
Formal Veri�cation of Communication ProtocolsM. A. S. Smith�Laboratory for Computer Science, MITCambridge, MA 02139, USA, (617)253-1499, (617)253-3480, mass@lcs.mit.eduAbstractIn this paper we present a formal abstract speci�cation for TCP/IP transport level pro-tocols and formally verify that TCP satis�es this speci�cation. We also present a formaldescription of an experimental protocol, T/TCP, which proposes to provide the sameservice as TCP, but with optimizations to make it e�cient for transactions. We furthershow that this protocol does not provide the same service as TCP, and propose a weakerspeci�cation for this protocol. Our speci�cations are presented using an untimed automa-ton model, and we present the protocols using a timed automaton model. The formalveri�cation is done using invariant assertion and simulation techniques.KeywordsVeri�cation, automata and languages, network protocols1 INTRODUCTIONThe original motivation for this work was to do a formal veri�cation of an experimentaltransport level protocol called T/TCP. This protocol, by Braden and Clark (Braden, 1992;Braden, 1994; Braden and Clark, 1993), is designed to be a uni�ed transport protocol inthat it should work well for both transactions and streaming. A transaction is typicallya request from a client and a response from a server. Streaming on the other hand is thesending of signi�cant amounts of data. The idea behind the design of T/TCP is to extendthe Transmission Control Protocol (TCP) to make it e�cient for transactions (hence thename T/TCP).TCP is the most commonly used transport level protocol on the Internet. The basicservice that it provides is reliable end-to-end delivery of data between application pro-grams. On the Internet packets sent from one user to another may get duplicated, lost,or arrive out of order. TCP ensures that these packets are delivered to the applicationprograms without duplication, without loss, and in the correct order. While TCP workswell for data streaming, it does not work well for transactions because it has an openphase (the three-way handshake protocol) that forces two round trips across the networkfor a client to send a request and get a response from a server. Ideally we would like therequest and response to be done in one round trip across the network.The designers of T/TCP believed their protocol was correct since it is based on TCP,�Supported by Air Force Contract AFOSR F49620-92-J-0125, NSF contract 9225124CCR, andARPA contracts N00014-92-J-4033, F19628-95-C-0118, and DABT63-94-C-007.

2but the changes they made were su�ciently complex to make them uncertain. Therefore,they thought a formal correctness proof would be useful (Braden and Clark, 1993). Ourinitial plan of attack for verifying T/TCP was to assume the correctness of TCP andleverage o� this correctness in the veri�cation of T/TCP. However, we could not �ndany work that veri�ed TCP in su�cient generality to use in our work. Other works haveveri�ed parts of TCP or protocols similar to TCP. In (S�gaard-Andersen, Lampson, andLynch, 1993) the correctness the �ve packet handshake protocol (Belsnes, 1976) whichforms the basis of the open and close phase of TCP and ISO-TP4 is formally veri�ed.However, this work does not verify enough of TCP for us to use directly in the veri�cationof T/TCP. In (Murphy and Shankar, 1989) a connection management protocol for thetransport layer is also speci�ed and veri�ed, but the protocol is of their own design, notTCP.The informal speci�cation of TCP (Postel, 1981) is quite complicated, and an impor-tant contribution of this work is the presentation of a precise speci�cation of the transportlevel problem TCP is supposed to solve. In our formal presentation of TCP we do makesome simpli�cations. For example, we do not include security parameters, and the conges-tion control aspect of TCP. We also assume a client/server model which means one sideis always active and the other passive, whereas in full TCP either side can initiate com-munication. Even with these simpli�cations we know of no other work that attempts toverify TCP at the level of generality we do in this work. After specifying the problem andformally verifying TCP, the next step in our veri�cation of T/TCP was to show that itimplements TCP. However, we discovered that under certain circumstances T/TCP doesnot behave the way TCP does, and in fact does not satisfy the speci�cation we have forthe transport layer. (Murphy, 1996) has also found a situation di�erent from the one wediscovered where T/TCP does not behave as TCP. We present the scenario we discoveredin this paper and also discuss a weaker speci�cation for T/TCP that is not violated bythe scenario.We use invariant assertion and simulation (re�nement) techniques to verify TCP. Weuse the formalization of simulations developed in (Lynch and Vaandrager, 1993; Lynchand Vaandrager, 1995). These methods are used for proving trace inclusion relationshipsbetween concurrent systems. The methodology is developed in the context of a very sim-ple and general automaton for both untimed (Lynch and Vaandrager, 1993) and timed(Lynch and Vaandrager, 1995) systems. We elaborate on the model and methodology inSection 2. Simulation techniques are known to be quite useful in the veri�cation of concur-rent systems, and other researchers use this method in their work (Abadi and Lamport,1991; Lampson, Lynch, and S�gaard-Andersen 1993; Murphy and Shankar 1989). Thispaper is closest in scope to the work in (Lampson, Lynch, and S�gaard-Andersen, 1993).The rest of the paper is organized as follows. Section 2 contains a brief description ofthe formal models we use in the paper. Section 3 contains an informal description of TCPand T/TCP. In Section 4 we present the speci�cation of the transport layer problem, andwe verify that TCP satis�es this speci�cation in Section 5. We give a formal descriptionof T/TCP, show how it does not behave as TCP, and discuss an alternative speci�cationfor it in Section 6. Finally, in Section 7 we make some concluding remarks and discussfuture work.

