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Chapter 1IntroductionThe original motivation for this work was to do a formal veri�cation of an experimentaltransport level protocol called T/TCP. This protocol, by Braden and Clark [8, 6, 7], isdesigned to be a uni�ed transport protocol in that it should work well for both transactionsand streaming. A transaction is typically a request from a client and a response from aserver. Streaming, on the other hand, is the sending of signi�cant amounts of data. Theidea behind the design of T/TCP is to extend the Transmission Control Protocol (TCP) tomake it e�cient for transactions (hence the name T/TCP).1.1 Transport level protocolsTCP is the most commonly used transport level protocol on the Internet. The basic servicethat it provides is reliable end-to-end delivery of data between application programs. Onthe Internet packets sent from one user to another may get duplicated, lost, or arriveout of order. TCP ensures that these packets are delivered to the application programswithout duplication, without loss, and in the correct order. While TCP works well for datastreaming, it does not work well for transactions because it has an open phase (the three-way handshake protocol) that forces two round trips across the network for a client to senda request and get a response from a server. Ideally we would like the request and responseto be done in one round trip across the network. T/TCP changes the open phase of TCP, sothat in most circumstances a three-way handshake protocol is no longer required, instead a11



two-way handshake protocol is used. The two-way handshake protocol allows a transactionto be completed in one round trip across the network.1.2 The correctness of T/TCPThe designers of T/TCP believed their protocol was correct since it is based on TCP,but the changes they made were su�ciently complex to make them uncertain. Therefore,they thought a formal correctness proof would be useful [8]. Our initial plan of attack forverifying T/TCP was to assume the correctness of TCP and leverage o� this correctnessin the veri�cation of T/TCP. However, we could not �nd any work that veri�ed TCP insu�cient generality to use in our work. Other works have veri�ed parts of TCP or protocolssimilar to TCP. In [18, 35], Lampson, Lynch, and S�gaard-Andersen formally verify thecorrectness the �ve packet handshake protocol of Belsnes [4] which forms the basis of theopen and close phase of TCP and ISO-TP4. However, this work does not verify enoughof TCP for us to use directly in the veri�cation of T/TCP. Murphy and Shankar in [27]also specify and verify a connection management protocol for the transport layer, but theprotocol is of their own design, not TCP. In that work they also compare their protocol toTCP and they point out some problems in the TCP protocol as speci�ed in the InternetStandard [28]. We refer to these problems when we discuss related work in section 1.4.In our formal presentation of TCP we do make some simpli�cations. For example, we donot include security parameters or the congestion control aspect of TCP. We also assume aclient/server model which means one side is always active and the other passive, whereas infull TCP either side can initiate communication. However, even with these simpli�cations,we know of no other work that formally veri�es TCP in the level of generality that wepresent.1.2.1 The speci�cation of the problemThe informal speci�cation of TCP [28, 30] is quite complicated, and an important contribu-tion of this work is the presentation of a precise speci�cation of the reliable transport levelproblem that TCP is designed to solve. The speci�cation can be viewed as a \black box",12



which has a user interface that gets all the inputs that the protocol receives and sends out allthe outputs that we want the protocol to produce. The speci�cation de�nes a relationshipon the inputs and outputs that gives precisely the desired behavior any protocol solving theproblem should have.1.2.2 Veri�cation of TCPOur veri�cation of TCP has two parts. First we assume that both the client and server ofTCP have unbounded counters that are stable, that is, they do not lose their values as aresult of crashes. We show that this version of TCP implements our speci�cation. Nextwe model TCP with bounded counters. In order for TCP with bounded counters to satisfyour speci�cation we need to assume certain properties about the bounded counters, andthe protocol has to now observe some timing restrictions. These restrictions take two basicforms. Either a host has to wait a certain period of time before performing certain actions,or a host times out and closes if it waits too long for a reply to a message.1.2.3 Veri�cation of T/TCPAfter specifying the problem and formally verifying both versions of TCP, the next step inour veri�cation of T/TCP was to show that it implements TCP. As described in [8, 6, 7],T/TCP does not require timeouts if responses are not received within speci�ed time bounds.We observed that under certain circumstances T/TCP without timeouts does not behavethe way TCP does, and in fact does not satisfy the speci�cation we have for TCP. Morespeci�cally, when there is a crash T/TCP may deliver duplicate data. The fact that T/TCPcan deliver duplicate data after crashes was shown by Shankar and Lee in [33]. However,the designers of T/TCP and other network protocol designers that we spoke to do notseem to think that this behavior of T/TCP is catastrophic, and they think that it may beacceptable for some situations. Therefore, in our work we formulate a weaker speci�cationthat allows these behaviors, and prove that T/TCP satis�es this speci�cation.In [33] Shankar and Lee present timing constraints which when incorporated into T/TCPprevents the delivery of duplicate data after a crash. Their work indicates that with these13



timing constraints T/TCP may satisfy our stronger speci�cation1. However, while TCPneeds only unbounded and stable counters, or more generally stable and in�nite sets ofunique identi�ers (uid's) to satisfy the stronger speci�cation, T/TCP even with stable andin�nite sets of uid's still requires timing information in order to have fast transactions andstill satisfy the stronger speci�cation.1.2.4 Impossibility resultIn fact we are able to prove a more general impossibility result about protocols that try toachieve fast transactions and reliable data streaming. We �rst present a formal model forsystems for which the impossibility result holds. This model di�ers from the other modelsused for the veri�cations in the thesis in that liveness issues that cannot be expressed in themodels used for veri�cation must be taken into consideration for the impossibility result.After presenting the model, we describe the client and server hosts in that framework. Thehosts are allowed to have in�nite and stable sets of uid's. We next present a formal de�nitionof the problem of \fast transactions" and reliable data delivery which T/TCP was designedto solve. This de�nition di�ers from the speci�cation of the reliable transport level problemmentioned in Section 1.2.1 and presented in Chapter 4 in that it requires certain messagesto be delivered within a certain time bound under certain conditions. The messages thatare required to be delivered within the time bound, and the conditions under which thesemessages are required to be delivered, depend on local state, the occurrence of crashes, theaccuracy of local clocks, and message delivery times. In Chapter 11 we precisely de�ne theassumptions about the system and precisely de�ne the problem. We then prove that it isimpossible for any protocol to solve the problem.1.3 Formal methodsWe use invariant assertion and simulation (re�nement) techniques to verify TCP andT/TCP. We use the formalization of simulations developed in [24, 26] by Lynch and Vaan-drager. These methods are used for proving trace inclusion relationships between concurrent1We do not verify this. 14



systems. The methodology is developed in the context of very simple and general automatonmodels for both untimed [24] and timed [26] systems. For timed systems we use a formula-tion of the automaton model called General Timed Automata (GTA) presented in [21]. Forthe impossibility result, we also use a special case of the GTA model called clock GTA [29],which is used to model systems with local clocks. While the simple timed automaton modelis useful for proving safety and some liveness properties, for the impossibility result, we needmore general liveness properties than can be handled by the simple model. In particularwe want the model to have the receptiveness property. To get this property we use the liveautomaton model developed in [31]. We elaborate on the basic model and methodology inChapter 3, and on the liveness issues in Chapter 11.1.4 Related workSimulation techniques are known to be quite useful in the veri�cation of concurrent systems.See, for example [1, 14, 16]. In [24, 26] Lynch and Vaandrager provide a clear framework forapplying these techniques. In [18, 35], Lampson, Lynch, and S�gaard-Andersen formallyveri�ed the correctness of the �ve packet handshake protocol of Belsnes [4] which formsthe basis of the open and close phase of TCP and ISO-TP4; and the clock synchronizationprotocol of Liskov, Shrira, and Wroclawski [19], using the methods developed in [24, 26, 12].In verifying these protocols, Lampson et al. showed that simulation methods can be usedto verify relatively complex and practical protocols. Our work is an extension of this workin that we use the methods to verify even more complex protocols.Murphy and Shankar [27] also use a variation of the simulation technique to specifyand verify a connection management protocol for the transport layer. They specify theconnection management service for the transport layer using a state transition system andby making certain fairness assumptions. They then specify a protocol and show that ito�ers the service they speci�ed for the transport layer. They use invariant assertions anda stepwise re�nement heuristic [32] for the veri�cation. In that work they compare theirtransport level protocol to TCP. They point out that the informal speci�cation of TCPgiven in the Internet Standard [28] and the Requirements for Internet Hosts [30] does15



not have the right timing constraints to correctly satisfy the intended service of reliabletransport level protocols. They give two of the correct timing constraints which are neededfor TCP with bounded counters to behave correctly. First, they point out that timeoutsare required if acknowledgments are not received within some waiting period. The informalspeci�cations [28, 30] say these timeouts are optional. Second, they point out that the periodof inactivity after crashes that is proposed in the informal speci�cations is not su�cient.They give a period that is su�cient. The period of inactivity after a crash that they specifyrequires that hosts have a bound on the maximum time it takes for a response to be generatefor a received packet. The informal speci�cation also states that such a maximum responsetime is optional. In our chapter on TCP with bounded counters, we show executions whereviolation of these timing constraints could lead to duplicate delivery of messages. We alsoshow that some additional timeouts that Murphy and Shankar do not mention are neededfor TCP to work correctly with bounded counters.In [33] Shankar and Lee discuss what they call \minimum-latency transport protocols."These protocols are called minimum-latency because they provide the minimum latencydesired for transaction-oriented applications | T/TCP �ts into this category of protocols.In their paper, they de�ne a class of caching protocols and determine the minimum countersize as a function of real-time constraints needed for such protocols. The protocols are calledcaching protocols because clients and servers store information in caches in these protocols.While not speci�cally referring to the correctness of T/TCP in their work, they do presentthe same scenario that we observed that may cause protocols like T/TCP to deliver thesame message twice.The impossibility result presented in the thesis is also related to the work of Shankarand Lee [33] in that they show that some timing assumptions are necessary for T/TCP andprotocols like it to work correctly. The fact that these protocols require timing assumptionsled us to think about whether any protocol could solve the problem of fast transactions andreliable message delivery and under what timing assumptions. Our impossibility result is insome sense a generalization of their results in that we show that if some timing assumptionsdo not hold, then it is impossible for any protocol to solve the problem of having fasttransactions while maintaining reliable message delivery. However, our proof is for the case16



where the client and server have in�nite and stable sets of unique identi�ers, but it doesnot hold for the case where the client and server have unbounded counters. T/TCP andthe protocols of Shankar and Lee [33] use counters. While our proof does not work for thecase where protocols use counters, the counters do not seem to help in the case of T/TCP.Therefore, we believe the results hold even if protocols use counters, but we do not yet havea proof for this claim.Most of the other theoretical work in the area of reliable message delivery has consideredsomewhat di�erent problems in di�erent settings. Afek et al. and Fekete, Lynch, Mansour,and Spinelli prove impossibility results for di�erent types of reliable communication in apurely asynchronous setting [2, 10]. In [3], Attiya, Dolev, and Welch attain further resultsfor the asynchronous model based on the minimum amount of information that must bemaintained between connections in the presence of crashes or between active incarnationsof a crashes. None of these papers examines the amount of time or number of trips acrossthe network required to reliably deliver messages. Instead they deal with the more generalquestion of whether reliable message delivery is possible under certain conditions regardlessof number of trips across the network. However, in [17] Kleinberg, Attiya, and Lynch exam-ine the trade-o�s between message delivery and quiesce times for connection managementprotocols under various timing assumptions. They obtain several impossibility results forthe di�erent timing situations they consider. The impossibility results presented in thatwork are the closest to the impossibility result presented in this thesis. However, our resultdi�ers from their results in that we consider a more restricted problem than the problemsconsidered in [17]. We also present a more formal development of the system for which weprove the impossibility result than the development given in [17]. We elaborate on thesedi�erences in Chapter 11 where we present the impossibility result.1.5 Organization of the thesisIn Chapter 2 we present an informal description of TCP and T/TCP. Chapter 3 containsdescriptions of the formal models and methods used in the thesis. In Chapter 4 we presenttwo speci�cations for the reliable transport level problem. The �rst speci�cation is the17



natural speci�cation, but for reasons that we explain in the chapter, we also present anintermediate speci�cation of the problem. In Chapter 5 we describe the formal modeling ofthe communication channels used for both TCP and T/TCP, and in Chapter 6 we presentthe formal description of TCP with unbounded counters. Chapter 7 has the proof thatTCP with unbounded counters implements our speci�cation. Chapter 8 presents TCPwith bounded counters and discusses the assumptions about the counters, and the timeoutsnecessary for the correctness of this version of TCP. This chapter also contains the proofthat this version of TCP also satis�es our speci�cation. In Chapter 9 we present the formaldescription of T/TCP, and we prove that T/TCP does not implement TCP. In Chapter 10we present a weaker speci�cation for the transport level problem and show that T/TCPimplements this weaker speci�cation. In Chapter 11 we prove that without the correcttiming assumptions it is impossible for any protocol to give the e�ciency of T/TCP andstill satisfy our speci�cation. Chapter 12 contains some concluding remarks.The thesis also contains three appendices. Appendix A contains a description of thebasic notation used in the thesis and should be read before the rest of the thesis, andAppendix B and C, contain proofs required for certain results in the main part of thethesis.
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Chapter 2Informal Description of ProtocolsIn this chapter we present informal descriptions of TCP and T/TCP. The description of TCPwe present is based on the o�cial Internet Standard for TCP [28] and Comer's presentationin [9]. The description of T/TCP is based on Braden's and Clark's description of theirdesign in [8]. We also present some information on the TCP/IP protocol suite to givethe context in which these protocols are used. The description of the TCP/IP layeringmodel is also based on the presentation of Comer in [9]. Our presentation in this chapter isintended to give the reader an intuitive understanding of the protocols, so that the abstractspeci�cation and the formal abstract descriptions of the protocols, which we present later,are easier to follow.2.1 The TCP/IP layering modelIn the TCP/IP layering model1 there are four conceptual layers that build on a �fth layerof hardware. Each layer relies on the layer below it. At the highest level is the ApplicationLayer . This layer consists of application programs that access services across a TCP/IPinternet. The applications interact with transport level protocol(s) to send and receive data.Later in the thesis when we model the protocols we refer to \users" of the protocol. Theseusers we refer to correspond to application programs such as telnet, email, and ftp at thislevel.1The other main network layering model is the ISO 7-layer model.19



The Transport Layer is the next level of the hierarchy. This layer provides communi-cation from one application program to another. This communication is often referred toas end-to-end . This layer may also regulate the ow of information, and may, but doesnot necessarily, ensure that data arrives without error and in sequence. TCP and T/TCPbelong to this layer and both protocols have the goal of ensuring reliable communication.On the other hand, the user datagram protocol (UDP) is a transport level protocol thatprovides unreliable delivery service. However, in this work we are only interested in trans-port level protocols that provide reliable data delivery service, and when we present ourformal abstract speci�cation for protocols for this layer, it is for protocols that guaranteereliable data delivery.The next layer is the Internet Layer and it handles communication between machines.The internet layer accepts requests to send packets from a transport level protocol alongwith the destination machine, and delivers the packet to the transport level protocol at thedestination machine. In between the source and destination machines the packets may berouted through intermediate links. The Internet layer is responsible for the routing of thepackets. The Internet layer service is de�ned by the Internet Protocol (IP). It is one of thetwo major protocols used in internetworking, the other being TCP. The IP packet deliverysystem is unreliable, best-e�ort, and connectionless. By unreliable we mean that packetscan be lost, duplicated, delayed, or delivered out of order, but the service will not detectsuch conditions. It is called connectionless because each packet is treated independentlyfrom all others. Finally, the service is said to be best-e�ort because the protocol makes anearnest attempt to deliver packets, so packets get lost, delayed, or duplicated only whenresources are limited or the underlying network fails. When TCP and T/TCP sends orreceives packets, its interaction is with IP. In our abstract model, our unreliable channelscorresponds to IP.The fourth layer is the Network Interface Layer and is responsible for taking IP packetsand transmitting them over a speci�c network. We are not concerned with this layer in ourwork. 20



2.2 Overview of TCP and T/TCPT/TCP is an extension of TCP so both protocols are quite similar. In this section we presentan overview of the general features that the protocols share. Since both protocols belongto the transport layer, they receive packets from a service that may delay the delivery ofpackets, deliver the packets out of order, deliver duplicates, or lose packets. On the otherhand, application programs above the transport layer often need to send large volumes ofdata reliably from one computer to another. The sending of this data is often referred toas data streaming because the data can be thought of as a stream of bits. By reliable wemean data is delivered at-most-once and in the right order. The transfer of data is also fullduplex ; that is, data can be transferred concurrently and independently in both directions.TCP and T/TCP are designed to provide this type of reliable data stream service. Theidea behind the protocols is to give the communicating application programs the illusionthat there is a circuit between them. In order to achieve this illusion a connection mustbe established between the two endpoints before data transfer can begin. This connectionis termed a virtual circuit connection. The connection involves synchronizing the state atthe endpoints. The endpoints of a connection are not the application programs themselves,but are instead a pair of integers of the form (host, port) where host is the IP address for ahost and port is a port on that host. A connection is identi�ed by its pair of endpoints. Aparticular connection may open and close many times. Each time the connection is openedwe have what is called an incarnation of the connection. A single host can have severaldi�erent ports that form di�erent connections. Our work focuses on a single connection be-tween a client (the host that initiates the connection) and a server (the host that responds).Therefore, we do not need to refer to the port numbers.The signal from the user to the client TCP to initiate a connection is usually referredto as an active open, and the signal from the user to the server TCP that it can acceptincoming requests to form a connection is called a passive open.The unit of transfer between applications in both protocols is called a segment . Segmentsare divided into two parts | the header followed by data. The header carries controlinformation. In practice, the IP layer may take a TCP or T/TCP segment and break it21



into multiple packets . However, in our modeling of the protocols, we assume that segmentsare not broken into packets, so we use the terms interchangeably to denote objects sentover the channels in an implementation. We use the terms message or data for user-meaningful data. For the purpose of our modeling we assume the header information onlycontains information indicating whether the segment is a SYN, FIN, or RST, segment, anda sequence number and acknowledgment number. A SYN (synchronize) indicates that thesender is sending information to try to synchronize the endpoints for the virtual circuit. AFIN (�nal) segment indicates that the sending host has sent its last piece of data for thecurrent incarnation of the connection, and a RST (reset) segment indicates that the senderreceived a segment that is not acceptable for its current state, so the other host should resetits endpoint and try to re-synchronize. A segment may have neither of the SYN, FIN, orRST control bits. Such a segment may contain valid data and/or valid a acknowledgment.Also the SYN segment sent by the client does not contain an acknowledgment number.Sequence numbers are used to number each SYN and FIN control signal, and each byteof data in a segment. To simplify our modeling, we assume each segment only contains onebyte of data. The acknowledgment number is generated by a host when it receives a validsegment. It is the sequence number of the received segment plus one. The acknowledgmentmechanism of the receiving host, along with retransmissions by the sender, ensures thatsegments that are lost in the network get retransmitted and eventually delivered. That is,the sender retransmits a segment after a suitable retransmission timeout (RTO) until anacknowledgment is received for that segment.2.3 Speci�cs of TCPIn TCP getting synchronized states at both end-points usually requires three phases: anopen phase, a bi-directional data transfer phase, and a close phase.2.3.1 Open phaseThe open phase is often referred to as the three-way handshake protocol because it requiresthe sending of three segments between the client and the server. Figure 2-1 illustrates the22



three-way handshake protocol. When the client receives the signal to open a connection, itchooses an initial sequence number (ISN) which will be the sequence number for the �rstsegment it sends. It also initializes the variables it will use for the life of the connection.This set of variables is called the client's transmission control block (TCB). The server alsoinitializes a TCB when it opens, but it does not choose an ISN until it receives an initialmessage from the client. Note that both the client and server must be closed in order toaccept the active open and passive open signals respectively. To synchronize, the client andserver must agree on their ISN's, so the client starts the three-way handshake by sending aSYN segment with its ISN. When the server receives this segment it chooses its own ISN.It also notes that the sequence number of the next segment it should receive is the ISNof the client plus one. This is the acknowledgment number that the server sends on theresponse segment. This response segment is also a SYN segment an includes the ISN of theserver. When the client receives this return segment, it veri�es that the server did receiveits correct ISN, and notes the ISN of the server plus one. The �nal segment of the three-wayhandshake is the segment the client sends in response. This segment has the next sequencenumber for the client and an acknowledgment number of the ISN of the server plus one.When the server receives this packet, it can con�rm that it has the right ISN for the clientand that the client has its correct ISN. At this point both ends are synchronized and are inwhat is called the established state.2.3.2 Data transfer phaseBi-directional data transfer takes place in this state. Once the client and server agree oneach other's ISN, they increment their sequence numbers for each byte of data sent. Thesequence number is used to prevent the acceptance of old duplicate segments and also toorder segments that might be received out of order. Initial sequence numbers are chosensuch that the sequence numbers given to new segments for the new incarnation are not thesame as the sequence numbers of segments from previous incarnations that might still bein the network. The acknowledgment of a segment means every segment up to that one hasbeen successfully received. We make the simplifying assumption that every segment mustget an acknowledgment before the next one is sent.23
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Figure 2-1: An illustration of the three-way handshake protocol. The arrows represent packets across thenetwork.2.3.3 Close phaseIn TCP, when a host receives the signal to close from the local user it means that the userwill not send any more data for that connection. However, the local user can still receivedata. Therefore, both client and server must receive signals from their local users to closebefore a connection can close. The close phase begins when either or both hosts receivethe signal to close from their local users. When a host receives the signal to close, it sendsany remaining data it has to send, and then sends a FIN segment. A host that receives aFIN segment responds with an acknowledgment of the FIN segment. A host that sends aFIN segment before it receives one, when it does receive the FIN segment, waits in whatis called timed-wait state before it closes. The duration of timed-wait state is 2 � MSL(maximum segment lifetime). A host that receives a FIN segment before it sends one willclose immediately upon receiving the acknowledgment for its FIN segment. It can closeimmediately because it must acknowledge the FIN segment it receives before it sends itsFIN segment. At least one of the hosts will close from timed-wait state, and both may ifthey both send FIN segments before they receive one. The wait is to ensure that if a newincarnation of the same connection is started, old duplicate segments have been droppedfrom the network. Timed-wait state is also used to ensure the graceful close property. This24



property ensures that the host that sent the last piece of data receives con�rmation that thedata is received before it closes. Timed-wait state gives this property because the host(s) inthat acknowledges the last piece of data waits 2�MSL before it closes. This wait is muchgreater than RTO, so if the acknowledgment got dropped and the host sending the last pieceof data retransmitted it, the host in timed-wait state can retransmit the acknowledgment.In TCP, after a connection closes the transmission control blocks are deleted.2.4 Speci�cs of T/TCPT/TCP is designed to be a uni�ed transport protocol (utp). That is, in addition to sup-porting streaming as TCP does, it should also support e�cient transactions . A transactionis typically a sequence of two messages, one in each direction, interpreted as a request anda response. The canonical example of a transaction is remote procedure call (RPC) wherethe call to the remote procedure is the request and the return value of the procedure is theresponse. TCP can be used for transactions, but because it has separate open and closephases, it is ine�cient for this purpose. When large amounts of data is being sent, the bulkof the time is spent in the data transfer phase, so the overhead of the open and close phasesis not signi�cant. However, when the data being sent is just a request and a response, thisoverhead becomes signi�cant. Ideally, for a transaction the time between when the clientrequests a service and the time it gets a response from the server should be round trip time(RTT) plus server processing time (SPT). Because of the three-way handshake in the openphase of TCP, a transaction would take a minimum of 2RTT + SPT. Another e�ciencyissue that comes up with transactions is that often we want to do many transactions inquick succession for the same connection. Each transaction is considered a new incarnationof the connection. Because of timed-wait state in the close phase of TCP, there has to be await of at least 2�MSL between transactions in TCP. The goal of the design for T/TCP isto change TCP so that the open and close phases do not make it ine�cient for transactions,while maintaining the things that make it good for data streaming.T/TCP employs two optimizations to deal with these ine�ciencies. These two optimiza-tions essentially incorporate two techniques from the implementation of RPC by Birrell and25



Nelson [5] into TCP. The �rst optimization, known as TCP Accelerated Open (TAO), elimi-nates the need for the three-way handshake protocol at the opening phase of communicationfor most instances. Figure 2-2 illustrates the TAO mechanism. This optimization is accom-plished by using a dual monotonic number scheme. That is, in addition to the sequencenumber, each packet carries a second number that is constant during a single incarnationand increases monotonically for each new incarnation. This second number is called a con-nection count , and it identi�es each incarnation for the particular connection. Each clienthost has a connection count generator which is incremented every time a new incarnationfor any connection from that host is initiated. Recall that a single host may have severaldi�erent connections emanating from it. Associated with each connection endpoint at theclient is a persistent cache value of the last connection count sent for that connection. Per-sistent state is state that is kept after a connection closes, but is volatile. That is, it isa�ected by crashes. At the server endpoint of the connection a persistent copy of the lastconnection count received from the client is also cached. Therefore, when a client wants tostart a new incarnation of a connection, the connection count generator is incremented andthe client sends the incremented connection count with the initial SYN packet containingthe request data. When the server receives this packet, it checks that the connection countis greater than the last connection count it received for the connection, and can immediatelyaccept the new data if it is. The server responds with a packet that contains response dataand an echo of the client's connection count. The client uses the echoed value to determineif the response is valid. With TAO, a transaction can be carried out in one round trip acrossthe network.When a server crashes and recovers, it might have the cache value of the last connectioncount it received unde�ned. Thus, upon receiving the �rst open request from a client, itperforms a three-way handshake to validate the received segment and if it is valid, updatesthe connection count received value to the current connection count value sent by the client.T/TCP also uses sequence numbers to order data, but since the initial sequence numberis not needed to distinguish data from di�erent incarnations, the initial sequence numbercan always start at one.The second optimization is used to shorten the close phase of TCP. Speci�cally, the26
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Figure 2-2: An illustration of TCP accelerate open, where data1 is the request data and data2 is theresponse data.optimization reduces the mandatory wait between successive incarnations. The reductionis achieved by allowing active and passive opens to truncate timed-wait state. Thus, if aclient while in timed-wait state gets an active open signal to initiate a new incarnation forthe same connection, it immediately ends timed-wait state and initiates the new connectionwithout explicitly closing the old incarnation. On the server side a passive open signalis accepted from any of the \normal" states the server could be in while the client is intimed-wait state. When the server accepts this passive open signal, it goes to a type of\bridge" state between the previous incarnation and the new one that is being established.For example, in the situation where the server receives the passive open signal while it is ina state in which it is expecting an acknowledgment of a FIN segment, if it instead receives anew SYN segment from the client, the server uses the SYN as an implicit acknowledgmentof the FIN and also has an explicit signal to start a new incarnation. Thus, in T/TCPoverlap of action and states for consecutive incarnations of a connection is allowed. Thisoverlap permits rapid successive transactions for the same connection.2.5 Other simpli�cationsOne important aspect of both TCP and T/TCP that we do not deal with in our workis the sliding window mechanism. The basic idea of the sliding window mechanism is toallow several packets (the number is determined by the window size) to be sent before an27



acknowledgment is required. The acknowledgment of a particular packet counts as an ac-knowledgment of all the unacknowledged packet sent before it. When an acknowledgmentis received, the sender \slides" the window forward so that it covers only unacknowledgedpackets and packets to be sent. In both protocols the window size is adjusted based on howfast the network can transfer packets. With the sliding window mechanism the protocolsobtain much greater throughput than a protocol where every message needs an acknowl-edgment. To incorporate the sliding window mechanism into the basic versions of TCP orT/TCP basically requires the protocols to perform a lot more bookkeeping. In our workwe are primarily concerned with the reliability of data streaming, not throughput, so wechoose the simpler version of the protocols where the window size is one. If we includedthe sliding window mechanism in the protocols, we believe the extra bookkeeping wouldfurther complicate our proofs by requiring us to keep track of additional little details, butthat conceptually the proof would not change signi�cantly.
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Chapter 3Formal Models and TechniquesIn this chapter we present de�nitions of the simple state machine models we use to describethe speci�cations and protocols in the thesis. We also present the proof techniques we usefor formally verifying that the protocols implement the speci�cation. These techniques areinvariant assertions and simulations .3.1 Automaton modelsAn automaton is a simple state machine or labeled transition system. We present automatonmodels for both untimed and timed systems, and we also state properties of these modelsand de�ne operations on them.3.1.1 Untimed automatonThe formal model we use to represent untimed systems is the Safe I/O Automaton modelof S�gaard-Andersen et al. in [35]. This model is the same as the I/O Automaton modelof Lynch and Tuttle [22] except it does not have the �fth component of the Lynch/Tuttlemodel. That �fth component is a partition of the locally controlled actions into countablymany equivalence classes. It is used to de�ne fairness conditions on an execution of theautomaton. In this work we refer to the untimed model as automaton.De�nition 3.1 (Automaton)An automaton, A, consists of four components:29



1. A set states(A) of states.2. A nonempty set start(A) � of states(A).3. An action signature sig(A) = (in(A), out(A), and int(A)) a partition of the set ofactions into input actions , output actions and internal actions respectively. The unionof the in(A) and out(A) we denote as ext(A) the set of external actions. We denote bylocal(A) the set out(A) [ int(A) the set of locally-controlled actions, and by acts(A)the set ext(A) [ int(A).4. A transition relation steps(A) �states(A) � acts(A) � states(A) with the propertythat for every state s and input action a there is a transition (s; a; s0) in steps(A). Ais said to be input-enabled. �An action a is enabled in a state s if there exists a state s0 such that (s; a; s0) is a step,that is, (s; a; s0) 2 steps(A).When an automaton `runs', it generates a string representing anexecution of the system the automaton models. An execution fragment � of automaton A isa �nite or in�nite sequence, s0; a1; s1; a2; : : : , of alternating states and actions of A startingin a state, and if the execution fragment is �nite, ending in a state such that (si; ai+1; si+1)is a step of A for every i. We denote by fstate(�) the �rst state of the execution fragment,and if it is �nite lstate(�) denotes the last state. We denote by frag�(A), frag!(A), frag(A)the sets of �nite, in�nite, and all execution fragments of A respectively. An execution is anexecution fragment beginning with a start state. Denote by exec�(A), exec!(A), exec(A) thesets of �nite, in�nite, and all executions of A respectively. A state s is said to be reachableof there exists a �nite execution of A that ends in s.A �nite execution fragment �1 = s0; a1; s1; : : : ; an; sn of A and an execution fragment�2 = sn; an+1; sn+1; : : : of A can be concatenated. In this case the concatenation, writtenas �1��2, is the execution fragment s0; a1; s1; : : : ; an; sn; an+1; sn+1; : : : .If  is a sequence of actions, then ̂ is the sequence obtained by deleting all the internalactions of . We denote the empty sequence as �. Suppose � = s0; a1; s1; a2; : : : is anexecution fragment of A. Let  be the sequence consisting of the actions a1; a2 : : : . ThentraceA(�) or trace(�) if A is clear, is de�ned to be the sequence ̂. That is, trace(�) is thesubsequence of � consisting of only the external actions. We say that � is a trace of A if30



there exists an execution � of A with trace(�) = �: We write trace�(A), trace!(A), trace(A)for the sets of �nite, in�nite, and all traces of A respectively. Note that an in�nite executionmight have a �nite trace.In specifying a complex distributed system, it is useful to be able to specify each processindividually and then obtain a speci�cation of the entire system as the parallel compositionof the speci�cations of the processes. The parallel composition operator \k" in this modeluses a synchronization style where automata synchronize on their common actions andevolve independently on the others. The parallel composition operator is de�ned only forcompatible automata. Compatibility requires that each action be an output of at most oneautomaton. Furthermore, to avoid action name clashes, compatibility requires that internalaction names be unique.De�nition 3.2 (Parallel composition of automata)Automata A1; : : : ; An are compatible if for all 1 � i; j � n with i 6= j1. out(Ai) \ out(Aj) = ;2. int(Ai) \ acts(Aj) = ;The parallel composition A1 k � � � k An of compatible automata A1; : : : ; An is the automataA such that1. states(A) = states(A1) � � � �� states(An)2. start(A) = start(A1) � � � �� start(An)3. out(A) = out(A1) [ � � �[ out(An)4. in(A) = (in(A1) [ � � �[ in(An)) n out(A)5. int(A) = int(A1) [ � � �[ int(An)6. ((s1; : : : ; sn); a; (s01; : : : ; s0n)) 2 steps(A) i� for all 1 � i � n(a) if a 2 acts(Ai) then (si; a; s0i) 2 steps(Ai)(b) if a 62 acts(Ai) then si =; s0i �31



Parallel composition is typically used to build complex systems based on simpler com-ponents. Some actions are meant to represent internal communications between the sub-components of the complex system. The action hiding operator \n" allows us to changesome external actions into internal ones.De�nition 3.3 (Action hiding)Let A be an automaton and let A be a set of actions such that A � local(A): Then de�neA n A to be the automaton such that1. states(A n A) = states(A)2. start(A n A) = start(A)3. in(A n A) = in(A)4. out(A n A) = out(A) n A5. int(A n A) = int(A) [ A6. steps(A n A) = steps(A) �Another operation on automaton is action renaming . Action renaming can be used toresolve name clashes that lead to incompatibilities in De�nition 3.2.De�nition 3.4 (Action renaming)A mapping � from actions to actions is applicable to an automaton A if it is injective andacts(A) � dom(�). Given an automaton and a mapping � applicable to A, we de�ne �(A)to be the automaton such that1. states(�(A)) = states(A)2. start(�(A)) = start(A)3. in(�(A)) = �(in(A))4. out(�(A)) = �(out(A))5. int(�(A)) = �(int(A))6. steps(�(A)) = f(s ; �(a); s 0) j (s ; a; s 0) 2 steps(A)g �32



CorrectnessThe notion of correct implementation of automata is based on trace inclusion. That is, anautomaton A is said to implement an automaton B with the same input and output actionsif all traces of A are also traces of B. This correctness notion ensures that whatever A does,B could have done the same. That is, A does nothing wrong which means A satis�es thesafety requirements speci�ed by B.In this work we do not verify liveness properties. Therefore, our notion of correctnessdoes not guarantee that A does anything at all. However, since the focus of this work is toverify speci�c implementations that we know do something, our goal is to prove that theydo nothing wrong.Given two automata A and B such that in(A) = in(B) and out(A) = out(B), we say Aimplements B if and only if traces(A) � traces(B) which we write as A v B.3.1.2 General Timed AutomatonIn this section we present the model we use for describing systems that use time. This model,general timed automaton (GTA), is the one described by Lynch in [21], and we repeat thede�nitions here for completeness. The notion of timed executions and timed traces are alsothe same as the de�nitions of [21]. The model is based on the timed automaton model ofLynch and Vaandrager [26]. A slight variation of the model in [26] is referred to by Segalaet al. in [31] as safe timed I/O automaton. In [31] the safe timed I/O automaton is used aspart of new I/O automaton model that can be used to express and prove general livenessproperties. For most of this thesis we are not concerned with the issue of liveness. However,for the results in Chapter 11 we will need liveness properties and we will discuss the modelof [31] in that chapter.The de�nition of general timed automaton is similar to De�nition 3.1, except that itsset of actions includes special time-passage actions �(t); t 2 R+, where R+ is the set ofpositive reals. The time-passage action �(t) denotes the passage of time by an amount t.De�nition 3.5 (General Timed Automaton (GTA))A GTA A consists of four components: 33



1. A set states(A) of states.2. A nonempty set start(A) � of states(A).3. A timed action signature t-sig(A) = (in(A), out(A), int(A), time-passage(A)) a par-tition of the set of actions into input actions , output actions , internal actions , andtime-passage actions respectively. The union of the in(A) and out(A) is denoted asvis(A) the set of visible actions. The set of external actions ext(A) is de�ned to bethe set vis(A)[ time-passage(A). The discrete actions, disc(A) is the visible and in-ternal actions, vis(A) [ int(A). The set of locally-controlled actions, out(A) [ int(A),is denoted by local(A), and the set of all actions is denoted by acts(A).4. A transition relation steps(A) �states(A) � acts(A) � states(A). �GTA's are also input enabled and a GTA A is required to satisfy the following twoaxioms.A1: If (s; �(t); s0) 2 steps(A) and (s0; �(t0); s00) 2 steps(A), then (s; �(t+ t0); s00) 2 steps(A).A2: If (s; �(t); s0) 2 steps(A) and 0 < t0 < t, then there is a state s00 such that (s; �(t0); s00)and (s00; �(t� t0); s0) are in steps(A).Axiom A1 allows repeated time-passage steps to be combined into one step, and AxiomA2 is a kind of converse to A1; it says that any time-passage step can be split in two.Timed executionsA timed execution fragment of a GTA A is a �nite or in�nite alternating sequence � =s0; a1; s1; a2; : : : ; where, the s's are states of A and the a's are actions (either input, output,internal, or time-passage) of A, and (si; ai+1; si+1) is a step of A for every i. The sequencemust begin with a state, and if it is �nite must end with a state. As with the untimedautomaton model, we denote by fstate(�) the �rst state of the timed execution fragment�, and if it is �nite lstate(�) denotes the last state. We denote by t-frag�(A), t-frag!(A),t-frag(A) the sets of �nite, in�nite, and all timed execution fragments of A respectively.A timed execution is a timed execution fragment beginning with a start state. Denote34



by t-exec�(A), t-exec!(A), t-exec(A) the sets of �nite, in�nite, and all executions of Arespectively. The concatenation of timed execution fragments is the same as for untimedexecution fragments.If � is a timed execution fragment and ai is any discrete action in �, then we say thetime of occurrence of ai is the sum of all the reals in the time-passage actions precedingai in �. For a timed execution fragment � de�ne ltime(�), the last time of �, to be thesupremum of the sum of all the time passage actions in �.Timed executions and timed execution fragments can be partitioned into �nite, ad-missible, and Zeno timed executions and timed execution fragments. A timed execution(fragment) � is de�ned to be, �nite if it is a �nite sequence and ltime(�) is �nite. It isde�ned to be admissible if ltime(�) = 1, and it is de�ned to be Zeno if it is neither �-nite or admissible. Denote by t-fragZ(A) and t-execZ(A) the sets of Zeno timed executionfragments and timed executions of a GTA A respectively.The timed trace of a timed execution fragment �, written t-trace(�), is the pair consistingof the sequence of visible actions of � paired with their time of occurrence and the last timeof �. More formally, if � = s0; a1; s1; a2; : : : is a timed execution fragment of a GTA A. Foreach ai 62 time-passage(A), let ti be its time of occurrence. Now let � = (a1; t1)(a2; t2) � � �be the sequence consisting of the non-time-passage actions in � paired with their time ofoccurrence. Then t-trace(�), is de�ned to be the pair1t-trace(�) , (� � (vis(A)� R�0); ltime(�))If we have timed execution fragments that di�er only by splitting and combing time-passage steps, then since we have Axioms A1 and A2 there is really not much di�erencebetween such timed executions fragments. Therefore, an equivalence relation can be de�nedon timed execution fragments that says they are the same except for time-passage. Moreformally, we say that one timed execution fragment � is a time-passage re�nement of anothertimed execution fragment �0 provided that � and �0 are identical except for the fact that in�, some of the time-passage steps of �0 are replaced with �nite sequences of time-passage1Recall that the symbol � denotes the projection of a sequence on a subset of the domain of its elements.35



steps, with the same initial and �nal states and the same total amount of time passage. Wesay timed execution fragments � and �0 are time-passage equivalent if they have a commontime-passage re�nement.The de�nitions for parallel composition, action hiding , and action renaming also applyto GTA.CorrectnessThe correctness notion for timed automata is similar to our notion for untimed automata,the di�erence being that it is based on timed traces. Thus, given two timed automata Aand B such that in(A) = in(B) and out(A) = out(B), we say A implements B if and onlyif t-traces(A) � t-traces(B) which we write as A vt B.3.1.3 Embedding resultsWe give speci�cations for a reliable transport level service using untimed automata becausethe problem description does not require the use of time. However, TCP and T/TCPuse time, so we present them as timed automata. The methods we use do not allow usto show trace inclusion between timed and untimed systems, so we cannot directly showTCP or T/TCP implements our untimed speci�cations. The same issue comes up in thework of S�gaard-Andersen et al. [35] and they use the patient operator that converts anuntimed automaton to a timed automaton by adding arbitrary time passage steps. Theythen show that the timed traces of the implementation are a subset of the timed tracesof the patient speci�cation. The patient operator and the embedding theorem which wepresent below are developed in the work of Segala et al. [31] to handle these types of untimedspeci�cation/timed implementation situations. We present their de�nition of the patientoperator below.De�nition 3.6 (Patient automaton)Let A be an automaton such that f�(t) j t 2 R+g \ acts(A) = ;. Then de�ne patient(A) tobe the GTA with1. states(patient(A)) = states(A) �R�0 36



2. start(patient(A)) = start(A) �f0g3. ext(patient(A)) = ext(A) [f�(t) j t 2 R+g4. in(patient(A)) = in(A)5. out(patient(A)) = out(A)6. int(patient(A)) = int(A)7. steps(patient(A)) consists of the steps(a) f((s; t); a; (s0; t)) j (s; a; s0) 2 steps(A)g(b) f((s; t); �(t0); (s0; t00)) j t + t0 = t00g �For technical reasons which we discuss in Chapter 4, we have two versions of the speci�-cation (both untimed) which we call S and D. We show D implements S, and in Chapter 6we show that the low level protocol (TCP) implements patient(D). Using the fact that TCPimplements patient(D), we would like to say that TCP also implements patient(S). In orderto say this we need the Embedding Theorem of Segala et al. [31] which states that untimedprotocol A implements untimed protocol B if and only if patient(A) implements patient(B).Formally this is stated as:Theorem 3.1Let A and B be automata such that f�(t) j t 2 R+g\ (acts(A) [ acts(B)) = ;. Then A v Bi� patient(A) vt patient(B).This concludes the introduction to the basic models for untimed and timed systems weuse in this work.3.2 Veri�cation TechniquesThe techniques we use in this work are invariant assertions and simulation methods . Thesemethods are used for proving trace inclusion relationships between concurrent systems. Wedescribe these methods for both the untimed and timed automata models. For the untimedsetting, the presentation we give here is based on the description of the techniques given37
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Figure 3-1: Example of a simulation. The horizontal arrows represent steps of the automaton. Thelabels a, b and c are external actions and the unlabeled arrows represent steps generated by internalactions.by S�gaard-Andersen et al. in [35]. That description is in turn based on the work of Lynchand Vaandrager in [24]. For the general timed automata model, we use the formalizationof simulations developed in [26] by Lynch and Vaandrager.3.2.1 Untimed AutomataIn this section we present a number simulation techniques for untimed automata. Wealso present a description of auxiliary variables which are used to augment the simulationtechniques.Simulation techniquesLet A be an untimed automaton representing a concrete implementation of a protocol andB an untimed automaton representing an abstract speci�cation of the protocol. If A andB have the same input and output actions, a simulation from A to B is a relation betweenstates of A and states of B such that certain conditions hold. The conditions that holddepend on the which of the two simulation methods we use. The methods are forward sim-ulations (a special case of which is a re�nement mapping) and backward simulations. Twobasic conditions that must be satis�ed are, �rst, the start states of the two automata mustbe related in a certain way, and second, each step of the implementation must \simulate"some sequence of steps in the speci�cation. That is, for each step in the implementation,there must exist a sequence of steps in the speci�cation between states related by the simu-lation relation to the pre and post-state of the implementation step, such that the sequence38



of speci�cation steps contains exactly the same external actions as the implementationstep. How the sequence of speci�cation steps is chosen depends on the simulation methodwe use. Figure 3-1 is illustrates the second condition. In the �gure, the external action aof the implementation is simulated by the same external action and an internal action inthe speci�cation; the next action of the implementation is internal and is simulated by theempty action in the speci�cation; b is simulated by an internal action and b; and �nally cis simulated by c.Below, re�nement mappings, forward simulations, and backward simulations are for-mally de�ned. Further results about these simulations are presented in [24]. Since we onlyneed to consider the reachable states of speci�cations and implementations, we assert in-variants on the states of the automata to restrict the states that need to be considered. Aninvariant on an automaton A is de�ned to be a state formula over A that is satis�ed by (atleast) all the reachable states of A. Another way to say this is that an invariant on A is aproperty that is true for all reachable states of A.In the de�nitions below and throughout the thesis we use the following notationalconvention: if R is a relation over S1 � S2 and s1 2 S1, then R[s1] denotes the setfs2 2 S2 j (s1; s2) 2 Rg.De�nition 3.7 (Re�nement mapping)Let A and B be automata with in(A) = in(B) and out(A) = out(B) and with the invariantsIA and IB respectively. A re�nement mapping from A to B, with respect to IA and IB, isa function r from states(A) to states(B) that satis�es:1. If s 2 start(A) then r(s) 2 start(B)2. If (s; a; s0) 2 steps(A), s; s0 2 IA, and r(s) 2 IB; then there exists � 2 frag�(B) withfstate(�) = r(s), lstate(�) = r(s0), and trace(�) = trace(s; a; s0).We write A �R B if there exists a re�nement mapping from A to B with respect to someinvariants IA and IB, and if r is such a mapping we write A �R B via r. �Theorem 3.2 (Soundness of re�nement mapping)A �R B ) A v B: 39



Proof: The proof of this theorem is presented in [24].A forward simulation is a generalization of a re�nement mapping and is de�ned below.Instead of having a mapping, a relation is de�ned on the states of the speci�cation andimplementation.De�nition 3.8 (Forward simulation)Let A and B be automata with in(A) = in(B) and out(A) = out(B) and with the invariantsIA and IB respectively. A forward simulation from A to B, with respect to IA and IB, is arelation f over states(A) � states(B) that satis�es:1. If s 2 start(A) then f [s] \ start(B) 6= ;:2. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u 2 f [s] \ IB, then there exists � 2 frag�(B)with fstate(�) = u, lstate(�) 2 f [s0], and trace(�) = trace(s; a; s0).We write A �F B if there exists a forward simulation form A to B with respect to someinvariants IA and IB, and A �F B via f if f is such a simulation. �Theorem 3.3 (Soundness of forward simulation)A �F B ) A v B:Proof: The proof of this theorem is presented in [15, 22, 36].The word \forward" in a forward simulation refers to the fact that a high-level sequenceof steps is constructed from any possible pre-state in a forward direction toward the set ofpossible post-states.On the other hand, in a backward simulation the steps are constructed in a backwarddirection. That is, a sequence of high-level steps ending in any state related to the low-levelpost-state and starting in some some state related to the low-level pre-state has to be found.Before we de�ne a backward simulation we make the auxiliary de�nition of image-�niteness.De�nition 3.9 (Image-�niteness)A relation R over S1 � S2 is image-�nite if for each s1 2 S1; R[s1] is a �nite set. �De�nition 3.10 (Backward simulation)Let A and B be automata with in(A) = in(B) and out(A) = out(B) and with the invariantsIA and IB respectively. A backward simulation from A to B, with respect to IA and IB, isa relation b over states(A) � states(B) that satis�es:40



1. If s 2 IA then b[s] \ IB 6= ;.2. If s 2 start(A) then b[s] \ IB � start(B).3. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u0 2 b[s0] \ IB, then there exists � 2 frag�(B)with lstate(�) = u0, fstate(�) 2 b[s] \ IB, and trace(�) = trace(s; a; s0).We write A �B B if there exists a backward simulation form A to B with respect to someinvariants IA and IB . Furthermore, if the simulation is image-�nite, we write A �iB B. If bis a backward simulation from A to B with respect to some invariants IA and IB, we writeA �B B (or A �iB B when b is image-�nite) via b. �Theorem 3.4 (Soundness of backward simulation)A �iB B ) A v B:Proof: The proof of this theorem is presented in [24].Auxiliary variablesIn [1] Abadi and Lamport show that in some instances even though it is not possible to�nd a mapping from A to B, by adding appropriate auxiliary variables to A to get Aaux, are�nement mapping can be found from Aaux to B. Since A can be shown to be equivalent toAaux (that is, to have the same set of traces), the soundness of re�nement mapping impliesA implements B. There are two types of auxiliary variables, history variables and prophecyvariables . We only consider history variables in this work. History variables are allowed torecord the past history of the system. Thus, history variables are allowed in each step to beassigned a value based on all variables in the system, but must not a�ect the enabledness ofactions or the changes made to the other (ordinary) variables. Rules for syntactically addinghistory variables to a system are easy to de�ne and are presented by S�gaard-Andersen etal. in [35]. The reader is referred to [35] for more details on auxiliary variables. In [24]and [26] history and prophecy relations are de�ned, and shown to be abstract versions ofhistory and prophecy variables.We use the following theorem in the proofs later in this work.41



Theorem 3.5Let Ah be obtained from untimed automaton A by adding history variables, and let B be anuntimed automaton. Then, if Ah �R B then A v B.Proof: The proof of this theorem is presented in [1, 24]. The proof in [24] is presented interms of history relations.3.2.2 Timed simulationsSimulation between timed automata is similar to simulation between untimed automata,except now we are concerned with timed traces.De�nition 3.11 (Timed re�nement mapping)Let A and B be general timed automata with in(A) = in(B) and out(A) = out(B) andwith the invariants IA and IB respectively. A timed re�nement mapping from A to B, withrespect to IA and IB , is a function r from states(A) to states(B) that satis�es:1. If s 2 start(A) then r(s) 2 start(B)2. If (s; a; s0) 2 steps(A), s; s0 2 IA, and r(s) 2 IB; then there exists � 2 t-frag�(B)with fstate(�) = r(s), lstate(�) = r(s0), and t-trace(�) = t-trace(s; a; s0).We write A �tR B if there exists a timed re�nement mapping from A to B with respect tosome invariants IA and IB, and if r is such a mapping we write A �tR B via r. �Theorem 3.6 (Soundness of timed re�nement mapping)A �tR B ) A vt B:Proof: The proof of this theorem is presented in [26].De�nition 3.12 (Timed forward simulation)Let A and B be general timed automata with in(A) = in(B) and out(A) = out(B) andwith the invariants IA and IB respectively. A timed forward simulation from A to B, withrespect to IA and IB , is a relation f over states(A) � states(B) that satis�es:1. If s 2 start(A) then f [s] \ start(B) 6= ;:2. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u 2 f [s] \ IB, then there exists � 2 t-frag�(B)with fstate(�) = u, lstate(�) 2 f [s0], and t-trace(�) = t-trace(s; a; s0).42



We write A �tF B if there exists a timed forward simulation form A to B with respect tosome invariants IA and IB, and A �tF B via f if f is such a simulation. �Theorem 3.7 (Soundness of forward simulation)A �tF B ) A vt B:Proof: The proof of this theorem is presented in [26].De�nition 3.13 (Timed backward simulation)Let A and B be general timed automata with in(A) = in(B) and out(A) = out(B) andwith the invariants IA and IB respectively. A timed backward simulation from A to B, withrespect to IA and IB , is a relation b over states(A) � states(B) that satis�es:1. If s 2 IA then b[s] \ IB 6= ;.2. If s 2 start(A) then b[s] \ IB � start(B).3. If (s; a; s0) 2 steps(A), s; s0 2 IA, and u0 2 b[s0] \ IB, then there exists � 2 t-frag�(B)with lstate(�) = u0, fstate(�) 2 b[s] \ IB, and t-trace(�) = t-trace(s; a; s0).We write A �tB B if there exists a timed backward simulation form A to B with respect tosome invariants IA and IB . Furthermore, if the timed simulation is image-�nite, we writeA �tiB B. If b is a backward simulation from A to B with respect to some invariants IAand IB , we write A �tB B (or A �tiB B when b is image-�nite) via b. �Theorem 3.8 (Soundness of timed backward simulation)A �tiB B ) A vt B:Proof: The proof of this theorem is presented in [26].As is the case for untimed simulations, history variables can be added to general timedautomata, so that a timed re�nement mapping can be found. The rules for adding historyvariables to general timed automata are the same as in the untimed case.Theorem 3.9Let Ah be obtained from general timed automaton A by adding history variables, and let Bbe a general timed automaton. Then, if Ah �tR B then A vt B.Proof: The proof of this the theorem follows from a proof about history relations for timedautomata in [26]. 43
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Chapter 4The Abstract Speci�cationsIn this chapter we present two abstract formal speci�cations of the user visible behaviorfor reliable transport level protocols of the TCP/IP Internet layering model. The �rstspeci�cation S is the more natural one, while the second speci�cation D is needed fortechnical reasons. We discuss the reasons for speci�cation D in Section 4.2. As discussedin Chapter 2, the transport level layer is responsible for reliable communication betweenapplication programs. By reliable we mean data is not duplicated, reordered, or lost (exceptin the case of crashes or aborts).A speci�cation of a problem should describe precisely the essential behavior we wantthe protocol solving that problem to exhibit. That is, the speci�cation is rigorous enoughto prove theorems, but is not cluttered with unnecessary details. The speci�cation canbe viewed as a \black box" which has a user interface that gets all the inputs that theprotocol receives and sends out all the outputs that we want the protocol to produce. Thespeci�cation de�nes a relationship on the inputs and outputs that gives precisely the desiredbehavior any protocol solving the problem should have. The user interface for TCP andour speci�cations, S and D, is shown in Figure 4-1.The user interface for TCP in the Internet standard [28], has an explicit active-openinput and separate send-msg and close inputs. We combined these actions in our speci�ca-tion into the single send-msgc(open, m, close) 1 action on the client side because we want to1open and close are boolean, and m 2 Msg [ null, where the set Msg is the set of all possible �nitestrings over some basic message alphabet that does not include the special symbol null.45



allow for the situation where the client side user opens the connection, sends just one mes-sage, and closes immediately. The interface where the actions are combined facilitates sucha transaction without losing any of the functionality of the usual TCP interface. Bradenin [7] suggests a similar interface for T/TCP. We do not combine the three actions into oneaction on the server side because that side is passive and cannot send any data until it hasformed a connection with the client. However, we combine the send-msg and close actionsto facilitate a reply message and an immediate close.4.1 The speci�cation S4.1.1 Informal description of the speci�cation SBefore we give the precise formal speci�cation, we present an informal description of thespeci�cation, give the intuition behind our choices, and informally explain why they work.The speci�cation we will present is loosely based on the speci�cation given for the at-most-once message delivery problem in [35].The �rst important point about the speci�cation is that it is not distributed in the truesense even though it is presented as having a client and a server side. It is not distributedbecause client side variables can be read by the server side and vice versa. In addition, thereare variables that can be written by either side. To capture the essence of at-most-oncedelivery of messages, we use FIFO queues. Data is added to the back of a queue, andremoved from the front. Since the queues do not lose or duplicate data, we get the propertywe want. If there is a crash, then some data can be nondeterministically removed from theback of the queues.The other signi�cant feature we have to capture in our speci�cation is that connectionsmay have multiple incarnations and that data sent in each incarnation must be separated.This also means we have to capture a notion of the host being open or closed. To capturethe idea of the sides opening and forming a connection, we assign id's from in�nite sets tothe client and the server ends when they open, and then pair them to form an association.To make sure associations are distinct, an id is never paired with more than one other id,and each id is used only once. To guarantee that each id can only be chosen once and46



associate with only one other id, we have two in�nite sets of id's, one for the client side(CID) and the other for the server side (SID). We also have a set, which we call assoc, thatkeeps track of the associations that have already been formed.What we have described so far makes each incarnation unique, but it still does notguarantee that data from di�erent incarnations will be separated. To ensure the separationof this data, we have two in�nite arrays of FIFO queues. The queues are indexed by the id'sof the client and server. That is, the client sends data on the queue indexed by its id, andthe server sends data on the queue indexed by its id. The array of queues that take datafrom the client to the server we call queuecs, and the array of queues that take data fromthe server to the client we call queuesc. A host can only receive data from a queue if itscurrent id is associated with the id of the sender of the data, and since each id can only beassociated with one other id, a host can only receive data from a unique incarnation duringthe life of that incarnation. Thus, there is no danger of receiving data from a previousincarnation.Associated with each queuecs and queuesc are the ags q-statcs and q-statsc respectively.A queue's status is dead if it has never been used to send messages, or if it has been used andits receiving host has closed or crashed. Only queues with status live can have messagesadded and/or removed. Since we use id's to indicate an open host, we use the special valuenil to indicate when a host is closed. That is, when a host has id value nil, it is closed. Ahost should only close, barring a crash or an abort, when it has sent all its data (it receiveda close signal from the local user) and when it has received all the data from the otherhost. Here we use the fact that the speci�cation is not distributed to have the remote hostdetermine when the other host has sent all its data. In the formal speci�cation the internalaction to close the client side is set-nilc(j), where j is the value of a server side id pairedwith the current client side id. Queues becomes dead when the receiving host crashes asa matter of de�nition. Conceivably, the sender could still add data to a queue when thereceiver crashes, but this data can never be received, so in the speci�cation we do not allowit to be added.A host may also close if it opened, but did not receive any data or form an associationand got the close signal from the user. In the formal speci�cation the action to close in this47
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Figure 4-1: The user interface for TCP/IP transport level protocols.situation is reset-nil . A crash is represented as an input from an external source, and ismeant to indicate that something beyond the control of the speci�cation has gone wrong.An abort, on the other hand, is an internal action that has basically the same e�ects as acrash. It is used to represent the fact that in low level implementations, a host my a decideto abruptly close its end of the connection without receiving any external signal to do so.This type of abrupt close usually happens in low level protocols when a host determinesthat something may be wrong at the other host.4.1.2 The formal speci�cation SWe use the untimed automaton model described in Chapter 3 to formally present thespeci�cation. We start by presenting the action signature, then the set of states with thestart states, and �nally we present the set of steps. The steps are presented in a precondition,e�ect style commonly used with I/O automata [22]. That is, the state during which an actis enabled is given as a precondition, and the resulting state is given by the e�ects of theaction.States and start statesIn the speci�cation we use the set Msg to represent the set of possible messages. That is,the set Msg is the set of all possible strings over some basic message alphabet that does notinclude the special symbol null. The symbol null indicates the absence of a message. Wealso use two sets of unique identi�ers (uid's). Elements of these sets are used to uniquelyidentify each incarnation. The client side uses a set called CID and the server side uses a set48



called SID . These sets can be arbitrary, but they must be in�nite and they cannot containthe special value nil. Elements of CID and SID are used to index the in�nite arrays ofqueues queuecs and queuesc respectively. They are also used to index the array of agsq-stat cs and q-statsc respectively. The �rst table below summarizes the type de�nitions,and the other two tables describe all the variables we use, and also has the initial value ofeach.Type DescriptionMsg The set of all possible strings over some basic message alphabet that does not include thespecial symbol null.CID An in�nite set that does not include the special value nil.SID An in�nite set that does not include the special value nil.Variable Type Initially Descriptionidc CID [ fnilg nil A unique identi�er for the client side of anassociation pair.ids SID [ fnilg nil A unique identi�er for the server side of anassociation pair.choose-sid Bool false A ag that is set to true when the server re-ceives the signal to open. It enables the serverto choose an id, and it is set to false after theid is chosen.modec factive, inactiveg inactive The value active indicates that the clienthas received the signal to open, and inactiveindicates that the client received the closesignal or is in the initial state.modes factive, inactiveg inactive Symmetric to modec.used-idc 2CID ; Set of id's already used by the client side.used-ids 2SID ; Set of id's already used by the server side.queuecs an array indexed byCID , of Msg� 8 i 2 CID ,queuecs(i) = � An in�nite array of FIFO queues. Queuesfrom this array hold messages sent from theclient side.queuesc an array indexed bySID , of Msg� 8 j 2 SID ,queuesc(j) = � An in�nite array of FIFO queues. Queuesfrom this array hold messages sent from theserver side.q-statcs an array indexed byCID , of fdead; liveg 8 i 2 CID ,queuecs(i) =dead An in�nite array of ags. Each ag indicatesthe status of the element of queuecs with thesame index. Data can only be placed on orreceived from the queue if the ag is live.q-statsc an array indexed bySID , of fdead; liveg 8 j 2 SID ,queuesc(j) =dead An in�nite array of ags. Each ag indicatesthe status of the element of queuesc with thesame index. Data can only be placed on orreceived from the queue if the ag is live.49



Variable Type Initially Descriptionassoc 2(CID�SID) ; A set of pairs of idc's and ids's that containseach association formed between client andserver.recc Bool false True if and only if the client side has crashedand not yet recovered.recs Bool false Symmetric to recc.abrtc Bool false True if and only if the client side has abortedand not yet shut down.abrts Bool false Symmetric to abrtc.We also de�ne two derived variables. These variables, live-qcs and live-qsc, are sets thatcontain the indices of members of q-statcs and q-stat sc respectively that have the value livein a given state.We use a dot (.) to refer to the value of variable in a particular state. For example,u:modes = active means that variable modes has the value active in state u. If we do notexplicitly note the state, we mean the value of the variable in any state.u:live-qcs , fi j u:q-statcs(i) = live ^ i 2 CIDgu:live-qsc , fi j u:q-statsc(j) = live ^ j 2 SIDg:Action signatureInput:send-msgc(open, m, close),m 2 Msg [fnullg, open, close 2 Boolcrashcpassive-opensend-msgs(m, close),m 2 Msg [fnullg, close 2 BoolcrashsOutput:receive-msgc(m) m 2 Msgreceive-msgs(m) m 2 Msgrecovercrecovers
Internal:choose-server-id(j), j 2 SIDmake-assoc(i,j), i 2 CID ; j 2 SIDset-nilc(j)set-nils(i)reset-nilcreset-nilsabortcabortsshut-downcshut-downslosec(I)loses(I)StepsThe steps of the automaton for the speci�cation, S, are shown in Figures 4-2 and 4-3. Inthe speci�cation, if a side has crashed or aborted, then the actions for that side, except the50



ones having to do with crashes or aborts should be disabled. Thus, in the steps of S, mostof the client side actions have as a precondition or as a condition on the e�ect clause that:(recc _ abrtc). On the server the symmetric condition is :(recs _ abrts).When the send-msgc(open, m, close) action is received, there are several possibilities.If open is true and the client is not sending or receiving messages, that is, idc is nil, thenthe client side opens by choosing a new idc for its half of the association pair. We usethe notation :2 for assigning a variable a arbitrarily chosen element of a set. Once thatid is chosen, it is added to the set used-idc so that it will not be chosen again. Next aqueue is activated to send data from the client to the server for this incarnation by settingq-stat cs(id c) to live. To indicate that the user can send data, modec is set to active. Ifthe m in send-msgc(open, m, close) is not null and the user can still send data (modec =active), then the message is added to the back of queuecs(idc) if it is live. This queueis the unique queue for messages associated with id c. If close is true, then modec is set toinactive.On the server side, the passive-open, choose-server-id(j), and send-msgs(m, close) ac-tions combine to do what is essentially the server side equivalent of what the send-msgc(open,m, close) action does on the client side.The passive-open input indicates that the server side is now able to form a connectionwith an open client side. However, because in some low level protocols the server does notactually choose an id until it receives a message from the client, in the speci�cation theserver does not choose an id in the passive-open action. Instead, it is enabled to choose oneafter the action is completed. When the server side receives this input, if it is not currentlysending or receiving messages, that is, ids is nil, it enables the choosing of an id by settingthe choose-sid ag to true, and it sets modes to active to indicate that the server sideuser may send data.In the internal action choose-server-id(j), the server nondeterministically chooses an idj from SID that has not already been used by the server side. This id is assigned to id s,and is added to the set of used server id's. The queue indexed by j is also made live.In the send-msgs(m, close) action, if m 6= null, it is added to the back of the queueindexed by the current id of the server. If close is true, modes is set to inactive to indicate51



send-msgc(open, m, close)Eff: if :(recc _ abrtc) thenif open ^ idc = nil thenidc :2 CID n used-idcused-idc := used-idc [ fidcgmodec := activeq-statcs(id c) := liveif modec = active ^ m 6= null ^q-statcs(idc) = live thenqueuecs(idc) := queuecs(idc)�mif close then modec := inactivemake-assoc(i,j)Pre: i 2 used-idc ^ j 2 used-ids ^8 k (i; k) 62 assoc ^ 8 l (l; j) 62 assocEff: assoc := assoc [ f(i; j)greceive-msgc(m)Pre: :(recc _ abrtc) ^q-statsc(j) = live ^ (id c; j) 2 assoc ^queuesc(j) 6= � ^ head (queuesc(j)) = mEff: queuesc(j) := tail(queuesc(j))set-nilc(j)Pre: :(recc _ abrtc)^idc 6= nil ^modec = inactive ^(idc; j) 2 assoc ^ queuesc(j) = � ^(modes = inactive _ ids 6= j)Eff: idc := nilq-statsc(j) := deadreset-nilcPre: :(recc _ abrtc) ^idc 6= nil ^ modec = inactive ^8 j(id c; j) 62 assoc ^ queuecs(id c) = �Eff: idc := nilq-statcs(id c) := dead

passive-openEff: if :(recs _ abrts) thenif ids = nil thenchoose-sid := truemodes := activechoose-server-id(j)Pre: choose-sid = true^ j 2 SID n used-idsEff: choose-sid := falseid s := jused-ids := used-ids [ fjgq-statsc(j) := livesend-msgs(m, close)Eff: if :(recs _ abrts) thenif modes = active ^ m 6= null ^q-statsc(id s) = live thenqueuesc(ids) := queuesc(id s)�mif close then modes := inactivereceive-msgs(m)Pre: :(recs _ abrts) ^q-statcs(i) = live ^ (i; ids) 2 assoc ^queuecs(i) 6= � ^ head (queuecs(i)) = mEff: queuecs(i) := tail(queuecs(i))set-nils(i)Pre: :(recs _ abrts)^id s 6= nil ^modes = inactive ^(i; id s) 2 assoc ^ queuecs(i) = � ^(modec = inactive _ id c 6= i)Eff: id s := nilq-statcs(i) := deadreset-nilsPre: :(recs _ abrts) ^id s 6= nil ^ modes = inactive ^8 i(i; id s) 62 assoc ^ queuesc(id s) = �Eff: id s := nilq-statsc(ids) := deadFigure 4-2: Steps of the speci�cation S. The client side actions are on the left and the server sideactions are on the right. 52



crashcEff: if id c 6= nil thenrecc := trueif 9 j s.t. (idc; j) 2 assoc then8 j s:t:(idc; j) 2 assoc,queuesc(j) := �8 j s:t:(idc; j) 2 assoc,q-statsc(j) := deadabortcPre: idc 6= nilEff: abrtc := trueif 9 j s.t. (idc; j) 2 assoc then8 j s:t:(idc; j) 2 assoc,queuesc(j) := �8 j s:t:(idc; j) 2 assoc,q-statsc(j) := deadlosec(I)Pre: (recc _ abrtc) ^I 2 su�xes(queuecs(idc))Eff: queuecs(idc) := delete(queue cs(id c), I)recovercPre: reccEff: recc := falsemodec := inactiveif 8 j(id c; j) 62 assoc ^ queuecs(idc) = �then optionally q-statcs(id c) := deadidc := nilshut-downcPre: abrtcEff: abrtc := falsemodec := inactiveif 8 j(id c; j) 62 assoc ^ queuecs(idc) = �then optionally q-statcs(id c) := deadidc := nil

crashsEff: if id s 6= nil _modes = active thenrecs := trueif 9 i s.t. (i; ids) 2 assoc then8 i s:t:(i; ids) 2 assoc,queuecs(i) := �8 i s:t:(i; ids) 2 assoc,q-statcs(i) := deadabortsPre: id s 6= nil_modes = activeEff: abrts := trueif 9 i s.t. (i; id s) 2 assoc then8 i s:t:(i; ids) 2 assoc,queuecs(i) := �8 i s:t:(i; ids) 2 assoc,q-statcs(i) := deadloses(I)Pre: (recs _ abrts) ^I 2 su�xes(queuesc(ids))Eff: queuesc(ids) := delete(queue sc(ids), I)recoversPre: recsEff: recs := falsemodes := inactiveif 8 i(i; id s) 62 assoc ^ queuesc(ids) = �then optionally q-statsc(ids) := deadid s := nilshut-downsPre: abrtsEff: abrts := falsemodes := inactiveif 8 i(i; id s) 62 assoc ^ queuesc(ids) = �then optionally q-statsc(ids) := deadid s := nilFigure 4-3: The rest of the steps of the speci�cation S. Client side actions are on the left andserver side actions are on the right. 53



that the server side user has stopped sending messages.An association is formed when the internal action make-assoc(i,j) is performed. Theprecondition for the action states that i and j must be in the set of id's used by the clientand server respectively, and that neither i nor j has formed any other associations. Undernormal conditions, the pair (i; j) is the current value of id c and id s. However, when thereis a crash and recovery on either side, there may be other types of pairs of id's that canform an association, so we allow the choice to be made nondeterministically. Even thoughthis action is shown on the client side in Figure 4-2, it is not a client or server side action.The action receive-msgc(m) is enabled if there is data on queuesc(j) to be passed to theuser and an association exists between idc and j. The precondition guarantees that duringany incarnation the client can only receive data from the queue for that incarnation. Theaction receive-msgs(m) is symmetric.The action set-nilc(j) sets idc to nil when the client has stopped sending and receivingmessages. The condition \modec = inactive" checks that the client has stopped sendingdata and \(modes = inactive _ id s 6= j) ^ queuesc(j) = �" checks that the server hasstopped sending data and that the client has received all the data sent for that connection.The queue indexed by idc is also agged as dead. The action set-nils(i) is symmetric.Internal actions reset-nilc and reset-nils set id c and id s respectively to nil if the re-spective sides receive open and close signals without receiving any data and before the id'sbecome part of an association pair.The input action crashc models crashes on the client side and causes recc to be set totrue, which means the client is in recovery mode, and messages can get lost. We do notwant this action to have any e�ect if the client is closed, hence, the condition in the e�ectclause. For all queues from which the client can receive data, the crashc action sets thesequeues to dead and all the messages are deleted. The messages are deleted because after thecrash, the client must start a new incarnation, so messages from the previous incarnationsare no longer valid. Invariant 4.1, which is de�ned and proved in the next section, statesthat there is at most one queue from which the client can receive data in any given state.On the server side crashs is not quite symmetric because the server can be open and id s isnil. However, if the server is open, either id s 6= nil or modes = active.54



The abortc action can be thought of as a client-controlled crash. It allows the clientside to immediately abort its side of the connection. That is, it allows the client to closewithout making sure all the data it sent was delivered or that it received all the data sentto it. This action is necessary because in the low level protocols we want to verify, a hostcan abort its end of the connection due to conditions that are not based on any externalactions. In this action abrtc is set to true, which means the client can lose messages, andalso enables the shut-downc action. The inclusion of the abort actions in the speci�cationmeans that the speci�cation does not have the liveness property that barring a crash,messages are eventually delivered. However, in this work we do not verify liveness properties.Furthermore, the low level protocols we study can technically also keep aborting connectionswithout ever delivering any messages. The actions aborts is symmetric to abortc except forthe precondition.The action losec(I) may occur after a crash or abort and before recovery or shut down onthe client side. I is a set of indices from the queuecs(idc). The su�xes of a queue is the setof sets of indices that start from any index j in the queue and includes all the other indicesgreater than j, that is, sets of consecutive indices at the end of the queue, and dom(queue)is the set of indices of queue . The function delete(queue, I) deletes messages with indicesin I from dom(queue). More formally, for any queue q we de�ne dom(q), su�xes(q), anddelete(q,I) as follows. dom(q) , fij1 � i � jqjgsu�xes(q) , ffijj < i � jqjgj0 � j � jqjgdelete(q,I) , hq[i] j i 2 dom(q) ^ i 62 IiElements are deleted form the back of queuecs(idc) because the server may still receivemessages from this queue, but once a message gets lost because of the crash, no messageafter it may be delivered. On the server side loses(I) is symmetric.The actions recoverc and recovers signal that the client or server respectively has recov-ered from a crash, and their e�ect is to reset variables to values that allow a new connectionto be opened. Also if the queue that is indexed by the current id of the host is empty and55



that id is not part of any association pair, then that queue can no longer be used to sendor receive data, so its status is made dead.The actions shut-downc and shut-downs are essentially internal versions of the recovercand recovers actions respectively. They are enabled after the abortc and aborts actionsrespectively.InvariantsWe de�ne three invariants for the speci�cation S. Recall that an invariant of S is a propertythat is true of all reachable states of S. We use the standard inductive technique for provingthe invariants. That is, we show that the invariants hold for the start states and then showthat for every step (u; a; u0) of S, if the invariant holds in state u then it also holds in stateu0. The stateThe �rst invariant says that each client id may only be be paired with one server id andvice versa.Invariant 4.11. If (h; j) 2 assoc ^ (i; j) 2 assoc then h = i.2. If (i; j) 2 assoc ^ (i; k) 2 assoc then j = k.Proof: The proof is straightforward, by induction, from the description of the initial valuesof the variables of S and of steps(S).The next invariant says that all queues that have status dead are empty.Invariant 4.21. 8 i 2 CID , if q-stat cs(i) = dead then queuecs(i) = �.2. 8 j 2 SID , if q-stat sc(j) = dead then queuesc(j) = �.Proof: The proof is straightforward, by induction, from the description of the initial valuesof the variables of S and of steps(S).The third invariant says that the number of live queues is always �nite.Invariant 4.3jlive-qcsj and jlive-qscj are both �nite. 56



Proof: The proof is by induction. We only show the proof for live-qcs(i) since the prooffor live-qsc(j) is symmetric. The base case is the initial state u0 of S where for all i 2 CID,u0:q-statcs(i) = dead. Thus, ju0:live-qcsj = 0. For the inductive step we assume theinvariant holds for state uk and show that it holds for state uk+1. By inspection of thesteps of S we see that for any step at most one element of q-stat cs is assigned the ag live.Thus, juk+1:live-qcsj is bigger than juk:live-qcsj by at most 1, so it is still �nite.Invariant IS is the conjunction of Invariants 4.1, 4.2, and 4.3.4.2 Delayed-Decision Speci�cation DIn our speci�cation S, messages in the system can be lost, but only if recc or recs or abrtc orabrts is true, that is, we can only lose messages between a crash and a recovery or betweenan abort and a shut down. In some low-level protocols, whether a message gets lost or notmay not be decided until after the host has recovered from the crash or abort. This decisionis dependent on race conditions that may exist on the channels. For example, in TCP if theclient places a message on the channel and then crashes there are several possible scenariosof what could happen to that message. If all copies of the message get dropped by thechannel, then it is lost. If it does not get dropped by the channel it may still be lost if theclient side recovers and tries to start a new connection. Since the channels are not FIFO,this attempt at the new connection might arrive at the server before the message and causethe server to abort the connection. However, if the message arrives at the server before anyother messages it is not lost.A similar situation comes up in the work of S�gaard-Andersen et al. [35] and they de-velop the idea of a Delayed-Decision Speci�cation. They then present a backward simulationfrom the Delayed-Decision Speci�cation to their other speci�cation which is similar to ourspeci�cation S. We use this idea of a Delayed-Decision Speci�cation, and our speci�cationD is similar to the speci�cation in their work. The need for the backward simulation issuggested by the postponing of nondeterministic choices in the implementations. We showa backward simulation from D to S and then show a re�nement mapping from the im-plementation to D. While we could have done the backward simulation directly from the57



implementation to S, we use D as an intermediate step because D is very similar to S sothe backward simulation from it to S is much simpler than one from the implementation toS would be. Also backward simulations are generally much more complicated than re�ne-ment mappings, so our two step simulation turns out to be easier than a direct backwardsimulation would be.The Delayed-Decision Speci�cation D looks very much like S, but instead of deletingmessages between a crash and a recovery or between an abort and a shut down, D marksthese messages. Marked messages can then be dropped at any time. Because only markedmessages can be dropped, only messages that were in the system at the time of a crash oran abort can be deleted. Marked messages can still be delivered to users.4.2.1 The automaton DWe de�ne formally the automaton for the speci�cation D. The speci�cation is very similarto that of S with the exception that messages are tagged, lose actions are replaced by dropactions, and we have the additional internal actions that mark messages.States and start statesThe marks that we put on messages are taken from the following set:Flag � fok, markedgWe show only the states that di�er from the states of S. All other states are the same andhave the same initial values.Variable Type Initially Descriptionqueuecs an array indexed byCID , of (Msg � Flag)� 8 i 2 CID ,queuecs(i) = � An in�nite array of FIFO queues. Queuesfrom this array hold messages and theirtags sent from the client side. A tag of okmeans the message cannot get dropped,while a tag of marked means the messagemay get dropped.queuesc an array indexed bySID , of (Msg � Flag)� 8 j 2 SID ,queuesc(j) = � Symmetric to queuecs with messages sentby the server.58



We use the normal record notation to extract components of a value or variable. Forinstance, for an element e of queuecs(i), e:ag and e:msg extract the ag and messagerespectively from that element. We say an element e of queuecs(i) or queuesc(j) is markedif e.ag = marked.The derived variables live-qcs and live-qsc are de�ned for D exactly as they are de�nedfor S. We also have an additional derived variable for D. Let qD be a queue in the set (Msg� Flag)�, that is, qD has the same type as queues in D. Then de�ne #ok(qD) to be thenumber of elements e of qD with e.ag = ok. These derived variables are used in showingthe simulation from D to S.Action signature of DThe user interface of D is the same as that of S. D has the additional internal actionsmarkc(I), marks(I), dropc(I, k), and drops(I, l), and does not have the losec(I) and loses(I)actions.StepsThe steps of D that are not in S or are di�erent are shown in Figure 4-4. The step rulefor markc(I) and marks(I) uses a function mark which is intended to mark messages withindices in I . Formally, for any queue q 2 (Msg � Flag)� and any set I � dom(q), de�ne:mark(q ; I ) , h(if i 2 I then (q[i]:msg; marked) else q[i]) j i 2 dom(q)iThe steps for D are mostly the same as the steps for S expect for a few changes andadditions. The �rst change is that the messages are tagged, so when messages come infrom the users they are tagged with ok, and before they get delivered the tags are removed.Note that even messages tagged with marked can be delivered. The other change is thatinstead of having losec(I), loses(I) actions that may delete messages between a crash anda recovery or an abort and a shut down, there are now markc(I), dropc(I; k), marks(I),and drops(I; l) actions. Messages can get marked only between a crash and recovery orbetween an abort and shut down, but can be dropped at anytime. The parameters k and l59



send-msgc(open, m, close)Eff: if :(recc _ abrtc) thenif open ^ idc = nil thenid c :2 CID n used-idcused-idc := used-idc [ fidcgmodec := activeq-statcs(idc) := liveif modec = active^ m 6= null ^q-statcs(idc) = live thenqueuecs(idc) := queuecs(id c)�(m; ok)if close then modec := inactivereceive-msgc(m)Pre: :(recc _ abrtc)^queuesc(j) 6= � ^q-statsc(j) = live ^ (id c, j) 2 assoc ^(head(queuesc(j))).msg = mEff: queuesc(j) := tail(queuesc(j))markc(I)Pre: (recc _ abrtc) ^I 2su�xes(queuecs(idc))Eff: queuecs(idc) := mark(queuecs(idc), I)dropc(I, k)Pre: queuecs(k) = live ^I 2 su�xes(queuecs(k)) ^8 i 2 I queuecs(k)[i].ag = markedEff: queuecs(k) := delete(queue cs(k), I)

send-msgs(m, close)Eff: if :(recs _ abrts) thenif modes = active ^ m 6= null ^q-statsc(ids) = live thenqueuesc(ids) := queuesc(id s)�(m; ok)if close then modes := inactivereceive-msgs(m)Pre: :(recs _ abrts)^queuecs(i) 6= � ^q-statcs(i) = live ^ (i; ids) 2 assoc ^(head(queue cs(i))).msg = mEff: queuecs(i) := tail(queuecs(i))marks(I)Pre: (recs _ abrts) ^I 2 su�xes(queuesc(ids))Eff: queuesc(ids) := mark(queuesc(ids), I)drops(I; l)Pre: queuesc(l) = live ^I 2 su�xes(queuesc(l)) ^8 i 2 I queuesc(l)[i].ag = markedEff: queuesc(l) := delete(queue sc(l), I)Figure 4-4: Steps of the Delayed-Decision Speci�cation D that di�er from the steps of S.in the drop actions allow nondeterminism in the queues from which messages get dropped.Because messages can only be marked between a crash and a recovery or an abort and ashut down, only messages from the queue indexed by the current id of the client or servercan be marked. However, because marked messages can be deleted anytime, the queue fromwhich the message is deleted may not be the queue indexed by the current id. Furthermore,there may be several live queues with marked messages. Therefore, the extra parametersin the dropc(I; k) and drops(I; l) actions allow nondeterministic choice of the queue fromwhich to drop the message. 60



4.2.2 The correctness of DIn this section we prove the correctness of D with respect to S. In this work we use s torefer to states of the low level protocol and u to refer to steps of the higher level abstractspeci�cation. For this proof s refers to states of D and u to states of S.InvariantsInvariants 4.1, 4.2, and 4.3 which we proved for the states of S in Section 4.1.2 also hold forthe states of D. That is, the properties stated below are true for all reachable states of D.Invariant 4.41. If (h; j) 2 assoc ^ (i; j) 2 assoc then h = i.2. If (i; j) 2 assoc ^ (i; k) 2 assoc then j = k.Proof: The proof is straightforward, by induction, from the description of the initial valuesof the variables of S and of steps(D).Invariant 4.51. 8 i 2 CID , if q-stat cs(i) = dead then queuecs(i) = �.2. 8 j 2 SID , if q-stat sc(j) = dead then queuesc(j) = �.Proof: The proof is straightforward, by induction, from the description of the initial valuesof the variables of D and of steps(D).Invariant 4.6jlive-qcj and jlive-qsj are both �nite.Proof: The proof is the same as the proof for Invariant 4.3.The Invariant ID is the conjunction of Invariants 4.4, 4.5 and 4.6.The simulationWe prove the correctness of D by showing an image �nite backward simulation from Dto S. The proof is very similar to the one given in [35], and most of the de�nitions andlemmas are the same. The main di�erences are that we have multiple queues going in both61



directions in both S and D instead of the single queues for each in [35], and we do not havethe status variable which is a signi�cant part of the complexity of the simulation in [35].Before we show the backward simulation we need a few preliminary de�nitions and lemmas.Let qS be in the set Msg�, that is, qS has the same type as queues in S.De�nition 4.1 (Explanation)De�ne an explanation from qS to qD to be any mapping f : dom(qS) ! dom(qD) thatsatis�es the following four conditions:1. f is total2. f is strictly increasing3. 8 i 2 dom(qD) n rng(f ) : qD [i ]:ag = marked4. 8 i 2 dom(qS ) : qD [f (i)]:msg = qS [i] �Intuitively this means if there exists an explanation from qS to qD, then qS can be obtainedfrom qD by �rst deleting some of the marked elements of qD and then removing the agsfrom the remaining elements.Lemma 4.1If f is an explanation from qS to qD, then jqS j � jqDj.Proof: Suppose jqS j > jqDj. Then it is impossible to �nd a mapping from dom(qS) todom(qD) that is total and strictly increasing, thus conditions 1 and 2 are violated, hencejqS j � jqDj.Lemma 4.2If f is an explanation from qS to qD, then jqS j � #ok(qD).Proof: Suppose jqS j < #ok(qD). Then conditions 1 and 2 of De�nition 4.1 give us thatjrng(f )j = jqS j < #ok(qD), so there must exist indices i in qD such qD[i].ag = ok andi 62 rng(f ). However, this contradicts condition 3 of De�nition 4.1, and therefore we canconclude that jqS j � #ok(qD).We are now ready to de�ne Bds over states(D) � states(S). See [35] for a discussion andsome intuition on how to de�ne backward simulations in general.62



De�nition 4.2 (Image-Finite Backward Simulation from D to S)If s 2 states(D) and u 2 states(S), then de�ne that (s; u) 2 Bds if the following conditionshold:1. u:assoc = s:assoc2. u:choose-sid = s:choose-sid3. u:used-idc = s:used-idcu:used-ids = s:used-ids4. u:recc = s:reccu:recs = s:recs5. u:abrtc = s:abrtcu:abrts = s:abrts6. u:idc = s:id cu:ids = s:id s7. u:modec = s:modecu:modes = s:modes8. 8 i 2 CID u:q-statcs(i) = s:q-statcs(i)8 j 2 SID u:q-statsc(j) = s:q-statsc(j)9. (8 i 2 CID) (9 explanation fi from u:queuecs(i) to s:queuecs(i))(8 j 2 SID) (9 explanation gi from u:queuesc(j) to s:queuesc(j))Each of the variables in S other than the queues is equal to its counterpart in D. In theproof below when we write u:variables = s:variables we mean the eight sets of equations ofitems one through eight in De�nition 4.2.We now state some preliminary lemmas that simplify the main proof. Let maxqueue bea function of type: (Msg � Flag)� ! Msg� such that for any qD, maxqueue(qD) is de�nedto be the queue qS obtained by removing all ag components from qD . Formally, we haveqS = maxqueue(qD ) i� jqS j = jqDj and 8i 2 dom(qD ) : qS [i ] = qD [i ]:msg:Lemma 4.3The identity mapping f from dom(qD) is an explanation from maxqueue(qD) to qD.Proof: Conditions 1 and 2 of De�nition 4.1 are satis�ed since the identity mapping is bothtotal and strictly increasing. Condition 3 is also satis�ed since rng(f ) = dom(qD ). Finallyfrom the de�nition of maxqueue we directly see that condition 4 is also satis�ed.63



Lemma 4.4Let s 2 states(D). Then there exists a state u 2 states(S) such that (s; u) 2 Bds.Proof: Let qSi = maxqueue(s.queuecs(i)) 8 i 2 CID , and q1Sj = maxqueue(s.queuesc(j))8 j 2 SID. Then by Lemma 4.3 there exists an explanation from qSi to s:queuecs(i) andan explanation from q1Sj to s:queuesc(j). Thus, if we have u:queuecs(i) = qSi , u:queuesc(j)= q1Sj , and for all the other variables u:variables = s:variables, this gives a state u such that(s; u) 2 Bds.Lemma 4.5D �iB S via Bds with respect to ID and IS .Proof: We �rst show that Bds is image-�nite and then check the three conditions of De�-nition 3.10 which we call non-emptiness, base case, and inductive case respectively.Let s be an arbitrary state ofD. We must show that there exists only �nitely many statesu of S such that (s; u) 2 Bds. All the variables in s except for the queues are equal to theircounterparts in u, so these variables cannot cause in�nitely many states. It now remains tobe shown that for a �xed but arbitrary s, that 8 i 2 CID and 8 j 2 SID , s:queuecs(i) ands:queuesc(j) can only take on �nitely many values. We only show this for s:queuecs(i) as theproof for s:queuesc(j) is symmetric. From Invariant 4.5 we know that if s:q-stat cs(i) is dead,then s:queuecs(i) is empty. Thus, even though there are in�nitely many of these queues,since they all have only one possible value, these queues do not cause in�nitely many states.From Invariant 4.6 we know that there are �nitely many s:queuecs(i) such that s:q-statcs(i)is live. For each such queue, Lemma 4.1 gives us that ju:queuecs(i)j � js:queuecs(i)j, thus,there are only a �nite number of lengths to choose from (s:queuecs(i) is �nite). Also, thereexists only a �nite number of mappings (explanations) between two �nite domains. Finally,condition 4 of De�nition 4.1 gives us that values of the elements of the possible u:queuecs(i)are uniquely determined by s:queuecs(i) and the (�nitely many) explanations. Hence, eachu:queuecs(i) can only take on �nitely many values given s, and since there are only a �nitenumber of these queues, there are only �nitely many states u.Non-emptinessNon-emptiness follows immediately from Lemma 4.464



