
Fast Wait-free Symmetry Breaking in Distributed

Systems

by

Mark Anthony Shawn Smith

B.S., Computer and Information Science
Brooklyn College

(1989)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1993

© Massachusetts Institute of Technology 1993

i\ (,

Signature of Author------rc----"-----"--------------
Department of Electrical Engineering and Computer Science

. /I May 14, 1993

Certified by _____________ _

Certified by __

Accepted by_ _

,----

Baruch Awerbuch
Assistant Professor of Mathematics

Thesis Co-supervisor

Nancy Lynch
~Professor of Computer Science

~ ~ ~hesis Co-supervisor

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students ARCHIVE~

MASSACHUSmS INSTITUTE
OF TECHNOLOGY

rJUL 09 1993
I laCAcn::~

Fast Wait-free Symmetry Breaking in Distributed
Systems

by

Mark Anthony Shawn Smith

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 1993, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

This work redesigns Luby's parallel Maximal Independent Set (MIS) algorithm at the
atomic level, so that it no longer needs to depend on rounds. Thus, we present a pro
tocol for constructing an MIS in an entirely asynchronous environment where processes
are added dynamically. Using existing synchronizer methods would require O(D) time
overhead to adapt the synchronous protocols of Karp-Wigderson or Luby, where D is
the diameter of the network when no more processes are added. We believe our pro
tocol converges to an MIS in O(log n) expected time, which would beat the best know
results. However, calculating the precise probabilities in the asynchronous environment
has proved to be extremely difficult, so our protocol converges in O(1og n) expected time
subject to the proof of a conjecture that we make in the thesis.

We also extend the traditional definition of wait-freedom for the shared memory model
of distributed computing, to capture important performance and fault tolerance metrics
in the message passing model. Our definition formalizes the intuitive notion that a
process should not be stopped or slowed by faulty processes/links that are far away.

We also show that our protocol for the dynamic MIS problem is 2-wait-free, which,
by our definition of k-wait-free, means a processor only has to wait for its neighbors'
neighbors in order to make progress- 'a slow link or failed process further than distance
2 away in the graph will not locally slow down the protocol.

Thesis Co-supervisor: Baruch Awerbuch
Title: Assistant Professor of Mathematics

Thesis Co-supervisor: Nancy Lynch
Title: Professor of Computer Science
Keywords: symmetry breaking, k-wait-freedom, maximal independent set, dynamic
maximal independent set, distributed computing.

°This research was supported in part by a Bell Labs CRFP fellowship and DARPA grant N00014-
92-J-1799.

2

Acknowledgments

First of all I would like to thank my thesis co-supervisor, Baruch Awerbuch, who sug
gested I work on this problem, and who provided me with valuable intuitive insights
on the problem. Next I want to thank my other co-supervisor Nancy Lynch who was
instrumental in my efforts to formalize the model of computation, the statement of the
problem, and the proofs in this thesis. I would also like to thank Lenore Cowen with
whom, along with my Baruch Awerbuch, I did joint work on preliminary results of this
thesis.

Be Hubbard the TOC group secretary has helped me with the little things that have
made my existence in the TOC group much easier. For this I thank her. I am also
eternally grateful to my officemate Mojdeh Mohtashemi, who has been a wonderful and
supportive friend. She has always been there when I needed a word of encouragement or
a sympathetic ear.

Most importantly, I would like to thank my family, and in particular my mother.
They have made all my endeavors possible.

3

Contents

1 Introduction 6
1.1 Motivation. 6
1.2 The Problem 7
1.3 Previous results . 7
1.4 Our results .. 8
1.5 Structure of thesis 8

