,closing, timed-wait}Amodes € {rec,reset} A (isn., isns) €

assoc then push-data, = true V rev-buf, = e.

2. If If mode; € {close-wait, closing, timed-wait} Amode, ¢ {rec,reset} A (isn., isn,) €

estb-pairs N isn. = isn’ then push-data, = true V rcv-buf, = e.

Proof: In the initial state mode, and mode, are closed, so the invariant holds. We consider

critical actions of the form (s, a,s’) below.

1. a = receive-segs.(sns, acks, msgs)

This step may cause the consequence of Part 1 to go from true to false, but only
if [sns] = ack.. We know from Invariant 7.1 that [sns] < sns, and we know from
Invariant 7.57 that if the premise of Part 1 is true, then sn; < ack.. Therefore, if

[sns] = ack., then the premise must be false, so Part 1 holds after this step.

a = receive-segs.(sns, acks, msgs, FIN)

This step may cause the premise of Part 1 to go from false to true. However, this step

also sets push-data, to true. Therefore, Part 1 holds after this step.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant 7.59
1. If mode. = last-ack Amodes; € {rec,reset} A (isn.,isns) € assoc then rcv-buf . = e.

2. If modes = last-ack Amode. ¢ {rec,reset} A (isn.,isns) € estb-pairs A isn. = isn?

then rev-buf, = e.

Proof: In the initial state mode, and mode, are closed, so the invariant holds. We consider

critical actions of the form (s, a,s’) below.

1. a = prepare-msg,

This step may change the premise of Part 1 from false to true. This change happens
if s.mode. = close-wait A —s.push-data,.. However, if these conditions are true in
state s, then from Invariant 7.58, we know that rcv-buf, = €, so Part 1 holds after

this step.
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a = receive-segs.(sns, acks, msgs) and a = receive-seg,.(sns, acks, msgs, FIN)

These steps may cause the consequence of Part 1 to go from true to false, but only
if [sns] > ack.. We know from Invariant 7.1 that [sns] < sns, and we know from
Invariant 7.57 that if the premise of Part 1 is true, then sn; < ack.. Therefore, if

[sns] > ack., then the premise must be false, so Part 1 holds after these steps.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant 7.60
1. If mode. = closing A send-fin-ack, = true then rcv-buf . = e.
2. If mode; = closing A send-fin-ack, = true then rev-buf, = e.

Proof: In the initial state mode, and mode, are closed, so the invariant holds. We consider

critical actions of the form (s, a,s’) below.

1. a = send-seqg.s(sn., ack., msg.)

These steps may cause the premise of Part 1 to go from false to true by assigning
send-fin-ack, to true. This assigment is made if —push-data,. Therefore, by Invari-

ant 7.58 we know that rcv-buf, = €, so Part 1 holds after this step.

a = receive-segs.(sns, acks, msgs) and a = receive-seg,.(sns, acks, msgs, FIN)

These steps may cause the consequence of Part 1 to go from true to false, but only
if [sns] > ack.. We know from Invariant 7.1 that [sns] < sns, and we know from
Invariant 7.57 that if the premise of Part 1 is true, then sn; < ack.. Therefore, if

[sns] > ack., then the premise must be false, so Part 1 holds after these steps.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant 7.61
1. If mode. = timed-wait A first(t-out.) € T then rcv-buf, = €.
2. If mode; = timed-wait A first(t-out;) € T then rcv-buf, = €.
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Proof: In the initial state mode, and mode, are closed, so the invariant holds. We consider

critical actions of the form (s, a,s’) below.

1. a = send-seqg.s(sn., ack., msg.)

This step may cause the premise of the Part 1 to go from false to true by assign-
ing first(t-out.) to now. + 2u. This assignment happens if mode. = timed-wait A
—push-data,. From Invariant 7.58 we know that if these conditions are true, then

rcv-buf, = €.

a = receive-segs.(sns, acks, msgs)

This step may cause the premise of the Part 1 to go from false to true by assigning
first(t-out.) to now.. This assignment happens if mode. = closing A send-fin-ack, =
true. From Invariant 7.60 we know that if these conditions are true, then rcv-buf, = .
This step may also cause the consequence of Part 1 to go from true to false, but only
if [sns] = ack.. We know from Invariant 7.1 that if the premise of Part 1 is true, then
sns < ack.. Therefore, if [sns]| = ack,., then the premise must be false, so Part 1 holds

after this step.

a = receive-segs.(sns, acks, msgs, FIN)

This step may also cause the consequence of Part 1 to go from true to false, but only
if [sns] = ack.. We know from Invariant 7.1 that if the premise of Part 1 is true, then
sns < ack.. Therefore, if [sns]| = ack,., then the premise must be false, so Part 1 holds

after this step.

2. The proof for Part 2 is symmetric. [ |

Invariant 7.62

1. If mode. € sync-states and there exists j such that (isn.,j) € assoc and there exists
a non-SYN segment p € in-transits. such that sn(p) > ack., then for all non-SYN

segments g € in-transits. sn(q) < sn(p).

2. If modes € {syn-rcvd}Usync-states and there exists ¢, such that ¢ = isnd A (¢, isns) €
estb-pairs and there exists a non-SYN segment p € in-transit., such that sn(p) > acks,,

then for all non-SYN segments ¢ € in-transit.s sn(q) < sn(p).

362



Proof: In the start state mode. and modeg; have the value closed, so the invariant holds

in this state. We consider critical steps of the form (s, a,s")

1. a = receive-seg.s(sn., ack., msg.) and a = receive-seg.s(sn., ack., msg., FIN)

These steps may cause the premise of the invariant to go from false to true by adding
(isn., isns) to assoc. If the pair is added to assoc, then these steps also cause mode; to
be in a synchronized state. From Invariant 7.53 we know that if modes; € sync-states
and the rest of the premise of Part 1 is true, then we know that sny, = sn(p). Thus,

from Invariant 7.1 we know that the consequence of Part 1 is also true.

a = send-seqgs.(sns, acks, msg,) and a = send-segs.(sns, acks, msgs, FIN)

These steps may cause the premise of Part 1 to go from false to true, or the con-
sequence of Part 1 to go from true to false, but these steps are only enabled if
modes € sync-states. If modes € sync-states, then by Invariants 7.38 and 7.44 we
know (isn.,isns) € assoc. Thus, by Invariants 7.53 and 7.1 we know Part 1 remains

true after these steps.

2. a = receive-segs.(SYN, sns, acks, msgs)

This step may cause (¢, isn;) to be added to estb-pairs. This step also changes mode,
to estb. From Invariant 7.53 we know that if mode = estb and the rest of the premise
of Part 2 is true, then we know that sn. = sn(p). Thus, from Invariant 7.1 we know

that the consequence of Part 2 is also true.

a = send-seqg.s(sn., ack., msg.) and a = send-seg.s(sn., ack., msg.,FIN)

These steps may cause the premise of Part 2 to go from false to true, or the con-
sequence of Part 2 to go from true to false, but these steps are only enabled if
mode. € sync-states. From Invariant 7.34 we know that if mode. € sync-states and
the premise of the Part 2 is true, then (isn.,isns) € estb-pairs. Therefore, from In-

variants 7.53 and 7.1 we know Part 2 remains true after these steps. [ |

Invariant 7.63

1. If mode. € {rec,reset} U sync-states A modes € {syn-rcvd} U sync-states A isn. =

isns A (isne, isns) € estb-pairs A sn. = acks + 1 then for all non-SYN segments p €
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in-transit.s, sn(p) # acks.

2. If mode. € sync-states A (isn.,isns) € assoc A sns = ack. + 1 then for all non-SYN

segments p € in-transit,., sn(p) # ack,.

Proof: In the start state mode. and modeg; have the value closed, so the invariant holds

in this state. We consider critical steps of the form (s,a,s’) for Part 1 below. The step

with a = receive-segs.(SYN, sns, acks) is not critical for Part 1 because after this step

sn. # acks + 1. The steps with a = receive-seg.s(sn., ack., msg.) and a = receive-seq.s(sn.,

ack., msg., FIN) are also not critical, even though they may cause acks to be incremented.

We know they are not critical because, they cause ack; to be incremented if [sn.] = ack,,

and we know from Invariant 7.53 that if [sn.] = ack, then sn. = [sn.], so after these steps

sne. # acks + 1.

1.

a = prepare-msg,

This step may make the premise of Part 1 go from true to false. The step is enabled
if s.mode. € {estb,close-wait} A —s.ready-to-send,.. We know from Invariant 7.30
that if these condition are true in state s, then s.sn. < s.ack;. From Invariant 7.1
we know s.sn. > sn(p) for any p € s.in-transit.s. Since the step does not add any

elements to in-transit.;, we know the consequence is also true after this step.

a = send-seqg.s(sn., ack., msg.) and a = send-seg.s(sn., ack., msg.,FIN)

These steps may change the premise of Part 1 from false to true by adding a non-SYN
segment p with sn(p) = ack.. However, the premise of the invariant is also clearly

false if this is the case.

. The step with a = receive-segs.(SYN, sns, acks) is not critical for Part 2 even though

it may cause mode. to become estb, if s.mode. = syn-sent. It is not critical because
Invariant 7.16 tells us that (isn.,isns) ¢ assoc in states s, and since the step does not
add any elements to assoc, we know (isn., isns) ¢ assoc after the step. The steps a =
receive-seg.s(sn., ack., msg.) and a = receive-seqg.s(sn., ack., msg.,FIN) may cause
(isn.,isns) to be added to assoc, if [ack.] = sny 4+ 1. Since Invariant 7.23 tells us that

ack. > [ack.] we know that after this step sns # ack. + 1. The steps a = receive-
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segs.(sns, acks, msgs) and a = receive-segy.(sns, acks, msgs,F'IN) may cause acks to

be incremented but Invariant 7.53 tells us that when this happens sns # ack. + 1.

a = prepare-msgs

This case is symmetric to the case for a = prepare-msg. for Part 1.

a = send-seqgs.(sns, acks, msg,) and a = send-segs.(sns, acks, msgs, FIN)

These cases are symmetric to the cases with the symmetric actions for Part 1. [ |

Invariant 7.64

1. If mode. € sync-states and there exists j such that (isn.,j) € assoc and there exists
anon-SYN segment p € in-transity. such that sn(p) = ack. + 1, then for all non-SYN

segments ¢ € in-transits., sn(q) # ack..

2. If modes € {syn-rcvd}Usync-states and there exists ¢, such that ¢ = isnd A (¢, isns) €
estb-pairs and there exists a non-SYN segment p € in-transit.s; such that sn(p) =

acks + 1, then for all non-SYN segments ¢ € in-transit., sn(q) # acks.

Proof: In the start state mode. and modeg; have the value closed, so the invariant holds

in this state. We consider critical steps of the form (s, a,s’) for Part 1 below.

1. a = receive-seg.s(sn., ack., msg.) and a = receive-seg.s(sn., ack., msg., FIN)

These steps may cause the premise of the invariant to go from false to true by adding
(isn., isns) to assoc. If the pair is added to assoc, then these steps also cause mode; to
be in a synchronized state. From Invariant 7.53 we know that if modes; € sync-states
and the rest of the premise of Part 1 is true, then we know that sn, = sn(p), and
from Invariant 7.63 we know that if sny; = ack. + 1 then for all non-SYN segments

q € in-transits., sn(q) # ack.. Thus, Part 1 holds after these steps.

a = send-seqgs.(sns, acks, msg,) and a = send-segs.(sns, acks, msgs, FIN)

These steps may cause the premise of Part 1 to go from false to true, or the con-
sequence of Part 1 to go from true to false, but these steps are only enabled if
modes € sync-states. If modes € sync-states, then by Invariants 7.38 and 7.44 we
know (isn., isns) € assoc. Thus, by Invariant 7.63 we know Part 1 remains true after

these steps.
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2. a = receive-segs.(SYN, sns, acks, msgs)

This step may cause (isn., isns) to be added to estb-pairs. This step also changes
mode. to estb. From Invariant 7.53 we know that if mode = estb and the rest of the
premise of Part 2 is true, then we know that sn. = sn(p). Thus, from Invariant 7.63

we know that the consequence of Part 2 is also true.

a = send-seqg.s(sn., ack., msg.) and a = send-seg.s(sn., ack., msg.,FIN)

These steps may cause the premise of Part 2 to go from false to true, or the con-
sequence of Part 2 to go from true to false, but these steps are only enabled if
mode. € sync-states. From Invariant 7.34 we know that if mode. € sync-states and
the premise of the Part 2 is true, then (isn.,isns) € estb-pairs. Therefore, from In-

variant 7.63 we know Part 2 remains true after these steps. [ |

Invariant 7.65

1. If mode. € {close-wait,closing, last-ack, timed-wait} and there exists j such

that (isn.,j) € assoc then for all non-SYN segments p € in-transit,., sn(p) < ack,.

2. If mode; € {close-wait,closing, last-ack,timed-wait} and there exists i, such
that ¢ = isnS A (i,1isns) € estb-pairs then for all non-SYN segments p € in-transit.s,

sn(p) < ack,. |

Proof: In the start state mode. and modeg; have the value closed, so the invariant holds
in this state. We consider critical steps of the form (s, a, s’) for Part 1 below. For Part 1 we
know that a = receive-seg.s(sn., ack., msg.) and a = receive-seg.(sn., ack., msg., FIN) are
not critical even though they may cause the pair (isn., isn;) to be added to assoc. The pair
is added if s.modes = syn-rcvd A [ack.] = s.sn;+ 1. However, if these conditions are true in
state s, then Invariant 7.49 tell us that s.mode. ¢ {close-wait, closing, last-ack,timed-wait},

and since these steps do not change mode., we know the premise does not become true.

1. a = receive-segs.(sns, acks, msgs, FIN)

This step may cause the premise of Part 1 to go from false to true if [sns] > acke..

If this change happens, then ack. is also assigned [sns] + 1. From Invariant 7.62 we
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know that in this situation all segments p € in-transits. have sn(p) < [sns]. Therefore,

Part 1 holds after this step.

a = send-seqgs.(sns, acks, msg,) and a = send-segs.(sns, acks, msgs, FIN)

These steps may cause the premise of Part 1 to go from false to true, or the conse-
quence of Part 1 to go from true to false. These steps are only enabled if s.modes €
sync-states. If the steps cause the premise of the invariant to become true then by In-
variants 7.38 and 7.44 we know (s.isn., s.isns) € s.assoc. Therefore, by Invariant 7.57
we know that sns; < ack., so Part 1 holds in this situation. If the steps cause the
consequence of the Part 1 to go from true to false then again by Invariants 7.38, 7.44,

and 7.57 we know the premise must be false.