Base CaseLet s0 be the (unique) start state ofD. Then if (s0; u) 2 Bds, then u:variables = s:variablesand u:queuecs(i) = u:queuesc(j) = �. Thus, u is the unique start state of S.Inductive CaseAssume (s; a; s0) 2 steps(D) and let u0 be an arbitrary state of S such that (s0; u0) 2 Bds.Below we consider cases based on a and for each case we de�ne a �nite execution fragment� of S with lstate(�) = u0, (s, fstate(�)) 2 Bds, and trace(�) = trace(a). In order to show(s, fstate(�)) 2 Bds, we need to show that the value of the state variables for state s andfstate(�) = u are related according to our de�nition of Bds. In most of the cases below �= (u; a; u0), and for these cases it is trivially true that for a state u such that (s; u) 2 Bds,u:variables = s:variables. The interesting aspect of showing (s; u) 2 Bds is showing thatwe can �nd valid explanations from the queues in state u to the queues in state s.a = send-msgc(open, m, close).In this case we show that we can de�ne u such that (u, send-msgc(open, m, close), u0)2 steps(S) and (s; u) 2 Bds. Clearly the step has the right trace. This step has eightpermutations depending on whether open and close are true or false and whether m is nullor not. The eight permutations gives eight subcases, but the only non-trivial subcases arethe ones where m 6= null, and in those subcases where s0:queuecs(s0:idc) = s:queuecs(s:id c)�(m, ok). For all other cases, the queues do not change, so the explanations that we knowexist because (s0; u0) 2 Bds are also explanations for (s; u), and u.variables = s:variables. Inall the non-trivial subcases we also have u.variables = s:variables, and the same constructionof the explanations works for all of them. We show this construction below.De�ne u:queuecs(u:idc) = init(u0:queuecs(u0:idc)). We only need to �nd an explanationfrom u:queuecs(u:idc) to s:queuecs(s:idc). (Since this action does not change u:queuesc(j)nor s:queuesc(j) 8 j 2 SID nor u:queuecs(i) nor s:queuecs(i) 8i 2 CID ^ i 6= s:id c,the explanations that exist between these queues in states s0 and u0 are also explana-tions between the same queues in states s and u.) Let f 0id c be an explanation fromu0queuecs(u0:idc) to s0:queuecs(s0:idc). Such an explanation exists since (s0; u0) 2 Bds.Since last(s 0:queuecs(s 0:idc)):ag = ok, we have from Lemma 4.2 and the de�nition of an65



explanation that f 0id c(maxidx (u0:queuecs(u0:idc))) = maxidx (s0:queuecs(s0:idc)). Thenfid c = f 0id c � dom(u:queuecs (u:id c))is clearly an explanation from u:queuecs(u:idc) to s:queuecs(s:idc).a = passive-open, choose-server-id(j).For this case it is easy to see we can de�ne u such that (u, passive-open, u0) and (u,choose-server-id(j), u0) respectively 2 steps(S) and (s; u) 2 Bds. Such a state u hasu.variables = s:variables, and since the actions do not a�ect the elements of any queues, allthe explanations for (s0; u0) 2 Bds are explanations for (s; u).a = send-msgs(m, close).For this case � = (u, send-msgs, u0). This action has four permutations and is similar tothe case for send-msgc(open, m, close). Like that case, the non-trivial subcases occur whens:queuesc(s:ids) changes as a result of a and u:queuesc(u:ids) changes as result of �. Wecan �nd an explanation gid s = g0id s � dom(u:queuesc (u:id s))from u:queuesc(u:ids) to s:queuesc(s:ids), where g0ids is the explanation we know exists fromu0queuesc(u0:ids) to s0:queuesc(s0:ids).a = make-assoc(i,j).This is another case where the action does not a�ect the queues, so it is easy to de�ne usuch that � = (u, make-assoc(i,j), u0) 2 steps(S) and (s; u) 2 Bds. Clearly the step hasthe right trace (the empty trace). We let u.variables = s:variables and the explanationsthat work from state u0 to s0 works from state u to state s.a = receive-msgc(m).For this case � = (u, receive-msgc(m); u0). We need to show that there is a state u such that(s; u) 2 Bds. Let u.variables = s:variables. We only need to show the explanation fromu:queuesc(j) to s:queuesc(j) since all other queues are una�ected by the action. Let f 0j bean explanation from u0:queuesc(j) to s0:queuesc(j). Then we can de�ne fj in the following66



way. fj = [(i+ 1) 7! (f 0j(i) + 1)ji 2 dom(f 0j )] [ [1 7! 1]Intuitively fj relates the same elements in u:queuesc(j) and s:queuesc(j) that were relatedby f 0j in u0:queuesc(j) and s0:queuesc(j) (these elements all have their indices increased byone because of the new elements at the head of the queues), and relates the messages m([1 7! 1]). It is easy to see that fj is an explanation.a = receive-msgs(m).This case is symmetric to the case for receive-msgc(m).a = set-nilc(j), reset-nilc, recoverc, shut-downc.For all theses cases � = (u; a; u0). In the state u such that (u; s) 2 Bds, u:variables =s:variables and the explanations from queues of u0 to queues of s0 are valid from u to s sincethe actions do not a�ect the contents of any queues.a = set-nils(i), reset-nils, recovers, shut-downs .These cases are symmetric to the cases for set-nilc(j), reset-nilc, recoverc, and shut-downcrespectively.a = crashc.We can de�ne u such (u, crashc, u0) 2 steps(S) and (s; u) 2 Bds. For this step u:variables= s:variables and clearly the explanations from u0:queuecs(i) to s0:queuecs(i) are also ex-planations from u:queuecs(i) to s:queuecs(i) 8 i 2 CID , and also the explanations fromu0:queuesc(k) to s0:queuesc(k) are explanations for u:queuesc(k) to s:queuesc(k) 8 k 2SID ^ k 6= j since the action does not a�ect these queues. We now de�ne u:queuesc(j) andshow that an explanation exists to s:queuesc(j). Let u:queuesc(j) =maxqueue(s.queuesc(j)),then by Lemma 4.3 the identity mapping from dom(u.queuesc(j)) to dom(s.queuesc(j)) isan explanation.a = crashs.This case is symmetric to the case for crashc.a = abortc.For this case we de�ne u such that (u, abortc, u0) 2 steps(S) and (s; u) 2 Bds. Clearly the67



traces are the same. For this step u:variables = s:variables, and since 8 i 2 CID the elementsof s:queuecs(i) and u:queuecs(i) are not a�ected by abortc, the explanations between thesequeues which we know exist are explanations in states s and u. Also the explanationsfrom u0:queuesc(k) to s0:queuesc(k) are explanations for u:queuesc(k) to s:queuesc(k) 8 k 2SID ^ k 6= j since the actions do not a�ect the elements of these queues. Therefore,we only need to show explanations from u:queuesc(j) to s:queuesc(j). Let u:queuesc(j) =maxqueue(s :queuesc(j )), then by Lemma 4.3, the identity mapping from dom(u.queuesc(j))to dom(s.queuesc(j)) is an explanation.a = aborts.This case is symmetric to the case for abortc.a = markc(I).In this case we can de�ne u and I 0 such that (u, losec(I 0), u0) 2 steps(S) and (s; u) 2 Bds.Clearly trace(�) = trace(a). Since 8 j 2 SID s:queuesc(j) is not a�ected by markc(I) andu:queuesc(j) is not a�ected by losec(I 0); and 8 i 2 CID ^ i 6= s:id c; s:queuecs(i) is nota�ected by markc(I) and u:queuecs(i) is not a�ected by losec(I 0), the explanations betweenthese queues which we know exist are explanation in states s and u also. Therefore, we onlyneed to construct an explanation from u:queuecs(u:idc) to s:queuecs(s:id c). Let u:variables= s:variables and u:queuecs(u:idc) = maxqueue(s.queuecs(s:idc)); then by Lemma 4.3, theidentity mapping is an explanation from u:queuecs(u:idc) to s:queuecs(s:idc).We now need to show that losec(I 0) is enabled from state u in S. Since u:variables= s:variables and markc(I) is enabled in s, we know s:recc = u:recc = true, and thatI 2 su�xes(s :queuecs(s :idc). To de�ne an appropriate I 0 we �rst observe thatmaxqueue(s :queuecs(s :idc)) = maxqueue(s 0:queuecs(s 0:idc)), and since u:queuecs(u:idc) =maxqueue(s :queuecs(s :idc)), it is easy to see we can obtain u0:queuecs(u0:id c) from u:queuecs(u:idc)by deleting some (possibly zero) elements that are in su�xes(u:queuecs(u:idc)). Thus, I isan appropriate I 0, that is, I 0 = I .a = marks(I).This action is symmetric to the previous case.a = dropc(I; k). 68



The corresponding action in S is the empty step, i.e., (s; u0) 2 Bds. Since dropc(I; k) is inter-nal the empty step has the right trace. This action only a�ects s:queuecs(k), so we only needto an explanation from u:queuecs(k) to s:queuecs(k). Let f 0k be an arbitrary explanationform u0:queuecs(k) to s0:queuecs(k) (we know one exists because (s0; u0) 2 Bds). I containsthe indices of the elements of s:queuecs(k) that were deleted in the dropc(I; k) step. Thenjdom(s 0:queuecs(k))j = jdom(s :queuecs(k)) n I j. Now let h be the unique bijective, strictlyincreasing mapping from dom(s 0:queuecs(k)) to dom(s :queuecs(k)) n I . Informally h mapsindices of elements in s0:queuecs(k) to the indices the same elements had in s:queuecs(k).De�ne fk = h�f 0k . To Check that fk is a valid explanation from u:queuecs(k) to s:queuecs(k),we check conditions 1-4 of De�nition 4.1.Conditions 1 and 2Since f 0k is total and strictly increasing from dom(u 0:queuecs(k)) to dom(s 0:queuecs(k)) andh is total and strictly increasing from dom(s 0:queuecs(k)) to dom(s :queuecs(k)) n I , fk istotal and strictly increasing from dom(u:queuecs (k)) to dom(s :queuecs(k)).Condition 3We have that the dom(s :queuecs(k)) n rng(h � f 0k ) = I [ h(dom(s 0:queuecs(k)) n rng(f 0k ).Informally, this means if an element in s:queuecs(k) is not \hit" by fk , then this is becauseit was either one of the elements that are deleted in dropc(I; k) or it was not \hit" by f 0k.We know that the elements in I are marked because that is a precondition for them to bedropped. Furthermore, since f 0k is an explanation we know that the elements in s0:queuecs(k)not hit by f 0k are marked. Now since hmaps indices of elements in s0:queuecs(k) to the indicesthe same elements had in s:queuecs(k), we know that these elements in s:queuecs(k) arealso marked.Condition 4By the fact that f 0k is an explanation (and therefore satis�es condition 4) and the fact thath maps the index of an element to the index of the same element, it directly follows thatfk satis�es condition 4.a = drops(I; l).This action is symmetric to the previous case.This concludes the backward simulation proof.69



Theorem 4.1The traces of D are a subset of the traces of S, that is, D v S.Proof: The proof follows directly from Lemma 4.5 and the soundness of backward simula-tions (Theorem 3.4).
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Chapter 5The Communication ChannelsIn this chapter we present the formal de�nitions of the communication channels used byTCP and T/TCP with stable and unbounded counters and TCP with bounded counters.The formal de�nition is meant to be an abstract model of the service provided by the IPlayer of the TCP/IP Internet layering model. We use the term \communication channels"because the service of IP we are interested in modeling is the same as what is generallyreferred to as unreliable channels in the literature [35, 21]. That is, IP receives packets froma sender and if a packet is not dropped, it is eventually delivered to a receiver. Also IP doesnot create any spurious packets nor does it corrupt packets it receives. However, packetscan be lost, duplicated and reordered.In order for TCP with bounded counters to work correctly, a maximum segment lifetime(MSL) must be imposed on packets placed on the channels. That is, a packet that is placedon a channel and does not get delivered within the MSL gets dropped from the channel.We represent the value of the MSL as �. Therefore, the automata for these channels arerepresented as GTA. For TCP and T/TCP with unbounded counters, this property ofthe channel is not required for correct behavior, so the channels for these protocols arerepresented as untimed automata.In Chapter 11 where we present the impossibility result, we de�ne a slightly di�erentmodel for channels, that includes liveness properties that we do not needed for the veri�-cation of the protocols. 71
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send-segcs(p)Eff: in-transitcs := in-transitcs [ fpgdropcs(p)Pre: (p) 2 in-transitcsEff: in-transitcs := in-transitcs nfpg receive-segcs(p)Pre: (p) 2 in-transitcsEff: in-transitcs := in-transitcs nfpgduplicatecs(p)Pre: (p) 2 in-transitcsEff: in-transitcs := in-transitcs [ fpgFigure 5-2: The steps of Chcs(P).5.1.2 StepsThe steps of Chcs(P) are straightforward and are shown in Figure 5-2. The send-segcs(p)input action comes from the external user of the channel, which in this case is the client ofthe TCP or T/TCP host with stable and unbounded counters. The e�ect of this action is toplace the packet p in the multiset in-transitcs. The complimentary action, receive-segcs(p),removes a single element from the multiset and passes the packet p to the user (the serverTCP or T/TCP host). The internal actions duplicatecs(p) and dropcs(p) duplicate andremove elements of in-transitcs respectively.5.2 The channel GTAIn this section we present the GTA for the channel automaton for TCP with boundedcounters. Again we only specify the automaton for packets for the client to the server. Thespeci�cation is very similar to the speci�cation for Chcs(P). Now when a packet gets placedon the channel, it is paired with the current time (its send time) and it must get droppedwhen the di�erence between the current time and its send time is equal to �, and it mayget dropped even if its time on the channel has not exceeded �.5.2.1 States and Start StatesBecause of the maximum segment lifetime we refer to the channel for packets from theclient to the server as �Chcs(P) and the channel for packets from the server to the clientas �Chsc(P). The channel �Chcs(P) is also parameterized with a set of possible packets P .The type T ranges over the nonnegative real numbers and represents time. In addition tonow that represents real time, the other state variable is in-transitcs which is a multiset of73



send-segcs(p)Eff: in-transitcs := in-transitcs [ f(p; (nowcs + �)gdropcs(p,t)Pre: (p; t) 2 in-transitcsEff: in-transitcs := in-transitcs nf(p; t)gduplicatecs(p,t)Pre: (p; t) 2 in-transitcsEff: in-transitcs := in-transitcs [ f(p; t)g receive-segcs(p)Pre: (p; t) 2 in-transitcsEff: in-transitcs := in-transitcs nf(p; t)g�(t) (time-passage)Pre: 8(p; t0) 2 in-transitcs : (now + t � t0)Eff: nowcs := nowcs + tFigure 5-3: The steps of �Chcs(P).the packets (including duplicates) currently in the channel, paired with their send time.Variable Type Initially Descriptionnowcs T 0 Real time.in-transitcs B(P � T) ; A multiset of packets together with the time thepackets were sent.Action SignatureInput:send-segcs(p), p 2 POutput:receive-segcs(p), p 2 P Internal:dropcs(p; t), p 2 P and t 2 Tduplicatecs(p; t), p 2 P and t 2 TTime-passage:�(t); t 2 R+5.2.2 StepsThe steps of �Chcs(P) are are shown in Figure 5-3. The send-segcs(p) input actioncomes from the external user of the channel, which in this case is the client host for TCPwith bounded counters. The e�ect of this action is to place the packet p paired with atime-stamp (now) in the multiset in-transitcs. The complimentary action, receive-segcs(p),removes an element from the multiset, strips o� the time-stamp and passes the packet pto the user (the server TCP host). The internal actions duplicatecs(p,t) and dropcs(p,t)duplicates and removes elements of in-transitcs respectively. The precondition on the timepassage action �(t) ensures that packets that have been in the channel for the MSL, getdropped from in-transitcs. 74



Chapter 6Transmission Control ProtocolIn this chapter we give the formal presentation of TCP. It is speci�ed as a general timedautomaton (GTA). The automaton is the timed composition of four component automata,client and server automata, and the two channel automata described in the previous chapter.Figure 6-1 shows the composed system. In this presentation we assume the client andserver have stable and unbounded counters for sequence number generation. In Chapter 8we discuss the necessary modi�cations and timing assumptions needed to make TCP workcorrectly with non-stable and bounded counters.Before we describe the TCP automaton, we show in Figure 6-2 a slightly simpli�edversion of the TCP �nite state machine (FSM) from the Internet Standard [28]. Thesimpli�cation comes from the fact that we do not allow both sides to simultaneously tryto initiate the connection as is permitted in [28]. The FSM is not meant to capture TCPin its entirety, but mainly to show the state changes of the client and server TCP's. Ourformal presentation has more of the details of how the protocol works, but we show thestandard FSM here to give some intuition for reading the steps of our automata. Since theclient and server TCP's go through a lot of the same state changes, there is not a separateFSM for both sides. Instead, one can trace through the states of the client from open toclose, and then separately trace out states of the server from open to close on the sameFSM. The paths are not the same, but overlap in many states. They both start in closed,but the client goes from closed to syn-sent when it receives the signal to open (activeopen). This cause the client to send a SYN segment to the server. When it receives an75
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Type de�nitionsType DescriptionMsg The set of all possible strings over some basic message alphabet that does not include thespecial symbol null.T The nonnegative real numbers | represents real time.N The set of non-negative integers.Client variablesVariable Type S Initially Descriptionmodec fclosed,syn-sent, estb,fin-wait-1,fin-wait-2,close-wait,last-ack,closing,timed-wait,rec, resetg closed The modes of the client. Mode closed indi-cates that the connection is closed, syn-sentindicates that the client has begun the syn-chronization process, estb indicates thatthe connection is established between theclient and the server, fin-wait-1 indicatesthe host has received the close input afterthe connection has been established and be-fore receiving a FIN from the other host,fin-wait-2 indicates that the host has re-ceived an ACK for its FIN, but before re-ceiving a FIN, closing indicates it receiveda FIN after it sent it's FIN, but before re-ceiving an ACK for its FIN, close-wait in-dicates that the host has received a FIN whileit was in estbmode, last-ack indicates thatthe host has received a FIN and is waitingfor an ACK to its FIN after which it closes,timed-wait indicates that the host has re-ceived both a FIN and an ACK(FIN) fromthe other host and will close in 2� MSL, recindicates the client is recovering from a crash,and reset indicates that the client has re-ceived a valid reset and will close.ackc N [ fnilg nil The acknowledgment number.rst-seqc N[ fnilg nil The number assigned to a reset segment.ready-to-sendc Bool true A ag that when true indicates that the nextsegment can be sent.send-ack c Bool false A ag that enables the sending of anacknowledgment.send-�nc Bool false A ag that enables the sending of a FINsegment.rcvd-closec Bool false A ag that is set to true when the signal closeis received.push-datac Bool false A ag that forces the client to only performthe receive-msgc(m) action until rcv-buf c isempty after a FIN segment is received.msgc Msg [ fnullg null The current message to be sent.78



Client variablesVariable Type S Initially Descriptionsend-�n-ack c Bool false A ag that is set to true when the client acknowl-edges a FIN from mode closing.send-rstc Bool false A ag that enables the sending of a reset segment.nowc T p 0 The clock variable.�rst(t-outc) T [1 1 The lower bound on when the client can close afterstarting timed-wait state.time-sentc T [1 0 Used to mark the time a segment is sent, so thatthe segment can be resent after RTO if it is notacknowledged.send-buf c Msg� � The client bu�er for messages to be sent.rcv-buf c Msg� � The client bu�er for messages received.snc N p 0 Client side sequence number.Server variablesVariable Type S Initially Descriptionmodes fclosed,listen, estb,syn-rcvd,fin-wait-1,fin-wait-2,close-wait,last-ack,timed-wait,recg closed The server modes. Modes closed, estb,fin-wait-1, fin-wait-2, close-wait,last-ack, timed-wait, and rec indicatethe same behavior as in the client. Modelisten indicates the server has receiveda passive-open input and is waiting for aSYN segment from a client, mode syn-rcvdindicates the server has received the initialSYN segment.send-buf s Msg� � The bu�er for messages to be sent.rcv-buf s Msg� � The bu�er for messages received.sns N p 0 Server side sequence number.acks N [ fnilg nil The acknowledgment number.rst-seqs N [ fnilg nil Symmetric to rst-seqc.ready-to-sends Bool true Symmetric to ready-to-sendc.send-ack s Bool false Symmetric to send-ack c.send-�ns Bool false Symmetric to send-�nc.rcvd-closes Bool false Symmetric to rcvd-closec.push-datas Bool false Symmetric to push-datac.send-�n-ack s Bool false Symmetric to send-�n-ack csend-rsts Bool false Symmetric to send-rstcnows T p 0 The clock variable.�rst(t-outs) T [1 1 Symmetric to �rst(t-outc).time-sents T [1 0 Symmetric to time-sentc.79



6.1.2 Action signatureClient, T CPcInput:send-msgc(open, m, close)open, close 2 Bool, m 2Msg [ fnullgreceive-segsc(SYN, sns, acks)receive-segsc(sns, acks, msgs)receive-segsc(sns, acks, msgs, FIN)receive-segsc(RST, rst-seqs)crashcOutput:receive-msgc(m) m 2 Msgsend-segcs(SYN, snc)send-segcs(snc, ackc, msgc)send-segcs(snc, ackc, msgc, FIN)send-segcs(RST, rst-seqc)recovercInternal:time-outcprepare-msgcshut-downcTime-passage:�(t), t 2 R+
Server, T CPsInput:passive-opensend-msgs(m, close) m 2Msgreceive-segcs (SYN, snc)receive-segcs(snc, ackc, msgc)receive-segcs(snc, ackc, msgc, FIN)receive-segcs(RST, rst-seqc)crashsOutput:receive-msgs(m), m 2Msgsend-segsc(SYN, sns, acks)send-segsc(sns, acks, msgs)send-segsc(sns, acks, msgs, FIN)send-segsc(RST, rst-seqs)recoversInternal:time-outsprepare-msgsshut-downsTime-passage:�(t) , t 2 R+6.1.3 StepsFrom Figure 6-2 it is easy to see that the modes that require estb as an antecedent arefin-wait-1, fin-wait-2, close-wait, closing, last-ack, and timed-wait. Mode estband these modes are said to be synchronized states, because if the hosts are in any of thesestates then, barring a crash, the endpoints are synchronized. In the steps of automaton T CPbelow, and for the rest of this thesis we denote the set, festb, fin-wait-1, fin-wait-2,close-wait, closing, last-ack, timed-waitg, as sync-states | the set of synchronizedstates.The steps for the timed automata for the client and server are shown in Figures 6-3, 6-4, 6-5, 6-6, and 6-7. In each of these �gures the client actions are on the left and the serveractions are on the right. The receive-seg(p) actions are shown opposite the correspondingsend-seg(p) actions, and symmetric internal actions are opposite each other.80



The open phaseThe protocol starts when the client receives the action send-msgc(open, m, close) (Figure 6-3) with open set to true (an active open) and the server receives a passive-open (Figure 6-3)input. These two actions signal that both hosts can try to establish a connection with eachother. The active open and passive open are only valid if the hosts are closed. That is, theclient and server can only accept inputs from the users to start a new incarnations if they areclosed. When the client receives the active open it changes modec to syn-sent. The clientalso chooses an initial sequence number (ISN) by incrementing the snc. This number isincremented for each segment sent, except acknowledgment only segments, through the lifeof the connection, and is used to order the sequence of messages. Note that the server doesnot choose an ISN during passive open. The send-msgc(open, m, close) action might alsohave data to be sent. If this is the case, the data is appended to the queue send-buf c whichis where the client keeps messages to be sent. If close is true this means the connectionshould be closed and no more data should be accepted from the user to be sent. We discusswhat happens then in the discussion of the close phase.Assuming the client does not open and close without receiving any data, the client per-forms the action send-segcs(SYN, snc) (Figure 6-3), where snc is the ISN, as the �rst step ofthe three-way handshake. Note that this action, along with all the other send-seg(p) actionshave as a part of the precondition the predicate (now c� time-sentc � RTO). This predicatecontrols the frequency of retransmission. That is, if an acknowledgment is not received for asegment, at least RTO must elapse before the segment is retransmitted. When this segmentis received by the server, if it is in mode listen, it changes to mode syn-rcvd, choosesits ISN by incrementing sns, and also records the next sequence number it expects fromthe client, snc+1, in the variable ack s. If modes is closed, send-rsts and rst-seqs are setto generate a reset segment. Throughout the the protocol, whenever either host receives asegment when it is closed, or if it is in an unsynchronized mode (syn-sent, listen, orsyn-rcvd) and it gets an invalid segment, a reset segment is generated. After it receives the�rst segment of the three-way handshake, the server performs the action send-segsc(SYN,sns, acks) (Figure 6-3) which is the second segment of the three-way handshake. In thissegment sns is the server's ISN. When the client receives this segment, if a reset is not81



generated, it sets send-ackc to true to enable the acknowledgment of this segment. If theclient is already in a synchronized state, this segment is either a duplicate created by thechannel or a retransmission of a segment previously acknowledged. Since the acknowledg-ment might not have been received by the server, the retransmission of the acknowledgmentis enabled.If the client is in mode syn-sent, and ack s = snc + 1, then it knows the server receivedits correct ISN, and that the segment is an acknowledgment of the SYN segment it sent.Thus, the client sets modec to estb and makes assignments in preparation of sending the�nal segment in the three-way handshake. First ack c is set to sns + 1 for the next expectedsegment, and time-sentc gets set to 0. Then if there is data to be sent, send-ack c is set tofalse, so that the acknowledgment is not sent until the data is prepared. If there is data insend-buf c, the prepare-msgc (Figure 6-5) action increments the sequence number snc, setsready-to-send c to true and moves the head of the send bu�er to msgc which gets sent withthe next segment. The �nal part of the three-way handshake is the action send-segcs(snc,ackc, msgc) (Figure 6-4) or if the client had received a close input and had no more data tosend, send-segcs(snc, ackc, msgc, FIN) (Figure 6-6). Both segments acknowledge the SYNsegment from the server. In the open phase, when the server receives this input, modes issyn-rcvd and it then changes to estb. If there is valid data in the segment, that is snc =ack s, it is placed on the receive bu�er and ack s is incremented. These actions are discussedin more detail in sections on the the data transfer and close phases.The data transfer phaseData transfer is bi-directional, but since it is also symmetric we only discuss what happensas data goes from client to the server. In this phase both the client and the server arein mode estb. The client gets data from the user from the input action send-msgc(open,m, close) when m is not null. This data is appended to the client's send bu�er. Toprepare data for sending, the internal action prepare-msgc increments the segment number,sets ready-to-send c to true, and takes the �rst piece of data o� the send bu�er. If thebu�er becomes empty and a close input had been received (rcvd-closec is true), the clientbegins the close phase which we discuss in the next subsection. The setting of ready-to-send c82



coupled with the fact that the client is in mode estb enables the send-segcs(snc, ackc, msgc)action. This action sends the data and if there was data from the server to be acknowledged,then ack c does that. In addition to the condition for retransmission, this actions has aspart of it precondition that ready-to-send c _ send-ackc be true, and that the client be in asynchronized state and that push-data c be false. The condition of push-data c is explainedin the section on the close phase. The condition ready-to-send c _ send-ack c is there becausethe action can be sending data just data or data and a valid acknowledgment, in whichcase ready-to-send c is true, or the segment could just have a valid acknowledgment. In thiscase ready-to-send c is false and send-ackc is true. The action sets time-sentc to the currenttime to start the retransmission timeout timer. Additionally, the action sets send-ack cto false, so that if the segment has no valid data, that is, it is just for the purposes ofacknowledgment, then it does not get retransmitted. If modec = timed-wait or closingthen additional assignments are made. We discuss these assignments in the discussion ofthe close phase.When the server gets the input receive-segcs(snc, ackc, msgc) (recall we are discussingthe case where modes 2 sync-states), it sets send-ack s to true to enable the retransmissionof the previous acknowledgment the server sent. It does not matter if the segment containsvalid data or not. If the data it contains is invalid, that is, the server has already sentan acknowledgment for that data, then the fact that the server receives the segment againcould me that the acknowledgment for the data was not received by the client, so the serverwill send it again. This is the only time acknowledgments are retransmitted.If the data is valid (snc = ack s), it is enqueued on the server's bu�er for incomingmessages, rcv-buf s. Additionally, ack s is incremented for the acknowledgment of this data.If the segment contains a valid acknowledgment (ack c = sns + 1), then ready-to-send s isset to false to stop the retransmission of the message acknowledged. If there is at least onemessage on the send bu�er, send-ack s is set to false. The setting of send-acks to falseis done to delay the action send-segsc(sns, acks, msgs) (Figure 6-5) until data is preparedto be sent. The acknowledgment piggy-backs on the data segment. If the server does nothave any data to send when it received the segment, or if the segment did not contain avalid acknowledgment, only valid data, then send-ack s remains true and send-segsc(sns,83



acks, msgs) contains a valid acknowledgment and retransmitted data. If when the serverreceived the segment it contains duplicated data, but a valid acknowledgment, the serversends a segment with new data if it has any to send, and an acknowledgment of the lastvalid data it received. Data received by the server is passed to the user by the output actionreceive-msgs(m) (Figure 6-4). If rcv-buf s is empty and push-data s is true then push-data sis set to false to enable other actions. The ag push-data s is set to true when the serverreceives a valid FIN segment. This segment means the client has stopped sending data,and that the server should send pass all the data it has to the user before doing anythingelse. When the client receives the input action receive-segsc(sns, acks, msgs) (Figure 6-5), itbehaves in a manner symmetric to the server's behavior when it received receive-segcs(snc,ackc, msgc).The close phaseIf the client receives the signal to close while it is still in mode syn-sent and its send bu�eris empty, it closes immediately. Similarly, if the server receives the signal to close while itis in mode listen and its send bu�er is empty, it also closes immediately. Otherwise, bothsides go through a sequence of steps to ensure a \graceful" close.Either or both sides can initiate the close sequence. The hosts go through a series ofmodes, that depend on the order in which they receive the close input from the user andFIN segments from each other. The close signal from the user means it has stopped sendingdata, but can still receive it.When the client receives the input to close, send-msgc(open, m, true), it does not im-mediately change modes. Instead the ag rcvd-closec is set to true to mark that the closesignal has been received, while still allowing the client to proceed until it is ready to be-gin the close sequence. Thus, if modec is syn-sent and the send bu�er is not empty, (ifthe bu�er is empty the client closes), the client goes through the normal open and datatransfer phases as described above. If prepare-msgc is enabled because rcvd-closec is trueand send-buf c is empty, then snc is incremented once in the action, and indicates that thenext segment sent is just a FIN segment. However, if rcvd-closec is true and send-buf cbecomes empty in the prepare-msgc action, then snc is incremented twice to indicate that84



the segment not only contains a FIN, but also valid data. In either case modec is set tofin-wait-1 if it was estb or last-ack if it was close-wait, and the ag send-�nc is set totrue. The client is in mode close-wait if it has already received a FIN segment from theserver. These assignments enable the action send-segcs (snc, ackc, msgc, FIN). The clientis in mode closing if it received a FIN segment from the server after going to fin-wait-1in the prepare-msgc action, but before it performed send-segcs(snc, ackc, msgc, FIN). Whenthe server receives this segment, it behaves almost the same as it does when it receives the(snc, ackc, msgc) segment. However, the mode changes are di�erent, and this segment isvalid if snc is � ack s. Also when the segment is received push-data s is set to true to disableall local server action until it has send all the data to the user.If the segment also contains a valid acknowledgment, then if modes is syn-rcvd, it is setto estb, and if it is fin-wait-1, it is set fin-wait-2. Also if there is more data to be sentfrom the server, the assignments are done for that. If the segment had valid data, whetherit had a valid acknowledgment or not, that data is placed on rcv-buf s. Also the fact thatthe segment is a valid FIN causes modes to change to close-wait if it was previously estb,closing if it was previously fin-wait-1, and timed-wait if it was previously fin-wait-2.The server responds with either the action send-segsc(sns, acks, msgs) or send-segsc (sns,acks, msgs, FIN) (Figure 6-7). If the server sends the send-segsc(sns, acks, msgs) segmentfrommode closing then send-�n-acks is set to true to indicate that the acknowledgment ofthe FIN has been sent. When the client receives this segment, it if it is in mode fin-wait-1,it changes to mode fin-wait-2. If it is in mode last-ack, it closes. It can close frommode last-ack because this mode means it has sent and received a FIN segment and isonly waiting for an acknowledgment of the FIN segment it sent. Since this segment is anacknowledgment of that FIN, it closes. If the client had received a FIN segment from theserver before it received this segment, then it would have gone from mode fin-wait-1 toclosing. Now when it receives the acknowledgment, it goes to mode timed-wait and ifit already sent the acknowledgment for that FIN, that is, if send-�n-ackc is true, it sets�rst(t-outc) to now c + 2�. Timed-wait state ensures the graceful close property becausethe host that is in timed-wait state waits long enough, so that if the host that sent the�nal piece of data did not receive the acknowledgment for that data and retransmits that85



FIN segment, the host in timed-wait state receiving the retransmitted FIN segment canretransmit the acknowledgment.After waiting for a period of 2� a host in mode timed-wait times out and closes. Theactions are timeoutc and timeouts (Figure 6-6) for the client and server respectively.Other actionsThe actions send-segcs(RST, rst-seqc) and send-segsc(RST, rst-seqs) (Figure 6-7) are en-abled when client or server host respectively receives an inappropriate segment while in anon synchronized state. The variables rst-seqc and rst-seqc are use to validate the segmentsrespectively. When the client or server receives a valid reset segment, it sets modec ormodecrespectively to reset. The setting of modec or modec to reset enables the shut-downc orshut-downs actions respectively (Figure 6-7) which causes the resepective host to close.Crash action crashc (Figure 6-6) causes the client to change modec rec. In TCP withbounded and unstable counters, a quiet time of qt is observed after a crashes to ensurethat after recovery there are no old duplicate packets are in the network. However, sincecrashes do not a�ect the counters in formal model of TCP we are presenting, quiet time isnot needed.The corresponding recovery action recoverc closes the client. The crash and recoveryaction are symmetric for the server.6.2 The speci�cation of the TCP automatonAs depicted in Figure 6-1, the TCP automaton consists of the client, the server and the twochannels, so we �rst de�ne T CP 0 to be the parallel composition of these automata. Thatis, T CP 0 , T CPckT CPskChcs(P)kChsc(P):The set P of possible packets of the channels is instantiated with the packets that T CPcand T CPs can send and receive. By the de�nition of parallel composition, the di�erentsend-segcs(p) and send-segsc(p) actions of T CPc and T CPs respectively and the receive-segcs(p) and the receive-segsc(p) actions of Chcs(P) and Chsc(P) respectively are output86



actions in T CP0. Since these actions are not output actions in the speci�cations S and D,we need to hide these actions. Thus, we use the action hiding operator de�ned in Chapter 3.Let AT , freceive-segsc(SYN, acks, sns)g [freceive-segsc(sns, acks, msgs)g [freceive-segsc(sns, acks, msgs, FIN)g [freceive-segsc(RST, rst-seqs)g [fsend-segcs(SYN, snc)g [fsend-segcs(snc, ackc, msgc)g [fsend-segcs(snc, ackc, msgc, FIN)g [fsend-segcs(RST, rst-seqc)g [freceive-segcs (SYN, snc)g [freceive-segcs(snc, ackc, msgc)g [freceive-segcs(snc, ackc, msgc, FIN)g [freceive-segcs(RST, rst-seqc)g [fsend-segsc(SYN, sns, acks)g [fsend-segsc(sns, acks, msgs)g [fsend-segsc(sns, acks, msgs, FIN)g [fsend-segsc(RST, rst-seqs)gThe complete general time automaton model for TCP, T CP, is de�ned as:T CP , T CP 0nAT :This de�nition gives a timed automaton with the same set of input and output actions asS and D which is necessary for doing a simulation from T CP to any of the speci�cations.6.3 Derived variables for T CPWe de�ne four derived variables for T CP. These variables are needed for the veri�cation ofTCP which we present in the next chapter.The �rst two derived variables are cur-msg c and cur-msgs. These are the \currentmessage" being sent by the client and server respectively. They are de�ned as follows.87



s:cur-msgc ,8>>><>>>:(s:msgc; ok) if s:modec 62 frec; reset; closed; syn-sentg ^((s:snc = s:acks) ^ :(s:rcvd-closec ^ s:send-buf c = �))_(s:snc = s:acks + 1)� otherwises:cur-msgs ,8>>><>>>:(s:msgs; ok) if s:modes 62 frec; reset; closed; listen; syn-rcvdg ^((s:sns = s:ackc) ^ :(s:rcvd-closes ^ s:send-buf s = �))_(s:sns = s:ackc + 1)� otherwiseThe current message is the message that is about to be sent or is being sent, but hasnot yet been received. For the client side the condition s:snc = s:acks ^ :(s:rcvd-closes ^s:send-buf s = �) holds when a message on a non FIN segment has not yet being received.If the current message is on a FIN segment, then the condition s:snc = s:acks + 1 holdsuntil the message is received. When the message is received, cur-msgc message becomes theempty string, because when a message is received the acknowledgment variable is assignedthe value of one plus the sequence number of the received segment. The current messagederived variables are used to hold one copy of a message that might be in both a send bu�erand on a channel. When the message is received, we know precisely where one copy of themessage is, so we do not need the value to be held in a current message variable. In thenext section when we de�ne the re�nment mapping, we will see why this is useful. Themessage is paired with the value ok, to match variables on the queues in D, which again isneeded for the re�nement mapping.The next two variables we de�ne are p-pair c and p-pair s for the client and server siderespectively. These variables are \possible pairs." The term \pair" is used because thevariables are sets of pairs. Each pair is of the form (i;m) where i is a sequence number, andm is message. That is, i 2 N andm 2 Msg. The term \possible" is used because the sequencenumber and message that form a pair comes from segments that are on the channel, wherethere is a possibility that the message m may or may not get delivered. These segmentsexists when the sender of the segment crashes before the segment is received. That is, theyare segments that contain the message from the \current message" derived variables, if the88



sender crashes or resets. There is possibility that the message may not be delivered becausethe sender can no longer retransmit the segments that contain the message. Therefore, ifall copies of segments with this message get dropped the channel, then the message will notbe delivered. Also if the receiving host crashes or closes before the message is received, thenthe message will also not get delivered. If all copies do not get dropped, and the receivinghost does not crash or close, then the message will get delivered. Recall that in Chapter 4the reason we gave for de�ning the Delay Decision Speci�cation, was that in the low levelprotocols, whether a message gets lost because of crash may not be determined until afterrecovery. We de�ne possible pairs such that the messages in the pairs are messages thatmay be lost after a crash and recovery. The formal de�nitions are given below.For any segment p on in-transitcs or in-transitsc, de�ne sn(p) to be the sequence numberof the segment, ack(p) to be the acknowledgment number of the segment, and msg(p) to bethe message of the segment. For example, for a segment p = (snc; ackc;msgc) where snc = iand ackc = j, and msgc = m, sn(p) = i, ack(p) = j, and msg(p) = m. If the p is of the form(SYN, snc) or (SYN, sns, acks) then msg(p) = null and if p is of the form (SYN, snc) thenack(p) = nil. Let s be any state in T CP, thens:p-pairc ,8>>>>>><>>>>>>:f(i;m) j 9 p 2 s:in-transitcs s.t. sn(p) = i ^msg(p) = m ^m 6= nullgif s:modec 2 frec; reset; closed; syn-sentg ^(i = s:acks ^ p is not a FIN segment) _(i = s:acks + 1 ^ p is a FIN segment); otherwise;s:p-pairs ,8>>>>>><>>>>>>:f(i;m) j 9 p 2 s:in-transitsc s.t. sn(p) = i ^msg(p) = m ^m 6= nullgif s:modes 2 frec; reset; closed; listen; syn-rcvdg ^(i = s:ackc ^ p is not a FIN segment) _(i = s:ackc + 1 ^ p is a FIN segment); otherwise:The variables are sets of pairs as opposed to just being segments or sets of segmentbecause there can be segments on the channels with the same sequence numbers and mes-sages, but di�erent acknowledgment numbers. Invariant 7.37, which we de�ne in the nextchapter, tells us that segments with the same sequence number must have the same message.89



Therefore, the possible pair set has one element for each message that might get delivered.If we use segments or sets of segments in the de�nitions this would not be the case. Becausein our model of TCP each message must receive an acknowledgment before another is sent,we can show that p-pair c and p-pair s always have at most one element. The this claimfollows from Invariants 7.37, 7.62 and 7.64 also de�ned in the next chapter.There are two types of segments with messages | segments with or without the FINbit. That is why we have the two cases (aside from the empty case) in the de�nition ofpossible segments. In order for the message on a non FIN segment to be accepted, itssequence number must be equal to the acknowledgment number of the receiving host, andin order for the message on a FIN segment to be accepted, its sequence number must beequal to the acknowledgment number plus one of the receiving host. Also a message on asegment might possibly be delivered after the sender crashes and recovers, but only if thesender has not gotten back to a synchronized state after the crash. This is the case becauseafter a host crashes, TCP forces the other side to reset before they can both be synchronizedagain. Therefore, if the sender got back to a synchronized state, it means a new incarnationhas started, so the message cannot be delivered because it is from the previous incarnation.In the next chapter were we present the veri�cation of T CP, we use the operator data toextract the the message from element of the possible pair set, so for example if s:p-pair c =f(s:msgc; s:snc)g, then data(s.p-pairc) = s:msgc. If s:p-pair = fg then data(s.p-pairc) = �.The formal modeling of TCP is now complete, and in the next chapter we prove thatTCP implements a patient version of our speci�cation S.
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send-msgc(open, m, close)Eff: if modec = closed ^ open then finitialize TCBctime-sentc := 0modec := syn-sentsnc := snc + 1gif :rcvd-closec ^ m 6= null ^modec 2 fsyn-sent; estb; close-waitgthen send-buf c := send-buf c�mif close then frcvd-closec := trueif modec = syn-sent ^ send-buf c = �then modec := closedgsend-segcs(SYN, snc)Pre: (nowc - time-sentc � RTO) ^modec = syn-sent ^ : send-rstcEff: time-sentc := nowcreceive-segsc(SYN, sns, acks)Eff: if (modec = closed) _(modec = syn-sent ^ acks 6= snc + 1)then fsend-rstc := truerst-seqc := acksgelse fsend-ack c := trueif modec = syn-sent then fmodec := estbackc := sns + 1time-sentc := 0ready-to-send c := falseif send-buf c 6= � thensend-ack c := falsegg

passive-openEff: if modes = closed then finitialize TCBsmodes := listengsend-msgs(m, close)Eff: if :rcvd-closes ^ m 6= null ^modes 2 fsyn-rcvd; estb; close-waitgthen send-buf s := send-buf s�mif close then frcvd-closes := trueif modes = listen ^ send-buf s = �then modes := closedgreceive-segcs (SYN, snc)Eff: if modes = listen then fmodes := syn-rcvdsns := sns + 1acks := snc + 1time-sents := 0gif modes = closed thensend-rsts := truerst-seqs := 0acks := snc + 1send-segsc(SYN, sns, acks)Pre: (nows - time-sents � RTO) ^modes = syn-rcvd ^ : send-rstsEff: time-sents := nows
Figure 6-3: Steps from the open phase of T CPc and T CPs. The client steps are on the left andthe corresponding server steps are on the right. 91



send-segcs(snc, ackc, msgc)Pre: (nowc � time-sentc � RTO)^(ready-to-send c _ send-ack c)^modec 2 sync-states ^ :push-datacEff: time-sentc := nowcsend-ack c := falseif modec = closing thensend-�n-ack c := trueif modec = timed-wait then�rst(t-outc) := nowc + 2�

receive-msgc(m)Pre: modec 62 frec; resetg ^ rcv-buf c 6= �^head(rcv-buf c) = mEff: rcv-buf c := tail(rcv-buf c)if push-datac ^ rcv-buf c = � thenpush-data c := false�(t) (time-passage)Pre: t 2 R+Eff: nowc := nowc + t

receive-segcs(snc, ackc, msgc)Eff: if (modes 2 fclosed; listeng) _(modes = syn-rcvd ^ ackc 6= sns + 1)then fsend-rsts := truerst-seqs := ackcgelse if modes 62 frec; resetg then fif msgc 6= null thensend-ack s := trueif snc = acks then facks := snc + 1time-sents := 0rcv-buf s := rcv-buf s�msgcgif ackc = sns + 1 then fmsgs := nullready-to-sends := falsesend-�ns := falseif modes = syn-rcvd thenmodes := estbif send-buf s 6= � thensend-ack s := falseif modes = fin-wait-1 thenmodes := fin-wait-2if modes = last-ack thenmodes := closedif modes = closing then fmodes := timed-waitif send-�n-ack s then�rst(t-outs) := nows + 2�gggreceive-msgs(m)Pre: modes 62 frec; resetg ^ rcv-buf s 6= �^head(rcv-buf s) = mEff: rcv-buf s := tail(rcv-buf s)if push-datas ^ rcv-buf s = � thenpush-datas := false�(t) (time-passage)Pre: t 2 R+Eff: nows := nows + tFigure 6-4: The basic message sending step of the client and the corresponding step to receive thissegment at the server. Also the steps for T CPc and T CPs that pass messages to the users, and thetime-passage steps. 92



receive-segsc(sns, acks, msgs)Eff: if modec 2 fclosed, syn-sentg then fsend-rstc := truerst-seqc := acksgelse if modec 62 frec; resetg then fif msgs 6= null thensend-ack c := trueif sns = ackc then fackc := sns + 1time-sentc := 0rcv-buf c := rcv-buf c�msgsgif acks = snc + 1 then fmsgc := nullready-to-send c := falsesend-�nc := falseif send-buf c 6= � thensend-ack c := falseif modec = fin-wait-1 thenmodec := fin-wait-2if modec = last-ack thenmodec := closedif modec = closing then fmodec := timed-waitif send-�n-ack c then�rst(t-outc) := nowc + 2�ggprepare-msgcPre: :push-datac ^ :ready-to-sendc ^modec 2 festb; close-waitg ^(send-buf c 6= � _ rcvd-closec)Eff: ready-to-send c := trueif send-buf c 6= � then fsnc := snc + 1msgc := head (send-buf c)send-buf c := tail(send-buf c)gif rcvd-closec ^ send-buf c = � then fsnc := snc + 1ready-to-sendc := falsesend-�nc := trueif modec = estb thenmodec := fin-wait-1else if modec = close-wait thenmodec := last-ack

send-segsc(sns, acks, msgs)Pre: (nows � time-sents � RTO)^(ready-to-sends _ send-ack s)^modes 2 sync-states ^ :push-datasEff: time-sents := nowssend-ack s := falseif modes = closing thensend-�n-ack s := trueif modes = timed-wait then�rst(t-outs) := nows + 2�
prepare-msgsPre: :push-datas ^:ready-to-send s^modes 2 festb; close-waitg ^(send-buf s 6= � _ rcvd-closes)Eff: ready-to-sends := trueif send-buf s 6= � then fsns := sns + 1msgs := head (send-buf s)send-buf s := tail(send-buf s)gif rcvd-closes ^ send-buf s = � then fsns := sns + 1ready-to-send s := falsesend-�n s := trueif modes = estb thenmodes := fin-wait-1else modes = close-wait thenmodes := last-ackFigure 6-5: The basic message sending step of the server and the corresponding step to receive thissegment at the client. Also the steps that prepare messages to be sent.93



send-segcs(snc, ackc, msgc, FIN)Pre: (nowc � time-sentc � RTO) ^modec 2ffin-wait-1; last-ack; closingg^ send-�nc ^ :pdatacEff: time-sentc := nowc

time-outcPre: modec = timed-wait ^nowc � �rst(t-outc)Eff: modec := closedcrashcEff: if modec 6= closed thenmodec := recrecovercPre: modec = recEff: modec := closed

receive-segcs(snc, ackc, msgc, FIN)Eff: if (modes 2 fclosed; listeng) _(modes = syn-rcvd ^ ackc 6= sns + 1)then fsend-rsts := truerst-seqs := ackcgelse if modes 62 frec; resetg then fsend-ack s := trueif snc = acks _ snc = acks + 1 then fpush-datas := truetime-sents := 0if ackc = sns + 1 then fmsgs := nullready-to-sends := falsesend-�ns := falseif modes = syn-rcvd thenmodes := estbif send-buf s 6= � thensend-ack s := falseif modes = fin-wait-1 thenmodes := fin-wait-2gif snc = acks + 1 thenacks := snc + 1rcv-buf s := rcv-buf s�msgsif modes = estb thenmodes := close-waitelse if modes = fin-wait-1 thenmodes := closingelse if modes = fin-wait-2 thenmodes := timed-waitggtime-outsPre: modes = timed-wait ^nows � �rst(t-outs)Eff: modes := closedcrashsEff: if modes 6= closed thenmodes := recrecoversPre: modes = recEff: modes := closedFigure 6-6: The steps for the client to send a FIN segment and the receiving of that segment atthe server. Also the time-out steps and the crash and recovery steps.94



receive-segsc(sns, acks, msgs, FIN)Eff: if modec 2 fclosed, syn-sentg then fsend-rstc := truerst-seqc := acksgelse if modec 62 frec; resetg then fsend-ack c := trueif sns = ackc _ sns = ackc + 1 then fpush-datac := trueif modec = estb thenmodec := close-waitelse if modec = fin-wait-1 thenmodec := closingelse if modec = fin-wait-2 thenmodec := timed-waitif sns = ackc + 1 thenrcv-buf c := rcv-buf c�msgsackc := sns + 1time-sentc := 0if acks = snc + 1 then fif modec = closing thenmodec := timed-waitmsgc := nullready-to-send c := falsesend-�n c := falseif send-buf c 6= � thensend-ack c := falsegggsend-segcs(RST, ackc, rst-seqc)Pre: modec 2 fclosed; syn-sentg^send-rstc = trueEff: send-rstc := falsereceive-segsc(RST, acks, rst-seqs)Eff: if modec 6= rec ^ rst-seqs = ackc _(rst-seqs = 0 ^ acks = snc + 1)then modec := resetshut-downcPre: modec = resetEff: modec := closed

send-segsc(sns, acks, msgs, FIN)Pre: (nows � time-sents � RTO) ^modes 2ffin-wait-1; last-ack; closingg^ send-�n s ^:push-datasEff: time-sents := nows

receive-segcs(RST, ackc, rst-seqc)Eff: if modes 6= rec ^ rst-seqc = acks thenmodes := resetsend-segsc(RST, acks, rst-seqs)Pre: modes 2 fclosed; listen; syn-rcvdg^send-rsts = trueEff: send-rsts := falseshut-downsPre: modes = resetEff: modes := closedFigure 6-7: The steps for the server to send a FIN segment and the receiving of that segment atthe client. Also the steps that send resets, the receiving of these resets, and the closing because ofthe reset. 95
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Chapter 7Veri�cation of TCPIn this chapter we prove the correctness of TCP with respect to a patient version of Speci�-cation S. We need to show correctness with respect to a patient version of S because T CPis a GTA and S is an untimed automaton. Instead of doing a complex backward simulationdirectly from T CP to patient(S), we take the second1 intermediate step of showing a re�ne-ment mapping from T CP to a patient version of D. However, we cannot �nd a re�nementmapping from T CP to patient(D) without �rst adding history variables to T CP. We callthe resulting automaton T CPh, and we denote patient(D) as Dp.7.1 T CP with history variablesWe add several history variables to T CP. The �rst two history variables we add are isncand isns. These variables correspond to id c and id s respectively in D, and they record theinitial sequence numbers chosen by the client and the server respectively for an incarnationof the connection. These variables are not stable, but instead of being deleted with the restof the TCB when a host closes, they take the special value nil. We also add the historyvariable isnsc which records the value of isnc when the server receives a SYN segment fromthe client. It's symmetric counterpart is isncs. Variables used-idc, used-ids, and assoc arestable and are meant to correspond to the variables of the same names in D. We also addanother stable set we call estb-pairs which is the set of initial sequence numbers of the client1The �rst intermediate step being the backward simulation from D to S presented in Chapter 4.97



Variable Type S Initially Descriptionisnc N [ nil nil The initial sequence number chosen when the clientopens.isns N [ nil nil The initial sequence number chosen when the serverreceives a SYN segment from the client.isnsc N [ nil nil Records the initial sequence number of the client as aserver side variable.isncs N [ nil nil Symmetric to isnsc.used-idc 2N p ; The set of initial sequence numbers used by the client.used-ids 2N p ; The set of initial sequence numbers used by the server.assoc 2(N�N) p ; A set of pairs of isn's for each incarnation of theconnection.estb-pairs 2(N�N) p ; The set of initial sequence numbers the client has ev-ery time it reaches mode estb, paired with the initialsequence number received from the server.choose-isnc Bool false A ag that is set to true when the client �rst choosesan ISN for an incarnation and set to false when theclient sends a segment with this ISN.choose-isns Bool false Symmetric to choose-isnc.paired with the initial sequence number the client receives from the server after the secondstep of the three-way handshake. We add this set because there are executions where theclient gets to mode estb and sends the third segment of the three-way handshake protocol,but closes before the segment is received by the server. This segment may cause the initialsequence number that the client had when it sent the segment to form an association pairwith the initial sequence number of the server. Thus, estb-pairs records pairs that indicatesthe second leg of the three-way handshake as been successfully completed. We also add thehistory variables choose-isnc and choose-isns. These history variables are ags that becometrue in the step that causes the client and server respectively to choose initial sequencenumbers. They become false in any subsequent steps. The table below provides moredetails on the history variables. Recall that the type N represents the set of non-negativeintegers.As discussed in Chapter 3, history variables are allowed at each step to be assigned avalue based on all variables in the system, but must not a�ect the enabledness of actions orthe changes made to other (ordinary) variables. In Figure 7-1 we show where assignmentsto the history variables should be placed in the e�ect clauses of T CP to get T CPh. We omit98



the assignments to the original variables (by writing : : : instead) but outline the if-then-elsestatements. The �rst addition is to the send-msgc(open, m, close) step. The variable isncis assigned the value of snc after snc is incremented. The ag choose-isnc is also set to truein this step. This ag is used to indicate that the client has just chosen an initial sequencenumber. We use the fact that this ag is true immediately after this step and then setto false on subsequent steps, to prove certain properties about the client's initial sequencenumber when it is �rst chosen.When the client performs the send-segcs(SYN, snc) action, choose-isnc is set to false.When the server receives a SYN segment from the client via the receive-segcs(SYN, snc)action, it sets choose-isns to true, and assigns the isns history variable the incrementedvalue of sns. The history variable isnsc is also assigned to [snc] in this step. This historyvariable is used to record the value of what the server believes is the initial sequence numberof the client. This value on the SYN segment will be paired with the new value of isns toform an association pair, if the received segment is indeed a valid attempt my the client tostart a new incarnation and not an old duplicate. If the pair is actually added to assoc whenthe server performs either the receive-segcs(snc, ackc, msgc) or receive-segcs(snc, ackc, msgc,FIN) action, the current value of isnc might be nil if the client is currently closed, or itmight be di�erent from the value the server received in the (SYN, snc) segment, if the clientclosed and reopened. Therefore, in the receive-segcs(snc, ackc, msgc) and receive-segcs(snc,ackc, msgc, FIN) action, when the pair is added to assoc, it is the pair (isnsc; isns).After the server receives the (SYN, snc) segment, it responds with the send-segsc(SYN,sns, acks) action. In this step it sets both choose-isnc and choose-isns to false. Thesesettings, are again to facilitate the proof of invariants about the values of initial sequencenumbers relative to sequence and acknowledgment numbers of other segments on the chan-nels.When the client receives the (SYN, sns, acks) segment from the server, it assigns isncs to[sns] which it believes is the initial sequence number of the server. This assignment is madeif [acks] = snc + 1, which means the server received the correct initial sequence number ofthe client. It also means that the initial sequence number of the client and [sns] will form anassociation pair if the third step of the three-way handshake is successful. A record of this99



pair is added to history variable estb-pairs. If the client crashes or receives a reset after itsends the third segment of the three-way handshake protocol, but before it is received by theserver, neither the client nor server knows that the second leg of the three-way handshakeis successful. The history variable estb-pairs keeps a record of this fact.When the client performs the receive-segcs(snc, ackc, msgc) and receive-segcs(snc, ackc,msgc, FIN) actions, choose-isns is set to false. Again this is to facilitate the proof ofproperties about initial sequence numbers.
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send-msgc(open, m, close)Eff: (* E�ect clause from T CPc *)if modec = closed ^ open then f: : :choose-isnc := truesnc := snc + 1isnc := sncused-idc := used-idc [ fisncgg: : :send-segcs (SYN, snc)Pre: (* Precondition clause from T CPc *)Eff: (* E�ect clause from T CPc *)choose-isnc := falsereceive-segsc(SYN, sns, acks)Eff: (* E�ect clause from T CPc *)if modec = syn-sent ^ acks = snc+1then fisncs := snsestb-pairs:= estb-pairs[ f(isnc; isncs)g: : :send-segcs(snc, ackc, msgc)Pre: (* Precondition clause from T CPc *)Eff: (* E�ect clause from T CPc *)choose-isns := falsesend-segcs(snc, ackc, msgc, FIN)Pre: (* Precondition clause from T CPc *)Eff: (* E�ect clause from T CPc *)choose-isns := false

receive-segcs (SYN, snc)Eff: (* E�ect clause from T CPs *)if modes = listen then f: : :choose-isns := truesns := sns + 1isns := snsisnsc := sncused-ids := used-ids [ fisnsgg: : :send-segsc(SYN, sns, acks)Pre: (* Precondition clause from T CPs *)Eff: (* E�ect clause from T CPs *)choose-isns := falsechoose-isnc := false: : :receive-segcs(snc, ackc, msgc)Eff: (* E�ect clause from T CPs *): : :else if modes 6= rec then f: : :if snc = acks then: : :if modes = syn-rcvd then fassoc := assoc [ f(isnsc; isns)g: : :receive-segcs(snc, ackc, msgc, FIN)Eff: (* E�ect clause from T CPs *): : :else if modes 6= rec then f: : :if snc = acks _ snc = acks + 1 then: : :if ackc = sns + 1 then f: : :if modes = syn-rcvd then fassoc := assoc [ f(isnsc; isns)g: : :Figure 7-1: Steps where T CPh di�ers from T CP. The client side is on the left and the server sideon the right. 101



7.2 InvariantsDuring the process of performing a simulation proof it becomes clear that certain invariantsare needed. This happens when the simulation relation does not hold for some situation, butit turns out the situation happens in an unreachable state. Thus, an invariant that avoidsthese \bad" states is found. In this section we present the invariants we need for the re�ne-ment mapping from T CPh to Dp. The proofs for these invariants are given in Appendix B.We present the invariants before we present the simulation because for correctness they areneeded before the simulation. However, we discovered most of the invariants we need whilecarrying out the simulation.2 Some of the invariants presented below have several parts.The invariant is the conjunction of the di�erent parts. The properties stated below are trueof all reachable states of T CPh.The �rst set of invariants, Invariants 7.1 through 7.12, state basic properties about therelationships between sequence numbers, sequence numbers on segments, acknowledgmentnumbers, acknowledgment numbers on segments, and initial sequence numbers. Theseinvariants are mainly used in the proofs of other more complicated invariants.Invariant 7.11. For all segments p 2 in-transitcs, snc � sn(p).2. For all segments p 2 in-transitsc, sns � sn(p).Invariant 7.21. If ack s 2 N then acks � snc + 1.2. If ack c 2 N then ackc � sns + 1.Invariant 7.31. For all segments p 2 in-transitsc, ack(p) � snc + 1.2. For all segments p 2 in-transitcs, ack(p) � sns + 1.Invariant 7.41. If modec = syn-sent then for all non-SYN segments p 2 in-transitcs, sn(p) < isnc.2In terms of understanding the correctness proof in this chapter, it might be better to start readingSection 7.3 on the simulation �rst, and only read the invariants as they are referred to in that section.102



2. If modes = syn-rcvd then for all non-SYN segments p 2 in-transitsc, sn(p) < isns.Invariant 7.51. isnc 6= nil if and only if modec 6= closed.2. isncs 6= nil if and only if modec 62 fclosed; syn-sentg.3. isns 6= nil_ isnsc 6= nil if and only if modes 62 fclosed; listeng.Invariant 7.61. If isnsc 6= nil then isnsc � snc.2. If isnsc 6= nil then isnsc < acks.3. If isncs 6= nil then isncs � sns.4. If isncs 6= nil then isncs < ackc.5. If isnc 6= nil then isnc � snc.6. If isns 6= nil then isns � sns.Invariant 7.7If modes = syn-rcvd then ack s = isnsc + 1.Invariant 7.8If (i; j) 2 assoc then i � snc ^ j � sns.Invariant 7.91. If isnc 6= nil ^ choose-isnc = true then isnc 6= isnsc.2. If isns 6= nil ^ choose-isns = true then isns 6= isncs.Invariant 7.101. If modec = syn-sent then snc = isnc.2. If modec = syn-rcvd then sns = isns.Invariant 7.111. If choose-isnc ^ isnc = i then 8 SYN segments p 2 in-transitcs, sn(p) < i ^8 SYN segments q 2 in-transitsc, ack(q) < i+ 1.103



2. If choose-isns^isns = i then 8 SYN segments p 2 in-transitsc, sn(p) < j^8 segments q 2in-transitcs, ack(q) < i+ 1.Invariant 7.121. For all i 2 N [ fnilg; (i; nil) 62 estb-pairs.2. For all j 2 N [ fnilg; (nil; j) 62 estb-pairs.3. For all i 2 N [ fnilg; (i; nil) 62 assoc.4. For all j 2 N [ fnilg; (nil; j) 62 assoc.Invariant 7.13 is directly used to in the simulation proof. It states that if a host hasstarted the close phase (indicated by its mode), it must have received the signal to closefrom the user (rcvd-closec or rcvd-closes is true), and it must have sent all the data itreceived from the user (the send bu�ers are empty).Invariant 7.131. Ifmodec 2 ffin-wait-1, fin-wait-2, closing, timed-wait, last-ackg then send-buf c =� ^ rcvd-closec = true.2. Ifmodes 2 ffin-wait-1, fin-wait-2, closing, timed-wait, last-ackg then send-buf s =� ^ rcvd-closes = true.Invariant 7.14, is also used directly in the simulation proof. It states that before theserver gets to a synchronized state, it does not accept any messages, so its receive bu�er isempty.Invariant 7.14If modes 2 flisten; syn-rcvdg then rcv-buf s = �.The next invariant that is directly referred to in the simulation proof is Invariant 7.30.The invariants up to that one are needed for its proof and/or the proof of subsequentinvariants. Invariant 7.15 is about the three-way handshake protocol. It states that if theclient has sent the segment for the �nal leg of the protocol (ack(p) > sns), and neither it104



nor the server closed since the �rst segment for the protocol was sent (isnc = isnsc), thenthe client cannot be in mode syn-sent.Invariant 7.15If isnc = isnsc and there exists p 2 in-transitcs such that ack(p) > sns then modec 6=syn-sent.Parts one and two of the next invariant states that before the client or server gets toa synchronized state, there initial sequence number is not part of an association pair, andParts three and four states that when the client and server �rst choose initial sequencenumbers, the number is not part of a pair in the set estb-pairs.Invariant 7.161. If modes = syn-rcvd then for all i, (i; isns) 62 assoc.2. If modec = syn-sent then for all j, (isnc; j) 62 assoc.3. If modes = syn-rcvd ^ choose-isns then for all i, (i; isns) 62 estb-pairs.4. If modec = syn-sent then for all j, (isnc; j) 62 estb-pairs.Invariant 7.17 states that the client's initial sequence number becomes part of a pair inestb-pairs if and only if the client is in a synchronized mode, unless it crashed or receiveda reset.Invariant 7.171. If modec 2 sync-states then (isnc; isncs) 2 estb-pairs2. If (isnc; isncs) 2 estb-pairs ^modec 62 frec; resetg then modec 2 sync-states.The next invariant states that if the initial sequence number of the client and the initialsequence number of the server form an association pair, then the initial sequence numberof the client, and what the client believes to be the initial sequence number of the serverisncs are a pair in estb-pairs. 105



Invariant 7.18If (isnc; isns) 2 assoc ^modec 62 frec; resetg then (isnc; isncs) 2 estb-pairs.Invariants 7.19 and 7.20 are about the open phase of the protocol. Informally speaking,they imply that during this phase of the protocol, the client and server are not out ofsynch, unless there is a crash or a reset. Invariant 7.19 states that when the client is inmode syn-sent, and the server has received the client's initial sequence number, the servercannot yet be in a synchronized mode, and in mode syn-rcvd, and Invariant 7.20 statesthat if the server is in mode syn-rcvd it knows the client's initial sequence number and theclient knows the server's initial sequence number, then the client must be in a synchronizedstate.Invariant 7.19If modec = syn-sent^ isnc = isnsc then modes 62 sync-states.Invariant 7.20If isnc = isnsc ^ isns = isncs ^ modes = syn-rcvd ^ modec 62 fclosed; rec; resetg thenmodec 2 sync-states.Invariant 7.21 is needed for the proof of Invariant 7.22 which is in turn needed for theproof of Invariant 7.23. Invariant 7.23 states that whenever the client has an acknowledg-ment number, it is greater than or equal to the acknowledgment number of any segmenton the out going channel of the client. The acknowledgment number of the client gets anon-nil value when the client receives a valid SYN segment from the server. The value is thesequence number plus one of this SYN segment. Invariant 7.22 states that the value of thissequence number is greater than or equal to the acknowledgment number of any segment onthe out going channel of the client. The sequence number of this segment was the sequencenumber of the server in mode syn-rcvd, so Invariant 7.21 states that when the server hasthis sequence number it is greater than or equal to any acknowledgment number on the outgoing channel of the client.Invariant 7.21If modec = syn-sent ^ modes = syn-rcvd ^ acks = snc + 1 then for all segments p 2in-transitcs, sns � ack(p). 106



Invariant 7.22If modec = syn-sent then for all SYN segments p 2 in-transitsc such that ack(p) = snc+1,sn(p) � ack(q) for all q 2 in-transitcs.Invariant 7.23If ackc 2 N then for all p 2 in-transitcs, ackc � ack(p).Invariant 7.24 states that under certain conditions the acknowledgment number at theserver is always bigger than the acknowledgment number of any segment on the out goingchannel of the server. This property is almost symmetric to the property expressed in In-variant 7.23. However, there are more conditions in the premise of this invariant because ifthe server receives an old duplicate SYN segment from the client, it may set its acknowl-edgment number to a value less than the acknowledgment number of some segments on itsout going channel. The conditions in the premise rule out this case.Invariant 7.24If isnc = isnsc ^ isns = isncs ^ modec 2 sync-states ^ modes 62 frec; resetg then for allsegments p 2 in-transitsc, acks � ack(p).One important property of the protocol is that if the client's and server's initial sequencenumbers are in assoc or estb-pairs then the client knows the correct initial sequence numberof the server and vice-versa. This property is stated as Invariant 7.28. Invariants 7.25, 7.26,and 7.27 are used for the proof of this property. Invariant 7.25 states that if the client is in asynchronized mode and there is a segment from the server on the channel that has data thatthe client can accept (sn(p) � ackc), then either the server is not in mode syn-rcvd, or if itis in mode syn-rcvd, it is out of synch with the client, so it cannot receive a valid ack fromthe client because ackc < isns. Invariants 7.26, and 7.27 are straightforward. Basically,they state that in the states leading up to when the pair (isnc; isns) pair is added to eitherassoc, or estb-pairs, the client and server know the other's initial sequence numbers.Invariant 7.25If modec 2 sync-states ^modes 62 fclosed; rec; resetg^ isnc = isnsc and there exists a non-SYN segment p 2 in-transitsc such that sn(p) � ackc, then modes 6= syn-rcvd_ackc < isns.107



Invariant 7.26If modes = syn-rcvd^ isnc = isnsc ^ ackc = isns + 1 then isns = isncs.Invariant 7.27If modes = syn-rcvd ^ isnc = isnsc and there exists a non-SYN segment p 2 in-transitcssuch that ack(p) = isns + 1 then isns = isncs.Invariant 7.281. If (isnc; isns) 2 assoc then isncs = isns ^ isnsc = isnc.2. If (isnc; isns) 2 estb-pairs then isncs = isns ^ isnsc = isnc.Invariant 7.29 is very similar to Invariant 7.24. It gives di�erent conditions under whichthe acknowledgment number at the server is greater than or equal to the acknowledgmentnumber of any out going segments.Invariant 7.29If (isnc; isns) 2 assoc^modec 62 frec; resetg then for all segments p 2 in-transitsc, acks �ack(p).Invariant 7.30 is a key one. The conditions in the premise of the invariant are basicallythe conditions under which a host prepares a message to be sent. Thus, the invariant statesthat the hosts only prepares new messages if the previous message has been acknowledged(snc < acks or sns < ackc).Invariant 7.301. Ifmodec 2 festb; close-waitg^:ready-to-send c ^modes 62 frec; resetg^(isnc; isns) 2estb-pairs ^ isnsc = isnc then snc < acks.2. Ifmodes 2 festb; close-waitg^:ready-to-send s ^modec 62 frec; resetg^(isnc; isns) 2assoc then sns < ackc.Invariant 7.33 is another key invariant. It expresses an essential correctness property ofthe protocol. It states that an initial sequence number from the client can only be pairedwith a unique initial sequence number from the server, and vice-versa. Invariants 7.31and 7.32 are used for the proof of this invariant.108



Invariant 7.311. If (i; isns) 2 assoc then isnsc = i.2. If (isnsc; j) 2 assoc^modes 2 sync-states then isns = j.Invariant 7.32If (isnsc ; j) 2 assoc ^ isns 6= j ^modes 62 frec; resetg then modes = syn-rcvd.Invariant 7.331. If (h; j) 2 assoc^ (i; j) 2 assoc then h = i.2. If (i; j) 2 assoc ^ (i; k) 2 assoc then j = k.Invariant 7.34 is also used directly in the simulation proof. It states that if the clientis in a synchronized state and the initial sequence number of the server is part of a pair inthe set estb-pairs, then the other part of the pair must be the initial sequence number ofthe client.Invariant 7.34If modes 2 fsyn-rcvdg [ sync-states ^ modec 2 sync-states and there exists i such that(i; isns) 2 estb-pairs then i = isnc.Invariant 7.36 is also important, it says that if the message at a host is not null, andthere is a segment with the same sequence number as the host, then the segment musthave the same message as the host. Invariant 7.37 is another key invariant that express anessential correctness property. It states that if two segments on the same channel have thesame sequence number, it the messages on the segments are not null, then they must havethe same message. Invariant 7.35 is a preliminary step in the proof of Invariant 7.37. Itstates that if the message at the host is di�erent from the message on a segment, then thesequence number of the segment is strictly less than the current sequence number of thehost.Invariant 7.351. If there exists p 2 in-transitcs such that msg(p) 6= msgc then sn(p) < snc _ msgc =null. 109



2. If there exists p 2 in-transitsc such that msg(p) 6= msgs then sn(p) < sns _ msgs =null.Invariant 7.361. If msgc 6= null and there exists p 2 in-transitcs such that sn(p) = snc then msg(p) =msgc.2. If msgs 6= null and there exists p 2 in-transitsc such that sn(p) = sns then msg(p) =msgs.Invariant 7.371. If there exists segments p and q on in-transitcs such that sn(p) = sn(q) ^ msg(p) 6=null ^ msg(q) 6= null then msg(p) = msg(q).2. If there exists segments p and q on in-transitsc such that sn(p) = sn(q) ^ msg(p) 6=null ^ msg(q) 6= null then msg(p) = msg(q).Invariant 7.38 states a property that is easy to see and prove. This property is useddirectly in the simulation proof.Invariant 7.38If modes 2 sync-states then (isnsc ; isns) 2 assoc.Invariant 7.47 states a similar property about the client. It states that when the clientis in a mode that indicates it has received a FIN segment from the server, then its initialsequence number is part of an association pair. However, to prove the property for theclient side requires a few more steps. When the server �rst gets to a synchronized mode,its initial sequence number is paired with isnsc and added to assoc. In order to provethat the client's initial sequence number also becomes a part of an association pair, wehave to prove that when the pair is added to assoc, that isnsc = isns. This property isstated in Invariant 7.44. To prove this property, we examined properties that are true ifisnsc 6= isns. The main property that we show when isnsc 6= isns is stated in Invariant 7.41.This invariant states that if the client is in a synchronized state and the server is in modesyn-rcvd, and if isnsc 6= isns, then there are no segments on the channel that can cause theserver to go to a synchronized mode and to add a pair to assoc. To prove Invariant 7.41 we110



use Invariant 7.40 which states that the acknowledgment number of the client is less thansns + 1 under the same conditions. To prove Invariant 7.40 we use Invariant 7.39 whichstates that the segment that causes the client to go to a synchronized mode, has sequencenumber (on which the acknowledgment number of the client is based) that is strictly lessthan the sequence number of the server when isnc 6= isnsc.Invariant 7.39If modec = syn-sent ^ modes = syn-rcvd ^ isnc 6= isnsc then for all SYN segments p 2in-transitsc such that ack(p) = snc + 1, sn(p) < sns.Invariant 7.40If modec 2 sync-states ^modes = syn-rcvd^ isnc 6= isnsc then ackc < sns + 1.Invariant 7.41If modec 2 sync-states ^ modes = syn-rcvd ^ isnc 6= isnsc then for all segments p 2in-transitcs, ack(p) < sns + 1.Invariant 7.43 is also used in the proof of Invariant 7.44. It states that when the client�rst becomes established for an incarnation, the server is not yet in a synchronized mode.To prove Invariant 7.43 we use Invariant 7.42 which states if there is a segment on theincoming channel of the server that can cause it to go to a synchronized mode, then theclient cannot be in mode syn-sent, because it needs to be in a synchronized mode in orderto send this segment, or if the client is in mode syn-sent, then it must have closed andreopened, so there are no segments from the server that can acknowledge the new sequencenumber of the client.Invariant 7.42If modes = syn-rcvd and there exists p 2 in-transitcs such that ack(p) = sns + 1, thenmodec 6= syn-sent or for all SYN segments q 2 in-transitsc, ack(q) 6= snc + 1.Invariant 7.43If modec = syn-sent and there exists SYN segment p 2 in-transitsc such that ack(p) =snc + 1, then modes 62 sync-states and for all i 2 N (i; isns) 62 assoc.Invariant 7.44If modec 2 sync-states ^ (isnsc; isns) 2 assoc then isnc = isnsc .111



Once we have Invariant 7.44 we can use it along with Invariant 7.45 and some previouslyde�ned invariants to prove Invariant 7.46 which is the invariant directly used in the proofof Invariant 7.47. Invariant 7.46 states that if there is a segment on the incoming channel ofthe client that can cause it to be in one of the modes in the premise of Invariant 7.47, thenthe initial sequence number of the client is already part of an association pair. Invariant 7.45says when the client �rst gets to a synchronized mode, there are no additional segments onthe channel that can cause it to change modes.Invariant 7.45If modec = syn-sent and there exists a SYN segment p 2 in-transitsc such that ack(p) =snc + 1 then for all non-SYN segments q 2 in-transitsc, sn(q) < sn(p) + 1.Invariant 7.46If modec 2 sync-states and there exists a non-SYN segment p 2 in-transitsc such thatsn(p) � ackc then there exists j such that (isnc; j) 2 assoc.Invariant 7.47If modec 2 fclose-wait; closing; last-ack; timed-waitg then 9 j such that (isnc; j) 2assoc.The next invariant that is used directly in the simulation proof is Invariant 7.52. Itstates that if a host is in a mode that indicates it has received a FIN segment, and its initialsequence number is paired with the other host's initial sequence number, then that otherhost must be in a mode that indicates that it sent the FIN segment. That is, if a hostaccepts a FIN segment, it must be a legitimate FIN segment for the current incarnation ofthe connection. To prove Invariant 7.52, we use Invariants 7.49 and 7.51. Invariant 7.49states that before the server gets to a synchronized state, the client could not have alreadyreceived a legitimate FIN segment, and Invariant 7.51 states that when there is a legitimateFIN segment from the server on the way to the client, the server must be in a mode thatindicates it sent this segment. To prove Invariant 7.49 we use Invariant 7.48 which saysessentially the same thing as Invariant 7.49, but the condition in the premise about thestate from which the client sends the segment mention in the premise of Invariant 7.49. Toprove Invariant 7.51 we use Invariant 7.50 which says if there is a legitimate FIN segment112



from the client to the server before the server gets to a synchronized mode, the client mustbe in a mode that indicates that it sent a FIN segment.Invariant 7.48If modes = syn-rcvd ^ isnc = isnsc ^ ackc = isns+1 then modec 62 fclose-wait, closing,last-ack, timed-waitg.Invariant 7.49If modes = syn-rcvd ^ isnc = isnsc and there exists a non-SYN segment p 2 in-transitcssuch that ack(p) = sns + 1 then modec 62 fclose-wait, closing, last-ack, timed-waitg.Invariant 7.50If modes = syn-rcvd^modec 62 fclosed; rec; resetg and there exists a non-SYN segmentp 2 in-transitcs such that ack(p) = sns + 1 and there exists a FIN segment q 2 in-transitcssuch that (sn(q) � max(acks; sn(p)+1)_(p = q^sn(q) � acks)) then modec 2 ffin-wait-1,fin-wait-2, closing, timed-wait, last-ackg.Invariant 7.511. If modec 2 sync-states ^modes 62 frec; resetg ^ (isnc; isns) 2 assoc and there existsa FIN segment p 2 in-transitsc such that sn(p) � ackc then modes 2 ffin-wait-1,fin-wait-2, closing, timed-wait, last-ackg.2. If modes 2 sync-states ^modec 62 frec; resetg ^ (isnc; isns) 2 estb-pairs ^ isnc = isnscand there exists a FIN segment p 2 in-transitcs such that sn(p) � acks then modec 2ffin-wait-1, fin-wait-2, closing, timed-wait, last-ackg.Invariant 7.521. If modec 2 fclose-wait; closing; last-ack; timed-waitg^modes 62 frec, resetg ^(isnc; isns) 2 assoc then modes 2 ffin-wait-1, fin-wait-2, closing, timed-wait,last-ackg.2. If modes 2 fclose-wait; closing; last-ack; timed-waitg^modec 62 frec, resetg ^(isnc; isns) 2 estb-pairs ^ isnc = isnsc then modec 2 ffin-wait-1, fin-wait-2,closing, timed-wait, last-ackg. 113



Invariant 7.53 also expresses a key correctness property. It states that when a hostreceives a segment from which it may accept data (sn(p) � ackc or sn(p) � acks), then thesender has not changed its sequence number from the time it sent this segment. Another wayto state the property expressed by the invariant is: sequence numbers do not get changeduntil the data sent with that sequence number is acknowledged.Invariant 7.531. If modes 2 fsyn-rcvdg [ sync-states ^modec 2 frec; resetg [ sync-states ^ isnc =isnsc ^ isns = isncs and there exists p 2 in-transitcs such that sn(p) � acks, thensnc = sn(p).2. If modec 2 sync-states ^ (isnc; isns) 2 assoc and there exists p 2 in-transitsc such thatsn(p) � ackc, then sns = sn(p).Invariants 7.54, 7.55, and 7.56 state an important correctness property. They state thatsegments that cause the the value of the message variable on the segment to be added tothe receive bu�er, contains valid messages. That is, they contain messages that are notnull.Invariant 7.541. If modes 2 fsyn-rcvdg [ sync-states ^ modec 2 sync-states ^ (ready-to-send c _send-�nc) ^ (isnc; isns) 2 estb-pairs ^ isnsc = isnc ^ ((snc = acks ^ :(rcvd-closec ^send-buf c = �)) _ snc = acks + 1) then msgc 6= null.2. If modec 2 sync-states ^ (isnc; isns) 2 assoc ^ (ready-to-sends _ send-�ns) ^ ((sns =ackc) ^ :(rcvd-closes ^ send-buf s = �)) _ (sns = ackc + 1) then msgs 6= null.Invariant 7.551. If modes 2 sync-states and there exists non-FIN segment p 2 in-transitcs such thatsn(p) = acks or a FIN segment p 2 in-transitcs such that sn(p) = acks + 1 thenmsg(p) 6= null.2. If modec 2 sync-states and there exists non-FIN segment p 2 in-transitsc such thatsn(p) = ackc or a FIN segment p 2 in-transitsc such that sn(p) = ackc + 1 thenmsg(p) 6= null. 114



Invariant 7.56If modes = syn-rcvd and there exists non-FIN segment p 2 in-transitcs such that sn(p) =acks or a FIN segment p 2 in-transitcs such that sn(p) = acks+1 and ack(p) = sns+1 thenmsg(p) 6= null.The next invariant is also used directly in the simulation proof. It states that when ahost is in a mode that indicates that it received a FIN segment, then if the other host has notclosed since sending the FIN segment, its sequence number is less than the acknowledgmentnumber of the host that received the FIN segment. The reason for this is that once a hostsends a FIN segment it does not send any more data before it closes, so it does not increaseits sequence number, and the host that receives the FIN segment sets its acknowledgmentnumber to the sequence number plus one of the FIN segment.Invariant 7.571. If modec 2 fclose-wait; closing; last-ack; timed-waitg ^modes 62 frec; resetg^ (isnc; isns) 2 assoc then sns < ackc.2. If modes 2 fclose-wait; closing; last-ack; timed-waitg ^modec 62 frec; resetg^ (isnc; isns) 2 estb-pairs ^ isnc = isnsc then snc < acks.When a host closes normally in TCP, it closes either from mode last-ack, or from modetimed-wait after wait for a period of 2�. Invariant 7.59 states that when a host closes frommode last-ack its receive bu�er is empty, and Invariant 7.61 says the bu�er is empty ifthe close is from timed-wait state. That is, hosts pass all the data to the user before theyclose under normal conditions. To prove Invariant 7.59 we use Invariant 7.58 which statesthat when the host is in a mode that indicates that it has received a FIN segment, eithera ag (push-data c or push-data s) is set that forces the host to pass all the data to the userbefore it does anything else, or the receive bu�er is empty. In the proof of Invariant 7.61 weuse Invariant 7.60. This invariant states that if a host that sent a FIN and also received aFIN (mode is closing) then if it has already sent an acknowledgment for the received FINsegment (send-�n-ackc or send-�n-acks is true), its receive bu�er must already be empty.115



These conditions (mode is closing and send-�n-ackc or send-�n-acks is true) must be truebefore a host starts timed-wait state.Invariant 7.581. Ifmodec 2 fclose-wait; closing; timed-waitg^modes 62 frec; resetg ^ (isnc; isns) 2assoc then push-data c = true _ rcv-buf c = �.2. If Ifmodes 2 fclose-wait; closing; timed-waitg ^modec 62 frec; resetg ^ (isnc; isns) 2estb-pairs ^ isnc = isnsc then push-data s = true _ rcv-buf s = �.Invariant 7.591. If modec = last-ack ^modes 62 frec; resetg ^ (isnc; isns) 2 assoc then rcv-buf c = �.2. If modes = last-ack ^modec 62 frec; resetg ^ (isnc; isns) 2 estb-pairs ^ isnc = isnscthen rcv-buf s = �.Invariant 7.601. If modec = closing ^ send-�n-ackc = true then rcv-buf c = �.2. If modes = closing ^ send-�n-ackc = true then rcv-buf s = �.Invariant 7.611. If modec = timed-wait ^ �rst(t-outc) 2 T then rcv-buf c = �.2. If modes = timed-wait ^ �rst(t-outs) 2 T then rcv-buf s = �.The remaining invariants are about situations where the hosts have formed an incarna-tion or are about to form one, but one of the host may have closed since the incarnationwas formed. When it is the server that may have closed, it is indicated in the invari-ants as the property modec 2 sync-states and there exists j such that (isnc; j) 2 assoc,and when it is the client that may have closed, it is indicated by the property modes 2fsyn-rcvdg [ sync-states and there exists i, such that i = isnsc ^ (i; isns) 2 estb-pairs.Invariant 7.62 is used directly in the simulation proof. The property it expresses isimportant for the p-pair c and p-pair s derived variables. The invariant states that when ahost receives a segment that may have acceptable data (sn(p) � ackc or sn(p) � acks), thenall other segments q on the channel have sn(q) � sn(p). This means that if the message was116



a part of a possible pair, the set becomes empty after this message is received because whenthe segment is received the acknowledgment number of the receiving host is set to sn(p)+1.This invariant and Invariant 7.64 also gives the property that in any state there is at mostone element in the possible pairs sets. Invariant 7.64 states that there cannot be segmentson the channel at the same time that have sequence number equal to the acknowledgmentnumber of the receiving host plus one, and also segments that have sequence number equalto the acknowledgment number of the receiving host. Invariant 7.63 is used in the proofof Invariant 7.64. It states that if the actual sequence number of the sending host is equalto the acknowledgment number of the receiving host plus, then there are no segments onthe outgoing channel of the sender that has sequence number equal to the acknowledgmentnumber of the receiving host.Invariant 7.621. If modec 2 sync-states and there exists j such that (isnc; j) 2 assoc and there existsa non-SYN segment p 2 in-transitsc such that sn(p) � ackc, then for all non-SYNsegments q 2 in-transitsc sn(q) � sn(p).2. If modes 2 fsyn-rcvdg[sync-states and there exists i, such that i = isnsc ^ (i; isns) 2estb-pairs and there exists a non-SYN segment p 2 in-transitcs such that sn(p) � acks,then for all non-SYN segments q 2 in-transitcs sn(q) � sn(p).Invariant 7.631. If modec 2 frec; resetg [ sync-states ^ modes 2 fsyn-rcvdg [ sync-states ^ isnc =isnsc ^ (isnc; isns) 2 estb-pairs ^ snc = acks + 1 then for all non-SYN segments p 2in-transitcs, sn(p) 6= acks.2. If modec 2 sync-states ^ (isnc; isns) 2 assoc ^ sns = ackc + 1 then for all non-SYNsegments p 2 in-transitsc, sn(p) 6= ackc.Invariant 7.641. If modec 2 sync-states and there exists j such that (isnc; j) 2 assoc and there existsa non-SYN segment p 2 in-transitsc such that sn(p) = ackc + 1, then for all non-SYNsegments q 2 in-transitsc, sn(q) 6= ackc.117