Formal Models 32 FORMAL MODELSIn this section we give a de�nition of untimed and timed automata and also give a de-scription of the simulation techniques we use.2.1 Automata modelsThe formal model we use to represent the speci�cation of the transport level problem is theuntimed automaton model of (Lynch and Vaandrager, 1993). An automaton A consists offour components, a set states(A) of states, a nonempty set start(A) � states(A) of startstates, a set acts(A) of actions, and a set steps(A) � states(A) � acts(A) � states(A)of steps. The set acts(A) can be partitioned into three disjoint sets, in(A), out(A), andint(A) of input actions, output actions and internal actions respectively. The union ofthe input actions and output actions we denote as external actions, those actions visibleto the environment.We describe TCP and T/TCP as timed automata. A timed automaton (Lynch andVaandrager, 1995) is an automaton as described above, but its set of actions includes R+,the set of positive reals. Actions from R+ are referred to as time-passage actions.To show that an automaton A \implements" another automaton B we show a traceinclusion relationship between them. The trace inclusion relationship is a safety propertyand shows that a protocol does nothing bad, but does tell us if a protocol does anything(liveness). The safety property is su�cient in our work, since we are clearly dealing withprotocols that do something. The set of traces of an automaton consists of the set ofsequences of visible actions that the automaton can perform. In timed systems theseactions are paired with their time of occurrence to form timed traces. Thus, A implementsB if the set of (timed) traces of A is included in that of B.2.2 Simulation techniquesIn this paper we use the formalization of simulations for untimed and timed systemsin (Lynch and Vaandrager, 1993; Lynch and Vaandrager, 1995) respectively. Let I bean automaton representing an implementation of a protocol and S be an automatonrepresenting an abstract speci�cation of the protocol. If I and S have the same input andoutput actions, then a simulation from I to S is a relation between states of I and states ofS such that certain conditions hold. The conditions that hold depend on if we do a forwardsimulation (a special case of which is a re�nement mapping) or a backward simulation.The simulation techniques have two general conditions. First, the start states of the twoautomata must be related in a certain way, and second, each step of the implementationmust \simulate" some sequence of steps in the speci�cation. That is, for each step in theimplementation, there must exist a sequence of steps in the speci�cation between statesrelated by the simulation relation to the pre and post-state of the implementation stepsuch that the sequence of speci�cation steps contains exactly the same external actions asthe implementation step, which implies that (timed) traces of I are also (timed) traces ofS. Forward and backward simulations for untimed and timed automata are shown to besound for proving trace inclusion in (Lynch and Vaandrager, 1993; Lynch and Vaandrager,1995).

4 During the process of performing a simulation proof sometimes a situation that isimpossible to solve comes up, but then it turns out the situation happens in an unreachablestate. Since we only need to consider the steps of the implementation automaton whichstart in a reachable state, an invariant that avoids these \bad" states is found. Invariantsare properties that are true of all reachable states.In (Abadi and Lamport, 1991) it is shown that in some instances even though it isnot possible to �nd a re�nement mapping from implementation I to speci�cation S, byadding history variables to I a mapping can be found. History variables record the pasthistory of a system and places no constraints on the behavior of the implementation.In describing the transport level problem, it is not necessary to mention time, so ourspeci�cation is presented using untimed automata. However, TCP and T/TCP are timedsystems, so we presented them as timed automata. The methods we used do not allowdirect simulations between timed and untimed systems. The same issue comes up in(S�gaard-Andersen, Lynch and Lampson, 1993), and they develop the patient operatorwhich converts an untimed automaton into a timed automaton by adding arbitrary timepassage steps.3 INFORMAL DESCRIPTION OF PROTOCOLSIn this section we present informal descriptions of TCP and T/TCP. These descriptionare presented here to give the reader some intuition for when we present the abstractspeci�cation and the formal descriptions of the protocols.In order to guarantee reliable data streaming, TCP requires synchronized states at bothend-points. This synchronization uses three phases: an open phase, a bi-directional datatransfer phase, and a close phase. The open phase is often referred to as the \three-wayhandshake protocol" because it requires the sending of three packets between the clientand the server. When the client and server receive the signal to open a connection, theychoose initial sequence numbers (ISN), read from a 32 bit clock, from which they startnumbering packets. To synchronize, the client and server must know each others ISN, sothe client starts the three-way handshake by sending a SYN packet with its ISN. Whenthe server receives this packet, it notes that the sequence number of the next packet itshould receive is the ISN of the client plus one. It sends back this value to the client alongwith its own ISN in a SYN(ACK) packet. When the client receives this return packet, itveri�es that the server received its correct ISN, and notes the ISN of the server plus one.The �nal packet of the three-way handshake is the packet the client sends in response.This packet has the next sequence number for the client and the value of the ISN of theserver plus one. When the server receives this packet, it con�rms that it has the rightISN for the client and that the client has its correct ISN. At this point both ends aresynchronized and are in what is called the established state. Data transfer takes place inthis state.Once the client and server agree on each other's ISN, they increment their sequencenumber for each piece of data sent. The sequence numbers are used to make sure data isreceived in the right order. An acknowledgment mechanism is used to ensure the retrans-mission of packets lost in the network. That is, a packet is retransmitted after a suitableretransmission timeout (RTO) until an acknowledgment is received for that packet. The