2. We consider the critical actions for Part 2 below. We know that a = receive-seg,.(SYN,
sns, acks) is not critical even though this step may cause (isn., isns) to be in estb-pairs
if mode, = syn-rcvd. However, we know from Invariant 7.19 that if this is the case
in state s, then mode; ¢ sync-states, so the premise does not become true after this

step.

a = receive-$eg.s(sn., ack., msg., FIN)

The proof for this case is symmetric to the case for a = receive-segs.(sns, acks, msgs,

FIN) of Part 1.

a = send-seq.s(sn., ack., msg.) and a = send-seg.s(sn., ack., msg., FIN)

These steps may cause the premise of Part 2 to go from false to true, or the consequence
of Part 2 to go from true to false. These steps are only enabled if s.mode. € sync-states.
From Invariant 7.34 we know that if mode. € sync-states and the premise of the Part
2 is true, then (isn.,isn,) € estb-pairs. Therefore, by Invariant 7.57 we know that
sn. < acks, so Part 1 holds in this situation. If the steps cause the consequence of the
Part 2 to go from true to false then again by Invariants 7.34 and 7.57 we know the

premise must be false. [ |

Invariant 7.66
1. If mode. € {close-wait,closing, timed-wait} and there exists j such that (isn.,j) €
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assoc then push-data, = true V rev-buf, = e.

2. If If modes € {close-wait, closing, timed-wait} there exists ¢ such that (i, isn,) €

estb-pairs N isn. = isn’ then push-data, = true V rcv-buf, = e.

Proof: In the initial state mode, and mode, are closed, so the invariant holds. We consider

critical actions of the form (s, a,s’) below.

1. a = receive-segs.(sns, acks, msgs)

This step may cause the consequence of Part 1 to go from true to false, but only if
[sns] = ack.. We know from Invariant 7.65 that if the premise of Part 1 is true, then
for all p € in-transits., sn(p) < ack.. Therefore, if [sn;] = ack., then the premise must

be false, so Part 1 holds after this step.

a = receive-segs.(sns, acks, msgs, FIN)

This step may cause the premise of Part 1 to go from false to true. However, this step

also sets push-data, to true. Therefore, Part 1 holds after this step.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant 7.67
1. If mode. = last-ack and there exists j such that (¢sn.,j) € assoc then rcv-buf . = e.

2. If mode;, = last-ack and there exists ¢, such that ¢ = isn] A (4,isn,) € estb-pairs

then rev-buf, = e. ]

Proof: In the initial state mode, and mode, are closed, so the invariant holds. We consider

critical actions of the form (s, a,s’) below.

1. a = prepare-msg,

This step may change the premise of Part 1 from false to true. This change happens
if s.mode. = close-wait A —s.push-data,.. However, if these conditions are true in
state s, then from Invariant 7.66, we know that rcv-buf, = ¢, so Part 1 holds after

this step.
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a = receive-segs.(sns, acks, msgs)

This step may cause the consequence of Part 1 to go from true to false, but only if
[sns] = ack.. However, Invariant 7.65 tells us that if this is true, then the premise of

Part 1 must be false, so Part 1 holds after this step.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant 7.68

If mode; = syn-rcvd and there exists a non-SYN segment p € in-transil.s such that
ack(p) = sny, + 1 and there exists a FIN segment ¢ € in-transit.s such that (sn(q) >
max(acks, sn(p)+ 1)V (p = ¢ A sn(q) > ack,)) then rcvd-close, = true V isn, # isnf.
Proof: In the start state mode, is closed, so the invariant holds in this state. We consider
critical steps of the form (s,a,s’) below. We know that a = send-seg.;(sn., ack., msg.) is
not critical because Invariant 7.1 tells us that there cannot be a segment ¢ € in-transil.;
with sn(q) > [sn.], which must be the case if this step makes the premise of the invariant
true.

a = receive-msg.s(SYN, sn.)

This step may cause the consequence of the invariant to go from true to false, by assiging
isn to the value of isn.. However, Invariant 7.11 tells us that after this step there are no
segments p € in-transit.s such that ack(p) = sns; + 1, so we the invariant holds after this
step.

a = send-seg.s(sn., ack., msg., FIN)

This step adds a FIN segment to in-transit.s, but only if mode, € {fin-wait-1, closing,

last-ack}, so by Invariant 7.13 we know the invariant holds after this step. [ |

Invariant 7.69

1. If mode. € sync-states and there exists j such that (isn.,j) € assoc and there exists a

FIN segment p € in-transits. such that sn(p) > ack. then rcvd-close; = true Visns #
7.
2. If mode, € sync-states and there exists ¢ such that (¢, isn,) € estb-pairs At = isnf and

there exists a FIN segment p € in-transit.s such that sn(p) > ack, then rcvd-close, =
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true V isn, # 1.

Proof: In the start state mode. and mode, are closed, so the invariant holds in this state.
We consider critical steps of the form (s, a, s’) below. We know that a = receive-seg,.(SYN,
sns, acks) is not critical even though it may assign mode. to estb, and ack. to [sns] + 1.
These assignment are made if s.mode. = syn-sent. From Invariant 7.16 we know that if
s.mode. = syn-sent, then (isn., isns) ¢ assoc. Thus, the premise of the invariant does not
become true after this step. Steps with a = receive-seg.s(sn., ack., msg.) and a = receive-
seges(sn., ack., msg., FIN) may cause (isn.,isns) to be added to assoc if [ack.] > sns.
However, these steps do not make the premise of Part 1 go from false to true, because from
Invariant 7.23 we know that ack. > [ack.], and from Invariant 7.1 we know sns > sn(p) for
all p € in-transit,.. Therefore, if these steps cause (isn., isn;) to be added to assoc then we

know there are no segments p € in-transits. such that sn(p) > ack..

1. a = send-segs.(sns, acks, msgs, FIN)

This step adds a FIN segment to in-transit,., but only if s.modes € {fin-wait-1,
last-ack, closing}. From Invariant 7.13 we know that if s.mode; is in this set, then
s.revd-close; = true. Since this step does not change the value of rcvd-closes, we

know Part 1 is true after this step.

2. For Part 2 we know that a = receive-seg,.(SYN, sns, ack,) is not critical even though
this step may cause (isn,, isns) to be in estb-pairs if mode. = syn-rcvd. However, we
know from Invariant 7.19 that if this is the case in state s, then modes ¢ sync-states,

so the premise does not become true after this step.

a = send-seqg.s(sn., ack., msg., FIN)

Symmetric to the case for a = send-seg,.(sns, acks, msgs, FIN) of Part 1.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps may cause mode; to be in sync-states if s.mode; = syn-rcvd. However,
we know from Invariant 7.68, that if this is the case, then the consequence of Part 2

is also true. []

Invariant 7.70
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1. If mode. € {close-wait,closing, last-ack, timed-wait} and there exists j such

that (isn.,j) € assoc then rcvd-closes; = true V isng # j.

2. If modes; € {close-wait,closing,last-ack,timed-wait} and there exists ¢ such

that (¢, isns) € estb-pairs A i = isn] then rcvd-close. = true V isn. # 1. [ |

Proof: In the initial state mode; and mode. are closed, so the invariant holds. We
consider critical actions of the form (s, a,s’) below. For Part 1 we know that a = receive-
seges(sn., ack., msg.) and a = receive-seg.s(sn., ack., msg., FIN) are not critical even
though they may cause the pair (isn.,isns) to be added to assoc. The pair is added if
s.modes = syn-rcvd A [ack.] = s.sn; + 1. However, if these conditions are true in state s,
then Invariant 7.49 tell us that s.mode. ¢ {close-wait, closing, last-ack, timed-wait},

and since these steps do not change mode., we know the premise does not become true.

1. a = receive-segs.(sns, acks, msgs, FIN)

This step may cause the premise of the invariant to go from false to true. This change
happens if s.mode. € sync-states and [sng] > s.ack.. Therefore, from Invariant 7.69,

we know the consequence is also true, so Part 1 holds after this step.

2. For Part 2 we know that a = receive-seg,.(SYN, sns, ack,) is not critical even though
this step may cause (isn,, isns) to be in estb-pairs if mode. = syn-rcvd. However, we
know from Invariant 7.19 that if this is the case in state s, then modes ¢ sync-states,

so the premise does not become true after this step.

a = receive-$eg.s(sn., ack., msg., FIN)

The proof that Part 2 holds after this step is symmetric to the proof that Part 1 holds

after a = receive-segs.(sns, acks, msgs, FIN). [
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Appendix C

Invariance proofs for BTCP"

In this appendix we prove the invariants of BTCP" presented in Chapter 8. In the statement
of the invariants and in the proofs i > j if and only if i € {j +1,...,5 + (2%' — 1)}, where
the additions are modulo 232. As we did in Appendix B, we use the standard inductive
technique for proving the invariants. That is, we show that the invariants hold for the start
states and then show that for every step (s,a,s’) of TCP", if the invariant holds in state s
then it also holds in state s’. In the proofs of the invariants from Chapter 8, we use other
invariants of BZCP" that we state and also prove in this appendix.

Invariant C.1

1. If (p,t) € in-transit.s then now <t < now+ p.
2. If (p,t) € in-transit,. then now <t < now+ p.

Proof: In the start state in-transit.; and in-transit,. are both empty, so the invariant holds

for this state. We consider critical steps of the form (s, a,s’) below.

1. a = send-seqg.s(p)

These steps add segments to in-transit.;. However, the timestamp on the segment is

now -+ [.

v(t')
This is only enabled if for all segments (p,t) € in-transit.; s.now+ t' < t. Therefore,
if this step cause the consequence to go from true to false, then the premise must also

be false.
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2. The proof for Part 2 is symmetric to the proof for Part 1.

Invariant C.2

1. For all z € BN Ist-time-cc.(z) < now.
2. For all € BN Ist-time-ccs(z) < now.
3. For all € BN Ist-time-sn.(z) < now.
4. For all z € BN Ist-time-sns(x) < now.

Proof: Straightforward.

Invariant C.3

1. first(tick.) = last(tick.)

2. first(tick,) = last(ticks)

3. first(tick,) < now + clock-rate.

4. first(ticks) < now + clock-rate.

5. If mode, # rec then now < last(tick,).

6. If modes # rec then now < last(ticks).

Proof: Straightforward.

Invariant C.4

1. If mode. # closed then con-strt-time. < now.

2. If mode; ¢ {closed,listen} then con-stri-times < now.

Proof: Straightforward.

Invariant C.5

1. sn. € BN if and only if mode. # closed.

2. sn, € BN if and only if mode; ¢ {closed,listen}.

Proof: Straightforward.
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Invariant C.6

1. For all segments (p,t) € in-transit., sn(p) # nil.
2. For all segments (p,t) € in-transit,. sn(p) # nil.
Proof: Straightforward. [

Invariant C.7

1. If mode. # closed A wait-t_o. # oo then wait-t_o. < now+ wt.
2. If mode; # closed A wait-t_os # oo then wait-t_o; < now + wt.
Proof: Straightforward. [

Invariant C.8

If mode, = rec then first(recov.) > t + p + rt + wt for any segment (p,t) € in-transit,s.

Proof: In the start state mode, = closed so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = crash,

This step may cause the premise of Part 1 to go from false to true. However, in this
step first(recov.) is set to now+ ¢t, and from Invariant C.1 we know that for any segment
(p,t) € in-transit.s, t < now+ p. Therefore, since ¢t > wt 4 rt + 2, Part 1 holds after this
step.

a = send-seq.s(p)

These steps may cause the consequence of Part 1 to go from true to false, but they are only

enabled if mode. # rec. ]

Invariant C.9

If modes; = syn-recvd A wait-t_o, = oo then last(responses) < now+ rt.

Proof: In the start state mode, = closed so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = receive-seqg.s(SYN, sn.)

This step may cause the premise of the invariant to go from false to true. However in this

step last(response.) is set to now+ rt, so the invariant holds after this step.
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a = send-seges(p)

These steps may cause the consequence of the invariant to go from true to false. In the
case where p = (SYN, sn.), after that step wait-t_o. # co. After the other steps mode. #

syn-rcvd, so the invariant holds. [

Invariant C.10
If mode. = rec A mode;, = syn-rcvd A wait-t_o, = oo then first(recov.) > last(response;)+

wt 4 .

Proof: In the start state mode, = closed so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = crash,

This step may cause the premise of the invariant to go from false to true. From Invariant C.9
we know that if mode; = syn-rcvd A wait-t_o, = oo then last(responses) < now + rt.
Therefore, since first(recov.) is set to now+ ¢t in this step, the invariant holds.

a = receive-seqg.s(SYN, sn.)

This step may cause the premise of the invariant to go from false to true. Let (p,t) be
the segment received in this step. From Invariant C.8 we know that if mode. = rec then
first(recov,) > t+ p+ rt + wt. Since last(responses) is set to now+ rt in this step, and from

Invariant C.1 we know ¢ > now, the invariant holds after this step. [ |

Invariant C.11

If mode. = rec A modes = syn-rcvd A wait-t_o;, = oo then first(recov.) > now+ wt + p.

Proof: In the start state mode, = closed so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = crash,

This step may cause the premise of the invariant to go from false to true. Since first(recov.)
is set to now + ¢t in this step, the invariant clearly holds.

a = receive-seqg.s(SYN, sn.)

This step may cause the premise of the invariant to go from false to true. Let (p,t) be

the segment received in this step. From Invariant C.8 we know that if mode. = rec then
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first(recov,) > t+ p+rt + wt. Since by Invariant C.1, ¢ > now, we know the invariant holds
after this step.

a=v(t)

This step may cause the consequence of the invariant to go from true to false. It is only
enabled if s.now + t' < last(responses). From Invariant C.10 we know that if mode, =
rec A modes; = syn-rcvd A wail-t_o, = oo then first(recov,) > last(responses) + wt + p.
Therefore, if this step causes the consequence of the invariant to be false, then the premise

must also be false. []

Invariant C.12

If mode. = rec A modes = syn-rcvd A wait-t_o, # oo then first(recov.) > wait-t_os + p.

Proof: In the start state mode, = closed so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = crash,

This step may cause the premise of the invariant to go from false to true. However, from
Invariant C.7 we know if wait-t_o, # oo then wait-t_o, < now+ wt. Since first(recov,) is
set to now + ¢t in this step, the invariant holds after this step.

a = send-segs.(SYN, sns, acks)

This step may cause the premise of the invariant to go from false to true by setting wait-t_o,
to now + wt, if s.mode; = syn-rcvd A s.wait-l_o; = oo. However, from Invariant C.11
we know that if these conditions are true in state s, then s.first(recov.) > s.now+ wt + p.
Therefore, since this step does not change first(recov.) or now, the invariant holds after this
step.

a = receive-seqg.s(p)

These steps may cause the consequence of the invariant to go from true to fales by assigning
wait-t_og to co. However, after each of these steps the premise is also clearly false, so the

invariant holds. []

Invariant C.13

If mode. = rec A modes = syn-rcvd A now < wait-t_og then first(recov.) > now+ p
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Proof: In the start state mode, = closed so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = crash,

This step may cause the premise of the invariant to go from false to true. Since first(recov.)
is set to now + ¢t in this step, the invariant clearly holds.

a = receive-seqg.s(SYN, sn.)