2. If modes 2 fsyn-rcvdg[sync-states and there exists i, such that i = isnsc ^ (i; isns) 2estb-pairs and there exists a non-SYN segment p 2 in-transitcs such that sn(p) =acks + 1, then for all non-SYN segments q 2 in-transitcs, sn(q) 6= acks.Invariant 7.65 is similar to Invariant 7.57, and serves a similar purpose. However, in thisinvariant, since the sending host may have closed, the property expressed by the invariantcompares the sequence number of segments as opposed to the actual sequence numbers.Invariant 7.651. If modec 2 fclose-wait; closing; last-ack; timed-waitg and there exists j suchthat (isnc; j) 2 assoc then for all non-SYN segments p 2 in-transitsc, sn(p) < ackc.2. If modes 2 fclose-wait; closing; last-ack; timed-waitg and there exists i, suchthat i = isnsc ^ (i; isns) 2 estb-pairs then for all non-SYN segments p 2 in-transitcs,sn(p) < ackc.Invariants 7.66 and 7.67 are similar to Invariants 7.58 and 7.59 respectively. The di�er-ence being that the properties are expressed for the situation where one of the hosts mighthave closed after the connection is formed.Invariant 7.661. Ifmodec 2 fclose-wait; closing; timed-waitg and there exists j such that (isnc; j) 2assoc then push-data c = true _ rcv-buf c = �.2. If If modes 2 fclose-wait; closing; timed-waitg there exists i such that (i; isns) 2estb-pairs ^ isnc = isnsc then push-data s = true _ rcv-buf s = �.Invariant 7.671. If modec = last-ack and there exists j such that (isnc; j) 2 assoc then rcv-buf c = �.2. If modes = last-ack and there exists i, such that i = isnsc ^ (i; isns) 2 estb-pairsthen rcv-buf s = �.The �nal signi�cant invariant is Invariant 7.70. It is used directly in the simulationproof, and it states that if a host is in mode that indicates that it received a FIN segment,118



then the other host must either have the ag set that indicates it received a close signalfrom its user, or if the ag is not set to true, it must be because the host closed after sendingthe FIN segment. Invariants 7.68 and 7.69 are used in the proof of this invariant. They aresimilar to Invariants 7.50 and 7.51 respectively.Invariant 7.68If modes = syn-rcvd and there exists a non-SYN segment p 2 in-transitcs such thatack(p) = sns + 1 and there exists a FIN segment q 2 in-transitcs such that (sn(q) �max(acks; sn(p) + 1)_ (p = q ^ sn(q) � acks)) then rcvd-closec = true _ isnc 6= isnsc.Invariant 7.691. If modec 2 sync-states and there exists j such that (isnc; j) 2 assoc and there exists aFIN segment p 2 in-transitsc such that sn(p) � ackc then rcvd-closes = true _ isns 6=j.2. If modes 2 sync-states and there exists i such that (i; isns) 2 estb-pairs^ i = isnsc andthere exists a FIN segment p 2 in-transitcs such that sn(p) � acks then rcvd-closec =true _ isnc 6= i.Invariant 7.701. If modec 2 fclose-wait; closing; last-ack; timed-waitg and there exists j suchthat (isnc; j) 2 assoc then rcvd-closes = true _ isns 6= j.2. If modes 2 fclose-wait; closing; last-ack; timed-waitg and there exists i suchthat (i; isns) 2 estb-pairs ^ i = isnsc then rcvd-closec = true _ isnc 6= i.The conjunction of all the above invariants is itself an invariant, and we call this InvariantIT .7.3 The simulation proofIn this section we de�ne a mapping from states of T CPh to states of Dp, and then provethat it is a timed re�nement mapping with respect to Invariants IT and ID.119



7.3.1 The re�nement mappingWe de�ne a function Rtd from states(T CPh) to states(Dp). In the de�nition, when wewrite, for example, \(send-buf c � ok)", we mean the element of (Msg � Flag)� obtainedfrom send-buf c by pairing every message with ok. If send-buf c is unde�ned or empty then\(send-buf c � ok)" is the empty string.De�nition 7.1 (Re�nement Mapping from T CPh to Dp)For our mapping the CID and SID are instantiated by the set of non-negative integers. Ifs 2 states(T CPh) then de�ne Rtd to be the state u 2 states(Dp) such that:1. u:now = s:now2. u:choose-sid = (s:modes = listen)3. u:recc = (s:modec = rec)u:recs = (s:modes = rec)4. u:abrtc = (s:modec = reset)u:abrts = (s:modes = reset)5. u:used-idc = s:used-idcu:used-ids = s:used-ids6. u:idc = s:isncu:ids = s:isns7. u:assoc = s:assoc8. u:modec = active if s:rcvd-closec = false= inactive if s:rcvd-closec = true _modec = closedu:modes = active if s:rcvd-closes = false= inactive if s:rcvd-closes = true_modes = closed9. u:q-statcs(i) = live if (s:isnc = i ^ 8 j (i; j) 62 s:estb-pairs) _ ((i; s:isns) 2s:estb-pairs ^ s:isnsc = i ^ s:modes 62 frec; resetg)= dead otherwiseu:q-statsc(j) = live if (s:isns = j ^ 8 i; (i; j) 62 s:assoc) _ ((s:isnc; j) 2 s:assoc ^s:modec 62 frec; resetg)= dead otherwise 120



10. u:queuecs(i) = � if (s:isnc 6= i ^ 8 j (i; j) 62 s:estb-pairs) _((i; j) 2 s:estb-pairs ^ (s:isnsc 6= i _ s:modes 2frec; resetg)) (A)= (s:send-buf c � ok) if s:isnc = i ^ 8 j (i; j) 62 s:estb-pairs ^s:modec 2 fsyn-sent; rec; resetg (B)= concatenation of:�(s:rcv-buf s � ok)� s.current-msgc�(s:send-buf c � ok) if s:isnc = i ^ s:modec 62 frec; resetg ^(i; s:isns) 2 s:estb-pairs ^ s:isnsc = i ^s:modes 62 frec; resetg (C)= concatenation of:�(s:rcv-buf s � ok)�(data(s:p-pair c)� marked) if (s:isnc 6= i _ s:modec 2 frec; resetg) ^((i; s:isns) 2 s:estb-pairs ^ s:isnsc = i ^s:modes 62 frec; resetg) (D)11. u:queuesc(j) = � if (s:isns 6= j ^ 8 i; (i; j) 62 s:assoc) _ ((i; j) 2s:assoc^(s:isnc 6= i_s:modec 2 frec; resetg))(A)= (s:send-buf s � ok) if s:isns = j ^ 8 i; (i; j) 62 s:assoc ^ s:modes 2fsyn-rcvd; rec; resetg (B)= concatenation of:�(s:rcv-buf c � ok)� s.current-msgs�(s:send-buf s � ok) if s:isns = j ^ s:modes 62 frec; resetg ^(s:isnc; j) 2 s:assoc ^ s:modec 62 frec; resetg(C)= concatenation of:�(s:rcv-buf c � ok)�(data(s:p-pairs)� marked) if (s:isns 6= j _ s:modes 2 frec; resetg) ^((s:isnc; j) 2 s:assoc^s:modec 62 frec; resetg)(D)We present some intuition behind the mapping. The choosing of initial sequence num-bers by the client and server in T CPh, corresponds to the choosing of ids by the client andserver in Dp. In T CPh, when the server opens it does not immediately choose an initial se-quence number, but chooses one when it receives a SYN segment from the client. Therefore,we map the state where modes is listen in T CPh, to the state where choose-sid is true inthe speci�cation. The mapping of s:now, s:used-idc, s:used-ids, and s:assoc are all straight-forward. When s:modec = rec and s:modes = rec obviously correspond to the the states inthe speci�cation where u:recc and u:recs respectively, are true. Similarly, s:modec = resetand s:modes = reset correspond to the states where u:abrtc and u:abrts respectively aretrue.In the speci�cation, a host is active when it receives an open input, but has not yetreceived a close input for the current incarnation. In T CPh when the client or server receivesthe signal to open rcvd-closec or rcvd-closes respectively, is initialized to false. When thesignal to close is received, rcvd-closec or rcvd-closes is set to true. Therefore, rcvd-closec121



or rcvd-closes having the value false maps to the respective host in Dp having its modebe active in the speci�cation, and rcvd-closec or rcvd-closes having the value true or thehost being closed corresponds to the respective host having its mode be inactive in thespeci�cation. We need to map the mode of the host being closed in T CPh to the mode of thehost being inactive in the speci�cation because rcvd-closec and rcvd-closes are unde�nedwhen a host is closed.In T CPh there are four variables that correspond to parts of the abstract queue formessages going in a particular direction. For example, messages from the client to the servermay be in send-buf c, msgc, in-transitcs, and rcv-buf s. If any of these variables contain avalid message, then the abstract queue to which that variable is mapped must be live. Forexample, when the client opens and assigns isnc the value i, it may also add a valid messageto sbufc, so the abstract queue, queuecs(i), becomes live. This abstract queue remainslive as long as the client has isnc = i. Even if client crashes, receives a reset, or closes,queuecs(i) remains live if ((i; isns) 2 estb-pairs) and (isnsc = i) and (modec 62 frec; resetg).The queue, remains live in this situation because there might still be a messages from theclient in in-transitcs and rcv-buf s that the server may deliver to its user. For this case weuse the condition (i; isns) 2 estb-pairs as opposed to (i; isns) 2 assoc because the client mayclose while there is a segment on the channel with a valid message, which if it arrives atthe server and the server has not crashed or closed, causes the pair (i; isns) to be added toassoc, and the message to be delivered. In these situations the queue becomes dead if theserver crashes or closed, because if the server crashes or closes no more data can be receivedfrom the corresponding abstract queue. However, in the situation before the client's initialsequence number is paired with an initial sequence number from the server and added toestb-pairs, it does not matter if the server has crashed or closed, so the queue is live.For the variables that map to an abstract queue, queuesc(j), that take messages from theserver to the client, the situation is essentially symmetric, except that (isnc; j) 2 assoc isthe condition required for messages to be still valid if the server crashes, resets, or closesafter choosing isns = j.We break the di�erent states of T CPh that maps to states of Dp where a queue is liveinto three di�erent cases for abstract queues in each direction. We also have a fourth case122
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MappingFigure 7-2: Example of the mapping of variables of TCP to the abstract queue of the speci�cation.for queues in each direction, which corresponds to the situation where the abstract queueis dead. We refer to the cases as (A), (B), (C), and (D), for queues in each direction.For queuecs(i) the �rst case, (A), is the situation where the states of T CPh maps toq-stat cs being dead. For this situation queuecs(i) is empty.The second case, (B), is the situation where the client �rst assigns isnc to i, and beforemodec gets to estb. For this case the queue is just (s:send-buf c � ok) even if the client isin recovery or reset mode.Case (C) occurs when the client is in a synchronized mode, ((isnc; isns) 2 estb-pairs),the server knows the current initial sequence number of the client (isnsc = i), and the serveris not in recovery or reset mode. This case is illustrated in Figure 7-2. This situation, wherethe client and server are either synchronized or are about to become synchronized, is thetypical data transfer state of the protocol . In this situation it is clear that the send bu�erof the client should map to a su�x of the abstract queue, and that the receive bu�er ofthe server should map to a pre�x of the abstract queue. The tricky part to deal with isthe current message being sent, msgc, because it may have duplicates on the channel andanother duplicate in the receive bu�er of the server. Our de�nition of cur-msg c handles thissituation because while the message is being sent and before it is received by the server,copies on the channel are ignored in the mapping, and cur-msgc is msgc paired with ok.However, when the message is received by the client and placed on rcv-buf s, cur-msg cbecomes the empty string.The duplicates on the channel are ignored until there is a crash, reset, or close at the123



client which brings us to the fourth case, (D), for the mapping to queuecs(i). If thereis a crash or the client has received a valid reset but has not yet closed, then modec 2frec; resetg, This is the �rst set of states for case (D). If the client closes upon recoveryfrom the crash, or closes for any other reason then (isnc 6= i) which gives us the secondset of states for case (D). In both these situations messages on send-buf c are lost and themessage in s:cur-msgc is either lost or becomes message(p-pairc). The server can also stilldeliver messages from its receive bu�er, so the variables that map to the abstract queue inthis situation are (msg(p-pair c) � marked) and (s:rcv-buf s � ok). The message in p-pair cis paired with marked because it may get dropped.The four cases for the mapping to queues that take data from the server to the client,queuesc(j), is essentially symmetric, to the mapping to queuecs(i).Note for the mapping of the queues, that the conditions that determine whether a queueis in a particular group makes the groups mutually disjoint.7.3.2 Simulation of stepsIn this section we prove that the mapping Rtd de�ned in the previous section is indeeda timed re�nement mapping from T CPh to Dp with respect to ID and IT . This claim isstated as the following lemma.Lemma 7.1T CPh �tR Dp via Rtd.Proof: We prove that Rtd is a timed re�nement mapping from T CPh to Dp with respectto ID and IT by showing that the two cases of De�nition 3.11 are satis�ed.Base CaseIn the start state s0 of T CPh we have s0:modec = s0:modes = closed, s0:now = 0,s0:used-idc, s0:used-ids, and s0:assoc = ;. It is clear that Rtd(s0) is the unique startstate u0 of Dp.Inductive CaseAssume (s; a; s0) 2 Steps(T CPh). Below we consider cases based on a and for each case wede�ne a �nite execution fragment � of S such that fstate(�) = Rtd(s), lstate(�) = Rtd(s0),124



and t-trace(�) = t-trace(s; a; s0). For the steps of the proof below we do not include thetime of occurrence and last time in the timed traces of (s; a; s0) or �, so as not to clutter theproof. However, it is clear that since the time-passage steps in Dp are arbitrary, if we showtrace(�) = trace(s; a; s0) then t-trace(�) = t-trace(s; a; s0). We use u and u0 to denote Rtd(s)and Rtd(s0) respectively. For symmetric steps we only show the proof correspondence ofone of the actions since the proof of correspondence of the other will be symmetric.a = send-msgc(open, m, close).This step has eight variations depending on whether open and close are true or false, andwhether m is null or not. We examine each variation as a separate case.1. The �rst variation we examine is send-msgc(true, null, false). For this case, � =(u; a; u0). If s:modec = closed then s0:modec = syn-sent, s0:isnc = s:snc+1, s0:used-idc =s:used-idc [fs0:isncg. The corresponding execution fragment � in Dp causes u0:modecto be active, u0:id c to be c 2 CID , u0:used-idc to be u:used-idc [ fu0:idcg, andu:q-statcs(u0:idc) to be live. These states are the correct ones as de�ned by themapping RTD.2. The second variation is send-msgc(false, null, false). For this subcase � = (u; a; u0).The action a has no e�ect on state s nor does it have an e�ect on state u.3. The third variation is send-msgc(true, m, false) where m 6= null. For this case� = (u; a; u0), and the correspondence for u0:modec, u0:idc, u0:q-statcs(u0:id c), andu0:used-idc is the same as for the �rst variation. However, this step has the additionale�ect that m gets concatenated to the end of s:send-buf c in T CPh if s:rcvd-closecis false. Since s0:isnc 6= nil and s0:modec 6= rec, we have case (B) or (C) foru0:queuecs(u0:idc). If s:rcvd-closec is false, then in the corresponding state of Dp,u:modec = active. Therefore, if m gets concatenated to s:send-buf c in T CPh, then� in Dp causes (m; ok) to be concatenated to the end of u:queuecs(u:idc) in Dh,so the resulting states correspond. If m does not get concatenated to s:send-buf cbecause s:rcvd-closec is true, then (m; ok) doe not get concatenated to the end ofu:queuecs(u:idc) in Dh, because u:modec = inactive. If m does not get concatenated125



to send-buf c because modec 62 fsyn-sent; estb; close-waitg, then Invariant 7.13tells us that s:rcvd-closec is true.4. The fourth variation is send-msgc(false, m, false). Again � = (u; a; u0). The onlye�ect this step can have is to to add m to s:send-buf c. The correspondence is shownas in the previous case.5. The �fth variation is send-msgc(true, m, true). Again we have � = (u; a; u0). Thiscase is the same as that for variation send-msgc(true, m, false), except if s:modec 2festb, syn-sent, close-waitg, then s0:rcvd-closec = true. In Dp, � sets u0:modecto inactive. If s:modec 2 festb, syn-sent, close-waitg then having s0:rcvd-closecset to true corresponds to u0:modec = inactive, and if s:modec 62 festb, syn-sent,close-waitg, that corresponds to u:modec = inactive, so we still get the correctmapping with u0:modec = inactive.6. The sixth variation is send-msgc(false, m, true). This case is similar to the previouscase, with the di�erence being it does not have the changes in state that could occurif open is true. Thus, � = (u; a; u0), and the correspondence is preserved.7. The seventh variation is send-msgc(true, null, true). The case can be broken downinto two subcases.(a) The �rst subcase occurs when s:modec 2 fclosed, syn-sentg and s:send-buf c isempty. After a, s0:modec = closed and s0:rcvd-closec = true. For this subcase,� = (u, send-msgc(true, null, true), u00, reset-nilc, u0). The traces are clearlyequal, so we need to show that � is enabled in Dp and that it produces the astate that corresponds to s0 in our mapping. Since send-msgc(true, null, true)is an input action it is always enabled. After this step, u00:modec = inactive,u00:idc has a value from CID , no association is formed with u:id c as yet, andu00:queuecs(u00:id c) is empty. These are precisely the preconditions for enablingthe internal action reset-nilc. After �, u0:idc = nil and u0:q-statcs(u:idc) = dead.This is the correct state for our mapping.126



(b) The second subcase occurs for all other states and can be treated like the case�ve (send-msgc(true, m, true)), except for the fact that the message bu�ers donot change. For this subcase � = (u; a; u0).8. The �nal variation is send-msgc(false, null, true). If s:modec = syn-sent ands:send-buf c is empty, then we have � = (u, send-msgc(false, null, true), u00, reset-nilc,u0), and the correspondence can be shown as in the previous case. If we are not inthis state, then we have � = (u; a; u0). The only change that may be caused by thisstep is if s:modec 2 festb; syn-sent; close-waitg, then s0:rcvd-closec = true. Thiswas one of the possibilities for variation �ve, and the proof that the states correspondis the same as that case.a = passive-open.For this step � = (u; a; u0). The e�ect of this step in T CPh is to cause s0:modes to belisten and to initialize TCBs. In Dp the passive-open action causes u0:modes = activeand u0:choose-sid = true, so the mapping between states is preserved.a = send-msgs(m, close).This step has four variations, each of which we present has a separate case. For all variationsa only changes the state of T CPh if s:modes 2 flisten, syn-rcvd, estb, close-waitg.1. The �rst variation is send-msgs(null, true). For this variation there are two subcases.(a) The �rst subcase occurs when s:modes = listen and s:send-buf s is empty. Forthis subcase � = (u, send-msgs(�, true), u00, reset-nils, u0). Clearly the traces arethe same, and after a s0:modes = closed and s0:isns = nil, and after �, u0:ids =nil and u0:q-statsc(u:ids) = dead. Thus, we only need to show that � is enabledin Dp. After send-msgs(null, true), u00:modes = inactive, u00:id s has a valuefrom SID , no association has been formed with u00:id s as yet (since s:modes =listen and for the corresponding state u there is no association formed withthe current u:idc as yet), and u00:queuesc(id s) is empty. These are precisely thepreconditions for the action reset-nils.127



(b) The second subcase is for all other states s. The corresponding � in Dp is(u; a; u0). The action amay have an e�ect on state s only if s:modes 2 fsyn-rcvd,estb, close-waitg. The e�ect is to make s0:rcvd-closes true. After � in Dpu0:modes = inactive, which gives us the correct correspondence of states.2. The second variation is send-msgs(null, false). For this case � = (u; a; u0), and a hasno e�ect on T CPh and � has no e�ect on Dp.3. The third variation is send-msgs(m, true) where m 6= null. Again we have � =(u; a; u0). If s:modes 2 fsyn-rcvd; estb; close-waitg ^ :s:rcvd-closes, then after a,in T CPh we have s0:send-buf s = s: send-buf s concatenated with m and s0:rcvd-closes= true. In the corresponding state of Dp, u:modes = active, then after � wehave u0:modes = inactive and u0:queuesc(u0:id s) = u:queuesc(u:id s) concatenatedwith (m; ok). For all other states s of T CPh, a has no e�ect because Invariant 7.13tells us that s:rcvd-closes is true for these states. Since s:rcvd-closes is true, thecorresponding states u of Dp, u:modes = inactive. Thus, � has no e�ect in thesestates, which gives us the correct correspondence of states.4. The �nal variation is send-msgs(m, false). Again � = (u; a; u0). The possible e�ectof a is to add m to s:send-buf s. For the corresponding state u, � adds (m; ok) tou:send-buf s. Thus, correspondence of states is maintained.a = send-segcs(SYN, snc).The corresponding execution fragment � = (u; �; u0) (recall that � is the empty actionsequence). The action a does not a�ect any variables involved in the mapping, so thecorrespondence of states is maintained.a = receive-segcs(SYN, snc).This e�ects of this step can be divided into two cases.1. The �rst case occurs if in T CPh s:modes = listen. For this case the corresponding� = (u, choose-server-id(j), u0). In T CPh if s:modes = listen, then s0:modes =syn-rcvd, s0:acks = [snc] + 1, s0:sns = s:sns + 1, s0:isns = s0:sns, s0:used-ids =s:used-ids [ fs0:isncg. After the corresponding execution fragment � in Dp, u0:ids =128



j 2 SID, u0:used-idc = u:used-idc [ fu0:isncg, and u:q-statsc(u0:id s) = live. Thesestates are the correct ones as de�ned by the mapping RTD. If s:modes = listen thenin the corresponding state u, u:choose-sid = true, so the choose-server-id(j) action isenabled.2. The second case occurs for all other values of s:modes. For this case the corresponding� = (u; �; u0). If s:modes = closed, then s0:send-rsts gets set to true and s0:rst-seqsgets set to 0, and s0:acks is set to [snc] + 1. However, none of these assignments a�ectthe mapping, so u = u0. For all other values of s:modes a has no e�ect.a = send-segsc(SYN, snc, acks).The only e�ect of this step is to add the segment (SYN, snc, acks) to s:in-transitsc whichdoes not a�ect the mapping, so the corresponding execution fragment is � = (u; �; u0).a = receive-segsc(SYN, snc, acks).For this step the the corresponding � = (u; �; u0). Let the received segment be p. Ifs:modec = syn-sent and ack(p) = snc + 1, this step changes modec to estb, and ackcto sn(p) + 1. It also adds (isnc; sn(p)) to estb-pairs. These changes a�ect the mappingto queuecs(i), where i = isnc, because after the these changes, we may have case (C) ofthe mapping, where in state s, we had case (B). Therefore, to show that the mapping ispreserved after � and a, we need to show that u:queuecs(i) = u0:queuecs(i). To do this weneed to show that s0:rcv-buf s and s0:cur-msgc are both empty. If we do have case (C) of themapping to queuecs(i) then by Invariant 7.19 we know s0:modes = syn-rcvd. If s0:modes =syn-rcvd, then Invariant 7.14 tells us that s0:rcv-buf s = �. From Invariant 7.6 we knows0:isnsc < s0:acks, and from Invariant 7.10 we know that s:isnc = s:snc = s:isnsc. Sincethis step does not change isnc, snc, or isnsc, we know that after this step s0:snc < s0:acks.Therefore, s0:cur-msgc is empty. Thus, u:queuecs(i) = u0:queuecs(i).a = prepare-msgc.For this step of T CPh the corresponding execution fragment , �, in Dp is (u; �; u0). It isclear that both a and � have the empty trace. We now show that Rtd(s0) = u = u0. Theaction a changes snc and may change modec, msgc and send-buf c. It may change modecto fin-wait-1, or last-ack, but only if s:rcvd-closec = true which means u:modec =129



u0:modec = inactive. The changes to snc, msgc, and send-buf c, may change the mappingof u:queuecs(i), but only for case (C) because the changes do not a�ect the mapping forcases (A) and (D), and states where a is enabled clearly do not overlap with case (B) becausethe precondition on action a requires s:modec 2 festb; close-waitg.Therefore, we need to show that u0:queuecs(i) = u:queuecs(i) for case (C). If we arein case (C) for u:queuecs(i) then (i; isns) 2 s:estb-pairs ^ s:isnsc = i ^ s:modes 62frec; resetg, and if a is enabled then ((s:modec 2 festb; close-waitg) ^ (s:send-buf c 6=�_s:rcvd-closec)^:s:ready-to-send c). Therefore, by Invariant 7.30 we know s:acks > s:snc,but we also know by Invariant 7.2 that s:acks � s:snc + 1. Therefore, we know thats:acks = s:snc+1, which means s:cur-msgc is empty. If s:send-buf c is not empty then aftera, s0:snc = s0:acks or s0:snc = s0:acks + 1, so s0:cur-msgc = (head(s:send-buf c) � ok). How-ever, s0:send-buf c = tail(s:send-buf c). Thus, u0:queuecs(i) = u:queuecs(i), so the mappingis preserved. If s:send-buf c is empty, s0:cur-msgc is also empty, so again we get u0:queuecs(i)= u:queuecs(i).a = prepare-msgs.This step is symmetric to a = prepare-msgc, and the correspondence between this step andthe empty step can be shown in a symmetric manner.a = send-segcs(snc, ackc, msgc).This is another step where the corresponding � = (u; �; u0), since a does not change anystates that a�ect the mapping.a = receive-segcs(snc, ackc, msgc).Let p be the segment received in this action. The e�ects of this step can be broken downinto three cases based on the value of s:modes.1. Case one occurs if s:modes = syn-rcvd and ack(p) = s:sns+1, then the corresponding� of Dp is (u, make-assoc(i,j), u0), where i is u:idc that corresponds to s:isnc and jis u:ids that corresponds to s:isns. Both a and � have the empty trace. The actionmake-assoc(i,j) is enabled in Dp because s:isnc 2 s:ucid ^ s:isns 2 s:used-ids, socorrespondingly in Dp u:id c 2 u:ucid ^ u:ids 2 u:used-ids, and by Invariant 7.33neither s:isnc nor s:isns are part of any pair already in s:assoc, so in the corresponding130



state neither u:id c nor u:ids are part of any pair already in u:assoc. After a and � wehave the correct correspondence between s0:assoc and u0:assoc. The other variablesthat could get changed here are acks and rcv-buf s if sn(p) = s:acks. The changesbeing s0:acks = s:acks+1 and s0:rcv-buf s = s:rcv-buf s�msgc. These changes a�ect themapping of u:queuecs(i) for cases (C) and (D).If we are in case (C), then Invariant 7.53 tells us that snc = sn(p). Therefore, thechange of acks means s:cur-msgc is (s:msgc, ok) and s0:cur-msgc is empty. Invari-ant 7.36 tells us that if s:msgc 6= null and sn(p) = s:snc, then msg(p) = s:msgc.Therefore, since s0:rcv-buf s = s:rcv-buf s�msg(p), u:queuecs(i) = u0:queuecs(i).For case (D), Invariant 7.62 tells us that there are no other segments on the chan-nel with sequence number greater than sn(p). Therefore, the change in ack s meanss:p-pair c is f(msg(p); sn(p))g and s0:p-pair c is the empty set. However, as for case(C), since s0:rcv-buf s = s:rcv-buf s�msg(p) and Invariant 7.37 tells us that any segmentwith sequence number sn(p) has the same message or the message is null. However,Invariants 7.55 and 7.56 tell us that any segment with sequence number sn(p) has amessage that is not null, so u:queuecs(i) = u0:queuecs(i).2. Case two occurs if s:modes = last-ack and ack(p) = sns + 1. For this case � is(u, set-nils, u0). Clearly a and � both have the empty trace. We must show thatset-nils is enabled in state u of Dp. Since s:modes = last-ack, from our mappingwe know u:id s 6= nil and from Invariant 7.13 we know that u:modes = inactive .The third part of the precondition requires that 9 i s.t. (i; u:ids) 2 u:assoc. FromInvariant 7.38 we know that since s:modes = last-ack, and there exists i such that(i; s:isns) 2 s:assoc, so that part of the precondition holds for the corresponding stateu.The fourth part of the precondition requires u:queuecs(i) to be empty. We only needto show this for cases (C) and (D) of the mapping to u:queuecs(i) because we knowthat there exists i such that (i; s:isns) 2 s:assoc, which rules out queues for the othertwo cases. 131



We �rst examine case (C). Recall that the states for this case are states where s:isnc =i ^ s:modec 62 frec; resetg ^ (i; isns) 2 s:estb-pairs ^ s:isnsc = i ^ s:modes 62frec; resetg. To show that this queue is empty, we need to show that s:send-buf c,s:cur-msgc, and s:rcv-buf s are all empty. If s:modes = last-ack, and u:queuecs(i)is de�ned for case (C) then Invariant 7.52 tells us that s:modec 2 ffin-wait-1,fin-wait-2, closing, timed-wait, last-ackg, which coupled with Invariant 7.13means s:send-buf c is empty. From Invariant 7.57 we know that that s:snc < s:acks,which means s:cur-msgc is empty. Finally, Invariant 7.59 indicates that s:rcv-buf s isempty. Therefore, u:queuecs(i) is empty.Case (D) of the mapping to u:queuecs(i) occurs when (s:isnc 6= i _ s:modec 2 frec,resetg)^((i; isns) 2 s:estb-pairs ^s:isnsc = i^s:modes 62 frec, resetg). To show thatthis queue is empty, we need to show that s:p-pair c and s:rcv-buf s are empty. FromInvariant 7.65 we that for all non-SYN segments q 2 s:in-transitcs, sn(q) < s:ackswhich means s:p-pair c is empty, and from Invariant 7.67 we know that s:rcv-buf s isalso empty.The �fth and �nal part of the precondition for the set-nils action in Dp states that(u:modec = inactive _ u:idc 6= i). From Invariant 7.70 we know this condition istrue in state u.After a, s0:modes = closed, and after �, u0:id c = nil. Therefore, the mappingis preserved for this variable. The changes caused by a, and by � do not a�ect themapping to q-statsc(i). Since, we know there exists i such that (i; s:isns) 2 s:assoc, andthat s:modes = last-ack, only queues for case (C) of the mapping to u:queuesc(j),may exist in state s. However, since for this case, s0:modes = closed, s0:isns = nil,and s0:acks, s0:msgs and s0:send-buf s are all unde�ned, u:queuesc(s:isns) is a�ectedby these changes. These chages take s0 into the set of states for case (D) of themapping for queuesc(j). However, since � does not change u:queuesc(s:id s), we needto show that u:queuesc(s:id s) = u0:queuesc(s:id s). In order to show this we needto show that s:curmsgs and s:sbufs are empty and that s0:p-pair s is the emptyset.From Invariant 7.13 we know s:send-buf s = �. Also since [ackc] = s:sns + 1 and fromInvariant 7.23 we know that ackc � [ackc], so s:cur-msgs = �. Since [ackc] = s:sns+ 1132



and from Invariant 7.23 we know that ackc � [ackc] and from Invariant 7.1 we knowthat for all p 2 in-transitsc sns � sn(p), we know s0:p-pair s is the empty set, sou:queuesc(s:ids) = u0:queuesc(s:ids).3. The third case is for all other states s. The corresponding � = (u; �; u0). For thiscase, acks and rcv-buf s may change as in case one, and modes may change fromfin-wait-1 to fin-wait-2, or from closing to timed-wait. The proof that themapping for u:queuecs(i) is preserved is the same as case 1, and the possible changesto modes in T CPh do not a�ect its mapping to modes in Dp.a = send-segsc(sns, acks, msgs).This is symmetric to a = send-segcs(snc, ackc, msgc).a = receive-segsc(sns, acks, msgs).This step is not quite symmetric to the step with a = receive-segcs(snc, ackc, msgc). Thisstep has two case instead of three. However, the two cases are is basically symmetric tocases two and three of the symmetric step.1. Case one occurs if s:modec = last-ack and [acks] = snc+1. For this case � is (u, set-nilc; u0). Clearly a and � both have the empty trace. The proof that set-nilc is enabledin state u uses the same invariants as the proof that set-nils is enable for the secondcase of the step with a = receive-segcs(snc, ackc, msgc) except that Invariant 7.46 isneeded to show that there exists a j such that (isnc; j) 2 assoc.To show that the mapping is preserved for case (C) of u:queuecs(s:isnc) after thisstep is also not quite symmetric to the proof that the mapping is preserved for case(C) of u:queuesc(s:isns) shown above for the symmetric step. We still have the queuegoing from case (C) to (D), and the proof that s:send-buf c is empty is symmetric.However, to show that s:cur-msgc is empty and s0:p-pair c is the empty set is not quitesymmetric. To show both we use the fact that from Invariant 7.1 we know that for allp 2 in-transitcs snc � sn(p), and from Invariant 7.24 we know that in the set of stateswere we have case (C) of the mapping to queuecs(i), s:acks � [acks]. Therefore, since[acks] = snc + 1, we know that s:snc < s:acks, and for all segments p 2 s0:in-transitcs,s0:acks > sn(p). Therefore, s:cur-msgc = � and s0:p-pair c is the empty set.133



2. Case two is for all other states s. The corresponding � = (u; �; u0). For this case thestep may changed ackc and rcv-buf c if sn(p) = s:ackc. The changes being s0:ackc =s:ackc + 1 and s0:rcv-buf c = s:rcv-buf c�msgc. These changes a�ect the mapping ofu:queuesc(j) for cases (C) and (D).If we are in case (C), then Invariant 7.53 tells us that sns = sn(p). Therefore, thechange of ackc means s:cur-msg s is (s:msgs, ok) and s0:cur-msgs is empty. Invari-ant 7.36 tells us that if s:msgs 6= null and sn(p) = s:sns, then msg(p) = s:msgs.Therefore, since s0:rcv-buf c = s:rcv-buf c�msg(p), u:queuesc(j) = u0:queuesc(j).For case (D), Invariant 7.62 tells us that there are no other segments on the chan-nel with sequence number greater than sn(p). Therefore, the change in ack s meanss:p-pair s is f(msg(p); sn(p))g and s0:p-pair s is the empty set. However, as for case(C), since s0:rcv-buf c = s:rcv-buf c�msg(p) and Invariant 7.37 tells us that any segmentwith sequence number sn(p) has the same message or the message is null. However,Invariants 7.55 and 7.56 tell us that any segment with sequence number sn(p) has amessage that is not null, so u:queuesc(j) = u0:queuesc(j).a = receive-msgc(m).For this step the corresponding � = (u; a; u0). We �rst need to show that receive-msgc(m)is enabled in state u. This step only a�ects the mapping of u:queuesc(j), for cases (C) or(D). Since we have s:modec 62 frec; resetg ^ head(s:rcv-buf c) = m ^ m 6= null, it is clearthat in the corresponding state we have :u:recc ^ head(u:queuesc(j)) = m ^ m 6= null.For both cases (C) and (D) (s:isnc; j) 2 s:assoc. Therefore, in the corresponding state(u:idc; j) 2 u:assoc, and u:q-statsc(j) is live. Therefore, this action is enabled in state u.It is easy to see that the mapping to queuesc(j) is preserved after this step.a = receive-msgs(m).For this step the corresponding � = (u; a; u0). Showing that we can simulate this step in Dpis not quite symmetric to the previous case because the conditions for cases (C) and (D) forthe mapping to queuecs(i) is not symmetric to the same cases for the mapping to queuesc(j).Since we have s:modes 62 frec; resetg^ head(s:rcv-buf s) = m ^ m 6= null, it is clear thatin the corresponding state we have :u:recs^head (u:queuecs(i)) = m ^ m 6= null. Since for134



these cases we know modes 62 fclosed; rec; resetg, and we know from Invariant 7.14 thatif modes 2 flisten; syn-rcvdg that rcv-buf s is empty, we know s:modes 2 sync-states.For both cases Invariants 7.38 and 7.44 tells us that (i; isns) 2 assoc. Therefore, in thecorresponding state (i; u:ids) 2 u:assoc, and u:q-statcs(i) is live. Therefore, this action isenabled in state u. It is easy to see that the mapping to queuecs(i) is preserved after thisstep.a = send-segcs(snc, ackc, msgc, FIN).The e�ects of this step do not a�ect the mapping, so the corresponding � is (u; �; u0).a = receive-segcs(snc, ackc, msgc, FIN).This step a�ects the mapping in a manner similar to the step with a = receive-segcs(snc,ackc, msgc). However, since none of the possible e�ects of this step causes the server toclose, we only have two cases. Let p be the segment received in this step.1. This case is if s:modes = syn-rcvd and sn(p) � s:acks and ack(p) = s:sns + 1. Thecorresponding � = (u, make-assoc(i,j), u0). The proof of correspondence is the sameas for �rst case of a = receive-segcs(snc, ackc, msgc)2. Case two is for all the states. For this case � = (u; �; u0). The proof of correspondenceis the same as the proof for case three of a = receive-segcs(snc, ackc, msgc).a = send-segsc(sns, acks, msgs, FIN).This step does not a�ect the mapping, so the corresponding � is (u; �; u0).a = receive-segsc(sns, acks, msgs, FIN)For this case � = (u; �; u0). This step a�ects the mapping is the same manner as the secondcase for the step with a = receive-segsc(sns, acks, msgs). The proof that the mapping ispreserve by after � is the same as the proof for that case.a = timeoutc.The corresponding � is (u, set-nilc; u0), and both steps have the empty trace. The resultingstates also clearly correspond. The di�culty in showing the correspondence, as it was forcase for a = receive-segsc(sns, acks, msgs), is in showing that set-nilc is enabled in state u.The same conditions that were true for that case holds for this case except one. We need135



a di�erent invariant to show that s:rcv-buf c is empty. We know that s:rcv-buf c is emptybecause of Invariant 7.60.a = timeouts.This step is symmetric to a = timeoutc.a = crashc.The corresponding � in the delayed speci�cation automaton Dp is the following sequenceof steps (u, crashc, u000, markc(I), u00, dropc(I 0; k), u0). Clearly, � has the same trace as asince crashc is the only external action in the sequence.First we show that this sequence of steps is enabled in Dp. After crashc, recc is true, somarkc(I) is enabled, and dropc(I 0; k) is enabled if I 0 and k are de�ned correctly. We de�neI , I 0, and k below and show that RTD(s0) is indeed the state u0 we get after the sequenceof steps �.The only change in state caused by a is that s0.modec = rec. This change a�ects themapping of u:modec, u:q-statsc(j), u:queuesc(j), and u:queuecs(i). It is easy to see thatthe mapping of modec is preserved. We have s0:modec = rec and u0:recc = true, whichis correct by Rtd. For u:q-statsc(j) and u:queuesc(j), � preserves the mapping because if(s:isnc; j) 2 assoc then u0:q-stat sc(j) is dead and u0:queuesc(j) is empty, which is correctby Rtd. Otherwise, � does not change u:q-statsc(j) or u:queuesc(j), and a does not a�ectthe mapping. To show that the mapping of u:queuecs(i) is preserved is more complicated.We break the possible states into two cases. We de�ne I and I 0 for each case. Note thatthe markc(I) and dropc(I 0; k) actions do not a�ect the mapping of u:modec, u:q-statsc(j),or u:queuesc(j), so these mappings are not a�ected by the di�erent values of I; I 0, and k.1. The �rst case is for cases (A),(B) (D) of the mapping to queuecs(i). For these casesI = I 0 = ; and k = i, so � does not change u:queuecs(i). The correspondence of statesis preserved because a does not a�ect the mapping for these queues. It is obvious thatfor case (A) of the mapping to queuecs(i) a has no e�ect. This is also the case forcase (B) because a only changes s:modec to rec which is one of the modes in whichu:queuecs(i) exists. For case (D) of the mapping to queuecs(i), the fact that a changess:modec to rec could change the queue because it could cause s:p-pair c to go from the136



empty set to having an element. This change only happens for in this case if s:isnc 6= i,since the other set of conditions for case (D) requires that s:modec already be in theset frec; resetg. However, if s:isnc 6= i ^ (i; s:isns) 2 s:estb-pairs ^ s:isnsc = i thenInvariant 7.34 tells us that s:modec 2 frec; reset; closed; syn-sentg, so assignings0:modec to rec does not a�ect the mapping for this case.2. We now examine case (C) of the mapping to queuecs(i). If the we are in case (C)of the mapping in state s, then after action a we go to case (D) of the mapping toqueuecs(i). We can break this case into two subcases based on whether s0:p-pair c isempty or not. For both subcases i = k. We use the following preliminary de�nition:su�xrb = fijjs.rcv-buf sj < i � maxindex(u:queuecs(i))g. That is, su�xrb is the suf-�x of u:queuecs(i) that starts with the element that maps to the �rst element afters:rcv-buf s.(a) If there exists a segment p 2 s:in-transitcs, where p is of type (snc, ackc, msgc)and sn(p) = s:acks or there exists a segment q 2 s:in-transitcs, where q is of type(snc, ackc, msgc, FIN) and sn(q) = s:acks + 1, then s0:p-pair c 6= ;. Therefore,I = su�xrb and I 0 = su�xrb=maxindex(su�xrb). I 0 is the su�x of u:queuecs(i)that starts with the element that maps to the second element after s:rcv-buf swhich is also the �rst element after s0:p-pair c. After a, we have case (D) of themapping to queuecs(i), but since � deletes all the elements after s0:p-pair c, weget the right corresponding state.(b) Case two occurs for all other states for case (C). That is, states where s0:p-pair c =;. For this case I = I 0 = su�xrb. After � u0:queuecs(i) corresponds to thes0:rcv-buf s. However, this still satis�es the mapping of u0:queuecs(i) for case (D)because s0:p-pair c is empty.a = crashs.This step is symmetric to a = crashc, except in the arguments required to show thatcase (D) of the mapping to queuesc(j) is preserve. For this case we need to show thesymmetric thing. That is, changing modes to rec does not a�ect the mapping for this137



case. Therefore, we need to show that if s:isns 6= j ^ (s:isnc; j) 2 assoc then s:modes 2fclosed; listen; syn-rcvd; rec; resetg. From Invariants 7.38 and 7.44 we know that ifmodes 2 sync-states then (isnc; isns) 2 assoc, and from Invariant 7.33 we know isnc isonly paired with on value of j. Therefore, since for this case we know isns 6= j, we knows:modes 62 sync-states. Thus, the mapping is preserved for this case.a = recoverc.The corresponding � of Dp is (u, markc(I), u000, dropc(I,k), u00, recoverc, u0). Since onlyrecoverc is external, the traces of a and � are clearly the same. We �rst show that thissequence of steps is enabled in Dp. The action recoverc is enabled in T CPh if s:modec =rec. This state maps to u:rec = true in which case markc(I) is enabled and dropc(I,k)is also enabled. Since neither markc(I) nor dropc(I,k) changes u:rec, then recoverc is alsoenabled. We de�ne I and k appropriately below.We now show that the state of Dp we get after � is the same as Rtd(s0). After a,s0:modec = closed. This change a�ects the mapping for u:recc, u:id c, u:queuecs(i), andu:q-statcs(i). After � u0:recc = false and u0:idc = nil, so the mapping is preserved forthose variables. For u:queuecs(i) the mapping is only a�ected by a if state s is in case (B) ofthe mapping to queuecs(i), because case (C) does not hold if s:modec = rec, and for cases(A) and (D) the action does not a�ect the mapping. It does not a�ect the mapping forcase (A), because the change of modec from rec to closed does not a�ect the conditionsfor this case. It does not a�ect the the mapping for case (D) because the change can onlycause the condition for this case to go from s:modec = rec to s:isnc 6= i, but this does notchange the fact that it is case (D), nor does it change the contents of the queues. Therefore,u:queuecs(i) for cases (A) and (D), I = ; and k = i.For case (B) of the mapping to u:queuecs(i), after action a it is in group (A). Let I= dom(u.queuecs(i)) and k = i. The mapping is preserved because after a, s:send-buf cis deleted and after � all the elements are deleted. Finally, to show that the mappingfor q-stat cs(i) is preserved we note that if i = s:isnc ^ (i; s:isnc) 62 s:assoc, then af-ter a, u0:q-statcs(i) maps to dead. For this state s, the corresponding state u satis�es8 j(u:idc; j) 62 u:assoc, and in u00:queuecs(i) = � . Therefore, after � u0:q-statcs(i) = dead.138



a = recovers.This step is symmetric to a = recoverc.a = dropcs(p) (from the Chcs(P) component of T CPh).There are two case for this step.1. The �rst case occurs if p is the only copy of itself in s:in-transitcs, s:modec 2 frec,reset, closed, syn-sentg, and if p is not a FIN segment sn(p) = s:acks and ifit is a FIN segment sn(p) = s:acks + 1. That is, if f(sn(p);msg(p))g = s:p-pair c,and it is the last copy of this segment on s:in-transitcs. For this case the corre-sponding � is (u, dropc(I; k); u0). Since both actions are internal, the traces are thesame. This is a case where a message that exists during crashc may get lost afterrecoverc which is why we used the Delayed Decision Speci�cation. From our de�ni-tion s:p-pair c only exists if s:modec 2 frec; closed; syn-sentg. The action a onlya�ects the mapping of u:queuecs(i) for case (D). Let I = maxindex(u:queue cs(i)) andk = i. This is the last element of the queue and it is also the element that correspondsto (message(s :p-pairc)� marked). Since this element is a su�x of u:queuecs(i) and itis marked, dropc(I; k) is enabled and clearly produces the right corresponding state.2. The second case is for all other states. For these states the corresponding � = (u; �; u0).Clearly the traces are the same, and for these states of T CPh, a does not a�ect themapping, so the resulting states correspond.a = dropsc(p) (from the Chsc(P) component of T CPh) .This step is symmetric to a = dropcs(p).a = duplicatecs(p) (from the Chcs(P) component of T CPh).The corresponding � is (u; �; u0). Since a is internal we have the same trace. The onlyaspect of the mapping one might think a would a�ect is s:p-pair c. However, since s:p-pair cis a set, duplication has no e�ect.a = duplicatesc(p) (from the Chsc(P) component of T CPh).This step is symmetric to a = duplicatecs(p).139



a = �(t) (time-passage)The corresponding � in Dp is (u; �(t); u0), the time-passage action of the patient DelayedDecision Speci�cation.a = send-segsc(RST, acks, rst-seqs).For this step the corresponding step � of Dp is (u; �; u0). Clearly the traces are the same,since send-segsc(RST, acks, rst-seqs) is an internal action. The only change made by a tothe state is that s0:send-rsts is false. This variable does not a�ect Rtd, so u = u0.a = receive-segsc(RST, acks, rst-seqs).For this step we have two cases based on the value of s:modec. The two cases are as follows.1. The �rst case occurs if s:modec = closed or s:rst-seqs 6= s:ackc or if s:rst-seqs = 0and s:acks 6= s:snc + 1. For this case � = (u; �; u0). This is correct because in thisstate, a has no e�ect.2. Case two is for all other states. For this case the corresponding � in Dp is the followingsequence of steps (u, abortc, u000, markc(I), u00, dropc(I 0; k), u0). Clearly, � has thesame trace as a, since all the actions of � are internal and a is internal. Since abortc isenabled if u:id c 6= nil it will be enabled from state u, and since it sets abrtc ,markc(I)is enabled in u000. After markc(I), dropc(I 0; k) is enabled for the appropriately de�nedI 0 and k in state u00. We de�ne I; I 0, and k below and show that mapping is preserved.The change caused by a is to make s0:modec = reset. Apart from the fact that thischange a�ects the mapping to abrtc and not recc, other e�ects on the mapping of thischange is exactly the same as the changes caused by the crashc action. Furthermore,abortc has the exact same e�ect has crashc in speci�cation D. Therefore, we cande�ne I; I 0, and k, as they are de�ne for the case of a = crashc, and the proof thatthe mapping is preserved after � is also the same as for that case.a = send-segcs(RST, ackc, rst-seqc).This step is symmetric to a = send-segsc(RST, acks, rst-seqs).a = receive-segcs(RST, ackc, rst-seqc).This step is not exactly symmetric to a = receive-segsc(RST, acks, rst-seqs), but is quite140



similar. For this step we have two cases based on the value of s:modes.1. Case one occurs if s:modes 2 fclosed; recg or s:rst-seqc 6= s:acks. For this case � is(u; �; u0). This simulation is clearly correct since for this state action a has no e�ect.2. Case two is for all other reachable states. This case is symmetric to case 2 for a =receive-segsc(RST, acks, rst-seqs).a = shut-downc.The corresponding � of Dp is (u, markc(I), u000, dropc(I,k), u00, shutdownc, u0). Since onlyshut-downc is internal, and all the actions in � are also internal the traces of a and � areclearly both the empty trace. We �rst show that this sequence of steps is enabled in Dp. Theaction shut-downc is enabled in T CPh if s:modec = reset. This state maps to u:abrt = truein which case markc(I) is enabled and dropc(I,k) is also enabled. Since neither markc(I) nordropc(I,k) changes abrtc, then shut-downc is enabled in state u00. We now need to de�ne Iand k, and show that the Rtd is preserved in state u0.The e�ect of shut-downc in T CPh is exactly the same as the e�ect of recoverc in T CPh,and the e�ect of shut-downc in Dp is exactly the same as the e�ect of recoverc in Dp exceptfor the fact that shut-downc sets abrtc to false and recoverc sets recc to false. Therefore,we can de�ne I and k exactly as they are de�ne for the above case of a = recoverc, and theproof that the mapping is preserved remains the same.a = shut-downs.This case is symmetric to the case for a = shut-downc.This concludes the simulation proof.7.3.3 Proof of trace inclusionWe can now proof that the GTA model of TCP, T CP, implements a patient version ofSpeci�cation S.Theorem 7.1T CP vt patient(S). 141



Proof: From Lemma 7.1 we get that T CPh �tR Dp, which because of the soundness oftimed re�nement mapping (Theorem 3.6) and the soundness of adding history variables(Theorem 3.9) implies that T CP vt Dp. From Theorem 4.1 we know D v S. Using theEmbedding Theorem of [31] presented in Chapter 3 we now get Dp vt patient(S). Thus, wenow have T CP vt Dp and Dp vt patient(S). Therefore, since the subset relation and thusthe implements relation is transitive we get T CP vt patient(S).
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Chapter 8TCP with bounded countersIn the previous chapter we proved the correctness of TCP if the protocol uses unboundedand stable counters. These counters guarantee that whenever a new incarnation is started,the segments for the incarnation are numbered with sequence numbers that had never beenused before. The uniqueness of these sequence numbers prevented confusion with segmentsfrom previous incarnations. Therefore, old duplicate segments are not accepted and currentsegments are not rejected.However, in practice there is no in�nite source of uid's, and TCP uses a bounded cyclicnumber space for sequence numbers. TCP uses a clock based counter for initial sequencenumber (ISN) selection, and the number space is su�ciently small and the rate of changeof the clock su�ciently fast that cycling through the number space is not uncommon.Additionally, in TCP the same number space that is used for the ISN's is also used forsequence numbers for each segment. That is, after an ISN is chosen, each subsequent packetis numbered starting from that ISN. Here again it does not require extreme conditions for aTCP host to send enough segments to cause the number space to cycle. In addition to beingbounded, the counter used for ISN selection and the local sequence number variable of a hostmay not be stable. Therefore, after a crash a host may not know the last sequence numberused, and the clock based counter may get reset to some arbitrary number. Consequently,when a new sequence number is chosen for a TCP segment, one cannot guarantee thatthis number has never been used before. However, uniqueness of new sequence numbers,as we will show, is not necessary for the protocol to behave correctly. A weaker property143



is su�cient. The property that is needed is that when a sequence number is chosen fora segment, there should not be a di�erent segment with the same sequence number onthe outgoing channel, nor a segment on the incoming channel that acknowledges the newsequence number, nor should the other host be able to acknowledge the new sequencenumber before it receives a new segment with that number. Having an unbounded counterthat is increased for every new segment obviously achieves this property, but TCP uses acombination of the three-way handshake protocol and several timing mechanisms to achievethe same property. The timing mechanisms are used to ensure that when a sequence numberis reused, old segments that have the same number are dropped from channels. The propertyis what is referred to as the \id not-in-use" condition in [27].8.1 Timing constraintsAlong with the three-way handshake protocol, TCP relies on timing properties of thebounded counters and the channels, and various timeouts to guarantee the id not-in-usecondition. We �rst present the set of properties related to the counter used for ISN se-lection. Initial sequence numbers are chosen using 32 bit clock based counters. The loworder bit of the clocks are incremented roughly every four microseconds. Thus, it takesapproximately 4.5 hours for the clocks to cycle. The rate of change of the clocks must befaster than the time it takes to start a new incarnation of a connection. That is, it musttake more than four microseconds for a host to close and reopen. Thus, between the closingand reopening of a host the clocks must tick at least once. Once an ISN is chosen, it is alsothe starting point for numbering segments sent by the host for the incarnation. In orderfor the protocol to work correctly, there must be a bound on the maximum rate of datatransmission. This bound gives a bound on how fast the generation of new sequence num-bers can cause the number space to cycle. The bound that is needed here goes back to theid-not-in use property. TCP host should not be able to send data at a rate where a numbermay be reused while an old segment with that sequence number or an old acknowledgmentof a segment with that sequence number might still be on the channel.The next timing property TCP relies on for correctness is the maximum segment lifetime144



(MSL). The maximum segment lifetime is maximum period a segment can stay on a channelbefore it is dropped or delivered. For TCP this period taken to be two minutes. In practisethe maximum segment lifetime in the net is not likely to exceed a few tens of seconds [28],and the maximum segment lifetime of two minutes is not strictly enforced in the net.However, for correctness purposes we assume this maximum is enforced. We refer to theduration of the maximum segment lifetime as �.In addition to the properties of the counters and the MSL, the following timeout mech-anisms to ensure correct behavior in TCP.1. When a connection closes normally (without a crash, reset, or timeout), one or bothhosts remain in timed-wait state for a period of 2�. Therefore, a new incarnation ofthe connection cannot be formed before all the segments from the previous incarnationare dropped from the channels.2. When a host sends a segment that requires an acknowledgment, it starts a timer, andif a period of wt passes and it does not receive an acknowledgment of that segment,it stops sending the segment for a period of �. If it still does not get a response inthat period it closes. We refer to wt as the maximum wait time.3. When a hosts receives an input that needs a response, it can wait for a maximumperiod of rt , before sending a response. The client also has a maximum delay of rt ,before it must send a SYN segment after it receives the active open input from theuser1. We refer to rt as the maximum response time.4. The cycle time, maximum wait time, maximum response time, and MSL have thefollowing relationship: ct > 2(wt + rt + �).5. If data is sent at a maximum rate, then the time to cycle through the number spaceis greater than wt + rt + 2�.6. When a host receives a reset segment, it stops performing any actions for a period ofat least � before it closes.1Technically, there is no need for a maximum delay for a response to this input. However, there mustbe a maximum wait before the client times out if it does not get a response to a SYN segment after it getsthis input. Having a maximum response to this input coupled with the wait timeout of wt gives a maximumwait after the active open input of wt + rt. 145



7. Finally, after it crashes, a hosts must observe a quiet time, qt , where qt > 2�+rt+wt ,in which it does nothing before it is allowed to reopen.To prove that under normal close situations at least one host remains in timed-wait,is very complicated. Therefore, we make the assumption that when a host closes frommode last-ack there must be a period greater than � before it is allowed to reopen. Thisassumption means that whenever a host closes and reopens, there are not segments fromthe previous incaranation on the outgoing channel.The informal TCP speci�cation [28, 30] states the cycle time of the clock based counter,states the time it takes for a host to cycle through the sequence number should be greaterthan the maximum segment lifetime, and gives the maximum segment lifetime of two min-utes. It also recommends that the quiet time after a crash be the MSL. However, in [27]Murphy and Shankar point out that this period of time is not su�cient to guarantee thatold duplicates are not received after a crash, and they state that the duration of qt thatwe present above is needed. Because this duration of quiet time is necessary, it means thatTCP hosts must also have rt and wt timeout values. However, these values are not clearlyspeci�ed in the informal TCP speci�cation.In [28] it states that when a connection is opened, the user has the option to includea timeout for all data submitted to TCP. If the data is not submitted to the destinationwithin the timeout period, the connection is aborted. If the user does not specify a timeout,a global default of �ve minutes is used. In [30] which speci�es host requirements for TCP, itsays there must be two thresholds R1 and R2 for handling excessive retransmission of datasegments. These values can be either time or number of retransmission. When the �rstthreshold is reached or exceeded, the IP layer is noti�ed, and when the second threshold isreached or exceeded the connection is closed. Applications (external users), must be ableto set the value for R2 for a particular connection. In [30] an interactive application is citedas an example where R2 might be set to \in�nity," giving the user control over when todisconnect. Such a setting for R2 would mean that there is no correct setting for qt as wede�ned it. However, the maximum wait timeout we present is only for the acknowledgmentof data. Therefore, in the interactive situation when data is received by a host, even ifresponse data is required, the host can still immediately send an acknowledgment. Once146



the acknowledgment is received the timer is turned o� at the sender, and the applicationcan wait inde�nitely for the response data.Having timeouts for excessive retransmission means that the protocol does not have theliveness property that if there are no crashes then all data gets delivered. For example, achannel can drop all the segments it receives for the maximum wait period. In this situation,the data on that segment does not get delivered even though there are no crashes. However,in practice the probability that a channel drops all segments sent for a period of wt is verylow unless there is a partition in the network.As for a maximum response time, the closest mention of this in the informal speci�cationis in [30] where the issue of delaying acknowledgments is discussed. Delaying acknowledg-ments increases e�ciency in \real" TCP which uses the sliding window protocol where eachsegment does not have to get an acknowledgment. In [30] it states that the delay must beless that 0.5 seconds. This is essentially a maximum response delay.In practice �ve minutes is a reasonable default value for wt since by [30], a value lessthan 0.5 seconds for rt is required and RTO is usually much smaller than MSL which istwo minutes. However, one wants to allow for the possibility that the data segment and theresponse segment take the full two minutes of the MSL. On the other hand, it is importantfor wt to be as low as is reasonable since the quiet time after a crash should be minimized.A value of �ve minutes for wt also satis�es the property that ct > 2(wt + rt + �).The waiting period of � that we require a TCP host to observe after a maximum waittimeout or after a reset is needed so that the host cannot reopen before all the segments itsent for the previous incarnation are gone from the channels. This wait serves essentially thesame purpose has timed wait state after a normal close. In the informal speci�cation [28, 30]such a wait is not mentioned.8.2 Duplicate delivery without timeoutsIn this section we present some scenarios where the timeouts mentioned in the previoussection are needed to prevent duplicate delivery of data. There are basically two types ofsituations where there is the potential for duplicate delivery of data | crash situations147



and long-lived connections. A long-lived connection is one that remains open for a periodgreater than or equal to ct . For some applications such as telnet, long-lived connections arenot uncommon. If a connection is open for a period less than the cycle time and there are nocrashes, then because a host cannot send data faster than the rate at which the clock counterticks, if the connection is reopened the new ISN will be bigger than any sequence numberfrom the previous incarnation. However, when the clock counter has cycled during the lifeof the connection, the new ISN might be equal to or less than sequence numbers of segmentsfrom the previous incarnation that might still be in the channels. Therefore, segments fromthe old incarnation might get confused with segments from the new incarnation.In this section we present four examples of executions that may cause incorrect behaviorif the right timeouts are not in place. The �rst three examples involve long-lived connec-tions, and they require the client to choose the same ISN for successive incarnations. Whilecertainly possible, the probability of the client choosing the same ISN for successive incar-nations is extremely low. Therefore, the examples we show here are not likely to happen inpractice, even without the proper timeouts, but are certainly possible. The fourth exampleinvolves an execution where after a crash, if the duration of quiet time is equal to the MSL,then data from a previous incarnation is delivered in a current incarnation.The �rst example is shown in Figure 8-1. In this execution the client and server bothreceive the signal to open and then for a period that is very close to ct neither side sends apacket. When the client opens it reads the value i from the clock counter for its new ISN.When almost ct time has elapsed since the client received the signal to open there is a burstof activity.The client sends a SYN segment to the server with sequence number i. That is, it sendsa segment of the type (SYN, snc) where snc = i. When the server receives this segment, itreads its clock counter and gets ISN, j. It then sends a SYN plus acknowledgment segmentto the client, (SYN, sns, acks), where sns = j and ack s = i+1. Next the client acknowledgesthe SYN segment from the server and sends some data d1 by sending a (snc, ackc, msgc)segment, where snc = i+ 1, ack c = j + 1, and msgc = d1. The server responds with a FINsegment that has sequence number j + 2, and data d2. When the client receives the FINsegment it goes to mode close-wait, and when it receives the signal to close it goes to148
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ISNc= iFigure 8-1: Example one. An execution where a long delay after the open signals are received,causes the same message to be delivered twice.mode last-ack. The client also delivers data d2 and sends a FIN segment with sequencenumber i+ 2. When the server receives the FIN segment it goes to mode timed-wait andsends and acknowledgment segment. When the client receives this segment it can closeimmediately. Next the client gets a new signal to open, and because the clock counter hascycled since the last time the client chose an initial sequence number, it reads i again. Theclient can immediately send a SYN segment with ISN i. After it sends this segment, itreceives a duplicate of the (SYN, j, i+1) segment the server sent earlier. It is possible thatsuch a duplicate may still be on the channel because in this execution, a period of less than� has elapse since the segment was �rst sent. When the client receives this segment, itaccepts it as a valid acknowledgment of its SYN segment, and sends an acknowledgment to149



the server. After sending this segment the client receives a second duplicate segment fromthe previous incarnation. This segment is the FIN segment with data d2. When the clientreceives this segment, it is also accepted and the client may deliver data d2 again.This duplicate delivery of data does not happen if the client has to send the SYN segmentwithin rt of receiving the the open input, and times out if it does not get a response aftera period of wt of sending the segment.The second example is shown in Figure 8-2. In this execution, the client and serverperform the three-way handshake immediately after they receive the signals to open. Afterthe opening phase, neither side sends any segment for a period that is approximately equal tothe cycle time ct . After this period of inactivity, the client gets an input to send message mfrom the user. It sends the data with a (snc, ackc, msgc) segment, where snc = i+1, ack c =j + 1, and msgc = m. When the server receives this segment, it sends an acknowledgmentthat gets dropped from the channel. The server also passes m to the user. After the data ispassed to the user, the server crashes, and after the recommended quiet time of � the serverrecovers and goes to mode closed. Meanwhile, the client repeatedly retransmits the (snc,ackc, msgc) segment because it has not received an acknowledgment from the server, andeach retransmission is dropped from the channel. However, after the server recovers, one ofthe retransmitted segments does not get dropped and arrives at the closed server. Because,the server is closed when the segment arrives, a reset is generated. Before, the reset reachesthe client, it sends another copy of the (snc, ackc, msgc) segment which gets delayed onthe channel. After sending the reset, the server re-opens. The client closes when it receivesthe reset, but immediately gets the open input from the user. The new open input fromthe user comes just as the clock counter cycles, so the client reads isnc = i again. Thus,the client again sends (SYN, snc) where snc = i. When the server receives this segment, italso reads its clock counter for a new ISN. However, because there was a crash, the server'sclock counter was reset, so that the server reads j again. Therefore, the response segmentthat the server sends is (SYN, sns, acks), where sns = j and ack s = i + 1. After sendingthe response, the server receives the last retransmission of the (snc, ackc, msgc) segment,where snc = i+ 1, ack c = j + 1, and msgc = m. The server can accept this data and passit to the user. Thus, we have duplicate delivery of the same data.150
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Figure 8-3: Example three. This execution demonstrates why a wait of � is needed after timeouts.immediately gets the signal to open and sends a SYN segment with sequence number i.The server also receives the signal to open, and when it receives the SYN segment from theclient reads ISN j from the clock counter. The server acknowledges the SYN segment of theclient and sends its own SYN with the (SYN, j, i+1) segment. After sending this segment,the server receives the duplicate copy of the (i+ 1, j + 1, m) segment sent right before theclient timed out. The server can accept this segment and can pass m to its user again. Forthis scenario, the duplicate delivery does not occur if the client waits for a period of � afterthe timeout before it closes, so that when it reopens, any segment sent before the timeouthas been dropped from the channel because of the MSL.The fourth and �nal example we present does not involve a long-lived connection, but152



shows how a crash may cause data from a previous incarnation to be accepted in a currentincarnation. It is shown in Figure 8-4. In this example the client and server start with thethree-way handshake as in the previous example. After the client sends the third segmentin three-way handshake, it immediately crashes. This segment takes time � to reach theserver. Therefore, immediately after the segment arrives at the server the client can senda recover output and reopen. Right before the server receives this segment, it sends a �nalretransmission of the (SYN, j, i+1) segment. When the client reopens, because of the crashit reads i from the clock counter again and sends the (SYN, i) segment again. This segmentis dropped from the channel, but after this segment is sent, the client receives the (SYN, j,i+ 1) segment that was sent by the server. When the client receives this segment it sendsan acknowledgment which also gets dropped. However, after it sends the acknowledgment,it receives a segment from the server with sequence number j + 1 and data m. The serversent this segment after it received the acknowledgment the client sent from the previousincarnation. Because this segment has sequence number j+1, the client accepts it and canpass message m to the user.This situation does not happen if the period after the crash is long enough. The problemthat occurred with this execution is that a response to a segment sent before the crash isstill in the channel after the crashed host recovers. If a host crashes immediately aftersending a segment, that segment can take time � before it arrives. After it arrives, it maytake the receiving host rt to respond, and it might retransmit the response segment for aperiod of wt . The last retransmitted segment may take time � to arrive. Therefore, after ahost crashes, a segment that is a response to a segment sent before the host crashed mightbe in the channel up to time 2� + wt + rt after the crash. Hence we set quiet time suchthat qt > 2� + wt + rt .8.3 The formal modelTo formally model TCP with bounded counters and the additional timeout mechanismsneeded to ensure correctness, we make some changes to the T CP automaton. The newclient side and server side automata are BT CPc and BT CPs respectively.153
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Type de�nitionsType DescriptionMsg The set of all possible strings over some basic message alphabet that does not include thespecial symbol null.T The nonnegative real numbers | represents real time.BN The range of the bounded counters | fij0 � i < 232g.ConstantsConstant Description� Maximum Segment Liftime | 2 minutes.rt Maximum response time | 0.5 seconds.wt Maximum time to wait for a response | 5 minutes.qt Quiet time after a crash | qt > 2�+ rt + wt .ct The cycle time of the clock counter | 4.5 hours.clock-rate The speed at which the clock counters change | 4:5=232.data-rate The maximum speed at which host can increment its sequence number | (wt + rt +2�)=232.Client variablesVariable Type S Initially Descriptionclock-counterc BN nil The clock counter that the client reads for initial se-quence numbers.snc BN [ nil nil The seqence number of the client.ackc BN [ nil nil The acknowledgment number at the client.wait-t oc T [1 1 Used to mark the time after which the client will stopsending a segment if it does not get a response to thatsegment.last(responsec) T 0 The upper bound on when the client must send a re-sponse to an input that needs one.�rst(resetc) T [1 1 The lower bound on when the client can close afterreceiving a valid reset.�rst(recovc) T [1 1 The lower bound on the time when the client can re-cover after crashing.�rst(prep-msgc) T data-rate The lower bound on when the client can next preparea message to be sent.�rst(tickc) T p clock-rate The lower bound on when the clock counter can beincremented.last(tickc) T p clock-rate The upper bound on when the clock counter should beincremented.�rst(openc) T p 0 The lower bound on the time when the client can openafter it closes.155



Server variablesVariable Type S Initially Descriptionclock-counters BN nil The clock counter that the server reads for initial se-quence numbers.sns BN [ nil nil The seqence number of the server.acks BN [ nil nil The acknowledgment number at the server.wait-t os T [1 1 Symmetric to wait-t oc .last(responses) T [1 1 Symmetric to last(responsec).�rst(resets) T [1 1 Symmetric to �rst(resetc).�rst(recovs) T [1 1 Symmetric to �rst(recovc).�rst(prep-msgs) T data-rate Symmetric to �rst(prep-msgc).�rst(ticks) T p clock-rate Symmetric to �rst(tickc).last(ticks) T p clock-rate Symmetric to last(tickc).�rst(opens) T p 0 Symmetric to �rst(openc).8.3.2 StepsSeveral steps of T CPc and T CPs have to be changed to get the correct behavior for BT CPcand BT CPs. We include only the steps of T CPc and T CPs that are changed. In thechanged steps we outline the if-then-else statements, but omit the assignments to the originalvariables of T CPc and T CPs (indicated by : : :) unless they change in BT CPc or BT CPs.The steps of BT CPc and BT CPs that are di�erent from the steps with the same action inT CPc and T CPs are shown in Figures 8-5, 8-6, and 8-7.The �rst changes occur for steps with the send-msgc(open, m, close) action. Firstly, theclient is not allowed to open unless the current time is greater than or equal to �rst(openc).This variable is initially 0, but is set to the current time plus the clock rate whenever theclient closes. This means at least one clock tick must occur before the client is allowed toreopen after closing. Steps with the passive-open action on the server side have the samerestriction. Also new in the send-msgc(open, m, close) step, is that instead of incrementingthe snc variable to get a new initial sequence number, the number is read from the clockbased counter clock-counterc. The other change in this action is that the new variablelast(responsec) is assigned to nowc + rt . This assignment forces the client to perform thesend-segcs(SYN, snc) action within time rt of receiving this input because time is notallowed to advance beyond this time, unless last(responsec) is set to 1 in this step. Thelower bound of last(responsec) on when the client must perform the step with the send-segcs(SYN, snc) action coupled with the wt bound that the client sets when it performs the156



action means that if the client does not get a response to the SYN segment within timewt + rt of receiving the send-msgc(open, m, close) input, it times out.As mentioned before, the client starts the maximum wait timer in send-segcs(SYN, snc)step. The test that wait-t oc is 1 means the timer is set only when the segment is �rstsent, and not on every retransmission. To prevent the sending of the segment after thewt period has expired, the action includes in the precondition that nowc � wait-t oc. Allother actions to send segments on the client side have this precondition also, and the sendsegment actions on the server side have a symmetric condition. In the send-segcs(SYN, snc)action, last(responsec) is also set to 0 to indicate that the client has responded to the lastinput. When the server receives the receive-segcs(SYN, snc) action, it reads a new initialsequence number from its clock counter and sets its maximum response timer.The server responds to the receive-segcs(SYN, snc) action with the send-segsc(SYN, sns,acks) action. Since it is sending a response, the server resets last(responses) to 1 in thisaction. It also starts the maximum wait timer in this action. When the client receivesthis segment with the receive-segsc(SYN, sns, acks) action, if wt time has not elasped sincethe open input, the sever resets wait-t oc to 1, so that a timeout does not occur, and itsets last(responsec) to start the response timer. The client sends a response to the (SYN,sns, acks) segment with either the send-segcs(snc, ackc, msgc) or send-segcs(snc, ackc, msgc,FIN) actions. In both actions it resets last(responsec) to stop the response timer, and setsthe maximum wait timer. In the send-segcs(snc, ackc, msgc) action, the ready-to-send cvariable is checked before the timer is set, because the timer should only be set if the clientis sending a segment that needs a response; that is, a segment with valid data.When the server receives the (snc, ackc, msgc) segment, it sets the response timer,last(responses), if the segment needs a response. That is, if snc = acks. The response timeris also set in the receive-segcs(snc, ackc, msgc, FIN) action. In both the receive-segcs(snc,ackc, msgc) and receive-segcs(snc, ackc, msgc, FIN) actions the server also resets wait-t osif ackc = sns + 1, that is, if the segments have valid acknowledgments. If the this segmentcauses the server to close from mode last-ack then �rst(opens) is set to the current timeplus the clock rate, to ensure that at least one clock tick must happen before the clientre-opens. 157



The send-segsc(sns, acks, msgs) and send-segsc(sns, acks, msgs, FIN) actions are sym-metric to their client side counterparts, and the corresponding receive-segsc(sns, acks, msgs)and receive-segsc(sns, acks, msgs, FIN) actions are symmetric to their server side counter-parts.The prepare-msgc and prepare-msgs actions change to restrict the rate at which a hostcan send new messages. In the actual protocols the rate depends on network speeds andthe rate at which the other hosts responds. In our model the channels are allowed to deliversegments in 0 time, so to model the limitations on the rate at which segments can be sentwe include a lower bound on how often the prepare-msgc and prepare-msgs actions can beenable. Thus, in order for the prepare-msgc action to be enabled now c must be greater thanor equal to �rst(prep-msgc), and �rst(prep-msgc) is set to nowc + data-rate in the step.The automaton for bounded TCP has two new internal actions that are not presentin unbounded TCP, these actions are clock-counter-tickc and clock-counter-ticks. The stepswith these actions control the ticking of clock-counterc and clock-counters respectively. Theupper and lower bound for the next time the clock-counter-tickc action is enable are bothset to nowc+clock-rate in this set. These settings mean clock-counter c is incremented everyclock-rate seconds, if the client is not in recovery mode. The symmetric settings occur inthe clock-counter-ticks step.As mentioned above, in the time-passage action (�(t)) on both sides , the preconditionis changed so that time does not advance beyond the upper bound on when a responseshould be sent, before the response is sent. Time is also not allowed to pass beyond whenthe next tick of the clock counters should occur unless there is a crash.The time-outc and time-outs also change. The preconditions on these step change toreect the fact that in bounded TCP timeouts do not only occur at the end of timed-waitstate. There can also be a timeout if the the maximum wait timeout has expired. If thetimeouts occur in this situation, the mode of the host is set to reset to enable the shutdown actions, and the timing variable is set, so that there is period of inactivity of at least� before the host close.In the receive-segsc(RST, acks, rst-seqs) and receive-segcs(RST, ackc, rst-seqc) actions ifthe segments are valid reset then the respective timing variables are set, so that there is a158



period of inactivity of at least � before the host is allowed it to close via the shut-downc orshut-downs actions. In steps with the shut-downc action, �rst(openc) is set to ensure that atleast one clock counter tick happens before the client is allowed to re-open. The symmetricassigment happens in steps with the shut-downs action.The crash and recover actions also change, so that hosts must wait a period of at leastqt after a crash before they recover. The recover actions also assign the clock counters anarbitrary value. Because the client closes after recoverc, �rst(openc) is set to the currenttime plus the clock rate, to ensure that at least one clock tick must happen before the clientre-opens. The server side is symmetric.8.3.3 Speci�cation of the bounded TCP automatonThe speci�cation of the bounded TCP automaton proceeds along the same lines as thespeci�cation of T CP. That is, we �rst de�ne an automaton BT CP0 that is the parallelcomposition of the client, server and channel automata. However, for bounded TCP we usethe channels, de�ned in Chapter 5, that enforce the maximum segment lifetime. Figure 8-8shows the composed system. The composed system is formally de�ned as follows:BT CP 0 , BT CPckBT CPsk�Chcs(P)k�Chsc(P):To get the user interface that will enable us to show a simulation from the bounded TCPautomaton to the abstract speci�cations, we need to hide the set of actions AT de�ned inSection 6.2. Thus, the general timed automaton model for TCP with bounded counters isde�ned as: BT CP , BT CP 0nAT :8.4 Veri�cation of BT CPBT CP does not implement T CP presented it in Chapter 6. It does not implement T CPbecause the steps of BT CP with time-outc or time-outs actions are enabled when certaintimeouts expire, whereas in T CP these steps are only enabled if the respective host is in159



send-msgc(open, m, close)Eff: (* E�ect clause from T CPc *)if modec = closed ^ open ^nowc > �rst(openc) then finitialize TCBcsnc := clock-counterclast(responsec) := nowc + rt�rst(prep-msgc) := nowc + clock-rate: : :send-segcs(SYN, snc)Pre: (* Precondition clause from T CPc *) ^nowc � wait-t ocEff: time-sentc := nowclast(responsec) := 1if wait-t oc =1 thenwait-t oc := nowc + wtreceive-segsc(SYN, sns, acks)Eff: (* E�ect clause from T CPc *)if modec = syn-sent ^ acks = snc + 1then flast(responsec) := nowc + rtwait-t oc := 1: : :send-segcs(snc, ackc, msgc)Pre: (* Precondition clause from T CPc *) ^nowc � wait-t ocEff: (* E�ect clause from T CPc *): : :last(responsec) := 1if ready-to-sendc ^ wait-t oc =1then wait-t oc := nowc + wtprepare-msgcPre: (* Precondition clause from T CPc *) ^nowc � �rst(prep-msgc)Eff: (* E�ect clause from T CPc *)�rst(prep-msgc) := nowc + data-rate: : :

passive-openEff: if modes = closed ^nows > �rst(opens) then finitialize TCBsmodes := listengreceive-segcs (SYN, snc)Eff: (* E�ect clause from T CPs *)if modes = listen then fsns := clock-counterslast(responses) := nows + rt�rst(prep-msgc) := nows + clock-rate: : :send-segsc(SYN, sns, acks)Pre: (* Precondition clause from T CPs *) ^nows � wait-t osEff: time-sents := nowslast(responses) := 1if wait-t os =1 thenwait-t os := nows + wtreceive-segcs(snc, ackc, msgc)Eff: (* E�ect clause from T CPs *): : :else if modes 6= rec then fif snc = acks then flast(responses) := nows + rt: : :gif ackc = sns + 1 then fwait-t os := 1: : :if modes = last-ack then fmodes := closed�rst(opens) := nows + �: : :prepare-msgsPre: (* Precondition clause from T CPs *) ^nows � �rst(prep-msgs)Eff: (* E�ect clause from T CPs *)�rst(prep-msgc) := nows + data-rate: : :Figure 8-5: Steps of BT CP that di�er from the steps of T CP . The client (BT CPc) steps are onthe left and the server (BT CPs) steps are on the right.160



receive-segsc(sns, acks, msgs)Eff: (* E�ect clause of T CPc *): : :else if modec 6= rec then fif sns = ackc then flast(responsec) := nowc + rt: : :gif acks = snc + 1 then fwait-t oc := 1: : :if modec = last-ack then fmodec := closed�rst(openc) := nowc + �: : :send-segcs(snc, ackc, msgc, FIN)Pre: (* Precondition clause from T CPc *) ^nowc � wait-t ocEff: (* E�ect clause from T CPc *)last(responsec) := 1if wait-t oc =1 thenwait-t oc := nowc + wt: : :receive-segsc(sns, acks, msgs, FIN)Eff: (* E�ect clause from T CPc *): : :else if modec 6= rec then fif sns � ackc then flast(responsec) := nowc + rt: : :gif acks = snc + 1 then fwait-t oc := 1: : :clock-counter-tickcPre: modec 6= rec ^ nowc � �rst(tickc)Eff: clock-counter c := clock-counter c + 1�rst(tickc) := nowc + clock-ratelast(tickc) := nowc + clock-rate

send-segsc(sns, acks, msgs)Pre: (* Precondition clause of T CPs *) ^nows � wait-t osEff: (* E�ect clause from T CPs *): : :last(responses) := 1if ready-to-send s ^ wait-t os =1then wait-t os := nows + wtreceive-segcs(snc, ackc, msgc, FIN)Eff: (* E�ect clause from T CPs *): : :else if modes 6= rec then fif snc � acks then flast(responses) := nows + rt: : :gif ackc = sns + 1 then fwait-t os := 1: : :send-segsc(sns, acks, msgs, FIN)Pre: (* Precondition clause of T CPs *) ^nows � wait-t osEff: (* E�ect clause from T CPs *)last(responses) := 1if wait-t os =1 thenwait-t os := nows + wt: : :clock-counter-ticksPre: modes 6= rec ^ nows � �rst(ticks)Eff: clock-counter s := clock-counters + 1�rst(ticks) := nows + clock-ratelast(ticks) := nows + clock-rateFigure 8-6: Other steps of BT CPc and BT CPs that di�er from their counterparts in T CP.161



�(t) (time-passage)Pre: t 2 R+ ^nowc + t � last(responsec) ^((modec 6= rec ^ nowc + t � last(ticks))_ modec = rec)Eff: nowc := nowc + ttime-outcPre: modec 62 frec; reset; closedg ^(modec = timed-wait ^nowc � �rst(t-outc)) _(nowc � wait-t oc)Eff: if (modec = timed-wait ^(nowc � �rst(t-outc)) then fmodec := closedg else modec := resetreceive-segsc(RST, acks, rst-seqs)Eff: if modec 6= rec ^ rst-seqs = ackc _(rst-seqs = 0 ^ acks = snc + 1) thenmodec := resetshut-downcPre: modec = resetEff: modec := closed�rst(openc) := nowc + �crashcEff: if modec 6= closed thenmodec := rec�rst(recovc) := nowc + qt�rst(openc) := nowc + qtrecovercPre: modec = rec ^nowc � �rst(recovc)Eff: modec := closedclock-counter c :2 BN�rst(tickc) := nowc + clock-ratelast(tickc) := nowc + clock-rate

�(t) (time-passage)Pre: t 2 R+ ^nows + t � last(responses) ^((modes 6= rec ^ nows + t � last(ticks))_ modes = rec)Eff: nows := nows + ttime-outsPre: modes 62 frec; reset; closedg ^(modes = timed-wait ^nows � �rst(t-outs)) _(nows � wait-t os)Eff: if (modes = timed-wait ^(nows � �rst(t-outs)) then fmodes := closedg else modes := resetreceive-segcs(RST, ackc, rst-seqc)Eff: if modes 6= rec ^ rst-seqc = acks thenmodes := resetshut-downsPre: modes = resetEff: modes := closed�rst(opens) := nows + �crashsEff: if modes 6= closed thenmodes := rec�rst(recovs) := nows + qt�rst(opens) := nows + qtrecoversPre: modes = rec ^nows � �rst(recovs)Eff: modes := closedclock-counter s :2 BN�rst(ticks) := nows + clock-ratelast(ticks) := nows + clock-rateFigure 8-7: The remaining steps of BT CPc and BT CPs that di�er from their counterparts in T CP.162
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send-segsc(p)Figure 8-8: The di�erent components of TCP with bounded counterstimed-wait state. Therefore, these steps of BT CP cannot be simulated by T CP. Thatis, BT CP closes in situations where T CP does not. However, we can change T CP slightlyso that BT CP implements this slightly modi�ed version of the protocol. We describe thechanges to T CP in the next section. This new version of T CP must still implement pa-tient(S) in order for us to conclude that BT CP implements the speci�cation if we showit implements the new version of TCP.2 We prove that it does in the next section. Wede�ne the modi�ed version of T CP and show that BT CP implements this protocol becauseit is easier to show than directly showing a simulation relation from BT CP to the abstractspeci�cation.8.4.1 Non-deterministic TCPThe change we make to T CP is simple. We add two internal actions set-resetc and set-resets which non-deterministicically sets modec and modes respectively to reset. We callthis version of TCP,NT CP, and with the same history variables as T CPh we call itNT CPh.The new steps with the actions set-resetc and set-resets are shown in Figure 8-9. To showthat NT CP implements patient(S), we need to show that the set-resetc and set-resets stepscan be simulated in Dp. That is, we prove the following lemma:Lemma 8.1NT CPh �tR Dp via Rtd.Proof: The proof for this lemma is the same as the proof for Lemma 7.1 except we need toadd prove of correspondence for the cases with a = set-resetc and a = set-resets. We only2Recall that in Chapter 3 we de�ned a patient version of an untimed automaton to be one where arbitrarytime passage steps are added. 163



set-resetcPre: modec 62 frec; closedgEff: modec := reset set-resetsPre: modes 62 frec; closedgEff: modes := resetFigure 8-9: The new set-reset steps for NT CP .show the case for a = set-resetc since the proof for set-resets is symmetric.a = set-resetc.For this step the corresponding � is (u, abortc, u000, markc(I), u00, dropc(I 0; k), u0). Theproof that this execution fragment preserves the correspondence of states is the same as forCase 2 for the step with a = receive-segsc(RST, acks, rst-seqs) in the veri�cation of T CPpresented in Chapter 7.We can now prove that NT CP, implements a patient version of Speci�cation S. Thatis, we prove the following theorem:Theorem 8.1NT CP vt patient(S).Proof: The proof is essentially identical to the proof of Theorem 7.1. From Lemma 8.1we get that NT CPh �tR Dp, which because of the soundness of timed re�nement mapping(Theorem 3.6) and the soundness of adding history variables (Theorem 3.9) implies thatNT CP vt Dp. From Theorem 4.1 we know D v S. Using the Embedding Theorem of [31]presented in Chapter 3 we now get Dp vt patient(S). Thus, we now have NT CP vt Dp andDp vt patient(S). Therefore, since the subset relation and thus the implements relation istransitive we get NT CP vt patient(S).Derived variables for NT CPTo verify the correctness of BT CP we will show a timed forward simulation from the statesof BT CP to NT CP. To facilitate the description of the timed forward simulation, wede�ne a set of derived variables for NT CP. The �rst two variables max-sncs, and max-snscare the maximum of all the sequence numbers for segments in in-transitcs and in-transitscrespectively. Similarly we de�ne max-ack cs, and max-ack sc to be the maximum of all the164



acknowledge numbers for segments in in-transitcs and in-transitsc respectively. Let s be anystate of NT CP, then these variables are formally de�ned as follows:s:max-sncs , (max(sn(p); for all p 2 s:in-transitcs) if s:in-transitcs 6= ;;0 otherwise:s:max-snsc , (max(sn(p); for all p 2 s:in-transitsc) if s:in-transitsc 6= ;;0 otherwise:s:max-ack cs , (max(ack(p); for all p 2 s:in-transitcs) if s:in-transitcs 6= ;;0 otherwise:s:max-ack sc , (max(ack(p); for all p 2 s:in-transitsc) if s:in-transitsc 6= ;;0 otherwise:We also de�ne max-u-snc which is the maximum of max-sncs and max-ack sc � 1. Thisvariable represents the maximum sequence number we can deduce the client sent, basedsolely on information on the channels. We use max-ack sc � 1 because it represents themaximum sequence number acknowledged by a segment from the server that is still inin-transitsc. The symmetric variable is max-u-sns.s:max-u-snc , max(s:max-sncs; s:max-ack sc � 1):s:max-u-sns , max(s:max-snsc; s:max-ack cs � 1):8.4.2 BT CP with history variablesBefore we de�ne the relation between the states of BT CP and NT CP, we need to addsome history variables to BT CP. We denote BT CP with history variables as BT CPh. Thehistory variables are mainly used to facilate proofs of invariants of the state protocol of theprotocol. In particular, because there are correctness properties that rely on the rate of theclock counters and the rate at which new segments can be sent, we add history variablesthat record the last time a the clock counter has a value, and the last time the sequence165



number variable has a value. These variables are lst-time-ccc and lst-time-ccs for clockcounter values, and lst-time-snc and lst-time-sns for sequence number values. We also havelst-time-ack c and lst-time-ack s that mark the last time the ackc and acks respectively, haveparticular values. The times of the last crashes at the client and server are stored in thelst-crash-timec and lst-crash-times variables respectively. It is also important that when anew initial sequence number is chosen or the sequence number is incremented that thesenumbers cannot be confused with sequence numbers of segments on the channel. To markthe steps when a new initial sequence number is chosen, or when the sequence number isincremented, we add ags new-isnc and new-isns when new initial sequence numbers areread, and new-snc and new-sns, when new sequence numbers are generated. Since long-lived connections are a potential source of problems for TCP with bounded counters, weadd a history variables con-strt-timec and con-strt-times that record the start time of theconnection on the client and server side respectively, so the duration of the connection canbe calculated. We also have history variables just-estb and ack-from-syn to indicate whencertain events occur. They are used to facilitate the proofs of some invariants of BT CP.The tables below provides more details on the history variables.Variable Type S Initially Descriptionlst-time-ccc an array indexedby BN, of T. p 8 i 2 BN,lst-time-ccc(i) = 0 The last time the client side clockcounter has value i.lst-time-ccs an array indexedby BN, of T. p 8 j 2 BN,lst-time-ccs(j) = 0 Symmetric to lst-time-ccc.lst-time-snc an array indexedby BN, of T. p 8 i 2 BN,lst-time-snc(i) = 0 The last time snc has value i.lst-time-sns an array indexedby BN, of T. p 8 j 2 BN,lst-time-sns(j) = 0 Symmetric to lst-time-snc.lst-time-ackc an array indexedby BN, of T. p 8 i 2 BN,lst-time-ackc(i) = 0The last time ackc has value i.lst-time-acks an array indexedby BN, of T. p 8 j 2 BN,lst-time-acks(j) = 0Symmetric to lst-time-ackc.new-snc Bool false A ag that is set to true when theclient chooses a new sequence number,and is set to false when this sequencenumber is used.new-sns Bool false Symmetric to new-snc.166