Speci�cation 5acknowledgment of a packet means every packet up to that one has been successfullyreceived. We make the simplifying assumption that every packet must get an acknowl-edgment before the next one is sent.The close phase begins when either host receives the signal to close from the user. Whenthis happens it sends any remaining data it has to send, and then sends a FIN packet.The host that receives the FIN packet responds with a FIN(ACK) packet. The behavioris symmetric when the other host receives the signal to close. The host that sends the lastFIN(ACK) goes to timed-wait state. The host that receives that FIN(ACK) closes, andthe host that sent it waits for a time of 2 � MPL (Maximum Packet Lifetime) before itcloses. This wait is to ensure that if a new incarnation of the same connection is started,old duplicate packets will have been dropped from the network. Incarnations are timesequential connections of the same client/server pair. The use of the clock to choose ISN'salso helps to distinguish between packets from di�erent incarnations.The basic idea in the design of T/TCP is to keep most of TCP, in particular the thingsthat make it good for data streaming, but to add two optimizations that eliminates theine�ciencies of TCP for transactions. In this work we only discuss the main optimiza-tion because by itself it causes T/TCP to behave di�erently from TCP. The optimization,known as TCP Accelerated Open (TAO), eliminates the need for the three-way handshakeprotocol at the opening phase of communication. This optimization is accomplished byhaving persistent monotonic connection counts. Persistent state is state that is kept af-ter a connection closes. Each time a new connection is opened, the connection count isincremented. The client and server hosts keep in local persistent caches their own con-nection counts and a copy of the last connection count they received from the host theyare communicating with. Therefore, when a client wants to open a new connection, itcan send the incremented connection count with the initial packet containing the requestdata. When the server receives this packet, it checks that the connection count is biggerthat the last connection count it saw from that client, and can immediately accept thenew data if it is. The server responds with a packet that contains data and an echo of theclient's connection count. The client uses the echoed value to determine if the response isvalid. With TAO, a transaction can be carried out in one round trip across the network.If the client or server ever lose the connection count information (for example after acrash), T/TCP uses the the three-way handshake protocol to establish connection andalso to reset the connection count information. T/TCP also uses sequence numbers toorder data, but since the initial sequence number is not needed to distinguish data fromdi�erent incarnations, the initial sequence number can always start at 0.4 SPECIFICATIONWe know of no other work that gives an abstract formal speci�cation of the user visiblebehavior of TCP/IP transport level protocols. Such a speci�cation is important becauseit captures the essential properties of the problem, provides precise guidelines for someonewho wants to implement a transport level protocol, and provides a measure against whichother transport level protocols can be checked for correctness.Due to space limitations we present only part of the speci�cation here. The full speci�-cation appears in (Smith, 1996). The speci�cation can be viewed as a \black box", which

6has a user interface that gets all the inputs that the protocol receives and sends out allthe outputs that we want the protocol to produce. The speci�cation de�nes a relationshipon the inputs and outputs that gives precisely the desired behavior any protocol solvingthe problem should have. The user interface for TCP and our speci�cation, S, is shownin Figure 1.The user interface for TCP in the Internet standard (Postel, 1981), has an explicitactive-open input and separate send-msg and close inputs. We combined these actionsin our speci�cation into the single send-msgc(open, m, close) � action on the client sidebecause we want to allow for the situation where the client side user opens the connec-tion, sends just one message, and closes immediately. The interface where the actions arecombined facilitates such a transaction without losing any of the functionality of the usualTCP interface. Braden (Braden, 1994) suggests a similar interface for T/TCP. We do notcombine the three actions into one action on the server side because that side is passiveand cannot send any data until it has formed a connection with the client. However, wecombine the send-msg and close actions to facilitate a reply message and an immediateclose.We use the untimed automaton model described in Section 2 to formally present thespeci�cation. The steps are presented in a precondition, e�ect style commonly used withI/O automata (Lynch and Tuttle, 1989). That is, the state during which an act is enabledis given as a precondition, and the resulting state is given by the e�ects of the action.Input actions have no precondition.Some of the stepsy of the automaton for the speci�cation, S, are shown in Figure 2. Tocapture the essence of at-most-once delivery of messages, we use FIFO queues. Data isadded to the back of a queue, and removed from the front. Since the queues do not loseor duplicate data, we get the property we want. If there is a crash, then some data canbe nondeterministically removed from the back of the queues. The variables recc and recsare used to indicate when the client and server respectively are recovering from crashes.Most actions are disabled or have no e�ect when these variables are true. To representthe idea of the sides opening and forming a connection, we assign id's from in�nite andstable sets (CID and SID for the client and server side respectively) to the client and theserver ends when they open, and then pair them to form an association. A stable variableis one that does not lose its value after a crash. To make sure associations are distinct,id's are removed from the sets once they are used, and an id is never paired with morethan one other id to form an association. We use another stable set, assoc, to keep trackof the associations that have already been formed, and the special value nil is used toindicate when a host is closed.To ensure the separation of data for each incarnation, we use two in�nite arrays of FIFOqueues that are indexed by the id's of the client and server. That is, the client sends data�open and close are boolean, and m 2 Msg [null, where the set Msg is the set of all possible �nitestrings over some basic message alphabet that does not include the special symbol null which indicatesthe absence of a message.yThroughout the paper we use the following operations on queues: let q be a queue he0; : : : ; en�1i withelements e0 through en�1. Then q �m and tail(q) denote the lists he0; : : : ; en�1;mi, and he1; : : : ; en�1i,respectively, and head(q) is the element e0. Also let dom(q) , fij0 � i < jqjg, su�x(q) , ffijj � i <jqjgj0� j < jqjg, and delete(q,I) , hqjij j i 2 dom(q) ^ i 62 Ii. The empty queue is denoted by �.