This step may cause the premise of the invariant to go from false to true. Let (p,t) be
the segment received in this step. From Invariant C.8 we know that if mode. = rec then
first(recov,) > t+ p+rt + wt. Since by Invariant C.1, ¢ > now, we know the invariant holds
after this step.

a=v(t)

This step may cause the consequence of the invariant to go from true to false. However,
from Invariant C.12 we know that if mode. = rec A modes = syn-rcvd A wait-t_os #
then first(recov.) > wait-t_o, + p. Therfore, if this step causes now+ p to be greater than

or equal to first(recov.) then the premise of the invariant must also be false. [ |

Invariant C.14

If mode, = rec then first(recov,) > t for any SYN segment (p,t) € in-transits..

Proof: In the start state mode, = closed so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = crash,

This step may cause the premise of the invariant to go from false to true. However, in this
step first(recov.) is set to now+ ¢t, and from Invariant C.1 we know that for any segment
(p,t) € in-transits., t < now + p. Therefore, since gt > wt + rt 4+ 2u, the invariant holds
after this step.

a = send-segs.(SYN, sns, acks)

This step may cause the consequence of the invariant to go from true to false by adding a
SYN segment (p,t) where t = now+ p and t > first(recov.). However, it is only enabled
if s.mode; = syn-rcvd A s.now < s.wait-t_os. From Invariant C.13 we know that if

mode; = syn-rcvd A now < wait-t_os A mode. = rec then first(recov.) > now + p.
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Therefore, if this step causes the consequence of the invariant to be false, then the premise

must also be false. []

Invariant C.15

1. If mode. = rec A now > first(recov.) then in-transit.s = ).
2. If mode. = rec A now > first(recov.) then there are no SYN segments in in-transit,..

Proof: In the start state mode, = closed so the invariant holds in this state. We consider

critical actions of the form (s, a,s’) below.

1. a=v(t)
This step may cause the premise of Part 1 to go from false to true. However, from
Invariant C.8 we know that first(recov.) > t for any segment (p,t) € in-transit.s, and
from Invariant C.1 we also know that now < ¢ for any segment (p,t) € in-transit.,.

Therefore, there cannot be any segment in in-transit.s if now > first(recov.), so Part

1 holds after this step.

a = send-seg.s(p)

These steps may cause the consequence of Part 1 to go from true to false, but they

are only enabled if mode. # rec.

2. a=v(t)
This step may cause the premise of Part 2 to go from false to true. However, from
Invariant C.14 we know that first(recov.) > t for any SYN segment (p,t) € in-transit,.,
and from Invariant C.1 we also know that now < ¢ for any segment (p, t) € in-transit,..
Therefore, there cannot be any SYN segments in in-transits. if now > first(recov.),

so Part 2 holds after this step.

a = send-seqs.(SYN, sns, ack)

This step may cause the consequence of Part 2 to go from true to false. This step is
enabled if s.mode; = syn-rcvd A now < s.wait-t_os. From Invariant C.13 we know
that s.mode, = syn-rcvd A now < s.wait-t_os A s.mode. = rec then first(recov.) >

now + pt. Thus, if this step is enabled, the premise of Part 2 must also be false. [ |
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Invariant C.16

1. If mode. = closed A now > first(open.) then in-transit.s = 0.
2. If mode; = closed A now > first(opens) V modes = listen then in-transits,. = 0.
Proof: Straightforward given Invariants C.22 and C.1. |

Invariant C.17

1. If mode. = rec then Ist-crash-time. = first(recov.) — qt.
2. If mode; = rec then Ist-crash-time, = first(recovs) — qt.
3. If mode. # rec then Ist-crash-time. < now — qt.
4. If modes # rec then Ilst-crash-time; < now — qt.
Proof: Straightforward. [

Invariant C.18

1. If mode. = syn-sent then Ist-time-cc.(sn.) > Ist-crash-time..
2. If mode; = syn-rcvd then Ist-time-ccy(sns) > Ist-crash-times.

In the start state mode. and mode; have the value closed, so the invariant holds in this

state. We consider critical steps of the form (s,a,s’).

1. a = send-msg(open, m, close)

This step may cause the premise of Part 1 to go from true to false. However, from
Invariant C.35 we know that &'.lst-time-cc.(s'.sn.) > s'.now—rt — clock-rate, and from
Invariant C.17 we know that s'.lst-crash-time. < s'.now—qt. Since gt > rt+clock-rate,

we now Part 1 holds after this step.

a = crash,
This step may cause the consequence of Part 1 to go from true to false by setting
[st-crash-time. to now. However, this step also sets mode. to rec, so Part 1 holds

after this step.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |
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Invariant C.19
If mode. # rec A lst-crash-time. > Ist-time-cc.(x) then there are no SYN segments (p, ) €

in-transit.s with sn(p) = =.

In the start state in-transit.; is empty, so the consequence of the invariant is true, which
means the invariant holds for this state. We consider critical steps of the form (s,a,s’)
below.

(4 = Tecover.

This step may cause the premise of the invariant to go from false to true. This step is
enabled if s.mode. = rec A s.now > first(recov.). From Invariant C.15 we know that
s.in-transit.; is empty.

a = send-seg.s(SYN, sn.)

This step adds a SYN segment to in-transil.s if mode, = syn-sent A now < wait-t_o.. It
may cause the consequence of the invariant to go from true to false if sn. = 2. However, from
Invariant C.18 we know that if mode. = syn-sent then Ist-time-cc.(sn.) > Ist-crash-time..
Therefore, if the consequence of the invariant becomes false after this step, then the premise

must also be false. []

Invariant C.20
If mode. # rec Alst-crash-time. > Ist-time-cc.(acks;—1) then =(mode; = syn-rcvd Anow <

wait-t_oy).

Proof: In the start state mode; = closed, so the consequence of the invariant is true,
which means the invariant holds for this state. We consider critical steps of the form
(s,a,s’) below.

a = recover,

This step may cause the premise of the invariant to go from false to true. This step is
enable if s.mode. = rec A s.now > first(recov.). From Invariant C.13 we know that if
mode. = rec A mode; = syn-rcvd A now < wait-t_o, then first(recov.) > now + p.
Therefore, if this step is enabled, the consequence of the invariant must also be true.

a = receive-seqg.s(SYN, sn.)

This step may cause the consequence of the invariant to go from true to false. Let (p,t) be
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the segment received in this step. After the step s’.acks — 1 = sn(p). However, we know
by Invariant C.19 that if mode. # rec A Ist-crash-time. > lst-time-cc.(z) then there are no
SYN segments in in-transit.s with sn(p) = x. Therefore, if this step causes the consequence

to be false, the premise must also be false. [ |

Invariant C.21
If mode. # rec A lst-crash-time. > Ist-time-cc.(x — 1) then there are no SYN segments

(p,t) in in-transits. with ack(p) = .

Proof: In the start state mode; = closed, so the consequence of the invariant is true,
which means the invariant holds for this state. We consider critical steps of the form
(s,a,s") below.

a = recover,

This step may cause the premise of the invariant to go from false to true. This step is
enable if s.mode. = rec A s.now > first(recov.). From Invariant C.15 we know that there
are no SYN segments in s.in-transits.. Therefore, if this step is enabled, the consequence

of the invariant must also be true.

a = send-segs.(SYN, sns, acks)

This step may cause the consequence of the invariant to go from true to false. It is enabled
if modes; = syn-rcvd A now < wait-t_os. From Invariant C.20 we know that if this step is

enabled, then the premise of the invariant must be false. [ |

Invariant C.22

1. If mode. € {rec,closed} then for all segments p € in-transit.s, t < first(open,).
2. If mode; € {rec,closed} then for all segments p € in-transits., t < first(opens).

Proof: . In the start state both in-transit.; and in-transit,. are empty, so the invariant

holds in this state. We consider critical steps of the form (s, a, s’) below.

1. a = receive-segs.(sns, acks, msgs), a = shut-down., and time-out,.

These steps may cause the premise of Part 1 to go from false to true. However, in all of
these steps first(open.) is set to now+ p. Since by Invariant C.1 we know ¢ < now+ p,

we know the consequence is also true. Thus, Part 1 holds after these steps.
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a = crash,
This step may cause the premise of Part 1 to go from false to true. However, in this
step first(open.) is set to now + ¢t. Since by Invariant C.1 we know ¢ < now+ p, we

know the consequence is also true.

a = send-seqg.s(p)

Any step that adds a segment to in-transit.;, may cause the consequence of Part 1 to
go from true to false. However, since these actions are only enabled if mode. # closed,

the premise must also be false in these states.
2. The proof of Part 2 is symmetric. [ |
Invariant 8.1

1. If mode. = syn-sent and for (p,t) € in-transit.;, t — p > con-strt-time. then sn. =

sn(p).

2. If modes = syn-rcvd and for (p,t) € in-transit,., t — p > con-strt-times then sn, =

sn(p).

Proof: In the start state mode; = closed and mode. = closed, so the invariant holds in

this state. We consider the critical steps of the form (s, a,s’) below.

1. a = send-msg.(open, m, close)

This step may cause the consequence of Part 1 to go from true to false by assigning
sn. to s.clock-counter.. This assignment is made only if s.mode. = closed. Also if
the assignment is made in this step, then con-strt-time, is also assigned now. Fur-
thermore, we know that this step is only enabled if now > first(open.). Therefore, by
Invariant C.22 we know that for all (p,?) € s'.in-transit.;, t < s'.con-strt-time.. Thus,

the premise is false after this step also.

a = send-seqg.s(p)

These steps can make the premise of Part 1 go from false to true by add a segment

(p,t) to in-transit.s with ¢ — p > con-strt-time.. However, for any such segment,

sn(p) = sne.
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a = prepare-msg,

This step may cause the consequence of Part 1 to go from true to false by incrementing
sn.. However, this step is only enabled if mode. # syn-sent, so Part 1 holds after

this step.
2. The proof for Part 2 is symmetric. [ |
Invariant 8.2
1. If mode. = syn-sent A new-isn,. then for all (p,t) € in-transit.;, t—p < con-strt-time..
2. If mode, = syn-rcvd A new-isng then for all (p, 1) € in-transits., t—p < con-strit-time.

Proof: In the start state mode; = closed and mode. = closed, so the invariant holds in

this state. We consider the critical steps of the form (s, a,s’) below.

1. a = send-msg.(open, m, close)

This step may cause the premise of Part 1 to go from false to true. This assignment
is made only if s.mode. = closed. Also if the assignment is made in this step, then
con-stri-time, is also assigned now. Furthermore, we know that this step is only
enabled if now > first(open.). Therefore, by Invariant C.22 we know that for all

(p,t) € s'.in-transit.s, t < s'.con-strt-time.. Therefore, Part 1 holds after this step.

a = send-seqg.s(p)

These steps can make the consequence of Part 1 go from true to false, but these steps

also set new-isn. to false, so the premise is also false.
2. The proof of Part 2 is symmetric. [ |
Invariant 8.3
1. If mode. # closed then for all segments (p,t) € in-transit.s, t > con-strt-time. + p.
2. If modes; # closed then for all segments (p,t) € in-transit,., t > con-stri-times + p.

Proof: In the start state mode. and mode; have the value closed, so the invariant holds

in this state. We consider critical actions of the form (s, a,s’) below.
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1. a = send-msg.(open, m, close)

This step can make the premise of Part 1 to go from false to true. This change occurs
if now > first(open.), and if this change occurs con-strt-time. is set to now. From
Invariant C.22 we know that for all segment (p, ) € in-transit.s, t < first(open.), and
from Invariant C.1 we know that now < t. These facts couple with the fact that the
premise only goes from true to false in this step if now > first(open.), means there

cannot be a segment (p,t) € s.in-transit.;. Therefore, Part 1 holds after this step.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant 8.4

1. If modes € sync-states and there exists segment (p,t) € in-transit., such that sn(p) =

sn. and sn(p) = acks then t — p > con-stri-time..

2. If mode. € sync-states and there exists segment (p,t) € in-transit,. such that sn(p) =

sns and sn(p) = ack. then t — p > con-stri-time,.

Proof: In the start state both mode. and mode; have the value closed, so the invariant
holds in this state. From Invariant C.6 we know that for any segment on a channel sn(p) #
nil, and from Invariant C.5 we know that if sn, # nil then mode. # closed and if mode, ¢
{closed, listen} then sn. # nil. Therefore, if sn(p) = sn. then mode. # closed and if
sn(p) = sns then mode; # closed. From Invariant 8.3 we know that if mode. # closed
then for all segments (p,t) € in-transit.s, t > con-strt-time. + p, and if mode; # closed

then for all segments (p,t) € in-transits., t > con-strt-times 4+ p. Therefore, the invariant

holds. []

Invariant C.23

1. If mode. = closed then for all 2 € BN, Ist-time-sn.(x) < first(open.) — p.
2. If mode; = closed then for all « € BN, Ist-time-sns(x) < first(open,) — pu.

Proof: Straightforward. [

Invariant C.24

1. If mode. = syn-sent then any segment in in-transit.s is a SYN segment.
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2. If mode; = syn-rcvd then any segment in in-transit,. is a SYN segment.

Proof: If the start state mode. = closed and mode;, = closed, so the invariant holds in

this state. We consider critical steps of the form (s, a,s’) below.

1. a = send-msg.(open, m, close)

This step may cause the premise of Part 1 to go from false to true if s.mode, =
closed A now > first(open,). From Invariant C.22 we know that if mode. = closed
then for all segments (p,t) € in-transit.s, fopenc > t. From Invariant C.1 we know
that now < t for all segments (p,t) € in-transit.;. Therefore, if this step causes the

premise of Part 1 to be true, then there are no segments in s'.in-transit..

a = send-seq.s(sn., ack., msg.) and a = send-seg.s(sn., ack., msg., FIN)

These steps may cause the consequence of Part 1 to go from true to false by adding
a non-SYN segment to in-transit.;. However, these steps are only enabled if mode. #

syn-sent.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant C.25

1. If mode. = rec then for all € BN, Ist-time-cc.(x) < first(recov,) — qt.
2. If mode;, = rec then for all « € BN, Ist-time-ccs(z) < first(recovs) — qt.

Proof: In the start state both mode. and mode; have the value closed, so the invariant

holds in this state. We consider critical actions of the form (s, a, s’) below.