Variable Type S Initially Descriptionnew-isnc Bool false A ag that is set to true when theclient chooses a new initial sequencenumber, and is set to false when thissequence number is used.new-isns Bool false Symmetric to new-isnc.con-strt-timec T 1 The time when the client chooses anintial sequence number.con-strt-times T 1 The time when the server chooses aninitial sequence.lst-crash-timec T p 0 The time of the last crash at the client.lst-crash-times T p 0 Symmetric to lst-crash-timec.ack-from-syn Bool [ nil nil A ag that is set to true when theclient sets its acknowledgment num-ber based on a SYN segment formthe server and set to false when theacknowledgment number is base on anon-SYN segment.Steps of BT CPhIn Figures 8-10 and 8-11 we show the steps where BT CPh di�ers from BT CP. As alwayswe omit the assignments to the original variables of BT CP (again indicated by : : :) butoutline the if-then-else statements. The �rst addition is to the send-msgc(open, m, close)step. In this step the con-strt-timec is assigned to the current time, new-isnc is assigned totrue to indicate that a new sequence number is assigned in this step, and lst-time-snc(snc)is set to nowc to record the time snc gets the value read from clock-counterc . The new-isncvariable is set to false in the send-segcs (SYN, snc) step.When the server performs the receive-segcs (SYN, snc) step, it sets it's version of theconnection start time, con-strt-times to the current time, assigns new-isns to true, andlst-time-sns(sns) to the current time. The server assigns new-isns to false, when it per-forms the send-segsc(SYN, sns, acks) action. When the client receives the segment via thereceive-segsc(SYN, sns, acks) action it sets just-estb to true and ack-from-syn to true.lst-time-ack c(ackc) to the current time.In the prepare-msgc step, the client assigns new-snc to true, and the server assignsnew-sns to true in the prepare-msgs step. These assigns are make because the clientincrements its sequence number in the the prepare-msgc step, and the server increments itssequence number in the prepare-msgs step. In the the prepare-msgc step just-estb is set to167



false because this may be the next set the client performs after it gets to mode estb. setto After the client or server increments their respective sequence numbers in the prepare-msgc or prepare-msgs steps, they are enabled to send segments. When they send thesesegments (send-segcs(snc, ackc, msgc) and send-segcs(snc, ackc, msgc, FIN) for the clientand the symmetric steps for the server) new-snc and new-sns are set to false respectively.When either host receives a segment with valid data, it increments the value of itsacknowledgment variable. The time that the acknowledgment variable gets the new valueis recorded in the lst-time-ack c history variable on the client side and the lst-time-ack svariable on the server side.In the clock-counter-tickc and recoverc steps the server assigns lst-time-ccc(clock-counterc)to the current time to record the last time the clock counter has a particular value. Theclock-counter-ticks and recovers steps are symmetric on the server side.Derived variables for BT CPhWe also de�ne two derived variables for BT CPh. They are con-durationc and con-durations,and they represent the connection duration from the prespective of the client and serverrespectively. We formally de�ned them below.s:con-durationc , (s:now� s:con-strt-timec if s:modec 6= closed;0 otherwise:s:con-durations , (s:now� s:con-strt-times if s:modes 62 fclosed; listeng;0 otherwise:
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send-msgc(open, m, close)Eff: (* E�ect clause from BT CPc *)if modec = closed ^ open then fcon-strt-timec := nowcnew-isnc := truelst-time-snc(snc) := nowc: : :send-segcs (SYN, snc)Pre: (* Precondition clause from BT CPc *)Eff: (* E�ect clause from BT CPc *)new-isnc := false: : :receive-segsc(SYN, sns, acks)Pre: (* Precondition clause from BT CPc *)Eff: (* E�ect clause from BT CPc *): : :if modec = syn-sent then f: : :just-estb := trueack-from-syn := trueackc := sns + 1lst-time-ackc(ackc) := nowcgsend-segcs(snc, ackc, msgc)Pre: (* Precondition clause from BT CPc *)Eff: (* E�ect clause from BT CPc *)just-estb := falsenew-snc := false: : :prepare-msgcPre: (* Precondition clause from T CPc *)Eff: (* E�ect clause from T CPc *)new-snc := truejust-estb := trueif send-buf c 6= � then f: : :gif rcvd-closec ^ send-buf c = � then f: : :glst-time-snc(snc) := nowc

receive-segcs (SYN, snc)Eff: (* E�ect clause from BT CPs *)if modes = listen then f: : :con-strt-times := nowsnew-isns := truelst-time-sns := nowclst-time-acks := nowc: : :send-segsc(SYN, sns, acks)Pre: (* Precondition clause from BT CPs *)Eff: (* E�ect clause from BT CPs *)new-isns := false: : :receive-segcs(snc, ackc, msgc)Eff: (* E�ect clause from BT CPs *): : :if snc = acks then facks := snc + 1lst-time-acks(acks) := nows: : :prepare-msgsPre: (* Precondition clause from T CPs *)Eff: (* E�ect clause from T CPs *)new-sns := trueif send-buf s 6= � then f: : :gif rcvd-closes ^ send-buf s = � then f: : :glst-time-sns(sns) := nowsFigure 8-10: Steps where BT CPh di�ers from BT CP.169



receiv-segsc(sns, acks, msgs)Eff: (* E�ect clause from BT CPc *): : :if sns = ackc then fackc := snc + 1lst-time-ackc(ackc) := nowcack-from-syn := false: : :send-segsc(snc, ackc, msgc, FIN)Pre: (* Precondition clause from BT CPc *)Eff: (* E�ect clause from BT CPc *)new-snc := falsejust-estb := false: : :receive-segsc(sns, acks, msgs, FIN)Eff: (* E�ect clause from BT CPc *): : : if sns = ackc + 1 thenackc := sns + 1lst-time-ackc(ackc) := nowcack-from-syn := false: : :clock-counter-tickcPre: modec 6= rec ^ nowc � �rst(tickc)Eff: clock-counterc := clock-counterc + 1�rst(tickc) := nowc + clock-ratelst-time-ccc(clock-counterc) := nowcrashcEff: : : :lst-crash-timec := nowrecovercPre: modec = rec ^ nowc � �rst(recovc)Eff: modec := closedclock-counterc :2 BNlst-time-ccc(clock-counterc) := now

send-segsc(sns, acks, msgs)Pre: (* Precondition clause from BT CPs *)Eff: (* E�ect clause from BT CPs *)new-sns := false: : :receive-segsc(snc, ackc, msgc, FIN)Eff: (* E�ect clause from BT CPs *): : : if snc = acks + 1 thenacks := snc + 1lst-time-acks(acks) := nows: : :send-segsc(sns, acks, msgs, FIN)Pre: (* Precondition clause from BT CPs *)Eff: (* E�ect clause from BT CPs *): : :new-sns := falseclock-counter-ticksPre: modes 6= rec ^ nows � �rst(ticks)Eff: clock-counters := clock-counters + 1�rst(ticks) := nows + clock-ratelst-time-ccs(clock-counters) := nowcrashsEff: : : :lst-crash-times := nowrecoversPre: modes = rec ^ nows � �rst(recovs)Eff: modes := closedclock-counters :2 BNlst-time-ccs(clock-counters) := nowFigure 8-11: The other steps where BT CPh di�ers from BT CP .170



8.4.3 InvariantsAs is the case for T CP, we need to prove a set of invariants on the reachable states ofBT CP in order to limit the states we need to consider for the simulation proof. The proofsfor the invariants are presented in Appendix C. In the de�nition of the invariants of BT CPand in the proofs, when we talk about a sequence number or acknowledgment numberbeing bigger than another we use the following de�nition. In BT CP, i > j if and only ifi 2 fj + 1; : : : ; j + (231 � 1)g, where the additions are modulo 232. The properties statedbelow are true of all reachable states of BT CPh.The �rst group of invariants, Invariants 8.1 through 8.4, state properties about the rela-tionship between the connection start time, the timestamp on segments, sequence numbersand acknowledgment numbers.Invariant 8.1 says that when the client is in mode syn-sent, and the server is in modesyn-rcvd, any segment sent after the respective connection start times has the same se-quence number as the current sequence number of the sending host.Invariant 8.11. If modec = syn-sent and for (p; t) 2 in-transitcs, t � � � con-strt-timec then snc =sn(p).2. If modes = syn-rcvd and for (p; t) 2 in-transitsc, t � � � con-strt-times then sns =sn(p).Invariant 8.2 states a property that is easy to see. It says that when the client or serverchooses a new initial sequence number, any segments on the respective outgoing channelsmust have been sent before the connection start time (the current time).Invariant 8.21. Ifmodec = syn-sent ^ new-isnc then for all (p; t) 2 in-transitcs, t�� < con-strt-timec.2. Ifmodes = syn-rcvd^ new-isns then for all (p; t) 2 in-transitsc, t�� < con-strt-times.Invariant 8.3 says that any segment on the outgoing channels when a host is not closedmust have been sent after the host reopened.171



Invariant 8.31. If modec 6= closed then for all segments (p; t) 2 in-transitcs, t � con-strt-timec + �.2. If modes 6= closed then for all segments (p; t) 2 in-transitsc, t � con-strt-times + �.Invariant 8.4 says if a host in a synchronized state receives a segment with data itaccepts, and the sending host still has the same sequence number as the sequence numberon the segment, then the segment must be from the current incarnation.Invariant 8.41. If modes 2 sync-states and there exists segment (p; t) 2 in-transitcs such that snc =sn(p) and sn(p) = acks then t� � � con-strt-timec.2. If modec 2 sync-states and there exists segment (p; t) 2 in-transitsc such that sns =sn(p) and sn(p) = ackc then t� � � con-strt-timec.Invariants 8.5 through 8.12 state properties that are true before the hosts become syn-chronized. These properties are key correctness properties, and together they basically saythat the sequence numbers on segments sent during the three-way handshake part of theprotocol do not get confused with sequence numbers of old duplicate segments.Invariant 8.5 says that when the client chooses a new initial sequence number, theother host cannot already have an acknowledgment number that acknowledges that newsequence number. For the client side, the server's acknowledgment number may actuallyacknowledge the sequence number, but the server cannot be in mode syn-rcvd withnow �wait-t os. That is, the server cannot send a SYN segment with the acknowledgment number.Invariant 8.6 is similar to Invariant 8.5. It states that when the client chooses a new initialsequence numbers, there cannot already be a segment that acknowledges this new sequencenumber on the incoming channel.Invariant 8.5If modec = syn-sent ^ new-isnc = true ^ acks 2 BN then snc � acks _ :(modes 6=syn-rcvd ^ now � wait-t os). 172



Invariant 8.6If modec = syn-sent ^ new-isnc = true then for all SYN segments (p; t) 2 in-transitsc,snc � ack(p).Invariants 8.7 and 8.8 are symmetric to Invariants 8.5 and 8.6 respectively.Invariant 8.7If modes = syn-rcvd ^ new-isns = true ^ ackc 2 BN then sns � ackc.Invariant 8.8If modes = syn-rcvd ^new-isns = true then for all segments (p; t) 2 in-transitcs, ack(p) <sns + 1.Invariant 8.9 says that if the client is in mode syn-sent, then any segment that ac-knowledges the sequence number of the client, must contain a sequence number that hasnot already been acknowledged by a segment already on the channel to the server. In otherwords, the client has to receive the second segment of the three-way handshake before it cansend the third. Invariant 8.10 is along the same lines. It says that the sequence number onthe second segment of the three-way handshake must be bigger than the sequence numberon any non-SYN segment on the same channel at the same time. That is, the server cannotsend a segment with data that the client will accept before the server receives the thirdsegment of the three-way handshake.Invariant 8.9If modec = syn-sent then for all SYN segments (p; t) 2 in-transitsc such that ack(p) =snc + 1, sn(p) � ack(q) for all (q; t0) 2 in-transitcs.Invariant 8.10If modec = syn-sent and there exists SYN segment (p; t) 2 in-transitsc such that ack(p) =snc + 1 then sn(p) � sn(q) for all non-SYN segments (q; t0) 2 in-transitsc.Invariant 8.11 says that the acknowledgment number of the server when it is in modesyn-rcvd is always less than the sequence number of the server plus one when the server isnot closed. 173



Invariant 8.11If modes = syn-rcvd ^ now � wait-t os ^modec 6= closed then acks � snc + 1.Informally, Invariant 8.12 says that when the client receives the second segment in thethree-way handshake, if the sequence number of the server is such that it can send a segmentthe client can accept (sns 2 fackc; ackc + 1), then the server must be in mode syn-rcvd,which means it can only send SYN segments. The client does not accept SYN segments ifmodec = estb.Invariant 8.12If just-estb = true ^ sns 2 BN then ackc > sns.Invariants 8.13 through 8.18 deal with the id not-in-use property once the connection hasbeen established. Invariant 8.13 says that once the connection is established, the sequencenumber at the hosts is at least as big as the sequence number on any out going segment.Invariant 8.131. If modec 2 sync-states then for all segments (p; t) 2 in-transitcs, snc � sn(p).2. If modes 2 sync-states then for all segments (p; t) 2 in-transitsc, sns � sn(p).Invariants 8.14 and 8.15 are similar. Invariant 8.14 says that the sequence number plusone at a host in a synchronized state is always greater than or equal to the acknowledgmentnumber at the other host, and Invariant 8.15 says the sequence number plus one is alsogreater than or equal to the acknowledgment number on any incoming channel.Invariant 8.141. If modec 2 sync-states ^ acks 2 BN then snc + 1 � acks.2. If modes 2 sync-states ^ ackc 2 BN then sns + 1 � ackc.Invariant 8.151. If modec 2 sync-states ^ new-snc = true then for all segments (p; t) 2 in-transitsc,snc + 1 > ack(p). 174



2. If modes 2 sync-states ^ new-sns = true then for all segments (p; t) 2 in-transitcs,sns + 1 > ack(p).Invariant 8.16 says the host are in synchronized states, there acknowledgment numbersare greater than or equal to the acknowledgment number of any segment on the respectiveoutgoing channels.Invariant 8.161. If modec 2 sync-states then for all (p; t) 2 in-transitcs, ackc � ack(p).2. If modes 2 sync-states then for all (p; t) 2 in-transitsc, acks � ack(p).Invariant 8.17 expresses a key correctness property. It states that when a host receivesa segment from which it may accept data (sn(p) � ackc or sn(p) � acks), then the senderhas not changed its sequence number from the time it sent this segment. Another way tostate the property expressed by the invariant is: sequence numbers do not get changed untilthey are acknowledged.Invariant 8.171. If modes 2 fsyn-rcvdg [ sync-states ^modec 2 frec; resetg [ sync-states and thereexists (p; t) 2 in-transitcs such that sn(p) � acks, then snc = sn(p).2. If modec 2 sync-states and there exists (p; t) 2 in-transitsc such that sn(p) � ackc,then sns = sn(p).Invariant 8.18 states that when a host receives a segment from which it accepts data,there cannot be another segment on the same channel from which it will accept new databefore the old data is acknowledged.Invariant 8.181. If modes 2 fsyn-rcvdg [ sync-states and there exists (p; t) 2 in-transitcs such thatsn(p) � acks, then for all other non-SYN segments (q; t0) 2 in-transitcs, sn(q) � sn(p).2. If modec 2 sync-states and there exists (p; t) 2 in-transitsc such that sn(p) � ackc,then for all other non-SYN segments (q; t0) 2 in-transitsc, sn(q) � sn(p).175



The conjunction of all the above invariants is itself an invariant, and we call this invariantIB.8.4.4 The SimulationIn this section we de�ne a relation from states of BT CPh to states of T CP, and then provethat it is a timed forward simulation with respect to Invariants IT and IB.The timed forward simulationWe de�ne a relation Fbn (De�nition 8.1) from states(BT CPh) to states(NT CP). BecauseNT CP has many variables, we have many cases for the timed forward simulation. Themany cases makes the relation look more complicated than it actually is. We discuss theintuition behind relation Fbn before we present it, so that it will be easier for the reader tounderstand the formal de�nition.Since BT CPh works in the same basic manner asNT CP, the relation de�nes most of thevariables of BT CPh to be equal to their counterparts in NT CP. However, since BT CPh hasa bounded number space for sequence numbers and acknowledgment numbers and NT CPhas an unbounded number space for these variables, we cannot make these variables equalin the relation. Reset numbers are also bounded in BT CPh, but we are not concernedwith these numbers because we will simulate resets in BT CPh with set-reset actions inNT CP. Since set-resetc and set-resets are almost always enabled, we do not have to matchthe settings of the send-rstc, send-rsts, rst-seqc, and rst-seqs variables. Therefore, in therelation the allowable values of these variables in NT CP is independent of their values inBT CPh. Basically, these variables never get set in NT CP.For sequence numbers and acknowledgment numbers, the related values may not beequal because in BT CP the numbers are generated by bounded counters, while in NT CPthey are generated by an unbounded counter. However, the actual numbers of the individualcorresponding variables is not what is important in the protocols, but whether they are equalto, or less than, or greater than the numbers of other variables. This is the key idea in howthe relation is de�ned for these variables.For the client side sequence number, u:snc, we have three cases. The �rst case is always176



true of the states of NT CP(Invariants 7.1, 7.2 and 7.3). It is the rule used to de�nethe allowable values of u:snc if the other two cases are not true, or if s:modec = closed.In BT CPh when a host is closed, the sequence number variable is unde�ned. In NT CPsequence numbers are stable, and always have a value. Therefore, when a host is closedin BT CPh, in the set of related states on NT CP the sequence number of the host musthave a value. We de�ne the set of allowable values to be numbers greater than or equal tothe maximum of the maximum sequence number used as reected by the channels and theacknowledgment number of the other host minus one. The intuition here is that right beforea host closes in BT CPh, its sequence number will at least be this value. The other two casesillustrate the fact that it is whether variables are equal to each other or greater than anothervariable, and by how much, that is important. The second case is if s:snc = s:acks. Thisrelationship is important because it means the client can send a segment with messages thatmay be accepted by the server. However, since the client only send messages on non-SYNsegments, it is only relevant when the client is in a synchronized state. Also, since the serveronly accepts messages if it is in a synchronized state it is only relevant if the server is ina synchronized state. The third case for u:snc is the situation where the client can send aFIN segment with data. The de�nition for u:sns is essentially symmetric.The client side acknowledgment number in NT CP, u:ackc, is nil or unde�ned when thecorresponding variable in BT CPh is nil, or unde�ned. Otherwise, it must be equal to, orless than u:sns+1 when s:ackc is less than or equal to s:sns+1. The important relationshipis whether s:ackc = s:sns + 1, because the server can send a valid acknowledgment if thisis the case. When the sequence number of the server in BT CPh is either unde�ned, or isnil, and if the s:ackc 6= nil, then in the related states of NT CP, u:ackc � u:sns+1, whichwe know by Invariant 7.2 is always true in the reachable states of NT CP. For u:acks therelation is not quite symmetric. The �rst non-symmetric aspect is that we specify thatwhenever s:modes = closed, then u:acks is unde�ned. We need to specify this here becausethe server may set s:acks to 0, when it generates a reset for a SYN segment received whenit is closed. However, since we will simulate resets in BT CPh with the set-reset actions inNT CP, changes associated with generating reset segments do not change the related valuesfor variables in NT CP. It is also important that if s:acks = s:snc+1 that u:acks = u:snc+1.177



However, since only a SYN segment can acknowledge the sequence number of the client whenit is in mode syn-sent, it only matters that u:acks = u:snc + 1 when the client is not inmode syn-sent, or if it is in mode syn-sent, that the server is in mode syn-rcvd.We now discuss the relationship between in-transitcs and in-transitsc in BT CPh and thesame variables in NT CP. The relation between these variables is the most complicatedpart of Fbn. However, it is not as complicated as it looks in the formal de�nition. It lookscomplicated because it is somewhat di�cult to present formally and precisely the relativelysimple idea behind this part of the relation. We start with the case for in-transitcs. Thebasic idea is that each non-RST segment (p0; t0) 2 s:in-transitcs is related to a segmentp 2 u:in-transitcs that has the same message and is the same type (SYN, or FIN, or neither),but there is no timestamp, and the sequence number, and/or the acknowledgment numbermay be di�erent. As is the case for sequence numbers and acknowledgment numbers, whatis important is how the numbers relate to other variables. For sequence numbers of non-RST segments in s:in-transitcs, the related sequence numbers for segments in u:in-transitcs isdetermined in a manner similar to how the related values for client side sequence numbers aredetermined. The �rst case is always true of the reachable states of NT CP, and is used whenthe other cases do not hold (Invariant 7.1). The variables the sequence numbers are relatedto in the relation reect how the sequence numbers are generated or used in the protocols,so because when segment (p0; t0) is added to s:in-transitcs for the �rst time, sn(p0) = s:snc, inthe set of corresponding states sn(p) = u:snc. However, we do not want sequence numbersof segments from a previous incarnation to be equal to the current sequence number, evenif they are in BT CPh, so we have the added restriction that the timestamp on the segmentmust indicate that it was placed on the channel after the connection started; that is, (t��) �s:con-strt-timec. The sequence numbers of segments related to segments from a previousincarnation are always less than u:snc. Also if the sequence number of the segment in BT CPhis actually less than s:snc, then the sequence number of the related segment is also less thanu:snc. It is also important that if on a non-SYN segment (p0; t) that if sn(p0) = s:acks orsn(p0) = s:acks+1, the same relation holds for the corresponding segment p. It is importantbecause such a segment has data the server may accept. However, if s:modes = syn-rcvd,the server only accepts the data if ack(p0) = s:sns + 1.178



Acknowledgment numbers are treated in a similar manner. For non-SYN segments itis important that if ack(p0) = s:sns + 1, then ack(p) = u:sns + 1, because when the serverreceives a segment it checks if the acknowledgment number has this value. However, sincethe server does not check if ack(p0) = s:sns or any value less than that, we do not needto be as precise with the relationship between acknowledgment numbers that are less thanor equal to the sequence number of the receiving host. We also have an invariant rule, forwhen the other conditions do not hold. That is, ack(p) � u:sns + 1.The relation for in-transitsc is essentially symmetric, except that SYN segments in thischannel have acknowledgment numbers, so they are treated in a slightly di�erent manner.Also, because the server may assign an acknowledgment number based on an old duplicateSYN segment from the client, it is only important that the acknowledgment number of thesegment is equal to the acknowledgment number of the server, if the segment was sent afterthe connection started at the server. We now present the formal de�nition of Fbn.De�nition 8.1 (Forward Simulation from BT CPh to NT CP)If s 2 states(BT CPh) then de�ne Fbn to be the state u 2 states(NT CP) such that:1. u:now = s:now2. u:ready-to-sendc = s:ready-to-sendcu:ready-to-sends = s:ready-to-sends3. u:send-ackc = s:send-ackcu:send-acks = s:send-acks4. u:send-�nc = s:send-�ncu:send-�ns = s:send-�ns5. u:push-datac = s:push-datacu:push-datas = s:push-datas6. u:msgc = s:msgcu:msgs = s:msgs7. u:send-�n-ackc = s:send-�n-ackcu:send-�n-acks = s:send-�n-acks8. u:time-sentc = s:time-sentcu:time-sents = s:time-sents9. u:send-buf c = s:send-bufcu:send-buf s = s:time-sents10. u:rcv-buf c = s:rcv-buf cu:rcv-buf s = s:rcv-buf s11. u:modec = s:modecu:modes = s:modes 179



12. u:send-rstc = false if s:modec 6= closedis unde�ned if s:modec = closedu:send-rsts = false if s:modes 6= closedis unde�ned if s:modes = closed13. u:rst-seqc = nil if s:modec 6= closedis unde�ned if s:modec = closedu:rst-seqs = nil if s:modes 6= closedis unde�ned if s:modes = closed14. u:snc � max(u:max-u-snc; u:acks � 1) if s:modec 2 fclosed; syn-sentg _ s:snc 62fs:acks; s:acks + 1g.= u:acks if s:snc = s:acks ^ s:modec 62fclosed; syn-sentg ^ (s:modes 6= syn-rcvd _(s:modes = syn-rcvd ^ s:ackc = sns + 1)).= u:acks + 1 if s:snc = s:acks + 1 ^ s:modec 62fclosed; syn-sentg ^ (s:modes 6= syn-rcvd _(s:modes = syn-rcvd ^ s:ackc = sns + 1)).15. u:sns � max(u:max-u-sns; u:ackc � 1) if s:modes 2 fclosed; listen; syn-rcvdg _ s:sns 62fs:ackc; s:ackc + 1g.= u:ackc if s:sns = s:ackc ^ s:modes 62fclosed; listen; syn-rcvdg= u:ackc + 1 if s:sns = s:ackc + 1 ^ s:modes 62fclosed; listen; syn-rcvdg16. u:ackc = s:ackc if s:ackc = nil� u:sns + 1 if s:modes 2 fclosed; listeng ^ s:ackc 6= nil= u:sns + 1 if s:ackc = s:sns + 1� u:sns if s:ackc � s:sns.17. u:acks = s:acks if s:acks = nilis unde�ned if s:modes = closed� u:snc + 1 if s:modec = closed ^ s:acks 6= nil= u:snc + 1 if s:acks = s:snc+1 ^ (s:modec 6= syn-sent_(s:modec = syn-sent ^s:modes = syn-rcvd))� u:snc if s:acks � s:snc _(s:modec = syn-sent ^ :(s:modes = syn-rcvd ^wait-t os � now))18. Segment p 2 u:in-transitcs = p0 for non-RST segment (p0; t) 2 s:in-transitcs but, with:sn(p) � u:snc if s:modec = closed _ sn(p0) 62 fs:acks; s:acks + 1g= u:snc if s:snc = sn(p0) ^ (t� �) � s:con-strt-timec.< u:snc if s:modec 6= closed ^ (sn(p0) < s:snc _ (t��) < s:con-strt-timec).= u:acks if sn(p0) = s:acks ^ (p0; t) is a non-SYN segment and (s:modes 6=syn-rcvd_ (s:modes = syn-rcvd ^ ack(p0) = s:sns + 1)).= u:acks + 1 if sn(p0) = s:acks+1^ (p0; t) is a non-SYN segment and (s:modes 6=syn-rcvd_ (s:modes = syn-rcvd ^ ack(p0) = s:sns + 1)).ack(p) = u:ackc if ack(p0) = ackc� u:sns + 1 if s:modec 2 fclosed; syn-sentg ^ s:modes 2 fclosed; listeng _ack(p0) 6= s:ackc.= u:sns + 1 if ack(p0) = s:sns + 1� u:sns if ack(p0) � s:sns.19. Segment p 2 u:in-transitsc = p0 for non-RST segment (p0; t) 2 s:in-transitsc, but with:180



sn(p) � u:sns if s:modes 2 fclosed; listeng _ sn(p0) 62 fs:ackc; s:ackc + 1g.= u:sns if s:sns = sn(p0) ^ (t� �) � s:con-strt-times.< u:sns if s:modes 62 fclosed; listeng ^ (sn(p0) < s:sns _ (t � �) <con-strt-times).= u:ackc if sn(p0) = s:ackc ^ (p0; t) is a non-SYN segment.= u:ackc + 1 if sn(p0) = s:ackc + 1 ^ (p0; t) is a non-SYN segment.ack(p) = u:acks if ack(p0) = acks ^ (t� �) � s:con-strt-times� u:snc + 1 if s:modes 2 fclosed; listeng ^ s:modec = closed _ ack(p0) 6=s:acks.= u:snc + 1 if ack(p0) = s:snc + 1 ^ (p0; t) is a SYN segment.= u:snc + 1 if ack(p0) = s:snc+1 ^ s:modec 6= syn-sent ^ (p0; t) is a non-SYNsegment.� u:snc if ack(p0) � s:snc ^ (p0; t) is a SYN segment.� u:snc if ack(p0) � s:snc _ s:modec = syn-sent ^ (p0; t) is a non-SYNsegment.The simulation of stepsIn this section we proof that Fbn is indeed a timed forward simulation from the states ofBT CPh to the states of NT CP by showing the correspondence of actions.Lemma 8.2BT CPh �tF NT CP via Fbn.Proof: We prove that Fbn is a timed re�nement mapping from BT CPh to NT CP withrespect to IT and IB by showing that the two cases of De�nition 3.12 are satis�ed.Base CaseIn the start state s0 of BT CPh we have s0:modec = closed, s0:modes = closed, s0:now = 0,s0:in-transitcs = ;, s0:in-transitsc = ;, and and all other variables unde�ned. The startstate, u0 of NT CP has u0:modec = closed, u0:modes = closed, u0:now = 0 u0:snc = 0,u0:sns = 0, u0:in-transitcs = ;, u0:in-transitsc = ;, and all other variables unde�ned.Therefore, it is clear that Fbn(s0) \ u0 6= ;.Inductive CaseAssume (s; a; s0) 2 Steps(BT CPh). Below we consider cases based on a and for each case wede�ne a �nite execution fragment � of S such that fstate(�) = Fbn(s), lstate(�) = Fbn(s0),and t-trace(�) = t-trace(s; a; s0). For the steps of the proof below we do not include thetime of occurrence and last time in the timed traces of (s; a; s0) or �, so as not to clutter theproof. However, it is clear that since the time-passage steps in NT CP have no restrictions,if we show trace(�) = trace(s; a; s0) then t-trace(�) = t-trace(s; a; s0). We use u and u0 to181



denote Fbn(s) and Fbn(s0) respectively. If an action has a symmetric counterpart from theother host we will not show the proof of correspondence for that action.a = send-msgc(open, m, close).For this case, � = (u; a; u0). There are two interesting cases for this step. The �rst is ifs:modec = syn-sent ^ s:send-buf c = � and close is true. The second interesting case forthis step is when s:modec = closed and open is true. For all other states, since the stepsonly a�ect variables that are equal to each other in the relation, or have no e�ect, it is easyto see that after a the resulting state, u0, is in Fbn(s0).1. The case where s:modec = syn-sent ^ s:send-buf c = � and close is true is interestingbecause after the step s0:modec = closed, so the set of allowable values for u0:acks,u0:in-transitcs, and u0:in-transitsc, may change. For u0:acks the relation is a�ected ifs:acks = s:snc + 1. In the corresponding set of states u:acks = u:snc + 1. After thesteps u0:acks should be less than or equal to u0:snc + 1. This is clearly true. Forsegments p 2 u0:in-transitcs, after �, sn(p) should be less than or equal to u0:snc.Since s:modec = syn-sent and Invariant 8.1 tells us that all segments (p; t) witht � � � s:con-strt-timec have sn(p) = s:snc, by Fbn, we know that all segmentsp 2 u:in-transitcs, sn(p) � u:snc. Since the step does not change u:in-transitcs or u:snc,we have sn(p) � u0:snc for p 2 u0:in-transitcs. For a segment q 2 u:in-transitsc, therelation is a�ected if the corresponding segment (q0; t) 2 s:in-transitsc has ack(q0) =s:snc + 1, or ack(q0) � s:snc. After step (s; a; s0), Fbn, says that all segments q 2u0:in-transitsc must have ack(q) � u0:snc + 1. Since, in the states corresponding tostate s, we know that ack(q) � u:snc+1, we clearly have the right correspondence forthis variable.2. For the case where s:modec = closed and open is true, the di�culty in showing u0is in the set of states de�ned by Fbn, lies in showing that u0:acks, u0:in-transitcs, andu0:in-transitsc have values that are in the set of values de�ned by Fbn. The criterionused by Fbn for de�ning the set of allowable values for u0:acks may change after step(s; a; s0) if s0:modes 6= closed ^ s0:acks 6= nil. Since s:acks does not change inBT CPh after (s; a; s0), nor does u:acks change after � in NT CP, we need to show182



that even if the criterion changes, u:acks is in the set of allowable values for u0:acksas de�ned by Fbn. The change in criterion comes about because s:modec = closedwhile s0:modec = syn-sent. By Fbn, u:acks � u:snc + 1. From Invariant 8.5 we knowthat if s0:modes = syn-rcvd then s0:acks � s0:snc. Therefore, by Fbn, u0:acks shouldbe less than or equal to u0:snc which we know to be true because u0:snc = u:snc + 1.The criterion used by Fbn for de�ning the set of allowable values for the sequencenumbers of segments p 2 u:in-transitcs changes after step (s; a; s0) if s:modes 2fclosed; listeng. Because the sequence numbers do not change after the step, weneed to show that the values are in the new set of allowable values. If s:modec =closed and s:modes 2 fclosed; listeng, then by Fbn for all segments p, sn(p) �u:snc. Since the timestamp minus � of every segment in s:in-transitcs, is less thans0:con-strt-timec (Invariant 8.2), by Fbn, for all segments p, sn(p) < u0:snc, which isclearly true.For segments p 2 u:in-transitsc, the criterion used for determining the allowable valuesfor ack(p), changes after step (s; a; s0) if s:modes 2 fclosed; listeng. Because theacknowledgment numbers do not change after the step, we need to show that thevalues are in the new set of allowable values. If s:modec = closed and s:modes 2fclosed; listeng, then by Fbn for all segments p, ack(p) � u:snc + 1. After the step,we know by Invariant 8.6, that for all SYN segments (p0; t) 2 s0:in-transitsc, ack(p0) �s0:snc. After step (u; a; u0), since u0:snc = u:snc + 1, we know that ack(p) � u0:snc,which is in the set of allowable values de�ned by Fbn. For non-SYN segments, sinces0:modec = syn-sent, we again have by Fbn that ack(p) should less than or equal tou0:snc, which we know is true.a = passive-open.For this step the corresponding � = (u; a; u0). It is easy to see that u0 2 Fbn(s0), becausethe step does not change any variables that are not equal in the relation.a = send-msgs(m, close).For this step the corresponding � = (u; a; u0). This is another step that only changesvariables that are equal in the relation, so it is easy to see that u0 2 Fbn(s0).183



a = send-segcs(SYN, snc).For this step, the corresponding � = (u; a; u0). Step (s; a; s0) adds a SYN segment (p0; t)to s:in-transitcs with sn(p0) = s:snc, and � adds a SYN segment p to u:in-transitcs withsn(p) = u:snc. Clearly u0:in-transitcs is in the set of allowable states as de�ned by Fbn.a = receive-segcs(SYN, snc).We break the proof of correspondence for this step into two cases.1. The �rst case is if s:modes = closed. For this case the corresponding � is theempty step. In Chapter 3 we de�ned � to be the empty action, so we have � =(u; �; u0). For this case, after step (s; a; s0), s0:send-rsts = true, s:acks = [snc] + 1,and s0:rst-seqs = 0. However, since s0:modes = closed. The empty step gives theright set of corresponding states.2. The second case is for all other states, s. For this case � = (u; a; u0). Let (p0; t0)be the SYN segment received by (s; a; s0) and p be the SYN segment received by �.This step is interesting if s:modes = listen. For most variables it is clear that theirvalues in state u0 are in the set of allowable values de�ned by Fbn. The interestingcases are for u0:acks, u0:snc, u0:ackc, u0:in-transitsc, and u0:in-transitcs. We knowu:acks = nil by Fbn. After a, in BT CPh, if s0:modec 6= closed and s0:acks = s0:snc+1or s0:acks � s0:snc, then sn(p0) = s0:snc or sn(p0) < s0:snc. We know from Invariant 8.3that if sn(p0) = s0:snc then t � � � s0:con-strt-timec, so in the corresponding setof states sn(p) = u0:snc. If sn(p0) < s0:snc, then we know from Invariant 8.1 thatt�� < s0:con-strt-timec, so in the corresponding set of states sn(p) < u0:snc, so we havethe correct value for this case. From Invariant 8.11 we know that if s0:modec 6= closedthen s0:acks � s0:snc+1. Therefore, the only other possibility is if s0:modec = closed,then u0:acks � u0:snc + 1, which by Invariant 7.2 we know is true.If s0:ackc = s0:sns + 1, then the criterion used by Fbn for de�ning the set of allowablevalues for u0:snc changes if s0:snc = s0:acks or s0:snc = s0:acks + 1. However, sinces0:modes = syn-rcvd, Invariant 8.7 tells us that if s0:ackc 6= nil, then s0:ackc � s0:sns.Therefore, the criterion for de�ning the allowable values for this variable does notchange. For u0:ackc, we already know that if s0:ackc 6= nil, then it is less than or184



equal to s0:snc. Since s:modes = listen by Fbn, u:ackc � u:sns + 1. By Fbn u0:ackcshould be less than or equal to u0:sns. Since u:ackc � u:sns+1, and u0:sns = u:sns+1,u0:ackc is indeed less than or equal to u0:sns.The criterion used by Fbn for de�ning the set of allowable values for the sequencenumbers and acknowledgment numbers of segments q 2 u:in-transitsc changes af-ter step (s; a; s0) if s:modec 2 fclosed; syn-sentg. Because the numbers do notchange after the step, we need to show that the values are in the new set of al-lowable values. We �rst examine the sequence numbers. If s:modes = listen ands:modec 2 fclosed; syn-sentg, then by Fbn for all segments q, sn(q) � u:sns. Sincethe timestamp minus � on every segment must be less than s0:con-strt-times (In-variant 8.2), by Fbn, for all segments q, sn(q) < u0:sns, which is clearly true. Alsobecause the timestamp minus � on every segment must be less than s0:con-strt-times,the allowable values for acknowledgment numbers of segments on u0:in-transitsc is nota�ected.The criterion used by Fbn for de�ning the set of allowable values for the acknowledg-ment numbers of segments q 2 u:in-transitcs also changes after this step if s:modec 2fclosed; syn-sentg. It does not change for sequence numbers because we know fromInvariant 8.8, that for all segments q0 2 s0:in-transitcs, ack(q) � s0:sns. For acknowl-edgment numbers, since s:modes = listen, if s:modes 2 fclosed; syn-sentg, thenby Fbn for all SYN segments q, ack(q) � u:sns+1. After the step, we know by Invari-ant 8.8, that for all segments q0 2 s0:in-transitcs, ack(q) � s0:sns. After step (u; a; u0),since u0:sns = u:sns+1, we know that ack(q) � u0:sns, which is in the set of allowablevalues de�ned by Fbn.a = send-segsc(SYN, sns, acks).For this step the corresponding � = (u; a; u0). Let (p0; t0) be the SYN segment addedby (s; a; s0) and p be the SYN segment added by �. Thus, we have sn(p) = u0:sns andack(p) = u0:acks; and sn(p0) = s0:sns and ack(p) = s0:acks. Since s:modes = syn-rcvdwhen this step is enabled, the sequence number of p is right as de�ned by Fbn. If inBT CPh, ack(p0) = s0:snc + 1 or ack(p0) � s0:snc, then by Fbn, ack(p) should be equal to185



u0:snc + 1 or ack(p) should be less than u0:snc respectively. Since if s:acks = s:snc + 1 thenu:acks = u:snc + 1 or if s:acks � s:snc then u:acks � u:snc, we clearly have the right set ofvalues.a = receive-segsc(SYN, snc, acks).For this step we have two cases.1. The �rst case is if s:modec = closed _ s:modec = syn-sent ^ ack(p0) 6= s:snc + 1.For this case the corresponding � is the empty step. Since for this case (s; a; s0) onlychanges s:send-rstc and s:rst-seqc, it is clear that the empty step gives the right setof corresponding states.2. The second case is for all other states. For this case � = (u; a; u0). Let (p0; t) bethe segment received in step (s; a; s0), and p be the segment received in step �. Ifs:modec = syn-sent ^ ack(p0) = s:snc + 1, then after step (s; a; s0), s0:modec = estband s0:ackc = sn(p0)+1. In the corresponding state of NT CP, u:modec = syn-sent ^ack(p) = u:snc + 1, and after �, u0:modec = estb and u0:ackc = sn(p) + 1. We needto show that this value of u0:ackc is in the set of acceptable values as de�ned by Fbn.If s0:modes 2 fclosed; listeng then u0:ackc � u0:sns + 1 which we know to be trueby Invariant 7.2. If s0:modes 62 fclosed; listeng then the allowed values for u0:ackcdepend on the relationship of sn(p0) to s0:sns. If s0:ackc = s0:sns+1 or s0:ackc � s0:snc,then by Fbn, u0:ackc should have the same relationship to u0:sns. If s0:ackc = s0:sns+1or s0:ackc � s0:snc then sn(p0) = s0:sns or sn(p0) � s0:sns respectively. We knowfrom Invariant 8.3 that if sn(p0) = s0:sns then t � � � s0:con-strt-times, so in thecorresponding set of states sn(p) = u0:sns. If sn(p0) < s0:sns, then we know fromInvariant 8.1 that t � � < s0:con-strt-times, so in the corresponding set of statessn(p) < u0:sns, so we have the correct set if values for this case also.The change of s:ackc from nil to sn(p0)+1, may also change the criterion used by Fbnfor de�ning the set of allowable values for u0:sns, if s:modes 62 fclosed; listen; syn-rcvdg.However, from Invariant 8.12 we know that if s0:sns 2 fackc; ackc+1g then s0:modes =syn-rcvd, so the criterion does not changes. This change may also change the setof allowable values for acknowledgment numbers of segments in u0:in-transitcs, and186



sequence numbers of non-SYN segments in u0:in-transitsc. For acknowledgment num-bers of segments in s0:in-transitcs, the change may have an e�ect for any segmentq 2 u0:in-transitcs that has corresponing segment (q0; t0) such that ack(p0) 6= s0:sns.However, we know by Invariant 8.9 that sn(p0) � ack(q0) for any segment (q0; t0) 2s:in-transitcs. Therefore, we know that s0:ackc > ack(q0). From Invariant 7.3 we knowthat for any corresponding segments q 2 u0:in-transitcs, ack(q) � u0:sns+1, so we havethe correct correspondence of states. If s:modes 2 fclosed; listeng, the change ofs:ackc from nil to sn(p)+1 may change the allowable set of values for sequence num-bers for non-SYN segments in u0:in-transitsc. However, from Invariant 8.10 we knowthat for all non-SYN segments (q0; t0) 2 s0:in-transitsc, sn(q0) 62 fs0:ackc; s0:ackc + 1g,and from Invariant 7.1 we know sn(p) � u0:snc, so we have the correct correspondenceof states.a = prepare-msgc.For this step � = (u; a; u0). It is easy to see that for most variables the relationship ismaintained after �. The di�culty lies in showing that the relationship is preserved foru0:snc, u0:acks, u0:in-transitcs, and u0:in-transitsc. We �rst examine the case for u0:snc. ByInvariant 8.14 we know that s:snc+1 � s:acks, if s:acks 6= nil ^s:modes 6= closed. If afterthis step s0:snc = s0:acks, or s0:snc = s0:acks + 1 (if snc is incremented twice), then it mustbe that s:acks = s:snc + 1. By Fbn, in the related set of states u:acks = u:snc + 1, so after�, u0:snc = u0:acks or u0:snc = u0:acks + 1 respectively. If s:snc � s:acks _ s:acks = nil _s:modes = closed then after (s; a; s0), s0:snc = s0:acks + 1 or s0:snc 62 fs0:acks; s0:acks + 1g.After � we know u0:snc = u0:acks+1, and/or u0:snc > max(u0:max-u-snc; u0:acks�1), whichis the set of allowable values for this state.For the case of u0:acks, we know that if s:acks 6= nil ^s:modes 6= closed then s:snc+1 �s:acks (Invariant 8.14). Therefore, after this step s0:acks � s0:snc. In the corresponding setof states we know u:acks � u:snc + 1, so after �, u0:acks � u0:snc, which gives the correctcorrespondence of states.For sequence numbers of segments p 2 u0:in-transitcs, the set of allowable values maychange if after (s; a; s0) there is a segment (p0; t) 2 s0:in-transitcs with sn(p0) = s0:snc.However, from Invariant 8.13 we know that this is not the case. By Invariant 8.15 we know187



that ack(p0) � s:snc+1, for segments (p0; t) 2 s:in-transitsc. Therefore in the correspondingset of states, for segments p 2 u:in-transitsc, ack(p) � u:snc + 1. Therefore, after this stepthe correspondence is maintained.a = prepare-msgs.This step is symmetric to a = prepare-msgc,a = send-segcs(snc, ackc, msgc).For this step � = (u; a; u0). Let (p0; t0) be the segment added by (s; a; s0) and p be thesegment added by �. Thus, we have sn(p) = u0:snc and ack(p) = u0:ackc; and sn(p0) = s0:sncand ack(p) = s0:ackc. If in BT CPh sn(p0) = s0:acks or sn(p0) = s0:acks + 1, then by Fbn,sn(p) should be equal to u0:acks or sn(p) should be equal to u0:acks + 1 respectively. Sinceif s:snc = s:acks then u:snc = u:acks, or if s:snc = s:acks + 1 then u:snc = u:acks + 1,we clearly get the correct corresponding states. Also, if in BT CPh ack(p0) = s0:sns + 1or ack(p0) � s0:sns, then by Fbn, ack(p) should be equal to u0:sns + 1 or ack(p) shouldbe less than u0:sns respectively. Since if s:ackc = s:sns + 1 then u:ackc = u:sns + 1 or ifs:ackc � s:sns then u:ackc � u:sns, we clearly have the right set of values.a = receive-segcs(snc, ackc, msgc).We break the proof of correspondence for this step into the usual two cases.1. The �rst case is if (s:modes 2 fclosed; listeng)_ (s:modes = syn-rcvd ^ ack(p0) 6=s:sns + 1). For this case the corresponding � is the empty step. It is clear that theempty step gives the right set of corresponding states.2. The second case is for all other states. For this case � = (u; a; u0). Let (p0; t) be thesegment received in step (s; a; s0) and p be the segment received by in step �. Webreak the second case into several subcases. The subcases are not necessarily disjointset of states.(a) The �rst subcase occurs if sn(p0) = s:acks. After a, in BT CPh, s0:acks = sn(p0)+1. In the corresponding set of states sn(p) = u:acks, and after � u0:acks =sn(p)+1. We need to show that u0:acks, u0:snc, u0:in-transitcs, and u0:in-transitscall have allowable values after �. We �rst look at the case for u0:acks. If s0:acks =188



s0:snc+1 then sn(p0) = s:snc. By Invariant 8.4 we know that if sn(p0) = s:acks andsn(p0) = s:snc, then t�� � s0:con-strt-timec, so in the corresponding set of statessn(p) = u:snc. If s0:acks � s0:snc then sn(p0) < s:snc, so in the corresponding setof states sn(p) < u:snc. Thus, the correspondence holds in either of these cases.If s:modec = closed, the u0:acks should be less than or equal to u0:snc+1. FromInvariant 7.2 we know this is true.If s:modec 6= closed, then the criterion for determining allowable values foru0:snc may change. However, we know from Invariant 8.17 that if s0:modec 2sync-states, then sn(p0) = s0:snc. Therefore, after step (s; a; s0) either s0:modec 2fclosed; syn-sentg or s0:snc 62 fs0:acks; s0:acks+1g. Therefore, the criterion forthe allowable values for this variable does not change.For non-SYN segments in u0:in-transitcs the criterion for determining allow-able values for sequence numbers may change if there is a non-SYN segment(q0; t0) 2 s0:in-transitcs with sn(q0) 2 fs0:acks; s0:acks + 1g. However, from In-variant 8.18 we know that for all non-SYN segments (q0; t0) 2 s0:in-transitcs,sn(q0) 62 fs0:acks; s0:acks+1g, and from Invariant 7.1 we know that sn(q) � u0:sncfor segment q 2 u0:in-transitcs. For u0:in-transitsc, if there exists a segment(q0; t0) 2 s0:in-transitsc with ack(q0) = s0:acks, then the corresponding segmentq 2 u0:in-transitsc should have ack(q) = u0:acks. However, from Invariant 8.16we know there are no such segments (q0; t0) 2 s0:in-transitsc.(b) The second subcase occurs if ack(p0) = s:sns + 1 and s:modes = last-ack. Forthis case, after step (s; a; s0), s0:modes = closed, and after �, u0:modes = closed.This change may a�ect the states of NT CP related to s0:sns, s0:snc, s0:ackc,s0:in-transitsc, and s0:in-transitcs.We �rst look at the case for u0:sns. After �, u0:sns should be greater than orequal to max(u0:max-u-sns; u:ackc � 1). From Invariants 7.1, and 7.3 we knowthis is true. If s:snc = s:acks or s:snc = s:acks + 1 the criterion for the allowablevalues for u:snc changes after �, because s0:acks is unde�ned. However, againfrom Invariants 7.1, and 7.3 we know u0:snc � max(u0:max-u-snc; u0:acks � 1),which is in the set of correct corresponding states. After, �, it is also clear that189



u0:ackc � u0:sns + 1, which by is the correct set of allowable values for u0:ackc.The criterion used by Fbn for de�ning the set of allowable values for the sequencenumbers and acknowledgment numbers of any segment q 2 u:in-transitsc changesafter this step if s:modec 2 fclosed; syn-sentg. After this step, by Fbn, anyq 2 u0:in-transitsc, should have sn(q) � u0:sns, and ack(q) � u0:snc + 1. ByInvariants 7.1 and 7.3 we know that this is true.The criterion used by Fbn for de�ning the set of allowable values for the se-quence numbers and acknowledgment numbers of segments q 2 u:in-transitcsalso changes after this step if s:modec 2 fclosed; syn-sentg. After this step, byFbn, any q 2 u0:in-transitcs, should have sn(q) � u0:snc, and ack(q) � u0:sns + 1,again by Invariants 7.1 and 7.3 we know that this is true.(c) The fourth subcase is for all other states that does not involve any of the changesof the previous subcases. In these states, if any changes are made it only involvesvariables that are equal to each other in the relation, so the correspondence ofstates is preserved after (s; a; s0) and �.a = send-segsc(sns, acks, msgs).This is symmetric to a = send-segcs(snc, ackc, msgc).a = receive-segsc(sns, acks, msgs).For this step � = (u; a; u0). This step is symmetric to a = receive-segcs(snc, ackc, msgc),except that there is no subcase symmetric to subcase 2(a) of that step.a = receive-msgc(m).For this step the corresponding � = (u; a; u0). It is easy to see that u0 2 Fbn(s0).a = receive-msgs(m).For this step the corresponding � = (u; a; u0). It is easy to see that u0 2 Fbn(s0).a = send-segcs(snc, ackc, msgc, FIN).For this step � = (u; a; u0). The proof of correspondence for this step is the same as theproof for a = send-segcs(snc, ackc, msgc). 190



a = receive-segcs(snc, ackc, msgc, FIN).The proof of correspondence for this step is essentially the same as the proof for the stepwith a = receive-segcs(snc, ackc, msgc). The only exception is that there is no case 2(b) forthis step.a = send-segsc(sns, acks, msgs, FIN).For this step � = (u; a; u0). This case is symmetric to the case for a = send-segcs(snc, ackc,msgc, FIN).a = receive-segsc(sns, acks, msgs, FIN)For this step � = (u; a; u0). This case is symmetric to the case for a = receive-segcs(snc,ackc, msgc, FIN).a = time-outs.We break the proof of correspondence for this step into two cases.1. The �rst case occurs when s:modec = timed-wait ^ now � �rst(t-outc). For this casethe � = (u; a; u0). After step (s; a; s0), s0:modes = closed, and after �, u0:modes =closed. The proof that u0 is in the set of states that are related to s0, is the same asthe proof for subcase 2(b) for the step with a = receive-segcs(snc, ackc, msgc).2. The second case is for all other states of BT CPh. For these states � = (u, set-resets,u0). It is easy to see that u0 2 Fbn(s0), for this case.a = timeoutc.This step is symmetric to a = timeouts.a = crashc.For this step � = (u; a; u0). It is easy to see that u0 2 Fbn(s0).a = crashs.This step is symmetric to a = crashc.a = recovers.For this step � = (u; a; u0). After this step, s0:modes = closed. The proof that u0 is in theset of states that are related to s0, is the same as for subcase 2(b) for the step with a =receive-segcs(sns, acks, msgs). 191



a = recoverc.This step is symmetric to a = recovers.a = dropcs(p0; t) (from the �Chcs(P) component of BT CPh).For this step we have two cases. The �rst case is if (p0; t) is a reset segment. For that case� is the empty step and it is clear that we get the correct corresponding states. The secondcase is if (p0; t) is not a reset segment. For this case � = (u, dropcs(p); u0), where p is thesegment constructed from (p0) by relation Fbn. It is easy to see that u0 2 Fbn(s0).a = dropsc(p0t) (from the �Chsc(P) component of BT CPh) .This step is symmetric to a = dropcs(p0; t).a = duplicatecs(p0; t) (from the �Chcs(P) component of BT CPh).For this we have two cases. The �rst case is if (p0; t) is a reset segment. For that case �is the empty step and it is clear that we get the correct corresponding states. The secondcase is if (p0; t) is not a reset segment. For this case � = (u, duplicatecs(p); u0), where p isthe segment constructed from (p0) by relation Fbn. It is easy to see that u0 2 Fbn(s0).a = duplicatesc(p0; t) (from the Chsc(P) component of T CPh).This step is symmetric to a = duplicatecs(p0; t).a = �(t) (time-passage)The corresponding � = (u; �(t); u0). It is easy to see that u0 2 Fbn(s0).a = send-segsc(RST, acks, rst-seqs).For this step we have two cases. � is the empty step, and it is easy to see that u0 2 Fbn(s0).a = receive-segcs(RST, acks, rst-seqc).For this step we have two cases.1. The �rst case is if it is not a valid reset segement. For that case, � is the empty step,and it is easy to see that u0 2 Fbn(s0).2. The second case is if the segment contains a valid reset. For this case � = (u, set-resets,u0). It is easy to see that u0 2 Fbn(s0), for this case.a = send-segcs(RST, ackc, rst-seqc).For this step � is the empty step, and it is easy to see that u0 2 Fbn(s0).192



a = receive-segsc(RST, acks, rst-seqs).The proof of correspondence for this step is symmetric to the proof of correspondence forthe step with a = receive-segcs(RST, acks, rst-seqc).a = shut-downs.For this step � = (u; a; u0). After this step, s0:modes = closed. The proof that u0 is in theset of states that are related to s0, is the same as for subcase 2(b) for the step with a =receive-segcs(sns, acks, msgs).a = shut-downc.This case is symmetric to the case for a = shut-downs.a = clock-counter-tickc and a = clock-counter-ticksFor these steps the corresponding step � of NT CP is (u; �; u0). Clearly the traces arethe same, since clock-counter-tickc and clock-counter-ticks are internal. Since this step ofNT CP does not a�ect any variables that a�ect relation Fbn, it is clear that u0 2 Fbn(s0).This concludes the simulation proof.8.4.5 Proof of trace inclusionWe can now proof that the GTA model of TCP with bounded counters, BT CP, implementsa patient version of Speci�cation S.Theorem 8.2BT CP vt patient(S).Proof: From Lemma 8.2 we get that BT CPh �tF NT CP, which because of the soundnessof timed forward simulation (Theorem 3.7) and the soundness of adding history variables(Theorem 3.9) implies that BT CP vt NT CP. From Theorem 8.1 we know NT CP vpatient(S). Thus, we now have BT CP vt NT CP and NT CP vt patient(S). Therefore,since the subset relation and thus the implements relation is transitive we get BT CP vtpatient(S).This concludes our work on TCP. In the next chapter we start the examination ofT/TCP. 193
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Chapter 9T/TCPIn this chapter we present the general timed automaton for T/TCP. The automaton wespecify has the TCP accelerated open (TAO) mechanism, but does not include the featuresto truncate timed-wait state. We do not include the features to truncate timed-wait state,because, �rst the TAO mechanism is the more important and the more interesting of thetwo features incorporated into T/TCP, and second, even with just this one new featurethe protocol is su�ciently di�erent from TCP to make its veri�cation interesting. We alsoshow in this chapter that T/TCP behaves di�erently from TCP. In particular, there areexecutions of T/TCP where the same data is delivered twice.T/TCP is an extension of TCP, so the formal model for T/TCP is an extension ofthe formal model for T/TCP. Thus, is will include many of the same state variables andactions. Recall from our informal description of T/TCP in Chapter 2 that it uses a dualmonotonic numbering scheme (connection counts paired with sequence numbers), and per-sistent caching to accelerate the opening phase of TCP and bypass the three-way handshakeprotocol. However, if the cache data is lost, T/TCP reverts back to the three-way hand-shake. Because T/TCP has the TAO mechanism, but must still be able to perform thethree-way handshake when necessary, it is more complex that TCP. The TAO mechanismintroduces partially synchronized states that do not exist in TCP. Partially synchronizedstates are states of the server where is has accepted data and is thus synchronized, but theclient may not yet be in a state where it can accept data, and is thus unsynchronized. TheTAO mechanism also introduces a special state of the client where it send a SYN control195
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variable we have is cache cc on the server side. On the client side cc gen, now c, and sncare stable, and on the server nows and sns are stable. The other variables on the clientare unde�ned when modec is closed. Similarly, the non-stable and non-persistent variableson the server side are unde�ned when modes is closed. The values given as the initialvalue for non-stable and non-persistent variables in the tables below are the values theyare initialized to when a host opens and initializes its transmission control block. Thus, inthe start state of the client side automaton, T T CPc, modec = closed, cc gen = 0, now c= 0, snc = 0, and all other variables are unde�ned; and in the start state of the server sideautomaton, T T CPs, modes = closed, now c = 0, sns = 0, cache cc = 1, and all othervariables are unde�ned.As is the case for the T CP automaton, we use the setMsg to represent the set of possiblemessages. That is, the set Msg is the set of all possible strings over some basic messagealphabet that does not include the special symbol null. The symbol null indicates theabsence of a message. The type T ranges over the nonnegative real numbers and representstime.The �rst table below summarizes the type de�nitions. In the other tables we describethe variables of T T CPc and T T CPs. A check in the S column means the variable is stableand a check in the P means the variable is persistent. Because T/TCP is an extension ofTCP, the tables below also include many of the same variables de�ned for T CPc and T CPs.We repeat the descriptions here for completeness.Type de�nitionsType DescriptionMsg The set of all possible strings over some basic message alphabet that does not include thespecial symbol null.T The nonnegative real numbers | represents real time.N The set of non-negative integers.Client variables 198



Variable Type S P Initially Descriptionmodec fclosed,syn-sent,estb,fin-wait-1,fin-wait-2,close-wait,last-ack,closing,timed-wait,rec, reset,syn-sent*g
p closed The modes of the client. The new mode,syn-sent*means the client wants to estab-lish a connection, send a message, and sendthe FIN bit. All the other modes have thesame interpretation as in TCPsend-tao-syn Bool false A ag that enables the sending of a SYNduring TAO even if there is no data to besent as yet.tao-syn-sent Bool false A ag that indicates the client has startedsending SYN segments for TAO.cc gen N p 0 The connection count generator.cc send N 0 The connection count for the currentincarnation.snc N p 0 Client side sequence number.msgc Msg [ fnullg null The current message to be sent.send-buf c Msg� � The client bu�er for messages to be sent.rcv-buf c Msg� � The client bu�er for messages received.ackc N [ fnilg nil The acknowledgment number.rst-seqc N [ fnilg nil The number assigned to reset segments.nowc T p 0 The clock variable.ready-to-sendc Bool true A ag that when true indicates that thenext segment can be sent.
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Client variablesVariable Type S P Initially Descriptionsend-ack c Bool false A ag that enables the sending of anacknowledgment.send-�nc Bool false A ag that enables the sending of a FINsegment.rcvd-closec Bool false A ag that is set to true when the signal closeis received.push-datac Bool false A ag that forces the client to only perform thereceive-msgc(m) action until rcv-buf c is emptywhen a FIN segment is received.send-rstc Bool false A ag that enables the sending of a resetsegment.send-�n-ack c Bool false A ag that is set to true when the client ac-knowledges a FIN from mode closing.�rst(t-outc) T [1 1 Used to mark the start of timed-wait state.time-sentc T [1 0 Used to mark the time a segment is sent, sothat the segment can be resent after RTO if itis not acknowledged.Server variablesVariable Type S P Initially Descriptionmodes fclosed,listen,syn-rcvd,estb,fin-wait-1,fin-wait-2,close-wait,last-ack,timed-wait,rec, reset,estb*,fin-wait1*,close-wait*,closing*,last-ack*g
p closed The server modes. The new modesfor T/TCP are estb*, fin-wait1*,close-wait*, closing*, last-ack*.These \starred" modes indicate that theclient is in a partially synchronized state.That is, these modes have the same inter-pretation has their non-starred versionsexcept that the server gets to these modesafter a successful TAO which means theclient may not have synchronized as yet.sns N p 0 Server side sequence number.send-rsts Bool false Symmetric to send-rstcnows T p 0 The clock variable.�rst(t-outs) T [1 1 Symmetric to �rst(t-outc).Server variables 200



Variable Type S P Initially Descriptiontime-sents T [1 0 Symmetric totime-sentc.send-buf s Msg� � The bu�er for messages to be sent.rcv-buf s Msg� � The bu�er for messages received.acks N [ fnilg nil The acknowledgment number.rst-seqs N [ fnilg nil Symmetric to rst-seqc.ready-to-sends Bool true Symmetric to ready-to-send c.send-ack s Bool false Symmetric to send-ack c.send-�ns Bool false Symmetric to send-�nc.rcvd-closes Bool false Symmetric to rcvd-closec.push-datas Bool false Symmetric to push-datacsend-�n-ack s Bool false Symmetric to send-�n-ack c.cc rcvd N 0 The value of the connection count receivedfrom the client for the current incarnation.cache cc N p 1 A persistent cached copy of the last connec-tion count number received from the client.The initial value1 represents an unde�nedcache state.temp-data Msg [ fnullg null Temporary data variable. This variablestores data that the server cannot acceptas yet because the TAO test failed.�n-rcvd Bool false A ag that records that a FIN bit was senton a segment that failed the TAO test.9.1.2 Action SignatureClient side, T T CPcInput actions:send-msgc(open, m, close)open, close 2 Bool, m 2 Msg [fnullgreceive-segsc(SYN, cc rcvd, sns, acks)receive-segsc(SYN, cc rcvd, sns, acks, msgs)receive-segsc(SYN, cc rcvd, sns, acks, msgs, FIN)receive-segsc(cc rcvd, sns, acks, msgs,)receive-segsc(cc rcvd, sns, acks, msgs, FIN)receive-segsc(RST, acks, rst-seqs)crashcOutput actions:receive-msgc(m), m 2 Msgsend-segcs(SYN, cc send, snc, msgc)send-segcs(SYN, cc send, snc, msgc, FIN)send-segcs(cc send, snc, ackc, msgc)send-segcs(cc send, snc, ackc, msgc, FIN)send-segcs(RST, ackc, rst-seqc)recovercInternal actions:time-outcprepare-msgc 201



shut-downcTime-passage actions:�(t), t 2 R+Server side, T T CPsInput actions:passive-opensend-msgs(m, close)receive-segcs (SYN, cc send, snc, msgc)receive-segcs (SYN, cc send, snc, msgc, FIN)receive-segcs (cc send, snc, ackc, msgc)receive-segcs (cc send, snc, ackc, msgc, FIN)receive-segcs(RST, ackc, rst-seqc)crashsOutput actions:receive-msgs(m), m 2 Msgsend-segsc(SYN, cc rcvd, sns, acks)send-segsc(SYN, cc rcvd, sns, acks, msgs)send-segsc(SYN, cc rcvd, sns, acks, msgs, FIN)send-segsc(cc rcvd, sns, acks, msgs)send-segsc(cc rcvd, sns, acks, msgs, FIN)send-segsc(RST, acks, rst-seqs)recoversInternal actions:time-outsprepare-msgsshut-downsTime-passage:�(t) , t 2 R+9.1.3 Steps of T/TCPThe steps for the timed automata for T/TCP are shown in Figures 9-3, 9-4, 9-5, 9-6, 9-7, 9-8, 9-9, and 9-10. In all the �gures the steps of the client automaton, T T CPc is on the leftand the steps of the server automaton, T T CPs is on the right. The receive-seg(p) actionsare shown opposite the corresponding send send-seg(p) actions, and symmetric internalactions are also opposite each other. Because there are many possible ways an executioncan proceed, the steps of the protocol presented in the �gures should not be thought ofas being in a sequential order. Instead, the appropriate steps are referred to as possibleexecutions are described.In T/TCP if the TAO mechanism works, there may not be distinct open, data transfer,and close phases for a connection. If the TAO mechanism fails, then T/TCP has these three202



phases, and the open phase is the three-way handshake protocol. The description of thesteps of the automata presented here is divided into two cases based on whether the TAOmechanism fails or not. However, both cases have commonalities which we present �rst.A connection is always started in the same manner. That is, the client gets the send-msgc(open, m, close) input when modec is closed, and the server gets passive-open whenmodes is closed (Figure 9-3). If open is true on the client side, then the transmissioncontrol block is initialized, cc gen and snc are incremented, cc send is assigned the valueof cc gen, and modec is set to syn-sent. On the server side TCBs is initialized and modesgets set to listen.As is the case with T CP the retransmission of segments is determined by the retrans-mission timeout (RTO). Therefore, all the send-segcs(p) actions have as a part of the pre-condition that nowc� time-sentc is greater that or equal to RTO. This precondition and thesetting of time-sentc to the value of now c in the e�ect clause of these actions means the ac-tions are not enabled again until RTO passes or an acknowledgment is received. Because, ofthis precondition in the send-segcs(p) actions, in the receive-segsc(p) actions if the incomingsegment is a segment that needs to be acknowledged, that is, if the sequence number, [sns],on the incoming segment is greater than or equal to the acknowledgment number ackc ofthe client, time-sentc is set to 0. The setting of time-sentc to 0 allows the �rst transmissionof a response segment without the RTO delay. On the server side, the send-segsc(p) andreceive-segcs(p) actions are symmetric.The basic mechanism for acknowledging segments is also the same as it is in TCP. Thatis, to acknowledge a segment with sequence number i, a host returns a segment with theack c or ack s variable set to i+ 1. In all the receive-segsc(p) and receive-segcs(p) actions, ifsegment p is an old duplicate and the receiving host is in an unsynchronized state, or if thereceiving host is closed, then assignments are made to generate a reset segment. Namely,the send-rstc or send-rsts is set to true, and the rst-seqc or rst-seqs is set to either 0 or[acks] or [ackc] respectively.The steps with other actions in the T T CPc and T T CPs general timed automata, suchas time-outc , time-outs , crashc and crashs; and recoverc (Figure 9-9) are the same as for theTCP timed automaton described in Section 6.1.3. The recovers step is slightly di�erent in203



that cache cc is assigned1 in this step. The steps with the reset and the shut down actions(Figure 9-10); and the time passage actions (Figure 9-5) are also the same as for the TCPtimed automaton. The reader is referred to Chapter 6 for a description of these steps.TAO test failsWhen the TAO test fails, the protocol reverts to the three-way handshake to synchronizethe end-points. That is, the protocol behaves like TCP in the open phase. We describe theworkings of the formal model in this situation. When the client receives the send-msgc(open,m, close) input action (Figure 9-3), if modec = closed and open is true, it prepares to senda SYN segment. If m 6= null, it is added to the send bu�er and ready-to-send c is assignedto false in order to enable the prepare-msgc action and send-tao-syn is set to false toensure that the SYN segment is not sent until the message is ready. This is the onlysituation where the prepare-msgc action is enabled as a consequence of the send-msgc(open,m, close) action. If the client has already sent a SYN segment when the m is received, thatis, tao-syn-sent = true, then the prepare message action is not enabled until a responseis received. Likewise, if there is no message to send, m = null, then the prepare-msgcaction should not be enabled. It is for these reasons that the assignment of ready-to-send cis conditioned on m not being null and tao-syn-sent being false.If the prepare-msgc action is enabled (Figure 9-4) it means there is data to send in SYNsegment. In this step snc gets incremented, ready-to-send c is set to true, and msgc is as-signed to the head of send-buf c. If the close signal had been received and send-buf c = �, thesequence number is incremented again to note the sending of a FIN segment, ready-to-send cis set to false to disable the sending of the segment without the FIN signal while send-�ncis set to true to enable the sending of the FIN segment. Since we are describing the openingphase of an execution, in this situation modec is syn-sent, so it would get set to syn-sent*.If the closed signal was not received, then if there was no data to send, or if there was datathen after the prepare-msgc action, the send-segcs(SYN, snc, ackc, msgc) action (Figure 9-3)is performed. If there was data to be sent, and the close signal was also received, the send-segcs(SYN, snc, ackc, msgc, FIN) action (Figure 9-8) is performed. When the server receivesthe (SYN, snc, ackc, msgc) segment (Figure 9-3) if it is in mode listen, it �rsts assigns204



cc rcvd to cc send , increments its sequence number, and make the assignments necessaryfor an acknowledgment segment. Since we are examining an execution where the TAO testfails, either cache cc is unde�ned or cache cc � cc send . When this happens modes is setto syn-rcvd, cache cc is reset to 0, and temp-data is assigned msgc. If the (SYN, snc, ackc,msgc, FIN) segment is received by the server instead, the same assignments are made andadditionally �n-rcvd is set to true to indicate that a FIN has been received.With modes = syn-rcvd the next action enabled on the server side is send-segsc(SYN,cc rcvd, sns, acks) (Figure 9-4). When the client receives this segment, if a reset is not gen-erated, it sets send-ack c to true to enable the acknowledgment of this segment. If the clientis already in a synchronized state, this segment is either a duplicate created by the channelor a retransmission of a segment previously acknowledged. Since the acknowledgment mightnot have been received by the server, the retransmission of the acknowledgment is enabled.If modec 2 fsyn-sent; syn-sent*g, and ack s = snc + 1, then the client knows the serverreceived its correct initial sequence number, and that the segment is an acknowledgment ofthe SYN segment it sent. It also sets msgc to null to indicate the acknowledgment of thatmessage. The client also changes mode to either estb or fin-wait-1, and prepares to senda response. First ack c is set to sns + 1 for the next expected segment, and time-sentc getsset to 0. Then if there is data to be sent, the ag ready-to-send c is set false to enable theprepare-msgc action.The �nal part of the three-way handshake is the action send-segcs(snc, ackc, msgc)(Figure 9-6) or if the client had received a close input and had no more data to send, send-segcs(snc, ackc, msgc, FIN) (Figure 9-7). Both segments acknowledge the SYN segmentfrom the server. In the open phase, when the server receives either of these segments it isin state syn-rcvd. It �rst checks that they are not old duplicates, that is, if [cc send ] isequal to cc rcvd , and [ackc] = sns+1. If the segment in either action is valid the server cannow update cache cc, so it sets it to cc send . If temp-data is not null it is concatenatedto rcv-buf s, and then set to null. For the receive-segcs(snc, ackc, msgc) step, modes is setto close-wait if �n-rcvd is true, and estb if it is false. For the receive-segcs(snc, ackc,msgc, FIN) step, modes is set to close-wait. The remaining assignments adds [msgc] tothe receive bu�er if it is not null and enables the prepare-msgs (Figure 9-4) action if there205



the server has data. The client and server are now both in synchronized states and datatransfer either starts or continues.The data transfer phase of T/TCP is very much like the data transfer phase of TCPdescribed in Chapter 6. The client gets data from the user via the send-msgc(open, m,close) input action and the server gets data via the send-msgc(m, close) action. The clientprepares to send data in the prepare-msgc action, and sends data and acknowledgments withthe send-segcs(snc, ackc, msgc) or the send-segcs(snc, ackc, msgc, FIN) actions. The serverside is almost symmetric: it prepares to send data in the prepare-msgc action and sends dataand acknowledgments with the send-segsc(cc rcvd, sns, acks, msgs) action (Figure 9-9) andthe send-segsc(cc rcvd, sns, acks, msgs, FIN) action (Figure 9-10) when it is ready to close.Data received by the client is passed to the user by the receive-msgc(m) action (Figure 9-5).The symmetric action of the server side is receive-msgs(m) (Figure 9-5).The close phase of T/TCP is also like the close phase of TCP. The main di�erenceis that the server has several partially synchronized modes now associated with the closephase (fin-wait1*, close-wait*, closing*, last-ack*). However, in executions wherethe TAO mechanism does not work, the server does not get to these partially synchronizedmodes. Either side can begin the close phase. A host starts the close phase when it receivesa close signal from the user, send-msgc(open, m, close) on the client side and send-msgs(m,close) on the server side with close true for both, or when it receives a FIN segment fromthe other host. When the client receives the signal to close, it sets rcvd-closes to true, butit does not start the close phase until it sends all the messages that are in its send bu�er.The client prepares to send a FIN segment by incrementing snc, in the prepare-msgc action,once if the FIN segment does not have valid data or twice if it does. In that action send-�ncis also set to true to enable the sending of the FIN segment, and the mode of the clientis set to fin-wait-1 if it was previously estb, or if the client had already received a FINsegment from the server and thus was in mode close-wait, it changes to mode last-ack.The action at the client to send the FIN segment is send-segcs(snc, ackc, msgc, FIN). Whenthe server receives this segment its actions are almost the same as when it receives the datasegment (snc, ackc, msgc) except now the message is valid only if [snc] = acks+1, and it alsochanges mode. The server responds with the send-segsc(cc rcvd, sns, acks, msgs) action if206



it is just acknowledging the FIN segment, or it can acknowledge the FIN segment and sendits own FIN with the send-segsc(cc rcvd, sns, acks, msgs, FIN). The hosts close when oneor both sides timeout after waiting 2 � � in mode timed-wait, and if only one side closesfrom timed-wait state, the other closes after receiving an acknowledgment while in modelast-ack.TAO test succeedsIn executions where the TAO mechanism works, there are three possibilities for the SYNsegment the client sends. The segment can either have no valid data, or have valid data, butno FIN bit, or it can have valid data and a FIN bit. Similarly, the server can respond with aSYN segment that contains no valid data, valid data without a FIN, or valid data and a FIN.In a typical transaction, that is, one where the client sends one piece of request data andgets one piece of response data in return, the �rst segment the client sends has valid dataand a FIN bit, and the server responds with a similar segment. We describe the sequence ofsteps in T T CPc and T T CPs for such an execution. On the client side the execution startsexactly as executions where TAO does not work, described above. The di�erences startwhen the server compares cache cc to [cc send ] in the receive-segcs(SYN, snc, ackc, msgc,FIN) step (Figure 9-8). Here TAO is successful because cache cc < [cc send ], so cache ccis updated to cc send . Then since msgc 6= null, the message is added to the receive bu�erof the server. Next modes is assigned the value close-wait*, and push-data s is set to trueto ensure that the data is passed to the user before the server closes. The data is passed tothe server side user with the receive-msgs(m) action (Figure 9-5), and since it is the onlypiece of data, the receive bu�er becomes empty after it is passed to the user, so push-data sis set to false. For the type of execution we are describing, after it passes the data to theuser, the server gets response data and the signal to close in the send-msgs(m, close) inputaction. Now the prepare-msgs action (Figure 9-4) is enabled. In this action the message isremoved from the send bu�er to the msgs variable, sns is incremented twice, send-�ns is setto true, and modes changes from close-wait* to last-ack*. Next the server performs thethe send-segsc(SYN, cc rcvd, sns, acks, msgs, FIN) action (Figure 9-10). When the clientreceives the segment, it checks that cc rcvd is equal to cc send . If it is, the client changes207



form mode syn-sent* to timed-wait, assigns push-data c to true, puts the message on itsreceive bu�er, and make other assignments to send an acknowledgment. The client passesthe data to its user with the receive-msgc(m) action (Figure 9-5) which also sets push-data cback to false. With push-data c false, the send-segcs(cc send, snc, ackc, msgc) action(Figure 9-6) is now enabled. When the client performs this action it starts the timer fortimed-wait state. When the server receives the segment with the receive-segcs(cc send, snc,ackc, msgc) action, it changes from mode last-ack* to closed. After waiting for 2 � �,the client closes with the internal action time-outc.Several other variations of execution sequences are possible when the TAO mechanismworks. For example, the TAO mechanism may work, and the client user wants to send morethan one piece of data, so it does not send the signal to close immediately . In this case theconnection has a data transfer phase and a close phase that is essentially the same as thedata transfer phase and close phase when TAO does not work. Another possible variation isthat the client user may just want to send one piece of request data, but the server user haslots of response data. For such a scenario, again there is a data transfer and close phase.All the other possibilities are variations on the execution sequences we describe above, sowe do not describe them here.
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send-msgc(open, m, close)Eff: if modec = closed ^ open then finitialize TCBctime-sentc := 0cc gen := cc gen+ 1snc := snc + 1cc send := cc genmodec := syn-sentsend-tao-syn := truegif modec 2 fsyn-sent, estb, close-waitg^ : rcvd-closec ^ m 6= null then fsend-buf c := send-buf c�mif modec = syn-sent ^ m = null ^:tao-syn-sent then fready-to-sendc := falsesend-tao-syn := falseggif close then frcvd-closec := trueif modec = syn-sent ^msgc = null ^:tao-syn-sent ^ send-buf c = � thenmodec := closedgsend-segcs(SYN, cc send, snc, msgc)Pre: (nowc � time-sentc � RTO) ^^(ready-to-sendc _ send-tao-syn)modec = syn-sent ^ :send-rstcEff: time-sentc := nowctao-syn-sent := true

passive-openEff: if modes = closed then finitialize TCBsmodes := listengsend-msgs(m, close)Eff: if modes 2 festb, estb*,close-wait, close-wait*g ^: rcvd-closes ^ m 6= null thensend-buf s := send-buf s�mif close then frcvd-closes := trueelse if modes = listen ^send-buf s = � thenmodes := closedgreceive-segcs (SYN, cc send, snc, msgc)Eff: if modes = listen then fcc rcvd := cc sendsns := sns + 1acks := snc + 1time-sents := 0send-acks := trueif cache cc < cc send then fcache cc := cc sendready-to-sends := falseif msgc 6= null thenrcv-buf s := rcv-buf s�mmodes := estb*if send-buf s 6= � thensend-acks := falsegelse fmodes := syn-rcvdcache cc := 1temp-data := msgcggif modes = closed thensend-rsts := truerst-seqs := 0Figure 9-3: Steps from the open phase of T T CPc and T T CPs. The client steps are on the left andthe corresponding server steps are on the right.209



receive-segsc(SYN, cc rcvd, sns, acks)Eff: if (modec = closed) _ (modec 2 fsyn-sent;syn-sent*g ^ cc rcvd 6= cc send) then fsend-rstc := truerst-seqc := acksgelse fsend-ackc := trueif modec 2 fsyn-sent; syn-sent*g then fackc := sns + 1time-sentc := 0msgc := nullready-to-sendc := falseif modec = syn-sent thenmodec := estbif modec = syn-sent* thenmodec := fin-wait-1if send-buf c 6= � thensend-ackc := falseggprepare-msgcPre: :push-datac ^ :ready-to-sendc ^modec 2 fsyn-sent; estb; close-waitg^ (send-buf c 6= � _ rcvd-closec)Eff: ready-to-sendc := trueif send-buf c 6= � then fsnc := snc + 1msgc := head(send-buf c)send-buf c := tail(send-buf c)gif rcvd-closec ^ send-buf c = � then fsnc := snc + 1ready-to-sendc := falsesend-�nc := trueif modec = syn-sent thenmodec := syn-sent*if modec = estb thenmodec := fin-wait-1if modec = close-wait thenmodec := last-ackg

send-segsc(SYN, cc rcvd, sns, acks)Pre: (nows - time-sents � RTO) ^modes = syn-rcvd ^ : send-rstsEff: time-sents := nows
prepare-msgsPre: :push-datas ^ :ready-to-sends ^(send-buf s 6= � _ rcvd-closes) ^modes 2 festb; estb*; close-wait;close-wait*gEff: ready-to-sends := trueif send-buf s 6= � then fsns := sns + 1msgs := head(send-buf s)send-buf s := tail(send-buf s)gif rcvd-closes ^ send-buf s = � then fsns := sns + 1ready-to-sends := falsesend-�ns := trueif modes = estb thenmodes := fin-wait-1if modes = estb* thenmodes := fin-wait1*else modes = close-wait thenmodes := last-ackelse modes = close-wait* thenmodes := last-ack*gFigure 9-4: The �rst pair of steps complete the three-way handshake in T/TCP and the next pairare the steps that prepare messages to be sent. 210



receive-segsc(SYN, cc rcvd, sns, acks, msgs)Eff: if modec = closed _ (cc rcvds 6= cc sendc^ modec 2 fsyn-sent; syn-sent*g) then fsend-rstc := truerst-seqc := acksg else fsend-ackc := truemodec 2 fsyn-sent; syn-sent*g then fackc := sns + 1time-sentc := 0msgc := nullready-to-sendc := falsesend-�nc := falseif modec = syn-sent thenmodec := estbif modec = syn-sent* thenmodec := fin-wait-2if msgs 6= null thenrcv-buf c := rcv-buf c�msgsif send-buf c 6= � thensend-ackc := falseggreceive-msgc(m)Pre: modec 62 frec; resetg ^ rcv-buf c 6= �^ head(rcv-buf c) = mEff: rcv-buf c := tail(rcv-buf c)if push-datac ^ rcv-buf c = � thenpush-datac := false�(t) (time-passage)Pre: t 2 R+Eff: nowc := nowc + t

send-segsc(SYN, cc rcvd, sns, acks, msgs)Pre: (nows � time-sents � RTO) ^modes 2 festb*; close-wait*g ^(ready-to-sends _ send-acks)^:push-datasEff: time-sents := nows
receive-msgs(m)Pre: modes 62 frec; resetg ^ rcv-buf s 6= �^head(rcv-buf s) = mEff: rcv-buf s := tail(rcv-buf s)if push-datas ^ rcv-buf s = � thenpush-datas := false�(t) (time-passage)Pre: t 2 R+Eff: nows := nows + tFigure 9-5: The steps in which the server sends a SYN segment in response to a successful TAO,and the receiving of that segment on the client side. The second pair of steps pass messages to theusers, and the third pair are the time-passage actions.
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send-segcs(cc send, snc, ackc, msgc)Pre: (nowc � time-sentc � RTO)^((ready-to-sendc _ send-ackc)^modec 2 sync-states ^ :push-datacEff: time-sentc := nowcsend-ackc := falseif modec = closing thensend-�n-ackc := trueif modec = timed-wait then f�rst(t-outc) := nowctime-sentc := 1g
receive-segcs(cc send, snc, ackc, msgc)Eff: if (modes = syn-rcvd ^(cc send 6= cc rcvd _ ackc 6= sns + 1))_modes 2 fclosed; listeng then fsend-rsts := truerst-seqs := ackcgelse if modes 62 frec; resetg ^cc send = cc rcvd then fif msgc 6= null thensend-acks := trueif ackc = sns + 1 then fmsgs := nullready-to-sends := falsesend-�ns := falseif modes = syn-rcvd then fcache cc := cc sendif temp-data 6= null then frcv-buf s := rcv-buf s�temp-datatemp-data = nullgif �n-rcvd thenmodes := close-waitelse modes := estbgif send-buf s 6= � thensend-acks := falseif modes = estb*then modes := estbif modes 2 ffin-wait-1; fin-wait1*gthen modes := fin-wait-2if modes 2 flast-ack; last-ack*gthen modes := closedif modes 2 fclosing; closing*g then fmodes := timed-waitif send-�n-acks then�rst(t-outs) := nowsggif snc = acks then facks := snc + 1time-sents := 0rcv-buf s := rcv-buf s �msgcggFigure 9-6: The basic message sending step for T T CPc is on the left and the corresponding stepto receive the segment for T T CPs is on the right.212



send-segcs(cc send, snc, ackc, msgc, FIN)Pre: (nowc � time-sentc � RTO) ^send-�nc ^ :pdatac ^modec 2ffin-wait-1; last-ack; closinggEff: time-sentc := nowc receive-segcs(cc send, snc, ackc, msgc, FIN)Eff: if (modes = syn-rcvd ^(cc send 6= cc rcvd _ ackc 6= sns + 1))_modes 2 fclosed; listeng then fsend-rsts := truerst-seqs := ackcgelse if modes 62 frec; resetg ^cc send = cc rcvd then fif msgc 6= null thensend-acks := trueif snc = acks _ snc = acks + 1 then fpush-datas := truetime-sents := 0if ackc = sns + 1 then fmsgs := nullready-to-sends := falsesend-�ns := falseif modes = syn-rcvd then fcache cc := cc sendmodes := close-waitif temp-data 6= null then frcv-buf s := rcv-buf s�temp-datatemp-data = nullggif send-buf s 6= � thensend-acks := falseif modes = estb* thenmodes := estbif modes 2 ffin-wait-1; fin-wait1*gthen modes := fin-wait-2gif snc = acks + 1 thenrcv-buf s := rcv-buf s�msgsacks := snc + 1if modes = estb thenmodes := close-waitif modes = fin-wait-1 thenmodes := closingif modes = fin-wait-2 thenmodes := timed-waitggFigure 9-7: The basic step for sending a FIN segment for T T CPc is on the left and the correspondingstep to receive the segment for T T CPs is on the right.213



send-segcs(SYN, cc send, snc, msgc, FIN)Pre: (nowc � time-sentc � RTO) ^ send-�nc^ modec = syn-sent* ^ cc ^ :send-rstcEff: time-sentc := nowc
receive-segsc�(SYN, cc rcvd, sns, acks, msgs, FIN)Eff: if cc rcvd = cc send ^modec 2 fsyn-sent; syn-sent*g then fsend-ackc := trueackc := sns + 1time-sentc := 0msgc := nullready-to-sendc := falsepush-datac := truesend-�nc := falseif modec = syn-sent thenmodec := close-waitif modec = syn-sent* thenmodec := timed-waitif msgs 6= null thenrcv-buf c := rcv-buf c�msgsif send-buf c 6= � thensend-ackc := falsegif modec = closed _ (cc rcvds 6= cc sendc^ modec 2 fsyn-sent; syn-sent*g) thensend-rstc := truerst-seqc := acks

receive-segcs(SYN, cc send, snc, msgc, FIN)Eff: if modes = listen then fcc rcvd := cc sendsns := sns + 1acks := snc + 1time-sents := 0send-acks := trueif cache cc < cc send then fcache cc := cc sendready-to-sends := falseif msgc 6= null thenrcv-buf s := rcv-buf s�msgcmodes := close-wait*push-datas := trueif send-buf s 6= � thensend-acks := falseelse fmodes := syn-rcvdcache cc := 1temp-data := msgc�n-rcvd := trueggif modes = closed thensend-rsts := truerst-seqs := 0send-segsc{(SYN, cc rcvd, sns, acks, msgs, FIN)Pre: (nows - time-sents � RTO) ^send-�ns ^ :push-datas^modes 2 ffin-wait1*; last-ack*gEff: time-sents := nows
Figure 9-8: Steps for T/TCP accelerated open. The client (on the left) sends the SYN, data, andFIN in one segment. The server responds with a segment that contains an echo of the cc value theclient sends. 214



receive-segsc(cc rcvd, sns, acks, msgs)Eff: if modec 2 fclosed, syn-sent, syn-sent*gthen fsend-rstc := truerst-seqc := acksgelse if modec 62 frec; resetg ^cc rcvds = cc sendc then fif msgs 6= null thensend-ackc := trueif sns = ackc then fackc := sns + 1time-sentc := 0rcv-buf c := rcv-buf c �msgsgif acks = snc + 1 then fmsgc := nullready-to-sendc := falsesend-�nc := falseif send-buf c 6= � thensend-ackc := falseif modec = fin-wait-1 thenmodec := fin-wait-2if modec = last-ack thenmodec := closedif modec = closing then fmodec := timed-waitif send-�n-ackc then�rst(t-outc) := nowcgggtime-outcPre: modec = timed-wait ^nowc � �rst(t-outc) � 2� �Eff: modec := closedcrashcEff: if modec 6= closed thenmodec := recrecovercPre: modec = recEff: modec := closed

send-segsc(cc rcvd, sns, acks, msgs)Pre: (nows � time-sents � RTO)^((ready-to-sends _ send-acks)^modes 2 sync-states ^ :push-datasEff: time-sents := nowssend-acks := falseif modes = closing thensend-�n-acks := trueif modes = timed-wait then f�rst(t-outs) := nowstime-sents := 1g
time-outsPre: modes = timed-wait ^nows � �rst(t-outs) � 2� �Eff: modes := closedcrashsEff: if modes 6= closed thenmodes := recrecoversPre: modes = recEff: cache cc := 1modes := closedFigure 9-9: The �rst pair of steps is the basic message sending step for the server and the corre-sponding step to receive the segment for the client. Also the time-out, crash, and recovery steps215



receive-segsc(cc rcvd, sns, acks, msgs, FIN)Eff: if (modes 2 fclosed; syn-sentg) then fsend-rsts := truerst-seqs := acksgelse if modec 62 frec; resetg ^(cc sendc = cc rcvds) then fsend-ackc := trueif sns = ackc _ sns = ackc + 1 then fpush-datac := trueif modec = estb thenmodec := close-waitelse if modec = fin-wait-1 thenmodec := closingelse if modec = fin-wait-2 thenmodec := timed-waitif sns = ackc + 1 thenrcv-buf c := rcv-buf c�msgsackc := sns + 1time-sentc := 0if acks = snc + 1 then fif modec = closing thenmodec := timed-waitmsgc := nullready-to-sendc := falsesend-�nc := falseif send-buf c 6= � thensend-ackc := falsegggsend-segcs(RST, ackc, rst-seqc)Pre: modec 2 fclosed; syn-sentg^send-rstc = trueEff: send-rstc := falsereceive-segsc(RST, acks, rst-seqs)Eff: if modec 6= rec ^ rst-seqs = ackc _(rst-seqs = 0 ^ acks = snc + 1)then modec := resetshut-downcPre: modec = resetEff: modec := closed

send-segsc(cc rcvd, sns, acks, msgs, FIN)Pre: (nows � time-sents � RTO)^send-�ns ^ :push-datas^modes 2 ffin-wait-1; last-ackclosinggEff: time-sents := nows
receive-segcs(RST, ackc, rst-seqc)Eff: if modes 6= rec ^ rst-seqc = acks thenmodes := resetsend-segsc(RST, acks, rst-seqs)Pre: modes 2 fclosed; listen; syn-rcvdg^send-rsts = trueEff: send-rsts := falseshut-downsPre: modes = resetEff: modes := closedFigure 9-10: The basic FIN segment from the server is on the right, and the corresponding actionto receive this segment at the client is on the left. Also the reset and shut down steps.216