TCP 7
send-msgs(m, close)

receive-msgs(m)

recovers

Specification SUserc Users

 passive-open
send-msgc(open, m, close)

receive-msgc(m)

recoverc

crashscrashcFigure 1 The user interface for TCP/IP transport level protocols.on the queue indexed by its id (queuesc), and the server sends data on the queue indexedby its id (queuesc). A host can only receive data (the receive-msgc(m) and receive-msgs(m)actions) from a queue if its current id is associated with the id of the sender of the data,and since each id can only be associated with one other id, a host can only receive datafrom a unique incarnation during the life of that incarnation. Thus, there is no danger ofreceiving data from a previous incarnation. Associated with each queuecs and queuesc arethe
ags q-statcs and q-statsc respectively. A queue's status is dead if it has never beenused to send messages, or if it has been used and its receiving host has closed or crashed.Only queues with status live can have messages added and/or removed.When a host opens it also sets the variable mode to active to indicate that it canreceive messages from the user, and sets it to inactive when it receives the close signalfrom the user. A host should only close, barring a crash, when it has sent all its data (itreceived a close signal from the user) and when it has received all the data from the otherhost. In the speci�cation a remote host can determine when the other host has sent all itsdata by checking the mode or id variable of the other host. The internal action to close ahost is set-nil .Our speci�cation includes another stable set, overlap, which contains all the pairs ofid's of clients and servers that co-existed in time. We need this set because we want toallow associations to be formed by id's that are not necessarily the current id's of theclient and server, but id's that existed at the same time.5 TCPWe specify the client and server as timed automata. The protocol is too large to presentin its entirety in this paper, so we only present the steps of the open phase. The stepsare also somewhat simpli�ed to ease the exposition in this paper. For the full protocol see(Smith, 1996).Figure 3 shows the structure of the TCP protocol, T . We use two channels, Channelcsand Channelsc, for sending packets from the client to the server and from the server tothe client respectively. We model the channels as timed automata. When a packet getsplaced on the network and is not dropped, it eventually gets delivered. However packetscan be lost, duplicated and reordered. A packet that is placed on a channel and does notget delivered within the MPL gets dropped from the channel. In our model packets onthe channels are stored in the multiset variables in-transitcs and in-transitsc for packetson Channelcs and Channelsc respectively.

8 Client sideInput send-msgc(open, m, close)E�ect:if : recc thenif open ^ idc = nil thenidc := any element 2 CIDCID := CID n idcmodec := activeq-statcs(idc) := liveif ids 6= nil thenoverlap := overlap [f(idc; ids)gif modec = active^ m 6= null ^q-statcs(idc) = live thenqueuecs(idc) := queuecs(idc) �mif close then modec := inactiveInternal make-assc(i,j)Precondition: (i; j) 2 overlap ^8 k(i; k) 62 assoc^ 8 l (l; j) 62 assocE�ect: assoc := assoc [f(i; j)gOutput receive-msgc(m)Precondition: : recc ^q-statsc(j) = live ^ (idc; j) 2 assoc ^queuesc(j) 6= � ^ head(queuesc(j)) = mE�ect: queuesc(j) := tail(queuesc(j))Internal set-nilcPrecondition: : recc ^idc 6= nil ^ modec = inactive^ 9j s.t. (idc; j) 2 assoc ^ queuesc(j) = �^ (modes = inactive _ ids 6= j)E�ect:idc := nilq-statsc(j) := deadInput crashcE�ect:if idc 6= nil thenrecc := trueif 9 j s.t. (idc; j) 2 assoc thenqueuesc(j) := �q-statsc(j) := deadInternal losec(I)Precondition: recc ^ I 2 su�x(queuecs(idc))E�ect: queuecs(idc) := delete(queuecs(idc), I)

Server sideInput passive-openE�ect:if : recs thenif ids = nil thenids := any element 2 SIDSID := SID n idsmodes := activeq-statsc(ids) := liveif idc 6= nil thenoverlap := overlap [f(idc; ids)gInput send-msgs(m, close)E�ect:if : recs thenif modes = active ^ m 6= null ^q-statsc(ids) = live thenqueuesc(ids) := queuesc(ids) �mif close then modes := inactiveOutput receive-msgs(m)Precondition: : recs ^q-statcs(i) = live ^ (i; ids) 2 assoc ^queuecs(i) 6= � ^ head(queuecs(i)) = mE�ect: queuecs(i) := tail(queuecs(i))Internal set-nilsPrecondition: : recs ^ids 6= nil ^ modes = inactive ^9i s.t. (i; ids) 2 assoc ^ queuecs(i) = �^ (modec = inactive _ idc 6= i)E�ect:ids := nilq-statcs(i) := deadInput crashsE�ect:if ids 6= nil thenrecs := trueif 9 i s.t. (i; ids) 2 assoc thenqueuecs(i) := �q-statcs(i) := deadInternal loses(I)Precondition: recs ^ I 2 su�x(queuesc(ids))E�ect: queuesc(ids) := delete(queuesc(ids), I)Figure 2 Some of the steps of the speci�cation S.

TCP 9
Userc Client Server

Channelcs

Channelsc

receive-segcs(s)send-segcs(s)
send-msgc-
(open, m, close)

receive-msgc(m)

crashc

recoverc
receive-segsc(s) send-segsc(s)

send-
msgs(m,close)

receive-msgs(m)