1. @ = crash,
This step makes the premise of Part 1 go from false to true. In this step first(recov.) is
assgined to now+ ¢gt. From Invariant C.2 we know that for all # € BN Ist-time-cc.(z) <

now. Therefore, Part 1 holds after this step.

a = recover, and a = clock-counter-tick,

These steps may cause the consequence of Part 1 to go from true to false. However,

after these steps mode. # rec, so Part 1 holds.
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2. The proof for Part 2 is symmetric. [ |

Invariant C.26

1. For all z € BN, first(tick,) — clock-rate > Ilst-time-cc.(x).
2. For all @ € BN, first(ticks) — clock-rate > Ist-time-ccq().

Proof: In the start state for all @ € BN Ist-time-cc.(x) and Ist-time-ccy(x) have the value
0, and first(tick.) and first(ticks) have the value clock-rate, so the invariant holds in this

state. We consider critical actions of the form (s, a,s’) below.

1. @ = recover. and a = clock-counter-tick,

These steps assign Ist-time-cc.(clock-counter.) to now. However, these steps also

assign first(tick.) to now + clock-rate. Therefore, Part 1 holds after these steps.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant C.27

1. If mode. # closed then for all « € BN, first(prep-msg.) — data-rate > Ist-time-sn.(z).

2. f mode. ¢ {closed,listen} then for all @ € BN, first(prep-msgs) — data-rate >

Ist-time-sn(z).

In the start state mode. and mode, are equal to closed, so the invariant holds in this state.

We consider critical actions of the form (s, a, s’) below. Proof: Straightforward. [

Invariant C.28

1. If mode. = rec then for all @ € BN, lst-crash-time, > lst-time-cc.(z).
2. If mode; = rec then for all & € BN, Ist-crash-time, > lst-time-ccs(z).
Proof: Straightforward. [

Invariant C.29
1. If clock-counter, = x A lIst-time-cc.(z) # 0 and for ¢ € BN, Ist-crash-time, <

Ist-time-cc.(x — ©) then Ist-time-cc.(x) — Ist-time-cc.(x — 1) > i X clock-rate.

2. If clock-counters, = x A lIst-time-ccs(z) # 0 and for 7 € BN, lst-crash-time, <

Ist-time-ccy(x — t) then Ist-time-ccs(x) — Ist-time-ccg(x — i) > 1 X clock-rate.
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Proof: For this invariant we have two levels of induction. The first level is induction on ¢,
and the second level is the induction on the steps of BTCP". The base case of the induction
on ¢ is for ¢ = 0. The invariant clearly holds for this case. For the inductive case we assume
that the Invariant holds for j and show it holds for j + 1. We show it holds for j + 1 by
induction on the steps of BTCP".

In the start state for all z Ist-time-cc.(x) and Ist-time-ccs(z) have the value 0, so the
invariant holds in this state. We consider critical actions of the form (s, a,s’) below. The
step with a = recover. is not critical for Part 1 because if this step is enabled only if mode. =
rec, which by Invariant C.28 means for all « € BN, Ist-crash-time. > Ist-time-cc.(x). The

step with a = recover, is not critical for Part 2 for symmetric reasons.

1. @ = clock-counter-tick,

This step may cause the premise of the Part 1 to go from false to true by assigning
clock-counter. to the value x and [st-time-cc.(z) to now. This step is enabled if
now > first(tick.). The clock counter gets the value x if s.clock-counter. = x—1. From
Invariant C.26 we know that first(tick.) — clock-rate > Ist-time-cc.(xz — 1), and by the
inductive hypothesis we know that in state s, s.lst-time-cc(z —1)— s.lst-time-cc(z — j —
1) > jxclock-rate. Since this step does not change the value of Ist-time-cc(z—j—1), we
know that after this step lst-time-cc.(x) — lst-time-cc.(x —j—1) > (7 +1) X clock-rate.
Thus, Part 1 holds for 7 + 1.

2. The proof for Part 2 is symmetric. [ |

Invariant C.30
1. If clock-counter. = x A lIst-time-cc.(x) # 0 A ¢ € BN then Ist-time-cc.(x) —

Ist-time-cc.(z — i) > min(gt, 1 X clock-rate).
2. If clock-counter, = & A lst-time-ccs(z) # 0 A ¢ € BN then Ist-time-ccs(z) —
Ist-time-ccg(x — ) > min(qt, 1 X clock-rate).

Proof: For this invariant we have two levels of induction. The first level is induction on
i, and the second level is the induction on the steps of BTCP". The base case of the
induction on ¢ is for ¢ = 0. The invariant clearly holds for this case. For the inductive case

we assume that the Invariant holds for j and show it holds for 7 + 1. We show it holds for
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j 4 1 by induction on the steps of BTCP". In the start state for all @ Ist-time-cc.(x) and
Ist-time-cc4(x) have the value 0, so the invariant holds in this state. We consider critical

actions of the form (s, a, s’) below.

1. @ = clock-counter-tick,

This step may cause the premise of the Part 1 to go from false to true by assigning
clock-counter. to the value x and [st-time-cc.(z) to now. This step is enabled if
now > first(tick.). The clock counter gets the value x if s.clock-counter. = x—1. From
Invariant C.26 we know that first(tick.) — clock-rate > Ist-time-cc.(xz — 1), and by the
inductive hypothesis we know that in state s, s.lst-time-cc(z —1)— s.lst-time-cc(z — j —
1) > min(qt, j x clock-rate). Since this step does not change the value of Ist-time-cc(z—
j—1), we know that after this step Ist-time-cc.(z)—Ist-time-cc.(x—j—1) > min(¢t, (j+
1) x clock-rate). Thus, Part 1 holds for j 4 1.

a = recover,
This step may cause the premise of the Part 1 to go from false to true by assigning
clock-counter. to the value x and [st-time-cc.(z) to now. This step is enabled if
now > first(recov,). From Invariant C.25 we know that in state s Ist-time-cc.(z — j —
1) < first(recov,) — qt. Since this step does not change Ist-time-cc.(z — j — 1), we
know Part 1 holds after this step.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant C.31

1. If clock-counter. = x then Ist-time-cc.(x) + clock-rate = last(tick,).
2. If clock-counter, = x then lst-time-ccs(x) + clock-rate = last(ticks).

Proof: In the start state, for all z, Ist-time-cc () and Ist-time-cc,(z) have the value 0, and
last(tick.) and last(ticks) have the value clock-rate, so the invariant holds in this state. We

consider critical actions of the form (s, a,s") below.

1. a = clock-counter-tick, and a = recover,

These steps may cause the premise of the Part 1 to go from false to true by assigning
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clock-counter, to the value z and Ilst-time-cc.(z) to now. In these steps last(tick,) is

also assigned now + clock-rate, so Part 1 holds.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |
Invariant C.32

1. If mode. # rec A clock-counter. = x then Ist-time-cc.(x) > now — clock-rate.
2. If modes # rec A clock-counters = x then Ist-time-cc,(x) > now — clock-rate.

Proof: In the start state both mode. and mode; have the value closed, so the invariant

holds in this state. We consider critical actions of the form (s, a,s’) below.

1. @ = clock-counter-tick,

This step may cause the premise of the Part 1 to go from false to true by assigning
clock-counter, to the value z and lst-time-cc.(z) to now. Clearly Part 1 holds after
this step.

a =v(t)

This step may cause the consequence of Part 1 to go from true to false, if s.now+1t >
s.Ast-time-cc.(x) + clock-rate. If mode. = rec then the premise of Part 1 is also
false. If mode. # rec then this step is only enabled if s.now + ¢t < last(tick.). From
Invariant C.31 we know that if clock-counter, = x then Ist-time-cc.(z) + clock-rate =
last(tick.). Therefore, if this step is enabled clock-counter. # x V mode, = rec, and

since this step does not change clock-counter,. or mode., Part 1 holds.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |
Invariant C.33

1. If (p,t) € in-transit.s then Ilst-time-cc.(sn(p)) <t A Ist-time-sn.(sn(p)) < t.
2. If (p,t) € in-transit,. then Ist-time-ccs(sn(p)) < t A Ist-time-sns(sn(p)) < t.

In the start state, both in-transit.; and in-transits. are empty, so the invariant holds in this

state. We consider critical actions of the form (s, a,s’) below.

1. a = send-seqg.s(p)

These steps add segments to in-transit.;. The timestamp ¢ on any of these segments
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is now+ p. From Invariant C.2 we know that for all @ € BN, Ist-time-cc.(z) < now

and Ist-time-sn.(z) < now. Therefore, Part 1 holds after these steps.

a = clock-counter-tick, and a = recover,

These steps may assign Ist-time-cc.(sn(p)) to now, and so can cause the consequence
of Part 1 to go from true to false, if now > t. However, from Invariant C.1 we know
that for any (p,t) € in-transit.s, now < t. Therefore, the premise must be false also,

so Part 1 holds after these steps.

a = send-msg.(open, m, close) and a = prepare-msg.

These steps may assign [st-time-sn.(sn(p)) to now, and so can cause the consequence
of Part 1 to go from true to false, if now > t. However, from Invariant C.1 we know
that for any (p,t) € in-transit.s, now < t. Therefore, the premise must be false also,

so Part 1 holds after these steps.

2. The proof for Part 2 is symmetric. [ |
Invariant C.34
1. If mode. = syn-sent A wait-t_o. = oo then Ist-time-cc.(sn.) > last(response.) — rt —

clock-rate.

2. If mode, = syn-rcvd A wait-t_o, = oo then lst-time-ccs(sns) > last(responses) — rt —

clock-rate.

Proof: In the start state both mode. and mode; have the value closed, so the invariant
holds in this state. We consider critical actions of the form (s,a,s’) below. For this in-
variant the steps with a = clock-counter-tick. and a = recover, for Part 1 and the steps
with @ = clock-counter-tick; and a = recovers for Part 2 are not critical even though they
assign the value of now to Ist-time-cc.(clock-counter.) and lst-time-ccs( clock-counters) re-
spectively. They are not critical because from Invariant C.2 we know that for all z € BN,
now > Ilst-time-cc.(x) and now > Ilst-time-ccs(z). Thus, because these steps can only cause
Ist-time-cc.(x) and Ist-time-cc,(x) to increase, they steps cannot cause the consequence of

either part to go from true to false.

1. a = send-msg.(open, m, close)

This step can make the premise of Part 1 to go from false to true. From Invariant C.32
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we know that the consequence is also true after this step.

a = send-seqg.s(p)

These steps may cause the consequence of Part 1 to go from true to false. In the
case where p = (SYN,sn.), after that step wait-t_o. # oco. After the other steps

mode. # syn-sent, so Part 1 holds.

a = receive-segs.(p)

These steps may also cause the consequence on Part 1 to go from true to false. How-

ever, after these steps, mode. # syn-sent, so Part 1 holds.

2. The proof for Part 2 is symmetric. [ |

Invariant C.35

1. If mode. = syn-sent A wait-t_o. = oo then Ilst-time-cc.(sn.) > now— rt — clock-rate.
2. If mode, = syn-rcvd A wait-t_o; = 0o then Ist-time-ccy(sns) > now— rt — clock-rate.

Proof: In the start state both mode. and mode; have the value closed, so the invariant

holds in this state. We consider critical actions of the form (s, a,s’) below.

1. a = send-msg.(open, m, close)

This step can make the premise of Part 1 to go from false to true. From Invariant C.32
we know that the consequence is also true after this step.

a =v(t)

This step may cause the consequence of Part 1 to go from true to false. It is only
enabled if s.now+ t < last(response.). From Invariant C.34 we know that if mode. =
syn-sent A wait-t_o. = 0o then Ist-time-cc.(sn.) > last(response.) — rt — clock-rate.
Therefore, if this step causes the consequence of Part 1 to be false, then the premise

must also be false.

2. The proof for Part 2 is symmetric. [ |

Invariant C.36
1. If mode. = syn-sent A wait-t_o. # oo A now < wait-t_o. then Ilst-time-cc.(sn.) >

wait-t_o. — wt — rt — clock-rate.
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2. If mode; = syn-rcvd A wait-t_os # co A now < wait-t_o, then Ist-time-ccs(sng) >

wait-t_o, — wt — rt — clock-rate.

Proof: In the start state both mode. and mode; have the value closed, so the invariant

holds in this state. We consider critical actions of the form (s, a, s’) below.

1. a = send-seg.s(SYN, sn.)

This step can make the premise of Part 1 to go from false to true by assigning wait-t_o,
to now+ wt, if s.mode, = syn-sent A s.wait-t_o. = 0co. However, from Invariant C.35
we know that s.lst-time-cc.(sn.) > s.now — rt — clock-rate. Therefore, since this step

does not change lst-time-cc.(sn.) or now, Part 1 holds after this step.

a = receive-segs.(p)

These steps may cause the consequence of Part 1 to go from true to fales by assigning
wait-t_o. to 0o. However, after each of these steps the premise is also clearly false, so

Part 1 holds.

2. The proof for Part 2 is symmetric. [ |

Invariant C.37
1. If mode, = syn-sent A now < wait-t_o. then Ist-time-cc.(sn.) > now — wt — rt —

clock-rate.

2. If modes; = syn-rcvd A now < wait-t_o, then Ilst-time-ccs(sns) > now — wt — rt —

clock-rate.

Proof: In the start state both mode. and mode; have the value closed, so the invariant

holds in this state. We consider critical actions of the form (s, a,s’) below.

1. a = send-msg.(open, m, close)

This step can make the premise of Part 1 to go from false to true. In this step sn,
is assigned to clock-counter.. From Invariant C.32 we know that Ist-time-cc.(sn.) +
clock-rate > now, so Part 1 holds after this step.

a =v(t)

This step may cause the consequence of Part 1 to go from true to false, if s.now +
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t > s.dst-time-cc.(sn.) + wt + rt + clock-rate. From Invariant C.36 we know that if
mode. = syn-sent A wait-t_o, # oo A now < wait-t_o. then Ist-time-cc.(sn.) >
wait-t_o, — wt — rt — clock-rate, and from Invariant C.35 we know that if mode, =
syn-sent A wait-t_o. = 0o then Ist-time-cc.(sn.) > now— rt — clock-rate. Therefore,
if s'.now > §'.lst-time-cc.(sn.) + wt + rt + clock-rate, then s’ .now > wait-t_o., so the

premise of Part 1 is also false.

. a = receive-seq.s (SYN, sn.)

This step can make the premise of Part 2 to go from false to true. In this step sn,
is assigned to clock-counter,. From Invariant C.32 we know that lst-time-ccs(sns) +

clock-rate > now, so Part 2 holds after this step.

a =v(t)

The proof for this step is symmetric to the proof for the same step for Part 1. [ |

Invariant C.38

1.