9.2 The speci�cation of T T CPAs is the case with the speci�cation of TCP, we compose the client and server automata withchannel automata described in Chapter 5. We de�ne T T CP0 to be the parallel compositionof these automata. That is,T T CP 0 , T T CPckT T CPskChcs(P)kChsc(P):The set P of possible packets of the channels is instantiated with the packets that T T CPcand T T CPs can send and receive. To match the user interface of speci�cations S and D, wewant the send-segcs(p) and send-segsc(p) actions of T T CPc and T T CPs respectively andthe receive-segcs(p) and the receive-segsc(p) actions of Chcs(P) and Chsc(P) respectivelywhich are output actions in T T CP 0 to be internal actions. Thus, we use the action hidingoperator de�ned in Chapter 3 to \hide" these actions. LetATT , freceive-segsc(SYN, cc rcvd, sns, acks)g [ freceive-segsc(cc rcvd, sns, acks, msgs)g [freceive-segsc(SYN, cc rcvd, sns, acks, msgs)g [freceive-segsc(SYN, cc rcvd, sns, acks, msgs, FIN)g [freceive-segsc(cc rcvd, sns, acks, msgs, FIN)g [freceive-segsc(RST, acks, rst-seqs)g [ fsend-segcs(RST, ackc, rst-seqc)g [fsend-segcs(SYN, cc send, snc, msgc)g [fsend-segcs(SYN, cc send, snc, msgc, FIN)g [fsend-segcs(cc send, snc, ackc, msgc)g [ freceive-segcs(cc send, snc, ackc, msgc)g [fsend-segcs(cc send, snc, ackc, msgc, FIN)g [freceive-segcs (SYN, cc send, snc, msgc)g [freceive-segcs (SYN, cc send, snc, msgc, FIN)g [freceive-segcs(cc send, snc, ackc, msgc, FIN)g [freceive-segcs(RST, ackc, rst-seqc)g [ fsend-segsc(SYN, cc rcvd, sns, acks)g [fsend-segsc(SYN, cc rcvd, sns, acks, msgs)g [ fsend-segsc(sns, acks, msgs, FIN)g [fsend-segsc(SYN, cc rcvd, sns, acks, msgs, FIN)g [fsend-segsc(sns, acks, msgs)g [ fsend-segsc(RST, acks, rst-seqs)gThe general timed automaton for T/TCP, T T CP is de�ned as:T T CP , T T CP 0nATT :217



This de�nition gives a GTA with the same set of input and output actions as S and D.This completes our formal modeling of T/TCP. When we �rst started doing this work,we initially though the next step in the veri�cation of T/TCP would be to show a simulationfrom the model for T/TCP, to the model for TCP. However, in trying to do that simulationwe observed that T/TCP does not behave like TCP, and no such simulation exists. Shankarand Lee in an earlier work [33] discovered the same situation, but we were unaware of theirwork when we made the observation. In the next section we describe this situation.9.3 T/TCP behaves di�erentlyIn this section we show that no simulation exists from T T CP to T CP by describing anexecution where the external user sees di�erent behavior between the protocols. This be-havior of T T CP also violates our speci�cation in that the same data is delivered twice. Theduplicate delivery in T/TCP occurs because the TAO mechanism bypasses the three-wayhandshake protocol in an e�ort to achieve e�cient transactions. We �rst describe informallythe situation where T/TCP behaves di�erently from TCP by delivering the same messagetwice, and then give the execution fragment of T T CP that cannot be simulated by anysequence of T CP.9.3.1 Duplicate delivery in T/TCPThe situation where the TAO mechanism cause T/TCP to deliver the same message twiceis as follows. The T/TCP client gets a message to send from its user. When it gets thismessage all the persistent variables have values which allow it to sent a SYN segment forTCP accelerate open (TAO). The client sends the SYN segment and when the server receivesit, the TAO test is successful. The server accepts the data and passes it to the user. Beforethe server can send a response a crash occurs. After the server recovers it reopens, andreceives a retransmission of the segment it received before the crash. Since the crash mighthave caused the server to lose its persistent variables, it initiates a three-way handshake,by sending the second segment of the three-way handshake protocol to the client. Whenthe client receives this segment, it cannot tell that the server accepted a previous copy of218
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(syn,  ack(syn), data)Figure 9-11: The top �gure shows T/TCP in the situation data is retransmitted after a crash andthe bottom �gure shows TCP in the same situation.the segment, and that the response is to a duplicate. Therefore, it sends the �nal segmentof the three-way handshake. When the server receives this segment, it can accepted thedata in the �rst segment and pass it to its user. This second delivery of the data meansthat the server delivers old duplicate data from the previous incarnation, which violates ourspeci�cations.The sequence of actions in T T CP that gives the behavior described above is as fol-lows. The client with s:modec = closed gets the send-msgc(true, data1, false) input. Theclient then sends a SYN segment for TAO. The server, also in mode closed opens viathe passive-open input. Next the client performs the prepare-msgc action followed by thesend-segcs(SYN, cc send, snc, data1) action. The server gets this segment via the receive-219



segcs(SYN, cc send, snc, data1) action. For this execution the server has s0:cache cc <s0:cc send , so data1 is concatenated to s0:rcv-buf s. Next the server passes the data to theuser with the receive-msgs(data1) action. Immediately after that action, the server receivesa crashs input. After a period of time the server recovers by issuing the recovers action.While the server is in recovery mode, the client repeatedly retransmits the (SYN, cc send,snc, data1) segment.After the server recovers, it receives the passive-open input from the user again andgoes to mode listen. It next receives one of the retransmitted (SYN, cc send, snc, data1)segments. Since there was a crash, cache cc is not de�ned, so the TAO test fails. Therefore,the server assigns data1 to temp-data and initiates the three-way handshake with the send-segsc(SYN, cc rcvd, sns, acks) action. The client receives the segment with the receive-segsc(SYN, sns, acks) action and responds with the send-segcs(snc, ackc, data1) action. Theserver receives the segment with the receive-segcs(snc, ackc, data1) action. Since temp-datahas the value null, data1 is concatenated to rcv-buf s. The server then performs the outputaction receive-msgs(data1) again. Thus, the same data is delivered twice. We claim thatthis behavior is not allowed by TCP or by the speci�cations S or D.The trace of the execution sequence described above is: send-msgc(true, data1, false),passive-open, receive-msgs(data1), crashs, recovers, passive-open, receive-msgs(data1).9.3.2 No duplicate delivery in TCPThe trace just presented in the previous section, where data1 is delivered twice, is notpossible in speci�cations S or D. Thus, by Theorem 7.1 it is not possible in TCP. We knowthe trace is not possible in speci�cations S or D because after the server crashes in thespeci�cations, all the data associated with the queue from which the server was receivingdata is deleted and the queue becomes dead. Therefore, data can no longer be receivedfrom that queue. In order for the server to receive new data after it recovers and re-opens,the client must add data to a new queue and an association must be formed with the newid of the server and a new id chosen by the client. However, the client can only choose anew id, if it closes and then receives the send-msgc(open,m,close) input from the user. Thisopen input means the trace is di�erent. 220



9.4 The next stepSince we now know that T/TCP does not implement TCP, there are two possible ways wecould proceed with our work. The �rst way is to say that T/TCP is wrong and leave itat that or try to �x it. The second way to is to try to get a better understanding of thebehavior of T/TCP. When we discussed the di�erent behavior of T/TCP with the designers,they did not think this behavior was necessarily wrong. They though for some applicationsit might not matter that after a crash there is duplicate delivery. Therefore, we decided toproceed with the second option. To get a better understanding of the behavior of T/TCP,we decided to write a speci�cation that captures the behavior of T/TCP and then showthat the protocol satis�es this speci�cation. The next chapter contains this work.
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Chapter 10Veri�cation of T/TCPInitially when we set out to verify T/TCP we thought we could show that it implementsTCP, and since we prove TCP implements our speci�cation of reliable transport level pro-tocols (Chapters 6 and 8), by the transitivity of trace inclusion, we would have a proofthat T/TCP also implements our speci�cation. However, as we showed in Chapter 9, theuser-visible behavior of T/TCP is di�erent from that of TCP. One way to look at the factthat T/TCP exhibits di�erent behavior from TCP and does not satisfy our speci�cation isto say that it is wrong and should be corrected. Another way to look at this fact is to saythat it is di�erent, but not necessarily wrong for the type of applications the designers havein mind. In fact the designers of T/TCP and other network protocol designers that we havespoken to do not seem to think that this behavior of T/TCP is necessarily wrong. Oneargument they present as to why this behavior may not be wrong is that whatever e�ectreceiving the message may have had on the user is probably lost after the crash, so receivinga second copy of the message is not exactly like receiving a duplicate. Therefore, in orderto clearly understand the di�erent behavior of T/TCP, we formulate a weaker speci�cationthat captures this behavior.10.1 Weaker speci�cationsIn speci�cation S the same data is not allowed to be delivered twice under any circumstances.As we showed in the Chapter 9, in T/TCP a crashed host may reopen and receive duplicate223



data from the sender. Thus, we need to change speci�cation S, so that it allows thisbehavior. However, we still want to maintain the other correctness properties of speci�cationS | data is delivered in order; data is delivered without loss, except in the case of crashes;and data from di�erent incarnations are separated. We also want to allow duplicate deliveryonly after crashes and aborts.10.1.1 The primary changesWe make two primary changes to speci�cation S to get a weaker version. The �rst of thesechanges in the weaker version of the speci�cation is that we relax the rules for starting newincarnations. More speci�cally, we allow a host to continue with the same incarnation ithad before a crash or an abort when it reopens after the crash or abort. The way we allowthis to happen in the weaker version of speci�cation S is by allowing the host to choose thesame id it had before the crash or abort when it reopens after either event. However, if ahost chooses a di�erent id the �rst time it reopens after the crash or abort, then it cannotagain choose the id it had at the time of the crash or abort. That is, if the host choosesto start a new incarnation immediately after the crash or abort, it cannot later choose tocontinue the previous incarnation.Recall that in speci�cation S every time a host re-opens it chooses a new id. Incarnationsin speci�cation S are identi�ed by unique pairings of these id's. By unique pairings we meanan id is only allowed to be paired with a unique id from the other host. We call these pairsassociations . Hosts are only allowed to accept data from a sender whose id is paired withthe id of the receiving host. Thus, in speci�cation S if the receiving host crashes, when itreopens it cannot accept data from the sending host unless the sender also closes and theyboth choose new id's that are paired together. In the weaker version of speci�cation S, thepairings of id's are still unique, and a host can still only accept data from a sender whoseid is paired with the id of the receiving host. However, because a host can choose the sameid it had before a crash when it reopens after the crash, it can still accept data from thesending host even when the sending host does not close and reopen.The second conceptual change is to allow duplicate delivery of data. We do not want toallow a piece of data to be delivered more than once in any arbitrary situation. We want224



to allow this to happen only on the last piece of data delivered for an incarnation, and onlyif the receiving host crashed or aborted after the delivery.To incorporate these two ideas into the new speci�cation, we need variables to keeptrack of the id a host has at the time of a crash or abort, so that it may be reused after thecrash or abort, and we need to store the last piece of data delivered to a user.10.1.2 Secondary changesIn speci�cation S when a host crashes or aborts, the queue from which it is receiving datais emptied and the status is assigned dead. We do this because we know that in TCP aftera crash or reset a host cannot receive any more data from the incarnation it was a part ofbefore the crash or reset. Since data in each abstract queue represents data from a particularincarnation, killing and emptying the queue in speci�cation S explicitly indicates that nomore data from that incarnation should be received in the concrete implementations.Since in T/TCP after a host crashes and reopens it may still receive data from theincarnation that it was receiving data from before the crash, in the new speci�cation thatcaptures the behaviors of T/TCP we cannot just kill and empty the abstract queues whenthe receiving hosts crash. Therefore, in our new speci�cation we need to make some sec-ondary changes to allow a host, after it reopens from a crash, to receive data from the samequeue it received data from before the crash. The changes are as follows:1. Queues are not emptied and killed when the receiving host crashes or aborts.2. After crashes or aborts data may be lost from the front of queues.3. Queues that are killed when the receiving host crashes or aborts in speci�cation S,but are not killed in the weaker version of the speci�cation, are now killed when thesender closes if data can no longer be received from these queues and they are stilllive. If data may still be received from these queues when the sender closes, they arekilled by the receiving host when it is determined that data can no longer be receivedfrom these queues.The reason why the weaker speci�cation must now allow data to be lost from the frontof queues after crashes or aborts is that in low level protocols when a receiving host crashes,225



it may lose its receive bu�er. The receive bu�er in a low level protocol corresponds to datafrom the front of an abstract queue. In speci�cation S, queues that represent data goingin one direction for an incarnation are killed when it is determined that no more data canbe delivered from that queue. In the weaker speci�cation these queues are killed when itis determined that no more data can be added to these queues and no more data can bereceived from these queues. If data can be received or added, these queues are not killed inthe weaker speci�cation.In speci�cation S, even if we did not kill and empty the queue when the receiving hostcrashed, the receiving host still could not receive any more data from that queue. Thereason is that in speci�cation S whenever a host crashes or aborts it must close and reopenbefore it can receive data again. When it reopens it must choose an new id, and the new idcannot be paired with the id of the queue that it was receiving data from before the crashbecause that id is already paired with the id the receiving host had before the crash. Sincea host can only receive data from a queue indexed by an id that is paired with its currentid, when the host reopens after the crash or abort, it cannot receive data from that queue.The reason why we chose to empty and kill the queue in speci�cation S is that it makesthe property more explicit, and it makes our re�nement mapping for the simulation proofsimpler.When we make all these changes to S we get a weaker speci�cation. The speci�cationis weaker in that it allows more behaviors that speci�cation S. We called this weakerspeci�cation for reliable TCP/IP transport level protocols WS.10.1.3 States and start states of WSThe states and start states of WS remains the same as the state and start states of Sexcept for the addition of four new variables. These variables record the crash id's of eachhost, and keeps track of the last messages passed to the users. We elaborate on these newvariables in the table below. 226



Variable Type Initially Descriptioncrash-idc CID [ fnilg nil The idc value the client has at the last crashc orabortc event. If the client closes normally, it is setto nil.crash-ids SID [ fnilg nil Symmetric to crash-idc.last-msgc Msg [ fnullg null The most recent message passed to the user by theclient. If there is a crash or an abort this messagemay be re-delivered.last-msgs Msg [ fnullg null Symmetric to last-msgc.The derived variables live-qcs and live-qsc are de�ned forWS exactly as they are de�nedfor S in Chapter 4.The action signature for WS remains the same as for S presented in Section 4.1.2,except for the lose actions, which in WS have the form losec(I,J,i) and loses(I,J,i).10.1.4 The stepsThe steps of WS are shown below in Figures 10-1, 10-2, and 10-3. The e�ect of the send-msgc(open, m, close) action in WS changes to reect that fact that crash-id c might bereused, but if it is not used, in the incarnation immediately after the crash or abort, itcannot be reused, so it is added back to the set of used client id's. Additionally, whencrash-id c is not reused when the client reopens, if it is part of an association pair, but theserver no longer has the id which crash-id c is paired with, then the queue indexed by the idthat crash-id c is paired with is emptied and killed. The queue is killed because the serveris no longer adding data to that queue, and since the current id of the client is not the idpaired with that queue, the client can no longer receive data from it. The variable crash-id cis also assigned to nil in this step when the client opens whether it was reused or not,because once the client reopens, there is not longer a crash id until the next crash or abort.In the e�ect clause of the choose-server-id(j) symmetric assignments are made.The preconditon of the make-assoc(i,j) action changes to allow crash-id c and crash-id s,if they are not nil, to be part of association pairs, and not just the ids in the set of usedid's. The reason for this change is that after a crash or an abort an id might get removedfrom the set of used id's, so it can be used again. However, we still want to allow that id tobe able to form an association pair if it is not already part of a pair. When an id is reused,if it is already part of an association pair, no new association has to be formed for data to227



be sent and delivered on the queue indexed by that id. We still only allow id's to be pairedwith one other id.The receive-msgc(m) and receive-msgs(m) steps in WS save a copy of the last messagethe client and server respectively passed to the user. This allows that message to be passedto the user again in the event that there is a crash.The set-nilc(j) step is changed to include the assignment of queuecs(id c) to � andq-stat cs(id c) to dead if the queue is live and id s 6= j ^ j 2 used-ids. These assign-ments are made in this step because if the current id of the server is not the id that ispaired with idc and the id that is paired with id c is used, then the server must have closedsince id c and j formed an association. If they server closes \normally," that is, with theset-nils(j) action, then it kills q-stat cs(id c). However, if the server closes because of a crashor an abort, it does not kill this queue, because the client might still add data to it afterthe crash or abort and when it reopens the server might still receive data from this queue.When the server crashes or aborts its id removed from the set of used id's, so the client willnot kill the queue if the server as not reopened from a crash or an abort. The set-nils(i)step is symmetric to set-nilc(j), and the e�ects of reset-nilc and reset-nilc actions remainunchanged from speci�cation S.The crashc and abortc steps assign id c at the time of the crash or abort to the crash-id cset. In order to allow this id to be chosen by the client again, it is removed from the set ofused client id's. Also if the queue from which the client is able to receive data before thecrash or abort event is live, and last-msgc is not null, then last-msgc is added to the frontof this queue to allow duplicate delivery of this message.The crashc and abortc steps set recc and abrtc to true respectively. Either assignmentenables the losec(I,J,j) action. This action changes to reect the fact that after a crashat the client in WS not only may data be lost from the back of the queue on which theclient has been putting data, but if there is a queue from which the client has been able toreceive data that is still live, then data may be lost from the front of this queue. In thisactions the set of indices J is an element of the set of pre�xes of this queue. The de�nitionof pre�xes is analogous to the de�nition of su�xes in Chapter 4. That is, for any queue q228



we de�ne pre�xes(q) , ffij1 � i � jgj0 � j � jqjg:The fact that data may now be lost from the front of this queue is reected in theprecondition ((idc; j) 2 assoc ^qstatsc(j) = live ^ J 2 pre�xes(queuesc(j ))) _(:((idc; j) 2assoc ^ q-stat sc(j) = live) ^ j 2 SID ^ J = ;). That is, if there is a live queue fromwhich the client is able to receive data, elements may be lost from the front of that queue.Otherwise J is the empty set and j takes an arbitrary value. The crashs aborts, andloses(I,J,i) events are symmetric to their client side counterparts.The recoverc and shut-downc steps like set-nilc(j) sets queuecs(id c) to empty, and itsstatus to dead if the queue is live and id s 6= j ^j 2 used-ids. The recovers and shut-downsactions are symmetric.Invariants of WSInvariants 4.1, 4.2, and 4.3, de�ned for S in Section 4.1.2, also hold forWS. The propertiesstated below are true of all reachable states of WS.Invariant 10.1If (h; j) 2 u:assoc ^ (i; j) 2 u:assoc then h = i.If (i; j) 2 u:assoc ^ (i; k) 2 u:assoc then j = k.Proof: The proof is straightforward, by induction, from the description of the initial valuesof the variables of WS and of steps(WS).Invariant 10.28 i 2 CID, if u:q-statcs(i) = dead then u:queuecs(i) = �8 j 2 SID , if u:q-statsc(j) = dead then u:queuesc(j) = �Proof: The proof is straightforward, by induction, from the description of the initial valuesof the variables of WS and of steps(WS).Invariant 10.3For any state u of WS, ju:live-qcsj and ju:live-qscj are both �nite.Proof: The proof is the same as the proof for Invariant 4.3.The conjuction of the above invariants is itself an invariant which we call IWS .229



send-msgc(open, m, close)Eff: if :(recc _ abrtc) thenif open ^ id c = nil thenid c :2 CID n used-idcused-idc := used-idc [ fidcgif idc 6= crash-idc ^crash-idc 6= nil thenused-idc := used-idc [ fcrash-idcg8 j s. t. (crash-idc; j) 2 associf ids 6= j ^q-statsc(j) = live thenq-statsc(j) := �q-statsc(j) := deadcrash-idc := nillast-msgc := nullmodec := activeq-statcs(idc) := liveif modec = active ^ m 6= null ^q-statcs(id c) = live thenqueuecs(idc) := queuecs(id c)�mif close then modec := inactivemake-assoc(i,j)Pre: i 6= nil ^ i 2 used-idc [ fcrash-idcg ^j 6= nil ^ j 2 used-ids [ fcrash-idsg ^8 k (i; k) 62 assoc ^ 8 l (l; j) 62 assocEff: assoc := assoc [ f(i; j)greceive-msgc(m)Pre: :(recc _ abrtc) ^q-statsc(j) = live ^ (idc; j) 2 assoc ^queuesc(j) 6= � ^ head (queuesc(j)) = mEff: last-msgc := head (queuesc(j))queuesc(j) := tail(queuesc(j))set-nilc(j)Pre: :(recc _ abrtc)^id c 6= nil ^modec = inactive ^(id c; j) 2 assoc ^ queuesc(j) = � ^(modes = inactive _ id s 6= j)Eff: if q-statcs(idc) = live ^id s 6= j ^ j 2 used-ids thenqueuecs(id c) := �q-statcs(id c) := deadid c := nilq-statsc(j) := dead

passive-openEff: if :(recs _ abrts) thenif ids = nil thenchoose-sid := truemodes := activelast-msgs := nullchoose-server-id(j)Pre: choose-sid = true ^ j 2 SID n used-idsEff: choose-sid := falseids := jused-ids := used-ids [ fjgif ids 6= crash-ids ^ crash-ids 6= nil thenused-ids := used-ids [ fcrash-idsg8 i s. t. (i; crash-ids) 2 associf idc 6= i ^ q-statcs(i) = live thenq-statcs(i) := �q-statcs(i) := deadcrash-ids := nilq-statsc(j) := livesend-msgs(m, close)Eff: if :(recs _ abrts) thenif modes = active ^ m 6= null ^q-statsc(ids) = live thenqueuesc(ids) := queuesc(ids)�mif close then modes := inactivereceive-msgs(m)Pre: :(recs _ abrts) ^q-statcs(i) = live ^ (i; ids) 2 assoc ^queuecs(i) 6= � ^ head (queuecs(i)) = mEff: last-msgs := head (queuecs(i))queuecs(i) := tail(queuecs(i))set-nils(i)Pre: :(recs _ abrts)^ids 6= nil ^modes = inactive ^(i; ids) 2 assoc ^ queuecs(i) = � ^(modec = inactive _ idc 6= i)Eff: if q-statsc(id s) = live ^idc 6= i ^ i 2 ucid thenqueuesc(ids) := �q-statsc(ids) := deadids := nilq-statcs(i) := deadFigure 10-1: Steps of the speci�cation WS .230



reset-nilcPre: :(recc _ abrtc) ^id c 6= nil ^ modec = inactive ^8 j(id c; j) 62 assoc ^ queuecs(idc) = �Eff: id c := nilq-statcs(idc) := deadcrashcEff: if idc 6= nil thenrecc := truecrash-idc := id cused-idc:= used-idc n idc8 j s.t. q-statsc(j) = live ^(idc; j) 2 associf last-msgc 6= null thenqueuesc(j) := last-msgc�queuesc(j)abortcPre: id c 6= nilEff: abrtc := truecrash-idc := idcused-idc:= used-idc n idc8 j s.t. q-statsc(j) = live ^(id c; j) 2 associf last-msgc 6= null thenqueuesc(j) := last-msgc�queuesc(j)losec(I,J,j)Pre: (recc _ abrtc) ^(I 2 su�xes(queuecs (idc))) ^(((idc; j) 2 assoc ^ q-statsc(j) = live ^J 2 pre�xes(queuesc (j ))) _(:((idc; j) 2 assoc ^ q-statsc(j) = live)^ j 2 SID ^ J = ;))Eff: queuecs(idc) := delete(queue cs(id c), I)if (idc; j) 2 assoc ^q-statsc(j) = live thenqueuesc(j) := delete(queue sc(j); J)

reset-nilsPre: :(recs _ abrts) ^ids 6= nil ^ modes = inactive ^8 i(i; ids) 62 assoc ^ queuesc(ids) = �Eff: ids := nilq-statsc(id s) := deadcrashsEff: if ids 6= nil _modes = active thenrecs := trueif ids 6= nil thencrash-ids := id sused-ids:= used-ids n ids8 i s.t. q-statcs(i) = live ^(i; ids) 2 associf last-msgs 6= null thenqueuecs(i) := last-msgs�queuecs(i)abortsPre: ids 6= nil _modes = activeEff: abrts := trueif ids 6= nil thencrash-ids := idsused-ids:= used-ids n id s8 i s.t. q-statcs(i) = live ^(i; ids) 2 associf last-msgs 6= null thenqueuecs(i) := last-msgs�queuecs(i)loses(I,J,i)Pre: (recs _ abrts) ^(I 2 su�xes(queuesc (ids ))) ^(((i; ids) 2 assoc ^ q-statcs(i) = live) ^J 2 pre�xes(queuecs (i)))_(:((i; ids) 2 assoc ^ q-statcs(i) = live)^ i 2 CID ^ J = ;))Eff: queuesc(ids) := delete(queue sc(ids), I)if (i; ids) 2 assoc ^q-statcs(i) = live thenqueuecs(i) := delete(queue cs(i); J)Figure 10-2: Other steps of the speci�cation WS.231



recovercPre: reccEff: recc := falsemodec := inactiveif 8 j(id c; j) 62 assoc ^ queuecs(id c) = �then optionally q-statcs(idc) := deadif 9 j s.t. (id c; j) 2 assoc ^q-statcs(id c) = live ^ids 6= j ^ j 2 used-ids thenqueuecs(idc) := �q-statcs(idc) := deadidc := nilshut-downcPre: abrtcEff: abrtc := falsemodec := inactiveif 8 j(id c; j) 62 assoc ^ queuecs(idc) = �then optionally q-statcs(idc) := deadif 9 j s.t. (id c; j) 2 assoc ^q-statcs(id c) = live ^ids 6= j ^ j 2 used-ids thenqueuecs(idc) := �q-statcs(idc) := deadidc := nil
recoversPre: recsEff: recs := falsemodes := inactiveif 8 i(i; ids) 62 assoc ^ queuesc(ids) = �then optionally q-statsc(ids) := deadif 9 i s.t. (i; ids) 2 assoc ^q-statsc(ids) = live ^idc 6= i ^ i 2 used-idc thenqueuesc(ids) := �q-statsc(id s) := deadids := nilshut-downsPre: abrtsEff: abrts := falsemodes := inactiveif 8 i(i; ids) 62 assoc ^ queuesc(ids) = �then optionally q-statsc(ids) := deadif 9 i s.t. (i; ids) 2 assoc ^q-statsc(ids) = live ^idc 6= i ^ i 2 used-idc thenqueuesc(ids) := �q-statsc(id s) := deadids := nilFigure 10-3: The rest of the steps of the speci�cation WS .10.1.5 The weaker version of DTo get the weaker version of speci�cation D, which we call WD, we change WS in thesame manner in which we changed S to get D. That is, messages are tagged when they arereceived in the send-msgc(open, m, close) and send-msgs(m, close) steps, and the tags areremoved before the messages are passed to the users in the receive-msgc(m) and receive-msgs(m) steps. Also instead of enabling lose actions, crashes and aborts enable mark actionswhich mark the messages instead of deleting them. The marked messages maybe deletedin the drop(I, J, k, l) actions. These actions now reect the fact that marked messagescan be dropped from the front of a some queues as well as the back of queues as in D.Thus, the action dropc(I, J, k, l) is enabled not only when there is a queuecs(k) which asu�x of marked messages, but also if there is queuesc(l) with a pre�x of marked messages.232



Depending on which condition causes the action to be enabled, the appropriate messagesare deleted. The changed steps for WD are shown in Figures 10-4 and 10-5.The derived variables live-qcs, live-qsc, and #ok(qD), where qD is a queue in the set(Msg � Flag)�, are de�ned for WD as they are de�ned for D. Similar to qD, let qS be aqueue in the set Msg�, that is, has the same type as queues in WS.
send-msgc(open, m, close)Eff: if :(recc _ abrtc) thenif open ^ idc = nil thenid c :2 CID n used-idcused-idc := used-idc [ fidcgif id c 6= crash-idc ^crash-idc 6= nil thenused-idc := used-idc [ fcrash-idcg8 j s. t. (crash-id c; j) 2 associf ids 6= j ^q-statsc(j) = live thenq-statsc(j) := �q-statsc(j) := deadcrash-idc := nillast-msgc := nullmodec := activeq-statcs(idc) := liveif modec = active^ m 6= null ^q-statcs(idc) = live thenqueuecs(idc) := queuecs(id c)�(m; ok)if close then modec := inactivereceive-msgc(m)Pre: :(recc _ abrtc) ^ queuesc(j) 6= � ^q-statsc(j) = live ^ (id c, j) 2 assoc ^(head(queuesc(j))).msg = mEff: last-msgc := head (queuesc(j))queuesc(j) := tail(queuesc(j))

send-msgs(m, close)Eff: if :(recs _ abrts) thenif modes = active ^ m 6= null ^q-statsc(ids) = live thenqueuesc(ids) := queuesc(id s)�(m; ok)if close then modes := inactive
receive-msgs(m)Pre: :(recs _ abrts) ^ queuecs(i) 6= � ^q-statcs(i) = live ^ (i; ids) 2 assoc ^(head(queue cs(i))).msg = mEff: last-msgs := head(queue cs(i))queuecs(i) := tail(queuecs(i))Figure 10-4: Steps of WD that di�er from the steps of WS.233



markc(I; J; j)Pre: (recc _ abrtc) ^(I 2 su�xes(queuecs (idc))) ^(((idc; j) 2 assoc ^ q-statsc(j) = live ^J 2 pre�xes(queuesc (j ))) _(:((idc; j) 2 assoc ^ q-statsc(j) = live)^ j 2 SID ^ J = ;))Eff: queuecs(idc) := mark(queuecs(idc), I)if (idc; j) 2 assoc ^ q-statsc(j) = livethen queuesc(j) := mark(queuesc(j); J)dropc(I,J,k,l)Pre: (q-statcs(k) = live ^I 2 su�xes(queuecs (k)) ^8 i 2 I queuecs(k)[i]:ag = marked)_ (q-statsc(l) = live ^J 2 pre�xes(queuesc (l)) ^8 j 2 J queuesc(l)[j]:ag = marked)Eff: if (q-statcs(k) = live ^,I 2 su�xes(queuecs (k)) ^ 8 i 2 Iqueuecs(k)[i]:ag = marked) thenqueuecs(k) := delete(queue cs(k); I)if (q-statsc(l) = live ^J 2 pre�xes(queuesc (l)) ^ 8 j 2 J ,queuesc(l)[j]:ag = marked) thenqueuesc(l) := delete(queue sc(l); J)
marks(I; J; i)Pre: (recs _ abrts) ^(I 2 su�xes(queuesc (ids ))) ^(((i; ids) 2 assoc ^ q-statcs(i) = live) ^J 2 pre�xes(queuecs (i)))_(:((i; ids) 2 assoc ^ q-statcs(i) = live)^ i 2 CID ^ J = ;))Eff: queuesc(ids) := mark(queuesc(ids), I)if (i; ids) 2 assoc ^ q-statcs(i) = livethen queuecs(i) := mark(queuecs(i); J)drops(I; J; l; k)Pre: (q-statsc(l) = live ^I 2 su�xes(queuesc (l)) ^8 i 2 I queuesc(l)[i].ag = marked)_ (q-statcs(k) = live ^J 2 pre�xes(queuecs (k))^ 8 j 2 J queuecs(k)[j]:flag = marked)Eff: if (q-statsc(l) = live ^I 2 su�xes(queuesc (l)) ^ 8 i 2 Iqueuesc(l)[i].ag = marked) thenqueuesc(l) := delete(queue sc(l); I)if (q-statcs(k) = live ^J 2 pre�xes(queuecs (k)) ^ 8 j 2 J ,queuecs(k)[j]:flag = marked) thenqueuecs(k) := delete(queue cs(k); J)Figure 10-5: The other steps of WD that di�er from the steps of WS .10.1.6 The correctness of WDIn this section we prove the correctness of WD with respect to WS. We start by de�ninginvariants on the states ofWD. The invariants are the same as Invariants 10.1 through 10.3.The properties stated below are true of all reachable states of WD.Invariant 10.4If (h; j) 2 u:assoc ^ (i; j) 2 u:assoc then h = i.If (i; j) 2 u:assoc ^ (i; k) 2 u:assoc then j = k.Proof: The proof is straightforward, by induction, from the description of the initial valuesof the variables of WD and of steps(WD). 234



Invariant 10.58 i 2 CID, if u:q-statcs(i) = dead then u:queuecs(i) = �8 j 2 SID , if u:q-statsc(j) = dead then u:queuesc(j) = �Proof: The proof is the same as the proof for Invariant 10.2.Invariant 10.6For any state u of WS, ju:live-qcsj and ju:live-qscj are both �nite.Proof: The proof is the same as the proof for Invariant 4.3.The conjuction of the above invariants is itself an invariant which we call IWD.The simulationWe prove the correctness ofWD by showing an image �nite backward simulation fromWDto WS. The proof is very similar to the one given in Chapter 4 for showing an image �nitebackward simulation from D to S. We will also use most of the de�nitions and preliminarylemmas from that proof.We de�ne Bwdws over states(WD) � states(WS). De�nition 4.1 de�nes an explanation.De�nition 10.1 (Image-Finite Backward Simulation from WD to WS)If s 2 states(D) and u 2 states(S), then de�ne that (s; u) 2 Bwdws if the followingconditions hold:1. u:assoc = s:assoc2. u:choose-sid = s:choose-sid3. u:used-idc = s:used-idcu:used-ids = s:used-ids4. u:recc = s:reccu:recs = s:recs5. u:abrtc = s:abrtcu:abrts = s:abrts6. u:idc = s:id cu:ids = s:id s7. u:modec = s:modecu:modes = s:modes 235



8. u:crash-idc = s:crash-id cu:crash-ids = s:crash-id s9. u:last-msgc = s:last-msgcu:last-msgs = s:last-msgs10. 8 i 2 CID u:q-statcs(i) = s:q-statcs(i)8 j 2 SID u:q-statsc(j) = s:q-statsc(j)11. (8 i 2 CID) (9 explanation fi from u:queuecs(i) to s:queuecs(i))(8 j 2 SID) (9 explanation gi from u:queuesc(j) to s:queuesc(j))Each of the variables in WS other than the queues is equal to its counterpart in WD.In the proof below when we write u:variables = s:variables we mean the eleven sets ofequations of items one through nine in De�nition 10.1.Recall that in Chapter 4 we de�ne maxqueue be a function of type: (Msg � Flag)� !Msg� such that for any qD,maxqueue(qD) is de�ned to be the queue qS obtained by removingall ag components from qD.Lemma 10.1Let s 2 states(WD). Then there exists a state u 2 states(WS) such that (s; u) 2 Bwdws.Proof: Let qSi = maxqueue(s.queuecs(i)) 8 i 2 CID , and q1Sj = maxqueue(s.queuesc(j))8 j 2 SID. Then by Lemma 4.3 there exists an explanation from qSi to s:queuecs(i) andan explanation from q1Sj to s:queuesc(j). Thus, if we have u:queuecs(i) = qSi , u:queuesc(j)= q1Sj , and for all the other variables u:variables = s:variables, this gives a state u such that(s; u) 2 Bwdws.Lemma 10.2WD �iB WS via Bwdws with respect to IWD and IWS .Proof: We �rst show that Bwdws is image-�nite and then check the three conditions ofDe�nition 3.10 which we call non-emptiness, base case, and inductive case respectively.Let s be an arbitrary state of WD. The proof that there are only �nitely many statesu of WS such that (s; u) 2 Bwdws is the same as the proof that for an arbitrary state s0of D, there exists only �nitely many states u0 of S such that (s0; u0) 2 Bwdws presented inSection 4.2.2, so we do not repeat it here. 236



Non-emptinessNon-emptiness follows immediately from Lemma 10.1Base CaseLet s0 be the (unique) start state of WD. Then if (s0; u) 2 Bwdws, then u:variables =s:variables and u:queuecs(i) = u:queuesc(j) = �. Thus, u is the unique start state of WS.Inductive CaseThe proof for the inductive case for this lemma is has many of the same steps as the prooffor the inductive case for Lemma 4.5. We note the cases that are the same here, but do notrepeat the arguments when this is the case.Assume (s; a; s0) 2 steps(WD) and let u0 be an arbitrary state ofWS such that (s0; u0) 2Bwdws. Below we consider cases based on a and for each case we de�ne a �nite executionfragment � of S with lstate(�) = u0, (s, fstate(�)) 2 Bwdws, and trace(�) = trace(a). Inorder to show (s, fstate(�)) 2 Bwdws, we need to show that the value of the state variablesfor state s and fstate(�) = u are related according to our de�nition of Bwdws. As is thecase for Lemma 4.5, the interesting aspect of showing (s; u) 2 Bwdws is showing that wecan �nd valid explanations from the queues in state u to the queues in state s.a = send-msgc(open, m, close).The proof for this case is the same as the proof for the same case of Lemma 4.5.a = passive-open, choose-server-id(j).The proof for these cases is the same as the proof for the same cases of Lemma 4.5.a = send-msgs(m, close).The proof for this case is the same as the proof for the same case of Lemma 4.5.a = make-assoc(i,j).The proof for this case di�ers from the proof for the same case of Lemma 4.5, becausenow the step with this action may change the queues. For this case � = (u, make-assoc(i,j), u0). We now de�ne u such that � 2 steps(S) and (s; u) 2 Bwdws. We letu.variables = s:variables. The only queues that change because of this step are s:queuesc(k)8 k 6= j s:t: (i; k) 2 assoc and s:queuecs(l) 8 l 6= i s:t: (l; j) 2 assoc. For all other queues,the explanations from these queues in state u0 to state s0 are also explanations from state237



u to state s. For the other queues that change in this step, 8 k 6= j s:t: (i; k) 2 assoclet u:queuesc(k) = maxqueue(s :queuecs(k)), then by Lemma 4.3 the identity mappingfrom dom(u.queuesc(k)) to dom(s.queuesc(k)) is an explanation. Also let u:queuecs(l) =maxqueue(s :queuecs(l)); 8 l 6= i s:t: (l; j) 2 assoc, then by Lemma 4.3, the identity mappingis an explanation from u:queuecs(l) to s:queuecs(l).a = receive-msgc(m), receive-msgs(m).The proof for these cases is the same as the proof for the same cases of Lemma 4.5.a = reset-nilc, reset-nils, recoverc, recovers, shut-downc, shut-downs.The proof for these cases is the same as the proof for the same cases of Lemma 4.5.a = set-nilc(j).For this case let � = (u;make � assoc(i ; j );u 0). The proof for this case also changes, becausein WD and WS the step now a�ects may now a�ect s:queuecs(s:idc). Again u.variables= s:variables and for all other queues, the explanations that exist from state u0 to s0 alsohold from state u to state s. Let u:queuecs(u:idc) = maxqueue(s :queuecs(s :idc)), then byLemma 4.3, the identity mapping from dom(u.queuecs(u:idc)) to dom(s.queuecs(s:idc)) isan explanation.a = set-nils(i).The proof for this case is symmetric to the proof for a = set-nilc(j).a = crashc.We can de�ne u such (u, crashc, u0) 2 steps(WS) and (s; u) 2 Bwdws. For this stepu:variables = s:variables. This step only a�ects queuesc(j) if s:q-statsc(j) = live ^(s:idc; j) 2 s:assoc. For all other queues the explanations that exists from state u0 tostate s0, also exists from state u to state s. Let f 0j be an explanation from u0:queuesc(j) tos0:queuesc(j). Then we can de�ne fj in the following way.fj = [i 7! (f 0j(i+ 1)� 1)ji 2 dom(f 0j ) nmaxindex(u 0:queuesc(j ))]Intuitively fj relates the same elements in u:queuesc(j) and s:queuesc(j) that were re-lated by f 0j in u0:queuesc(j) and s0:queuesc(j) (these elements all have their indices decreased238



by one because of the elements removed from the head of the queues). It is easy to see thatfj is an explanation.a = crashs.This case is symmetric to the case for crashc.a = abortc.For this case we de�ne u such that (u, abortc, u0) 2 steps(WS) and (s; u) 2 Bwdws. Clearlythe traces are the same. The proof for this case is the same as the proof for a = crashcbecause the e�ects of these actions are essentially the same.a = aborts.This case is symmetric to the case for abortc.a = markc(I; J; j).In this case we can de�ne u, I 0, and J 0 such that (u, losec(I 0; J 0; j), u0) 2 steps(WS) and(s; u) 2 Bwdws. Clearly trace(�) = trace(a). Let u.variables = s:variables. The actionmarkc(I; J; j) only a�ects s:queuecs(s:idc) and s:queuesc(j) where (((s:idc; j) 2 s:assoc ^s:q-statsc(j) = live) ) J 2 pre�xes(s :queuesc(j )). Similarly the action losec(I 0; J 0; j)only a�ects u:queuecs(u:idc) and u:queuesc(j) where (((u:idc; j) 2 u:assoc^ u:q-statsc(j) =live) ) J 2 pre�xes(u:queuesc(j )). Therefore, for all other queues the explanationsthat exists from state u0 to state s0, also exists from state u to state s. Therefore, we needto construct explanations from u:queuecs(u:idc) to s:queuecs(s:id c) and from u:queuesc(j)to s:queuesc(j). Let u:queuecs(u:id c) = maxqueue(s.queuecs(s:idc)) and u:queuesc(j) =maxqueue(s :queuesc(j )); then byLemma 4.3, the identity mapping is an explanation from u:queuecs(u:idc) to s:queuecs(s:id c)and from u:queuesc(j) to s:queuesc(j).We now need to show that losec(I 0; J 0; j) is enabled from state u inWS. Since u:variables= s:variables and markc(I; J; j) is enabled in s, we know s:recc = u:recc = true, andthat I 2 su�xes(s :queuecs(s :idc) and (((s:idc; j) 2 s:assoc ^ s:q-statsc(j) = live) )J 2 pre�xes(s :queuesc(j )). To de�ne an appropriate I 0 and J 0 we �rst observe thatmaxqueue(s :queuecs(s :idc)) = maxqueue(s 0:queuecs(s 0:id c)) and maxqueue(s :queuesc(j )) =maxqueue(s 0:queuesc(j )). Since u:queuecs(u:idc) =239



maxqueue(s :queuecs(s :idc)) and u:queuesc(j) = maxqueue(s :queuesc(j )), it is easy to see wecan obtain u0:queuecs(u0:idc) from u:queuecs(u:idc) and u0:queuesc(j) from u:queuesc(j) bydeleting some (possibly zero) elements that are in su�xes(u:queuecs(u:idc)) and pre�xes(s :queuesc(j ))respectively. Thus, I is an appropriate I 0 and J is an appropriate J 0. That is, I 0 = I andJ 0 = J .a = marks(I; J; j).This action is symmetric to the previous case.a = dropc(I; J; k; l).The corresponding action inWS is the empty step, i.e., (s; u0) 2Bwdws. Since dropc(I; J; k; l)is internal the empty step has the right trace. This action only a�ects s:queuecs(k) ands:queuesc(l), so we only need explanations from u:queuecs(k) to s:queuecs(k) and fromu:queuesc(l) to s:queuesc(l). In the proof of Lemma 4.5 for the case of the dropc(I; k) action,it is shown that if we let f 0k be an arbitrary explanation form u0:queuecs(k) to s0:queuecs(k)(we know one exists because (s0; u0) 2 Bwdws), and let h be the unique bijective, strictlyincreasing mapping from dom(s 0:queuecs(k)) to dom(s :queuecs(k)) n I , then fk = h � f 0k is avalid explanation from u:queuecs(k) to s:queuecs(k).Now we only need to show an explanation from u:queuesc(l) to s:queuesc(l). The sametechnique used for �nding an explanation from u:queuecs(k) to s:queuecs(k) can be usedhere. Let f 0l be an arbitrary explanation form u0:queuesc(l) to s0:queuesc(l) (we know oneexists because (s0; u0) 2 Bwdws). J contains the indices of the elements of s:queuesc(l) thatmay be deleted in the dropc(I; J; k; l) step. Then jdom(s 0:queuesc(l))j = jdom(s :queuesc(l))nJ j. Now let g be the unique bijective, strictly increasing mapping from dom(s 0:queuesc(l))to dom(s :queuesc(l)) n J . Informally, g maps indices of elements in s0:queuesc(l) to theindices the same elements had in s:queuesc(l). De�ne fl = g � f 0l . The proof that fl is avalid explanation is the same as the proof that fk is a valid explanation.a = drops(I; J; l; k).This action is symmetric to the previous case.This concludes the backward simulation proof.240



Theorem 10.1The traces of WD are a subset of the traces of WS, that is, WD v WS.Proof: The proof follows directly from Lemma 10.2 and the soundness of backward simu-lations (Theorem 3.4).10.2 T T CP with history variablesTo verify that T T CP implements the weaker speci�cation, we follow the same general setof steps used for the veri�cation of TCP. That is, we want to show a simulation relationfrom the states of T T CP to the states of WS. However, because of the non-determinismin the actual T/TCP protocol we use the intermediate weak Delayed Decision Speci�cationWD. Thus, we would like to show a re�nement mapping from T T CP to WD, but sinceWD is an untimed automaton and T T CP is a timed automaton we �rst need to apply thepatient operator to WD to get the patient(WD) denoted as WDp. Before we can de�ne are�nement mapping from the states of T T CP to the states of WDp we also need to addsome history variables to T T CP. We call the resulting automaton history T/TCP , denotedas T T CPh. Most of the history variables are equivalent to variables with the same names inWD. These history variables are idc, id s, used-idc, used-ids, crash-id s, last-msgc, last-msgs,and assoc. In T/TCP the server echos back the value of the connection count to the client toverify that segments are from the current incarnation, so the connection count issued by theclient is really the only value used to identify an incarnation in T/TCP. Thus, the historyvariable id c is the cc send value of the client when it opens, and the history variable id s isthe cc rcvd value of the server, but only when the connection is established. That is, whenthe server knows that the [cc send ] value it receives on a segment is not an old duplicate.We also add history variables isns, which is the initial sequence number of the server foran incarnation. We need this history variable, because if the TAO test fails at the server, athree-way handshake is initiated, and the initial sequence number of the server is importantin deterimining if the three-way handshake is valid. Related to the isns history variableis the estb-cc history variable. This variable is similar to the history variable estb-pairs ofT CPh. It is the set of id c values of the client paired with the isns values of the server after241



the second step of the three-way handshake. Thus, estb-cc records pairs that indicate thesecond leg of the three-way handshake as been successfully completed. We also have thehistory variable sent-tao-cc which records all the id c values of client when it sends SYNsegments with data. The history variable choose-isns becomes true in the step that causesthe server to choose an initial sequence number, and becomes false in any subsequent steps.The type and initial value of the history variables are shown in the table below.Variable Type S Initially Descriptionidc N [ nil nil The connection count each time the client opens.ids N [ nil nil The cc send whenever a connection is successfully es-tablised at the server.isns N [ nil nil The server side intial sequence number.used-idc 2N p ; The set of id's used by the client.used-ids 2N p ; The set id's used by the server.crash-idc N p ; The idc value whenever the client crashes or resets.crash-ids N p ; Symmetric to crash-idc.last-msgc Msg� null The last message passed to the user on the client sidelast-msgs Msg� null Symmetric to last-msgcassoc 2(N�N) p ; A set of pairs of id 's for each incarnation of theconnection.estb-cc 2N�N p ; The set of pairs of id c values the client has paired withthe initial sequence number of the sever, whenever thegets to mode estb as a result of receiving the secondsegment in the three-way handshake.choose-isns Bool false A ag that is set to true when the server �rst choosesan ISN for an incarnation and set to false when theserver sends a segment with this ISN.sent-tao-cc 2N p nil The set of connection count values of SYN segmentsthat the client sends valid data.10.2.1 Steps of T T CPhThe steps of T T CPh that di�ers from T T CP are show In Figures 10-6, 10-7, and 10-8.As always we omit the assignments to the original variables of T T CP (again indicated by: : : ) but outline the if-then-else statements. The �rst addition is to the send-msgc(open,m, close) step. When the client opens for an incarnation, id c is assigned the new value ofcc send . In this step in speci�cation WD, several variables that have corresponding historyvariables in T T CPh get assigned, so the corresponding assignments are made for T T CPh.Thus, id c gets added to used-idc, crash-id c is assigned nil, and last-msgc is assigned null.242



In the passive-open step last-msgs is assigned null.When the client performs the step with the send-segcs(SYN, cc send, snc, msgc) orsend-segcs(SYN, cc send, snc, msgc, FIN) actions, if msgc 6= null then cc send is addedto the set sent-tao-cc. When the server receives either of these segments, it increments itssequence number, assigns the incremented value to isns, and sets choose-isns to true. If theTAO test is successful, then the received cc send value becomes the new id s value of theserver. Additionally, all the assignments that take place when a new id s value is assignedat the server in speci�cation WD, happen in this step. In this situation the connectionis also now established, so the pair (id s; ids) is added to assoc. We use this pair becauseid s = [cc send ], and we know that [cc send ] is the id c value of the client when the segmentwas sent. However, it might not be the id c value of the client when the segment is received.Thus, the id c and id s value that form an association pair may not overlap. In TCP theinitial sequence number pairs that form an association always overlap in time.If the TAO test is not successful when the server receives one of these segments, itresponds with the send-segsc(SYN, cc rcvd, sns, acks) step. In this step choose-isns isassigned to false. When the client receives this segment, if the acknowlegment numberon the segment correctly acknowledges the sequence number of the client, then the pair(id c; [sns]) is added to the set estb-cc. In response to this segment, the client performs thesend-segcs(cc send, snc, ackc, msgc) or send-segcs(cc send, snc, ackc, msgc, FIN) step as thethird leg of the three-way handshake. When the server receives either of these segments, ifit completes the three-way handshake, the server assigns id s to cc rcvd and adds the pair(id s; ids) to assoc. The server also makes the other assignments associated with choosing anew id s value.In the receive-msgc(m) and receive-msgs(m) steps, last-msgc and last-msgs respectivelyare assigned the message m. In the crash and reset actions, the id's at the time of the crashor reset is added to the set of crash id's and and removed from the set of used id's.
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send-msgc(open, m, close)Eff: (* E�ect clause from T T CPc *)if modec = closed ^ open then f: : :idc := cc sendused-idc := used-idc [ fidcgif idc 6= crash-idc ^crash-idc 6= nil thenused-idc := used-idc [ fcrash-idcgcrash-idc := nillast-msgc := null: : :send-segcs(SYN, cc send, snc, msgc)Pre: (* Precondition clause from T T CPc *)Eff: (* E�ect clause from T T CPc *)if msgc 6= null thensent-tao-cc := sent-tao-cc [ fcc sendg: : :
send-segcs(SYN, cc send, snc, msgc, FIN)Pre: (* Precondition clause from T T CPc *)Eff: (* E�ect clause from T T CPc *)if msgc 6= null thensent-tao-cc := sent-tao-cc [ fcc sendg: : :

passive-openEff: if modes = closed then flast-msgs := null: : :receive-segcs(SYN, cc send, snc, msgc)Eff: (* E�ect clause from T CPs *)if modes = listen then fsns := sns + 1isns := snschoose-isns := true: : :if cache cc < cc send then fids := cc sendused-ids := used-ids [ fidsgif ids 6= crash-ids ^crash-ids 6= nil thenused-ids := used-ids [ fcrash-idsgcrash-ids := nilassoc := assoc [ f(ids; ids)g: : :receive-segcs(SYN, cc send, snc, msgc, FIN)Eff: (* E�ect clause from T CPs *)if modes = listen then fsns := sns + 1isns := snschoose-isns := true: : :if cache cc < cc send then fids := cc sendused-ids := used-ids [ fidsgif ids 6= crash-ids ^crash-ids 6= nil thenused-ids := used-ids [ fcrash-idsgcrash-ids := nilassoc := assoc [ f(ids; ids)g: : :Figure 10-6: Changes made to T T CPc and T T CPs to get history T/TCP.244



receive-segsc(SYN, cc rcvd, sns, acks)Eff: (* E�ect clause from T T CPc *): : :else fsend-ack c := trueif modec 2 fsyn-sent; syn-sent*gthen festb-cc := estb-cc [ f(idc; sns)gg: : :send-segcs(cc send, snc, ackc, msgc)Pre: (* Precondition clause from T T CPc *)Eff: (* E�ect clause from T T CPc *): : :
send-segcs(cc send, snc, ackc, msgc, FIN)Pre: (* Precondition clause from T T CPc *)Eff: (* E�ect clause from T T CPc *): : :

send-segsc(SYN, cc rcvd, sns, acks)Pre: (* Precondition clause from T T CPs *)Eff: (* E�ect clause from T T CPc *)choose-isns := falsereceive-segcs(cc send, snc, ackc, msgc)Eff: (* E�ect clause from T T CPs *): : :else if modes 6= rec ^ cc send = cc rcvdthen f: : :if ackc = sns + 1 then f: : :if modes = syn-rcvd then fid s := cc sendused-ids := used-ids [ fidsgif id s 6= crash-ids ^crash-ids 6= nil thenused-ids := used-ids [ fcrash-idsgcrash-ids := nilif f(ids; ids)g 62 assoc then fassoc := assoc [ f(ids; ids)g: : :receive-segcs(cc send, snc, ackc, msgc, FIN)Eff: (* E�ect clause from T CPs *): : :else if modes 6= rec ^ cc send = cc rcvdthen f: : :if ackc = sns + 1 then f: : :if modes = syn-rcvd ^id s := cc sendused-ids := used-ids [ fidsgif id s 6= crash-ids ^crash-ids 6= nil thenused-ids := used-ids [ fcrash-idsgcrash-ids := nilif f(ids; ids)g 62 assoc then fassoc := assoc [ f(ids; ids)g: : :Figure 10-7: Other changes made to T T CP for history T/TCP.245



receive-msgc(m)Pre: (* Precondition clause from T T CPc *)Eff: (* E�ect clause from T T CPc *)last-msgc := m: : :receive-segsc(RST, acks, rst-seqs)Eff: if modec 6= rec ^ rst-seqs = ackc _(rst-seqs = 0 ^ acks = snc + 1)modec := resetcrash-idc := idcused-idc := used-idc n idccrashcEff: (* E�ect clause from T T CPc *)if modec 6= closed then: : :crash-idc := idcused-idc := used-idc n idc
receive-msgs(m)Pre: (* Precondition clause from T T CPs *)Eff: (* E�ect clause from T T CPs *)last-msgs := m: : :receive-segcs(RST, ackc, rst-seqc)Eff: if modes 6= rec ^ rst-seqc = acks thenmodes := resetif ids 6= nil thencrash-ids := idsused-ids := used-ids n idscrashsEff: (* E�ect clause from T CPs *)if modes 6= closed then: : :if ids 6= nil thencrash-ids := idsused-ids := used-ids n idsFigure 10-8: The last set of changes made to T T CP for history T/TCP.10.2.2 Derived variables for T T CPhWe de�ne several derived variables for T T CPh. They are used in the formal veri�cationof the protocol. The �rst two derived variables we de�ne for T T CPh are cur-msg c andcur-msgs. These are the \current message" being sent by the client and server respectivelythat have not yet been received. They are similar to the derived variables with the samenames de�ned for T CP. One main di�erence between these variables and the variablesde�ned for T CP, is that if the receiving host crashes or resets after the current message isreceived, but before it is acknowledged, the variable goes from being empty to the valueit had before the message was received. The reason for this is that, after a crash or reset,the receiving host when it reopens, may accept this message again. This is the duplicatedelivery that is allowed in our weaker speci�cation. The variables are formally de�ned asfollows. 246



s:cur-msgc ,8>>>>>>>>>>>>><>>>>>>>>>>>>>:(s:msgc; ok) if s:modec 62 frec; reset; closedg ^ s:msgc 6= null ^((s:cc send > s:cache cc) ^ (s:modec 2 fsyn-sent; syn-sent*g)) _((s:cc send = s:cc rcvd) ^ ((s:snc = s:acks + 1) _(:(s:rcvd-closec ^ s:send-buf c = �) ^ s:snc = s:acks)))(s:msgc; marked) if s:modec 62 frec; reset; closedg ^ s:msgc 6= null ^((s:idc; j) 2 s:estb-cc ^ (s:isns 6= j _ s:modes 2 frec; resetg)) _((s:idc; l) 2 s:assoc ^ (s:id s 6= l _ s:modes 2 frec; resetg))� otherwises:cur-msgs ,8>>>>>>>>>>>>><>>>>>>>>>>>>>:(s:msgs; ok) if s:modes 62 frec; reset; closed; listen; syn-rcvdg ^ s:msgs 6= null^ ((s:cc rcvd = s:cc send ) ^ (s:modec 2 fsyn-sent; syn-sent*g ^s:modes 2 festb*; fin-wait1*; close-wait*; last-ack*g) _(:(s:rcvd-closes ^ s:send-buf s = �) ^ (s:sns = s:ackc))(s:sns = s:ackc + 1))) _(s:msgs; marked) if s:modes 62 frec; reset; closed; listen; syn-rcvdg ^ s:msgs 6= null^ ((k; s:ids) 2 s:assoc ^ (s:modec 2 frec; resetg _ s:idc 6= k))� otherwiseIn the formal de�nition for cur-msgc, we have the condition that modec 62 frec, reset,closedg ^ msgc 6= null, because the client does not send messages if these conditionsare true. When the client is not in one of these modes, there are three basic types ofsituations where the client is ready to send or is sending valid data that has not yet beenreceived. The �rst situation occurs when the message is being sent on a SYN segment. Inthis situation s:modec 2 fsyn-sent; syn-sent*g and the data is accepted at the server ifs:cc send > s:cache cc. If the client is not sending a SYN segment, then in order for thedata on the segment to be accepted, s:cc send must be equal to s:cc rcvd . If the non-SYNsegment is non-FIN segment; that is, :(s:rcvd-closec ^ s:send-buf c = �), then the data isaccepted at the server if s.snc = s:acks. If the segment is a FIN segment, then the data isaccepted if s.snc = s:acks + 1. These, are the \normal" conditions for the existence of thecur-msgc variable, and the messages are paired with the value ok, to match variables onthe queues in WD.In the situation mentioned above in which the server crashes or resets after receiving themessage that the client is sending, neither of the three conditions holds. However, in thissituation we want the cur-msgc variable to have the value it had before the message was247



received at the server. Thus, we have the additional conditions of ((s:id c; j) 2 s:estb-cc ^(s:isns 6= j _ s:modes 2 frec; resetg)) _ ((s:idc; l) 2 s:assoc ^ (s:id s 6= l _ s:modes 2frec; resetg)) for the existence of this variable. The (s:idc; j) 2 s:estb-cc and (s:id c; l) 2s:assoc parts of this condition are needed because one or both of these conditions must holdin order for a message from the client to have previously being delivered to the server. The(s:isns 6= j _ s:modes 2 frec; resetg) and (s:id s 6= l _ s:modes 2 frec; resetg) partsof the condition reects the fact the server may close and reopen after the crash or reset,but the current message may still be delivered. However, since the message may not getdelivered if the client receives an acknowlegment, the message is paired with marked in thissituation.The de�nition for the server side version of the current message derived variable isessentially symmetric. However, the server has a valid message only if s:modes 62 frec,reset, closed, listen, syn-rcvdg and s:cc rcvd = s:cc send ; and it sends a valid SYNsegment with data that may get accepted if s:modes 2 festb*, fin-wait1*, close-wait*,last-ack*g and s:modec 2 fsyn-sent, syn-sent*g.The next two variables we de�ne are p-triplec(k) and p-triples. These variables are\possible triples" and are similar to the \possible pairs" de�ned for T CP. The term \triple"is used because the variables are sets of triples of the form (k; i;m) where k is a connectioncount, i is a sequence number, and m is a message. Like the possible pairs of T CP,the possible triples of T T CPh represents segments that contain messages that might getdelivered after the sender crashes or receives a reset. Another way of looking at possibletriples is that they represents the segments that contain the messages from the \currentmessage" derived variable, after the sender crashed or reset. However, whereas in T CP thereis at most one segment from the client (and duplicates of it) that may still be delivered inthis situation, in T T CPh there may be several of these segments. Thus, for T T CPh thepossible triple variable for segments from the client to the server is an array indexed by theconnection count of the segment. For segments from the server to the client there is a mostone possible triple, so this variable is not an array. The executions that can cause severaldi�erent possible triples from the client to the server are executions where the client sendsa segment with data that will pass the TAO test if it arrives at the server, crashes or resets248



after sending this segment, and then reopens and send a new segment with an incrementedconnection count that will also pass the TAO test if it arrives at the server. This processmay be repeated several times, and each time it is repeated a new segment is added thatcan be delivered.For any segment p on in-transitcs or in-transitsc, recall that in Chapter 6 we de�nesn(p) to be the sequence number of the segment, ack(p) to be the acknowledgment numberof the segment, and msg(p) is the message of the segment. Segments sent by the clientand server in T T CPh also have connection counts. For segments from the client this is thecc send value, and for segments from the server this is the cc rcvd value. For a segmentp 2 in-transitcs, cc send(p) is the value of cc send on that segment, and if p 2 in-transitsc,cc rcvd(p) is the value of cc rcvd on that segment.Let s be any state in T T CPh. Then de�ne possible triples as follows.s:p-triplec(k) ,8>>>>>>>><>>>>>>>>:f(k; i;m) j 9 p 2 s:in-transitcs s.t. ccount (p) = k ^ sn(p) = i ^msg(p) = mgif (s:modec 2 frec; reset; closedg _ s:cc send 6= k) ^(k > cache cc ^ m 6= null ^ p is a SYN segment) _(k = s:cc rcvd ^ i = s:acks ^ p is not a FIN or SYN segment) _(k = s:cc rcvd ^ i = s:acks + 1 ^ p is a non-SYN FIN segment); otherwises:p-triples ,8>>>>>>>><>>>>>>>>:f(l; j;m) j 9 p 2 s:in-transitsc s.t. ccount(p) = l ^ sn(p) = j ^msg(p) = mgif s:modes 2 frec; reset; closed; listen; syn-rcvdg ^ l = s:cc send ^(s:modec 2 fsyn-sent; syn-sent*g ^ m 6= null ^ p is a SYN segment) _(j = s:ackc ^ p is not a FIN or SYN segment) _(j = s:ackc + 1 ^ p is a non-SYN FIN segment); otherwiseIn the formal de�nition for s:p-triplec(k), the fact that the client must have crashed orreset after sending segment p is indicated by the condition s:modec 2 frec; reset; closedg _s:cc send 6= k. The case where s:cc send 6= k occurs if the client closes and re-opens afterthe crash or reset. There are three types of segments from which a possible triple variable canbe derived. The three types here are basically segments that are sent in the three situationswe have for current messages. The �rst type is SYN segments. For a SYN segment that hasa message that is not null, that message may still be accepted if k > s:cache cc. The second249



type is segments that are not SYN or FIN segments. These segments may be accepted if(k = s:cc rcvd ^ i = s:acks). The third type is non-SYN that are FIN segments. Thesessegments have acceptable data if (k = s:cc rcvd ^ i = s:acks + 1).For s:p-triples, the conditions are slightly di�erent. First, there is no situation wherethere are multiple di�erent segments with messages from the server that the client mayaccept after the server crashes or resets. This is because the client always initiates the com-munication for a connection, and the TAO test only happens at the server. Second, the clientonly accepts the message on the segment if l = s:cc send . After the server crashes or resets,the message may still be delivered if modes 2 frec; reset; closed; listen; syn-rcvdg. Ifthe server is in any other mode, it means it has started a new incarnation with the client,so the client will not accept messages from the previous incarnation. The basic three typesof segments for which this possible triple variable is derived is the same.The �fth derived variable is the temporary message. The formal de�nition follows.s:temp-msg , ((s:temp-data ; ok) if s:temp-data 6= null� otherwiseThis derived variable is similar to the current message, in that it is a single messagepaired with ok or it is the empty string. This variable is only de�ned for the server side,and it is the pairing the message in temp-data with ok until the message is added to theserver's receive bu�er. After that temporary message becomes the empty string.10.3 Invariants of T T CPhAs we did for the other simulation proofs in this thesis, we need to prove a set of invariantson the reachable states of T T CPh in order to limit the states we need to consider for thesimulation proof. For T T CP, the set of synchronized states for the server side grows toinclude the set of partially synchronized states. Thus, in the statement of the invariants theset sync-states = festb, fin-wait-1, fin-wait-2, close-wait, last-ack, timed-wait,estb*, fin-wait1*, close-wait*, closing*, last-ack*g. We do not present the proofsfor these invariants, but the proofs are similar to the proofs in B.250



Invariants 10.7, 10.8, and 10.9 state some basic properties of sequence numbers, connec-tion count numbers, and the sets estb-cc, and assoc.Invariant 10.71. For all segments p 2 in-transitcs, snc � sn(p).2. For all segments p 2 in-transitsc, sns � sn(p).3. For all segments p 2 in-transitcs, cc send � cc send(p).Invariant 10.81. If modec 6= closed then cc send = id c.2. If modes 2 sync-states then cc rcvd = id s.3. If there exists a segment p 2 in-transitcs such that cc send(p) = k, then k 2 used-idc[fcrash-idcg.Invariant 10.91. For all i 2 N [ fnilg; (i; nil) 62 estb-cc.2. For all j 2 N [ fnilg; (nil; j) 62 estb-cc.3. For all i 2 N [ fnilg; (i; nil) 62 assoc.4. For all j 2 N [ fnilg; (nil; j) 62 assoc.Invariant 10.10 states that the values of some server side variables are determined bythe value of modes.Invariant 10.101. If modes 2 flisten; syn-rcvdg then rcv-buf s = �.2. If modes 2 flisten; syn-rcvdg then msgs = null.3. If modes 2 flisten; syn-rcvdg then last-msgs = null.4. If modes 2 sync-states then temp-data = null.251



Invariant 10.11 states conditions under which the id's of the client and/or the server,and the initial sequence number of the server, are not part of an assoc or an estb-cc pair.Invariant 10.12 does the opposite, it states conditions under which we know the id's of theclient and/or the server, and the initial sequence number of the server, are part of an assocor an estb-cc pair.Invariant 10.111. If modes = listen and there exists a segment p 2 in-transitcs such that cc send(p) >cache cc then (cc send(p); cc send(p)) 62 assoc.2. If modec 2 fsyn-sent; syn-sent*g then for all j, (id c; j) 62 estb-cc.3. If modec 2 fsyn-sent; syn-sent*g and there exists a segment p of the form (SYN,cc rcvd, sns, acks) or (SYN, cc rcvd, sns, acks, FIN) in in-transitsc such that cc rcvd(p) =cc send and ack(p) = sns + 1 then for all j, (idc; j) 62 assoc.4. If modes = syn-rcvd ^ choose-isns then for all k, (k; isns) 62 estb-cc.Invariant 10.121. Ifmodes = syn-rcvd and there exists a segment p 2 in-transitcs such that cc send(p) =cc rcvd ^ ack(p) = sns + 1, then (cc send(p); isns) 2 estb-cc.2. If modec 2 sync-states or there exists a segment p of type (SYN, cc rcvd, sns, acks,msgs, ) or (SYN, cc rcvd, sns, acks, msgs, FIN) with cc rcvd(p) = ccsend then(idc; idc) 2 assoc.3. If modes 2 sync-states then (id s; ids) 2 assoc.4. If (k; ids) 2 assoc and there exists j such that (k; j) 2 estb-cc then j = isns.Invariants 10.13 and 10.14 are about the open phase of the protocol. They basically saythat unless there is a crash or reset, the client and server are not out of synch.Invariant 10.13If modes 2 sync-states ^ cc send = cc rcvd and there exists a non-SYN segment p 2in-transitcs with cc send(p) = cc rcvd ^ ack(p) = sns + 1 then modec 62 fsyn-sent,syn-sent*g. 252



Invariant 10.14If modec 2 fsyn-sent; syn-sent*g and there exists a SYN segment p 2 in-transitsc suchthat cc rcvd(p) = cc send ^ack(p) = snc+1 ^ sn(p) = isns thenmodes 2 fsyn-rcvd; rec; resetg.Invariant 10.15 states that if a host has started the close phase (indicated by its mode),it must have received the signal to close from the user (rcvd-closec or rcvd-closes is true),and it must have sent all the data it received from the user (the send bu�ers are empty).Invariant 10.151. If modec 2 fsyn-sent*, fin-wait-1, fin-wait-2, closing, timed-wait, last-ackgthen send-buf c = � ^ rcvd-closec = true.2. Ifmodes 2 ffin-wait-1, fin-wait1*, fin-wait-2, closing, closing*, timed-wait,last-ack, last-ack*g then send-buf s = � ^ rcvd-closes = true.Invariants 10.16 and 10.17 are about the relationship betweenmsgc and temp-data . Theystate that in certain states msgc = temp-data . They are important because, in situationswhere temp-data gets lost because of a crash or reset. They show that the message thattemp-data held may still be delivered.Invariant 10.16If temp-data 6= null ^msgc 6= null ^((idc; isns) 2 estb-cc _(id c; ids) 2 assoc) ^snc < acksthen msgc = temp-data .Invariant 10.17If modec 2 fsyn-sent; syn-sent*g ^ temp-data 6= null and there exists a SYN segmentp 2 in-transitsc such that cc rcvd(p) = cc send ^ ack(p) = snc + 1 ^ sn(p) = isns thenmsgc = temp-data .Invariants 10.18, 10.19, and 10.20 state properties that are important for the situationswhen a host crashes or resets. Informally, Invariant 10.18 says that if all the messagesreceived by a host has been passed to the user, then the last message passed to the user253



is the same as the last message sent by the sending host. Invariant 10.19, says that if allthe messages have not been passed to the user, then the message at the back of the receivebu�er is the same as the last message sent by the sending host. Invariant 10.20 says that ifthere has not been a message passed to the user as yet, but the sender sent a message thatis received, then that message must still be on the receive bu�er.Invariant 10.181. If rcv-buf c = � ^ last-msgs 6= null ^ msgs 6= null ^ (idc; ids) 2 assoc^ sns < ackcthen msgs = last-msgc.2. If rcv-buf s = � ^ last-msgc 6= null ^ msgc 6= null ^ (idc; ids) 2 assoc^ snc < acksthen msgc = last-msgs.Invariant 10.191. If rcv-buf c 6= � ^ msgs 6= null ^ (idc; ids) 2 assoc ^ sns < ackc then msgs =last(rbufc).2. If rcv-buf s 6= � ^ msgc 6= null ^ (idc; ids) 2 assoc ^ snc < acks then msgs =last(rbufs).Invariant 10.201. If last-msgc = null ^ msgs 6= null ^ (id c; ids) 2 assoc^sns < ackc then rcv-buf c 6= �.2. If last-msgs = null ^ msgc 6= null ^ (id c; ids) 2 assoc^snc < acks then rcv-buf s 6= �.Invariants 10.21, 10.22, and 10.23 deal with properties of messages at the hosts and onsegments. Invariant 10.21 states that if the message at a host is not null, and there is asegment with the same sequence number as the host, then the segment must have the samemessage as the host. Invariant 10.22 is another key invariant. It states that if two segmentson the same channel have the same sequence number and the messages on the segmentsare not null, then they must have the same message. Invariant 10.23 states that segmentsthat cause the the value of the message variable on the segment to be added to the receivebu�er, contains valid messages. That is, they contain messages that are not null.254



Invariant 10.211. If msgc 6= null and there exists p 2 in-transitcs such that sn(p) = snc then msg(p) =msgc.2. If msgs 6= null and there exists p 2 in-transitsc such that sn(p) = sns then msg(p) =msgs.Invariant 10.221. If there exists segments p and q on in-transitcs such that sn(p) = sn(q) ^ msg(p) 6=null ^ msg(q) 6= null then msg(p) = msg(q).2. If there exists segments p and q on in-transitsc such that sn(p) = sn(q) ^ msg(p) 6=null ^ msg(q) 6= null then msg(p) = msg(q).Invariant 10.231. Ifmodes 2 fsyn-rcvdg[sync-states and there exists p 2 in-transitcs such that sn(p) =acks then msg(p) 6= null.2. If modec 2 sync-states and there exists p 2 in-transitsc such that sn(p) = ackc thenmsg(p) 6= null.Invariant 10.24 states that whenever the client has an acknowledgment number, it isgreater than or equal to the acknowledgment number of any segment on the out goingchannel of the client, and Invariant 10.25 states that under certain conditions the acknowl-edgment number at the server is always bigger than the acknowledgment number of anysegment on the out going channel of the server.Invariant 10.24If ackc 2 N then for all p 2 in-transitcs, ackc � ack(p).Invariant 10.25If modec 2 fsyn-sent; syn-sent*g ^ (id c; ids) 2 assoc ^ modes 62 frec; resetg then forall segments p 2 in-transitsc, acks � ack(p).255



Invariant 10.26 expresses a key correctness property. It states that sequence numbersdo not get changed until the data sent with that sequence number is acknowledged.Invariant 10.261. If there exists a SYN segment p 2 in-transitcs such that cc send(p) = cc send andcc send(p) > cache cc then snc = sn(p).2. If modes 2 fsyn-rcvdg [ sync-states ^modec 2 frec; resetg [ sync-states and thereexists p 2 in-transitcs such that (cc send(p); isns) 2 estb-cc ^ cc send(p) = cc rcvd ^sn(p) � acks, then snc = sn(p).3. If modec 2 sync-states ^ (isnc; isns) 2 assoc and there exists p 2 in-transitsc such thatsn(p) � ackc, then sns = sn(p).Invariant 10.27 states that if a host is in a mode that indicates it has received a FINsegment, and its id is paired with the other host's id, then that other host must be in amode that indicates that it sent the FIN segment. That is, if a host accepts a FIN segment,it must be a legitimate FIN segment for the current incarnation of the connection.Invariant 10.271. If modec 2 fclose-wait; closing; last-ack; timed-waitg ^modes 62 frec; resetg^ (idc; ids) 2 assoc then modes 2 ffin-wait-1, fin-wait1*, fin-wait-2, closing,closing*, timed-wait, last-ack, last-ack*g.2. If modes 2 fclose-wait, close-wait*, closing, closing*, last-ack, last-ack*,timed-waitg ^modec 62 frec; resetg ^ (idc; isns) 2 estb-cc _ (idc; ids) 2 assoc thenmodec 2 fsyn-sent*, fin-wait-1, fin-wait-2, closing, timed-wait, last-ackg.Invariants 10.28 and 10.29 are similar. Invariant 10.28 states that when a host is in amode that indicates that it received a FIN segment, then if the other host has not closedsince sending the FIN segment, its sequence number is less than the acknowledgment numberof the host that received the FIN segment. Invariant 10.29 states that in the same situationas Invariant 10.28, but where the sending host may have closed, the sequence number on256



any sent segment is less than the acknowledgment number of the host that received the FINsegment.Invariant 10.281. If modec 2 fclose-wait; closing; last-ack; timed-waitg ^modes 62 frec; resetg^ (id c; ids) 2 assoc then sns < ackc.2. If modes 2 fclose-wait, close-wait*, closing, closing*, last-ack, last-ack*,timed-waitg ^modec 62 frec; resetg ^ (idc; isns) 2 estb-cc _ (idc; ids) 2 assoc thensnc < acks.Invariant 10.291. If modec 2 fclose-wait; closing; last-ack; timed-waitg and there exists l suchthat (idc; l) 2 assoc then for all non-SYN segments p 2 in-transitsc, sn(p) < ackc.2. If modes 2 fclose-wait, close-wait*, closing, closing*, last-ack, last-ack*,timed-waitg and there exists k, such that (k; isns) 2 estb-cc _ (k; ids) 2 assoc thenfor all non-SYN segments p 2 in-transitcs, sn(p) < ackc.Invariant 10.30 expresses a property that is important for the p-triplec(k) and p-triplesderived variables. The invariant states that when a host receives a segment that may haveacceptable data (sn(p) � ackc or sn(p) � acks), then all other segments q on the channelhave sn(q) � sn(p). This means that if the message was a part of a possible triple, theset becomes empty after this message is received because when the segment is received theacknowledgment number of the receiving host is set to sn(p) + 1.Invariant 10.301. If modec 2 fsyn-sent; syn-sent*g and there exists j such that (idc; j) 2 assoc andthere exists a SYN segment p 2 in-transitsc such that cc rcvd(p) = cc send then forall segments q 2 in-transitsc such that cc rcvd(q) = cc send , sn(q) � sn(p).2. If modec 2 sync-states and there exists j such that (idc; j) 2 assoc and there existsa non-SYN segment p 2 in-transitsc such that cc rcvd(p) = cc send ^ sn(p) � ackc,then for all non-SYN segments q 2 in-transitsc sn(q) � sn(p).257



3. If modes 2 fsyn-rcvdg[sync-states and there exists i, such that i = isnsc ^ (i; isns) 2estb-pairs and there exists a non-SYN segment p 2 in-transitcs such that sn(p) � acks,then for all non-SYN segments q 2 in-transitcs sn(q) � sn(p).Invariants 10.31 and 10.32 state that when a host closes from mode last-ack orlast-ack* its receive bu�er is empty. Invariant 10.31 is for the situation where the otherhost has not closed, and Invariant 10.32 is for the situation where the other hosts mighthave closed after the connection is formed.Invariant 10.311. If modec = last-ack ^modes 62 frec; resetg ^ (idc; ids) 2 assoc then rcv-buf c = �.2. If modes 2 flast-ack; last-ack*g ^modec 62 frec; resetg ^ (id c; isns) 2 estb-cc _(idc; ids) 2 assoc then rcv-buf s = �.Invariant 10.321. If modec = last-ack and there exists l such that (idc; l) 2 assoc then rcv-buf c = �.2. If modes 2 flast-ack; last-ack*g and there exists k, such that (k; isns) 2 estb-cc _(k; ids) 2 assoc then rcv-buf s = �.The �nal invariant, Invariant 10.33, states that if a host is in mode that indicates thatit received a FIN segment, then the other host must either have the ag set that indicatesit received a close signal from its user, or if the ag is not set to true, it must be becausethe host closed after sending the FIN segment.Invariant 10.331. If modec 2 fclose-wait; closing; last-ack; timed-waitg and there exists l suchthat (id c; l) 2 assoc then rcvd-closes = true _ id s 6= l.2. If modes 2 fclose-wait, close-wait*, closing, closing*, last-ack, last-ack*,timed-waitg and there exists k such that (k; isns) 2 estb-cc _ (k; idc) 2 assoc thenrcvd-closec = true _ idc 6= k. 258



The conjunction of all the above invariants is itself an invariant, and we call this invariantITT .10.4 The simulation proofIn this section we de�ne a mapping from states of T T CPh to states ofWDp, and then provethat it is a timed re�nement mapping with respect to invariant IWD and ITT .10.4.1 The re�nement mappingWe de�ne a function Rttwd states(T T CPh) to states(WDp).De�nition 10.2 (Re�nement Mapping From T T CPh to WDp)For our mapping the CID and SID are instantiated by the set of non-negative integers. Ifs 2 states(T T CPh ) then de�ne Rttwd to be the state u 2 states(WDp) such that:1. u:now = s:now2. u:idc = s:idcu:ids = s:ids3. u:choose-sid = (s:modes 2 flisten; syn-rcvdg)4. u:recc = (s:modec = rec)u:recs = (s:modes = rec)5. u:abrtc = (s:modec = reset)u:abrts = (s:modes = reset)6. u:used-idc = s:used-idcu:used-ids = s:used-ids7. u:crash-idc = s:crash-idcu:crash-ids = s:crash-ids8. u:assoc = s:assoc9. u:last-msgc = s:last-msgcu:last-msgs = s:last-msgs10. u:modec = active if s:rcvd-closec = false= inactive if s:rcvd-closec = true_modec = closedu:modes = active if s:rcvd-closes = false= inactive if s:rcvd-closes = true_modes = closed11. u:q-statcs(k) = live if (s:idc = k ^ 8 j(k; j) 62 s:estb-cc ^ (k; k) 62 s:assoc) _ ((k; k) 2s:assoc^(s:ids = k_s:idc = k))_((k; s:isns) 2 s:estb-cc ^s:cc rcvd =k) _ (k 2 s:sent-tao-cc^ (k; k) 62 s:assoc)= dead otherwiseu:q-statsc(l) = live if (s:ids = l) _ ((s:idc; l) 2 s:assoc)= dead otherwise 259



12. u:queuecs(k) = � if ((s:idc 6= k) ^(8 j (k; j) 62 s:estb-cc ^ (k; k) 62 s:assoc) _((k; k) 2 s:assoc ^ s:ids 6= k) _((k; j) 2 s:estb-cc ^ s:isns 6= j)) _(s:modes 2 frec; resetg ^(s:modec 2 frec; resetg _ s:idc 6= k)) (A)= concatenation of:� s:cur-msgc�(s:send-buf c � ok) if (s:idc = k) ^((8 j (k; j) 62 s:estb-cc ^ (k; k) 62 s:assoc) _(s:modec 62 frec; resetg) ^((k; j) 2 s:estb-cc ^ (s:isns 6= j _ s:modes 2 frec; resetg))_ ((k; k) 2 s:assoc ^ (s:ids 6= k _ s:modes 2 frec; resetg))(B)= concatenation of:� s:temp-msg�(s:rcv-buf s � ok)�s:cur-msgc�(s:send-buf c � ok) if (s:idc = k) ^ (s:modec 62 frec; resetg) ^((k; s:isns) 2 s:estb-cc _ (k; s:ids) 2 s:assoc))^ (s:modes 62 frec; resetg) (C)= concatenation of:� s:temp-msg�(s:rcv-buf s � ok)�(data(s:p-triplec(k))� marked) if (s:idc 6= k _ s:modec 2 frec; resetg) ^((k; s:isns) 2 s:estb-cc _ (k; s:ids) 2 s:assoc)^ (s:modes 62 frec; resetg) (D)= (data(s:p-triplec(k))� marked) if (s:idc 6= k _ s:modec 2 frec; resetg) ^((k; s:isns) 62 s:estb-cc ^ (k; s:ids) 62 s:assoc) ^(k 2 s:sent-tao-cc ^ k > s:cache cc) (E)13. u:queuesc(l) = � if (s:ids 6= l ^ (s:idc; l) 62 s:assoc) _(s:modec 2 frec; resetg ^(s:modes 2 frec; resetg _ s:ids 6= l)) (A)= concatenation of:�s:cur-msgs�(s:send-buf s � ok) if (s:ids = l) ^ ((l; l) 62 s:assoc) _(s:modes 62 frec; resetg ^ (l; l) 2 s:assoc ^(s:modec 2 frec; resetg _ s:idc 6= l))) (B)= concatenation of:�(s:rcv-buf c � ok)�s:cur-msgs�(s:send-buf s � ok) if (s:ids = l) ^ ((s:idc; l) 2 s:assoc) ^ (s:modes 62frec; resetg) ^ (s:modec 62 frec; resetg) (C)= concatenation of:�(s:rcv-buf c � ok)�(data(s:p-triples)� marked) if (s:ids 6= l _ s:modes 2 frec; resetg) ^ (s:idc; l) 2s:assoc ^ s:modec 62 frec; resetg (D)We now present some intuition behind the mapping Rttwd. The mapping is similar tothe re�nement mapping Rtd presented in Chapter 7. Most of the equations in the mappingare straightforward. The interesting cases are for u:q-statcs(k); u:q-statsc(l), u:queuecs(k),and u:queuesc(l).There are four sets of states of T T CPh for which we want u:q-statcs(k) to be live, in260



the corresponding set of states of WDp. These sets are not disjoint. The �rst set of statesoccurs when the client opens and assigns idc the value k. This corresponds to the situationwhere the client �rst opens in WDp and chooses k from CID and makes the queue indexedby k live. This is before k is paired with any isns value and added to estb-cc or pairedwith itself and added to assoc. Once k has been paired with itself and added to assoc; thatis, (k; k) 2 assoc, then if the client still has id c = k, it may still send data for incarnationk, or if the server has id s = k, it may still receive data for this incarnation. Therefore,in this situation the abstract queue is still live if id c = k _ ids = k. The third set ofstates occur when (k; s:isns) 2 s:estb-cc ^ k = s:cc rcvd , this condition may be true forthe second set of states, but there are cases where this condition is true and the second isnot and vice versa. This set of states represents the situation where the second phase of thethree-way handshake has been successful, and the server may accept data from the client,even if s:id c 6= k. The fourth set of states are states where the client sends a SYN segmentfor TAO (k 2 sent-tao-cc), but the segment has not yet been received ((k; k) 62 assoc). Thedata on the abstract queues in this situation may or may not be deliverable.The conditions for u:q-statsc(l) to be live are much simpler. They are the symmetricsituation to the �rst two set of cases for u:q-stat cs(k). That is, when the server �rst assignsid s the value l, or if l is paired with the current id of the client. We have these simplerconditions because the server can only send messages for incarnation l if it has id c = l, andthe client only accepts data for this incarnation if (s:id c; l) 2 s:assoc.For u:queuecs(k), there are �ve cases for the mapping of variables of T T CPh to thisvariable. The �rst case corresponds to the states that map the status of the abstract queueto dead, or if the server has crash or reset, and the client has also crashed or reset or isclosed after the crash or reset, or has reopened after the crash or reset (id c 6= k). For thiscase we want the abstract queue to be empty.The second case, (B), corresponds to two di�erent sets of states. The �rst set of statesoccurs when the client has just open and its idc value is not part of an assoc or estb-cc pair.In this situation, the abstract queue corresponds to just send bu�er of the client, and thecurrent message the client might be sending. The second set of states where the abstractqueue again corresponds to the concatenation of cur-msgc and (send-buf c�ok) occurs when261



the server crashes or resets after id s was paired with id c, or its isns value was paired withid c. In this situation, any part of the abstract queue that is represented by variables at theserver are no longer deliverable, so these variables are lost. Thus, the abstract queue is onlyrepresent by the variables at the client. This is the situation where cur-msgc may go frombeing empty to having a message after the server crashes or resets that we discussed in thepresentation on the cur-msgc derived variable in Section 10.2.2.Case (C) is the normal message delivery situation. That is, the client has not crashed,reset or closed since it opened and assigned id c value k for the incarnation, so (s:idc =k) ^ s:modec 62 frec; resetg. Also the client has formed an association pair with the idof the server, (k; s:ids) 2 s:assoc, or is about form such a pair, (k; s:isns) 2 s:estb-cc, andthe server has not crashed or reset. For this situation, data that corresponds to parts ofthe abstract queue may be in the temp-data , the receive bu�er at the server, msgc, andthe send bu�er of the client. If the server crashes or resets in this situation, the mappingreverts to case (B). If the client crashes or resets, we get case (D).For case (D), since the client has crashed or reset after being in case (C), the parts of theabstract queue that corresponded to variables on the client side are lost. However, the msgcvariable in cur-msg c may be on a segment on the channel that might still get delivered.This message is data(p-triplec(k)). However, because there is a possibility it might not bedelivered, it is paired with marked.The �fth and �nal case, (E), is the set of states where a crash or reset occurs whileT T CPh is in the �rst set of states of case (B). This is also the situation where we getmultiple possible triple variables for di�erent incarnations that may be delivered to theserver. These queues contain at most one element, and it is marked because it may not getdelivered.The four cases for the mapping to u:queuesc(l) are basically the symmetric counterpartsto the �rst four cases for the the mapping to u:queuecs(k). The fact that the conditionsare simpler reect the fact the conditions for u:queuesc(l) being live are simpler than theconditions for u:queuecs(k) being live. They also reect the fact and that there is notemporary data on the client side, and that there is only a one possible triple variable inany given state. 262