crashs

recovers

Users

passive-openFigure 3 The Structure of TCP.5.1 Steps of TCPThe steps of the open phase of the timed automaton for TCP are shown in Figure 4. Theprotocol starts when the client receives the action send-msgc(open, m, close) with openset to true and the server receives a passive-open input. These two actions signal that bothhosts can try to establish a connection with each other. The active open and passive openare only valid if the hosts are closed. When the client and server receive the open signalthey change to modes syn-sent and listen respectively. These modes indicate that theclient is about to or has sent a SYN packet and that the server is listening for one. Werepresent the choosing of the ISN's as the routines choose-isnc() and choose-isns(). Thesend-msgc(open, m, close) action might also have data to be sent. If this is the case, thedata is appended to the queue send-bufc which is where the client keeps messages to besent. If close is true this means the connection should be closed and no more data shouldbe accepted from the user to be sent.Assuming the client does not open and close without receiving any data, the clientperforms the action send-segcs(SYN, snc), where snc is the ISN, as the �rst step of thethree-way handshake. Note that this action, along with all the other send-seg actions haveas a precondition (nowc � time-sentc � RTO) which controls retransmission. When thispacket is received by the server, if it is in mode listen, it changes to mode syn-rcvdand also records the next sequence number it expects, snc+1, in the variable acks. Afterit receives the �rst packet of the three-way handshake, the server performs the actionsend-segsc(SYN, sns, acks) which is the second packet of the three-way handshake. In thispacket sns is the server's ISN. When the client receives this packet, it accepts it only if itis in mode syn-sent and it knows the server received its correct ISN. The client knows theserver received its correct ISN if acks = snc + 1. If the received packet is valid, the clientgoes to mode estb and makes assignments in preparation for sending the �nal packet inthe three-way handshake. First ackc is set to sns + 1 for the next expected packet, andtime-sentc gets set to 0. Then if there is data to be sent, the
ag prep-msgc is set to enablethe internal action, prepare-msgc. If there is no data to be sent, then the sending of just anacknowledgment is enabled by setting send-ackc. If there is data in send-bufc, the prepare-msgc action increments the sequence number snc, sets ready-to-sendc to true and movesthe head of the send bu�er to msgc which will get sent with the next packet. The �nalpart of the 3-way-handshake is the action send-segcs(snc, ackc, msgc) that acknowledgesthe SYN packet from the server. The precondition of this action is to prevent the sendingof a �nal ack before all received data has been passed to the user, and the condition inthe e�ect clause sets up the wait of timed-wait state if the ack is a FIN(ACK). In the

10 Client sideInput send-msgc(open, m, close)E�ect: if modec = closed ^ open thensnc := choose-isnc()modec := syn-sentif modec 2 fsyn-sent, estb, close-waitg ^: rcvd-closec ^ m 6= null thensend-bufc := send-bufc �mif close thenrcvd-closec := trueif modec = syn-sent ^ send-bufc = � thenmodec := closedInternal send-segcs(SYN, snc)Precondition: (nowc - time-sentc � RTO) ^modec = syn-sentE�ect: time-sentc := nowcInternal receive-segsc(SYN, sns, acks)E�ect: if modec = syn-sent ^ acks = snc+1 thenmodec := estbackc := sns + 1time-sentc := 0ready-to-sendc := falseif send-bufc 6= � then prep-msgc := trueelse send-ackc := trueInternal prepare-msgcPrecondition: modec 6= rec ^ prep-msgc^_ (modec 2 festb; close-waitg ^ :ready-to-sendc^ (send-bufc 6= � _ rcvd-closec))E�ect: prep-msgc := falseready-to-sendc := trueif send-bufc 6= � thensnc := snc + 1msgc := head(send-bufc)send-bufc := tail(send-bufc)if rcvd-closec ^ send-bufc = � thensnc := snc + 1ready-to-sendc := falsesend-�nc := trueif modec = estb then modec := fin-wait-1else if modec = close-wait thenmodec := last-ackInternal send-segcs(snc, ackc, msgc)Precondition: (nowc - time-sentc � RTO) ^((ready-to-sendc _ send-ackc) ^modec 2 festb, fin-wait-1, fin-wait-2g) _((ready-to-sendc _ send-ackc) ^modec 2 fclosing, timed-wait close-waitg^ rcv-bufc = �)E�ect: time-sentc := nowcif modec = timed-wait thenstart-waitc := nowctime-sentc := 1

Server sideInput passive-openE�ect: if modes = closed thensns := chose-isns()modes := listenInput send-msgs(m, close)E�ect: if modes 2 fsyn-rcvd, estb, close-waitg ^: rcvd-closes ^ m 6= null thensend-bufs := send-bufs �mif close thenrcvd-closes := trueif modes = listen ^ send-bufs = � thenmodes := closedInternal receive-segcs (SYN, snc)E�ect: if modes = listen thenmodes := syn-rcvdacks := snc + 1time-sents := 0Internal send-segsc(SYN, sns, acks)Precondition: (nows - time-sents � RTO) ^modes = syn-rcvdE�ect: time-sents := nowsInternal prepare-msgsPrecondition: modes 6= rec ^ prep-msgs^_ (modes 2 festb; close-waitg ^ :ready-to-sends^ (send-bufs 6= � _ rcvd-closes))E�ect: prep-msgs := falseready-to-sends := trueif send-bufs 6= � thensns := sns + 1msgs := head(send-bufs)send-bufs := tail(send-bufs)if rcvd-closes ^ send-bufs = � thensns := sns + 1ready-to-sends := falsesend-�ns := trueif modes = estb then modes := fin-wait-1else modes = close-wait thenmodes := last-ackInternal receive-segcs (snc, ackc, msgc)E�ect: if modes 6= rec thenif snc = acks thenacks := snc + 1time-sents := 0rcv-bufs := rcv-bufs �msgcsend-acks := trueif ackc = sns + 1 thenready-to-sends := falsesend-�ns := falseif modes = syn-rcvd then modes := estbif send-bufs 6= � thenprep-msgs := truesend-acks := falseFigure 4 Steps from the open phase of TCP.