If there exists SYN segment (p, ¢) € in-transit., then t < Ist-time-cc.(sn(p))+ clock-rate+
wt + rt + p.

. If there exists a SYN segment (p,t) € in-transit,. then t < Ist-time-ccs(sn(p)) +

clock-rate + wt + rt + p.

In the start state, both in-transit.; and in-transits. are empty, so the invariant holds in this

state. We consider critical actions of the form (s, a,s’) below.

1.

2.

a = send-seg.s(SYN, sn,.)

This step adds a SYN segment to in-transit.; if mode. = syn-sent A now < wait-t_o..
The timestamp on this segment is now + p. From Invariant C.37 we know that if
mode. = syn-sent A now < wait-t_o. then Ist-time-cc.(sn.) > now — wt — rt —

clock-rate. Therfore, after this step Part 1 holds.

The proof for Part 2 is symmetric. [ |

Invariant C.39

1.

If there exists a SYN segment (p,t) € in-transit.s then clock-counter, > sn(p).
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2. If there exists a SYN segment (p,t) € in-transit,. then clock-counters > sn(p).

Proof: In the start state in-transit.; and in-transit,. are both empty, so the invariant holds

for this state. We consider critical steps of the form (s, a, s’) below.

1. a = send-seg.s(SYN, sn.)

This step adds a SYN segment to (p,t) to in-transit.s, where t = now + p. Af-
ter this segment is added, we know that if sn(p) > clock-counter. then by Invari-
ant C.30, lst-time-cc.(clock-counter.) — Ist-time-cc.(sn(p)) > qt. By Invariant C.32 we
know [st-time-cc.(clock-counter.) > now— clock-rate. Therefore, lst-time-cc.(sn(p)) <
now — clock-rate — ¢qt. From Invariant C.38 we know that ¢ < Ist-time-cc.(sn(p)) +
clock-rate + wt+rt 4+ p. Combining the two inequalities gives us, t < now— clock-rate —
qt + clock-rate + wt + rt + p. Thus, t < now— gt + wt 4+ rt + p. Since qt > p+ wt + rt,
we get ¢ < now. However, this contradicts the fact that ¢t = now + p. Therefore,

sn(p) < clock-counter,, so Part 1 holds after this step.

a = recover,
This step may cause the consequence of Part 1 to go from true to false by assigning
clock-counter, an arbitrary value. If is enabled if mode. = rec A now > first(recov,).

Invariant C.15 tells us that when this step is enabled that in-transit.; is empty.

a = clock-counter-tick,

The step may also cause the consequence of Part 1 to go from true to false by in-
crementing clock-counter.. However, as we showed for the case of the step with
a = send-seqg.s(SYN, sn.), there is can be no SYN segment on in-transit.; with

sn(p) > clock-counter, if this is the case.

2. The proof for Part 2 is symmetric. [ |
Invariant C.40
If mode, = closed A last(tick,) > first(open;) then clock-counter. # sn(p) for any SYN

segment (p,t) € in-transit..

Proof: In the start state clock-counter. = clock-counter, = 0 and in-transit., and in-transit,,
are both empty so the consequence of both parts of the invariant is true, so it holds in the

start state. We consider critical steps of the form (s, a,s’) below.
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a = send-seg.s(SYN, sn.)

This step adds a SYN segment to in-transit.s, but only if mode. = syn-sent.

a = clock-counter-tick,

This step may cause the premise of the invariant to go from false to true by assigning
last(tick.) to now + clock-rate. This step also increments clock-counter.. Since we know
from Invariant C.39 that s.clock-counter. > sn(p) for any SYN segment (p,t) € in-transit.,,
we know s'.clock-counter. # sn(p).

a = recover,

This step may also cause the premise of the invariant to go from false to true by assigning
last(tick.) to now+ clock-rate. This step is enabled if s.mode. = rec A now > first(recov,).
However, Invariant C.15 tells us that when this step is enabled there are no segments in
n-transit,. [ ]
Invariant C.41

modes = syn-rcvd A wait-t_os = oo then Ist-time-cc.(acks — 1) > last(response;) — wt —

1 — 2rt — clock-rate.

Proof: In the start state mode; = closed, so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = receive-seqg.s(SYN, sn.)

This step may cause the premise of the invariant to go from false to true. Let (p,t) be
the segment received. This step assigns last(response;) to now + rt, and ack, to sn(p) + 1.
From Invariant C.38 we know t < [st-time-cc.(sn(p)) + clock-rate + wt 4+ rt 4+ p, and from
Invariant C.1 we know now < t < now+ p. Thus, now < Ist-time-cc.(sn(p)) + clock-rate +
wt + rt + p. Since s'.last(response;) = s.now + rt, we know the invariant holds after this
step.

a = send-segs.(p)

These steps may cause the consequence on the invariant to go from true to false. In the
case where p = (SYN, sn,, acky), after that step wait-t_o, # oo. After the other steps
modes # syn-rcvd, so the invariant holds.

a = receive-segs.(p)

These steps may also cause the consequence on Part 1 to go from true to false. However,

396



after these steps, modes; # syn-rcvd, so the invariant holds. [ |

Invariant C.42
If modes = syn-rcvd A wait-t_o, = oo then Ist-time-cc.(acks — 1) > now— wt — p — 2rt —

clock-rate.

Proof: In the start state mode; = closed, so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = receive-seqg.s(SYN, sn.)

This step may cause the premise of the invariant to go from false to true. Let (p,t) be the
segment received. From Invariant C.38 we know t < Ist-time-cc.(sn(p)) + clock-rate + wt +
rt + p, and from Invariant C.1 we know now < t. Therefore, the invariant holds after this
step.

a=v(t)

This step may cause the consequence of Part 1 to go from true to false. It is only enabled
if s.now+t < last(responses). From Invariant C.41 we know that Ist-time-cc.(acks — 1) >
last(responses) — wt — p — 2rt — clock-rate. Therefore, if this step causes the consequence

of the invariant to be false, then the premise must also be false. [ |

Invariant C.43
If mode;, = syn-rcvd A wait-t.os # 0o A now < wait-t_o, then Ilst-time-cc.(acks — 1) >

wait-t_os — p — 2wt — 2rt — clock-rate.

Proof: In the start state mode; = closed, so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = send-segs.(SYN, sns, acks)

This step can make the premise of Part 1 to go from false to true by assigning wait-t_o, to
now + wt, if s.mode; = syn-rcvd A s.wait-t_os; = oco. However, from Invariant C.42 we
know that s.lst-time-cc.(acks — 1) > s.now— wt — p — 2rt — clock-rate. Therefore, since this
step does not change Ist-time-cc.(acks — 1) or now, the invariant holds after this step.

a = receive-seqg.s(p)

These steps may cause the consequence of the invariant to go from true to fales by assigning
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wait-t_og to oo. However, after each of these steps the premise also clearly false, so the

invariant holds. []

Invariant C.44
If mode; = syn-rcvd A now < wait-t_o, then Ist-time-cc.(acks — 1) > now — p — 2wt —

2rt — clock-rate.

Proof: In the start state mode; = closed, so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = receive-seqg.s(SYN, sn.)

This step may cause the premise of the invariant to go from false to true. Let (p,t) be the
segment received. From Invariant C.38 we know t < Ist-time-cc.(sn(p)) + clock-rate + wt +
rt + p, and from Invariant C.1 we know now < t. Therefore, the invariant holds after this
step.

a=v(t)

This step may cause the consequence of Part 1 to go from true to false, if s.now +1¢ >
s.dst-time-cc.(acks — 1) + p + 2wt + 2rt + clock-rate. From Invariant C.43 we know that
if mode; = syn-rcvd A wait-t_os # 00 A now < wait-t_os then Ilst-time-cc.(acks — 1) >
wail-t_os — pt — 2wt — 2rt — clock-rate, and from Invariant C.42 we know that if mode; =
syn-rcvd A wait-t_os = oo then Ist-time-cc.(acks — 1) > now — p — wt — 2rt — clock-rate.
Therefore, if s'.now > ' .Ist-time-cc.(acks — 1) + p 4 2wt 4+ 2rt + clock-rate, then s'.now >

wait-t_og, so the premise of the invariant is also false. [ |

Invariant C.45
If there exists a SYN segment (p,t) € in-transit,. then t < Ist-time-cc.(ack(p) — 1) +

clock-rate + 2(wt + rt + p).

Proof: In the start state in-transits. is empty, so the invariant holds in this state. We
consider critical actions of the form (s, a,s") below.

a = send-segs.(SYN, sns, acks)

This step adds a SYN segment to in-transits. if mode; = syn-rcvd A now < wait-t_o,.

The timestamp on this segment is now+ p. From Invariant C.44 we know that if mode, =
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syn-rcvd A now < wait-t_o, then Ist-time-cc.(acks — 1) > now— p— 2wt — 2rt — clock-rate.

Therfore, after this step the invariant holds. [ |

Invariant C.46

If modes; = syn-rcvd A now < wait-t_o, then clock-counter, > acks — 1.

Proof: In the start state mode; = closed, so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = receive-seqg.s(SYN, sn.)

This step may cause the premise of the invariant to go from false to true. Let (p,t) be the
segment received. This step also assigns acks to sn(p) + 1. Therefore, if the consequence of
the invariant is not also true, then it must be that sn(p) > clock-counter.. We know show by
contradiction that there cannot be a SYN segment with sn(p) > clock-counter.. If sn(p) >
clock-counter., then by Invariant C.30, Ist-time-cc.(clock-counter,) — lst-time-cc.(sn(p)) >
gt. By Invariant C.32 we know Ist-time-cc.(clock-counter.) > now — clock-rate. There-
fore, Ist-time-cc.(sn(p)) < now — clock-rate — gt. From Invariant C.38 we know that
t < lIst-time-cc.(sn(p)) + clock-rate + wt + rt + p. Combining the two inequalities we
get t < now — clock-rate — gt + clock-rate + wt + rt + p. Thus, t < now — gt + wt + rt + p.
Since gt > p+ wt + rt, we get t < now. However, this contradicts Invariant C.1 which
says that for all (p,t) € in-transit.s, now < t. Thus, there cannot be a SYN segment in
in-transit.s with sn(p) > clock-counter.. Therefore, the invariant holds after this step.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps may cause the consequence of Part 1 to go from true to false by changing acks,.
However, the change happens only if mode; # syn-rcvd.

a = recover,

This step may cause the consequence of the invariant to go from true to false by assign-
ing clock-counter. an arbitrary value. This step is enabled if s.mode. = rec A now >
first(recov,). However, from Invariant C.13 we know that if mode. = rec A mode;, =
syn-rcvd A now < wait-t_o, then first(recov.) > now+ p. Therefore, if the step causes the
consequence of the invariant to be false, the premise must also be false.

a = clock-counter-tick,

The step may also cause the consequence of the invariant to go from true to false by
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incrementing clock-counter., so that s'.clock-counter. < s'.ack; — 1. This step also sets
Ist-time-cc.(8'.clock-counter.) to now. If s'.clock-counter. < §'.acks — 1 A lst-crash-time. <
Ist-time-cc.(s'.acks—1), then by Invariant C.29 Ist-time-cc.(s'.clock-counter.)—lIst-time-cc (s .acks—
1) > ¢t /2. Since Ist-time-cc.(s'.clock-counter.) = now, we get now — Ilst-time-cc.(s'.acks —
1) > ct/e. From Invariant C.44 we also know that lst-time-cc.(acks — 1) > now— p — 2wt —
2rt — clock-rate. Since ct/2 > p+ 2wt 4 2rt 4+ clock-rate, we get a contradiction for the case
where [st-crash-time. < lst-time-cc.(s'.acks — 1). Thus, the premise of the invariant must
also be false in this situation. If lst-crash-time. > ltime.(s'.acks—1), then by Invariant C.20

=(modes; = syn-rcvd A now < wait-t-0,), so the invariant holds after this step. [ ]

Invariant C.47

If there exists a SYN segment (p,t) € in-transits, then clock-counter, > ack(p) — 1.

In the start state in-transit.s is empty, so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = send-segs.(SYN, sns, acks)

This step adds a SYN segment to in-transits. if mode; = syn-rcvd A now < wait-t_os. By
Invariant C.46 we know this invariant holds after this step.

a = recover,

This step may cause the consequence of Part 1 to go from true to false by assigning
clock-counter. an arbitrary value. However, Invariant C.15 tells us that when this step
is enabled there are no SYN segments in in-transit,..

a = clock-counter-tick,

The step may also cause the consequence of Part 1 to go from true to false by incrementing
clock-counter,, so that s'.clock-counter, < ack(p)—1 for a SYN segment (p,t) € in-transit,.
This step also sets Ist-time-cc.(s'.clock-counter.) to now. If §'.clock-counter. < ack(p)—1 A
Ist-crash-time, < lst-time-cc.(ack(p)—1), then by Invariant C.29 Ist-time-cc.(s'.clock-counter,)—
Ist-time-cc.(ack(p) — 1) > ¢t/2. Since Ist-time-cc(s'.clock-counter,) = now, we have
Ist-time-cc.(ack(p) — 1) < now — ct/2. From Invariant C.45 we also know that ¢ <
Ist-time-cc.(ack(p) — 1) + clock-rate + 2(p + wt + rt). Combining the two inequalities we
get t < now — ct/2 + clock-rate + 2(pu + wt + rt). Since ct/2 > 2(p+ wt + rt) + clock-rate,

we get ¢t < now. However, this contradicts Inariant C.1 which says for all segments in
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in-transit.; t < now. Therefore, we get a contradiction for the case where [st-crash-time,. <
Ist-time-cc.(ack(p) — 1). Thus, the premise of the invariant must also be false in this situa-
tion. If lst-crash-time. > ltime.(ack(p) — 1), then by Invariant C.21 we know there are no

SYN segments in in-transits. with ack(p) > clock-counter.. [

Invariant C.48
If mode, = closed A last(tick.) > first(open.) then clock-counter. # acks—1 V =(modes =

syn-rcvd A now < wait-t_oy).

Proof: In the start state clock-counter. = 0 and in-transils. is empty so the consequence
of the invariant is true, so it holds in the start state. We consider critical steps of the form
(s,a,s") below.

a = clock-counter-tick,

This step may cause the premise of the invariant to go from false to true by assigning
last(tick.) to now + clock-rate. This step also increments clock-counter.. Since by Invari-
ant C.46 if mode; = syn-rcvd A now < wait-t_os then clock-counter. > acks — 1, we know
that clock-counter. # ack, — 1 V # (modes = syn-rcvd A now < wait-t_o,).

a = recover,

This step may also cause the premise of the invariant to go from false to true by assigning
last(tick.) to now+ clock-rate. This step is enabled if s.mode. = rec A now > first(recov,).
However, from Invariant C.13 we know that if mode. = rec A modes; = syn-rcvd A now <
wait-t_o, then first(recov,) > now + p. Therefore, if the step causes the premise of the

invariant to be true, the consequence must also be true.

a = send-seg.s(SYN, sn.)