10.4.2 Simulation of stepsIn this section we prove that the mapping Rttwd de�ned in the previous section is indeed atimed re�nement mapping from T T CPh toWDp with respect to IWD and ITT . This claimis stated as the following lemma.Lemma 10.3T T CPh �tR WDp via Rttwd.Proof: We prove this lemma by showing that the two cases of De�nition 3.11 are satis�ed.Base CaseIn the start state s0 of T T CPh we have s0:modec = s0:modes = closed, s0:now = 0, ands0:assoc = ;. It is clear that Rttwd(s0) is the unique start state u0 of WDp.Inductive CaseAssume (s; a; s0) 2 Steps(T T CPh). Below we consider cases based on a and for each casewe de�ne a �nite execution fragment � of S such that fstate(�) = Rttwd(s), lstate(�) =Rttwd(s0), and t-trace(�) = t-trace(s; a; s0). For the steps of the proof below we do notinclude the time of occurrence and last time in the timed traces of (s; a; s0) or �, so asnot to clutter the proof. However, it is clear that since the time-passage steps in WDpare arbitrary, if we show trace(�) = trace(s; a; s0) then t-trace(�) = t-trace(s; a; s0). Weuse u and u0 to denote Rttwd(s) and Rttwd(s0) respectively. We do not show the proof ofcorrespondence for every action a of T T CPh becasue some of proofs are very similar to theproofs of correspondence for similar actions of T CPh presented in Chapter 7, and othersare very similar to the proofs of some to the steps we do show. We focus on the steps thathave proofs of correspondence that depend on features of speci�cation WD that di�er fromspeci�cation D.send-msgc(open, m, close), a = passive-open, and a = send-msgc(open, m, close).The proof of correspondence for these steps is straightforward, and is similar to the proofof correspondence for the same steps in the proof of Lemma 7.1.a = send-segcs(SYN, cc send, snc, msgc).The proof of correspondence for this step is straightforward.263



a = receive-segcs(SYN, cc send, snc, msgc).Let p be the segment received in this step, and let cc send(p) = k. We have two casesbased on whether s:modes = listen or not. If s:modes 6= listen then a has no e�ect onthe state of the server. Therefore, the corresonding timed execution fragment � of WDpis (u; �; u0) the empty step. If s:modes = listen then there are two subcases based onwhether k > cache cc.1. If k > cache cc then � = (u, choose-server-id(j), u000, make-assoc(i,j), u00, dropc(I,J, h, l), u0) where both i and j are equal to k, and u00, dropc(I, J, h, l), u0) rep-resents a sequence of steps. The sequence of steps is of the form u000, dropc(I, J, h,l), u00, dropc(I', J', h', l'), : : : , u'). There is a dropc action for every h such thath < k, (h; h) 62 s:assoc, and s:p-triplec(h) 6= ;. For each h, the corresponding I= dom(queuecs(h), J = ;, and l :2 n. The drop action is enabled for these queuesbecause queues only contain one element, and the element is marked.Both �, and (s; a; s0) have the empty trace. We need to show that � is enabledin state u. Since s:modes = listen, we know that u:choose-sid = true, so thechoose-server-id(j) action is enabled in state u. By Invariant 10.8 we know that ink 2 s:used-idc [ fs:crash-idcg, so in the corresponding state u, i 2 u:used-idc [fu:crash-idcg. After the choose-server-id(j) action we know j 2 u00:used-ids. FromInvariant 10.11 we know that in state u00, 8 x (i; x) 62 u00:assoc ^8 y (y; j) 62 u00:assoc.Therefore the make-assoc(i,j) action is enabled. We now need to show that u0 is thecorrect corresponding state. For most variables it is clear that we get the correctcorrespondence. The interesting case is for u0:queuecs(k) if msg(p) 6= null. Since byInvariant 10.9 we know that in state s, (k; s:isns) 62 s:estb-cc ^ (k; s:ids) 62 s:assoc,we know that u:queuecs(k) falls into either case (B) or (E) of the mapping to abstractqueues. After step (s; a; s0) the rule for the mapping changes from either (B) to (C)or (E) to (D). For either case, since � does not change the abstract queues, we needto show that u:queuecs(k) = u0:queuecs(k), as de�ned by the Rttwd. For the stateswhere u:queuecs(k) �ts into case (B), we know that s:idc = k. Since s:rcv-buf s = �,s0:rcv-buf s = s:rcv-buf s�msg(p), and s:temp-data = s0:temp-data = null, to showthat u:queuecs(k) = u0:queuecs(k), we need to show that msg(p) = s:cur-msgc and264



that s0:cur-msgc = �. Since after this step, we know s0:ccsend = s0:cache cc and byInvariant 10.26 we know that s:snc = sn(p); thus, s0:snc < s0:acks, so s0:cur-msgc = �.Invariant 10.21 tells us that if s:msgc 6= null and sn(p) = s:snc, then msg(p) = s:msgc.For the states where u:queuecs(k) �ts into case (E), after step (s; a; s0), since (k; k) 2s0:assoc, we know that s0:p-triplec(k) = ;, and since s:rcv-buf s = �, s0:rcv-buf s =s:rcv-buf s�msg(p), and s:temp-data = s0:temp-data = null, we clearly have u:queuecs(k) =u0:queuecs(k) for this case. For u:queuecs(h) where h < k, that also �ts into case (E),after (s; a; s0), s0:p-triplec(h) = ;. Since the single element in these queues is droppedafter step �, the mapping is preserved.2. If k � cache cc then � = (u, dropc(I, J, h,l), u0) . For this case, after step (s; a; s0),s0:modec = syn-rcvd, cache cc = 1, and s0:temp-data = msg(p). Again u00, dropc(I,J, h, l), u0) represents a sequence of steps. There is a dropc action for every hsuch that (h; h) 62 s:assoc, and s:p-triplec(h) 6= ;. For each h, the corresponding I= dom(queuecs(h), J = ;, and l :2 n. The drop action is enabled for these queuesbecause the queues only contain one element, and that element is marked. If msg(p) 6=null, then this change may a�ect the mapping to u:queuecs(i), where s:idc = i.However, from Invariant 10.9 we know (i; s:isns) 62 s:estb-cc, so the mapping is nota�ected.a = send-segsc(SYN, cc rcvd, sns, acks).The proof of correspondence for this step is straightforward.a = receive-segsc(SYN, cc rcvd, sns, acks).For this step the the corresponding � = (u; �; u0). Let the received segment be p. Ifs:modec 2 fsyn-sent; syn-sent*g, cc rcvd(p) = s:cc send , and ack(p) = s:snc + 1, thisstep changes modec to estb or fin-wait-1, and ackc to sn(p) + 1. It also assigns msgcto null, and adds (id c; sn(p)) to estb-cc. These changes a�ect the mapping to queuecs(k),where k = id c, because after the these changes, we may have case (C) of the mapping,where in state s, we have the �rst set of states of case (B). We only have the �rst set ofstates for case (B) because from Invariant 10.11 we know that s:id c is not yet part of anassociation pair nor is it part of an estb-cc pair. To show that the mapping is preserved after265



� and a, we need to show that u:queuecs(k) = u0:queuecs(k). Since s0:msgc = null we knows0:cur-msgc is empty, so to show u:queuecs(k) = u0:queuecs(k) it is su�cient to show thats0:rcv-buf s is empty, and that if s:temp-msgc is not empty, then s:msgc = s0:temp-data . If wedo have case (C) of the mapping to queuecs(k) then by Invariant 10.14 we know s0:modes =syn-rcvd. If s0:modes = syn-rcvd, then Invariant 10.10 tells us that s0:rcv-buf s = �. FromInvariant 10.17 we know that s:msgc = s:temp-data , and since temp-data does not changein this step, we know s:msgc = s0:temp-data . Thus, u:queuecs(k) = u0:queuecs(k).a = prepare-msgc.The proof of correspondence of actions can be shown in much the same way as was for thesame action in Th.a = prepare-msgs.The proof of correspondence of actions can be shown in much the same way as was for thesame action in Th.a = send-segsc(SYN, cc rcvd, sns, acks, msgs).The proof of correspondence for this step is straightforward.a = receive-segsc(SYN, cc rcvd, sns, acks, msgs).Let p be the received segment, and let cc rcvd(p) = k. For this step we have two cases.1. The �rst case occurs if s:modec 2 fsyn-sent; syn-sent*g, s:msgc 6= null, andcc rcvd(p) = s:cc send , and state s is in the second set of states for case (B) ofthe mapping to u:queuecs(k). That is, if (k; k) 2 s:assoc ^ (s:id s 6= k _ s:modes 2frec; resetg). For this case � = (u, drops(I, J, l, k), u0), were I = ;, J = f1g, andl :2 N. Step (s; a; s0) changes modec to estb or fin-wait-1, ackc to sn(p) + 1, andmsgc to null. Thus, cur-msgc goes from being (msgc; marked) to being the emptyqueue. However, since in �, the �rst element of u:queuecs(k) gets dropped, we get theright corresponding state. If msg(p) 6= null, then, s0:rcv-buf c = s:rcv-buf c�msg(p).This change may a�ect case (D) of the mapping to u:queuesc(k). Since this queuedoes not change in step �, we need to show that in state u0 as de�ned by Rttwd,u0:queuesc(k) = u:queuesc(k). This is easy to see, because by de�nition of s:p-triples,msg(p) = data(s:p-triples). Also by de�nition and Invariant 10.30, since s0:modec 2266



festb; fin-wait-1g and s0:ackc = sn(p) + 1, s0:p-triples = �. Thus, u0:queuesc(k) =u:queuesc(k).2. The second case is for all other states. For these states the corresponding � = (u; �; u0).Thus, if state s is not in the set of states of case one, then we know s:id s = k. Ifs:modec 2 fsyn-sent; syn-sent*g, cc rcvd(p) = s:cc send , then this step changesmodec to estb or fin-wait-1, ackc to sn(p) + 1, and msgc to null, and if msg(p) 6=null it gets concatenated to the end of rcv-buf c. From Invariant 10.12 we knowthat for these states, (k; k) 2 s:assoc. We also know that if we are not in the setof states for case one, then s:id s = k. Therefore, we have case (C) of the mappingto u:queuesc(k). Invariant 10.26 tells us that sns = sn(p). Therefore, the change ofacks means s:cur-msgs is (s:msgs, ok) and s0:cur-msgs is empty. Invariant 10.21 tellsus that if s:msgs 6= null and sn(p) = s:sns, then msg(p) = s:msgs. Therefore, sinces0:rcv-buf s = s:rcv-buf s�msg(p), u:queuesc(k) = u0:queuesc(k). The change of msgc tonull in this step may also a�ect the mapping to u:queuecs(k) for case (C), since itmay a�ect cur-msgc. However, for states other than the set of states of case one of thisproof of correspondence, we know by Invariant 10.25 that s:acks � ack(p). Therefore,since ack(p) = s:sns + 1, we know that s:cur-msgc = �. Thus, the change of msgc tonull does not a�ect the mapping for this queue.a = send-segcs(cc send, snc, ackc, msgc).The proof of correspondence for this step is straightforward.a = receive-segcs(cc send, snc, ackc, msgc).Let p be the segment received in this action, and let cc send(p) = k. We have several cases.1. The �rst case is if s:modes = rec _ (s:modes = syn-rcvd ^(cc send(p) 6= s:cc rcvd _s:ackc 6= s:sns+ 1))_ s:modes 2 fclosed; listeng . For this case the corresponding� is the empty step. It is easy to see that we get the correct correspondence of states.2. Case two occurs if s:modes = syn-rcvd, ack(p) = s:sns+1, and (k; k) 62 s:assoc, thenthe corresponding � of WDp is (u, choose-server-id(j), u00, make-assoc(i,j), u0) whereboth i and j are equal to k. This case is similar to case two of of the step with a267



= receive-segcs(SYN, cc send, snc, ackc, msgc). From Invariant 10.10 we know thatfor this case s:msgs = null, so cur-msgs is not a�ected by this step for this case.Thus, the interesting part of the proof of correspondence is show that u:queuecs(k) =u0:queuecs(k), as de�ned by the Rttwd. The mapping for this queue is a�ected ifs:temp-data 6= null and/or sn(p) = s:acks. If s:temp-data 6= null, it is concatenatedto s:rcv-buf s and then assigned null. If sn(p) = s:acks then msg(p) is concatenated tos:rcv-buf s and acks is incremented. These changes a�ect the mapping of u:queuecs(k)for cases, (C) and (D). Cases (A), (B) and (E) do not apply here because we know byInvariant 10.12 that (k; isns) 2 estb-cc.For case (C), if s:temp-data 6= null and sn(p) 6= s:acks, it is easy to see that themapping is preserved, because from Invariant 10.10 we know that s:rcv-buf s = �.Therefore, since for this stituation s:temp-data is concatenated to s:rcv-buf s, and thenassigned null, we get the correct mapping. If sn(p) = s:acks, then since s0:acks =s:acks+1, s:cur-msgc could go from being (s:msgc; ok) to being empty. It is easy to seethat s:temp-msg is handled in the right way whether it is empty or not. If we are in case(C), then s:id c = k. Invariant 10.26 tells us that snc = sn(p). Therefore, the changeof acks means s:cur-msgc is (s:msgc, ok) and s0:cur-msgc is empty. Invariant 10.21tells us that if s:msgc 6= null and sn(p) = s:snc, then msg(p) = s:msgc. Therefore,since s0:rcv-buf s = s:rcv-buf s�msg(p), u:queuecs(k) = u0:queuecs(k).For case (D), Invariant 10.30 tells us that there are no other segments on the channelthat has sequence number greater than sn(p). Therefore, the change in ack s meanss:p-triplec(k) is f(k;msg(p); sn(p))g and s0:p-triplec(k) is the empty set. However,as for case (C), since s0:rcv-buf s = s:rcv-buf s�msg(p) and Invariant 10.22 tells usthat any segment with sequence number sn(p) and connection count k must havethe same message or the message is null. However, Invariant 10.23 tells us that anysegment with sequence number sn(p) has a message that is not null, so u:queuecs(k) =u0:queuecs(k).3. The third case is the same as the second case except with (k; k) 2 s:assoc. For thiscase � = (u, choose-server-id(j), u0). The proof of correspondence is essentially the268



same as for case two.4. The fourth case occurs if s:modes 2 flast-ack; last-ack*g and ack(p) = sns + 1.We futher divide this case into two subcases.(a) The �rst subcase occurs if (s:msgs = null _ (s:modec 62 frec; resetg ^ s:id c =s:ids). This condition means that either s:cur-msgs = �, or the second set ofstates for case (B) of the mapping to u:queuesc is not include in this subcase.The reason why be have the two subcases becomes clear when we discuss thesecond subcase, which is de�ned by the negation of the condition that de�nesthis subcase. For this subcase � is (u, set-nils, u0). Clearly a and � both havethe empty trace. We must show that set-nils is enabled in state u ofWDp. Sinces:modes 2 flast-ack; last-ack*g, from our mapping we know u:ids 6= nil, andfrom Invariant 10.15 we know that u:modes = inactive. The third part of theprecondition requires that 9 i s.t. (i; u:ids) 2 u:assoc. From Invariant 10.8 weknow s:id s = s:cc rcvd , and from Invariant 10.12 we know that since s:modes 2flast-ack; last-ack*g and k = cc rcvd , then (k; s:ids) 2 s:assoc, so that partof the precondition holds for the corresponding state u.The fourth part of the precondition requires u:queuecs(k) to be empty. We onlyneed to show this for cases (C) and (D) of the mapping to u:queuecs(k) becausewe know that (k; s:ids) 2 s:assoc, which rules out cases (A) and (E). FromInvariant 10.12 we know from that if there exists j, such that (k; j) 2 s:estb-cc,then j = s:isns, which along with the fact that (k; s:ids) 2 s:assoc and s:modes 2flast-ack; last-ack*g, rules out case (B).We �rst examine case (C). Recall that the states for this case are states where(s:idc = k) ^ (s:modec 62 frec; resetg) ^ ((k; s:isns) 2 s:estb-cc _ (k; s:ids) 2s:assoc)) ^ (s:modes 62 frec; resetg). To show that this queue is empty,we need to show that s:send-buf c, s:cur-msgc, s:rcv-buf s, and s:temp-msg areall empty. Invariant 10.10 tells us that s:temp-msg is empty. If s:modes =last-ack, and u:queuecs(k) is de�ned for case (C) then Invariant 10.27 tells usthat s:modec 2 fsyn-sent*, fin-wait-1, fin-wait-2, closing, timed-wait,269



last-ackg, which coupled with Invariant 10.15 means s:send-buf c is empty.From Invariant 10.28 we know that that s:snc < s:acks, which means s:cur-msg cis empty. Finally, Invariant 10.31 indicates that s:rcv-buf s is empty. Therefore,u:queuecs(k) is empty.Case (D) of the mapping to u:queuecs(i) occurs when (s:idc 6= k _ s:modec 2frec; resetg) ^ ((k; s:isns) 2 s:estb-cc _ (k; s:ids) 2 s:assoc) ^ (s:modes 62frec; resetg) . To show that this queue is empty, we need to show that s:tmsg,s:p-triplec(k) and s:rcv-buf s are empty. From Invariant 10.10we know s:temp-msgis empty. From Invariant 10.29 we that for all segments q 2 s:in-transitcs,sn(q) < s:acks which means s:p-triplec(i) is empty, and from Invariant 10.32we know that s:rcv-buf s is also empty.The �fth and �nal part of the precondition for the set-nils action in WDp statesthat (u:modec = inactive _ u:idc 6= i). From Invariant 10.33 we know thiscondition is true in state u.After step (s; a; s0), s0:modes = closed, and after �, u0:id c = nil. Therefore,the mapping is preserved for this variable. If u:q-statsc = live and u:idc 6= ithen u0:queuesc(u:id s) = � and u0:q-statsc = dead. These values are the correctcorresponding values as de�ned by Rttwd. For this case, after step (s; a; s0),s0:modes = closed, s0:acks, s0:msgs and s0:send-buf s are all unde�ned. Sincewe know from Invariant 10.12 that (s:ids; s:ids) 2 s:assoc, only cases (B) and(C) for the mapping to of u:queuesc(l), where if s:id s = l may be a�ected.However, condition (s:msgs = null _ (s:modec 62 frec; resetg ^ s:idc = s:id s)which we assume holds for this subcase means that if we have case (B) thens:cur-msgs = �. After this step u0:queuesc(l) falls under case (A) which meansit should be empty. From Invariant 10.15 we know s:send-buf s = �, so makingthe bu�er unde�ned in state s0 does not a�ect the mapping to queuesc(l) for thiscase. Also since s:cur-msgs = � we know u0:queuesc(l) is empty. For case (C)of the mapping, after the step we have case (D). We know from Invariant 10.15that s:send-buf s = �. From Invariant 10.24 we know that ackc � ack(p), andsince ack(p) = s:sns + 1, we know that for case (C) of the mapping u:queuesc(l),270



s:cur-msgs = �. Thus, in order to show that the mapping is preserved after(s; a; s0) for this situation, we only need to show that s0:p-triples is empty. Sinceack(p) = s:sns + 1 and from Invariant 10.24 we know that ackc � ack(p) andfrom Invariant 10.7 we know that for all p 2 in-transitsc sns � sn(p), we knows0:p-triples is the empty set, so the mapping to queuesc(l) is preseverved for thiscase.(b) The second subcase occurs when (s:msgs 6= null ^ (s:modec 2 frec; resetg _s:idc 6= s:id s). For this subcase � is (u, drops(I, J, l,k), u00, set-nils, u0). Theproof of correspondence for this subcase is exactly the same as the proof of cor-respondence for the previous subcase, except in how we show that the mappingis preserved for case (B) for the mapping to u:queuesc(l). For case (B) the con-ditions for this subcase de�ne a situation where s:cur-msgs = (s:msgs; marked).Thus, for this subcase I = ;, J = f1g, and k is any arbitrary element of N.We know the drops(I, J, l, k) action is enabled in state u, because s:cur-msg scorresponds to the �rst element of u:queuesc(l), and it is marked. From Invari-ant 10.15 we know s:send-buf s = �, so after �, u0:queuesc(l) is empty, which isthe correct state as de�ned by Rttwd.5. The �fth and �nal case is for all other states s. Like the previous case, we also dividethis case into two subcases based on whether ack(p) = s:sns + 1 ^ s:cur-msg s =(s:msgs; marked) or not. If ack(p) = s:sns + 1, we know by Invariant 10.24 thats:ackc > s:sns. We also know by Invariant 10.13 that if s:cc send = s:cc rcvd thens:modec 62 fsyn-sent, syn-sent*g. Therefore, by de�nition, s:cur-msg s = �, ors:cur-msgs = (s:msgs; marked).(a) For the �rst subcase ack(p) 6= s:sns+1_ s:cur-msg s 6= (s:msgs; marked). For thissubcase the corresponding � = (u; �; u0). For this case, acks and rcv-buf s maychange as in case two, except we know from Invariant 10.10 that temp-data =null. Also modes may change from fin-wait-1 or fin-wait1* to fin-wait-2,or from closing or closing* to timed-wait. The proof that the mapping foru:queuecs(k) is preserved is the same as case two, and the possible changes to271



modes in T T CPh do not a�ect its mapping to modes in WDp.(b) For the second subcase ack(p) = s:sns + 1 ^ s:cur-msgs = (s:msgs; marked).For this subcase � = (u, drops(I, J, l,k), u0). Here I = ;, J = f1g, and k isany arbitrary element of N. We know the drops(I, J, l, k) action is enabled instate u, because s:cur-msgs corresponds to the �rst element of u:queuesc(l), andit is marked. The proof of correspondence is like the previous subcase, but forthis subcase u:queuesc(l) is a�ected by the step since msgs becomes null, whichmeans s0:cur-msgs = �. However, the fact that it is dropped by step � preservesthe mapping.a = send-segsc(cc rcvd, sns, acks, msgs).The proof of correspondence for this step is straightforward.a = receive-segsc(cc rcvd, sns, acks, msgs).Let p be the segment received in this action, and let cc rcvd(p) = l. This step is not quitesymmetric to the step with a = receive-segcs(cc send, snc, ackc, msgc), because the clientis not assigned an id c value in this step, nor is a pair added to assoc in this step. However,the e�ect on the mapping of the queues when a valid message is received, and when thissegment causes the client to close, is basically symmetric to the situtations on the serverside when the receive-segcs(cc send, snc, ackc, msgc) action causes a valid message to bedelivered or the server to close. For this step we break the proof of correspondence into twocases.1. The �rst case occurs when s:cc send = cc rcvd(p), s:modec = last-ack and ack(p) =snc + 1. As for the symmetric step, we break this case into two subcases, base onwhere s:cur-msgc = (msgc; marked) or not.(a) For the subcase where s:cur-msgc 6= (msgc; marked), � = (u, set-nilc, u0). Clearlya and � both have the empty trace. We must show that set-nilc is enabled instate u of WDp. The only part of showing that this action is enabled in stateu that is not symmetric to the case for the symmetric action is in showing thatu:queuesc(l) is empty. We only have to show u:queuesc(l) = � for cases (C) and272



(D). For case (C) we have to show that s:send-buf s, s:cur-msgs, and s:rcv-buf care all empty. From Invariants 10.27 and 10.15 we know s:send-buf s is empty.From Invariant 10.28 we know that that s:sns < s:ackc, which means s:cur-msg sis empty. Finally, Invariant 10.31 indicates that s:rcv-buf c is empty. Therefore,u:queuesc(l) is empty. For case (D) of the mapping to u:queuesc(l), we knowfrom Invariant 10.29 that for all segments q 2 s:in-transitsc, sn(q) < s:ackc whichmeans s:p-triples is empty, and from Invariant 10.32 we know that s:rcv-buf c isalso empty.To show that after step (s; a; s0) and � we get the correct corresponding states canbe shown in a symmetric manner to the symmetric case, except that in showings:acks � ack(p) for p 2 in-transitsc, is not symmetric to showing s:ackc � ack(p)for p 2 in-transitcs. We need to show s:acks � ack(p) for the set of states wherecase (C) of the mapping to u:queuecs(k) goes to case (D) after the step. For theset of states where we have case (C) of the mapping for this queue, Invariant 10.25tells us that s:acks � ack(p).(b) For this second subcase s:cur-msgc = (msgc; marked). For this subcase � = (u,dropc(I, J, k, l), u00, set-nilc, u0). Here I = ;, J = f1g, and l is any arbitraryelement of N. The proof of correspondence for this subcase is the same as theprevious subcase, except that dropc(I, J, k, l) action ensures that we get thecorrect corresponding state for u0:queuecs(k).2. The second case is for all other states. We divide these states into two subcases baseswhether cc rcvd(p) = s:cc send ^ ack(p) = s:snc+1^ s:cur-msgc = (s:msgc; marked)or not.(a) For the subcase where the condition is false, � = (u; �; u0). This subcaseis interesting if s:modec 62 fclosed, syn-sent, syn-sent*, rec, resetg, andcc rcvd(p) = s:cc send ^ sn(p) = s:ackc, because msg(p) gets concatenated tos:rcv-buf c and ackc gets incremented in this situation. These assignments a�ectthe mapping for cases (C) and (D) of u:queuesc(l), where l = cc rcvd(p), whichwe know by Invariant 10.8 is also equal to s:id c. The other two cases are not273



a�ected because we know by Invariant 10.12 we know that (l; l) 2 s:assoc.For case (C), the fact that ackc gets incremented may cause s:cur-msgs could gofrom being (s:msgs; ok) to being empty. However, Invariant 10.26 tells us thatsnc = sn(p). Therefore, the change of ackc means s:cur-msgs is (s:msgs, ok) ands0:cur-msgs is empty. Invariant 10.21 tells us that if s:msgs 6= null and sn(p) =s:sns, then msg(p) = s:msgs. Therefore, since s0:rcv-buf c = s:rcv-buf c�msg(p),u:queuesc(l) = u0:queuesc(l).For case (D) of the mapping, Invariant 10.30 tells us that there are no othersegments on the channel that has sequence number greater than sn(p). Therefore,the change in ack c means s:p-triples is f(k;msg(p); sn(p))g and s0:p-triples(k) isthe empty set. However, as for case (C), since s0:rcv-buf c = s:rcv-buf c�msg(p)and Invariant 10.22 tells us that any segment with sequence number sn(p) andconnection count l must have the same message or the message is null. However,Invariant 10.23 tells us that any segment with sequence number sn(p) has amessage that is not null, so u:queuesc(l) = u0:queuesc(l).(b) For the case where the condition is true, � = (u, dropc(I, J, k, l), u0). HereI = ;, J = f1g, and l is any arbitrary element of N. The proof of correspondencefor this subcase is the same as the previous subcase, except that dropc(I, J, k, l)action ensures that we get the correct corresponding state for u0:queuecs(k).a = send-segcs(cc send, snc, ackc, msgc, FIN).The proof of correspondence for this step is straightforward.a = receive-segcs(cc send, snc, ackc, msgc, FIN).The proof of correspondence for this step is basically the same as cases one, two, three, and�ve of the step with a = receive-segcs(cc send, snc, ackc, msgc).a = send-segsc(cc rcvd, sns, acks, msgs, FIN).The proof of correspondence for this step is straightforward.a = receive-segcs(cc rcvd, sns, acks, msgs, FIN).The proof of correspondence for this step is basically the same as cases one, two, and fourof the step with a = receive-segcs(cc rcvd, sns, acks, msgs)274



a = receive-msgc(m).The proof of correspondence for this step is basically the same as the proof of correspondencefor the same step in T CPh.a = receive-msgs(m).The proof of correspondence for this step is basically the same as the proof of correspondencefor the same step in T CPh.a = crashc.The corresponding � in WDp is the following sequence of steps (u, crashc, u000, markc(I,J, j), u00, dropc(I 0; J 0; k; l), u0). Clearly, � has the same trace as a since crashc is the onlyexternal action in the sequence.First we show that this sequence of steps is enabled in WDp. After crashc, recc is true,so markc(I, J, j) is enabled, and dropc(I 0; J 0; k; l) is enabled if I 0; J 0; k and l are de�nedcorrectly. We de�ne I; J; I 0; J 0; j; k, and l below and show that Rttwd(s0) is indeed the stateu0 we get after the sequence of steps �.The changes in state caused by step (s; a; s0) is that s0:modec = rec, s0:crash-id c =s:id c, and s0:used-idc = s:used-idc n s:id c. After � in WDp, we have u0:modec = rec,u0:crash-idc = u:id c, u0:used-idc = u:used-idc n u:id c. It is clear that the mapping is pre-served for u0:modec; u0:used-idc , and u0:crash-id c. The interesting part of the proof of cor-respondence lies in showing the mapping is preserved for u0:queuecs(i) and for u0:queuesc(j)if there exists j such that (u:idc; j) 2 u:assoc and u:q-statsc(j) = live. If there is no suchj, then j 2 N, J and J 0 is equal to the empty set, and l 2 N. Now assume there is sucha j. We examine the correspondence of u0:queuecs(u:id c) and u0:queuesc(j) separately. Wecan separate the examination of these variables because e�ect of the markc(I, J, j) anddropc(I 0; J 0; k; l) actions on the queues are independent.We start with u0:queuecs(i). For this variable the proof of correspondence is similar tothe proof present in Chapter 7 for this variable and this step in the proof of Lemma 7.1.1. The �rst case is for cases (A), (D), and (E) of the mapping to u:queuecs(i). For thesecases I = I 0 = ; and k = i, so � does not change u:queuecs(i). The correspondence ofstates is preserved because step (s; a; s0) does not a�ect the mapping for these queues.275



2. The second case is for case (B) of the mapping to u:queuecs(i) if ((k; j) 2 s:estb-cc ^(s:isns 6= j _ s:modes 2 frec; resetg)) _ ((k; k) 2 s:assoc ^ (s:id s 6= k_ s:modes 2frec; resetg)). For this case, after step (s; a; s0), u0:queuecs(i) should be the emptyset. Thus, for this case I = I 0 = dom(u:queue cs(i)), and k = i. We clearly get thecorrect correspondence of states.3. We now examine case (C) of the mapping to u:queuecs(i). If u:queuecs(i) falls undercase (C), after step (s; a; s0), u0:queuecs(i) falls under case (D). We can break this caseinto two subcases based on whether s0:p-triplec(i) is empty or not. For both subcasesi = k. We use the following preliminary de�nition: su�xrb = fijjs:rcv-buf sj < i �maxindex(u:queuecs(i))g. That is, su�xrb is the su�x of u:queuecs(i) that starts withthe element that maps to the �rst element after s:rcv-buf s.(a) If there exists a segment p 2 s:in-transitcs, such that after the crashc action,s0:p-triplec(i) 6= ;. Therefore, I = su�xrb and I 0 = su�xrb=maxindex(su�xrb).I 0 is the su�x of u:queuecs(i) that starts with the element that maps to the secondelement after s:rcv-buf s which is also the �rst element after s0:p-triplec(i). Aftera, we have case (D) of the mapping to queuecs(i), but since � deletes all theelements after s0:p-triplec(i), we get the right corresponding state.(b) Case two occurs for all other states for case (C). That is, states where s0:p-triplec =;. For this case I = I 0 = su�xrb. After � u0:queuecs(i) corresponds to thes0:rcv-buf s. However, this still satis�es the mapping of u0:queuecs(i) for case (D)because s0:p-triplec(i) is empty.Now we examine the case for u0:queuesc(j), where (u:idc; j) 2 u:assoc and u:q-statsc(j) =live. For this variable the mapping is a�ected if we have case (C) or (D) for u0:queuesc(j).1. If we have case (D), then after step (s; a; s0), u0:queuesc(j) should be empty. Forthis case let J = J 0 = dom(u 000:queuesc(j )) and let l = j. Therefore, after �,u0:queuesc(j) = �.2. If u:queuesc(j) is in case (C) of the mapping, then after step (s; a; s0), u0:queuesc(j),is in case (B). We use the following preliminary de�nition: pre�xrb = fij1 � i �276



js:rcv-buf cjg. That is, pre�xrb is the pre�x of u:queuesc(j) that consists of the elementsof s:rcv-buf c. For this case we have two subcases.(a) The �rst subcase occurs if s:cur-msgs = � and s0:cur-msgs = (s0:msgs; ok). Weknow that if u:last-msgc 6= null it is added to the front of u:queuesc(j) in the(u, crashc, u000) step of �. Thus, if u:last-msgc 6= null, u000:queuesc(j) is theconcatenation of s:last-msgc, (s:rcv-buf s � ok), and (s:send-buf s � ok), sinces:cur-msgs = �. For this case J = J 0 = pre�xrb . If s:rcv-buf c = �, then J = ;, sono element of u000:queuesc(j) gets marked or dropped. Since by mapping Rttwdu0:queuesc(j) is the concatenation of s0:cur-msgs and (s0:send-buf s�ok), we needto show that s0:cur-msgs = s:last-msgc. We know this is true by Invariant 10.18.If s:rcv-buf c 6= �, then because an extra element is added to the front of the queuein this situation where u:last-msgc 6= null, pre�xrb is the pre�x of u000:queuesc(j)up to, but not including the last element of s:rcv-buf c. In order to show thatthe mapping is preserved for this scenario, we must show that the last elementof s:rcv-buf c is equal to s0:cur-msgs. Invariant 10.19 tells us that this is true.If u:last-msgc = null, then no element is added to the front of u:queuesc(j)in the (u, crashc, u000) step of �. Therefore, u000:queuesc(j) is the concate-nation of (s:rcv-buf s � ok), and (s:send-buf s � ok). For this case we knowthat s:rcv-buf c 6= �, because of Invariant 10.20. For this situation J = J 0 =pre�xrb n maxindex(pre�xrb), that is J is the pre�x of u000:queuesc(j) up to, butnot including the last element of s:rcv-buf c. Again by Invariant 10.19 we knowthat this element is the same as s0:cur-msgs.(b) The second subcase occurs if s:cur-msgs 6= �, or s0:cur-msgs = �. In the casewhere s0:cur-msgs = �, we know that s:cur-msg s also equals �, because step(s; a; s0) cannot make cur-msgs go from not being empty to being empty. There-fore, for this subcase, whether s:cur-msg s 6= �, or s0:cur-msgs = �. cur-msg sdoes not change after step (s; a; s0), so we need to delete all the elements thatare ahead of s:cur-msgs in the abstract queue. Therefore, if u:last-msgc 6= null,J = J 0 = pre�xrb [ fmaxindex(pre�xrb) + 1g. That is, J includes u:last-msgcand all of s:rcv-buf c. If u:last-msgc = null, then J = J 0 = pre�xrb .277



a = crashs.The proof of correspondence for this step is almost symmetric to the case for a = crashc.The corresponding � = (u, crashs, u000, marks(I, J, j), u00, drops(I 0; J 0; k; l), u0) is symmetric,and the proof of correspondence for u0:queuesc(j) where j = u:ids is essentially symmetricto the case for u0:queuecs(i) where i = u:id c for the a = crashc step. It is in the proofof correspondence for u0:queuecs(i), for this step, where the non-symmetry occurs. Themapping for this queue is a�ected if u:queuecs(i) falls under case (C) or (D) for the mappingof this variable. The non-symmetry comes from the fact that in the mapping for these twocases, includes the temp-msg derived variable and there is no symmetric counterpart foru:queuesc(j). However, the proof of correspondence proceeds in much the same manner.Thus, we have two cases.1. If we have case (D), then after step (s; a; s0), u0:queuecs(i) should be empty. For thiscase let J = J 0 = dom(u 000:queuesc(i)) and let l = i. Therefore, after �, u0:queuecs(i) =�.2. If u:queuecs(i) is in case (C) of the mapping, then after step (s; a; s0), u0:queuecs(i), isin case (B). We can break this case into subcases based on whether s:temp-msg = �or not. If s:temp-msg = �, then the proof of correspondence is symmetric to the casefor u0:queuesc(j) of the step with a = crashc. Therefore, we only show the proof ofcorrespondence for the case where s:temp-msg 6= �. From Invariant 10.10 we knowthat if s:temp-msg 6= � then s:last-msgs = null, so we do not have to worry aboutu:last-msgs getting added to the front of u:queuecs(i). We have two subcases.(a) The �rst subcase occurs if s:cur-msg c = � and s0:cur-msgc = (s0:msgc; marked).For this case J = f1g and J 0 = ;, we know we get the right corresponding statebecause Invariant 10.16 tells us that in this situation s:temp-msg = s0:cur-msgc.(b) The second subcase occurs if s:cur-msgc 6= �, or s0:cur-msgc = �. Since step(s; a; s0) cannot make cur-msgc go from not being empty to being empty, for thissubcase cur-msg c does not change. Thus, we need to delete s:temp-msg from thefront of the queue, so J = J 0 = f1g. This clearly gives the correct correspondingstate. 278



a = recoverc.The proof of correspondence for this step is also very similar proof of correspondence presentin Chapter 7 for this this step of T CPh in the proof of Lemma 7.1The corresponding � of WDp is (u, markc(I, J, j), u000, dropc(I,J,k,l), u00, recoverc, u0).Since only recoverc is external, the traces of a and � are clearly the same. We �rst showthat this sequence of steps is enabled in WDp. The action recoverc is enabled in T T CPh ifs:modec = rec. This state maps to u:rec = true in which case markc(I, J, j) is enabled,and dropc(I,J,k,l) is also enabled. Since neither markc(I, J, j) nor dropc(I,J,k,l) changesu:rec, then recoverc is also enabled. We de�ne I; J; k; l below.After step (s; a; s0), s0:modec = closed and s0:cache cc = 1. This change a�ects themapping for u:recc, u:id c, u:queuecs(i), and u:q-statcs(i), where i = s:idc. After step �,u0:recc = false and u0:idc = nil, so the mapping is preserved for those variables. Sinceu:queuesc(j) is not a�ected by this step, J = ; and j and k are any arbitrary values in N.For u:queuecs(i) the mapping is only a�ected by step (s; a; s0) if state s is in case (B) of themapping to queuecs(i), because case (C) does not hold if s:modec = rec, and for cases (A),(D), and (E) the action does not a�ect the mapping. Therefore, u:queuecs(i) for cases (A),(D), and (E) I = ; and k = i.For case (B) of the mapping to u:queuecs(i), after step (s; a; s0) it is in group (A). LetI = dom(u.queuecs(i)) and k = i. The mapping is preserved because after a, s:send-buf cis deleted and s0:cur-msgc is empty. Finally, to show that the mapping for u:q-statcs(i) ispreserved we note the mapping for this variable is a�ected for two cases. The �rst caseis if i 62 s:estb-cc ^ (i; i) 62 s:assoc then because s:id c = i, u:q-statcs(i) is live. Afterstep (s; a; s0), u0:q-statcs(i) should be dead since s0:id c = nil. For this case u:queuecs(i)is in case (B) of the mapping to abstract queues, so after the mark and drop actionsthis queue is empty. In the (u00; recoverc; u0) step of �, u00:queuecs(i) is empty and for allj, (u00:id c; j) 62 u00:assoc, then u0:q-statcs(i) = dead, so we get the correct correspondingstate. The other case where u:q-statcs(i) is a�ected is if (i; i) 2 s:assoc ^ s:id s 6= i.Again this is a case where u:q-statcs(i) = live and u0:q-statcs(i) should be dead. This isanother case where u:queuecs(i) is in case (B) of the mapping to abstract queues, and againafter the (u00; recoverc; u0) step of �, u0:q-statcs(i) = dead. Therefore, we have the correct279



correspondence of states.a = recovers.This step is essentially symmetric to a = recoverc. Except that because after step (s; a; s0)cache cc = 1, this steps a�ects the mapping for case (E) of u:queuecs(h). Thus, for thisstep � = (u, marks(I, J, j), u0000, drops(I,J,k,l), u000, dropc(I', J', h, l), u00, recovers, u0).Here again u00, dropc(I 0; J 0; h; l); u0) represents a sequence of steps. There is a dropc actionfor every h such that (h; h) 62 s:assoc, and s:p-triplec(h) 6= ;. For each h, the correspondingI 0 = dom(queuecs(h), J 0 = ;, and l :2 n. The drop action is enabled for u:queuecs(h)because the queues only contain one element, and the element is marked. After (s; a; s0),s0:p-triplec(h) = ;. Since the single element in these queues is dropped after step �, themapping is preserved.a = timeoutc.The proof of correspondence for this step is basically the same as case one of the proof ofcorrespondence for the step with a = receive-segsc(cc rcvd, sns, acks, msgs).a = timeouts.The proof of correspondence for this step is basically the same as case four of the proof ofcorrespondence for the step with a = receive-segsc(cc send, snc, ackc, msgc).a = dropcs(p) and a = dropsc(p) (from Chcs(P) and Chsc(P) respectively).The proof of correspondence for these step is basically the same as the proof of correspon-dence for the same step in T CPh.a = duplicatecs(p) and a = duplicatesc(p) (from the Chcs(P) component Chsc(P) respec-tively).The proof of correspondence for these steps is basically the same as the proof of correspon-dence for the same step in T CPh.a = �(t) (time-passage)The corresponding � in WDp is (u; �(t); u0), the time-passage action of the patient WDp.a = send-segsc(RST, acks, rst-seqs).The proof of correspondence for this step is straightforward.280



a = receive-segsc(RST, acks, rst-seqs).The proof of correspondence for this step is basically the same as the proof of correspondencefor the a = crashc step.a = send-segcs(RST, ackc, rst-seqc).The proof of correspondence for this step is straightforward.a = receive-segcs(RST, ackc, rst-seqc).The proof of correspondence for this step is basically the same as the proof of correspondencefor the a = crashs step.a = shut-downc.The proof of correspondence for this step is basically the same as the proof of correspondencefor the a = recoverc step.a = shut-downs.The proof of correspondence for this step is basically the same as the proof of correspondencefor the a = recovers step.This concludes the simulation proof.10.4.3 Proof of trace inclusionWe can now proof that the GTA model of T/TCP, T T CP, implements a patient version ofSpeci�cation WS.Theorem 10.2T T CP vt patient(WS).Proof: From Lemma 10.3 we get that T T CPh �tR WDp, which because of the soundnessof timed re�nement mapping (Theorem 3.6) and the soundness of adding history variables(Theorem 3.9) implies that T T CP vt WDp. From Theorem 10.1 we know WD v WS.Using Embedding Theorem of [31] presented in Chapter 3 we now getWDp vt patient(WS).Thus, we now have T T CP vt WDp and WDp vt patient(WS). Therefore, since the subsetrelation and thus the implements relation is transitive we get T T CP vt patient(WS).281
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Chapter 11An Impossibility Result11.1 IntroductionThe duplicate delivery in T/TCP (presented in Chapter 9) occurs because the TAO mecha-nism bypasses the three-way handshake protocol in an e�ort to achieve e�cient transactions.The observation the the TAO mechanism may cause duplicate delivery lead us to considerwhether any protocol could deliver streams of data reliablely and still have fast transactions,and under what conditions.Shankar and Lee [33] show that some timing assumptions are needed for T/TCP andprotocols that work in the same general manner to provide fast transactions and still deliverdata without duplication. They assume that the protocols use counters. In this chapterwe prove that if the hosts do not have \accurate" clocks it is impossible for any protocolto satisfy our speci�cation and still provide \fast" transactions. We elaborate on whatwe mean by \accurate" clocks, \fast" transactions later in the chapter. In the proof ofthe impossibility result, the hosts are allowed to have in�nite and stable sets of uniqueidenti�ers (UID's), but not counters.T/TCP is designed to be a reliable transport lever protocol that also support e�cienttransactions. An e�cient transaction is one that is completed in round trip time (RTT)plus server processing time (SPT), where RTT is the the time it takes for a packet to makea round trip across the network and SPT is the time the server takes to process the requestand produce a response. In order for a transaction to be completed in this amount of time,283



it is necessary that the client can send a message to the server that can be accepted usingonly one trip across the network.In typical network situations, client and server hosts may have several di�erent connec-tions in parallel. Additionally, there may be di�erent incarnations of the same connection,as the connection is opened closed and then opened again. In order to ensure reliable deliv-ery, hosts maintain some state information for each incarnation of a connection. However,because of the number of connections a host may be involved with, this state informationcannot be maintained forever. Therefore, hosts will periodically quiesce, that is, delete stateinformation associated with a connection. Kleinberg, Attiya, and Lynch in [17] prove trade-o�s between quiesce time and message delivery. They prove that in the absence of crashes,in an asynchronous setting where the client and server both have an in�nite set of uniqueidenti�ers (UID's) and must quiesce, a three-way handshake is necessary to guarantee reli-able message delivery. In an environment where there are crashes, Kleinberg et al. [17] showthat even in a system with synchronized clocks, if the server does not remember the timeof the last crash, then a three-way handshake is necessary for reliable message delivery.Another approach to the design of reliable transport level protocol is to use timer-basedmechanisms. For example, the Delta-t protocol [37] relies on clocks that run at the rateof real time and exploits the knowledge of the maximum segment lifetime (MSL). In thistype of environment, Kleinberg et al. show that either it takes a three-way handshake todeliver a message, or at least the maximum packet lifetime must elapse before quiescence.If the MSL is unknown, then they show that the three-way handshake is required. If theclient and server hosts are assumed to have approximately synchronized clocks, then theprotocol by Liskov, Shrira, and Wroclawski [19] only requires one trip across the networkfor the server to deliver a message from the client, and quiesce time depends on the messagedelivery time.Braden and Clark [8, 7], as we have seen, takes a di�erent approach in there designof T/TCP. Their approach does not rely on approximately synchronized clocks or strictenforcement of MSL. Their approach is based on the idea that some information related toincarnations can be stored inde�nitely and e�ciently in caches when a connection closes,and that the protocol while ensuring e�cient transactions most of the time (when the caches284



have the appropriate state), is allowed to be ine�cient in some situations | typically aftercrashes. T/TCP uses counters, but we know form the work of S�gaard-Andersen et al. [35],that reliable at-most-once delivery can be achieved using just in�nite and stable sets ofUID's. We also know from the work of Shankar and Lee [33], that some timing informationis needed inorder for protocols like T/TCP to have fast transactions and reliable delivery.We know that in T/TCP if a message from the client is successfully delivered by the serverand there has not been a crash since the delivery of this message, then the state of thecaches are appropriated. Therefore, we can weaken the preformance criteria for protocolsthat allow e�cient transactions and reliable data delivery to require the following. If amessage from the client user is successfully delivered by the server and there has not been acrash since the delivery of this message, then the next message from the client to the servershould be delivered in one trip across the network. We want this performance only if theclocks of the client and server are running at the rate of real time. However, since protocolsthat rely only on the fact that the client and server have UID's can guarantee at-most-oncemessage delivery, we want the at-most-once delivery property to hold even when the timingassumptions do not hold.We formally state the properties of the system the protocol should work in and theproperties we want to protocol to exhibit in the next section.11.2 The underlying formal modelIn this section we present the underlying formal model used for the impossibility resultin this chapter. We start with the general timed automaton (GTA) model presented inChapter 2 and make several additions until we get the model we need.11.2.1 The clock GTA modelIn the system we want to model, the client and server have access to local clocks, but arenot able to use real time. However, a GTA A does have access to real time. To get this\local clock" property, we use the clock general timed automaton (CGTA) model of [29].A CGTA, A, is a GTA with a special variable clockA (or just clock if A is clear from the285



context) that has type R�0 and is the local time of that automaton. A CGTA A has thefollowing three axioms.1. clockA changes only with time passage actions (�(t); t 2 R+).2. clockA is monotonically non-decreasing.3. If (s; �(t); s0) is a step then 8 t0 > 0; (s; �(t0); s0) is also a step.The clockA variable is used to model local time which may not be the same as real time.However, we want clockA to be like real time in that it only changes when time changesand it does not go backwards. The �rst two axioms capture these properties. Since clockAis supposed to represent the local time of a process, real time should not a�ect the actionsof the process in any manner. This property is captured by the third axiom. We also referto this property as real time independence.11.2.2 Clock functionsGiven a CGTA A, we may want to specify the values that clockA takes on for a timedexecution fragment. To specify the values we introduce clock functions . These functionstake real time as input and return values for the clockA variable of a CGTA A. A clockfunction cf : R�0 ! R has the following properties:1. It is monotonically non-decreasing.2. It is unbounded.We use clock functions and the �x-clock operator to �x values of clock variables relative toreal time for a timed execution fragment of a CGTA. We de�ne �x-clock below.De�nition 11.1 (�x-clock)Let A be a CGTA and cf be a clock function such that 9 s 2 start(A) such that s:clock =cf (0). Then de�ne �x-clock(A, cf), denoted as Acf , to be the CGTA with a now variablethat gives real time, such that:1. states(Acf ) = f(s; u) j u 2 R�0 ^ s:clock = cf (u)g.286



2. start(Acf ) = f(s; u) 2 states(Acf ) j s 2 start(A) ^ u = 0g.3. (in(Acf ), out(Acf ), int(Acf )) = (in(A),out(A), int(A)).4. steps(Acf ) consists of the steps:(a) f((s; u); �; (s0; u)) j (s; �; s0) 2 steps(A) ^ ((s; u) and (s0; u) 2 states(Acf )) ^ � 2disc(A)g(b) f((s; u); �(t); (s0; u+t)) j (s; �(t); s0) 2 steps(A)^((s; u) and (s0; u+t) 2 states(Acf ))g.�The states of Acf are obtained by pairing each state s of A with the real time such thatthe clock function applied to that real time is the value of clock in state s. The set of startstates of Acf is the set of states of Acf such that the �rst component of each state is anelement of the set of start states of A and the second component is 0. In order for Acfto be a GTA, start(Acf ) must be non-empty and real time must be 0 for every element ofthe set of start states. That is why we have the restriction that the �x-clock operator canonly be applied to a CGTA A and a clock function cf if there exists a start state of A suchthat the value of clock in that start state is equal to cf (0). The third component of Acf ,the partition of the actions, is the same for Acf as it is for A. The �nal component of Acf ,the set of steps, can be partitioned into two sets | steps that have discrete actions andsteps that have time-passage actions. The steps that have a discrete action � are obtainedby taking any step of the form (s; �; s0) 2 steps(A), and having a transition, via �, fromstates of Acf that have s as the �rst component, to states of Acf that have s0 as the �rstcomponent. The second component of the pairs remains the same for both states of Acfbecause discrete actions cannot change the clock variable of A. For time-passage actions,the second component of the states of Acf must change to reect the length of time passage.11.2.3 LivenessThe general timed automaton model is useful for proving safety properties and some livenessproperties. However, for the impossibility result we prove, we need more general livenessproperties than can be handled by the GTA model. In particular, we want the automaton287



to not block time. To get this property we use a model de�ned in [31, 35]. We call it the liveGTA model1 because its �rst component is a GTA. Before we de�ne the live GTA modelwe need some preliminary de�nitions. The reader is referred to [31] for more completede�nitions and more discussions of the model.11.2.4 Timed executionsRecall that in Chapter 2 �nite, admissible, Zeno, and all timed executions of a GTA A,denoted by t-exec�(A), t-exec!(A), t-execZ(A), and t-exec(A) respectively, are de�ned. Alsode�ned in that chapter are �nite, admissible, Zeno, and all timed execution fragments de-noted by t-frag�(A), t-frag!(A), t-fragZ(A), and t-frag(A). We are particularly concernedwith Zeno timed execution fragments because these can block time. Intuitively, Zeno timedexecutions can block time in two ways. The �rst occurs if there are in�nitely many occur-rences of non-time-passage actions, but for which there is a �nite upper bound on the lasttime of the execution fragment. The second occurs if there are �nitely many occurrences ofnon-time-passages actions and in�nitely many time passage actions, but with a �nite upperbound on the last time of the execution fragment.11.2.5 Live GTASince the GTA model allows Zeno timed executions, liveness conditions are needed if we donot want to allow these types of executions. A liveness condition L for a timed automatonA is a subset of the timed execution fragments of A such that any �nite timed executionof A has an extension in L. Formally, L � t-exec(A) such that for all � 2 t-exec�(A) thereexists an �0 2 t-frag(A), such that ���0 2 L.For a live GTA, we want to ensure that the automaton behaves properly independentlyof the behavior of the environment. This property is know as receptiveness and a formalde�nition can be found in [31]. Intuitively, one can think of a game between the timedautomaton and its environment where each has turns to make moves. The moves of theenvironment are input actions the GTA, while the moves of the timed automaton are internaland output actions. A timed automaton is receptive if and only if it has a winning strategy1In [31] the model is called live timed I/O automaton.288



against its environment. A strategy in the timed model is a pair of functions (g; f). Functionf takes a �nite timed execution and decides how the system behaves till its next locally-controlled action under the assumption that no inputs are received in the meantime; functiong decides what state to reach whenever some input is received. A winning strategy doesnot collaborate with its environment to generate a Zeno timed execution. A strategy iscalled Zeno-tolerant if it guarantees that the system never chooses to block time in orderto win its game against the environment. That is, a Zeno-tolerant strategy produces Zenotimed executions only when applied to a Zeno timed environment, but the system does notrespond to Zeno inputs by behaving in a Zeno fashion. Denote by t-execZt(A) the set ofZeno-tolerant timed executions of A. The reader is referred to [31] for all the details.We can now de�ne a live GTA. It is a pair (A;L) where A is a GTA2 and L � t-exec!(A),such that the pair (A;L [ t-execZt(A)) is receptive. This de�nition of the liveness propertyL is more general than is needed for our work. For the work in this chapter we only requireand use the special case where the liveness property L = t-exec!(A). Therefore, for each liveGTA we describe later in this work, the liveness condition is equal to the set of admissibletimed executions of the GTA.In Chapter 3 we de�ned what it means for two GTA's to be compatible, and we alsode�ned the parallel composition operator, k, for compatible GTA's. Two live GTA's (A0; L0)and (A1; L1) are compatible if A0 and A1 are compatible. We would also like to be able toperform parallel composition on compatible live GTA's, and the operation should be closed.That is, if (A0; L0) and (A1; L1) are compatible and (A0; L0)k(A1; L1) = (A;L), then (A;L)should also be a live GTA. In [31] the parallel composition operator is de�ned for live GTA'sand the proof that the operator is closed is also presented there.11.2.6 Live CGTATo get the liveness property we want and local clocks in the model, we combine the CGTAwith the liveness property from the live GTA model to get the live CGTA model. For theproofs later in this work, we need a liveness property that relates admissible timed executionsof live GTA to clock functions. Informally speaking, we want that for every clock function2In [31] A is called safe timed I/O automaton. 289



that can be applied with the �x-clock operator to a CGTA, if the environment is non-Zeno,then there exists a timed execution where the time of the local clock is not blocked. Thisrequirement is captured formally in the following de�nition of live CGTA.De�nition 11.2 (Live CGTA)A live CGTA is a pair (A;L) such that for every clock function cf , (�x-clock(A, cf), L) isa live GTA. �We model the client and server as live CGTA and the channels as live GTA. When wedescribe a particular execution of the system, we apply clock functions to the CGTA to getvalues for clock variables. The parallel composition of the client, channels, and server formsthe system. Because parallel composition of live GTA is closed [31], the resulting composedsystem is also a live GTA.11.2.7 The projection operationBefore we describe the di�erent components of the system, we de�ne the projection oper-ation on timed execution fragments that are from timed automata that are formed by thecomposition of timed automata. Let � be a timed execution fragment of a timed automatonthat is the composition of timed automata, and let A be one of the component timed au-tomata. De�ne the projection of � on A to be the sequence obtained by projecting all statesof the composed system onto those of A and removing actions not belonging to A. We usethe notation, �jA, for the result of this operation. Informally, �jA is automaton A's viewof timed execution fragment �. If �jA di�ers from �0jA only because of the splitting andcombing of time-passage actions, then these are essentially the same views. Recall that inChapter 3 we de�ned what it means for two timed execution fragments to be time-passageequivalent . Later in the chapter we refer to the time passage equivalence of projections oftimed execution fragments.11.2.8 �-SLL-FIFO channelsThe communication channels have the following properties.290



1. Packets3 placed in a channel are delivered in FIFO order.2. Packets are not duplicated.3. There is a maximum packet lifetime � which is an upper bound on how long a packetcan stay on a channel before it is either received or dropped.4. If in�nitely many copies of a packet p get sent on a channel, then in�nitely manycopies of p are received. This property is the strong loss limitation (SLL) property ofchannels given by Lynch in [21].11.2.9 The client and server hostsThe client and server hosts are modeled by live CGTA (C;L) and (S; L0) respectively,where L is the set of admissible timed executions of C and L0 is the set of admissible timedexecutions of S. The CGTA's C and S have the following properties.1. Each has an in�nite and stable set of UID's on which it can perform only the followingoperations:(a) generate() which nondeterministically returns a new UID from the hosts' set ofUID's and removes that id from the set, so it cannot be used again, and(b) same(x,y) which returns true i� x = y, where x and y are UID's.2. In an admissible timed execution where clock values are determined by clock functions,after a crash there is an eventual recovery that returns the crashed host to an initialstate. We assume that the local clock is not a�ect by the crash.Since we are concerned only with the delivery of messages from the client to the server,and for our proofs we need to allow crashes only at the server, we use the following userinterface actions.� send(m) is the input action at the client to send a message m.� deliver(m) is the output action at the server that delivers m.3We use the term \packet" to denote objects sent over the channels by a protocol, and the terms \message"or \data" for user-meaningful data. 291



� crash is the input action that signals a crash at the server.� recover is the output action that indicates the server has recovered from a crash.Additionally, both client and server can place packets on and receive packets from thechannels. For the rest of this chapter of the thesis, when we use the term client and serverwe mean speci�cally the model described in this section.11.3 The problemWe now present a formal de�nition of the problem that T/TCP was designed to solve. Wecall it the at-most-once fast delivery problem.De�nition 11.3 (The at-most-once fast delivery problem)at-most-once, in order delivery Messages from the client user are always delivered atmost once and in the right order. That is, for every execution there exists a functioncause that maps deliver actions to preceding send actions such that:1. For every deliver action �, � and cause(�) have the same message argument.2. cause is one-to-one (at-most-once property).3. For any two deliver events �1 and �2, if �1 precedes �2, then cause(�1) precedescause(�2) (in order property).eventual delivery In an admissible timed execution where clock values are determinedby clock functions the following conditions hold:1. If there are no crashes then all messages are delivered.2. If there are �nitely many crashes, messages sent after the last crash action andthe subsequent recover action are eventually delivered.fast delivery For any admissible timed execution in which there is a deliver(m0) (for anymessage m0) action at the server and the client subsequently receives a send(m) input,if the following conditions hold: 292



1. The clocks of the client and server always (through the whole execution) run atthe rate of real time. That is, the clock function for both the client and theserver is the identity function.2. Both sides are recovered at the time of the deliver(m0) action, and there is nocrash or recover event on either side after it.3. Any packet sent by the client or server after the client receives the send(m) actionfrom the user takes time at most d to arrive at its destination.Then the server performs deliver(m) in time strictly less than 2d after the clientreceives the send(m) input. �Notice that we weaken the delivery requirement from the one trip across the network(d) required for e�cient transactions, to strictly less than 2d. We can weaken the problemstatement in this manner because the key property we need in our proof is that there areexecutions where the client does not receive any packets from the server, after it gets thesend(m) input, before it �nishes sending the packets that cause the message to be deliveredwithin time 2d. We are not requiring quiescence on the part of the server as is the casein the models presented in [17]. However, there are executions in the model where all thepackets sent by the server after the last deliver event and before the send(m) input getdropped from the channel, and any packets sent by the server after the send(m) input takestime d to arrive at the client. In such an execution, even though the server does not quiesce,the client does not receive any packets from the server after it gets the send(m) input andbefore it �nishes sending the packets that cause the message to be delivered within time 2d.11.4 Impossibility of at-most-once fast deliveryWe can now state and prove the impossibility result.Theorem 11.1No system consisting of �-SLL-FIFO channels and client/server hosts can solve the at-most-once fast delivery problem. 293



Proof: In our proof we use the general strategy employed by Kleinberg et al. in [17]. Thatis, we construct executions that behave as required by the problem de�nition, and thenshow that we can construct another execution that is a sort of combination of the previousexecutions, but where the new execution has incorrect behavior.We start by assuming we have a protocol that solves the at-most-once fast deliveryproblem, and show that this assumption leads to a contradiction. Throughout the proofwe mention the real time at which di�erent events occur even though the client and serverdo not have access to real time. The local clocks are clockC and clockS for the client andserver respectively. In an execution, the values for these clocks are determined by the clockfunctions we describe. In all the executions we construct clockC is equal to real time; that is,for all the executions we construct, the clock function of the client is the identity function.The �rst execution we construct, �1, is shown in Figure 11-1. In this execution clockS isalso equal to real time, which means the clock function of the server is the identity function.The client receives a send(m0) input at real time 0. All packets sent by both the client andserver take time d. The parallel composition of the client, the channels, and the server formsthe system. Since each component is a live GTA, we know by the closure result of [31] thatthe composed system is also a live GTA. Therefore, since the environment in execution �1is non-Zeno, we know that �1 is an admissible timed execution. The same argument holdsfor all the subsequent executions we construct in this proof.Since both the client and server are recovered at time 0, �1 is an admissible timedexecution, and there are no crash or recover actions after the send(m0) input, the eventualdelivery property results in the server action deliver(m0). Let clockS = p, which is also realtime p, be the time of this action. For this execution the client and server uses the set ofid's usedids1c and usedids1s respectively.Now we construct a second execution �2 shown in Figure 11-2. Again in this executionclockS is equal to real time. This execution starts out the same as execution �1. Thatis, the client receives a send(m0) input at real time 0, and packets sent by the client andserver starting at time 0 take time d to arrive. However, execution �2 starts to di�er fromexecution �1 after time p�2d on the server side and p�d on the client side. The di�erenceis that packets sent strictly after time p�2d on the server side get dropped from the channel294
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The next execution �5 is shown in Figure 11-5. For parts of this execution clockS runsat the rate of real time and for other parts it runs faster than the rate of real time. Wede�ne the clock function for the server by giving the rate of clockS relative to real timefor di�erent real time intervals. For the real time interval [0; p], clockS runs at the rate ofreal time. In execution �5 the client uses the set of UID's usedids5c and the server uses theset usedids5s. Even though in this execution the id's used by the client and server after thesend(m0) are di�erent from the ones used in execution �2, again at time p the server canperform the deliver(m0) action.After the deliver(m0) action and up to real time p+ �, that is, for the interval (p; p+ �],clockS runs at (2�+ 2d)=� times the rate of real time, and from time p+ � through the restof the execution, that is, the interval (p+ �;1), clockS runs at the rate of real time again.Now let the server receive a crash input at real time p + �. Because of the rate of clockSfor the interval (p; p+ �], at real time p+ �, clockS = p+ 2� + 2d = r + 2d. Since �5 is anadmissible timed execution and clockC and clockS are determined by clock functions, theserver eventually recovers. The time of recovery is determined by the protocol, but it musthappen after the crash event. Let k be the clockS time between crash and recovery. SinceclockS is now running at the rate of real time, k is also the di�erence in real time between thecrash input and the recover output. Thus, the recovery happens when clockS = r+ 2d+ k,which is real time p+ � + k.The next execution, �6, shown in Figure 11-6, starts out like execution �5 except theclient and server use the sets of UID's usedids6c and usedids6s respectively, and the clockfunction of the server is di�erent from the clock function in execution �5. The clock functionsare the same for the real time interval [0; p+�); that is, for the real time interval [0; p] clockSruns at the rate of real time, and for the real time interval (p; p+�], clockS runs at (2�+2d)=�times the rate of real time. However, for the real time interval (p + �; p+ 2�], clockS runsat k=� times the rate of real time. Therefore, in execution �6 when clockS = r + 2d+ k itis real time r. Because of the real time independence property, we know that when clockS= r+ 2d+ k in this execution, the server can perform the recover action.After the recover action through real time r + 2d + k, that is, the real time interval(r; r+2d+ k], clockS runs at d=(2d+ k) times the rate of real time. Therefore, at real time299
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However, as in �6, in �7 all of the packets that both the client and server send from realtime r up to, but not including real time r+ 2d+ k (clockS = r+3d+ k) are dropped fromthe channels. For the clockS interval [0; r+ 3d+ k], �6jS time passage equivalent to �7jS.Thus, up to clockS = r + 3d + k in �7 the server cannot deliver m, because m cannot bedelivered in �6.Again, as in �6, all packets sent by the client and server starting at real time r+2d+k donot get dropped from the channels and take time 0 and d to arrive respectively. Execution�7 is an admissible timed execution, clockC and clockS are determined by clock functions,and m is sent after the last crash and recover actions. Therefore, since the protocol satis�esthe eventual delivery property the server must eventually perform the deliver(m) action.Let real time t0 and clockS = t0 + d be the time of this event.Finally, we construct an execution �8 where the server delivers the same message twice.This execution is shown in Figure 11-8. In the execution clockS runs at the rate of real timefor the whole execution, that is, the clock function of the server is also the identity function.In execution �8 the client uses the set of UID's usedids8c and the server uses the set usedids8s.On the client side, except for the use of a di�erent set of id's, execution �8 is exactly thesame as execution �7, so send(m0) happens at time 0, and send(m) happens at real time r.However, in execution �8 the packets the client sends after the send(m) input and beforetime r + d are not dropped from the channel. On the server side, except for the use of adi�erent set of id's, from time 0 to time t execution �8 looks the same as execution �4.That is, modulo the id's, for the time interval [0; t] execution �8jS time passage equivalentto �4jS. Therefore, since in execution �4 the server performs deliver(m0) at time p anddeliver(m) at time t, in execution �8 it can do likewise.For the rest of �8, the packets the client sends at or after time r + d until, but notincluding time r + 2d + k are dropped from the channel, and on the server side at timer + 2d a crash input occurs. For the real time interval [r + 2d; r + 2d + k], �8jS timepassage equivalent to �7jS. Therefore, because of the real time independence property, atclockS = r + 2d + k, the server can perform the recover output action. Any packet sentby the server after the recover event up to, but not including time r + 3d + k is droppedfrom the channel. The packets that the client sends starting at time r + 2d+ k take time302
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d to arrive at the server, and the packets that the server sends starting at time r + 3d+ ktake time 0 to arrive at the client. Except for the fact that packets sent and received havedi�erent id's, in the clockS interval [r+2d; t0+d] in execution �8 the server receives exactlythe same inputs as in the same clockS interval in execution �7. In this interval it receives acrash input from the environment, and the inputs from the channel (packets from the client)are the same (except for the id's) because modulo packet id's, �8jC time passage equivalentto �7jC, and the only packets from the client that reach the server in the clockS interval[r + 2d; t0 + d] in both executions, are the ones that the client starts sending from timer+2d+k. These packets start arriving when clockS = r+3d+k in both executions. Sincethe recover action returns the server to an initial state where it does not remember anyprevious actions in both executions, modulo packet id's, �8jS time passage equivalent to�7jS for the clockS intervals [r+2d; t0+d]. Because of the real time independence propertyof the server, we know that at clockS = t0+d the server can perform the deliver(m) action.Since m was already delivered, we have duplicate delivery which contradicts our assumptionthat the protocol solves the at-most-once fast delivery problem.11.5 Discussion of proofIn this section we provide some intuition for the proof by explaining the reasons for thetimes we choose to have events occur in executions �7 and �8. In execution �7 we want theprotocol to deliver m, so the send(m) event must occur at or after the recover event. In �8the send(m) event should happen at the same real time as in �7. However, now we want mto be delivered as it was in execution �4. This delivery takes time strictly less than 2d afterthe send(m) event. The delivery must be followed by a crash and recovery. The recoverevent happens at least clockS = k time after the delivery of the message. The crash andrecovery in �8 must happen at the same clockS time as in �7. Therefore, since in �8 theclock function of the server is the identity function, the recover event in �7 and the recoverevent in �8 are at least 2d+k apart in real time. Therefore, in �7 at the time of the recoverevent, clockS must be ahead of real time by at least 2d+ k.In �7 messages by the client after time r and up to time r+2d+k get dropped because305



this is the time frame in �8 where the server delivers the message, crashes, and recovers.Packets sent at or after real time r + 2d + k do not get dropped in �7 because the serverrecovers at this time in �8, so packets received by the server in both executions at or afterthis time are the �rst packets the server receives after recovering. In order for the proofto work, the packets sent by the client at or after real time r + 2d+ k must arrive at theserver at the same clockS time in both executions �7 and �8. Similarly, the packets sent bythe server at or after real time r+ 2d+ k must arrive at the client at the same clockC timein both executions. Since clockC remains unchanged in both executions while clockS doeschange, the delivery time of the packets sent at or after real time r + 2d + k in �8 mustbe di�erent from the delivery time of packets sent at or after real time r + 2d+ k in �7 inorder for them to arrive at the same clockS and clockC times in both executions. In �7 ator after real time r + 2d+ k, clockS is ahead of real time by a �xed amount, x, and in �8clockS is equal to real time. Therefore, in �8 packets sent by the client at or after real timer+ 2d+ k must take the additional time of x to arrive at server. Similarly, packets sent bythe server at or after real time r+2d+ k in �7 must be sent at the same clockS time in �8.Therefore, in �8, they are sent later in real time by x, which means for them to arrive atthe client at the same time in both executions, their time on the channel in �8 must be xless that their time on the channel in �7.In our proof we let x = d. Thus, in order to allow d to be any value from 0 to �, we setthe delivery time for packets from the client and the server at or after real time r + 2d+ kin �7 to be 0 and d respectively. If we did not want to allow 0 time delivery of packets inthe model, we can let x < d. For example, if we let x = 0:5d, then we can let the deliverytime for packets from the client and the server at or after real time r + 2d+ k in �7 to be0:5d and d respectively. Then in �8 the delivery times would be d and 0:5d respectively.While it is impossible for any protocol to solve the at-most-once fast delivery problem,in practice an even weaker correctness condition may be su�cient. In the next chapter wepresent a weaker speci�cation for the problem T/TCP is supposed to solve, and shows thatT/TCP implements this speci�cation. 306



Chapter 12Conclusion12.1 SummaryIn this thesis we presented three very large case studies of the use of simulation and in-variant assertion techniques for the formal veri�cation of complex distributed protocols.We veri�ed two versions of TCP and a version of the experimental transport level protocolcalled T/TCP. T/TCP is designed to provide the reliable data streaming of TCP, whilebeing more e�cient for transactions. However, under certain circumstances T/TCP maydeliver the same message twice. We showed in the thesis that it is in fact impossible forany protocol to provide reliable data service and fast transactions if the client and serverhave clocks that may run at arbitrary rates.12.1.1 Veri�cation of protocolsTCP is designed to provide reliable transport level service. The �rst step in veri�cation isto write a precise formal speci�cation for this problem. We write the speci�cation using theuntimed automaton model [24]. The key idea in the abstract speci�cation is to representdata sent during an incarnation of a connection as elements of a FIFO queue. Each of theclient and server has an in�nite array of these queues. The array of queues at the client andserver are indexed by the in�nite set of unique identi�ers (uid's) at the client and serverrespectively. For each new incarnation the client and server both chose a new id. The clientuses its id as the index for the queue on which it sends data for that particular incarnation,307



and the server does likewise. To form a connection, id's chosen by the client and server arenon-deterministically paired together. Each id can only be paired with one other id fromthe other host. A host can only receive data from a queue if its current id is paired withthe id of the sender of the data, and since each id can only be associated with one other id,a host can only receive data from a unique incarnation during the life of that incarnation.After presenting the speci�cation for the reliable transport level problem, we presenteda formal model for TCP, but with the assumption that it has unbounded and stable coun-ters. The protocol is described using the General Timed Automaton model [21]. We thenuse simulation techniques [24, 26] to formally verify that TCP with unbounded countersimplements the speci�cation for the reliable transport level problem. However, in realityTCP does not have unbounded and stable counters. It instead uses a 32 bit clock basedcounter that cycles in approximately 4.5 hours for initial sequence number generation. Italso uses a 32 bit number cyclic space for numbering each byte of data sent. Therefore, inpractice TCP relies on timing properties of the counters, the maximum segment lifetime,and a series of timeouts to give the illusion of an unbounded set of sequence numbers. In thethesis we clarify the timing properties that are needed, and show executions where incorrectbehavior results if the correct timeouts are not used. The o�cial TCP references [28, 30] aresomewhat unclear on which timeouts are necessary for correct behavior. Both referencesdescribe timeouts that are necessary for correct behavior as being optional. The durationof quiet time after crashes speci�ed in [28] is also not long enough and can lead to incorrectbehavior in some situations.We described TCP with bounded counters and the correct timeouts using the GTAmodel, and then used a forward simulation to show that it implements a slightly modi�edversion of TCP with unbounded counters. The modi�cation allows non-deterministic time-outs in TCP, and we show the modi�ed version of TCP still implements the speci�cation.Thus, TCP with bounded counters and timeouts implement the speci�cation for the reliabletransport level problem.After de�ning a speci�cation for the problem and formally verifying both versions ofTCP we next sought to show that T/TCP implements TCP. However, we observed that evenwith unbounded and stable counters, T/TCP does not satisfy the at-most-once semantics308



required of reliable transport level protocols. This fact had been shown earlier by Shankarand Lee in [33]. The designers of T/TCP and other network protocol designers think thatin some situations it is acceptable for the same data to be delivered twice, so the behavior ofT/TCP is not necessarily wrong. Therefore, in the thesis we present a weaker speci�cationfor the transport level problem. This weaker speci�cation captures the di�erent behaviors ofT/TCP. The key di�erences in the weaker speci�cation is that we allow the hosts to resumean incarnation after a crash or an abort, and we allow some data to be delivered more thanonce. In the stronger speci�cation after a crash or abort new incarnations must be started.After presenting the weaker speci�cation we formally verify that T/TCP implements thisspeci�cation. The veri�cation of this protocol follows the same pattern as the veri�cationof TCP with unbounded counters.12.1.2 Impossibility resultT/TCP does not solve the reliable transport level problem because the optimizations thatmake it e�cient for transactions may also cause it to deliver duplicate messages after acrash. This observation caused us to wonder whether it is possible for any protocol toperform transactions e�ciently and still have reliable data streaming. In the thesis weprove that under certain speci�c circumstances it is impossible for any protocol to do both.The formal automaton models we used for the veri�cations in the thesis are not su�cientfor presenting the impossibility result. For the impossibility result we had to deal with theissue of liveness, since we do not want to allow protocols that solve the problem by blockingtime. We also had to deal with issue of the client and server having local clocks, but noaccess to real time. The formal model used to describe the system and present the proof ofimpossibility is a novel combination of the live GTA model of Segala et al. [31], which canhandle liveness issues, and the clock GTA model of De Prisco [29], which allows local clocks.We prove that in a system where the client and the server have local clocks and in�niteand stable sets of unique identi�ers, but not counters, that even if we require fast deliveryonly when the clocks are accurate and not immediately after crashes, it is impossible tohave fast delivery and still satisfy the the at-most-once delivery property if the local clockssometimes run at arbitrary rates. 309



12.2 EvaluationThe thesis has clearly demonstrated that simulation and invariant assertion techniques canbe used to verify the correctness of complex real world protocols. We believe our abstractmodeling of TCP and T/TCP captures the most signi�cant aspects of the protocols relatedto safety. However, we do make some simplifying assumptions about the protocols. Mostof the simpli�cations we make are related to the performance of the protocols. In ourabstract model, every segment contains at most one byte of data. We also do not includethe sliding window mechanism, so each byte of data needs to be acknowledged before newdata is sent. The fact that in the real protocols segments can contain more than one byte ofdata, and that the sliding window mechanism allows multiple segments to receive a singleacknowledgment are performance issues that we do not believe are critical to the safetyof the protocols. Thus, even though we do not verify versions of TCP and T/TCP thatinclude all the complexities, we believe our models for these protocols capture the essentialproperties related to safety.Even though we do not include all the details of the protocols, the proofs are still verylong. In particular, the veri�cation of each of the three protocols require the proving of alarge number of invariants. We often found that in order to prove one key invariant, severalother auxiliary invariants that essentially \lead up" to the invariant we want to prove hadto be proved before. For example, if we wanted to prove that when a segment with a certainsequence number is on a channel certain conditions are true, we often had to prove an someinvariants about conditions in the states from which that segment could be sent. Manytimes we had to prove a sequence of three or four invariants before we could prove one keyinvariant. We found that a lot of the di�culty in the invariant proofs had to do with �ndingthe right auxiliary invariants. Once the correct sequence of auxiliary invariants was found,the actual proof of each piece tended not to be too di�cult.However, even though each little piece of the proof may not be too di�cult, the sheersize of the proofs may make protocol designers reluctant to use the formal methods usedin this thesis. Therefore, the continued development of tools that automate the process ofproving simulation relations and especially the proof of invariants is important for making310



the methods more practical. Formal veri�cation methods are most interesting to protocoldesigners when they reveal aws in protocols. In doing the work for this thesis we foundthat the formal methods we use can reveal aws in the protocol even before all the smalldetails are worked out. For example, our observation that T/TCP may deliver the samedata twice occurred while we were trying to simulate the accelerated opening of T/TCPby a sequence of TCP steps. The observation came before we started to proving low levelinvariants of that protocol. Therefore, the formal methods used in the thesis can be usefulto protocol designers even before all the details of the proofs are worked out.12.3 Future WorkIn the short term, we would like redo at least parts of the proofs in this thesis usingan existing automated tool such as the Larch Prover [11]. We are particularly interestedin using automated tools for the proofs of low level invariants. The precise structure ofthese proofs make them particularly amenable to automated veri�cation. There are alreadyseveral examples where the Larch Prover has been used for these types of proofs [34, 20].Another short term project is to show that the impossibility result holds even when theclient and server are allowed to use unbounded counters. Since T/TCP has duplicatedelivery even though it uses unbounded counters, we believe counters do not help for anyprotocol. However, the proof we use in the thesis does not hold in the case where the processmay have counters. The reason the proof as we have it now does not work for counters isthat when the di�erent executions are combined, the hosts many be able to distinguish thecombined executions from the other excutions if they can do more sophisticated comparisonsof the id's in addition to testing whether two id's are the same. With counters, the host areable compare whether one id is greater than, or less than other id's.In the long term we would like to work on developing more tools for automating simu-lation and invariant assertional proofs. We are also interested in using the formal methodsto verify additional network protocols. We not only want to use the methods to verifysafety properties, but also want to use the formal methods to verify performance propertiesof protocols. The issue of quality of service guarantees is almost as important as safety311



for transport level protocols, and we believe the formal methods used in the thesis can beenhanced to analyze performance characteristics of protocols. In our work we �nd that theformal methods provide valuable insights into how protocols work and what aspects of theprotocols are essential for correctness, so we believe these methods can be useful in thedesigning of protocols. Therefore, in the future we want to work on the design of protocols,where formal veri�cation methods are incorporated in the design process.