TCP 11open phase, when the server receives the corresponding input, modes will be syn-rcvdand it will then change to estb. If there is valid data in the packet, that is snc = acks, itis placed on the receive bu�er, acks is incremented, and send-acks is set to true.5.2 The correctness of TCPIn S, we can only lose messages between a crash and a recovery. In some low-level pro-tocols, whether a message gets lost or not may not be decided until after recovery. Thisdecision is dependent on race conditions that may exist on the channels. The postponingof nondeterministic choices in the implementations suggests the need for a backward sim-ulation. A similar situation comes up in (S�gaard-Andersen, Lynch and Lampson, 1993)and they develop the idea of a Delayed-Decision Speci�cation. We use this idea, and ourDelayed-Decision Speci�cation D is similar to the one in their work. The main idea ofa Delayed Decision Speci�cation is to have it as an intermediate speci�cation that hasthe postponed nondeterminism we see in implementations. This idea allows us to do abackward simulation from D to S instead of doing it directly from the implementation toS, and then a re�nement mapping from the implementation to D. Doing the simulationsin this manner is useful because D is very similar to S, so the backward simulation fromit to S is much simpler than one from the implementation to S would be. Also backwardsimulations are generally much more complicated than re�nement mappings, so the twosimulations turns out to be easier than a direct backward simulation.In D messages on the queues are tagged with either ok or marked. Also, instead ofdeleting messages between a crash and a recovery, D marks these messages. Markingchanges an ok tag to marked. Marked messages can then be dropped at any time, butbecause only marked messages can be dropped, only messages that were in the system atthe time of a crash can be deleted. Marked messages can still be delivered to users. Thespeci�cation D and the backward simulation from D to S are presented in (Smith, 1996).The next step in the veri�cation of TCP is to show the re�nement mapping fromautomaton T to D. As we discussed in Section 2 we have to apply the patient operatorto D to get a timed version. We call this new automaton Dp. The Embedding Theoremof (S�gaard-Andersen, Lynch and Lampson, 1993) states that automaton A implementsan automaton B i� patient(A) implements patient(B). Applying the theorem here meansDp implements patient(S). We also add history variables to T . We call the resultingautomaton T h. The history variables we add to T are assoc, overlap, isnc, and isns; assocand overlap correspond to the variables of the same name in the speci�cation, and isnc andisns correspond to the id's of an incarnation on the client and the server side respectively.We also need some invariants on the reachable states of T h. These invariants, IT , arepresented and proved in (Smith, 1996).In our de�nition of the re�nement mapping from T h to Dp we write k:variable to denotethe value of variable in state k. We also use the notation s:current-msgc and s:pos-pacc torepresent the current message and a possible packet respectively on the client side in states. The current message is the message that is being sent, but has not yet been receivedpaired with the value ok to match variables on the queues in speci�cation D. When themessage is received, current-msgc becomes the empty string since the particular messagewill be on the receive bu�er. A possible packet is a set consisting of packets with a messagethat could still possibly be delivered even though the sender crashes before receiving an

121. u:idc = s:isnc if s:modec 6= closed= nil if s:modec = closed2. u:modec = active if s:modec 2 fsyn-sent, estb, close-waitg ^ : s:rcvd-closec= inactive if s:rcvd-closec _ modec = closed3. u:q-statcs(i) = live if (s:isnc = i ^ (i; s:isns) 62 s:assoc) _((i; s:isns) 2 s:assoc ^s:modes 62frec; closedg)= dead otherwise4. u:queuecs(i) = � if :(s:isnc = i _ (i; s:isns) 2 s:assoc) _ (s:modes 2frec; closedg ^ (i; s:isns) 2 s:assoc) (A)= (s:send-bufc � ok) if s:isnc = i ^ s:modec 2 fsyn-sent; recg ^ (i; s:isns) 62s:assoc (B)= concatenation of:� (s:rcv-bufs � ok)� (msg(s:pos-pacc)� marked) if ((s:isnc 6= i ^ (i; s:isns) 2 s:assoc) _ (s:modec =rec ^ i = s:isnc ^ (i; s:isns) 2 s:assoc)) ^ s:modes 62frec; closedg (C)= concatenation of:� (s:rcv-bufs � ok)� s.current.msgc� (s:send-bufc � ok) if i = s:isnc ^ (s:modec = estb _ (i; s:isns) 2s:assoc) ^ s:modec 6= rec ^ s:modes 62 frec; closedg(D)Figure 5 Part of the re�nement mapping RTD from T h to Dp.acknowledgment of this packet. The packet may or may not get delivered depending onif all copies get dropped from the channel or if the receiving side crashes. The messageby the crashed sender may still be delivered while the sender is recovering or is in anunsynchronized state, but is de�nitely lost if the crashed sender recovers and gets back toa synchronized state. This is the case because after a side crashes, TCP forces the otherside to reset before they can both be synchronized again. Therefore, if the sender got backto a synchronized state, it means the other side closed and reopened, thus starting a newincarnation. We use the notation msg(packet) to mean the message from a packet, so forexample, msg(s.pos-pacc) is s:msgc.We de�ne a function RTD from states(T h) to states(Dp). In the de�nition, when wewrite, for example, \(send-bufc � ok)", we mean the element of (Msg � ok)� obtainedfrom send-bufc by pairing every message with ok. The main de�nitions for RTD are shownin Figure 5. We only show the mappings for client side variables since the mappings forserver side variables are basically symmetric. If s 2 states(T h) then RTD(s) is the stateu 2 states(Dp) such that the equations of RTD hold.The intuition behind the mappings of u:idc and u:modec is straightforward. The moredi�cult cases are for u:q-statcs(i) and u:queuecs(i). In T h there are four variables thatpossibly correspond to parts of the abstract queues inDp for messages going from client toserver. These variables are s:send-bufc, s:msgc, s:in-transitcs, and s:rcv-bufs. As soon as theclient opens and assigns s:isnc, the corresponding queue is activated, so u:q-statcs(s:isnc)becomes live. In this situation, (s:send-bufc � ok) (case (B)) corresponds to the abstractqueue. If the client opens right after it crashed, the server side might still be receiving