This step may cause the consequence of the invariant to go from true to false. This
step sets acks to sn(p) + 1. However, form Invariant C.40 we know that if mode. =
closed A last(tick,) > first(open.) there are no SYN segments in in-transit., with sn(p) =
clock-counter.. Therefore, if this step causes the consequence of the invariant to be false,

the premise of the invariant must also be false. [ |
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Invariant C.49
If mode, = closed A last(tick.) > first(open,) then clock-counter. # ack(p) — 1 for any

SYN segment (p,t) € in-transits,.

Proof: In the start state clock-counter. = 0 and in-transils. is empty so the consequence
of the invariant is true, so it holds in the start state. We consider critical steps of the form
(s,a,s’) below.

a = clock-counter-tick,

This step may cause the premise of the invariant to go from false to true by assigning
last(tick.) to now+ clock-rate. This step also increments clock-counter,. Since we know from
Invariant C.47 that s.clock-counter. > ack(p)—1 for any SYN segment (p,t) € in-transits,,
we know s'.clock-counter. # ack(p) — 1.

a = recover,

This step may also cause the premise of the invariant to go from false to true by assigning
last(tick.) to now+ clock-rate. This step is enabled if s.mode. = rec A now > first(recov,).
However, Invariant C.15 tells us that when this step is enabled there are no SYN segments
n in-transit,..

a = send-segs.(SYN, sns, acks)

This step adds a SYN segment to in-transits., but only if mode; = syn-rcvd A now <

wait-t_os. From Invariant C.48 we know that if this step is enabled then clock-counter. #

acks — 1, so the invariant holds after this step. [ |
Invariant C.50

1. If mode. = closed A now > first(open.) then last(tick.) > first(open,).

2. If mode; € {closed,listen} A now > first(opens) then last(tick,) > first(opens).
Proof: . Follows from Invariant C.3. [

Invariant C.51
1. If mode. = closed A now > first(open.) then clock-counter. # acks —1 V ~(modes =

syn-rcvd A now < wait-t_oy).

2. If mode. = closed A now > first(open.) then clock-counter. # ack(p) — 1 for any

SYN segment (p,t) € in-transits..
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Proof: Part 1 follows from Invariants C.50 and C.48, and Part 2 follows from Invariants C.50
and C.49. [ |

Invariant 8.5
If mode. = syn-sent A new-isn. = true A acks € BN then sn. > acks V ~(mode;, =

syn-rcvd A now < wait-t_oy).

Proof: In the start state mode. = closed, so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = send-msg.(open, m, close)

This step can make the premise of the invariant to go from false to true if s.mode. =
closed A s.now > first(open.). In this step sn. is assigned to s.clock-counter.. From
Invariant C.51 we know that clock-counter. # acks — 1 V =(mode; = syn-rcvd A now <
wait-t_0,), and from Invariant C.46 we know that if mode, = syn-rcvd A now < wait-t-o,
then clock-counter. > acks; — 1. Therefore if mode; = syn-rcvd A now < wait-t_os then
s.clock-counter. > acks — 1, so Part 1 holds after this step.

a = receive-seqg.s(SYN, sn.)

This step that can make the consequence of the invariant go from true to false, but new-isn.
is also set to false, so the invariant holds after this step.

a = prepare-msg,

This step that can also make the consequence of the invariant go from true to false, but

mode. # syn-sent after this step, so the invariant holds. [ |

Invariant 8.6

If mode, = syn-sent A new-isn. = true then for all SYN segments (p,t) € in-transits,,
ack(p) < sn. + 1.

Proof: In the start state both mode. = closed, so the invariant holds in this state. We
consider critical actions of the form (s, a, s’) below.

a = send-msg.(open, m, close)

This step can make the premise of the invariant to go from false to true if s.mode. =
closed A s.now > first(open.). In this step sn. is assigned to s.clock-counter.. From

Invariant C.51 we know that for any SYN segment (p,t) € in-transit,., s.clock-counter. #
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ack(p)—1. From Invariant C.47 we know s.clock-counter. > ack(p)—1 for all SYN segments
(p,t) € in-transits.. Therefore, for all SYN segments (p,t) € in-transit,., ack(p) < sn. + 1,
so the invariant holds after this step.

a = send-segs.(SYN, sns, acks)

This step that can make the consequence of the invariant go from true to false, by adding
a SYN segment to in-transit.s. However, this step is only enabled if mode, = syn-rcvd A
now < wait-t_os. From Invariant 8.5 we know that if this step is enabled, then the premise
of the invariant must also be false, so the invariant holds after this step.

a = prepare-msg,

This step that can also make the consequence of the invariant go from true to false, but

mode. # syn-sent after this step, so the invariant holds. [ |

Invariant C.52
If mode, = syn-sent and there exists a SYN segment (p,t) € in-transit,. with ack(p) =

sn. + 1, then modes # listen.

Proof: If the start state mode; = closed, so the invariant holds in this state. We consider
critical steps of the form (s, a, s’) below. We know from Invariant 8.6 that the step with ¢ =
send-msg. (open, m, close) is not critical, because after this step there are no SYN segments
(p,t) € in-transits. with ack(p) = sn. + 1.

a = passive-open

This step cause the consequence of the invariant to go from true to false by setting mode; to
listen if mode;, = closed A now > first(opens). However, we know from Invariants C.22
and C.1 that there are no segments in in-transit,., if mode; = closed A now > first(open,).

a = send-segs.(SYN, sns, acks)

This step may cause the premise of the invariant to go from false to true. However, this

step is only enabled if mode; = syn-rcvd, so the invariant holds after this step. [ |

Invariant C.53
If Ist-crash-times > lst-time-ccs(sn(p)) for SYN segment (p,t) € in-transits, then t <

Ist-crash-time s + .
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Proof: In the start state in-transits. is empty, so the invariant holds in this state. We
consider critical steps of the form (s, a,s’) below.

a = crashg

This step may cause the premise of the invariant to go from false to true. However, since
[st-crash-timey is set to now, the invariant clearly holds after this step.

a = send-segs.(SYN, sns, acks)

This step may cause the consequence of the invariant to go from true to false by adding
a SYN segment to in-transit,. if s.mode; = syn-rcvd A s.now < s.wait-t_os. However, it
is easy to show that if modes; = syn-rcvd then Ist-crash-time, < lst-time-ccs(sns), so the

premise is also false. [ |

Invariant C.54
If ack-from-syn = true A Ist-crash-times > Ist-time-ccs(ack. — 1) and there exists a SYN

segment (p,t) € in-transit.s then t < Ist-crash-times + 2.

Proof: In the start state ack-from-syn is undefined, so the invariant holds in this state. We
consider critical steps of the form (s, a,s’) below.

a = receive-segs.(SYN, sng, acks)

This step may cause the premise of the invariant to go from false to true. Let (g,t") be the
SYN segment received in this step. From Invariant C.53 we know that ¢ < lst-crash-time +
i, and from Invariant C.1 we know that now < ¢ and ¢t < now+ p. Therefore, the invariant
holds after this step.

a = send-seg.s(SYN, sn.)

This step may cause the consequence of the invariant to go from true to false by adding a
SYN segment to in-transit.;. However, if this step is enabled ack-from-syn = false, so the

invariant holds after this step. [ |

Invariant C.55
If modes; = 1isten A ack-from-syn = true A lst-crash-timeg > lst-time-ccs(ack, — 1) then

there are no SYN segments in in-transit..

Proof: If the start state mode; = closed, so the invariant holds in this state. We consider

critical steps of the form (s, a,s’) below. The step with a = receive-segs.(SYN, sns, acks)
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is not critical even though it may set ack-from-syn to true. It is not critical becasue we
know from Invariant C.52 that modes # listen if this step cause ack-from-syn to be true.

a = passive-open

This step cause the consequence of the invariant to go from true to false by setting mode;
to listen if mode; = closed A now > first(opens). From Invariant C.17 we know that
Ist-crash-times < now— ¢t and from Invariant C.54 we know that if there is a SYN segment
(p,t) € in-transit.s then t < Ist-crash-times + 2. Therefore we have ¢ < now — ¢t + 2p.
Since gt > 2u, there cannot be such a SYN segment, so the invariant holds after this step.
a = send-seg.s(SYN, sn.)

This step may cause the consequence of the invariant to go from true to false by adding a
SYN segment to in-transit.;. However, if this step is enabled ack-from-syn = false, so the

invariant holds after this step. [ |

Invariant C.56
If modes € sync-states then mode. # syn-sent or there are no SYN segments (p,?) €

in-transits. with ack(p) = sn. + 1.

Proof: If the start state mode; = closed, so the invariant holds in this state. We consider
critical steps of the form (s, a, s’) below. We know from Invariant 8.6 that the step with ¢ =
send-msg. (open, m, close) is not critical, because after this step there are no SYN segments
(p,t) € in-transits. with ack(p) = sn. + 1.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps may casue the premise of the invariant to go from false to true. However,
since Invariant C.24 tells us that if mode. = syn-sent there are only SYN segments in
in-transit.s, the invariant holds after this step.

a = send-segs.(SYN, sns, acks)

This step may cause the consequence of the invariant to go from true to false. However, this

step is only enabled if mode; = syn-rcvd. Therefore, the invariant holds after this step. m

Invariant C.57
If mode, = syn-sent and there exists a SYN segment (p,t) € in-transit,. with ack(p) =

sn. + 1 then any segment (p,t) € in-transits. is a SYN segment.
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Proof: If the start state mode; = closed, so the invariant holds in this state. We consider
critical steps of the form (s, a, s’) below. We know from Invariant 8.6 that the step with a =
send-msg. (open, m, close) is not critical, because after this step there are no SYN segments
(p,t) € in-transits. with ack(p) = sn. + 1.

a = send-segs.(SYN, sns, acks)

This step may cause the premise of the invariant to go from false to true. However, it is
only enabled if mode; = syn-rcvd and from Invariant C.24, we know that any segment
(p,t) € in-transits. is a SYN segment.

a = send-segs.(sns, acks, msgs) and a = send-segs.(sns, acks, msgs, FIN)

These steps may cause the consequence of the invariant to go from true to false. These
steps are enabled if mode; € sync-states. However, from Invariant C.56 we know that if

these steps are enabled, then the premise of the invariant is false. [ |

Invariant C.58
If mode. € sync-states and there exists a SYN segment (p,?) € in-transit.; and a non-SYN

segment (q,t") € in-transits. then t < t'.

Proof: If the start state mode. = closed, so the invariant holds in this state. We consider
critical steps of the form (s,a,s") below.

a = receive-segs.(SYN, sng, acks)

This step may cause the premise of the invariant to go from false to true if s.mode. =
syn-sent A [acks] = s.sn. + 1. However, from Invariant C.57 we know any other segments
in in-transits. are SYN segments. Thus, the invariant holds after this step.

a = send-segs.(sns, acks, msgs) and a = send-segs.(sns, acks, msgs, FIN)

These steps may cause the premise of the invariant to go from true to false. The timestamp
on a segment sent by either of these actions is now+ u. From Invariant C.1 we know that
t < now + p, for any segment (p,t) € transit.s. Therefore, the invariant holds after these

steps. ]

Invariant C.59
If ack-from-syn = false A modes; € {rec,closed} and there exists a SYN segment (p,?) €

in-transit.s then t < first(opens).
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Proof: If the start state ack-from-syn is undefined, so the invariant holds in this state. We
consider critical steps of the form (s, a,s’) below.

a = receive-segs.(sns, acks, msgs) and a = receive-segs.(sns, acks, msgs, FIN)

These steps may cause the premise of the invariant to go from false to true if s.mode. €
sync-states. Let (g, t”) be the segment received in either step. From Invariant C.58 we know
that if mode. € sync-states then any SYN segment (p,t) € transit.s has t < t', and from
Invariant C.22 we know that if modes; € {rec,closed} then t' < first(open,). Therefore,
the invariant holds after this step.

a = receive-seq.s(sn., ack., msq.), a = shut-down,, and time-out,

These steps may cause the premise of Part 1 to go from false to true. However, in all of
these steps first(opens) is set to now + p. Since by Invariant C.1 we know ¢ < now + u, we
know the consequence is also true. Thus, Part 1 holds after these steps.

a = crashg

This step may cause the premise of Part 1 to go from false to true. However, in this step
first(opens) is set to now+ ¢t. Since by Invariant C.1 we know ¢ < now+ u, we know the

consequence is also true. [ |

Invariant C.60
If mode;, = listen A ack. € BN and there exists a SYN segment (p,t) € in-transit.s then

ack-from-syn = true.

Proof: If the start state modes; = closed, so the invariant holds in this state. We consider
critical steps of the form (s,a,s") below.

a = passive-open

This step may cause the premise of the invariant to go from true to false if s.mode; =
closed A now > first(open,). If there is a SYN segment (p,t) € transit., then from
Invariant C.1 we know ¢ < now. Since by Invariant C.59 if ack-from-syn = false A mode; =
closed then first(opens) > t, we know that if this step causes the premise of the invariant
to be true then ack-from-syn = true.

a = receive-segs.(SYN, sng, acks)

This step may cause the premise of the invariant to go from false to true if s.mode. =

syn-sent A [acks] = s.sn. + 1. However, this step also sets ack-from-syn to true.
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a = receive-segs.(sns, acks, msgs) and a = receive-segs.(sns, acks, msgs, FIN)

These steps may cause the consequence of the invariant to go from true to false. However,
from Invariant C.16 we know that if mode; = listen then in-transits. is empty, so if this

step causes the consequence of the invariant to be false, the premise must also be false. m

Invariant C.61
If ack-from-syn = true and there exists a SYN segment (p,t) € in-transit,s then t <

ltimeg(ack. — 1)+ clock-rate + wt + rt + 2p.

Proof: If the start state ack-from-syn is undefined, so the invariant holds in this state. We
consider critical steps of the form (s, a,s’) below.

a = receive-segs.(SYN, sng, acks)

This step may cause the premise of the invariant to go from false to true. Let (¢,t’)
be the segment received in this step. This step causes ack. to be assigned to sn(q) + 1.
From Invariant C.38 we know that ¢ < lIst-time-ccs(sn(q)) + clock-rate + wt + rt + p,
and from Invariant C.1 we know ¢’ > now, and ¢ < now + u. Therefore, we get now <
Ist-time-ccs(sn(q)) + clock-rate + wt + rt + p, and Ist-time-ccs(sn(p)) > t — clock-rate — wt —

rt — 2p, which means the invariant holds after this step. [ |

Invariant C.62

If there exists a SYN segment (p,t) € in-transits, then Ist-time-cc,(sn(p)) <t — p.