312



Appendix AA.1 SetsWe use standard notation for sets. A set consisting of the elements e1; e2; : : : we write asfe1; e2; : : :g.The empty set is denoted by ;, set membership by 2, and � and � denote proper subsetand subset relations respectively. We also use the standard set operators.[ Union\ Intersection� Complement (with respect to some given set)n Set minus.We also use the notation :2 to assign an arbitrary element of a set to a variable. That is,v :2 fe1; e2; : : :g means v = e1 or v = e2; : : : .A.1.1 CardinalityThe cardinality of a set S, is written jSj and is de�ned asjSj , 8<: n if S has n elements1 if S has in�nitely many elementsA.2 Bags (Multisets)For bags we use the following operations from the previous section:jsj;[;\;2; n 313



jsj counts the total number of elements including duplicates of s.A.2.1 Bag TypeFor any set S, denote by B(S) the set of all (�nite or in�nite) bags with elements from S.A.3 QueuesA queue q consisting of the elements e1; e2; : : : we write in one of the following waysq = he1; e2; : : :iq = e1; e2; : : :q = e1e2; : : : :We denote the empty queue by �.A.3.1 LengthThe length of a queue q = he1; e2; : : :i, written jqj, is de�ned as:jqj ,8><>:n if q is �nite and ends in en1 if q is in�nite:A.3.2 Head, Tail, Last, InitIf q = he1; e2; e3; : : :i is nonempty, de�nehead(q) , e1tail(q) , he2; e3; : : :i:314



If q is �nite and ends in en, then de�nelast(q) , eninit(q) , he1; e2; : : : ; en�1i:A.3.3 Cross productThe cross product of a queue q = he1; e2; : : : ; eni and a constant c written q � c returns aqueue where each element is paired with c. That is,q � c , h(e1; c); (e2; c); : : : ; (en; c)iA.3.4 ConcatenationConcatenation of two queues l1 and l2 written l1�l2 or sometimes l1l2, is de�ned when l1 is�nite. If l1 = he1; : : : ; eni and l2 = hen+1; en+2 : : : i, then de�nel1�l2 , he1; : : : ; en; en+1; en+2 : : : iA.3.5 IndexingIf q = he1; e2; : : :i, then de�ne for all i with 1 � i < jqjq[i] , eiWe let dom(q) denote the set of indices of any queue q. Thus,dom(q) , fij1 � i � jqjg:315



We denote as su�xes(q) the set of sets of consecutive indices at the end of any queue q.Thus, su�xes(q) , ffijj � i � jqjgj1 � j � jqjg:We denote as pre�xes(q) the set of sets of consecutive indices at the begininig of any queueq. Thus, pre�xes(q) , ffij1 � i � jgj0 � j � jqjg:If q is nonempty, we denote by maxindex(q) the maximum index in q. Thus,maxindex(q) , jqj:The function delete(q, I) deletes elements of q with indices in the, possibly empty, set Ifrom dom(q). Thus, delete(q ; I ), hq[i] j i 2 dom(q) ^ i 62 Ii:A.4 Functions and MappingsWe use the term \function" and \mapping" synonymously. We use standard notation forfunction de�nition and application. When explicitly de�ning the mapping from elementsto elements we use notation like [1 7! 2;2 7! 4;� � � ;8 7! 16]or equivalently [i 7! 2i j 1 � i � 8]. 316



A.4.1 Function TypeA function f mapping elements from set A to set B has the typeA! BWe only deal with total functions, that is, f(a) is de�ned for all elements a 2 A. A isreferred to as the domain of f .A.4.2 Domain and RangeFor any function f , dom(f) denotes the domain of f . The range of f , denoted as rng(f), isde�ned as rng(f ) , ff(e) j e 2 dom(f )g:A.4.3 Operations of FunctionsFor a function f : A! B and g : C ! D with B � C, de�ne the composition f �g : A! Dsuch that for all a 2 A; (f � g)(a) = f(g(a)):For any function f : A ! B and set S, f � S denotes the function of type (A \ S) ! Bsuch that for all a 2 A \ S, (f � S)(a) = f(a):
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Appendix BInvariance proofs for T CPhIn the proofs of the invariants we use brackets \[ ]" to refer to the value of variables receivedin a segment from the channels as opposed to the actual value of the variable at the host.For example, if the client gets the input receive-segsc(sns, acks, msgs), we write [sns] to referto the value of the variable sns the client gets in the segment. We make this distinctionbecause it is possible that the value of a variable at a host might have changed since it wassent out on a segment. We also use the operators sn and ack to return the sequence numberand acknowledgment number respectively of a segment on a channel.We use the standard inductive technique for proving the invariants. That is, we showthat the invariants hold for the start states and then show that for every step (s; a; s0) ofT CPh, if the invariant holds in state s then it also holds in state s0. The invariants aretypically of the form \if P (premise) then C (consequence)", where P might be true, so weonly need to consider actions that could cause P to go from false to true or could cause Cto go from true to false. We call these actions critical actions.Below when we say a proof is symmetric we mean that the actions are the same exceptwith di�erent subscripts, so for example, crashs is symmetric to crashc and send-segcs(snc,ackc,msgc) is symmetric to send-segsc(sns, acks, msgs). In the symmetric proofs, statevalues remain the same, except where indicated.Invariant 7.11. For all segments p 2 in-transitcs, snc � sn(p).319



2. For all segments p 2 in-transitsc, sns � sn(p).Proof: In the start states in-transitcs and in-transitsc are both empty, so the invariantholds for the base case.1. We now consider the critical steps for Part 1.a = send-segcs(p)Any step that places a segment in in-transitcs is critical. However, for any suchsegment the sequence number of the segment is the current sequence number of theclient, so Part 1 is not violated.a = duplicatecs(p)This step also adds segments to in-transitcs. However, since p must be an exactduplicate of a segment already in in-transitcs, if Part 1 holds in state s it also holdsin state s0.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant 7.21. If ack s 2 N then acks � snc + 1.2. If ack c 2 N then ackc � sns + 1.Proof: In the initial state acks and ackc are both unde�ned, so the invariant holds for thiscase.1. We consider the critical steps for Part 1.a = receive-segcs(p)Any step where the client receives a segment p may assign ack s a non-nil value.However, the value assigned is always sn(p) + 1. Segment p must have been in in-transitcs in state s, and since the step doesn not change the value of sn(p), we knowfrom Invariant 7.1 that snc � sn(p). Therefore, Part 1 holds.2. The proof for Part 2 is symmetric. 320



Invariant 7.31. For all segments p 2 in-transitsc, ack(p) � snc + 1.2. For all segments p 2 in-transitcs, ack(p) � sns + 1.Proof: In the start states in-transitcs and in-transitsc are both empty, so the invariantholds for the base case.1. We now consider the critical step for Part 1.a = send-segsc(p)Any step that places a segment in in-transitsc is critical. For any such segment p,ack(p) = acks, and from Invariant 7.2 we know that acks � snc + 1. Therefore Part 1holds after this step.a = duplicatesc(p)This step also adds segments to in-transitsc. However, since p must be an exactduplicate of a segment already in in-transitsc, if Part 1 holds in state s it also holdsin state s0.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant 7.41. If modec = syn-sent then for all non-SYN segments p 2 in-transitcs, sn(p) < isnc.2. If modes = syn-rcvd then for all non-SYN segments p 2 in-transitsc, sn(p) < isns.Proof: In the start state modec and modes have the value closed, so the invariant holdsin this state. We consider critical steps of the form (s; a; s0) below.1. a = send-msgc(open, m, close)This step can make the premise of the invariant go from false to true. However, if thisassignment is made, then snc gets assigned s:snc+1. We know from Invariant 7.1 thats:snc � sn(p) for any p in s:in-transitcs. Since this step does not add any segmentsto in-transitcs, we know after this step s0:isnc > s:snc � sn(p) for all segments p inin-transitcs. 321



a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc)Both these steps can make the consequence of the Part 1 go from true to false. How-ever, both actions are only enabled if modec 6= syn-sent, and neither changes modec,so Part 1 holds after either of these steps.2. a = send-segcs(SYN, snc)This step is symmetric to a = send-msgc(open, m, close) for Part 1.a = send-segsc(sns, acks, msgs) and a = send-segsc(sns, acks, msgs)The proof for these steps is symmetric to the case for the symmetric steps of Part 1.Invariant 7.51. isnc 6= nil if and only if modec 6= closed.2. isncs 6= nil if and only if modec 62 fclosed; syn-sentg.3. isns 6= nil_ isnsc 6= nil if and only if modes 62 fclosed; listeng.Proof: In the start state isnc = nil, isncs = nil, and isns = nil, so the invariant holds inthe base case. We now consider the critical steps for Part 1.1. a = send-msgc(open, m, close)This step may change isnc from nil to a non-nil value. However, if this change ismade, then modec also changes to syn-sent. This step may also change modec toclosed, but by de�nition modec being closed means isnc is nil, so Part 1 holds.a = receive-segsc(sns, acks, msgs), a = timeoutc, a = recoverc, and a = shut-downcThese steps may change modec to closed, which again by de�nition, means isnc isnil, so Part 1 holds.2. We consider the critical steps for Part 2.a = receive-segsc(SYN, sns, acks)This step may change isncs from nil to a non-nil value. However, if this change ismade, then modec also changes to estb.322



The steps with a = receive-segsc(sns, acks, msgs), a = timeoutc, a = recoverc, and a= shut-downc may all change modec to closed, but by de�nition modec being closedmeans isncs is nil.3. We consider the critical steps for Part 3.a = receive-segcs(SYN, snc)This step causes isns to go from nil to a snc and isnsc to also go to a non-nil value.However, this step also changes modes to syn-rcvd, so Part 3 holds.a = send-msgs(m, close)This step may change modes to closed. However, by de�nition if modes is closed,then isns and isnsc are both nil.a = receive-segcs(snc, ackc, msgc), a = timeouts, a = recovers, and a = shut-downsThese steps may change modes to closed.Invariant 7.61. If isnsc 6= nil then isnsc � snc.2. If isnsc 6= nil then isnsc < acks.3. If isncs 6= nil then isncs � sns.4. If isncs 6= nil then isncs < ackc.5. If isnc 6= nil then isnc � snc.6. If isns 6= nil then isns � sns.Proof: In the start state isnsc; isncs; isnc; isns are all equal to nil, so the invariant holds inthis state. We examine the critical steps below.1. a = receive-segcs(SYN, snc)In this step isnsc is assigned [snc]. For this assignment to happen [snc] must have beenin s:in-transitcs. Since Invariant 7.1 holds in state s, we know s:snc � [snc]. Therefore,snc � isnsc. 323



2. For Part 2 the critical step is:a = receive-segcs(SYN, snc)In this step isnsc is assigned [snc]. However, ack s is assigned to [snc] + 1, so Part 2holds after this step.3. For Part 3 the critical step is:a = receive-segsc(SYN, sns, acks)In this step isnsc is assigned [sns]. For this assignment to happen [sns] must havebeen in s:in-transitsc. Since Invariant 7.1 holds in state s, we know s:sns � [sns].Therefore, sns � isncs.4. For Part 4 the critical step is:a = receive-segsc(SYN, sns, acks)In this step isncs is assigned [sns]. However, ack c is assigned to [sns] + 1, so Part 4holds after this step.5. For Part 5 the critical step is:a = send-msgc(open, m, close)In this step isnc is assigned snc; therefore, Part 5 holds after this step.6. For Part 6 the critical step is:a = receive-segcs(SYN, snc)In this step isns is assigned sns; therefore, Part 6 holds after this step.Invariant 7.7If modes = syn-rcvd then ack s = isnsc + 1.Proof: In the start state modes = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = receive-segcs(SYN, snc)This step assigns modes to syn-rcvd, but also assigns acks to [sns] + 1 and isnsc to [sns], sothe invariant holds after this step.a = receive-segcs(snc, ackc, msgc)This step may change ack s, but since we assume the invariant holds in state s, either324



s:modes 6= syn-rcvd, and this step does not change it to syn-rcvd, or if s:modes =syn-rcvd, after this step s0:modes = estb, so the invariant holds after this step.a = receive-segcs(snc, ackc, msgc, FIN)The proof is the same as the case for a = receive-segcs(snc, ackc, msgc) except that ifs:modes = syn-rcvd, after this step s0:modes = close-wait.Invariant 7.8If (i; j) 2 assoc then i � snc ^ j � sns.Proof: In the start state assoc is the empty set, so the invariant holds in this state. Weconsider critical steps of the form (s; a; s0) below.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc,FIN)These steps may add the pair (isnsc; isns) to assoc. However, from Invariant 7.6 we knowthat isnsc � snc and isns � sns, so the invariant holds after these steps.Invariant 7.91. If isnc 6= nil ^ choose-isnc = true then isnc 6= isnsc.2. If isns 6= nil ^ choose-isns = true then isns 6= isncs.Proof: In the start state isnc = nil and isns = nil, so the invariant holds for the basecase.1. We consider the critical steps for Part 1.a = send-msgc(open, m, close)In this step isnc is assigned s:snc+1 and choose-isnc is assigned true. If s:isnsc = nilthen Part 1 holds. If s:isnsc 6= nil, then from Invariant 7.6 we know s:isnsc � s:snc.Since s0:isnc = s:snc+1, and this step does not change isnsc , we know s0:isnc > s0:isnsc,so Part 1 holds after this step.a = receive-segcs(SYN, snc)In this step isnsc is assigned [snc], but choose-isnc is also assigned false, so Part 1holds after this step.2. We consider the critical steps for Part 2.a = receive-segcs(SYN, snc) 325



In this step isns is assigned s:sns+1, and choose-isns is assigned true. If s:isncs = nilthen Part 2 holds. If s:isncs 6= nil, then from Invariant 7.6 we know s:isncs � s:sns.Since s0:isns = s:sns+1, and this step does not change isncs, we know s0:isns > s0:isncs,so Part 1 holds after this step.Invariant 7.101. If modec = syn-sent then snc = isnc.2. If modec = syn-rcvd then sns = isns.Proof: In the start state modec and modes have the value closed, so the invariant holdsin this state.1. We examine the critical steps for Part 1.a = send-msgc(open, m, close)This step assigns modec to syn-sent and increments snc, but also assigns isnc to snc.Therefore, Part 1 holds after this step.a = prepare-msgcThis step increments snc, but it is only enabled if modec 2 festb; close-waitg. Sincewe assumed the invariant holds for state s, this step is not enabled in state s.a = receive-segsc(sns, acks, msgs), a = timeoutc, a = recoverc, and a = shut-downcThese steps may change isnc to nil, because they may set modec to closed, so Part1 holds after these steps.2. We consider the critical steps for Part 2a = receive-segcs(SYN, snc)This step assigns modes to syn-rcvd and increments sns, but also assigns isns to sns.Therefore, Part 2 holds after this step.a = prepare-msgsSymmetric to the case for a = prepare-msgc of Part 1.a = receive-segcs(snc, ackc, msgc), a = timeouts, a = recovers, and a = shut-downsThese steps may change isns to nil, because they may set modes to closed, so Part1 holds after these steps. 326



Invariant 7.111. If choose-isnc ^ isnc = i then 8 SYN segments p 2 in-transitcs, sn(p) < i ^8 SYN segments q 2 in-transitsc, ack(q) < i+ 1.2. If choose-isns^isns = i then 8 SYN segments p 2 in-transitsc, sn(p) < j^8 segments q 2in-transitcs, ack(q) < i+ 1.Proof: In the initial state choose-isnc = false and choose-isns = false so the invariantholds for the base case. We examine critical steps of the form (s; a; s0) for Part 1 below.1. a = send-msgc(open, m, close)This step can make the premise of Part 1 go from false to true. In this step choose-isncmay get assigned true and isnc may get assigned s:snc+1. We know from Invariant 7.1that s:snc � sn(p) for any p in s:in-transitcs. Since this step does not add any segmentsto in-transitcs, we know after this step s0:isnc > s:snc � sn(p) for all segments p inin-transitcs. From Invariant 7.3, we know that for any segment q in s:in-transitsc,ack(q) � s:snc + 1. Since s0:isnc = s:snc + 1, we know that for any q 2 s0:in-transitsc,ack(q) < s0:isnc + 1. Therefore, Part 1 holds after this step.a = send-segcs(SYN, snc)This step adds a segment to in-transitcs, but it also sets choose-isnc to false, so Part1 holds after this step.a = send-segsc(SYN, sns, acks)This step adds segments to in-transitsc, but it also sets choose-isnc to false, so Part1 holds after this step.2. We examine the critical steps for Part 2 below.a = receive-segcs(SYN, snc)The proof for this case is symmetric to the proof for a = send-msgc(open, m, close)of Part 1.a = send-segsc(SYN, sns, acks)This step sets choose-isns to false.a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc, FIN)These steps set choose-isns to false. 327



Invariant 7.121. For all i 2 N [ fnilg; (i; nil) 62 estb-pairs.2. For all j 2 N [ fnilg; (nil; j) 62 estb-pairs.3. For all i 2 N [ fnilg; (i; nil) 62 assoc.4. For all j 2 N [ fnilg; (nil; j) 62 assoc.Proof: . In the start state estb-pairs and assoc are both the empty set. We consider criticalactions of the form (s; a; s0) below.1. a = receive-segsc(SYN, sns, acks)In this step (isnc; sns) gets added to estb-pairs, if modec = syn-sent. However, fromInvariant 7.5 we know that if modec 6= closed then isnc 6= nil, so Part 1 holds afterthis step.2. The proof for Part 2 is the same as the proof for Part 1.3. a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc, FIN)These steps may add (isnsc ; isns) to assoc, but from Invariant 7.5 we know neitherelement of the pair is nil, so Part 3 holds after these steps.4. The proof is the same as for Part 3.Invariant 7.131. Ifmodec 2 ffin-wait-1; fin-wait-2; closing; timed-wait; last-ackg then send-buf c =� ^ rcvd-closec = true.2. Ifmodes 2 ffin-wait-1; fin-wait-2; closing; timed-wait; last-ackg then send-buf s =� ^ rcvd-closes = true.Proof: In the start state modec and modes have the value closed, so the invariant holdsin this state. We consider critical actions of the form (s; a; s0) below.328



1. a = send-msgc(open, m, close)This step can change the consequence of Part 1 from true to false by adding a messageto send-buf c. However, the message is added only ifmodec 2 fsyn-sent; estb; close-waitg,so Part 1 holds after this step.Steps that cause the client to close also change the consequence of Part 1 from true tofalse. However, the premise of Part 1 is also obviously false after any of these steps.a = prepare-msgcThis step may cause the premise of Part 1 to go from false to true by changingmodec to fin-wait-1 or last-ack. However, the change is made only if send-buf c =� ^ rcvd-closec = true. Therefore, Part 1 holds after this step.2. a = send-msgs(m, close)This step can change the consequence of Part 2 from true to false by adding a messageto send-buf s. However, the message is added only ifmodec 2 fsyn-rcvd; estb; close-waitg,so Part 2 holds after this step.Steps that cause the server to close also change the consequence of Part 2 from trueto false. However, the premise of Part 2 is also obviously false after any of these steps.a = prepare-msgsSymmetric to the case for a = prepare-msgc for Part 1.Invariant 7.14If modes 2 flisten; syn-rcvdg then rcv-buf s = �.Proof: In the start state modes = closed so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = passive-openThis step may cause the premise of the invariant to go from false to true. However, in thisstep rcv-buf s is initialized to �, so the invariant holds after this step.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may cause the consequence of the invariant to go from true to false. However,after these steps modes 62 flisten; syn-rcvdg, so the invariant holds.Invariant 7.15 329



If isnc = isnsc and there exists p 2 in-transitcs such that ack(p) > sns then modec 6=syn-sent.Proof: In the start state in-transitcs is empty, so the invariant holds in this state. Weconsider critical steps of the form (s; a; s0) below, but before we do, we point out that a =receive-segcs(SYN, snc) is not a critical step, because Invariant 7.11 tells us that after thisstep there are no segments p 2 in-transitcs such that ack(p) > sns.a = send-msgc(open, m, close)This step may change the consequence of the invariant from true to false, but from Invari-ant 7.9 we know that if this happens isnc 6= isnsc. Therefore the invariant holds after thisstep.a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc, FIN)These steps add a segment to in-transitcs, but requires modec 6= syn-sent.Invariant 7.161. If modes = syn-rcvd then for all i, (i; isns) 62 assoc.2. If modec = syn-sent then for all j, (isnc; j) 62 assoc.3. If modes = syn-rcvd ^ choose-isns then for all i, (i; isns) 62 estb-pairs.4. If modec = syn-sent then for all j, (isnc; j) 62 estb-pairs.Proof: In the start state modes = closed and modec = closed, so the invariant holds inthis state. We consider the critical steps below.1. a = receive-segcs(SYN, snc)This step changesmodes to syn-rcvd and assigns isns to s:sns+1. Since this step doesnot add any elements to assoc, if there exists i, such that (i; isns) 2 assoc, then thepair must be in assoc in state s. From Invariant 7.8 we know that if (i; isns) 2 assocthen isns � s:sns. However, after this step isns = s:sns + 1. Therefore, we know thatthere cannot exist an i such that (i; isns) 2 assoc.a = receive-segcs(snc, ackc, msgc)This step may add the pair (isnsc ; isns) to assoc. However, if the pair is added, modes330



is also assigned estb.a = receive-segcs(snc, ackc, msgc, FIN)This step may add the pair (isnsc ; isns) to assoc. However, if the pair is added, modesis also assigned close-wait.2. We consider the critical steps for Part 2 below.a = send-msgc(open, m, close)This step changesmodec to syn-sent and assigns isnc to s:snc+1. Since this step doesnot add any elements to assoc, if there exists j, such that (isnc; j) 2 assoc, then thepair must be in assoc in state s. From Invariant 7.8 we know that if (isnc; j) 2 s:assocthen isnc � s:snc. However, after this step isnc = s:snc + 1. Therefore, we know thatthere cannot exist an j such that (isnc; j) 2 s:assoc.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)If [ackc] = sns + 1, these steps may add the pair (isnsc; isns) to assoc. Thus, if isnsc =isnc, the consequence of the invariant goes from true to false. However, Invariant 7.15tells us that if isnsc = isnc and there exists p 2 s:in-transitcs such that ack(p) > sns,then s:modec 6= syn-sent. Since these steps do not change the value of modec, Part2 holds after these steps.3. a = receive-segcs(SYN, snc)This step changes modes to syn-rcvd, assigns choose-isns to true, and assigns isnsto s:sns + 1. Clearly after this step (i; isns) 62 estb-pairs, so Part 3 holds.a = receive-segsc(SYN, sns, acks)This step adds a pair to estb-pairs, but also sets choose-isns to false, so Part 3 holdsafter this step.4. a = send-msgc(open, m, close)This step changes modec to syn-sent, assigns choose-isnc to true, and assigns isncto s:snc + 1. Clearly after this step (isnc; j) 62 estb-pairs, so Part 4 holds.a = receive-segsc(SYN, sns, acks)This step adds a pair to estb-pairs, but also sets modec to estb.331



Invariant 7.18If (isnc; isns) 2 assoc ^modec 62 frec; resetg then (isnc; isncs) 2 estb-pairs.Proof: We examine the critical steps.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)In these steps the pair (isnsc ; isns) may be added to assoc. These steps make the premise ofthe invariant true, if s:isnc = s:isnsc , [ackc] = s:sns + 1, and s:modes = syn-rcvd. Thus, byInvariant 7.15 we know s:modec 6= syn-sent, and by Invariant 7.5 we know s:isnsc 6= nil,which means isnc 6= nil. Thus, again by Invariant 7.5, we know s:modec 6= closed. Sincethe premise of the invariant has modec 62 frec; resetg, the only other possible values formodec is a value in sync-states. From Invariant 7.17 we know that if modec 2 sync-statesthen (isnc; isncs) 2 estb-pairs. Therefore, the invariant holds after these steps.Invariant 7.171. If modec 2 sync-states then (isnc; isncs) 2 estb-pairs2. If (isnc; isncs) 2 estb-pairs ^modec 62 frec; resetg then modec 2 sync-states.Proof: In the start state modec = closed and estb-pairs is empty, so the invariant holdsin this state. We consider critical steps of the form (s; a; s0) below.1. a = receive-segsc(SYN, sns, acks)In this step modec is assigned estb, but (isnc; isncs) also gets added to estb-pairs, soPart 1 holds after this step.2. a = receive-segsc(SYN, sns, acks)In this step (isnc; isncs) gets added to estb-pairs, but modec is assigned estb, so Part2 holds after this step.The steps that cause the client to go to either mode closed, rec, or reset, maychange the consequence of Part 2 from true to false, but they also change the premiseto false, so Part 2 holds after these steps.Invariant 7.20If isnc = isnsc ^ isns = isncs ^ modes = syn-rcvd ^ modec 62 fclosed; rec; resetg then332



modec 2 sync-states.Proof: In the start state modec = closed, so the invariant holds. Before we consider thecritical steps for this invariant, we point out that a = receive-segcs(SYN, snc) is not critical,because after this step modes = syn-rcvd and choose-isns = true, which by Invariant 7.9means isnc 6= isnsc . We consider critical steps of the form (s; a; s0) below.a = receive-segsc(SYN, sns, acks)This step assigns isncs to [sns]. However, it also assigns modec to estb, so the invariantholds after this step.The steps that can take modec out of sync-states are all critical, but when they do they addmodec to the set fclosed; rec; resetg, so it is obvious that the invariant holds after thesesteps, therefore, we do list all these steps here.Invariant 7.19If modec = syn-sent^ isnc = isnsc then modes 62 sync-states.Proof: In the start state modec has the value closed, so the invariant holds in this state.We consider critical steps of the form (s; a; s0) below.a = receive-segcs(SYN, snc)This step may cause the premise of the invariant to go from false to true, but after this stepmodes = syn-rcvd, so the invariant holds.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc)These steps can make the consequence of the invariant go from true to false if [ackc] = sns+1.However, if this condition is true, then we know from Invariant 7.15 thatmodec 6= syn-sent,so the invariant holds after these steps.Invariant 7.21If modec = syn-sent ^ modes = syn-rcvd ^ acks = snc + 1 then for all segments p 2in-transitcs, sns � ack(p).Proof: In the start state modes = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = receive-segcs(SYN, snc)This step assigns modes to syn-rcvd, acks to [sns] + 1, and sns to s:sns + 1. From Invari-333



ant 7.3 we know that for all p 2 s:in-transitcs ack(p) � s:sns +1. Therefore, after this step,s0:sns � ack(p).a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc, FIN)These steps can change the consequence of the invariant from true to false by adding asegment p to in-transitcs with ack(p) > sns. However, the actions are only enabled ifs:modec 6= syn-sent, and they do not change the value of modec, so the invariant holdsafter either of these steps.Invariant 7.22If modec = syn-sent then for all SYN segments p 2 in-transitsc such that ack(p) = snc+1,sn(p) � ack(q) for all q 2 in-transitcs.Proof: In the start state modes = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = send-msgc(open, m, close)This step assigns modec to syn-sent, but we know from Invariant 7.11 that when thisassignment is made that there are no SYN segments p 2 in-transitsc such that ack(p) =snc + 1, so the invariant holds after this step.a = send-segsc(SYN, sns, acks)This step adds a SYN segment to in-transitsc, so it can change the consequence of theinvariant from true to false if the added segment has ack(p) = snc + 1, but sn(p) < ack(q)for some segment q 2 in-transitcs. This action is only enabled if modes = syn-rcvd.Therefore, we know from Invariant 7.21 that if this steps adds a segment that causes theconsequence of the invariant to be false, then modec 6= syn-sent.a = send-segcs(snc, ackc, msgc) or a = send-segcs(snc, ackc, msgc, FIN)These steps can change the consequence of the invariant from true to false by adding asegment q to in-transitcs with ack(q) > sn(p). However, the actions are only enabled ifs:modec 6= syn-sent, and they do not change the value of modec, so the invariant holdsafter either of these steps.Invariant 7.23If ackc 2 N then for all p 2 in-transitcs, ackc � ack(p).334



Proof: In the start state ackc is unde�ned, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below. We point out that a = receive-segsc(sns, acks,msgs) and a = receive-segcs(sns, acks, msgs, FIN) are not critical because they incrementackc.a = send-segsc(SYN, sns, acks)This step may change the premise of the invariant from false to true by assigning ackc to[sns] + 1 if [acks] = snc + 1 and modec = syn-sent. However, we know from Invariant 7.22that [sns] � ack(p) for all p 2 in-transitcs, so the invariant holds after this step.Steps that cause the client to close are also critical, but they also make ackc unde�ned, sothe invariant holds after any of these steps.Invariant 7.24If isnc = isnsc ^ isns = isncs ^ modec 2 sync-states ^ modes 62 frec; resetg then for allsegments p 2 in-transitsc, acks � ack(p).Proof: In the initial statemodec = closed, so the invariant holds in this state. We examinethe critical steps of the form (s; a; s0) below.a = receive-segsc(SYN, sns, acks)If s:modec = syn-sent^[acks] = s:snc+1, this step assigns isncs to [sns], ackc to [sns]+1, andmodec to estb. From Invariant 7.10 we know that since s:modec = syn-sent, then s:isnc =s:snc. We also know from Invariant 7.6 that acks > isnsc = isnc. Since by Invariant 7.3 weknow that for all p 2 in-transitsc, ack(p) � snc + 1, we know that acks � ack(p) for all suchp. Thus, the invariant holds after this step.a = receive-segcs(SYN, snc)This step assigns acks to [snc]+1, so may change the consequence of the invariant from trueto false. However, this step also assigns isns to a non-nil value and assigns choose-isns totrue. Therefore, from Invariant 7.9, we know isns = isncs, so the invariant holds after thisstep.Invariant 7.25If modec 2 sync-states ^modes 62 fclosed; rec; resetg^ isnc = isnsc and there exists a non-SYN segment p 2 in-transitsc such that sn(p) � ackc, then modes 6= syn-rcvd_ackc < isns.335



Proof: In the start state modec has the value closed, so the invariant holds in this state.We consider critical steps of the form (s; a; s0) below.a = send-segcs(SYN, snc)This step may make the premise of the invariant go from false to true by assigning isnsc toisnc. This step also assigns modes to syn-rcvd, and increments sns and assigns it to isns.From Invariant 7.4 we know that for all non-SYN segments p 2 transitsc sn(p) < isns.Therefore, if there exists a non-SYN segment p 2 in-transitsc such that sn(p) � ackc, whichmust be the case if the premise of the invariant is true, then after this step ackc < isns, sothe invariant holds.a = receive-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from false to true if [acks] = snc+1.Given that modes 62 fclosed; rec; resetg, Invariant 7.19 tells us that modes must besyn-rcvd. Thus, if there exists a non-SYN p 2 in-transitsc such that sn(p) � ackc, we knowthat ackc < isns because Invariant 7.4 tells us that sn(p) < isns. Therefore, the invariantholds after this step.a = send-segsc(sns, acks, msgs) and a = send-segsc(sns, acks, msgs, FIN)These steps may also cause the premise of the invariant to go from false to true. However,they are only enabled if modes 6= syn-rcvd.a = receive-segsc(sns, acks, msgs) and a = receive-segsc(sns, acks, msgs, FIN)These steps may change the consequence of the invariant from true to false if s:modes =syn-rcvd, and the steps assign ackc to a value greater than or equal to isns. However,from Invariant 7.4, we know that if modes = syn-rcvd, then isns > sn(p) for any non-SYNsegment p 2 in-transitsc. Therefore, the premise of the invariant must also be false if thesesteps cause the consequence of the invariant to become false.Invariant 7.26If modes = syn-rcvd^ isnc = isnsc ^ ackc = isns + 1 then isns = isncs.Proof: In the start state modes has the value closed, so the invariant holds in this state.We consider critical steps of the form (s; a; s0) below. The steps with a = receive-segsc(sns,acks, msgs) and a = receive-segsc(sns, acks, msgs) even though they may change ackc, arenot critical. They are not critical because they change ackc only if modec 2 sync-states and336



sn(p) � ackc, so Invariant 7.25 tells us the after these steps either modes 6= syn-rcvd _ackc 6= isns + 1.a = receive-segcs(SYN, snc)This step may cause the consequence of the invariant to go from true to false. However,from Invariant 7.2 we know that after this step ackc < isns + 1, so the invariant holds afterthis step.a = receive-segsc(SYN, sns, acks)This step assigns ack c the value [sns] + 1 and isncs the value [sns]. Thus, if ackc = sns + 1after this step, then clearly isns = isncs. If isns 6= isncs after this step, then clearly thepremise of the invariant is also false.Invariant 7.27If modes = syn-rcvd ^ isnc = isnsc and there exists a non-SYN segment p 2 in-transitcssuch that ack(p) = isns + 1 then isns = isncs.Proof: In the start state modes has the value closed, so the invariant holds in this state.We consider critical steps of the form (s; a; s0) below.a = receive-segcs(SYN, snc)This step is critical because it can cause the consequence of the invariant to go from trueto false, by assigning isnsc a value that is not equal to isnc. However, from Invariant 7.2we know that after this step ackc < isns + 1, and since Invariant 7.23 tells us that for allp 2 in-transitcs ackc � ack(p), we know that the premise of the invariant also becomes falseafter this step if the consequence becomes false.a = receive-segsc(SYN, sns, acks)This step assigns ack c the value [sns] + 1 and isncs the value [sns]. Thus, it can make theconsequence of the invariant false if [sns] 6= isns. If modes = syn-rcvd, then Invariant 7.10tells us that sns = isns. We also know from Invariant 7.1 that sns � [sns]. Therefore, if[sns] 6= isns, then [sns] < isns, which means ackc < isns + 1. From Invariant 7.23 we knowthat for all segments p 2 transitcs , ackc � ack(p). Therefore, after this step there cannotbe a segment p 2 transitcs with ack(p) = isns + 1. Therefore, the invariant holds after thisstep.a = send-segcs(snc, ackc, msgc) and a = send-segsc(snc, ackc, msgc, FIN)337



These steps may also cause the premise of the invariant to go from false to true by addinga non-SYN segment p to in-transitcs with sn(p) = isns + 1. For these steps to have thisa�ect, it must be that in state s, ack c = isns + 1. Thus, by Invariant 7.26, s:isns = s:isncs.Since these steps do not change either isns or isncs, the invariant holds after the steps.Invariant 7.281. If (isnc; isns) 2 assoc then isncs = isns ^ isnsc = isnc.2. If (isnc; isns) 2 estb-pairs then isncs = isnsProof: In the start state assoc and estb-pairs are both the empty set, so the invariant holdsin this state. We consider critcal steps of the form (s; a; a0) below.1. a = receive-segcs(SYN, snc)This step is critical because it can cause the consequence of the invariant to go fromtrue to false, by assigning isnsc a value that is not equal to isnc. However, Invariant 7.16tells us that in state s, (isnc; isns) 62 assoc, and since the step does not add any pairsto assoc, we know (isnc; isns) 62 assoc after the step.a = receive-segsc(SYN, sns, acks)This step is critical because it can cause the consequence of the invariant to go fromtrue to false, by assigning isncs a value that is not equal to isns. However, again byInvariant 7.16 we know (isnc; isns) 62 assoc after the step, so Part 1 holds.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps can cause the premise of Part 1 to go from false to true by adding the pair(isnsc; isns) to assoc if s:modes = syn-rcvd and if [ackc] = sns + 1. If this assignmentis made then clearly isnsc = isnc. From Invariant 7.27 we know that s:isncs = s:isns.Since neither of these variables changes in these steps, Part 1 holds after thesse steps.All the steps that cause the client or server to close can also make the consequence ofPart 1 go from true to false. However, those steps also make isnc or isns go to nil,so by Invariant 7.12 the premise of Part 1 is also false after any of these steps.2. a = receive-segcs(SYN, snc)This step is critical because it can cause the consequence of the invariant to go from338



true to false, by assigning isnsc a value that is not equal to isnc. Since it also assignschoose-isns to true, Invariant 7.16 tells us that in state s, (isnc; isns) 62 estb-pairs, andsince the step does not add any pairs to estb-pairs, we know (isnc; isns) 62 estb-pairsafter the step.a = receive-segsc(SYN, sns, acks)This step can cause the premise of Part 2 to go from false to true, and it can causethe consequence of Part 2 to go from true to false. For either case it is clear that Part2 holds after this step.All the steps that cause the client or server to close can also make the consequence ofPart 2 go from true to false. As for Part 1, we know Part 2 holds after these steps.Invariant 7.29If (isnc; isns) 2 assoc^modec 62 frec; resetg then for all segments p 2 in-transitsc, acks �ack(p).Proof: In the initial state assoc is the empty set, so the invariant holds in this state. Weexamine the critical steps of the form (s; a; s0) below.a = receive-segcs(SYN, snc)This step may make the consequence of the invariant go from true to false, but after this stepmodes = syn-rcvd, and from Invariant 7.16 we know that (isnc; isns) 62 assoc. Therefore,the premise of the invariant is also false after this step.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps add the pair (isnsc; isns) to assoc if s:modes = syn-rcvd. Thus, it can makethe premise of the invariant go from false to true. If the premise of the invariant is true,Invariant 7.28 tells us that isncs = isns ^ isnsc = isnc. We also know from Invariants 7.17and 7.18 that if the premise is true, modec 2 sync-states. Therefore, by Invariant 7.24 weknow that for all segments p 2 s:in-transitsc, s:acks � ack(p). Since these steps do notchange the elements of in-transitsc, the invariant holds after these steps.Invariant 7.301. Ifmodec 2 festb; close-waitg^:ready-to-send c ^modes 62 frec; resetg^(isnc; isns) 2estb-pairs ^ isnsc = isnc then snc < acks.339



2. Ifmodes 2 festb; close-waitg^:ready-to-send s ^modec 62 frec; resetg^(isnc; isns) 2assoc then sns < ackc.Proof: In the initial state modec and modes are closed, so the invariant holds in this state.We consider the critical steps of the form (s; a; s0) for Part 1 below.1. a = send-msgc(open, m, close)This step may cause the consequence of Part 1 to go from true to false by incrementingsnc, but if it does, it also assigns modec to syn-sent, so Part 1 holds after this step.a = prepare-msgcThis step is critical because it increments snc and may change ready-to-sendc to false.However, either snc is incremented, and ready-to-send c is set to true, or snc is incre-mented, ready-to-send c is set to false, and modec is set to fin-wait-1 or last-ack.In either case Part 1 still holds after this step.a = receive-segsc(SYN, sns, acks)This step changesmodec to estb, adds (isnc; isns) to estb-pairs, and sets ready-to-send cto false. However, these changes are only made if [acks] = snc + 1. Since Invari-ant 7.24 tells us that [acks] � acks, we know Part 1 holds after this step.a = receive-segsc(sns, acks, msgs) and a = receive-segsc(sns, acks, msgs, FIN)These steps may change ready-to-send c to false. However, this change is only madeif [acks] = snc + 1 and modec 2 sync-states. Since by Invariant 7.24 we know that[acks] � acks, Part 1 holds after these steps.2. We now consider the critical steps for Part 2.a = receive-segcs(SYN, snc)This step increments sns, but it also sets modes to syn-rcvd, so Part 2 holds afterthis step.a = prepare-msgsThe proof that Part 2 holds after this step is symmetric to the proof that Part 1 holdsafter the (s, prepare-msgc, s0) step.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)340



These steps may change ready-to-send c to false. However, this change is only madeif [acks] = snc + 1. From Invariants 7.18 and 7.17, we know that modec 6= syn-sent,so we know ackc 2 N. Therefore, by Invariant 7.23 we know that [ackc] � ackc, so Part2 holds after this step.Invariant 7.311. If (i; isns) 2 assoc then isnsc = i.2. If (isnsc; j) 2 assoc^modes 2 sync-states then isns = j.Proof: In the start state assoc is the empty set, so the invariant holds in this state. Weconsider critical steps of the form (s; a; s0) below.1. a = receive-segcs(SYN, snc)This step may assign isnsc a value other than i and isns the value j. However, ifthese assignments are made, modes is also assigned the value syn-rcvd. Thus, fromInvariant 7.16 we know that (i; j) 62 assoc.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may add the pair (isnsc; isns) to assoc, so Part 1 clearly holds after thesesteps.2. a = receive-segcs(SYN, snc)This step may assign isns a value other than j. However, this step also assigns modesthe value syn-rcvd, so Part 2 holds after this step.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may change the premise of Part 2 from false to true by adding (isnsc ; isns)to assoc. However, the consequence is also obviously true after the pair is added, soPart 2 holds after these steps.Invariant 7.32If (isnsc ; j) 2 assoc ^ isns 6= j ^modes 62 frec; resetg then modes = syn-rcvd.Proof: In the start state assoc is the empty set, so the invariant holds in this state. We341



consider critical steps of the form (s; a; s0) below.a = receive-segcs(SYN, snc)This step may assign isnsc the value i and isns a value other than j. However it also assignsmodes to syn-rcvd.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may change the consequence of the invariant from true to false by assigningmodes to estb or to close-wait. If this change is made the pair (isnsc; isns) is also added toassoc. However, we know from Invariant 7.31 that if (isnsc; j) 2 assoc^modes 2 sync-states,then isns = j. Therefore, the premise, of the invariant is also false after these steps, so theinvariant holds.Invariant 7.331. If (h; j) 2 assoc^ (i; j) 2 assoc then h = i.2. If (i; j) 2 assoc ^ (i; k) 2 assoc then j = k.Proof: In the start state assoc is the empty set, so the invariant holds in this state. Weconsider critical steps of the form (s; a; s0) for Part 1 below.1. a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may add the pair (isnsc ; isns) to assoc. Without loss of generality assumethe pair (h; j) 2 s:assoc then these steps can make the premise of Part 1 go from falseto true if s:isnsc = i and s:isns = j. However, from Invariant 7.31 we know that if(h; j) 2 s:assoc ^ isns = j then s:isnsc = h. Therefore, h = i, so Part 1 holds afterthese steps.2. We next consider the critical steps for Part 2.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may add the pair (isnsc ; isns) to assoc. Without loss of generality assumethe pair (i; j) 2 s:assoc then these steps can make the premise of Part 2 go fromfalse to true if s:isnsc = i and s:isns = k. If the pair is added, then after these stepss0:modes 2 festb; close-waitg, and since the step does not change isns, s0:isns = k.From Invariant 7.32, we know that if (i; j) 2 assoc ^ isnsc = i ^ isns 6= j ^ modes 62342



frec; resetg, then modes = syn-rcvd. Since modes 6= syn-rcvd, the premise ofInvariant 7.32 must be false. The only clause in the premise that can be false isisns 6= j. Therefore isns = j, which means k = j. Therefore, Part 2 holds after thesesteps.Invariant 7.34If modes 2 fsyn-rcvdg [ sync-states ^ modec 2 sync-states and there exists i such that(i; isns) 2 estb-pairs then i = isnc.Proof: In the start state estb-pairs is the empty set, so the invariant holds in this state.We consider critcal steps of the form (s; a; a0) below.a = send-msgc(open, m, close)This step may cause the consequence of the invariant to go from true to false by assigingisnc to a value other than i. However, when this assignment is made, modec is also assignedthe value syn-sent, so the invariant holds after this step.a = receive-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from false to true by adding (i; isns)to estb-pairs and changing modec to be in sync-states. The invariant holds after this stepbecasue i = isnc.Invariant 7.351. If there exists p 2 in-transitcs such that msg(p) 6= msgc then sn(p) < snc _ msgc =null.2. If there exists p 2 in-transitsc such that msg(p) 6= msgs then sn(p) < sns _ msgs =null.Proof: In the start state in-transitcs and in-transitsc are both empty, so the invariant holdsin this state. We consider critical steps of the form (s; a; s0) for Part 1 below.1. a = prepare-msgcThis step assigns msgc to head(send-buf c). However, it also increments snc onceor twice. Therefore, s0:snc > s:snc. From Invariant 7.1, we know that for all p 2343



s:in-transitcs, s:snc � sn(p). Since this step does not change any elment of in-transitcs,we know s0:snc > sn(p), so Part 1 holds after this step.a = receive-segsc(sns, acks, msgs) and a = receive-segsc(sns, acks, msgs, FIN)These steps may cause the premise of Part 1 to go from false to true because theymay change msgc to null. However, the consequence also clearly becomes true.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant 7.361. If msgc 6= null and there exists p 2 in-transitcs such that sn(p) = snc then msg(p) =msgc.2. If msgs 6= null and there exists p 2 in-transitsc such that sn(p) = sns then msg(p) =msgs.Proof: In the start state in-transitcs and in-transitsc are both empty, so the invariant holdsin this state. We consider critical steps of the form (s; a; s0) for Part 1 below.1. a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc, FIN)These steps may change the premise of Part 1 from false to true by adding a segmentp to in-transitcs with sn(p) = snc. However, for segment p, msg(p) = msgc, so Part 1holds after these steps.a = receive-segsc(sns, acks, msgs) and a = receive-segsc(sns, acks, msgs, FIN)These steps may cause the consequence of Part 1 to go from true to false because theymay change msgc to null. However, the premise also clearly becomes false too.a = prepare-msgcThis step may cause the consequence of Part 1 to go from true to false by assigninga new value to msgc. However, when this assignment is made snc is incremented, sofrom Invariant 7.1 we know sn(p) 6= snc, so Part 1 holds after this step.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant 7.37 344



1. If there exists segments p and q on in-transitcs such that sn(p) = sn(q) ^ msg(p) 6=null ^ msg(q) 6= null then msg(p) = msg(q).2. If there exists segments p and q on in-transitsc such that sn(p) = sn(q) ^ msg(p) 6=null ^ msg(q) 6= null then msg(p) = msg(q).Proof: In the initial state in-transitcs and in-transitsc are both empty, so the invariantholds for this case. We consider critical steps of the form (s; a; s0) for Part 1 below.1. a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc, FIN)These steps add a segment to in-transitcs. If these steps make the premise of Part1 go from false to true, then it must be that in s:snc = sn(q) for some segmentq 2 s:in-transitcs. From Invariant 7.35 we know that since s:snc = sn(q), s:msgc =msg(q) _ s:msgc = null. Therefore, Part 1 holds after these steps.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant 7.38If modes 2 sync-states then (isnsc ; isns) 2 assoc.Proof: In the start state modes = closed, so the invariant holds in this state. We examinecritical steps of the form (s; a; s0) below.a = receive-segcs(snc,ackc, msgc) and a = receive-segcs(snc,ackc, msgc, FIN)In these steps modes may be assigned to an element of sync-states. However, if this assign-ment is made, (isnsc ; isns) is added to assoc.Invariant 7.39If modec = syn-sent ^ modes = syn-rcvd ^ isnc 6= isnsc then for all SYN segments p 2in-transitsc such that ack(p) = snc + 1, sn(p) < sns.Proof: In the start state modec = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = send-msgc(open, m, close)This step can change the premise of the invariant from false to true. However, we knowfrom Invariant 7.11 that when this happens there are no segments p 2 in-transitsc such that345



ack(p) = snc + 1. Therefore, the invariant holds after this step.a = receive-segcs(SYN, snc)This is another step that can change the premise of the invariant from false to true. Howeverfrom Invariant 7.1 we know that s:sns � sn(p) for all p 2 s:in-transitsc. After this steps:sns < s0:sns, and since the step does not change s:in-transitcs, we know s0:sns > sn(p) forall p 2 s0:in-transitsc, so the invariant holds after this step.a = send-segsc(SYN, sns, acks)This step can change the consequence of the invariant from true to false by adding a SYNsegment to in-transitsc. However, we know from Invariant 7.7 that if modes = syn-rcvdthen acks = isnsc + 1, and we know from Invariant 7.10 that if modec = syn-sent thenisnc = snc. Therefore, if acks = snc + 1 then isnc = isnsc , so the premise of the invariant isalso false.Invariant 7.40If modec 2 sync-states ^modes = syn-rcvd^ isnc 6= isnsc then ackc < sns + 1.Proof: In the start state modec = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = receive-segcs(SYN, snc)This step that can change the premise of the invariant from false to true. However, after thisstep s0:sns = s:sns + 1, and we know from Invariant 7.2 that s:ackc � s:snc + 1. Therefore,after this step s0:ackc < s0:sns + 1, so the invariant holds.a = receive-segsc(SYN, sns, acks)This step may also change the premise of the invariant from false to true, if [acks] = snc+1and modec = syn-sent. However, we know by Invariant 7.39 that [sns] < sns, and sincethis step assigns ackc to [sns] + 1, we know the invariant holds after this step.a = receive-segcs(snc, ackc, msgc) or a = receive-segcs(snc, ackc, msgc, FIN)These steps may cause the consequence of the invariant to go from true to false, but onlyif s:modes 6= syn-rcvd, or if s:modes = syn-rcvd, the steps change modes to estb, andclose-wait respectively, so the invariant holds.Invariant 7.41 346



If modec 2 sync-states ^ modes = syn-rcvd ^ isnc 6= isnsc then for all segments p 2in-transitcs, ack(p) < sns + 1.Proof: In the start state modec = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = receive-segcs(SYN, snc)This step that can change the premise of the invariant from false to true. However, byInvariant 7.11 we know the consequence is also true.a = receive-segsc(SYN, sns, acks)This step may also change the premise of the invariant from false to true, if [acks] = snc+1and modec = syn-sent. This step also assigns ackc to [sns] + 1. From Invariant 7.23 weknow that for all p 2 in-transitcs, ackc � ack(p), and from Invariant 7.1 we know sns � [sns].Therefore, after this step we know ack(p) < sns + 1.a = send-segcs(snc, ackc, msgc) or a = send-segcs(snc, ackc, msgc, FIN)These steps can change the consequence of the invariant from true to false by adding asegment p to in-transitcs with ack(p) > sn(p). However, from Invariant 7.40 we know thatif modec 2 sync-states ^modes = syn-rcvd^ isnc 6= isnsc then ackc < sns + 1. Therefore, ifackc � sns + 1 then the premise of the invariant must be false, so the invariant holds aftereither of these steps.Invariant 7.42If modes = syn-rcvd and there exists p 2 in-transitcs such that ack(p) = sns + 1, thenmodec 6= syn-sent or for all SYN segments q 2 in-transitsc, ack(q) 6= snc + 1.Proof: In the start state modes = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.We know the step where modes is assigned syn-rcvd is not critical because Invariant 7.11tells us that there are no segments p 2 in-transitcs such that ack(p) = sns + 1 when thisassignment is made.a = send-segcs(snc, ackc, msgc) or a = send-segcs(snc, ackc, msgc, FIN)These steps may change the premise of the invariant from false to true. However, if theseactions are enabled in state s, then we know s:modec 6= syn-sent, and neither of thesesteps changes modec. Therefore, the invariant holds after these steps.347



From Invariant 7.11 we know that the step where modec is assigned syn-sent is not critical,because when that assignment is made, there are no SYN segments q 2 in-transitsc withack(q) = snc + 1.a = send-segsc(SYN, sns, acks)This step may change the consequence of the invariant from true to false, if s:modes =syn-rcvd and s:acks = s:snc+1. However, if these conditions hold in state s, Invariant 7.21tells us that for all p 2 s:in-transitcs, s:sns � ack(p). Therefore, after this step the premiseof the invariant is also false, so the invariant holds.Invariant 7.43If modec = syn-sent and there exists SYN segment p 2 in-transitsc such that ack(p) =snc + 1, then modes 62 sync-states and for all i 2 N (i; isns) 62 assoc.Proof: In the start state modec = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = send-segsc(SYN, sns, acks)This step can make the premise of the invariant go from false to true by adding a SYNsegment with ack(p) = snc + 1 to in-transitsc. However, this step is only enabled ifmodes = syn-rcvd and we know from Invariant 7.16 that if modes = syn-rcvd then forall i, (i; isns) 62 assoc. Since this step does not add any elements to assoc, we know theinvariant holds after this step.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps can make the consequence of the invariant go from true to false by adding(isnsc; isns) to assoc and assiging modes to a value in sync-states. These assigments hap-pen if s:modec = syn-rcvd and there exists a segment p 2 s:in-transitcs with ack(p) =s:sns + 1. From Invariant 7.42 we know that if these conditions are true in state s, theneither s:modec 6= syn-sent or there are no SYN segment p 2 s:in-transitsc such thatack(p) = s:snc + 1. Since these steps do not change modec or in-transitsc, we now theinvariant holds after this step.Invariant 7.44If modec 2 sync-states ^ (isnsc; isns) 2 assoc then isnc = isnsc .348



Proof: In the start state modec = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below. Because of Invariant 7.43, we know a = receive-segsc(SYN, sns, acks) is not a critical step.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps can make the premise of the invariant go from false to true by adding (isnsc ; isns)to assoc. This assigment happens if s:modec = syn-rcvd and there exists a segment p 2s:in-transitcs with ack(p) = s:sns + 1. From Invariant 7.41 we know that if this is the casein state s, then s:isnc = s:isnsc. Since these steps do not change either isnc or isnsc , we knowthe invariant holds after these steps.a = send-msgc(open, m, close)This step can make the consequence of the invariant go from true to false, but if thishappens, modec is also assigned to syn-sent, so the invariant hols after this step.a = receive-segcs(SYN, snc)This can also make the consequence of the invariant go from true to false. However, fromInvariant 7.16, we know that (isnsc; isns) 62 assoc, so the invariant holds after this step.Invariant 7.45If modec = syn-sent and there exists a SYN segment p 2 in-transitsc such that ack(p) =snc + 1 then for all non-SYN segments q 2 in-transitsc, sn(q) < sn(p) + 1.Proof: In the start state modec = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = send-segsc(SYN, sns, acks)This step may change the premise of the invariant from false to true by adding a SYNsegment to in-transitcs. However, from Invariant 7.1 we know that sns greater than orequal to sn(q) for q 2 in-transitsc, so the invariant holds after this step.a = send-segsc(sns, acks, msgs) and a = send-segsc(sns, acks, msgs, FIN)These steps add non-SYN segments to in-transitsc if s:modes 2 sync-states, so they canmake the consequence of the invariant go from true to false. From Invariant 7.43 we knowthat if s:modes is in the set of synchronized states, then the premise of the invariant is alsofalse. 349



Invariant 7.46If modec 2 sync-states and there exists a non-SYN segment p 2 in-transitsc such thatsn(p) � ackc then there exists j such that (isnc; j) 2 assoc.Proof: In the start state modec = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below. We know that a = receive-segsc(SYN, sns, acks) isnot critical even though it may assignmodec to estb, and ack c to [sns]+1. These assignmentare made if s:modec = syn-sent and [acks] = snc + 1. However, from Invariant 7.45 weknow that in state s, all non-SYN segments q 2 s:in-transitsc, have sn(q) < [sns]+1. Thus,the premise of the invariant does not become true after this step.a = send-segsc(sns, acks, msgs) and a = send-segsc(sns, acks, msgs, FIN)These steps add a non-SYN segment to in-transitsc if s:modes 2 sync-states, so they canmake the premise of the invariant go from false to true. From Invariant 7.38 we know thatif modes 2 sync-states then there exists i such that (i; isns) 2 assoc. From Invariant 7.31we know that if (i; isns) 2 assoc then i = isnsc, and from Invariant 7.44 we know thatisnc = isnsc . Therefore, the invariant holds after these steps.Invariant 7.47If modec 2 fclose-wait; closing; last-ack; timed-waitg then 9 j such that (isnc; j) 2assoc.Proof: In the start state modec = closed, so the invariant holds in this state. We examinecritical steps of the form (s; a; s0) below.a = receive-segsc(sns,acks, msgs, FIN)This step can make the premise of the invariant go from false to true. However, fromInvariant 7.46, we know that the consequence is also true, so the invariant holds.Invariant 7.48If modes = syn-rcvd ^ isnc = isnsc ^ ackc = isns + 1 then modec 62 fclose-wait,closing; last-ack; timed-waitg.Proof: In the start state modes has the value closed, so the invariant holds in this state.We consider critical steps of the form (s; a; s0) below. The a = receive-segsc(sns, acks,msgs) step is not critical even though it may cause ackc to be assigned [sns] + 1. We know350



it is not critical because Invariant 7.25 tells us that if this assignment is made, then eithermodes 6= syn-rcvd or ackc < isns + 1.a = receive-segsc(SYN, sns, acks)This step may assign ackc the value sns + 1. However, modec is also assigned estb, so theinvariant holds after this step.a = receive-segsc(sns, acks, msgs, FIN)This step may cause the consequence of the invariant to go from true to false. This changehappens if s:modec 2 festb; fin-wait-1; fin-wait-2g and [sns] � ackc. However, formInvariant 7.25 we know that if these conditions are true in state s, then either modes 6=syn-rcvd or ackc < isns + 1.Invariant 7.49If modes = syn-rcvd ^ isnc = isnsc and there exists a non-SYN segment p 2 in-transitcssuch that ack(p) = sns + 1 then modec 62 fclose-wait; closing; last-ack,timed-waitg.Proof: In the start state modes has the value closed, so the invariant holds in this state.We consider critical steps of the form (s; a; s0) below.a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc, FIN)These steps may cause the premise of the invariant to go from false to true. However, weknow from Invariant 7.48 that the consequence is also true after these steps.a = receive-segsc(sns, acks, msgs, FIN)This step may cause the consequence of the invariant to go from true to false. This changehappens if s:modec 2 festb; fin-wait-1; fin-wait-2g and [sns] � ackc. However, formInvariant 7.25 we know that if these conditions are true in state s, then either modes 6=syn-rcvd or ackc < isns+1, and from Invariant 7.23 we know ackc � ack(p) for any segmentp 2 in-transitcs. Therefore, the invariant holds after this step.Invariant 7.50If modes = syn-rcvd ^ modec 62 fclosed; rec; resetg and there exists a non-SYN seg-ment p 2 in-transitcs such that ack(p) = sns + 1 and there exists a FIN segment q 2in-transitcs such that (sn(q) � max(acks; sn(p) + 1)_ (p = q ^ sn(q) � acks)) then modec 2351



ffin-wait-1; fin-wait-2; closing; timed-wait; last-ackg.Proof: In the start state modec is closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below. We know a = receive-msgcs(SYN, snc) wheremodes is assigned syn-rcvd is not critical because Invariant 7.11 tells us that after this stepthere are no segments p 2 in-transitcs such that ack(p) = sns + 1. We also know that a =send-segcs(snc, ackc, msgc) is not critical because Invariant 7.1 tells us that there cannotbe a segment q 2 in-transitcs with sn(q) > [snc], which must be the case if this step makesthe premise of the invariant true.a = send-segcs(snc, ackc, msgc, FIN)This step adds a FIN segment to in-transitcs, but only if modec 2 ffin-wait-1; closing,last-ackg, so the invariant holds after this step.Steps that cause modes to be in the set fclosed; rec; resetg are also critical because thecause the consequence of Part 1 to go from true to false, but the premise also clearly becomesfalse after any of these steps, so the invariant still holds.Invariant 7.511. If modec 2 sync-states^modes 62 frec; resetg^ (isnc; isns) 2 assoc and there exists aFIN segment p 2 in-transitsc such that sn(p) � ackc thenmodes 2 ffin-wait-1; fin-wait-2; closing; timed-wait; last-ackg.2. If modes 2 sync-states ^modec 62 frec; resetg ^ (isnc; isns) 2 estb-pairs ^ isnc = isnscand there exists a FIN segment p 2 in-transitcs such that sn(p) � acks then modec 2ffin-wait-1; fin-wait-2; closing; timed-wait; last-ackg.Proof: In the start state modec and modes are closed, so the invariant holds in this state.We consider critical steps of the form (s; a; s0) below. We know that a = receive-segsc(SYN,sns, acks) is not critical even though it may assign modec to estb, and ack c to [sns] + 1.These assignment are made if s:modec = syn-sent. From Invariant 7.16 we know that ifs:modec = syn-sent, then (isnc; isns) 62 assoc. Thus, the premise of the invariant does notbecome true after this step. Steps with a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN) may cause (isnc; isns) to be added to assoc if [ackc] > sns.However, these steps do not make the premise of Part 1 go from false to true, because fromInvariant 7.23 we know that ackc � [ackc], and from Invariant 7.1 we know sns � sn(p) for352



all p 2 in-transitsc. Therefore, if these steps cause (isnc; isns) to be added to assoc then weknow there are no segments p 2 in-transitsc such that sn(p) � ackc.1. a = send-segsc(sns, acks, msgs, FIN)This step adds a FIN segment to in-transitsc, but only if s:modes 2 ffin-wait-1;last-ack; closingg, so Part 1 obviously holds after this step.Steps that cause modes to be in the set fclosed; rec; resetg are also critical becausethe cause the consequence of Part 1 to go from true to false, but the premise alsoclearly becomes false after any of these steps, so Part 1 still holds.2. For Part 2 we know that a = receive-segsc(SYN, sns, acks) is not critical even thoughthis step may cause (isnc; isns) to be in estb-pairs if modec = syn-rcvd. However, weknow from Invariant 7.19 that if this is the case in state s, then modes 62 sync-states,so the premise does not become true after this step.a = send-segcs(snc, ackc, msgc, FIN)Symmetric to the case for a = send-segsc(sns, acks, msgs, FIN) of Part 1.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may cause modes to be in sync-states if s:modes = syn-rcvd. However,we know from Invariant 7.50, that if this is the case, then the consequence of Part 2is also true.Steps that cause modec to be in the set fclosed; rec; resetg are also critical becausethe cause the consequence of Part 2 to go from true to false, but the premise alsoclearly becomes false after any of these steps, so Part 2 still holds.Invariant 7.521. If modec 2 fclose-wait; closing; last-ack; timed-waitg ^modes 62 frec; resetg^ (isnc; isns) 2 assoc then modes 2 ffin-wait-1; fin-wait-2; closing;timed-wait; last-ackg.2. If modes 2 fclose-wait; closing; last-ack; timed-waitg ^modec 62 frec; resetg^ (isnc; isns) 2 estb-pairs ^ isnc = isnsc then modec 2 ffin-wait-1; fin-wait-2;closing, timed-wait; last-ackg. 353



Proof: In the initial state modes and modec are closed, so the invariant holds. Weconsider critical actions of the form (s; a; s0) below. For Part 1 we know that a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN) are not critical eventhough they may cause the pair (isnc; isns) to be added to assoc. The pair is added ifs:modes = syn-rcvd ^ [ackc] = s:sns + 1. However, if these conditions are true in state s,then Invariant 7.49 tells us that s:modec 62 fclose-wait; closing; last-ack; timed-waitg,and since these steps do not change modec, we know the premise does not become true.1. a = receive-segsc(sns, acks, msgs, FIN)This step may cause the premise of the invariant to go from false to true. This changehappens if s:modec 2 sync-states and [sns] � s:ackc. Therefore, from Invariant 7.51we know that s:modes 2 ffin-wait-1; fin-wait-2; closing;timed-wait; last-ackg. Since step does not change modes, we know Part 1 holdsafter this step.Steps that cause modes to be in the set fclosed; rec; resetg are also critical becausethe cause the consequence of Part 1 to go from true to false, but the premise alsoclearly becomes false after any of these steps, so Part 1 still holds.2. For Part 2 we know that a = receive-segsc(SYN, sns, acks) is not critical even thoughthis step may cause (isnc; isns) to be in estb-pairs if modec = syn-rcvd. However, weknow from Invariant 7.19 that if this is the case in state s, then modes 62 sync-states,so the premise does not become true after this step.a = receive-segcs(snc, ackc, msgc, FIN)The proof that Part 2 holds after this step is symmetric to the proof that Part 1 holdsafter a = receive-segsc(sns, acks, msgs, FIN).Steps that cause modec to be in the set fclosed; rec; resetg are also critical becausethe cause the consequence of Part 2 to go from true to false, but the premise alsoclearly becomes false after any of these steps, so Part 2 still holds.Invariant 7.53 354



1. If modes 2 fsyn-rcvdg [ sync-states ^modec 2 frec; resetg [ sync-states ^ isnc =isnsc ^ isns = isncs and there exists p 2 in-transitcs such that sn(p) � acks, thensnc = sn(p).2. If modec 2 sync-states ^ (isnc; isns) 2 assoc and there exists p 2 in-transitsc such thatsn(p) � ackc, then sns = sn(p).Proof: In the start state modec and modes have the value closed, so the invariant holdsin this state. We consider critical steps of the form (s; a; s0) for Part 1 below. The stepwith a = receive-segcs(SYN, snc) is not critical for Part 1 because after this step isns 6= isncs(Invariant 7.9). The step with a = receive-segsc(SYN, sns, acks) is also not critical. Thisstep causes modec to be in sync-states and isncs to be isns only if s:modec = syn-sentand [acks] = s:snc + 1. From Invariant 7.1 we know snc � sn(p) for all p 2 in-transitcs,and from Invariant 7.10 we know that s:isnc = s:snc. Finally, form Invariant 7.6 we knowacks > isnsc . Since isnsc = isnc, s:isnc � sn(p) for any p 2 s:in-transitcs, and acks > isnsc , weknow that after this step there are no segments p 2 in-transitcs such that sn(p) � acks. Thesteps where a = crashc or a = receive-segsc(RST, acks, rst-seqs) make change modec fromsyn-sent to rec, or reset respectively. However, these steps are not critical, because ifs:modec = syn-sent then s:isncs is equal to nil, but since modes 2 fsyn-rcvdg[sync-states,we know isns 6= nil (Invariant 7.5). Therefore, these steps do not make the premise gofrom false to true.1. a = send-msgc(open, m, close)This step may change the consequence of the invariant from true to false by incre-menting snc. However, if this change happens in this step, then modec is assignedsyn-sent, so the invariant holds after this step.a = prepare-msgcThis step is enabled if s:modec 2 festb; close-waitg ^ :s:ready-to-send c. We knowfrom Invariant 7.30 that if this condition is true in state s, then s:snc < s:acks. FromInvariant 7.1 we know s:snc � sn(p) for any p 2 s:in-transitcs. Therefore, the premiseof the invariant, is false before and after this step.a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc)355



These steps can make the premise of the invariant go from false to true, by addinga segment p to in-transitcs such that sn(p) � acks. However, snc = sn(p), so theinvariant holds after these steps.2. Before we examine the critical actions for Part 2, we point out that a = receive-segsc(SYN, sns, acks) is not critical because from Invariant 7.16we know that (isnc; isns) 62assoc before and after this step. We also know that a = receive-segcs(snc, ackc, msgc)and a = receive-segcs(snc, ackc, msgc, FIN) are not critical even though these stepscan cause (isnc; isns) to be added to assoc if [ackc] = sns+1. We know these steps arenot critical because from Invariant 7.29 we know that ackc � [ackc] and from Invari-ant 7.1 we know that for any segment p 2 in-transitsc, sns � sn(p). Therfore, afterthese steps we know there are no segments p 2 in-transitsc such that sn(p) � ackc.a = receive-segcs(SYN, snc)This step may change the consequence of Part 2 from true to false, but from In-variant 7.16 we know that (isnc; isns) 62 assoc, so the premise is also false after thisstep.a = prepare-msgsThe proof that the Part 2 holds after this step is symmetric to the proof for a =prepare-msgc for Part 1.a = send-segsc(sns, acks, msgs) and a = send-segcs(sns, acks, msgs)These steps can make the premise of the invariant go from false to true, by addinga segment p to in-transitcs such that sn(p) � acks. However, sns = sn(p), so Part 2holds after these steps.Invariant 7.541. If modes 2 fsyn-rcvdg [ sync-states ^ modec 2 sync-states ^ (ready-to-send c _send-�nc) ^ (isnc; isns) 2 estb-pairs ^ isnsc = isnc ^ ((snc = acks ^ :(rcvd-closec ^send-buf c = �)) _ snc = acks + 1) then msgc 6= null.2. If modec 2 sync-states ^ (isnc; isns) 2 assoc ^ (ready-to-sends _ send-�ns) ^ ((sns =ackc) ^ :(rcvd-closes ^ send-buf s = �)) _ (sns = ackc + 1) then msgs 6= null.356



Proof: In the start state modec and modes have the value closed, so the invariant holdsin this state. We consider critical steps of the form (s; a; s0) for Part 1 below.1. a = prepare-msgcThis step may cause the premise of the invariant to go from false to true, but msgcalso gets assigned to head(send-buf c), so it is not equal to null. Therefore, Part 1holds after this step.a = receive-segsc(sns, acks, msgs) and a = receive-segsc(sns, acks, msgs, FIN)These steps may cause the consequence of Part 1 to go from true to false. However,they also make the premise false, so Part 1 holds after these steps.2. The proof for Part 2 is symmetric.Invariant 7.551. If modes 2 sync-states and there exists non-FIN segment p 2 in-transitcs such thatsn(p) = acks or a FIN segment p 2 in-transitcs such that sn(p) = acks + 1 thenmsg(p) 6= null.2. If modec 2 sync-states and there exists non-FIN segment p 2 in-transitsc such thatsn(p) = ackc or a FIN segment p 2 in-transitsc such that sn(p) = ackc + 1 thenmsg(p) 6= null.Proof: In the start state modec = modes = closed, so the invariant holds in this state. Weexamine critical steps of the form (s; a; s0) below.1. a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc, FIN)These can make the premise of the Part 1 go from false to true by adding a segmentto in-transitcs that satis�es the properties of Part 1. From Invariant 7.54 we knowthat if, the consequence of Part 1 is also true.2. The proof for Part 2 is symmetric. 357



Invariant 7.56If modes = syn-rcvd and there exists non-FIN segment p 2 in-transitcs such that sn(p) =acks or a FIN segment p 2 in-transitcs such that sn(p) = acks+1 and ack(p) = sns+1 thenmsg(p) 6= null.Proof: The proof is the same as the proof of Part 1 of Invariant 7.55.Invariant 7.571. If modec 2 fclose-wait; closing; last-ack; timed-waitg ^modes 62 frec; resetg^ (isnc; isns) 2 assoc then sns < ackc.2. If modes 2 fclose-wait; closing; last-ack; timed-waitg ^modec 62 frec; resetg^ (isnc; isns) 2 estb-pairs ^ isnc = isnsc then snc < acks.Proof: In the initial state modes and modec are closed, so the invariant holds. Weconsider critical actions of the form (s; a; s0) below. For Part 1 we know that a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN) are not critical eventhough they may cause the pair (isnc; isns) to be added to assoc. The pair is added ifs:modes = syn-rcvd ^ [ackc] = s:sns + 1. However, if these conditions are true in state s,then Invariant 7.49 tell us that s:modec 62 fclose-wait; closing; last-ack; timed-waitg,and since these steps do not change modec, we know the premise does not become true.1. a = receive-segcs(SYN, snc)This step may cause the consequence of Part 1 to go from true to false by assigningsns to a value greater than ackc. However, we from Invariant 7.16 that when thisassignment happens, (isnc; isns) 62 assoc, so the invariant holds after this step.a = receive-segsc(SYN, sns, acks)This step may cause the consequence of Part 1 to go from true to false by assigningackc a value less than or equal to sns. However, we know from Invariant 7.16 thatwhen this assignment happens, (isnc; isns) 62 assoc, so the invariant holds after thisstep.a = receive-segsc(sns, acks, msgs, FIN)This step may cause the premise of Part 1 to go from false to true if [sns] � ackc. From358



Invariant 7.53 we know that sns = [sns], and this step also assigns ack c to [sns] + 1,therefore Part 1 holds after this step.a = prepare-msgsThis step may also cause the consequence of Part 1 to go from true to false by assigningsns to a value greater than ackc. This step is enabled if modes 2 festb; close-waitg.However, from Invariant 7.52 we know that if modes is in this set, then the premiseof Part 1 is also false.2. We consider the critical actions for Part 2 below. The proof is mostly symmetric tothe proof for Part 1. We know that a = receive-segsc(SYN, sns, acks) is not criticaleven though this step may cause (isnc; isns) to be in estb-pairs if modec = syn-rcvd.However, we know from Invariant 7.19 that if this is the case in state s, then modes 62sync-states, so the premise does not become true after this step.a = send-msgc(open, m, close)This step may cause the consequence of Part 2 to go from true to false by assigningsns to a value greater than ackc. However, we from Invariant 7.16 that when thisassignment happens, (isnc; isns) 62 estb-pairs, so the invariant holds after this step.a = receive-segcs(SYN, snc)This step may cause the consequence of Part 2 to go from true to false by assigningacks a value less than or equal to snc. However, we know from Invariant 7.16 thatwhen this assignment happens, (isnc; isns) 62 estb-pairs, so the invariant holds afterthis step.a = receive-segcs(snc, ackc, msgc, FIN)The proof for this case is symmetric to the case for a = receive-segsc(sns, acks, msgs,FIN) of Part 1.a = prepare-msgcThe proof for this case is symmetric to the case for a = prepare-msgs of Part 1.Invariant 7.58 359



1. Ifmodec 2 fclose-wait; closing; timed-waitg^modes 62 frec; resetg ^ (isnc; isns) 2assoc then push-data c = true _ rcv-buf c = �.2. If Ifmodes 2 fclose-wait; closing; timed-waitg ^modec 62 frec; resetg ^ (isnc; isns) 2estb-pairs ^ isnc = isnsc then push-data s = true _ rcv-buf s = �.Proof: In the initial statemodes and modec are closed, so the invariant holds. We considercritical actions of the form (s; a; s0) below.1. a = receive-segsc(sns, acks, msgs)This step may cause the consequence of Part 1 to go from true to false, but onlyif [sns] = ackc. We know from Invariant 7.1 that [sns] � sns, and we know fromInvariant 7.57 that if the premise of Part 1 is true, then sns < ackc. Therefore, if[sns] = ackc, then the premise must be false, so Part 1 holds after this step.a = receive-segsc(sns, acks, msgs, FIN)This step may cause the premise of Part 1 to go from false to true. However, this stepalso sets push-data c to true. Therefore, Part 1 holds after this step.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant 7.591. If modec = last-ack ^modes 62 frec; resetg ^ (isnc; isns) 2 assoc then rcv-buf c = �.2. If modes = last-ack ^modec 62 frec; resetg ^ (isnc; isns) 2 estb-pairs ^ isnc = isnscthen rcv-buf s = �.Proof: In the initial statemodes and modec are closed, so the invariant holds. We considercritical actions of the form (s; a; s0) below.1. a = prepare-msgcThis step may change the premise of Part 1 from false to true. This change happensif s:modec = close-wait ^ :s:push-data c. However, if these conditions are true instate s, then from Invariant 7.58, we know that rcv-buf c = �, so Part 1 holds afterthis step. 360



a = receive-segsc(sns, acks, msgs) and a = receive-segsc(sns, acks, msgs, FIN)These steps may cause the consequence of Part 1 to go from true to false, but onlyif [sns] � ackc. We know from Invariant 7.1 that [sns] � sns, and we know fromInvariant 7.57 that if the premise of Part 1 is true, then sns < ackc. Therefore, if[sns] � ackc, then the premise must be false, so Part 1 holds after these steps.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant 7.601. If modec = closing ^ send-�n-ackc = true then rcv-buf c = �.2. If modes = closing ^ send-�n-ackc = true then rcv-buf s = �.Proof: In the initial statemodes and modec are closed, so the invariant holds. We considercritical actions of the form (s; a; s0) below.1. a = send-segcs(snc, ackc, msgc)These steps may cause the premise of Part 1 to go from false to true by assigningsend-�n-ackc to true. This assigment is made if :push-data c. Therefore, by Invari-ant 7.58 we know that rcv-buf c = �, so Part 1 holds after this step.a = receive-segsc(sns, acks, msgs) and a = receive-segsc(sns, acks, msgs, FIN)These steps may cause the consequence of Part 1 to go from true to false, but onlyif [sns] � ackc. We know from Invariant 7.1 that [sns] � sns, and we know fromInvariant 7.57 that if the premise of Part 1 is true, then sns < ackc. Therefore, if[sns] � ackc, then the premise must be false, so Part 1 holds after these steps.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant 7.611. If modec = timed-wait ^ �rst(t-outc) 2 T then rcv-buf c = �.2. If modes = timed-wait ^ �rst(t-outs) 2 T then rcv-buf s = �.361



Proof: In the initial statemodes and modec are closed, so the invariant holds. We considercritical actions of the form (s; a; s0) below.1. a = send-segcs(snc, ackc, msgc)This step may cause the premise of the Part 1 to go from false to true by assign-ing �rst(t-outc) to nowc + 2�. This assignment happens if modec = timed-wait ^:push-data c. From Invariant 7.58 we know that if these conditions are true, thenrcv-buf c = �.a = receive-segsc(sns, acks, msgs)This step may cause the premise of the Part 1 to go from false to true by assigning�rst(t-outc) to nowc. This assignment happens if modec = closing ^ send-�n-ackc =true. From Invariant 7.60 we know that if these conditions are true, then rcv-buf c = �.This step may also cause the consequence of Part 1 to go from true to false, but onlyif [sns] = ackc. We know from Invariant 7.1 that if the premise of Part 1 is true, thensns < ackc. Therefore, if [sns] = ackc, then the premise must be false, so Part 1 holdsafter this step.a = receive-segsc(sns, acks, msgs, FIN)This step may also cause the consequence of Part 1 to go from true to false, but onlyif [sns] = ackc. We know from Invariant 7.1 that if the premise of Part 1 is true, thensns < ackc. Therefore, if [sns] = ackc, then the premise must be false, so Part 1 holdsafter this step.2. The proof for Part 2 is symmetric.Invariant 7.621. If modec 2 sync-states and there exists j such that (isnc; j) 2 assoc and there existsa non-SYN segment p 2 in-transitsc such that sn(p) � ackc, then for all non-SYNsegments q 2 in-transitsc sn(q) � sn(p).2. If modes 2 fsyn-rcvdg[sync-states and there exists i, such that i = isnsc ^ (i; isns) 2estb-pairs and there exists a non-SYN segment p 2 in-transitcs such that sn(p) � acks,then for all non-SYN segments q 2 in-transitcs sn(q) � sn(p).362



Proof: In the start state modec and modes have the value closed, so the invariant holdsin this state. We consider critical steps of the form (s; a; s0)1. a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may cause the premise of the invariant to go from false to true by adding(isnc; isns) to assoc. If the pair is added to assoc, then these steps also cause modes tobe in a synchronized state. From Invariant 7.53 we know that if modes 2 sync-statesand the rest of the premise of Part 1 is true, then we know that sns = sn(p). Thus,from Invariant 7.1 we know that the consequence of Part 1 is also true.a = send-segsc(sns, acks, msgs) and a = send-segsc(sns, acks, msgs,FIN)These steps may cause the premise of Part 1 to go from false to true, or the con-sequence of Part 1 to go from true to false, but these steps are only enabled ifmodes 2 sync-states. If modes 2 sync-states, then by Invariants 7.38 and 7.44 weknow (isnc; isns) 2 assoc. Thus, by Invariants 7.53 and 7.1 we know Part 1 remainstrue after these steps.2. a = receive-segsc(SYN, sns, acks, msgs)This step may cause (i; isns) to be added to estb-pairs. This step also changes modecto estb. From Invariant 7.53 we know that if mode = estb and the rest of the premiseof Part 2 is true, then we know that snc = sn(p). Thus, from Invariant 7.1 we knowthat the consequence of Part 2 is also true.a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc,FIN)These steps may cause the premise of Part 2 to go from false to true, or the con-sequence of Part 2 to go from true to false, but these steps are only enabled ifmodec 2 sync-states. From Invariant 7.34 we know that if modec 2 sync-states andthe premise of the Part 2 is true, then (isnc; isns) 2 estb-pairs. Therefore, from In-variants 7.53 and 7.1 we know Part 2 remains true after these steps.Invariant 7.631. If modec 2 frec; resetg [ sync-states ^ modes 2 fsyn-rcvdg [ sync-states ^ isnc =isnsc ^ (isnc; isns) 2 estb-pairs ^ snc = acks + 1 then for all non-SYN segments p 2363



in-transitcs, sn(p) 6= acks.2. If modec 2 sync-states ^ (isnc; isns) 2 assoc ^ sns = ackc + 1 then for all non-SYNsegments p 2 in-transitsc, sn(p) 6= ackc.Proof: In the start state modec and modes have the value closed, so the invariant holdsin this state. We consider critical steps of the form (s; a; s0) for Part 1 below. The stepwith a = receive-segsc(SYN, sns, acks) is not critical for Part 1 because after this stepsnc 6= acks+1. The steps with a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc,ackc, msgc, FIN) are also not critical, even though they may cause acks to be incremented.We know they are not critical because, they cause ack s to be incremented if [snc] = acks,and we know from Invariant 7.53 that if [snc] = acks then snc = [snc], so after these stepssnc 6= acks + 1.1. a = prepare-msgcThis step may make the premise of Part 1 go from true to false. The step is enabledif s:modec 2 festb; close-waitg ^ :s:ready-to-send c. We know from Invariant 7.30that if these condition are true in state s, then s:snc < s:acks. From Invariant 7.1we know s:snc � sn(p) for any p 2 s:in-transitcs. Since the step does not add anyelements to in-transitcs, we know the consequence is also true after this step.a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc,FIN)These steps may change the premise of Part 1 from false to true by adding a non-SYNsegment p with sn(p) = ackc. However, the premise of the invariant is also clearlyfalse if this is the case.2. The step with a = receive-segsc(SYN, sns, acks) is not critical for Part 2 even thoughit may cause modec to become estb, if s:modec = syn-sent. It is not critical becauseInvariant 7.16 tells us that (isnc; isns) 62 assoc in states s, and since the step does notadd any elements to assoc, we know (isnc; isns) 62 assoc after the step. The steps a =receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc,FIN) may cause(isnc; isns) to be added to assoc, if [ackc] = sns + 1. Since Invariant 7.23 tells us thatackc � [ackc] we know that after this step sns 6= ackc + 1. The steps a = receive-364



segsc(sns, acks, msgs) and a = receive-segsc(sns, acks, msgs,FIN) may cause acks tobe incremented but Invariant 7.53 tells us that when this happens sns 6= ackc + 1.a = prepare-msgsThis case is symmetric to the case for a = prepare-msgc for Part 1.a = send-segsc(sns, acks, msgs) and a = send-segsc(sns, acks, msgs,FIN)These cases are symmetric to the cases with the symmetric actions for Part 1.Invariant 7.641. If modec 2 sync-states and there exists j such that (isnc; j) 2 assoc and there existsa non-SYN segment p 2 in-transitsc such that sn(p) = ackc + 1, then for all non-SYNsegments q 2 in-transitsc, sn(q) 6= ackc.2. If modes 2 fsyn-rcvdg[sync-states and there exists i, such that i = isnsc ^ (i; isns) 2estb-pairs and there exists a non-SYN segment p 2 in-transitcs such that sn(p) =acks + 1, then for all non-SYN segments q 2 in-transitcs, sn(q) 6= acks.Proof: In the start state modec and modes have the value closed, so the invariant holdsin this state. We consider critical steps of the form (s; a; s0) for Part 1 below.1. a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may cause the premise of the invariant to go from false to true by adding(isnc; isns) to assoc. If the pair is added to assoc, then these steps also cause modes tobe in a synchronized state. From Invariant 7.53 we know that if modes 2 sync-statesand the rest of the premise of Part 1 is true, then we know that sns = sn(p), andfrom Invariant 7.63 we know that if sns = ackc + 1 then for all non-SYN segmentsq 2 in-transitsc, sn(q) 6= ackc. Thus, Part 1 holds after these steps.a = send-segsc(sns, acks, msgs) and a = send-segsc(sns, acks, msgs,FIN)These steps may cause the premise of Part 1 to go from false to true, or the con-sequence of Part 1 to go from true to false, but these steps are only enabled ifmodes 2 sync-states. If modes 2 sync-states, then by Invariants 7.38 and 7.44 weknow (isnc; isns) 2 assoc. Thus, by Invariant 7.63 we know Part 1 remains true afterthese steps. 365



2. a = receive-segsc(SYN, sns, acks, msgs)This step may cause (isnc; isns) to be added to estb-pairs. This step also changesmodec to estb. From Invariant 7.53 we know that if mode = estb and the rest of thepremise of Part 2 is true, then we know that snc = sn(p). Thus, from Invariant 7.63we know that the consequence of Part 2 is also true.a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc,FIN)These steps may cause the premise of Part 2 to go from false to true, or the con-sequence of Part 2 to go from true to false, but these steps are only enabled ifmodec 2 sync-states. From Invariant 7.34 we know that if modec 2 sync-states andthe premise of the Part 2 is true, then (isnc; isns) 2 estb-pairs. Therefore, from In-variant 7.63 we know Part 2 remains true after these steps.Invariant 7.651. If modec 2 fclose-wait; closing; last-ack; timed-waitg and there exists j suchthat (isnc; j) 2 assoc then for all non-SYN segments p 2 in-transitsc, sn(p) < ackc.2. If modes 2 fclose-wait; closing; last-ack; timed-waitg and there exists i, suchthat i = isnsc ^ (i; isns) 2 estb-pairs then for all non-SYN segments p 2 in-transitcs,sn(p) < ackc.Proof: In the start state modec and modes have the value closed, so the invariant holdsin this state. We consider critical steps of the form (s; a; s0) for Part 1 below. For Part 1 weknow that a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN) arenot critical even though they may cause the pair (isnc; isns) to be added to assoc. The pairis added if s:modes = syn-rcvd^ [ackc] = s:sns+1. However, if these conditions are true instate s, then Invariant 7.49 tell us that s:modec 62 fclose-wait; closing; last-ack; timed-waitg,and since these steps do not change modec, we know the premise does not become true.1. a = receive-segsc(sns, acks, msgs, FIN)This step may cause the premise of Part 1 to go from false to true if [sns] � ackc.If this change happens, then ack c is also assigned [sns] + 1. From Invariant 7.62 we366



know that in this situation all segments p 2 in-transitsc have sn(p) � [sns]. Therefore,Part 1 holds after this step.a = send-segsc(sns, acks, msgs) and a = send-segsc(sns, acks, msgs, FIN)These steps may cause the premise of Part 1 to go from false to true, or the conse-quence of Part 1 to go from true to false. These steps are only enabled if s:modes 2sync-states. If the steps cause the premise of the invariant to become true then by In-variants 7.38 and 7.44 we know (s:isnc; s:isns) 2 s:assoc. Therefore, by Invariant 7.57we know that sns < ackc, so Part 1 holds in this situation. If the steps cause theconsequence of the Part 1 to go from true to false then again by Invariants 7.38, 7.44,and 7.57 we know the premise must be false.2. We consider the critical actions for Part 2 below. We know that a = receive-segsc(SYN,sns, acks) is not critical even though this step may cause (isnc; isns) to be in estb-pairsif modec = syn-rcvd. However, we know from Invariant 7.19 that if this is the casein state s, then modes 62 sync-states, so the premise does not become true after thisstep.a = receive-segcs(snc, ackc, msgc, FIN)The proof for this case is symmetric to the case for a = receive-segsc(sns, acks, msgs,FIN) of Part 1.a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc, FIN)These steps may cause the premise of Part 2 to go from false to true, or the consequenceof Part 2 to go from true to false. These steps are only enabled if s:modec 2 sync-states.From Invariant 7.34 we know that if modec 2 sync-states and the premise of the Part2 is true, then (isnc; isns) 2 estb-pairs. Therefore, by Invariant 7.57 we know thatsnc < acks, so Part 1 holds in this situation. If the steps cause the consequence of thePart 2 to go from true to false then again by Invariants 7.34 and 7.57 we know thepremise must be false.Invariant 7.661. Ifmodec 2 fclose-wait; closing; timed-waitg and there exists j such that (isnc; j) 2367



assoc then push-data c = true _ rcv-buf c = �.2. If If modes 2 fclose-wait; closing; timed-waitg there exists i such that (i; isns) 2estb-pairs ^ isnc = isnsc then push-data s = true _ rcv-buf s = �.Proof: In the initial statemodes and modec are closed, so the invariant holds. We considercritical actions of the form (s; a; s0) below.1. a = receive-segsc(sns, acks, msgs)This step may cause the consequence of Part 1 to go from true to false, but only if[sns] = ackc. We know from Invariant 7.65 that if the premise of Part 1 is true, thenfor all p 2 in-transitsc, sn(p) < ackc. Therefore, if [sns] = ackc, then the premise mustbe false, so Part 1 holds after this step.a = receive-segsc(sns, acks, msgs, FIN)This step may cause the premise of Part 1 to go from false to true. However, this stepalso sets push-data c to true. Therefore, Part 1 holds after this step.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant 7.671. If modec = last-ack and there exists j such that (isnc; j) 2 assoc then rcv-buf c = �.2. If modes = last-ack and there exists i, such that i = isnsc ^ (i; isns) 2 estb-pairsthen rcv-buf s = �.Proof: In the initial statemodes and modec are closed, so the invariant holds. We considercritical actions of the form (s; a; s0) below.1. a = prepare-msgcThis step may change the premise of Part 1 from false to true. This change happensif s:modec = close-wait ^ :s:push-data c. However, if these conditions are true instate s, then from Invariant 7.66, we know that rcv-buf c = �, so Part 1 holds afterthis step. 368



a = receive-segsc(sns, acks, msgs)This step may cause the consequence of Part 1 to go from true to false, but only if[sns] = ackc. However, Invariant 7.65 tells us that if this is true, then the premise ofPart 1 must be false, so Part 1 holds after this step.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant 7.68If modes = syn-rcvd and there exists a non-SYN segment p 2 in-transitcs such thatack(p) = sns + 1 and there exists a FIN segment q 2 in-transitcs such that (sn(q) �max(acks; sn(p) + 1)_ (p = q ^ sn(q) � acks)) then rcvd-closec = true _ isnc 6= isnsc.Proof: In the start state modec is closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below. We know that a = send-segcs(snc, ackc, msgc) isnot critical because Invariant 7.1 tells us that there cannot be a segment q 2 in-transitcswith sn(q) > [snc], which must be the case if this step makes the premise of the invarianttrue.a = receive-msgcs(SYN, snc)This step may cause the consequence of the invariant to go from true to false, by assigingisnsc to the value of isnc. However, Invariant 7.11 tells us that after this step there are nosegments p 2 in-transitcs such that ack(p) = sns + 1, so we the invariant holds after thisstep.a = send-segcs(snc, ackc, msgc, FIN)This step adds a FIN segment to in-transitcs, but only if modec 2 ffin-wait-1; closing,last-ackg, so by Invariant 7.13 we know the invariant holds after this step.Invariant 7.691. If modec 2 sync-states and there exists j such that (isnc; j) 2 assoc and there exists aFIN segment p 2 in-transitsc such that sn(p) � ackc then rcvd-closes = true _ isns 6=j.2. If modes 2 sync-states and there exists i such that (i; isns) 2 estb-pairs^ i = isnsc andthere exists a FIN segment p 2 in-transitcs such that sn(p) � acks then rcvd-closec =369



true _ isnc 6= i.Proof: In the start state modec and modes are closed, so the invariant holds in this state.We consider critical steps of the form (s; a; s0) below. We know that a = receive-segsc(SYN,sns, acks) is not critical even though it may assign modec to estb, and ack c to [sns] + 1.These assignment are made if s:modec = syn-sent. From Invariant 7.16 we know that ifs:modec = syn-sent, then (isnc; isns) 62 assoc. Thus, the premise of the invariant does notbecome true after this step. Steps with a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN) may cause (isnc; isns) to be added to assoc if [ackc] > sns.However, these steps do not make the premise of Part 1 go from false to true, because fromInvariant 7.23 we know that ackc � [ackc], and from Invariant 7.1 we know sns � sn(p) forall p 2 in-transitsc. Therefore, if these steps cause (isnc; isns) to be added to assoc then weknow there are no segments p 2 in-transitsc such that sn(p) � ackc.1. a = send-segsc(sns, acks, msgs, FIN)This step adds a FIN segment to in-transitsc, but only if s:modes 2 ffin-wait-1;last-ack; closingg. From Invariant 7.13 we know that if s:modes is in this set, thens:rcvd-closes = true. Since this step does not change the value of rcvd-closes, weknow Part 1 is true after this step.2. For Part 2 we know that a = receive-segsc(SYN, sns, acks) is not critical even thoughthis step may cause (isnc; isns) to be in estb-pairs if modec = syn-rcvd. However, weknow from Invariant 7.19 that if this is the case in state s, then modes 62 sync-states,so the premise does not become true after this step.a = send-segcs(snc, ackc, msgc, FIN)Symmetric to the case for a = send-segsc(sns, acks, msgs, FIN) of Part 1.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may cause modes to be in sync-states if s:modes = syn-rcvd. However,we know from Invariant 7.68, that if this is the case, then the consequence of Part 2is also true.Invariant 7.70 370



1. If modec 2 fclose-wait; closing; last-ack; timed-waitg and there exists j suchthat (isnc; j) 2 assoc then rcvd-closes = true _ isns 6= j.2. If modes 2 fclose-wait; closing; last-ack; timed-waitg and there exists i suchthat (i; isns) 2 estb-pairs ^ i = isnsc then rcvd-closec = true _ isnc 6= i.Proof: In the initial state modes and modec are closed, so the invariant holds. Weconsider critical actions of the form (s; a; s0) below. For Part 1 we know that a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN) are not critical eventhough they may cause the pair (isnc; isns) to be added to assoc. The pair is added ifs:modes = syn-rcvd ^ [ackc] = s:sns + 1. However, if these conditions are true in state s,then Invariant 7.49 tell us that s:modec 62 fclose-wait; closing; last-ack; timed-waitg,and since these steps do not change modec, we know the premise does not become true.1. a = receive-segsc(sns, acks, msgs, FIN)This step may cause the premise of the invariant to go from false to true. This changehappens if s:modec 2 sync-states and [sns] � s:ackc. Therefore, from Invariant 7.69,we know the consequence is also true, so Part 1 holds after this step.2. For Part 2 we know that a = receive-segsc(SYN, sns, acks) is not critical even thoughthis step may cause (isnc; isns) to be in estb-pairs if modec = syn-rcvd. However, weknow from Invariant 7.19 that if this is the case in state s, then modes 62 sync-states,so the premise does not become true after this step.a = receive-segcs(snc, ackc, msgc, FIN)The proof that Part 2 holds after this step is symmetric to the proof that Part 1 holdsafter a = receive-segsc(sns, acks, msgs, FIN).
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Appendix CInvariance proofs for BT CPhIn this appendix we prove the invariants of BT CPh presented in Chapter 8. In the statementof the invariants and in the proofs i > j if and only if i 2 fj + 1; : : : ; j + (231 � 1)g, wherethe additions are modulo 232. As we did in Appendix B, we use the standard inductivetechnique for proving the invariants. That is, we show that the invariants hold for the startstates and then show that for every step (s; a; s0) of T CPh, if the invariant holds in state sthen it also holds in state s0. In the proofs of the invariants from Chapter 8, we use otherinvariants of BT CPh that we state and also prove in this appendix.Invariant C.11. If (p; t) 2 in-transitcs then now � t � now+ �.2. If (p; t) 2 in-transitsc then now � t � now+ �.Proof: In the start state in-transitcs and in-transitsc are both empty, so the invariant holdsfor this state. We consider critical steps of the form (s; a; s0) below.1. a = send-segcs(p)These steps add segments to in-transitcs. However, the timestamp on the segment isnow+ �.�(t0)This is only enabled if for all segments (p; t) 2 in-transitcs s:now+ t0 � t. Therefore,if this step cause the consequence to go from true to false, then the premise must alsobe false. 373



2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant C.21. For all x 2 BN lst-time-ccc(x) � now.2. For all x 2 BN lst-time-ccs(x) � now.3. For all x 2 BN lst-time-snc(x) � now.4. For all x 2 BN lst-time-sns(x) � now.Proof: Straightforward.Invariant C.31. �rst(tickc) = last(tickc)2. �rst(ticks) = last(ticks)3. �rst(tickc) � now+ clock-rate.4. �rst(ticks) � now+ clock-rate.5. If modec 6= rec then now � last(tickc).6. If modes 6= rec then now � last(ticks).Proof: Straightforward.Invariant C.41. If modec 6= closed then con-strt-timec � now.2. If modes 62 fclosed; listeng then con-strt-times � now.Proof: Straightforward.Invariant C.51. snc 2 BN if and only if modec 6= closed.2. sns 2 BN if and only if modes 62 fclosed; listeng.Proof: Straightforward. 374