T/TCP 13data from the previous incarnation, that is, if (i; s:isns) 2 assoc ^ i 6= s:isnc, so thatqueue may still be live. In that case the message from the possible packet on the channelpaired with marked, since it might get dropped, concatenated with (s:rbufs � ok), thatis queues from (C), correspond to the abstract queue. The status of a queue is also livewhen both client and server are up and their isn's have formed an association. Queues ingroup (D) correspond to this situation. The tricky part of this mapping is dealing withthe current message being sent, s:msgc, because it may have duplicates on the channeland another duplicate in the receive bu�er of the server. Our de�nition of s:current-msgchandles this by becoming the empty string when s:msgc is received at the server, and theduplicates on the channel are ignored until there is a crash, in which case u:queuecs(i) isin group (C). A queue that is live becomes dead when its receiving end stops acceptingdata because of a close or a crash.Lemma 1 RTD is a re�nement mapping from T h to Dp with respect to IT .Proof. The proof of this Lemma is in (Smith, 1996). We give a brief sketch here. The proofhas two parts. The �rst part, which is quite straightforward, is to show that the start statesof T h and Dp correspond. The second part is to show that for each step (s; a; s0) of T h,where s and s0 satisfy the invariant IT , there exists a sequence of steps (u; a1; : : : ; an; u0)of Dp with the same timed trace. This part is done by doing case analysis for each step,a, of T h and is quite long.Theorem 1 TCP implements the patient version of speci�cation S.Proof. This Theorem follows from the Embedding Theorem, Lemma 1 and the soundnessof backward simulations and re�nement mappings.6 T/TCPIn this Section we show some of the steps of the timed automaton for T/TCP. We alsopresent the situation where T/TCP does not behave like TCP and propose an alternativespeci�cation that would allow this situation.6.1 Steps of T/TCPThe steps shown in Figure 6 are the ones necessary for a transaction using TAO. When theclient opens it increments its connection count (cc genc) and assigns that value to cc sendcwhich stores the connection count value the client will send for the current incarnationof the connection. If cache cc sentc (the persistent copy of the connection count for theprevious incarnation) is unde�ned or greater that cc sendc it means that this value cannotbe used. In this case a three-way handshake is needed. Those steps are not shown here.Otherwise the client prepares to send a packet with the CC option which means a TAOtest should be done by the server when the packet is received. If there is a message, it isplaced on send-bufc and prep-msgc is set to true to enable the internal action prepare-msgcwhich is not shown here, but is very similar to the one for TCP in Figure 4.

14 Client sideInput send-msgc(open, m, close)E�ect: if modec = closed ^ open thencc genc := cc genc + 1cc sendc := cc gencsnc := 0modec := syn-sentif cache cc sentc is unde�ned _cc sendc < cache cc sentc thencc newc := truecache cc sentc := 0elseccc := truecache cc sentc := cc sendcif modec 2 fsyn-sent, estb, close-waitg ^: rcvd-closec ^ m 6= null thensend-bufc := send-bufc �mif modec = syn-sent ^ ccc ^ snc = 0 thenprep-msgc := trueif close thenrcvd-closec := trueif modec = syn-sent ^ snc = 0^ send-bufc = � thenmodec := closedInternal send-segcs�(SYN, CC, cc sendc, snc, msgc, FIN)Precondition: (nowc - time-sentc � RTO) ^modec = syn-sent* ^ cc ^ : send-rstc ^ send-�ncE�ect: time-sentc := nowc
Internal receive-segsc�(SYN, CCE, cc rcvds, sns, acks, msgs, FIN)E�ect: if cc rcvds = cc sendc thenif modec = syn-sent thenmodec := close-waitif modec = syn-sent* thenmodec := timed-waitcache cc sentc := cc sendctime-sentc := 0ready-to-sendc := falsesend-�nc := falseif sns = ackc thenrcv-bufc := rcv-bufc �mackc := sns + 1send-ackc := trueif send-bufc 6= � thenprep-msgc := truesend-ackc := false

Server sideInput passive-openE�ect: if modes = closed thencc sends := inc(cc gens)sns := 0modes := listenInput send-msgs(m, close)E�ect:if modes 2 fsyn-rcvd, estb, estb*, close-wait,close-wait*g ^ : rcvd-closes ^ m 6= null thensend-bufs := send-bufs �mif close thenrcvd-closes := trueelse if modes = listen ^ send-bufs = � thenmodes := closedInternal receive-segcs�(SYN, CC, cc sendc, snc, msgc, FIN)E�ect: if modes = listen thencc rcvds := cc sendcacks := snc + 1time-sents := 0if cache ccs > cc sendc thencache ccs := cc sendcrcv-bufs := rcv-bufs �mcc echo:= truemodes := close-wait*elsemodes := syn-rcvdcache ccs := 0temp-data:= m�n-rcvd:= trueInternal send-segsc�(SYN, CCE, cc rcvds, sns, acks, msgs, FIN)Precondition: (nows - time-sents � RTO) ^modes 2 ffin-wait1*; last-ack*g ^cc echo ^ send-�nsE�ect: time-sents := nows
Figure 6 Steps for T/TCP Accelerated Open.