Proof: If the start state in-transit.; = 0, so the invariant holds in this state. We consider
critical steps of the form (s,a,s") below.

a = receive-segs.(SYN, sng, acks)

This step may cause the premise of the invariant to go from false to true. The invariant
clearly holds after this step.

a = recover,

This step may cause the consequence of the invariant to go from true to false. However, it
is easy to see that there are no segments in in-transit.; when this step is enabled.

a = clock-counter-tick,

This step may cause the consequence of the invariant to go from true to false by set-

ting Ist-time-ccs(sn(p)) to now if s.clock-counters = sn(p) — 1. By Invariant C.30 we
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that s.lst-time-cc(sn(p) — 1) — s.lst-time-cc,(sn(p)) > qt, and from Invariant C.32 we
know s.lst-time-cc(sn(p) — 1) > s.now — clock-rate. Therefore, s.now — clock-rate — qt >
s.Ist-time-cc4(sn(p)). Since we are assuming s.lst-time-ccy(sn(p)) < t — p, we have s.now —
clock-rate — gt > t — u which means ¢ < now. Thus, there cannot be a SYN segment
in s.in-transits.. Since this step does not add any segments to in-transit;,., we know the

invariant holds after this step. [ |
Invariant C.63

If modes € {rec,closed} A ack-from-syn = true and there exists a SYN segment (p,?) €

in-transit.s then lst-time-ccg(ack. — 1) < first(opens) — p.

Proof: If the start state in-transit.; = 0, so the invariant holds in this state. We consider
critical steps of the form (s, a,s’) below.

a = receive-seq.s(sn., ack., msq.), a = shut-down,, and time-out,

These steps may cause the premise of Part 1 to go from false to true. However, in all of
these steps first(opens) is set to now + pu and since lst-time-ccs(z) < now for any x € BN,
the invariant holds after these steps.

a = crashg

This step may cause the premise of Part 1 to go from false to true. However, in this step
first(opens) is set to now+ gt, so we know the invariant is true after this step.

a = receive-segs.(SYN, sng, acks)

This step may cause the premise of the invariant to go from false to true. Let (¢,t') be
the segment received in this step. This step causes ack. to be assigned to sn(q) + 1. From
Invariant C.62 we know that Ist-time-ccs(sn(q)) < t' — p, and from Invariant C.22 we know
t' < first(opens). Therefore, the invariant holds after this step.

a = recover,

This step may cause the consequence of the invariant to go from true to false be setting
Ist-time-ccs(ack.—1) to now. It is easy to see that s.lst-crash-timey > s.lst-time-cc,(ack.—1).
Therefore, by Invariant C.55 we know that there are no SYN segments in in-transit.; is this
step is enabled.

a = clock-counter-tick,

This step may cause the consequence of the invariant to go from true to false by setting

410



Ist-time-ccs(ack. — 1) to now if s.clock-counters = ack. —2. By Invariant C.55 we know that
if Ist-crash-time, > Ist-time-ccs(ack. — 1) then there are no SYN segments in in-transit.,,
so the invariant holds for this case. By Invariant C.29 we know that if Ist-crash-time; <
Ist-time-ccs(ack. — 1) then s.lst-time-cc(ack, — 2) — s.Ist-time-ccs(ack. — 1) > ct — clock-rate,
and from Invariant C.32 we know s.lst-time-cc(ack, — 2) > s.now — clock-rate. Therefore,
s.now — 2clock-rate — ct > s.lst-time-ccs(ack. — 1). From Invariant C.61 we know ¢ <
ltimes(ack.— 1)+ clock-rate+ wt +rt+2u. Combining the two inequalities we get, t < s.now.
Thus, there cannot be a SYN segment in s.in-transit.s. Since this step does not add any

segments to in-transil.;, we know the invariant holds after this step. [ |

Invariant C.64
If mode; = 1isten and there exists a SYN segment (p,?) € in-transit.s A ack. € BN then

clock-counter, > ack. — 1.

Proof: If the start state mode; = closed, so the invariant holds in this state. We consider
critical steps of the form (s, a,s’) below. The step with a = receive-segs.(SYN, sns, acks)
is not critical even thought it may cause the assigning of ack. to [sns;]+ 1. This assignment
is made if mode. = syn-sent A [acks] = s.sn. + 1. However, from Invariant C.52 we know
that if this step causes this assignment, modes; # listen, so it cannot cause the premise of
the invariant to be true.

a = passive-open

This step cause the premise of the invariant to go from false to true, if s.mode; = closed,
s.now > first(opens), and there is a SYN segment (p,t) € in-transit,s A s.ack. € BN.
If s.clock-counters; = ack. — 1 then by Invariant C.32 s.lst-time-cc(s.clock-countery) >
s.now — clock-rate. However, this contradicts Invariant C.63 which says lst-time-ccs(ack, —
1) < first(opens)— p. Therefore, we know that after this step s'.clock-counters = §'.ack.—1.

If s.clock-counters < ack. — 1 and Ist-crash-time, < ltimes(ack. — 1) then by In-
variant C.29 Ist-time-cc.(s'.clock-counters) — Ist-time-ccs(s'.ack. — 1) > ct/2. We also
know from Invariant C.32 that Ist-time-cc,(clock-counters) > now — clock-rate. There-
fore, Ist-time-cc.(ack. — 1) < now — clock-rate — ct/2. From Invariants C.60 and C.61 we
know that ¢ < ltimeg(ack. — 1) + clock-rate + wt + rt + 2u. Combining the two inequalities

we get t < now — ct/2 4 wt + rt + 2u. Since, ¢t /2 > wt 4+ rt + 2u we get t < now, which
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contradicts Invariant C.1. Therefore, if Ist-crash-times < ltimes(ack. — 1) the invariant
holds after this step. If Ist-crash-times > ltimes(ack. — 1) then by Invariant C.55 we know
there are no SYN segments in in-transit.s, so the premise does not become true in this
situation.

a = clock-counter-tick,

This step may cause the consequence of the invariant to go from true to false if incrementing
clock-counter, causes s'.clock-counter; < ack.. The proof that the premise must also be
false in this situation is the same as the proof that the invariant holds after step a =

passive-open. [ |

Invariant C.65
If mode;, = listen and there exists a SYN segment (p,t) € in-transit.s then for any non-

SYN segment (¢,t') € in-transit., clock-counters > ack(q) — 1.

Proof: If the start state mode; = closed, so the invariant holds in this state. We consider
critical steps of the form (s,a,s") below.

a = send-seg.s(SYN, sn.)

This step can make the premise of Part 1 to go from false to true by adding a SYN segment
to in-transit.s. However, from Invariant C.24 we know that if mode. = syn-sent then there
are only SYN segments in in-transit.s, so the invariant holds after this step.

a = send-seges(sn., ack., msg.) and a = send-seqg.s(sn., ack., msg., FIN)

These steps may cause the consequence of Part 1 to go from true to false by adding a
non-SYN segment to in-transil.;. By Invariants C.60 and C.64 we know that if these steps
cause the consequence of the invariant to be false, then the premise must also be false.

a = passive-open

The proof that the invariant holds after this step is very similar to the proof that Invari-
ant C.64 holds after the same step.

a = clock-counter-tick,

The proof for this set is also very similar to the proof for the same step for Invariant C.64.
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Invariant 8.7
If modes; = syn-rcvd A new-isn; = true A ack. € BN then sn; > ack..

Proof: This invariant follows from Invariant C.64. [ ]

Invariant 8.8
If modes = syn-rcvd A new-isn, = true then for all segments (p,t) € in-transit.s, ack(p) <
sngs + 1.

Proof: This invariant follows from Invariant C.65. [ ]

Invariant 8.9

If mode. = syn-sent then for all SYN segments (p,t) € in-transits. such that ack(p) =
sn. + 1, sn(p) > ack(q) for all (q,t') € in-transit,.

Proof: . From Invariant C.24 we know that if mode. = syn-sent then there can only
be SYN segments in in-transit.;. Since, SYN segments sent by the client do not have

acknowledgment numbers, the invariant holds. [

Invariant C.66
If modes € sync-states and there exists a SYN segment (p,t) € in-transits, with ack(p) =

sn. + 1 then mode. # syn-sent.

Proof: If the start state mode; = closed, so the invariant holds in this state. We consider
critical steps of the form (s,a,s") below.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps may cause the premise of the invariant to go from false to true. However, from
Invariant C.24 we know that if there are non-SYN segments in in-transil.; then mode. #
syn-sent, so the invariant holds after these steps.

a = prepare-msg,

This step may cause the premise of the invariant to go from false to true by incrementing
sn.. However, this step is enabled only if mode. # syn-sent, so the invariant holds after
this step.

a = send-msg.(open, m, close)

This step can make the consequence of the invariant false. However, by Invariant 8.6 we

know the premise is also false after this step. [ |
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Invariant 8.10

If mode. = syn-sent and there exists SYN segment (p,?) € in-transits. such that ack(p) =
sne. + 1 then sn(p) > sn(q) for all non-SYN segments (¢,?') € in-transit,,.

Proof: In the start state both mode. = closed, so the invariant holds in this state. We

consider critical actions of the form (s, a,s") below.

a = send-segs.(SYN, sns, acks)

This step may cause the premise of the invariant to go from false to true. However, this
step is enabled if mode; = syn-rcvd. From Invariant C.24 we know there are only SYN
segments in in-transits. if modes; = syn-rcvd, so the invariant holds after this step.

a = send-segs.(sns, acks, msgs) and a = send-segs.(sns, acks, msgs, FIN)

These steps may cause the consequence of the invariant to go from true to false by adding
a non-SYN segment to in-transits.. These steps are enabled if mode; € sync-states. From
Invariant C.66 we know if these steps cause the consequence to be false, then the premise
is also false.

a = prepare-msg,

This step may cause the premise of the invariant to go from false to true by incrementing
sn.. However, this step is enabled only if mode. # syn-sent, so the invariant holds after

this step.

Invariant C.67
1. If sn, = sn(p) + 1V sn. = sn(p) + 2 for any segment (p,t) € in-transit., then
Ist-time-sn.(sn.) >t — .
2. If sny = sn(p)+1Vsn(p)+2 for any segment (p,t) € in-transits. then lst-time-sng(sn;) >
t— .
Proof: If the start state both in-transit.s and in-transit,. are empty, so the invariant holds

in this state. We consider critical actions of the form (s, a,s") below.

1. a = prepare-msg,

This step may cause the premise to the invariant to go from false to true. However
in this step Ist-time-sn.(sn.) is set to now, so by Invariant C.1 we know Part 1 holds

after this step.
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2. The proof for Part 2 is symmetric to the proof for Part 1. [ |
Invariant C.68
L. If sn. = sn(p) + ¢ for any segment (p,t) € in-transil,; and 2 < ¢ < 23% then

Ist-time-sn.(sn.) > t — p + (i — 2) X data-rate.

2. If sny = sn(p) + ¢ for any segment (p,t) € in-transity, and 2 < @ < 2° then

Ist-time-sns(sng) >t — p + (¢ — 2) X data-rate.

Proof: For this invariant we have two levels of induction. The first level is induction on ¢,
and the second level is the induction on the steps of BTCP". The base case of the induction
on ¢ is for ¢+ = 2. This case is Invariant C.67. For the inductive case we assume that the
Invariant holds for 7 and show it holds for j + 1. We show it holds for 7 + 1 by induction

on the steps of BTCP". We consider critical actions of the form (s, a,s') below.

1. a = prepare-msg,

This step may cause the premise of Part 1 to go from false to true is s.sn. = sn(p)+ .
This step is enabled if s.now > s.first(prep-msg.). From Invariant C.27 we know that
s.first(prep-msg.) > s.lst-time-sn(s.sn.) + data-rate. Therefore, since we assume the

invariant holds for j, then it clearly holds for j + 1.

2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant C.69

1. If mode. # closed and there exists a segment (p,?) € in-transit.; then sn. > sn(p).
2. If mode; # closed and there exists a segment (p,t) € in-transit,. then sny > sn(p).

Proof: In the start state both mode. = closed, so the invariant holds in this state. We
consider critical actions of the form (s, a,s’) below. The step with a = send-msg.(open, m,
close) is not critical because if mode, = closed A now > first(open.) then there are no

segments in in-transit.;.

1. a = send-seqg.s(p)

These steps may casue the cause the premise of the invariant to go from false to true,

but sn. = sn(p), so the invariant holds after these steps.
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a = prepare-msg,

This step may cause the consequence of the invariant to go from true to false by
incrementing sn.. Since this step also sets Ist-time-sn(s.sn.) to now, if the consequence
becomes false then by Invariant C.68 now > ¢ — u + (23! x data-rate). Since (23! x

data-rate) > p, we get now > t. However, this violates Invariant C.1. Therefore there

can be no such segment in in-transit.s, so Part 1 holds after this step.
2. The proof for Part 2 is symmetric to the proof for Part 1. [ |

Invariant 8.11
If modes; = syn-rcvd now < wait-t_o; A mode. # closed then acks < sn. + 1.
Proof: In the start state both mode. = closed, so the invariant holds in this state. We

consider critical actions of the form (s, a,s") below.

a = send-msg.(open, m, close)

This step may cause the premise of the invariant to go from false to true. From Invariant 8.5

we know that the consequence is also true after this step.

a = receive-seqg.s(SYN, sn.)

This step may cause the premise of the invariant to go from false to true. However, from In-
variant C.69 we know that sn. > sn(p) for any SYN segment (p, ) € in-transit.s. Therefore,
the invariant holds after this step.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps may cause the consequence of the invariant to go from true to false by incre-
menting acks;. However, ack; is only incremented if mode; € sync-states, so the invariant

holds after this step.

a = prepare-msg,

This step may cause the consequence of the invariant to go from true to false by incrementing

SNe.

Invariant C.70
If mode. = syn-sent and there exists a SYN segment (p,t) € in-transity. such that ack(p) =

sn. + 1 then modeg & sync-states.
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Proof: In the start state mode. = closed, so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = send-segs.(SYN, sns, acks)

This step may cause the premise of the invariant to go from true to false. However, this
step is only enabled if mode; = syn-rcvd, so the invariant holds after this step.