Invariant C.61. For all segments (p; t) 2 in-transitcs sn(p) 6= nil.2. For all segments (p; t) 2 in-transitsc sn(p) 6= nil.Proof: Straightforward.Invariant C.71. If modec 6= closed ^ wait-t oc 6=1 then wait-t oc � now+ wt .2. If modes 6= closed ^ wait-t os 6=1 then wait-t os � now + wt .Proof: Straightforward.Invariant C.8If modec = rec then �rst(recovc) > t + � + rt + wt for any segment (p; t) 2 in-transitcs.Proof: In the start state modec = closed so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = crashcThis step may cause the premise of Part 1 to go from false to true. However, in thisstep �rst(recovc) is set to now+ qt , and from Invariant C.1 we know that for any segment(p; t) 2 in-transitcs, t � now+�. Therefore, since qt > wt + rt +2�, Part 1 holds after thisstep.a = send-segcs(p)These steps may cause the consequence of Part 1 to go from true to false, but they are onlyenabled if modec 6= rec.Invariant C.9If modes = syn-rcvd ^ wait-t os =1 then last(responses) � now+ rt.Proof: In the start state modes = closed so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = receive-segcs(SYN, snc)This step may cause the premise of the invariant to go from false to true. However in thisstep last(responsec) is set to now+ rt, so the invariant holds after this step.375



a = send-segcs(p)These steps may cause the consequence of the invariant to go from true to false. In thecase where p = (SYN ; snc), after that step wait-t oc 6= 1. After the other steps modec 6=syn-rcvd, so the invariant holds.Invariant C.10If modec = rec ^ modes = syn-rcvd ^ wait-t os =1 then �rst(recovc) > last(responses)+wt + �.Proof: In the start state modec = closed so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = crashcThis step may cause the premise of the invariant to go from false to true. From Invariant C.9we know that if modes = syn-rcvd ^ wait-t os = 1 then last(responses) � now + rt.Therefore, since �rst(recovc) is set to now+ qt in this step, the invariant holds.a = receive-segcs(SYN, snc)This step may cause the premise of the invariant to go from false to true. Let (p; t) bethe segment received in this step. From Invariant C.8 we know that if modec = rec then�rst(recovc) > t+�+ rt +wt . Since last(responses) is set to now+ rt in this step, and fromInvariant C.1 we know t � now, the invariant holds after this step.Invariant C.11If modec = rec ^ modes = syn-rcvd ^ wait-t os =1 then �rst(recovc) > now+ wt + �.Proof: In the start state modec = closed so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = crashcThis step may cause the premise of the invariant to go from false to true. Since �rst(recovc)is set to now+ qt in this step, the invariant clearly holds.a = receive-segcs(SYN, snc)This step may cause the premise of the invariant to go from false to true. Let (p; t) bethe segment received in this step. From Invariant C.8 we know that if modec = rec then376



�rst(recovc) > t+�+ rt +wt . Since by Invariant C.1, t � now, we know the invariant holdsafter this step.a = �(t0)This step may cause the consequence of the invariant to go from true to false. It is onlyenabled if s:now + t0 � last(responses). From Invariant C.10 we know that if modec =rec ^modes = syn-rcvd ^ wait-t os = 1 then �rst(recovc) > last(responses) + wt + �.Therefore, if this step causes the consequence of the invariant to be false, then the premisemust also be false.Invariant C.12If modec = rec ^ modes = syn-rcvd ^ wait-t os 6=1 then �rst(recovc) > wait-t os + �.Proof: In the start state modec = closed so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = crashcThis step may cause the premise of the invariant to go from false to true. However, fromInvariant C.7 we know if wait-t os 6= 1 then wait-t os � now + wt . Since �rst(recovc) isset to now+ qt in this step, the invariant holds after this step.a = send-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from false to true by setting wait-t osto now + wt , if s:modes = syn-rcvd ^ s:wait-t os = 1. However, from Invariant C.11we know that if these conditions are true in state s, then s:�rst(recovc) > s:now+ wt + �.Therefore, since this step does not change �rst(recovc) or now, the invariant holds after thisstep.a = receive-segcs(p)These steps may cause the consequence of the invariant to go from true to fales by assigningwait-t os to 1. However, after each of these steps the premise is also clearly false, so theinvariant holds.Invariant C.13If modec = rec ^ modes = syn-rcvd ^ now � wait-t os then �rst(recovc) > now+ �377



Proof: In the start state modec = closed so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = crashcThis step may cause the premise of the invariant to go from false to true. Since �rst(recovc)is set to now+ qt in this step, the invariant clearly holds.a = receive-segcs(SYN, snc)This step may cause the premise of the invariant to go from false to true. Let (p; t) bethe segment received in this step. From Invariant C.8 we know that if modec = rec then�rst(recovc) > t+�+ rt +wt . Since by Invariant C.1, t � now, we know the invariant holdsafter this step.a = �(t0)This step may cause the consequence of the invariant to go from true to false. However,from Invariant C.12 we know that if modec = rec ^ modes = syn-rcvd ^ wait-t os 6= 1then �rst(recovc) > wait-t os + �. Therfore, if this step causes now+ � to be greater thanor equal to �rst(recovc) then the premise of the invariant must also be false.Invariant C.14If modec = rec then �rst(recovc) > t for any SYN segment (p; t) 2 in-transitsc.Proof: In the start state modec = closed so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = crashcThis step may cause the premise of the invariant to go from false to true. However, in thisstep �rst(recovc) is set to now+ qt , and from Invariant C.1 we know that for any segment(p; t) 2 in-transitsc, t � now + �. Therefore, since qt > wt + rt + 2�, the invariant holdsafter this step.a = send-segsc(SYN, sns, acks)This step may cause the consequence of the invariant to go from true to false by adding aSYN segment (p; t) where t = now + � and t � �rst(recovc). However, it is only enabledif s:modes = syn-rcvd ^ s:now � s:wait-t os. From Invariant C.13 we know that ifmodes = syn-rcvd ^ now � wait-t os ^ modec = rec then �rst(recovc) > now + �.378



Therefore, if this step causes the consequence of the invariant to be false, then the premisemust also be false.Invariant C.151. If modec = rec ^ now � �rst(recovc) then in-transitcs = ;.2. If modec = rec ^ now � �rst(recovc) then there are no SYN segments in in-transitsc.Proof: In the start state modec = closed so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.1. a = �(t)This step may cause the premise of Part 1 to go from false to true. However, fromInvariant C.8 we know that �rst(recovc) > t for any segment (p; t) 2 in-transitcs, andfrom Invariant C.1 we also know that now � t for any segment (p; t) 2 in-transitcs.Therefore, there cannot be any segment in in-transitcs if now � �rst(recovc), so Part1 holds after this step.a = send-segcs(p)These steps may cause the consequence of Part 1 to go from true to false, but theyare only enabled if modec 6= rec.2. a = �(t)This step may cause the premise of Part 2 to go from false to true. However, fromInvariant C.14 we know that �rst(recovc) > t for any SYN segment (p; t) 2 in-transitsc,and from Invariant C.1 we also know that now � t for any segment (p; t) 2 in-transitsc.Therefore, there cannot be any SYN segments in in-transitsc if now � �rst(recovc),so Part 2 holds after this step.a = send-segsc(SYN, sns, acks)This step may cause the consequence of Part 2 to go from true to false. This step isenabled if s:modes = syn-rcvd ^ now � s:wait-t os. From Invariant C.13 we knowthat s:modes = syn-rcvd ^ now � s:wait-t os ^ s:modec = rec then �rst(recovc) >now+ �. Thus, if this step is enabled, the premise of Part 2 must also be false.379



Invariant C.161. If modec = closed ^ now > �rst(openc) then in-transitcs = ;.2. If modes = closed ^ now > �rst(opens) _modes = listen then in-transitsc = ;.Proof: Straightforward given Invariants C.22 and C.1.Invariant C.171. If modec = rec then lst-crash-timec = �rst(recovc) � qt .2. If modes = rec then lst-crash-times = �rst(recovs) � qt .3. If modec 6= rec then lst-crash-timec � now� qt .4. If modes 6= rec then lst-crash-times � now� qt .Proof: Straightforward.Invariant C.181. If modec = syn-sent then lst-time-ccc(snc) > lst-crash-timec.2. If modes = syn-rcvd then lst-time-ccs(sns) > lst-crash-times.In the start state modec and modes have the value closed, so the invariant holds in thisstate. We consider critical steps of the form (s; a; s0).1. a = send-msg(open, m, close)This step may cause the premise of Part 1 to go from true to false. However, fromInvariant C.35 we know that s0:lst-time-ccc(s0:snc) � s0:now�rt�clock-rate, and fromInvariant C.17 we know that s0:lst-crash-timec � s0:now�qt . Since qt > rt+clock-rate,we now Part 1 holds after this step.a = crashcThis step may cause the consequence of Part 1 to go from true to false by settinglst-crash-timec to now. However, this step also sets modec to rec, so Part 1 holdsafter this step.2. The proof for Part 2 is symmetric to the proof for Part 1.380



Invariant C.19If modec 6= rec ^ lst-crash-timec � lst-time-ccc(x) then there are no SYN segments (p; t) 2in-transitcs with sn(p) = x.In the start state in-transitcs is empty, so the consequence of the invariant is true, whichmeans the invariant holds for this state. We consider critical steps of the form (s; a; s0)below.a = recovercThis step may cause the premise of the invariant to go from false to true. This step isenabled if s:modec = rec ^ s:now � �rst(recovc). From Invariant C.15 we know thats:in-transitcs is empty.a = send-segcs(SYN, snc)This step adds a SYN segment to in-transitcs if modec = syn-sent ^ now � wait-t oc. Itmay cause the consequence of the invariant to go from true to false if snc = x. However, fromInvariant C.18 we know that if modec = syn-sent then lst-time-ccc(snc) > lst-crash-timec.Therefore, if the consequence of the invariant becomes false after this step, then the premisemust also be false.Invariant C.20If modec 6= rec ^lst-crash-timec � lst-time-ccc(acks�1) then :(modes = syn-rcvd ^now �wait-t os).Proof: In the start state modes = closed, so the consequence of the invariant is true,which means the invariant holds for this state. We consider critical steps of the form(s; a; s0) below.a = recovercThis step may cause the premise of the invariant to go from false to true. This step isenable if s:modec = rec ^ s:now � �rst(recovc). From Invariant C.13 we know that ifmodec = rec ^ modes = syn-rcvd ^ now � wait-t os then �rst(recovc) > now + �.Therefore, if this step is enabled, the consequence of the invariant must also be true.a = receive-segcs(SYN, snc)This step may cause the consequence of the invariant to go from true to false. Let (p; t) be381



the segment received in this step. After the step s0:acks � 1 = sn(p). However, we knowby Invariant C.19 that if modec 6= rec ^ lst-crash-timec � lst-time-ccc(x) then there are noSYN segments in in-transitcs with sn(p) = x. Therefore, if this step causes the consequenceto be false, the premise must also be false.Invariant C.21If modec 6= rec ^ lst-crash-timec � lst-time-ccc(x � 1) then there are no SYN segments(p; t) in in-transitsc with ack(p) = x.Proof: In the start state modes = closed, so the consequence of the invariant is true,which means the invariant holds for this state. We consider critical steps of the form(s; a; s0) below.a = recovercThis step may cause the premise of the invariant to go from false to true. This step isenable if s:modec = rec ^ s:now � �rst(recovc). From Invariant C.15 we know that thereare no SYN segments in s:in-transitsc. Therefore, if this step is enabled, the consequenceof the invariant must also be true.a = send-segsc(SYN, sns, acks)This step may cause the consequence of the invariant to go from true to false. It is enabledif modes = syn-rcvd ^ now � wait-t os. From Invariant C.20 we know that if this step isenabled, then the premise of the invariant must be false.Invariant C.221. If modec 2 frec; closedg then for all segments p 2 in-transitcs, t � �rst(openc).2. If modes 2 frec; closedg then for all segments p 2 in-transitsc, t � �rst(opens).Proof: . In the start state both in-transitcs and in-transitsc are empty, so the invariantholds in this state. We consider critical steps of the form (s; a; s0) below.1. a = receive-segsc(sns, acks, msgs), a = shut-downc, and time-outcThese steps may cause the premise of Part 1 to go from false to true. However, in all ofthese steps �rst(openc) is set to now+�. Since by Invariant C.1 we know t � now+�,we know the consequence is also true. Thus, Part 1 holds after these steps.382



a = crashcThis step may cause the premise of Part 1 to go from false to true. However, in thisstep �rst(openc) is set to now+ qt . Since by Invariant C.1 we know t � now+ �, weknow the consequence is also true.a = send-segcs(p)Any step that adds a segment to in-transitcs, may cause the consequence of Part 1 togo from true to false. However, since these actions are only enabled ifmodec 6= closed,the premise must also be false in these states.2. The proof of Part 2 is symmetric.Invariant 8.11. If modec = syn-sent and for (p; t) 2 in-transitcs, t � � � con-strt-timec then snc =sn(p).2. If modes = syn-rcvd and for (p; t) 2 in-transitsc, t � � � con-strt-times then sns =sn(p).Proof: In the start state modes = closed and modec = closed, so the invariant holds inthis state. We consider the critical steps of the form (s; a; s0) below.1. a = send-msgc(open, m, close)This step may cause the consequence of Part 1 to go from true to false by assigningsnc to s:clock-counter c. This assignment is made only if s:modec = closed. Also ifthe assignment is made in this step, then con-strt-timec is also assigned now. Fur-thermore, we know that this step is only enabled if now > �rst(openc). Therefore, byInvariant C.22 we know that for all (p; t) 2 s0:in-transitcs, t < s0:con-strt-timec. Thus,the premise is false after this step also.a = send-segcs(p)These steps can make the premise of Part 1 go from false to true by add a segment(p; t) to in-transitcs with t � � � con-strt-timec. However, for any such segment,sn(p) = snc. 383



a = prepare-msgcThis step may cause the consequence of Part 1 to go from true to false by incrementingsnc. However, this step is only enabled if modec 6= syn-sent, so Part 1 holds afterthis step.2. The proof for Part 2 is symmetric.Invariant 8.21. Ifmodec = syn-sent ^ new-isnc then for all (p; t) 2 in-transitcs, t�� < con-strt-timec.2. Ifmodes = syn-rcvd^ new-isns then for all (p; t) 2 in-transitsc, t�� < con-strt-times.Proof: In the start state modes = closed and modec = closed, so the invariant holds inthis state. We consider the critical steps of the form (s; a; s0) below.1. a = send-msgc(open, m, close)This step may cause the premise of Part 1 to go from false to true. This assignmentis made only if s:modec = closed. Also if the assignment is made in this step, thencon-strt-timec is also assigned now. Furthermore, we know that this step is onlyenabled if now > �rst(openc). Therefore, by Invariant C.22 we know that for all(p; t) 2 s0:in-transitcs, t < s0:con-strt-timec. Therefore, Part 1 holds after this step.a = send-segcs(p)These steps can make the consequence of Part 1 go from true to false, but these stepsalso set new-isnc to false, so the premise is also false.2. The proof of Part 2 is symmetric.Invariant 8.31. If modec 6= closed then for all segments (p; t) 2 in-transitcs, t � con-strt-timec + �.2. If modes 6= closed then for all segments (p; t) 2 in-transitsc, t � con-strt-times + �.Proof: In the start state modec and modes have the value closed, so the invariant holdsin this state. We consider critical actions of the form (s; a; s0) below.384



1. a = send-msgc(open, m, close)This step can make the premise of Part 1 to go from false to true. This change occursif now > �rst(openc), and if this change occurs con-strt-timec is set to now. FromInvariant C.22 we know that for all segment (p; t) 2 in-transitcs, t � �rst(openc), andfrom Invariant C.1 we know that now � t. These facts couple with the fact that thepremise only goes from true to false in this step if now > �rst(openc), means therecannot be a segment (p; t) 2 s:in-transitcs. Therefore, Part 1 holds after this step.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant 8.41. If modes 2 sync-states and there exists segment (p; t) 2 in-transitcs such that sn(p) =snc and sn(p) = acks then t� � � con-strt-timec.2. If modec 2 sync-states and there exists segment (p; t) 2 in-transitsc such that sn(p) =sns and sn(p) = ackc then t� � � con-strt-times.Proof: In the start state both modec and modes have the value closed, so the invariantholds in this state. From Invariant C.6 we know that for any segment on a channel sn(p) 6=nil, and from Invariant C.5 we know that if snc 6= nil then modec 6= closed and if modes 62fclosed; listeng then snc 6= nil. Therefore, if sn(p) = snc then modec 6= closed and ifsn(p) = sns then modes 6= closed. From Invariant 8.3 we know that if modec 6= closedthen for all segments (p; t) 2 in-transitcs, t � con-strt-timec + �, and if modes 6= closedthen for all segments (p; t) 2 in-transitsc, t � con-strt-times + �. Therefore, the invariantholds.Invariant C.231. If modec = closed then for all x 2 BN; lst-time-snc(x) � �rst(openc) � �.2. If modes = closed then for all x 2 BN; lst-time-sns(x) � �rst(opens) � �.Proof: Straightforward.Invariant C.241. If modec = syn-sent then any segment in in-transitcs is a SYN segment.385



2. If modes = syn-rcvd then any segment in in-transitsc is a SYN segment.Proof: If the start state modec = closed and modes = closed, so the invariant holds inthis state. We consider critical steps of the form (s; a; s0) below.1. a = send-msgc(open, m, close)This step may cause the premise of Part 1 to go from false to true if s:modec =closed ^ now > �rst(openc). From Invariant C.22 we know that if modec = closedthen for all segments (p; t) 2 in-transitcs, fopenc � t. From Invariant C.1 we knowthat now � t for all segments (p; t) 2 in-transitcs. Therefore, if this step causes thepremise of Part 1 to be true, then there are no segments in s0:in-transitcs.a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc, FIN)These steps may cause the consequence of Part 1 to go from true to false by addinga non-SYN segment to in-transitcs. However, these steps are only enabled if modec 6=syn-sent.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant C.251. If modec = rec then for all x 2 BN, lst-time-ccc(x) � �rst(recovc) � qt .2. If modes = rec then for all x 2 BN, lst-time-ccs(x) � �rst(recovs) � qt .Proof: In the start state both modec and modes have the value closed, so the invariantholds in this state. We consider critical actions of the form (s; a; s0) below.1. a = crashcThis step makes the premise of Part 1 go from false to true. In this step �rst(recovc) isassgined to now+qt . From Invariant C.2 we know that for all x 2 BN lst-time-ccc(x) �now. Therefore, Part 1 holds after this step.a = recoverc and a = clock-counter-tickcThese steps may cause the consequence of Part 1 to go from true to false. However,after these steps modec 6= rec, so Part 1 holds.386



2. The proof for Part 2 is symmetric.Invariant C.261. For all x 2 BN, �rst(tickc) � clock-rate � lst-time-ccc(x).2. For all x 2 BN, �rst(ticks) � clock-rate � lst-time-ccs(x).Proof: In the start state for all x 2 BN lst-time-ccc(x) and lst-time-ccs(x) have the value0, and �rst(tickc) and �rst(ticks) have the value clock-rate, so the invariant holds in thisstate. We consider critical actions of the form (s; a; s0) below.1. a = recoverc and a = clock-counter-tickcThese steps assign lst-time-ccc(clock-counterc) to now. However, these steps alsoassign �rst(tickc) to now+ clock-rate. Therefore, Part 1 holds after these steps.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant C.271. If modec 6= closed then for all x 2 BN, �rst(prep-msgc) � data-rate � lst-time-snc(x).2. f modec 62 fclosed; listeng then for all x 2 BN, �rst(prep-msgs) � data-rate �lst-time-sns(x).In the start state modec and modes are equal to closed, so the invariant holds in this state.We consider critical actions of the form (s; a; s0) below. Proof: Straightforward.Invariant C.281. If modec = rec then for all x 2 BN; lst-crash-timec � lst-time-ccc(x).2. If modes = rec then for all x 2 BN; lst-crash-times � lst-time-ccs(x).Proof: Straightforward.Invariant C.291. If clock-counter c = x ^ lst-time-ccc(x) 6= 0 and for i 2 BN; lst-crash-timec <lst-time-ccc(x� i) then lst-time-ccc(x)� lst-time-ccc(x� i) � i� clock-rate.2. If clock-counters = x ^ lst-time-ccs(x) 6= 0 and for i 2 BN; lst-crash-times <lst-time-ccs(x� i) then lst-time-ccs(x)� lst-time-ccs(x� i) � i� clock-rate.387



Proof: For this invariant we have two levels of induction. The �rst level is induction on i,and the second level is the induction on the steps of BT CPh. The base case of the inductionon i is for i = 0. The invariant clearly holds for this case. For the inductive case we assumethat the Invariant holds for j and show it holds for j + 1. We show it holds for j + 1 byinduction on the steps of BT CPh.In the start state for all x lst-time-ccc(x) and lst-time-ccs(x) have the value 0, so theinvariant holds in this state. We consider critical actions of the form (s; a; s0) below. Thestep with a = recoverc is not critical for Part 1 because if this step is enabled only if modec =rec, which by Invariant C.28 means for all x 2 BN; lst-crash-timec � lst-time-ccc(x). Thestep with a = recovers is not critical for Part 2 for symmetric reasons.1. a = clock-counter-tickcThis step may cause the premise of the Part 1 to go from false to true by assigningclock-counterc to the value x and lst-time-ccc(x) to now. This step is enabled ifnow � �rst(tickc). The clock counter gets the value x if s:clock-counterc = x�1. FromInvariant C.26 we know that �rst(tickc)� clock-rate � lst-time-ccc(x� 1), and by theinductive hypothesis we know that in state s, s:lst-time-cc(x�1)�s:lst-time-cc(x�j�1) � j�clock-rate. Since this step does not change the value of lst-time-cc(x�j�1), weknow that after this step lst-time-ccc(x)� lst-time-ccc(x�j�1) � (j+1)�clock-rate .Thus, Part 1 holds for j + 1.2. The proof for Part 2 is symmetric.Invariant C.301. If clock-counterc = x ^ lst-time-ccc(x) 6= 0 ^ i 2 BN then lst-time-ccc(x) �lst-time-ccc(x� i) � min(qt ; i� clock-rate).2. If clock-counters = x ^ lst-time-ccs(x) 6= 0 ^ i 2 BN then lst-time-ccs(x) �lst-time-ccs(x� i) � min(qt ; i� clock-rate).Proof: For this invariant we have two levels of induction. The �rst level is induction oni, and the second level is the induction on the steps of BT CPh. The base case of theinduction on i is for i = 0. The invariant clearly holds for this case. For the inductive casewe assume that the Invariant holds for j and show it holds for j + 1. We show it holds for388



j + 1 by induction on the steps of BT CPh. In the start state for all x lst-time-ccc(x) andlst-time-ccs(x) have the value 0, so the invariant holds in this state. We consider criticalactions of the form (s; a; s0) below.1. a = clock-counter-tickcThis step may cause the premise of the Part 1 to go from false to true by assigningclock-counterc to the value x and lst-time-ccc(x) to now. This step is enabled ifnow � �rst(tickc). The clock counter gets the value x if s:clock-counterc = x�1. FromInvariant C.26 we know that �rst(tickc)� clock-rate � lst-time-ccc(x� 1), and by theinductive hypothesis we know that in state s, s:lst-time-cc(x�1)�s:lst-time-cc(x�j�1) � min(qt ; j�clock-rate). Since this step does not change the value of lst-time-cc(x�j�1), we know that after this step lst-time-ccc(x)�lst-time-ccc(x�j�1) � min(qt ; (j+1)� clock-rate). Thus, Part 1 holds for j + 1.a = recovercThis step may cause the premise of the Part 1 to go from false to true by assigningclock-counterc to the value x and lst-time-ccc(x) to now. This step is enabled ifnow � �rst(recovc). From Invariant C.25 we know that in state s lst-time-ccc(x� j �1) � �rst(recovc) � qt . Since this step does not change lst-time-ccc(x � j � 1), weknow Part 1 holds after this step.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant C.311. If clock-counterc = x then lst-time-ccc(x) + clock-rate = last(tickc).2. If clock-counters = x then lst-time-ccs(x) + clock-rate = last(ticks).Proof: In the start state, for all x, lst-time-ccc(x) and lst-time-ccs(x) have the value 0, andlast(tickc) and last(ticks) have the value clock-rate, so the invariant holds in this state. Weconsider critical actions of the form (s; a; s0) below.1. a = clock-counter-tickc and a = recovercThese steps may cause the premise of the Part 1 to go from false to true by assigning389



clock-counterc to the value x and lst-time-ccc(x) to now. In these steps last(tickc) isalso assigned now+ clock-rate, so Part 1 holds.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant C.321. If modec 6= rec ^ clock-counterc = x then lst-time-ccc(x) � now� clock-rate.2. If modes 6= rec ^ clock-counters = x then lst-time-ccs(x) � now� clock-rate.Proof: In the start state both modec and modes have the value closed, so the invariantholds in this state. We consider critical actions of the form (s; a; s0) below.1. a = clock-counter-tickcThis step may cause the premise of the Part 1 to go from false to true by assigningclock-counterc to the value x and lst-time-ccc(x) to now. Clearly Part 1 holds afterthis step.a = �(t)This step may cause the consequence of Part 1 to go from true to false, if s:now+ t >s:lst-time-ccc(x) + clock-rate. If modec = rec then the premise of Part 1 is alsofalse. If modec 6= rec then this step is only enabled if s:now + t � last(tickc). FromInvariant C.31 we know that if clock-counterc = x then lst-time-ccc(x) + clock-rate =last(tickc). Therefore, if this step is enabled clock-counterc 6= x _ modec = rec, andsince this step does not change clock-counter c or modec, Part 1 holds.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant C.331. If (p; t) 2 in-transitcs then lst-time-ccc(sn(p)) � t ^ lst-time-snc(sn(p)) � t.2. If (p; t) 2 in-transitsc then lst-time-ccs(sn(p)) � t ^ lst-time-sns(sn(p)) � t.In the start state, both in-transitcs and in-transitsc are empty, so the invariant holds in thisstate. We consider critical actions of the form (s; a; s0) below.1. a = send-segcs(p)These steps add segments to in-transitcs. The timestamp t on any of these segments390



is now + �. From Invariant C.2 we know that for all x 2 BN, lst-time-ccc(x) � nowand lst-time-snc(x) � now. Therefore, Part 1 holds after these steps.a = clock-counter-tickc and a = recovercThese steps may assign lst-time-ccc(sn(p)) to now, and so can cause the consequenceof Part 1 to go from true to false, if now > t. However, from Invariant C.1 we knowthat for any (p; t) 2 in-transitcs, now � t. Therefore, the premise must be false also,so Part 1 holds after these steps.a = send-msgc(open, m, close) and a = prepare-msgcThese steps may assign lst-time-snc(sn(p)) to now, and so can cause the consequenceof Part 1 to go from true to false, if now > t. However, from Invariant C.1 we knowthat for any (p; t) 2 in-transitcs, now � t. Therefore, the premise must be false also,so Part 1 holds after these steps.2. The proof for Part 2 is symmetric.Invariant C.341. If modec = syn-sent ^ wait-t oc =1 then lst-time-ccc(snc) � last(responsec)� rt �clock-rate.2. If modes = syn-rcvd ^ wait-t os =1 then lst-time-ccs(sns) � last(responses)� rt �clock-rate.Proof: In the start state both modec and modes have the value closed, so the invariantholds in this state. We consider critical actions of the form (s; a; s0) below. For this in-variant the steps with a = clock-counter-tickc and a = recoverc for Part 1 and the stepswith a = clock-counter-ticks and a = recovers for Part 2 are not critical even though theyassign the value of now to lst-time-ccc(clock-counterc) and lst-time-ccs(clock-counters) re-spectively. They are not critical because from Invariant C.2 we know that for all x 2 BN,now � lst-time-ccc(x) and now � lst-time-ccs(x). Thus, because these steps can only causelst-time-ccc(x) and lst-time-ccs(x) to increase, they steps cannot cause the consequence ofeither part to go from true to false.1. a = send-msgc(open, m, close)This step can make the premise of Part 1 to go from false to true. From Invariant C.32391



we know that the consequence is also true after this step.a = send-segcs(p)These steps may cause the consequence of Part 1 to go from true to false. In thecase where p = (SYN ; snc), after that step wait-t oc 6= 1. After the other stepsmodec 6= syn-sent, so Part 1 holds.a = receive-segsc(p)These steps may also cause the consequence on Part 1 to go from true to false. How-ever, after these steps, modec 6= syn-sent, so Part 1 holds.2. The proof for Part 2 is symmetric.Invariant C.351. If modec = syn-sent ^ wait-t oc =1 then lst-time-ccc(snc) � now� rt � clock-rate.2. If modes = syn-rcvd ^ wait-t os =1 then lst-time-ccs(sns) � now� rt � clock-rate.Proof: In the start state both modec and modes have the value closed, so the invariantholds in this state. We consider critical actions of the form (s; a; s0) below.1. a = send-msgc(open, m, close)This step can make the premise of Part 1 to go from false to true. From Invariant C.32we know that the consequence is also true after this step.a = �(t)This step may cause the consequence of Part 1 to go from true to false. It is onlyenabled if s:now+ t � last(responsec). From Invariant C.34 we know that if modec =syn-sent ^ wait-t oc =1 then lst-time-ccc(snc) � last(responsec)� rt � clock-rate.Therefore, if this step causes the consequence of Part 1 to be false, then the premisemust also be false.2. The proof for Part 2 is symmetric.Invariant C.361. If modec = syn-sent ^ wait-t oc 6= 1 ^ now � wait-t oc then lst-time-ccc(snc) �wait-t oc � wt � rt � clock-rate. 392



2. If modes = syn-rcvd ^ wait-t os 6= 1 ^ now � wait-t os then lst-time-ccs(sns) �wait-t os � wt � rt � clock-rate.Proof: In the start state both modec and modes have the value closed, so the invariantholds in this state. We consider critical actions of the form (s; a; s0) below.1. a = send-segcs(SYN, snc)This step can make the premise of Part 1 to go from false to true by assigning wait-t octo now+wt , if s:modec = syn-sent ^ s:wait-t oc =1. However, from Invariant C.35we know that s:lst-time-ccc(snc) � s:now� rt � clock-rate. Therefore, since this stepdoes not change lst-time-ccc(snc) or now, Part 1 holds after this step.a = receive-segsc(p)These steps may cause the consequence of Part 1 to go from true to fales by assigningwait-t oc to 1. However, after each of these steps the premise is also clearly false, soPart 1 holds.2. The proof for Part 2 is symmetric.Invariant C.371. If modec = syn-sent ^ now � wait-t oc then lst-time-ccc(snc) � now � wt � rt �clock-rate.2. If modes = syn-rcvd ^ now � wait-t os then lst-time-ccs(sns) � now � wt � rt �clock-rate.Proof: In the start state both modec and modes have the value closed, so the invariantholds in this state. We consider critical actions of the form (s; a; s0) below.1. a = send-msgc(open, m, close)This step can make the premise of Part 1 to go from false to true. In this step sncis assigned to clock-counterc. From Invariant C.32 we know that lst-time-ccc(snc) +clock-rate � now, so Part 1 holds after this step.a = �(t)This step may cause the consequence of Part 1 to go from true to false, if s:now +393



t > s:lst-time-ccc(snc) + wt + rt + clock-rate. From Invariant C.36 we know that ifmodec = syn-sent ^ wait-t oc 6= 1 ^ now � wait-t oc then lst-time-ccc(snc) �wait-t oc � wt � rt � clock-rate, and from Invariant C.35 we know that if modec =syn-sent ^ wait-t oc =1 then lst-time-ccc(snc) � now� rt � clock-rate . Therefore,if s0:now > s0:lst-time-ccc(snc) + wt + rt + clock-rate, then s0:now > wait-t oc, so thepremise of Part 1 is also false.2. a = receive-segcs(SYN, snc)This step can make the premise of Part 2 to go from false to true. In this step snsis assigned to clock-counters. From Invariant C.32 we know that lst-time-ccs(sns) +clock-rate � now, so Part 2 holds after this step.a = �(t)The proof for this step is symmetric to the proof for the same step for Part 1.Invariant C.381. If there exists SYN segment (p; t) 2 in-transitcs then t � lst-time-ccc(sn(p))+clock-rate+wt + rt + �.2. If there exists a SYN segment (p; t) 2 in-transitsc then t � lst-time-ccs(sn(p)) +clock-rate + wt + rt + �.In the start state, both in-transitcs and in-transitsc are empty, so the invariant holds in thisstate. We consider critical actions of the form (s; a; s0) below.1. a = send-segcs(SYN, snc)This step adds a SYN segment to in-transitcs if modec = syn-sent ^ now � wait-t oc.The timestamp on this segment is now + �. From Invariant C.37 we know that ifmodec = syn-sent ^ now � wait-t oc then lst-time-ccc(snc) � now � wt � rt �clock-rate. Therfore, after this step Part 1 holds.2. The proof for Part 2 is symmetric.Invariant C.391. If there exists a SYN segment (p; t) 2 in-transitcs then clock-counterc � sn(p).394



2. If there exists a SYN segment (p; t) 2 in-transitsc then clock-counters � sn(p).Proof: In the start state in-transitcs and in-transitsc are both empty, so the invariant holdsfor this state. We consider critical steps of the form (s; a; s0) below.1. a = send-segcs(SYN, snc)This step adds a SYN segment to (p; t) to in-transitcs, where t = now + �. Af-ter this segment is added, we know that if sn(p) > clock-counter c then by Invari-ant C.30, lst-time-ccc(clock-counterc)� lst-time-ccc(sn(p)) � qt . By Invariant C.32 weknow lst-time-ccc(clock-counterc) � now�clock-rate . Therefore, lst-time-ccc(sn(p)) �now � clock-rate � qt . From Invariant C.38 we know that t � lst-time-ccc(sn(p)) +clock-rate+wt+rt+�. Combining the two inequalities gives us, t � now�clock-rate�qt + clock-rate+wt + rt +�. Thus, t � now� qt +wt + rt +�. Since qt > �+wt + rt ,we get t < now. However, this contradicts the fact that t = now + �. Therefore,sn(p) � clock-counterc, so Part 1 holds after this step.a = recovercThis step may cause the consequence of Part 1 to go from true to false by assigningclock-counterc an arbitrary value. If is enabled if modec = rec ^ now � �rst(recovc).Invariant C.15 tells us that when this step is enabled that in-transitcs is empty.a = clock-counter-tickcThe step may also cause the consequence of Part 1 to go from true to false by in-crementing clock-counterc. However, as we showed for the case of the step witha = send-segcs(SYN, snc), there is can be no SYN segment on in-transitcs withsn(p) > clock-counterc if this is the case.2. The proof for Part 2 is symmetric.Invariant C.40If modec = closed ^ last(tickc) > �rst(openc) then clock-counter c 6= sn(p) for any SYNsegment (p; t) 2 in-transitcs.Proof: In the start state clock-counter c = clock-counters = 0 and in-transitcs and in-transitscare both empty so the consequence of both parts of the invariant is true, so it holds in thestart state. We consider critical steps of the form (s; a; s0) below.395



a = send-segcs(SYN, snc)This step adds a SYN segment to in-transitcs, but only if modec = syn-sent.a = clock-counter-tickcThis step may cause the premise of the invariant to go from false to true by assigninglast(tickc) to now + clock-rate. This step also increments clock-counter c. Since we knowfrom Invariant C.39 that s:clock-counterc � sn(p) for any SYN segment (p; t) 2 in-transitcs,we know s0:clock-counterc 6= sn(p).a = recovercThis step may also cause the premise of the invariant to go from false to true by assigninglast(tickc) to now+ clock-rate. This step is enabled if s:modec = rec ^ now � �rst(recovc).However, Invariant C.15 tells us that when this step is enabled there are no segments inin-transitcs.Invariant C.41modes = syn-rcvd ^ wait-t os = 1 then lst-time-ccc(acks � 1) � last(responses) � wt ��� 2rt � clock-rate.Proof: In the start state modes = closed, so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = receive-segcs(SYN, snc)This step may cause the premise of the invariant to go from false to true. Let (p; t) bethe segment received. This step assigns last(responses) to now+ rt , and acks to sn(p) + 1.From Invariant C.38 we know t � lst-time-ccc(sn(p)) + clock-rate + wt + rt + �, and fromInvariant C.1 we know now � t � now+ �. Thus, now � lst-time-ccc(sn(p)) + clock-rate +wt + rt + �. Since s0:last(responses) = s:now + rt , we know the invariant holds after thisstep.a = send-segsc(p)These steps may cause the consequence on the invariant to go from true to false. In thecase where p = (SYN ; sns ; acks), after that step wait-t os 6= 1. After the other stepsmodes 6= syn-rcvd, so the invariant holds.a = receive-segsc(p)These steps may also cause the consequence on Part 1 to go from true to false. However,396



after these steps, modes 6= syn-rcvd, so the invariant holds.Invariant C.42If modes = syn-rcvd ^ wait-t os =1 then lst-time-ccc(acks � 1) � now� wt � �� 2rt �clock-rate.Proof: In the start state modes = closed, so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = receive-segcs(SYN, snc)This step may cause the premise of the invariant to go from false to true. Let (p; t) be thesegment received. From Invariant C.38 we know t � lst-time-ccc(sn(p)) + clock-rate + wt +rt + �, and from Invariant C.1 we know now � t. Therefore, the invariant holds after thisstep.a = �(t)This step may cause the consequence of Part 1 to go from true to false. It is only enabledif s:now+ t � last(responses). From Invariant C.41 we know that lst-time-ccc(acks � 1) �last(responses) � wt � � � 2rt � clock-rate. Therefore, if this step causes the consequenceof the invariant to be false, then the premise must also be false.Invariant C.43If modes = syn-rcvd ^ wait-t os 6= 1 ^ now � wait-t os then lst-time-ccc(acks � 1) �wait-t os � �� 2wt � 2rt � clock-rate.Proof: In the start state modes = closed, so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = send-segsc(SYN, sns, acks)This step can make the premise of Part 1 to go from false to true by assigning wait-t os tonow + wt , if s:modes = syn-rcvd ^ s:wait-t os = 1. However, from Invariant C.42 weknow that s:lst-time-ccc(acks� 1) � s:now�wt ��� 2rt � clock-rate . Therefore, since thisstep does not change lst-time-ccc(acks � 1) or now, the invariant holds after this step.a = receive-segcs(p)These steps may cause the consequence of the invariant to go from true to fales by assigning397



wait-t os to 1. However, after each of these steps the premise also clearly false, so theinvariant holds.Invariant C.44If modes = syn-rcvd ^ now � wait-t os then lst-time-ccc(acks � 1) � now � � � 2wt �2rt � clock-rate.Proof: In the start state modes = closed, so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = receive-segcs(SYN, snc)This step may cause the premise of the invariant to go from false to true. Let (p; t) be thesegment received. From Invariant C.38 we know t � lst-time-ccc(sn(p)) + clock-rate + wt +rt + �, and from Invariant C.1 we know now � t. Therefore, the invariant holds after thisstep.a = �(t)This step may cause the consequence of Part 1 to go from true to false, if s:now + t >s:lst-time-ccc(acks � 1) + � + 2wt + 2rt + clock-rate. From Invariant C.43 we know thatif modes = syn-rcvd ^ wait-t os 6= 1 ^ now � wait-t os then lst-time-ccc(acks � 1) �wait-t os � � � 2wt � 2rt � clock-rate, and from Invariant C.42 we know that if modes =syn-rcvd ^ wait-t os = 1 then lst-time-ccc(acks � 1) � now� �� wt � 2rt � clock-rate.Therefore, if s0:now > s0:lst-time-ccc(acks � 1) + � + 2wt + 2rt + clock-rate, then s0:now >wait-t os, so the premise of the invariant is also false.Invariant C.45If there exists a SYN segment (p; t) 2 in-transitsc then t � lst-time-ccc(ack(p) � 1) +clock-rate + 2(wt + rt + �).Proof: In the start state in-transitsc is empty, so the invariant holds in this state. Weconsider critical actions of the form (s; a; s0) below.a = send-segsc(SYN, sns, acks)This step adds a SYN segment to in-transitsc if modes = syn-rcvd ^ now � wait-t os.The timestamp on this segment is now+ �. From Invariant C.44 we know that if modes =398



syn-rcvd ^ now � wait-t os then lst-time-ccc(acks�1) � now���2wt �2rt �clock-rate.Therfore, after this step the invariant holds.Invariant C.46If modes = syn-rcvd ^ now � wait-t os then clock-counterc � acks � 1.Proof: In the start state modes = closed, so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = receive-segcs(SYN, snc)This step may cause the premise of the invariant to go from false to true. Let (p; t) be thesegment received. This step also assigns acks to sn(p) + 1. Therefore, if the consequence ofthe invariant is not also true, then it must be that sn(p) > clock-counterc. We know show bycontradiction that there cannot be a SYN segment with sn(p) > clock-counterc. If sn(p) >clock-counterc, then by Invariant C.30, lst-time-ccc(clock-counterc)� lst-time-ccc(sn(p)) �qt . By Invariant C.32 we know lst-time-ccc(clock-counterc) � now � clock-rate. There-fore, lst-time-ccc(sn(p)) � now � clock-rate � qt . From Invariant C.38 we know thatt � lst-time-ccc(sn(p)) + clock-rate + wt + rt + �. Combining the two inequalities weget t � now� clock-rate � qt + clock-rate + wt + rt + �. Thus, t � now� qt + wt + rt + �.Since qt > � + wt + rt , we get t < now. However, this contradicts Invariant C.1 whichsays that for all (p; t) 2 in-transitcs, now � t. Thus, there cannot be a SYN segment inin-transitcs with sn(p) > clock-counterc. Therefore, the invariant holds after this step.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may cause the consequence of Part 1 to go from true to false by changing acks.However, the change happens only if modes 6= syn-rcvd.a = recovercThis step may cause the consequence of the invariant to go from true to false by assign-ing clock-counterc an arbitrary value. This step is enabled if s:modec = rec ^ now ��rst(recovc). However, from Invariant C.13 we know that if modec = rec ^ modes =syn-rcvd ^ now � wait-t os then �rst(recovc) > now+�. Therefore, if the step causes theconsequence of the invariant to be false, the premise must also be false.a = clock-counter-tickcThe step may also cause the consequence of the invariant to go from true to false by399



incrementing clock-counterc, so that s0:clock-counterc < s0:acks � 1. This step also setslst-time-ccc(s0:clock-counterc) to now. If s0:clock-counterc < s0:acks � 1 ^ lst-crash-timec <lst-time-ccc(s0:acks�1), then by Invariant C.29 lst-time-ccc(s0:clock-counterc)�lst-time-ccc(s0:acks�1) � ct=2. Since lst-time-ccc(s0:clock-counterc) = now, we get now� lst-time-ccc(s0:acks �1) � ct=c. From Invariant C.44 we also know that lst-time-ccc(acks� 1) � now��� 2wt �2rt � clock-rate . Since ct=2 > �+2wt +2rt + clock-rate, we get a contradiction for the casewhere lst-crash-timec < lst-time-ccc(s0:acks � 1). Thus, the premise of the invariant mustalso be false in this situation. If lst-crash-timec � ltimec(s0:acks�1), then by Invariant C.20:(modes = syn-rcvd ^ now � wait-t os), so the invariant holds after this step.Invariant C.47If there exists a SYN segment (p; t) 2 in-transitsc then clock-counter c � ack(p)� 1.In the start state in-transitcs is empty, so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = send-segsc(SYN, sns, acks)This step adds a SYN segment to in-transitsc if modes = syn-rcvd ^ now � wait-t os. ByInvariant C.46 we know this invariant holds after this step.a = recovercThis step may cause the consequence of Part 1 to go from true to false by assigningclock-counterc an arbitrary value. However, Invariant C.15 tells us that when this stepis enabled there are no SYN segments in in-transitsc.a = clock-counter-tickcThe step may also cause the consequence of Part 1 to go from true to false by incrementingclock-counterc, so that s0:clock-counterc < ack(p)�1 for a SYN segment (p; t) 2 in-transitsc.This step also sets lst-time-ccc(s0:clock-counterc) to now. If s0:clock-counterc < ack(p)�1 ^lst-crash-timec < lst-time-ccc(ack(p)�1), then by Invariant C.29 lst-time-ccc(s0:clock-counterc)�lst-time-ccc(ack(p) � 1) � ct=2. Since lst-time-ccc(s0:clock-counterc) = now, we havelst-time-ccc(ack(p) � 1) � now � ct=2. From Invariant C.45 we also know that t �lst-time-ccc(ack(p) � 1) + clock-rate + 2(� + wt + rt). Combining the two inequalities weget t � now� ct=2 + clock-rate + 2(�+ wt + rt). Since ct=2 > 2(�+ wt + rt) + clock-rate,we get t < now. However, this contradicts Inariant C.1 which says for all segments in400



in-transitcs t � now. Therefore, we get a contradiction for the case where lst-crash-timec <lst-time-ccc(ack(p)� 1). Thus, the premise of the invariant must also be false in this situa-tion. If lst-crash-timec � ltimec(ack(p)� 1), then by Invariant C.21 we know there are noSYN segments in in-transitsc with ack(p) > clock-counterc.Invariant C.48If modec = closed ^ last(tickc) > �rst(openc) then clock-counter c 6= acks�1 _:(modes =syn-rcvd ^ now � wait-t os).Proof: In the start state clock-counterc = 0 and in-transitsc is empty so the consequenceof the invariant is true, so it holds in the start state. We consider critical steps of the form(s; a; s0) below.a = clock-counter-tickcThis step may cause the premise of the invariant to go from false to true by assigninglast(tickc) to now + clock-rate. This step also increments clock-counterc. Since by Invari-ant C.46 if modes = syn-rcvd ^ now � wait-t os then clock-counterc � acks � 1, we knowthat clock-counter c 6= acks � 1 _ 6= (modes = syn-rcvd ^ now � wait-t os).a = recovercThis step may also cause the premise of the invariant to go from false to true by assigninglast(tickc) to now+ clock-rate. This step is enabled if s:modec = rec ^ now � �rst(recovc).However, from Invariant C.13 we know that if modec = rec ^ modes = syn-rcvd ^now �wait-t os then �rst(recovc) > now + �. Therefore, if the step causes the premise of theinvariant to be true, the consequence must also be true.a = send-segcs(SYN, snc)This step may cause the consequence of the invariant to go from true to false. Thisstep sets acks to sn(p) + 1. However, form Invariant C.40 we know that if modec =closed ^ last(tickc) > �rst(openc) there are no SYN segments in in-transitcs with sn(p) =clock-counterc. Therefore, if this step causes the consequence of the invariant to be false,the premise of the invariant must also be false.401



Invariant C.49If modec = closed ^ last(tickc) > �rst(openc) then clock-counterc 6= ack(p) � 1 for anySYN segment (p; t) 2 in-transitsc.Proof: In the start state clock-counterc = 0 and in-transitsc is empty so the consequenceof the invariant is true, so it holds in the start state. We consider critical steps of the form(s; a; s0) below.a = clock-counter-tickcThis step may cause the premise of the invariant to go from false to true by assigninglast(tickc) to now+clock-rate . This step also increments clock-counter c. Since we know fromInvariant C.47 that s:clock-counterc � ack(p)� 1 for any SYN segment (p; t) 2 in-transitsc,we know s0:clock-counterc 6= ack(p)� 1.a = recovercThis step may also cause the premise of the invariant to go from false to true by assigninglast(tickc) to now+ clock-rate. This step is enabled if s:modec = rec ^ now � �rst(recovc).However, Invariant C.15 tells us that when this step is enabled there are no SYN segmentsin in-transitsc.a = send-segsc(SYN, sns, acks)This step adds a SYN segment to in-transitsc, but only if modes = syn-rcvd ^ now �wait-t os. From Invariant C.48 we know that if this step is enabled then clock-counterc 6=acks � 1, so the invariant holds after this step.Invariant C.501. If modec = closed ^ now > �rst(openc) then last(tickc) > �rst(openc).2. If modes 2 fclosed; listeng ^ now > �rst(opens) then last(ticks) > �rst(opens).Proof: . Follows from Invariant C.3.Invariant C.511. If modec = closed ^ now > �rst(openc) then clock-counterc 6= acks� 1 _:(modes =syn-rcvd ^ now � wait-t os).2. If modec = closed ^ now > �rst(openc) then clock-counterc 6= ack(p) � 1 for anySYN segment (p; t) 2 in-transitsc. 402



Proof: Part 1 follows from Invariants C.50 and C.48, and Part 2 follows from Invariants C.50and C.49.Invariant 8.5If modec = syn-sent ^ new-isnc = true ^ acks 2 BN then snc � acks _ :(modes =syn-rcvd ^ now � wait-t os).Proof: In the start state modec = closed, so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = send-msgc(open, m, close)This step can make the premise of the invariant to go from false to true if s:modec =closed ^ s:now > �rst(openc). In this step snc is assigned to s:clock-counterc. FromInvariant C.51 we know that clock-counter c 6= acks � 1 _ :(modes = syn-rcvd ^ now �wait-t os), and from Invariant C.46 we know that if modes = syn-rcvd ^ now � wait-t osthen clock-counter c � acks � 1. Therefore if modes = syn-rcvd ^ now � wait-t os thens:clock-counterc > acks � 1, so Part 1 holds after this step.a = receive-segcs(SYN, snc)This step that can make the consequence of the invariant go from true to false, but new-isncis also set to false, so the invariant holds after this step.a = prepare-msgcThis step that can also make the consequence of the invariant go from true to false, butmodec 6= syn-sent after this step, so the invariant holds.Invariant 8.6If modec = syn-sent ^ new-isnc = true then for all SYN segments (p; t) 2 in-transitsc,ack(p) < snc + 1.Proof: In the start state both modec = closed, so the invariant holds in this state. Weconsider critical actions of the form (s; a; s0) below.a = send-msgc(open, m, close)This step can make the premise of the invariant to go from false to true if s:modec =closed ^ s:now > �rst(openc). In this step snc is assigned to s:clock-counterc. FromInvariant C.51 we know that for any SYN segment (p; t) 2 in-transitsc, s:clock-counterc 6=403



ack(p)�1. From Invariant C.47 we know s.clock-counterc � ack(p)�1 for all SYN segments(p; t) 2 in-transitsc. Therefore, for all SYN segments (p; t) 2 in-transitsc, ack(p) < snc + 1,so the invariant holds after this step.a = send-segsc(SYN, sns, acks)This step that can make the consequence of the invariant go from true to false, by addinga SYN segment to in-transitcs. However, this step is only enabled if modec = syn-rcvd ^now � wait-t os. From Invariant 8.5 we know that if this step is enabled, then the premiseof the invariant must also be false, so the invariant holds after this step.a = prepare-msgcThis step that can also make the consequence of the invariant go from true to false, butmodec 6= syn-sent after this step, so the invariant holds.Invariant C.52If modec = syn-sent and there exists a SYN segment (p; t) 2 in-transitsc with ack(p) =snc + 1, then modes 6= listen.Proof: If the start state modes = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below. We know from Invariant 8.6 that the step with a =send-msgc(open, m, close) is not critical, because after this step there are no SYN segments(p; t) 2 in-transitsc with ack(p) = snc + 1.a = passive-openThis step cause the consequence of the invariant to go from true to false by setting modes tolisten if modes = closed ^ now > �rst(opens). However, we know from Invariants C.22and C.1 that there are no segments in in-transitsc, if modes = closed ^ now > �rst(opens).a = send-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from false to true. However, thisstep is only enabled if modes = syn-rcvd, so the invariant holds after this step.Invariant C.53If lst-crash-times � lst-time-ccs(sn(p)) for SYN segment (p; t) 2 in-transitsc then t �lst-crash-times + �. 404



Proof: In the start state in-transitsc is empty, so the invariant holds in this state. Weconsider critical steps of the form (s; a; s0) below.a = crashsThis step may cause the premise of the invariant to go from false to true. However, sincelst-crash-times is set to now, the invariant clearly holds after this step.a = send-segsc(SYN, sns, acks)This step may cause the consequence of the invariant to go from true to false by addinga SYN segment to in-transitsc if s:modes = syn-rcvd ^ s:now � s:wait-t os. However, itis easy to show that if modes = syn-rcvd then lst-crash-times < lst-time-ccs(sns), so thepremise is also false.Invariant C.54If ack-from-syn = true ^ lst-crash-times � lst-time-ccs(ackc � 1) and there exists a SYNsegment (p; t) 2 in-transitcs then t � lst-crash-times + 2�.Proof: In the start state ack-from-syn is unde�ned, so the invariant holds in this state. Weconsider critical steps of the form (s; a; s0) below.a = receive-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from false to true. Let (q; t0) be theSYN segment received in this step. From Invariant C.53 we know that t0 � lst-crash-times+�, and from Invariant C.1 we know that now � t0 and t � now+�. Therefore, the invariantholds after this step.a = send-segcs(SYN, snc)This step may cause the consequence of the invariant to go from true to false by adding aSYN segment to in-transitcs. However, if this step is enabled ack-from-syn = false, so theinvariant holds after this step.Invariant C.55If modes = listen ^ ack-from-syn = true ^ lst-crash-times � lst-time-ccs(ackc � 1) thenthere are no SYN segments in in-transitcs.Proof: If the start state modes = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below. The step with a = receive-segsc(SYN, sns, acks)405



is not critical even though it may set ack-from-syn to true. It is not critical becasue weknow from Invariant C.52 that modes 6= listen if this step cause ack-from-syn to be true.a = passive-openThis step cause the consequence of the invariant to go from true to false by setting modesto listen if modes = closed ^ now > �rst(opens). From Invariant C.17 we know thatlst-crash-times � now�qt and from Invariant C.54 we know that if there is a SYN segment(p; t) 2 in-transitcs then t � lst-crash-times + 2�. Therefore we have t � now � qt + 2�.Since qt > 2�, there cannot be such a SYN segment, so the invariant holds after this step.a = send-segcs(SYN, snc)This step may cause the consequence of the invariant to go from true to false by adding aSYN segment to in-transitcs. However, if this step is enabled ack-from-syn = false, so theinvariant holds after this step.Invariant C.56If modes 2 sync-states then modec 6= syn-sent or there are no SYN segments (p; t) 2in-transitsc with ack(p) = snc + 1.Proof: If the start state modes = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below. We know from Invariant 8.6 that the step with a =send-msgc(open, m, close) is not critical, because after this step there are no SYN segments(p; t) 2 in-transitsc with ack(p) = snc + 1.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may casue the premise of the invariant to go from false to true. However,since Invariant C.24 tells us that if modec = syn-sent there are only SYN segments inin-transitcs, the invariant holds after this step.a = send-segsc(SYN, sns, acks)This step may cause the consequence of the invariant to go from true to false. However, thisstep is only enabled if modes = syn-rcvd. Therefore, the invariant holds after this step.Invariant C.57If modec = syn-sent and there exists a SYN segment (p; t) 2 in-transitsc with ack(p) =snc + 1 then any segment (p; t) 2 in-transitsc is a SYN segment.406



Proof: If the start state modes = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below. We know from Invariant 8.6 that the step with a =send-msgc(open, m, close) is not critical, because after this step there are no SYN segments(p; t) 2 in-transitsc with ack(p) = snc + 1.a = send-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from false to true. However, it isonly enabled if modes = syn-rcvd and from Invariant C.24, we know that any segment(p; t) 2 in-transitsc is a SYN segment.a = send-segsc(sns, acks, msgs) and a = send-segsc(sns, acks, msgs, FIN)These steps may cause the consequence of the invariant to go from true to false. Thesesteps are enabled if modes 2 sync-states. However, from Invariant C.56 we know that ifthese steps are enabled, then the premise of the invariant is false.Invariant C.58If modec 2 sync-states and there exists a SYN segment (p; t) 2 in-transitcs and a non-SYNsegment (q; t0) 2 in-transitsc then t � t0.Proof: If the start state modec = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = receive-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from false to true if s:modec =syn-sent ^ [acks] = s:snc + 1. However, from Invariant C.57 we know any other segmentsin in-transitsc are SYN segments. Thus, the invariant holds after this step.a = send-segsc(sns, acks, msgs) and a = send-segsc(sns, acks, msgs, FIN)These steps may cause the premise of the invariant to go from true to false. The timestampon a segment sent by either of these actions is now+ �. From Invariant C.1 we know thatt � now + �, for any segment (p; t) 2 transitcs . Therefore, the invariant holds after thesesteps.Invariant C.59If ack-from-syn = false ^modes 2 frec; closedg and there exists a SYN segment (p; t) 2in-transitcs then t � �rst(opens). 407



Proof: If the start state ack-from-syn is unde�ned, so the invariant holds in this state. Weconsider critical steps of the form (s; a; s0) below.a = receive-segsc(sns, acks, msgs) and a = receive-segsc(sns, acks, msgs, FIN)These steps may cause the premise of the invariant to go from false to true if s:modec 2sync-states. Let (q, t') be the segment received in either step. From Invariant C.58 we knowthat if modec 2 sync-states then any SYN segment (p; t) 2 transitcs has t � t0, and fromInvariant C.22 we know that if modes 2 frec; closedg then t0 � �rst(opens). Therefore,the invariant holds after this step.a = receive-segcs(snc, ackc, msgc), a = shut-downs, and time-outsThese steps may cause the premise of Part 1 to go from false to true. However, in all ofthese steps �rst(opens) is set to now+ �. Since by Invariant C.1 we know t � now+ �, weknow the consequence is also true. Thus, Part 1 holds after these steps.a = crashsThis step may cause the premise of Part 1 to go from false to true. However, in this step�rst(opens) is set to now+ qt . Since by Invariant C.1 we know t � now+ �, we know theconsequence is also true.Invariant C.60If modes = listen ^ ackc 2 BN and there exists a SYN segment (p; t) 2 in-transitcs thenack-from-syn = true.Proof: If the start state modes = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = passive-openThis step may cause the premise of the invariant to go from true to false if s:modes =closed ^ now > �rst(opens). If there is a SYN segment (p; t) 2 transitcs then fromInvariant C.1 we know t � now. Since by Invariant C.59 if ack-from-syn = false ^ modes =closed then �rst(opens) � t, we know that if this step causes the premise of the invariantto be true then ack-from-syn = true.a = receive-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from false to true if s:modec =syn-sent ^ [acks] = s:snc + 1. However, this step also sets ack-from-syn to true.408



a = receive-segsc(sns, acks, msgs) and a = receive-segsc(sns, acks, msgs, FIN)These steps may cause the consequence of the invariant to go from true to false. However,from Invariant C.16 we know that if modes = listen then in-transitsc is empty, so if thisstep causes the consequence of the invariant to be false, the premise must also be false.Invariant C.61If ack-from-syn = true and there exists a SYN segment (p; t) 2 in-transitcs then t �ltimes(ackc � 1) + clock-rate + wt + rt + 2�.Proof: If the start state ack-from-syn is unde�ned, so the invariant holds in this state. Weconsider critical steps of the form (s; a; s0) below.a = receive-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from false to true. Let (q; t0)be the segment received in this step. This step causes ackc to be assigned to sn(q) + 1.From Invariant C.38 we know that t0 � lst-time-ccs(sn(q)) + clock-rate + wt + rt + �,and from Invariant C.1 we know t0 � now, and t � now + �. Therefore, we get now �lst-time-ccs(sn(q))+ clock-rate+wt + rt +�, and lst-time-ccs(sn(p)) � t� clock-rate �wt �rt � 2�, which means the invariant holds after this step.Invariant C.62If there exists a SYN segment (p; t) 2 in-transitsc then lst-time-ccs(sn(p)) � t � �.Proof: If the start state in-transitcs = ;, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = receive-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from false to true. The invariantclearly holds after this step.a = recovercThis step may cause the consequence of the invariant to go from true to false. However, itis easy to see that there are no segments in in-transitcs when this step is enabled.a = clock-counter-ticksThis step may cause the consequence of the invariant to go from true to false by set-ting lst-time-ccs(sn(p)) to now if s:clock-counters = sn(p) � 1. By Invariant C.30 we409



that s:lst-time-cc(sn(p) � 1) � s:lst-time-ccs(sn(p)) � qt , and from Invariant C.32 weknow s:lst-time-cc(sn(p) � 1) � s:now � clock-rate. Therefore, s:now � clock-rate � qt �s:lst-time-ccs(sn(p)). Since we are assuming s:lst-time-ccs(sn(p)) � t� �, we have s:now�clock-rate � qt � t � � which means t � now. Thus, there cannot be a SYN segmentin s:in-transitsc. Since this step does not add any segments to in-transitsc, we know theinvariant holds after this step.Invariant C.63If modes 2 frec; closedg ^ ack-from-syn = true and there exists a SYN segment (p; t) 2in-transitcs then lst-time-ccs(ackc � 1) � �rst(opens) � �.Proof: If the start state in-transitcs = ;, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = receive-segcs(snc, ackc, msgc), a = shut-downs, and time-outsThese steps may cause the premise of Part 1 to go from false to true. However, in all ofthese steps �rst(opens) is set to now + � and since lst-time-ccs(x) � now for any x 2 BN,the invariant holds after these steps.a = crashsThis step may cause the premise of Part 1 to go from false to true. However, in this step�rst(opens) is set to now+ qt , so we know the invariant is true after this step.a = receive-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from false to true. Let (q; t0) bethe segment received in this step. This step causes ackc to be assigned to sn(q) + 1. FromInvariant C.62 we know that lst-time-ccs(sn(q)) � t0� �, and from Invariant C.22 we knowt0 � �rst(opens). Therefore, the invariant holds after this step.a = recovercThis step may cause the consequence of the invariant to go from true to false be settinglst-time-ccs(ackc�1) to now. It is easy to see that s:lst-crash-times � s:lst-time-ccs(ackc�1).Therefore, by Invariant C.55 we know that there are no SYN segments in in-transitcs is thisstep is enabled.a = clock-counter-ticksThis step may cause the consequence of the invariant to go from true to false by setting410



lst-time-ccs(ackc�1) to now if s:clock-counters = ackc�2. By Invariant C.55 we know thatif lst-crash-times � lst-time-ccs(ackc � 1) then there are no SYN segments in in-transitcs,so the invariant holds for this case. By Invariant C.29 we know that if lst-crash-times <lst-time-ccs(ackc�1) then s:lst-time-cc(ackc�2)�s:lst-time-ccs(ackc�1) � ct�clock-rate,and from Invariant C.32 we know s:lst-time-cc(ackc � 2) � s:now � clock-rate. Therefore,s:now � 2clock-rate � ct � s:lst-time-ccs(ackc � 1). From Invariant C.61 we know t �ltimes(ackc�1)+clock-rate+wt+rt+2�. Combining the two inequalities we get, t � s:now.Thus, there cannot be a SYN segment in s:in-transitcs. Since this step does not add anysegments to in-transitcs, we know the invariant holds after this step.Invariant C.64If modes = listen and there exists a SYN segment (p; t) 2 in-transitcs ^ ackc 2 BN thenclock-counters > ackc � 1.Proof: If the start state modes = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below. The step with a = receive-segsc(SYN, sns, acks)is not critical even thought it may cause the assigning of ackc to [sns]+ 1. This assignmentis made if modec = syn-sent ^ [acks] = s:snc + 1. However, from Invariant C.52 we knowthat if this step causes this assignment, modes 6= listen, so it cannot cause the premise ofthe invariant to be true.a = passive-openThis step cause the premise of the invariant to go from false to true, if s:modes = closed,s:now > �rst(opens), and there is a SYN segment (p; t) 2 in-transitcs ^ s:ackc 2 BN.If s:clock-counters = ackc � 1 then by Invariant C.32 s:lst-time-ccs(s:clock-counters) �s:now� clock-rate. However, this contradicts Invariant C.63 which says lst-time-ccs(ackc �1) � �rst(opens)��. Therefore, we know that after this step s0:clock-counters = s0:ackc�1.If s:clock-counters < ackc � 1 and lst-crash-times < ltimes(ackc � 1) then by In-variant C.29 lst-time-ccc(s0:clock-counters) � lst-time-ccs(s0:ackc � 1) � ct=2. We alsoknow from Invariant C.32 that lst-time-ccs(clock-counters) � now � clock-rate. There-fore, lst-time-ccc(ackc � 1) � now � clock-rate � ct=2. From Invariants C.60 and C.61 weknow that t � ltimes(ackc � 1)+ clock-rate + wt + rt + 2�. Combining the two inequalitieswe get t � now � ct=2 + wt + rt + 2�. Since, ct=2 > wt + rt + 2� we get t < now, which411



contradicts Invariant C.1. Therefore, if lst-crash-times < ltimes(ackc � 1) the invariantholds after this step. If lst-crash-times � ltimes(ackc � 1) then by Invariant C.55 we knowthere are no SYN segments in in-transitcs, so the premise does not become true in thissituation.a = clock-counter-ticksThis step may cause the consequence of the invariant to go from true to false if incrementingclock-counters causes s0:clock-counters < ackc. The proof that the premise must also befalse in this situation is the same as the proof that the invariant holds after step a =passive-open.Invariant C.65If modes = listen and there exists a SYN segment (p; t) 2 in-transitcs then for any non-SYN segment (q; t0) 2 in-transitcs clock-counter s > ack(q)� 1.Proof: If the start state modes = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = send-segcs(SYN, snc)This step can make the premise of Part 1 to go from false to true by adding a SYN segmentto in-transitcs. However, from Invariant C.24 we know that if modec = syn-sent then thereare only SYN segments in in-transitcs, so the invariant holds after this step.a = send-segcs(snc, ackc, msgc) and a = send-segcs(snc, ackc, msgc, FIN)These steps may cause the consequence of Part 1 to go from true to false by adding anon-SYN segment to in-transitcs. By Invariants C.60 and C.64 we know that if these stepscause the consequence of the invariant to be false, then the premise must also be false.a = passive-openThe proof that the invariant holds after this step is very similar to the proof that Invari-ant C.64 holds after the same step.a = clock-counter-ticksThe proof for this set is also very similar to the proof for the same step for Invariant C.64.412



Invariant 8.7If modes = syn-rcvd ^ new-isns = true ^ ackc 2 BN then sns � ackc.Proof: This invariant follows from Invariant C.64.Invariant 8.8If modes = syn-rcvd ^new-isns = true then for all segments (p; t) 2 in-transitcs, ack(p) <sns + 1.Proof: This invariant follows from Invariant C.65.Invariant 8.9If modec = syn-sent then for all SYN segments (p; t) 2 in-transitsc such that ack(p) =snc + 1, sn(p) � ack(q) for all (q; t0) 2 in-transitcs.Proof: . From Invariant C.24 we know that if modec = syn-sent then there can onlybe SYN segments in in-transitcs. Since, SYN segments sent by the client do not haveacknowledgment numbers, the invariant holds.Invariant C.66If modes 2 sync-states and there exists a SYN segment (p; t) 2 in-transitsc with ack(p) =snc + 1 then modec 6= syn-sent.Proof: If the start state modes = closed, so the invariant holds in this state. We considercritical steps of the form (s; a; s0) below.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may cause the premise of the invariant to go from false to true. However, fromInvariant C.24 we know that if there are non-SYN segments in in-transitcs then modec 6=syn-sent, so the invariant holds after these steps.a = prepare-msgcThis step may cause the premise of the invariant to go from false to true by incrementingsnc. However, this step is enabled only if modec 6= syn-sent, so the invariant holds afterthis step.a = send-msgc(open, m, close)This step can make the consequence of the invariant false. However, by Invariant 8.6 weknow the premise is also false after this step.413



Invariant 8.10If modec = syn-sent and there exists SYN segment (p; t) 2 in-transitsc such that ack(p) =snc + 1 then sn(p) � sn(q) for all non-SYN segments (q; t0) 2 in-transitsc.Proof: In the start state both modec = closed, so the invariant holds in this state. Weconsider critical actions of the form (s; a; s0) below.a = send-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from false to true. However, thisstep is enabled if modes = syn-rcvd. From Invariant C.24 we know there are only SYNsegments in in-transitsc if modes = syn-rcvd, so the invariant holds after this step.a = send-segsc(sns, acks, msgs) and a = send-segsc(sns, acks, msgs, FIN)These steps may cause the consequence of the invariant to go from true to false by addinga non-SYN segment to in-transitsc. These steps are enabled if modes 2 sync-states. FromInvariant C.66 we know if these steps cause the consequence to be false, then the premiseis also false.a = prepare-msgcThis step may cause the premise of the invariant to go from false to true by incrementingsnc. However, this step is enabled only if modec 6= syn-sent, so the invariant holds afterthis step.Invariant C.671. If snc = sn(p) + 1 _ snc = sn(p) + 2 for any segment (p; t) 2 in-transitcs thenlst-time-snc(snc) � t � �.2. If sns = sn(p)+1_sn(p)+2 for any segment (p; t) 2 in-transitsc then lst-time-sns(sns) �t� �.Proof: If the start state both in-transitcs and in-transitsc are empty, so the invariant holdsin this state. We consider critical actions of the form (s; a; s0) below.1. a = prepare-msgcThis step may cause the premise to the invariant to go from false to true. Howeverin this step lst-time-snc(snc) is set to now, so by Invariant C.1 we know Part 1 holdsafter this step. 414



2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant C.681. If snc = sn(p) + i for any segment (p; t) 2 in-transitcs and 2 < i < 232 thenlst-time-snc(snc) � t � �+ (i� 2)� data-rate .2. If sns = sn(p) + i for any segment (p; t) 2 in-transitsc and 2 < i < 232 thenlst-time-sns(sns) � t � � + (i� 2)� data-rate .Proof: For this invariant we have two levels of induction. The �rst level is induction on i,and the second level is the induction on the steps of BT CPh. The base case of the inductionon i is for i = 2. This case is Invariant C.67. For the inductive case we assume that theInvariant holds for j and show it holds for j + 1. We show it holds for j + 1 by inductionon the steps of BT CPh. We consider critical actions of the form (s; a; s0) below.1. a = prepare-msgcThis step may cause the premise of Part 1 to go from false to true is s:snc = sn(p)+ j.This step is enabled if s:now � s:�rst(prep-msgc). From Invariant C.27 we know thats:�rst(prep-msgc) � s:lst-time-sn(s:snc) + data-rate . Therefore, since we assume theinvariant holds for j, then it clearly holds for j + 1.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant C.691. If modec 6= closed and there exists a segment (p; t) 2 in-transitcs then snc � sn(p).2. If modes 6= closed and there exists a segment (p; t) 2 in-transitsc then sns � sn(p).Proof: In the start state both modec = closed, so the invariant holds in this state. Weconsider critical actions of the form (s; a; s0) below. The step with a = send-msgc(open, m,close) is not critical because if modec = closed ^ now > �rst(openc) then there are nosegments in in-transitcs.1. a = send-segcs(p)These steps may casue the cause the premise of the invariant to go from false to true,but snc = sn(p), so the invariant holds after these steps.415



a = prepare-msgcThis step may cause the consequence of the invariant to go from true to false byincrementing snc. Since this step also sets lst-time-sn(s:snc) to now, if the consequencebecomes false then by Invariant C.68 now � t � � + (231 � data-rate). Since (231 �data-rate) > �, we get now � t. However, this violates Invariant C.1. Therefore therecan be no such segment in in-transitcs, so Part 1 holds after this step.2. The proof for Part 2 is symmetric to the proof for Part 1.Invariant 8.11If modes = syn-rcvd now � wait-t os ^modec 6= closed then acks � snc + 1.Proof: In the start state both modec = closed, so the invariant holds in this state. Weconsider critical actions of the form (s; a; s0) below.a = send-msgc(open, m, close)This step may cause the premise of the invariant to go from false to true. From Invariant 8.5we know that the consequence is also true after this step.a = receive-segcs(SYN, snc)This step may cause the premise of the invariant to go from false to true. However, from In-variant C.69 we know that snc � sn(p) for any SYN segment (p; t) 2 in-transitcs. Therefore,the invariant holds after this step.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may cause the consequence of the invariant to go from true to false by incre-menting acks. However, acks is only incremented if modes 2 sync-states, so the invariantholds after this step.a = prepare-msgcThis step may cause the consequence of the invariant to go from true to false by incrementingsnc.Invariant C.70If modec = syn-sent and there exists a SYN segment (p; t) 2 in-transitsc such that ack(p) =snc + 1 then modes 62 sync-states. 416



Proof: In the start state modec = closed, so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = send-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from true to false. However, thisstep is only enabled if modes = syn-rcvd, so the invariant holds after this step.a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may cause the consequence of the invariant to go from true to false. How-ever, from Invariant C.24 we know that if there are non-SYN segments in in-transitcs thenmodec 6= syn-sent, so the invariant holds after these steps.Invariant C.71If modec = syn-sent ^modes 62 fclosed; listeng and there exists a SYN segment (p; t) 2in-transitsc such that ack(p) = snc + 1 then sns = sn(p) ^ acks = ack(p)Proof: In the start state modec = closed, so the invariant holds in this state. We considercritical actions of the form (s; a; s0) below.a = send-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from true to false. However, it isclear that after this step sns = sn(p) ^ acks = ack(p).a = receive-segcs(snc, ackc, msgc) and a = receive-segcs(snc, ackc, msgc, FIN)These steps may cause the consequence of the invariant to go from true to false by incre-menting acks. However, from Invariant C.24 we know that if there are non-SYN segmentsin in-transitcs then modec 6= syn-sent, so the invariant holds after these steps.a = prepare-msgsThis step may cause the consequence of the invariant to go from true to false. However,this step is only enable if modes 2 sync-states, and from Invariant C.70 we know that if thepremise of the invariant is true then modes 62 sync-states. Therefore, if modes 2 sync-statesthen the premise of the invariant must be false.Invariant 8.12If just-estb = true ^ sns 2 BN then ackc > sns.In the start state just-estb is unde�ned, so the invariant holds in this state. We consider417



critical actions of the form (s; a; s0) below.a = receive-segsc(SYN, sns, acks)This step may cause the premise of the invariant to go from true to false. This steps alsoassigns ackc to [sns] + 1. From Invariant C.71 we know [sns] = sns, so the invariant holdsafter this step.a = receive-segsc(sns, acks, msgs) and a = receive-segsc(sns, acks, msgs, FIN)These steps may cause the consequence of the invariant to go from true to false, but afterthese steps just-estb = false, so the invariant holds.a = prepare-msgsThis step may cause the consequence of the invariant to go from true to false. However,just-estb = false after this step, so the invariant holds.Invariant 8.131. If modec 2 sync-states then for all segments (p; t) 2 in-transitcs, snc � sn(p).2. If modes 2 sync-states then for all segments (p; t) 2 in-transitsc, sns � sn(p).Proof: This invariant follows from Invariant C.69.Invariant 8.141. If modec 2 sync-states ^ acks 2 BN then snc + 1 � acks.2. If modes 2 sync-states ^ ackc 2 BN then sns + 1 � ackc.Proof: The proof of this Invariant is similar to the proof of Invariant 7.2.Invariant 8.151. If modec 2 sync-states ^ new-snc = true then for all segments (p; t) 2 in-transitsc,snc + 1 > ack(p).2. If modes 2 sync-states ^ new-sns = true then for all segments (p; t) 2 in-transitcs,sns + 1 > ack(p).Proof: The proof of this Invariant is similar to the proof of Invariant 7.3.Invariant 8.16 418



1. If modec 2 sync-states then for all (p; t) 2 in-transitcs, ackc � ack(p).2. If modes 2 sync-states then for all (p; t) 2 in-transitsc, acks � ack(p).Proof: The proof of this Invariant is similar to the proof of Invariant 7.29.Invariant 8.171. If modes 2 fsyn-rcvdg [ sync-states ^modec 2 frec; resetg [ sync-states and thereexists (p; t) 2 in-transitcs such that sn(p) � acks, then snc = sn(p).2. If modec 2 sync-states and there exists (p; t) 2 in-transitsc such that sn(p) � ackc,then sns = sn(p).Proof: The proof for this invariant is similar to the proof for Invariant 7.53.Invariant 8.181. If modes 2 fsyn-rcvdg [ sync-states and there exists (p; t) 2 in-transitcs such thatsn(p) � acks, then for all other non-SYN segments (q; t0) 2 in-transitcs, sn(q) � sn(p).2. If modec 2 sync-states and there exists (p; t) 2 in-transitsc such that sn(p) � ackc,then for all other non-SYN segments (q; t0) 2 in-transitsc, sn(q) � sn(p).Proof: The proof for this invariant is similar to the proof for Invariant 7.62.
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Appendix DInvariance proofs for T T CPhAs we did in Appendix B, we use the standard inductive technique for proving the invariants.Invariant 10.71. For all segments p 2 in-transitcs, snc � sn(p).2. For all segments p 2 in-transitsc, sns � sn(p).3. For all segments p 2 in-transitcs, cc send � cc send(p).Proof: The same as the proof of Invariant 10.7.Invariant 10.81. If modec 6= closed then cc send = id c.2. If modes 2 sync-states then cc rcvd = id s.3. If there exists a segment p 2 in-transitcs such that cc send(p) = k, then k 2 used-idc[fcrash-idcg.Proof: Straighforward.Invariant 10.91. For all i 2 N [ fnilg; (i; nil) 62 estb-cc.2. For all j 2 N [ fnilg; (nil; j) 62 estb-cc.421



3. For all i 2 N [ fnilg; (i; nil) 62 assoc.4. For all j 2 N [ fnilg; (nil; j) 62 assoc.Proof: Straightforward.Invariant 10.101. If modes 2 flisten; syn-rcvdg then rcv-buf s = �.2. If modes 2 flisten; syn-rcvdg then msgs = null.3. If modes 2 flisten; syn-rcvdg then last-msgs = null.4. If modes 2 sync-states then temp-data = null.Proof: Straightforward.Invariant 10.111. If modes = listen and there exists a segment p 2 in-transitcs such that cc send(p) >cache cc then (cc send(p); cc send(p)) 62 assoc.2. If modec 2 fsyn-sent; syn-sent*g then for all j, (id c; j) 62 estb-cc.3. If modec 2 fsyn-sent; syn-sent*g and there exists a segment p of the form (SYN,cc rcvd, sns, acks) or (SYN, cc rcvd, sns, acks, FIN) in in-transitsc such that cc rcvd(p) =cc send and ack(p) = sns + 1 then for all j, (idc; j) 62 assoc.4. If modes = syn-rcvd ^ choose-isns then for all k, (k; isns) 62 estb-cc.Invariant 10.121. Ifmodes = syn-rcvd and there exists a segment p 2 in-transitcs such that cc send(p) =cc rcvd ^ ack(p) = sns + 1, then (cc send(p); isns) 2 estb-cc.2. If modec 2 sync-states or there exists a segment p of type (SYN, cc rcvd, sns, acks,msgs, ) or (SYN, cc rcvd, sns, acks, msgs, FIN) with cc rcvd(p) = ccsend then(idc; idc) 2 assoc. 422



3. If modes 2 sync-states then (id s; ids) 2 assoc.4. If (k; ids) 2 assoc and there exists j such that (k; j) 2 estb-cc then j = isns.Proof:Invariant 10.13If modes 2 sync-states ^ cc send = cc rcvd and there exists a non-SYN segment p 2in-transitcs with cc send(p) = cc rcvd ^ ack(p) = sns + 1 then modec 62 fsyn-sent,syn-sent*g.Invariant 10.14If modec 2 fsyn-sent; syn-sent*g and there exists a SYN segment p 2 in-transitsc suchthat cc rcvd(p) = cc send ^ack(p) = snc+1 ^ sn(p) = isns thenmodes 2 fsyn-rcvd; rec; resetg.Invariant 10.151. If modec 2 fsyn-sent*, fin-wait-1, fin-wait-2, closing, timed-wait, last-ackgthen send-buf c = � ^ rcvd-closec = true.2. Ifmodes 2 ffin-wait-1, fin-wait1*, fin-wait-2, closing, closing*, timed-wait,last-ack, last-ack*g then send-buf s = � ^ rcvd-closes = true.Proof: The proof is the same as for Invariant 7.13.Invariant 10.16If temp-data 6= null ^msgc 6= null ^((idc; isns) 2 estb-cc _(id c; ids) 2 assoc) ^snc < acksthen msgc = temp-data .Invariant 10.17If modec 2 fsyn-sent; syn-sent*g ^ temp-data 6= null and there exists a SYN segment423



p 2 in-transitsc such that cc rcvd(p) = cc send ^ ack(p) = snc + 1 ^ sn(p) = isns thenmsgc = temp-data .Invariant 10.181. If rcv-buf c = � ^ last-msgs 6= null ^ msgs 6= null ^ (idc; ids) 2 assoc^ sns < ackcthen msgs = last-msgc.2. If rcv-buf s = � ^ last-msgc 6= null ^ msgc 6= null ^ (idc; ids) 2 assoc^ snc < acksthen msgc = last-msgs.Invariant 10.191. If rcv-buf c 6= � ^ msgs 6= null ^ (idc; ids) 2 assoc ^ sns < ackc then msgs =last(rbufc).2. If rcv-buf s 6= � ^ msgc 6= null ^ (idc; ids) 2 assoc ^ snc < acks then msgs =last(rbufs).Proof:Invariant 10.201. If last-msgc = null ^ msgs 6= null ^ (id c; ids) 2 assoc^sns < ackc then rcv-buf c 6= �.2. If last-msgs = null ^ msgc 6= null ^ (id c; ids) 2 assoc^snc < acks then rcv-buf s 6= �.Invariant 10.211. If msgc 6= null and there exists p 2 in-transitcs such that sn(p) = snc then msg(p) =msgc.2. If msgs 6= null and there exists p 2 in-transitsc such that sn(p) = sns then msg(p) =msgs. 424



Proof: Same as the proof of Invariant 7.36.Invariant 10.221. If there exists segments p and q on in-transitcs such that sn(p) = sn(q) ^ msg(p) 6=null ^ msg(q) 6= null then msg(p) = msg(q).2. If there exists segments p and q on in-transitsc such that sn(p) = sn(q) ^ msg(p) 6=null ^ msg(q) 6= null then msg(p) = msg(q).Proof: Same as the proof of Invariant 7.37.Invariant 10.231. Ifmodes 2 fsyn-rcvdg[sync-states and there exists p 2 in-transitcs such that sn(p) =acks then msg(p) 6= null.2. If modec 2 sync-states and there exists p 2 in-transitsc such that sn(p) = ackc thenmsg(p) 6= null.Proof: Same as the proof of Invariant 7.55.Invariant 10.24If ackc 2 N then for all p 2 in-transitcs, ackc � ack(p).Proof: Same as the proof for Invariant 7.23.Invariant 10.25If modec 2 fsyn-sent; syn-sent*g ^ (id c; ids) 2 assoc ^ modes 62 frec; resetg then forall segments p 2 in-transitsc, acks � ack(p).Invariant 10.261. If there exists a SYN segment p 2 in-transitcs such that cc send(p) = cc send andcc send(p) > cache cc then snc = sn(p).2. If modes 2 fsyn-rcvdg [ sync-states ^modec 2 frec; resetg [ sync-states and thereexists p 2 in-transitcs such that (cc send(p); isns) 2 estb-cc ^ cc send(p) = cc rcvd ^sn(p) � acks, then snc = sn(p). 425



3. If modec 2 sync-states ^ (isnc; isns) 2 assoc and there exists p 2 in-transitsc such thatsn(p) � ackc, then sns = sn(p).Proof: In the start state in-transitcs is empty. We consider critical steps of the form (s; a; s0)below.1. a = send-msgc(open, m, close)This step may cause the consequence of the invariant to go from true to false byincrementing snc. However, since cc send is also incremented in this step, it is clearthat there are no segments in p 2 in-transitcs with cc send(p) = cc send , so thepremise of the invariant is also false.a = send-segcs(SYN, cc send, snc, msgc) anda = send-segcs(SYN, cc send, snc, msgc, FIN)These steps may cause the premise of the invariant to go from false to true by adding aSYN segment to in-transitcs. However, on these segments snc = sn(p), so the invariantholds after these steps.a = prepare-msgc.This step may also cause the consequence of the invariant to go from true to false byincrementing snc. However, if this step is enabled, we know from Invariant ?? thans:cc send � s:cache cc and since s:cc send � cc send(p) for any p 2 transitcs , thepremise of the invariant must also be false.2.3.Invariant 10.271. If modec 2 fclose-wait; closing; last-ack; timed-waitg ^modes 62 frec; resetg^ (idc; ids) 2 assoc then modes 2 ffin-wait-1, fin-wait1*, fin-wait-2, closing,closing*, timed-wait, last-ack, last-ack*g.426



2. If modes 2 fclose-wait, close-wait*, closing, closing*, last-ack, last-ack*,timed-waitg ^modec 62 frec; resetg ^ (idc; isns) 2 estb-cc _ (idc; ids) 2 assoc thenmodec 2 fsyn-sent*, fin-wait-1, fin-wait-2, closing, timed-wait, last-ackg.Invariant 10.281. If modec 2 fclose-wait; closing; last-ack; timed-waitg ^modes 62 frec; resetg^ (id c; ids) 2 assoc then sns < ackc.2. If modes 2 fclose-wait, close-wait*, closing, closing*, last-ack, last-ack*,timed-waitg ^modec 62 frec; resetg ^ (idc; isns) 2 estb-cc _ (idc; ids) 2 assoc thensnc < acks.Invariant 10.291. If modec 2 fclose-wait; closing; last-ack; timed-waitg and there exists l suchthat (idc; l) 2 assoc then for all non-SYN segments p 2 in-transitsc, sn(p) < ackc.2. If modes 2 fclose-wait, close-wait*, closing, closing*, last-ack, last-ack*,timed-waitg and there exists k, such that (k; isns) 2 estb-cc _ (k; ids) 2 assoc thenfor all non-SYN segments p 2 in-transitcs, sn(p) < ackc.Invariant 10.301. If modec 2 fsyn-sent; syn-sent*g and there exists j such that (idc; j) 2 assoc andthere exists a SYN segment p 2 in-transitsc such that cc rcvd(p) = cc send then forall segments q 2 in-transitsc such that cc rcvd(q) = cc send , sn(q) � sn(p).2. If modec 2 sync-states and there exists j such that (idc; j) 2 assoc and there existsa non-SYN segment p 2 in-transitsc such that cc rcvd(p) = cc send ^ sn(p) � ackc,then for all non-SYN segments q 2 in-transitsc sn(q) � sn(p).3. If modes 2 fsyn-rcvdg[sync-states and there exists i, such that i = isnsc ^ (i; isns) 2estb-pairs and there exists a non-SYN segment p 2 in-transitcs such that sn(p) � acks,then for all non-SYN segments q 2 in-transitcs sn(q) � sn(p).427



Invariant 10.311. If modec = last-ack ^modes 62 frec; resetg ^ (idc; ids) 2 assoc then rcv-buf c = �.2. If modes 2 flast-ack; last-ack*g ^modec 62 frec; resetg ^ (id c; isns) 2 estb-cc _(idc; ids) 2 assoc then rcv-buf s = �.Invariant 10.321. If modec = last-ack and there exists l such that (idc; l) 2 assoc then rcv-buf c = �.2. If modes 2 flast-ack; last-ack*g and there exists k, such that (k; isns) 2 estb-cc _(k; ids) 2 assoc then rcv-buf s = �.Invariant 10.331. If modec 2 fclose-wait; closing; last-ack; timed-waitg and there exists l suchthat (id c; l) 2 assoc then rcvd-closes = true _ id s 6= l.2. If modes 2 fclose-wait, close-wait*, closing, closing*, last-ack, last-ack*,timed-waitg and there exists k such that (k; isns) 2 estb-cc _ (k; idc) 2 assoc thenrcvd-closec = true _ idc 6= k.
428
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