Conclusion 15The next action shown for the client, send-segcs(SYN, CC, cc sendc, snc, msgc, FIN),is enabled if the client when it opened got a message to send, and also the signal to close.This is the type of transaction T/TCP is meant to optimize. When the server receivesthis packet, receive-segcs (SYN, CC, cc sendc, snc, msgc, FIN), it checks if the value ofcc sendc is greater than the connection count value of the previous incarnation (cache ccs).If it is, the TAO test is passed and the data can be accepted, otherwise the data is storedin a temporary variable until it can be validated by a three-way handshake. After theserver passes the data to the user, if it gets a send-msgs(m, close) input with responsedata and the signal to close from the user, it sends the packet with the response data tothe client with the action send-segsc(SYN, CCE, cc rcvds, sns, acks, msgs, FIN). Whenthe client receives this packet, it checks that the echoed connection count value, cc rcvds,is the same connection count value it sent. If the data is valid, the client can pass it tothe user on its side, which means a transaction is performed in only one round trip acrossthe network.6.2 T/TCP behaves di�erently from TCPThe situation where the TAO mechanism cause T/TCP to behave di�erently from TCPoccurs in the execution described above, if the server crashed after it passed the data to theuser, but before it had a chance to send a response, and then after it recovers and reopens,it receives a new copy of the initial packet (either a retransmission or a duplicate fromthe network). This reception causes it to go through the three-way handshake protocoland accept the message again. The three-way handshake is necessary because cache ccs isunde�ned after a crash. This delivery of the same data twice does not happen in TCP, andalso violates our speci�cation. The duplicate delivery occurs because neither the client norserver can tell that the message had been delivered before.The designers of T/TCP do not seem to think that this behavior of T/TCP is necessarilybad. Therefore, a weaker speci�cation must be formulated that allows this behavior. Thekey observation is that T/TCP has a weaker notion of an association. That is, in T/TCPan id chosen by either side can form an association with more than one id from the otherside. However, we want to allow an id that is already in the set of associations to forman association with another id only if the previous id's it is associated with are crashid's. Crash id's are id's a host has when it crashes. To incorporate this idea into ourspeci�cation, we need variables to keep track of the crash id's on both sides, and wechange the precondition of make-assoc(i,j) to allow associations to be formed if neither inor j are currently in the set assoc, or if one of them is there already, but the id's it ispaired with are in the set of crash id's.7 CONCLUSIONIn this paper we presented a formal abstract speci�cation, using a simple automatonmodel, for the problem of reliable data delivery for transport level protocols. The speci�-cation gives the precise requirements for these protocols without the clutter of implemen-tation details. It is the �rst such speci�cation for the user visible behavior of TCP, and itcan be used to guide the design of other transport level protocols. Using a timed version

16of the automaton model, we also presented TCP, and formally veri�ed that it satis�ed thespeci�cation of the problem. Our formal veri�cation of TCP is the most comprehensivethat we know of to date, and is further indication that the models and techniques used inthis work are viable for verifying large practical protocols. We also presented the experi-mental protocol T/TCP. The veri�cation of this protocol was the original motivation forour work. The designers of the protocol thought it implemented TCP; however, we haveshown that it does not. The behavior that T/TCP exhibits might still be acceptable forsome applications and we proposed a weaker speci�cation for T/TCP.Currently we are working to formally verify that T/TCP satis�es our weaker speci-�cation. We would also like to formulate precisely the conditions under which T/TCPdoes implement TCP, which will give insights into which applications T/TCP can besubstituted for TCP without the potential for problems. Finally, we are also interested ineither designing a protocol that satis�es our initial speci�cation and can still perform atransaction in one round trip across the network, or formally showing that it is impossibleto design such a protocol.REFERENCESAbadi, M. and Lamport, L. (1991) The existence of re�nement mappings. Theoretical ComputerScience, 82(2):253{284.Belsnes, D. (1976) Single message communication. IEEE Transactions on Communications,24(2).Braden, R. (1992) Extending TCP for transactions { concepts. Internet RFC-1379.Braden, R. (1994) T/TCP { TCP extensions for transactions { functional speci�cation. InternetRFC-1644.Braden, R. and Clark, D. (1993) Transport protocols for transactions and streaming. Unpub-lished manuscript.Lampson, B., Lynch N, and S�gaard-Andersen, J. (1993) Correctness of at-most-once messagedelivery protocols. In FORTE'93 - Sixth International Conference on Formal DescriptionTechniques, pages 387{402, Boston, MA.Lynch, N. and Tuttle, M. (1989) An introduction to input/output automata. CWI Quarterly,3(2).Lynch, N. and Vaandrager, F. (1995) Forward and backward simulations - part II: Time-basedsystems. To Appear in Information and Computation.Lynch, N. and Vaandrager, F. (1993) Forward and backward simulations - part I: Untimedsystems. Technical Memo MIT/LCS/TM-486, M.I.T..Murphy, S. (1996) Private communication.Murphy, S. and Shankar, A. (1989) Connection management for the transport layer: Servicespeci�cation and protocol veri�cation. Technical Report UMIACS-TR-88-45.1, University ofMaryland, June 1988. Revised December. 1989.Postel, J. (1981) Transmission conrol protocol - DARPA Internet program speci�cation (Internetstandard STC-007). Internet RFC-793.S�gaard-Anderson, J., Lynch, N. and Lampson, B. (1993) Correctness of communications pro-tocols, a case study. Technical Report MIT/LCS/TR-589, M.I.T..Smith, M. (1996) Formal Veri�cation of Communications Protocols for Data Streaming andTransactions. PhD thesis, M.I.T. In progress.