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps may cause the consequence of the invariant to go from true to false. How-
ever, from Invariant C.24 we know that if there are non-SYN segments in in-transit.; then

mode. # syn-sent, so the invariant holds after these steps. [ |

Invariant C.71
If mode, = syn-sent A mode, ¢ {closed,listen} and there exists a SYN segment (p,?) €

in-transits. such that ack(p) = sn. + 1 then sny, = sn(p) A acks = ack(p)

Proof: In the start state mode. = closed, so the invariant holds in this state. We consider
critical actions of the form (s, a,s’) below.

a = send-segs.(SYN, sns, acks)

This step may cause the premise of the invariant to go from true to false. However, it is
clear that after this step sn, = sn(p) A ack, = ack(p).

a = receive-seq.s(sn., ack., msg.) and a = receive-seq.s(sn., ack., msg., FIN)

These steps may cause the consequence of the invariant to go from true to false by incre-
menting acks. However, from Invariant C.24 we know that if there are non-SYN segments
in in-transit.s then mode. # syn-sent, so the invariant holds after these steps.

a = prepare-msgs

This step may cause the consequence of the invariant to go from true to false. However,
this step is only enable if mode; € sync-states, and from Invariant C.70 we know that if the
premise of the invariant is true then modes € sync-states. Therefore, if modes € sync-states

then the premise of the invariant must be false. [ |

Invariant 8.12
If just-estb = true A sng € BN then ack. > snj.

In the start state just-estb is undefined, so the invariant holds in this state. We consider
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critical actions of the form (s, a,s’) below.

a = receive-segs.(SYN, sng, acks)

This step may cause the premise of the invariant to go from true to false. This steps also
assigns ack. to [sng] + 1. From Invariant C.71 we know [sn;] = sns, so the invariant holds
after this step.

a = receive-segs.(sns, acks, msgs) and a = receive-segs.(sns, acks, msgs, FIN)

These steps may cause the consequence of the invariant to go from true to false, but after
these steps just-estb = false, so the invariant holds.

a = prepare-msgs

This step may cause the consequence of the invariant to go from true to false. However,

just-estb = false after this step, so the invariant holds. [ |

Invariant 8.13
1. If mode. € sync-states then for all segments (p,t) € in-transit.s, sn. > sn(p).
2. If mode, € sync-states then for all segments (p,t) € in-transits., sns > sn(p).

Proof: This invariant follows from Invariant C.69. [ ]

Invariant 8.14
1. If mode. € sync-states A acks; € BN then sn. + 1 > acks.
2. If mode; € sync-states A ack. € BN then sng; + 1 > ack,.

Proof: The proof of this Invariant is similar to the proof of Invariant 7.2. [ |

Invariant 8.15

1. If mode. € sync-states A new-sn. = true then for all segments (p,t) € in-transit,.,

sne + 1 > ack(p).

2. If modes € sync-states A new-sns, = true then for all segments (p,?) € in-transit,.s,

sns + 1 > ack(p).
Proof: The proof of this Invariant is similar to the proof of Invariant 7.3. [ |

Invariant 8.16
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1. If mode. € sync-states then for all (p,t) € in-transit., ack. > ack(p).
2. If mode; € sync-states then for all (p,t) € in-transits., acks > ack(p).

Proof: The proof of this Invariant is similar to the proof of Invariant 7.29. [ |

Invariant 8.17

1. If mode, € {syn-rcvd} U sync-states A mode. € {rec,reset} U sync-states and there

exists (p,t) € in-transit.s such that sn(p) > acks, then sn. = sn(p).

2. If mode. € sync-states and there exists (p,t) € in-transity. such that sn(p) > ack,

then sns = sn(p).

Proof: The proof for this invariant is similar to the proof for Invariant 7.53.

Invariant 8.18

1. If modes; € {syn-rcvd} U sync-states and there exists (p,t) € in-transit.s such that

sn(p) > acks, then for all other non-SYN segments (¢,t') € in-transit.;, sn(q) < sn(p).

2. If mode. € sync-states and there exists (p,t) € in-transity. such that sn(p) > ack,

then for all other non-SYN segments (¢, ') € in-transits., sn(q) < sn(p).

Proof: The proof for this invariant is similar to the proof for Invariant 7.62.
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Appendix D

Invariance proofs for 77CP"

As we did in Appendix B, we use the standard inductive technique for proving the invariants.

Invariant 10.7
1. For all segments p € in-transit., sn. > sn(p).
2. For all segments p € in-transits., sns > sn(p).
3. For all segments p € in-transit.s, cc_send > cc_send(p). [

Proof: The same as the proof of Invariant 10.7.

Invariant 10.8
1. If mode. # closed then cc_send = id..
2. If mode; € sync-states then cc_rcvd = id;.

3. If there exists a segment p € in-transit.s such that cc_send(p) = k, then k € used-id, U
{crash-id.}. ]

Proof: Straighforward.

Invariant 10.9
1. For all i € NU {nil}, (4,nil) ¢ estb-cc.
2. For all j € NU{nil}, (nil,j) ¢ estb-cc.
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3. For all i € NU {nil}, (¢,nil) ¢ assoc.
4. For all j € NU{nil}, (nil,j) ¢ assoc. [

Proof: Straightforward.

Invariant 10.10
1. If modes € {listen, syn-rcvd} then rcv-buf, = e.
2. If mode, € {1isten,syn-rcvd} then msg; = null.
3. If modes € {1isten, syn-rcvd} then last-msgs = null.
4. If mode; € sync-states then temp-data = null.

Proof: Straightforward. [

Invariant 10.11

1. If modes = listen and there exists a segment p € in-transit.s such that cc_send(p) >

cache_cc then (cc_send(p), cc_send(p)) ¢ assoc.
2. If mode, € {syn-sent, syn-sent*} then for all j, (id.,j) ¢ estb-cc.

3. If mode. € {syn-sent,syn-sent*} and there exists a segment p of the form (SYN,
ce_revd, sng, acks ) or (SYN, cc_revd, sns, acks, FIN)in in-transits. such that cc_revd(p) =

cc_send and ack(p) = sns + 1 then for all j, (id.,j) ¢ assoc.

4. If modes; = syn-rcvd A choose-isng then for all k, (k,isns) & estb-cc.

Invariant 10.12

1. If modes = syn-rcvd and there exists a segment p € in-transit.s such that cc_send(p) =

ce_revd A ack(p) = sng + 1, then (ce_send(p), isng) € estb-ce.

2. If mode. € sync-states or there exists a segment p of type (SYN, cc_revd, sns, acks,
msgs, ) or (SYN, ccorevd, sng, acks, msgs, FIN) with cc_rcvd(p) = ccsend then

(id.,id.) € assoc.
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3. If modey € sync-states then (idy, ids) € assoc.
4. If (k,ids) € assoc and there exists j such that (k,j) € estb-cc then j = isn,.

Proof:

Invariant 10.13
If modes; € sync-states A cc_send = cc_rcvd and there exists a non-SYN segment p €
in-transit,s with cc_send(p) = ccorcvd A ack(p) = sns + 1 then mode. ¢ {syn-sent,

syn-sent*}. ]

Invariant 10.14
If mode. € {syn-sent,syn-sent*} and there exists a SYN segment p € in-transit;. such
that cc_rcvd(p) = cc_send Nack(p) = sn.4+1 A sn(p) = isn, then modes € {syn-rcvd, rec, reset}.

Invariant 10.15

1. If mode. € {syn-sent*, fin-wait-1, fin-wait-2, closing, timed-wait, last-ack}

then send-buf . = ¢ A revd-close. = true.

2. If modes; € {fin-wait-1, fin-waitl*, fin-wait-2, closing, closing#*, timed-wait,

last-ack, last-ackx} then send-buf, = ¢ A rcvd-closes = true. |

Proof: The proof is the same as for Invariant 7.13. [ |

Invariant 10.16
If temp-data # null Amsg. # null A((id.,isns) € estb-cc V(id.,id,) € assoc) Asn. < acks

then msg. = temp-data. [ |

Invariant 10.17

If mode, € {syn-sent, syn-sent*} A temp-data # null and there exists a SYN segment
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p € in-transit,. such that ccorevd(p) = cc_send A ack(p) = sn. +1 A sn(p) = isns then

msg. = temp-data. [ |

Invariant 10.18

1. If rev-buf . = € A last-msg, # null A msgs, # null A (id.,ids) € assoc A sng < ack.

then msg, = last-msg,.

2. If rev-buf, = € A last-msg, # null A msg. # null A (id,.,id,) € assoc A sn. < acks

then msg. = last-msy,.

Invariant 10.19

1. If rev-buf, # ¢ A msgs # null A (id.,ids) € assoc A sns < ack. then msg, =
last(rbuf,).

2. If rev-buf, # ¢ N msg. # null A (id.,ids) € assoc A sn. < acks then msgs =
last(rbufs).

Proof:

Invariant 10.20
1. If last-msg, = null A msgs # null A (id.,id,) € assocAsns < ack, then rcv-buf . # e.

2. If last-msg, = null A msg. # null A (id., ids) € assocAsn. < ack, then rcv-buf ; # €.

Invariant 10.21

1. If msg. # null and there exists p € in-transit.; such that sn(p) = sn. then msg(p) =

msge.

2. If msgs # null and there exists p € in-transit,. such that sn(p) = sn, then msg(p) =

mMsgs. [ |
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Proof: Same as the proof of Invariant 7.36.

Invariant 10.22

1. If there exists segments p and ¢ on in-transit., such that sn(p) = sn(q) A msg(p) #

null A msg(q) # null then msg(p) = msg(q).

2. If there exists segments p and ¢ on in-transit,. such that sn(p) = sn(q) A msg(p) #

null A msg(q) # null then msg(p) = msg(q). |

Proof: Same as the proof of Invariant 7.37.

Invariant 10.23

1. If mode, € {syn-rcvd}Usync-states and there exists p € in-transit.; such that sn(p) =

acks then msg(p) # null.

2. If mode. € sync-states and there exists p € in-transits. such that sn(p) = ack. then

msg(p) # null. |

Proof: Same as the proof of Invariant 7.55.

Invariant 10.24

If ack. € N then for all p € in-transit.s, ack. > ack(p). ]
Proof: Same as the proof for Invariant 7.23.

Invariant 10.25

If mode. € {syn-sent, syn-sent*} A (id.,ids) € assoc N\ modes ¢ {rec,reset} then for

all segments p € in-transit,., acks > ack(p). ]

Invariant 10.26

1. If there exists a SYN segment p € in-transit,s such that cc_send(p) = cc_send and

cc_send(p) > cache_cc then sn, = sn(p).

2. If mode,; € {syn-rcvd} U sync-states A mode, € {rec,reset} U sync-states and there
exists p € in-transit,, such that (cc_send(p), isns) € estb-cc N cc_send(p) = cc_rcvd A

sn(p) > acks, then sn. = sn(p).
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3. If mode. € sync-states A (isn., isns) € assoc and there exists p € in-transits. such that

sn(p) > ack., then sng = sn(p).

Proof: In the start state in-transit.s is empty. We consider critical steps of the form (s, a, ")

below.

1. a = send-msg.(open, m, close)

This step may cause the consequence of the invariant to go from true to false by
incrementing sn.. However, since cc_send is also incremented in this step, it is clear
that there are no segments in p € in-transit., with cc_send(p) = cc_send, so the

premise of the invariant is also false.

a = send-seq.s(SYN, cc_send, sn., msg.) and
a = send-seq.s(SYN, cc_send, sn., msg., FIN)

These steps may cause the premise of the invariant to go from false to true by adding a
SYN segment to in-transit.s. However, on these segments sn. = sn(p), so the invariant

holds after these steps.

a = prepare-msg..

This step may also cause the consequence of the invariant to go from true to false by
incrementing sn.. However, if this step is enabled, we know from Invariant ?? than
s.ccesend < s.cache_cc and since s.cc_send > cc_send(p) for any p € transit.s, the

premise of the invariant must also be false.

Invariant 10.27

1. If mode. € {close-wait,closing, last-ack, timed-wait} A mode, ¢ {rec,reset}
A (id.,ids) € assoc then modes € {fin-wait-1, fin-waitl*, fin-wait-2, closing,

closing*, timed-wait, last-ack, last-ack#*}.
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2. If modes € {close-wait, close-wait*, closing, closing*, last-ack, last-ackx,
timed-wait} A mode. € {rec,reset} A (id.,isns) € estb-cc V (id.,ids) € assoc then
mode. € {syn-sent*, fin-wait-1, fin-wait-2, closing, timed-wait, last-ack}.

Invariant 10.28

1. If mode. € {close-wait,closing, last-ack, timed-wait} A mode, ¢ {rec,reset}

A (id.,ids) € assoc then sngs < ack..

2. If modes € {close-wait, close-wait*, closing, closing*, last-ack, last-ackx,
timed-wait} Amode. ¢ {rec,reset} A (id.,isns) € estb-cc V (id.,ids) € assoc then

sne < acks.

Invariant 10.29

1. If mode, € {close-wait,closing,last-ack,timed-wait} and there exists [ such

that (id.,!) € assoc then for all non-SYN segments p € in-transits., sn(p) < ack..

2. If modes € {close-wait, close-wait*, closing, closing*, last-ack, last-ackx,
timed-wait} and there exists k, such that (k,isns) € estb-cc V (k,id,) € assoc then

for all non-SYN segments p € in-transit., sn(p) < ack..

Invariant 10.30

1. If mode. € {syn-sent,syn-sent*} and there exists j such that (id.,j) € assoc and
there exists a SYN segment p € in-transity, such that cc_rcvd(p) = cc_send then for

all segments ¢ € in-transits, such that cc_rcvd(q) = cc_send, sn(q) < sn(p).

2. If mode. € sync-states and there exists j such that (id.,7) € assoc and there exists
a non-SYN segment p € in-transits. such that cc_rcvd(p) = ccsend N sn(p) > ack,

then for all non-SYN segments ¢ € in-transits. sn(q) < sn(p).

3. If modes € {syn-rcvd}Usync-states and there exists i, such that ¢ = isnd A (¢, isns) €
estb-pairs and there exists a non-SYN segment p € in-transit., such that sn(p) > acks,,

then for all non-SYN segments ¢ € in-transit.s sn(q) < sn(p).
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Invariant 10.31
1. If mode. = last-ack A modes € {rec,reset} A (id.,ids) € assoc then rcv-buf . = e.

2. If mode; € {last-ack,last-ack*} A mode. ¢ {rec,reset} A (id.,isns) € estb-cc V

(id.,1ds) € assoc then rcv-buf, = ¢.
Invariant 10.32
1. If mode. = last-ack and there exists [ such that (id.,[) € assoc then rcv-buf, = e.
2. If mode; € {last-ack,last-ack*} and there exists k, such that (k,isns) € estb-cc V
(k,id,) € assoc then rev-buf ; = e.

Invariant 10.33

1. If mode, € {close-wait,closing,last-ack,timed-wait} and there exists [ such

that (id.,l) € assoc then rcvd-closes; = true Vid, # [.

2. If modes € {close-wait, close-wait*, closing, closing*, last-ack, last-ackx,
timed-wait} and there exists k such that (k,isns) € estb-ccV (k,id.) € assoc then

revd-close. = true Vid. # k.
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