2 Model and Problem Statement 9
2.1 Introduction 9
2.2 The formal model 9

2.2.1 I/O automata ... 10
2.2.2 Timed automata 11
2.2.3 Probabilistic timed I/O automata 11
2.2.4 Our system 12

2.3 The problem specification 13
2.3.1 The MIS problem . 13

2.4 k-wai t-freedom 14

3 The MIS protocol 15
3.1 Review of Luby's protocol 15

3.1.1 Luby's Analysis . . 15
3.2 The difficulty of asynchrony 18

3.2.1 Synchronizer slowdown 18
3.2.2 Freezing fast processes 19

3.3 The asynchronous MIS protocol 20
3.3.1 The code 21

3.4 Analysis of the algorithm. . . . 23
3.4.1 Safety 23
3.4.2 Analysis of expected running time . 24

3.5 Proof of 2-wai t-freedom. 29

4

4 Conclusion
4.1 Related work
4.2 Open problems

5

30
30
31

Chapter 1

Introd uction

1.1 Motivation

Symmetry breaking. Symmetry breaking is the problem of making a choice between
objects that are essentially all alike. This problem is fundamental in distributed com
puting. When one can break symmetry in a network, one is able to resolve deadlocks [8],
the chosen process takes the next step; elect a leader [1], the chosen process is the leader;
achieve mutual exclusion [12], the chosen process gets access to the critical region; and
allocate resources [10], the chosen process gets to use the resources.

The goal of this thesis is to design efficient symmetry-breaking algorithms in a realistic
distributed system, where we want to to be able to tolerate stopping faults (faults where
a process stops operating). In other words, we want the protocol to have the property
of k-wait-freedom, which means the protocol tolerates ongoing faults in the sense that if
some processes (links) further that distance k away from a process i stop, i continues to
run the protocol at the same speed. That is, i does not depend on slow processes (links)
further than distance k away.

We elaborate on this issue below.

Wait-freedom. Wait-freedom is an important property of distributed algorithms that
has been traditionally defined in the shared memory model of distributed computing. In
that model, an algorithm is said to be wait-free if processes will complete their operations
regardless of the failure of other processes. That is, a process can only be delayed in the
completion of its job by the the speed of the shared memory and the speed of its link to
the shared memory.

We will define the same term for the message passing model of distributed computing
in a way that we think captures an important metric for performance and fault tolerance
in this model. Intuitively, we sayan algorithrn is k-wait-free in the message passing
model, if progress of an individual process is only dependent on information from other
processes distance k away. (We define this notion more formally in chapter 2). Our goal
is to make k as small as possible. We think this is an important performance metric

6

(a) (b)

Figure 1-1: The MIS problem. (a) a graph (b) the shaded nodes form an MIS of the graph

because it means a process only has to wait at most k times the maximum link delay
before any step in its execution. It is also a fault tolerance metric because it means that
a process can only be affected by faults that are at most distance k away. Another way
to look at k-wait-freedom is that it captures the notion that the operation of a process
should not be slowed or stopped by a very slow or failed process or link that is greater
than distance k away. If a protocol is k-wait-free, we say it has wait-dependency k.

1.2 The Problem

Our symmetry breaking tool will be a variation of the Maximal Independent Set (MIS)
problem. We consider the underlying graph of the network to be the input graph, where
the nodes are network processes, and two processes are connected by an edge if there is
a direct communication link between them. An MIS on this graph is a subset of nodes
such that no two nodes are connected and every process is either in this subset or has a
neighbor in the subset (see Figure 1-1).

In the variation of the problem we consider, the graph is allowed to grow dynamically,
that is, the graph grows by the activation of new processes to participate in the protocol.
When new processes get activated, they are given the set of already active processes to
which they are connected (their neighbor set). The links to these neighbors are also
activated. Note that the activation of new links between already active processes is not
allowed. Our system will be modeled using a probabilistic timed I/O automata. We give
a formal presentation of the model and the problem in Chapter 2.

1.3 Previous results

Randomized solutions for the distributed MIS problem which run in logarithmic expected
time have been found by Karp-Wigderson [15] and Luby [16], in a properly-initialized
synchronous model. The protocols of Karp-Wigderson and Luby run in set rounds, which
assumes the existence of a global clock and a consistent initial state. In the asynchronous
model, if the network graph is static and all the processes "wake up" at the same time then

7

the best known algorithms for constructing an MIS use the a "synchronizer" introduced
by Awerbuch [5] and the algorithm of [15] or [16]. The a synchronizer generates pulse
numbers which are used to simulate rounds. In the case where the network is growing
dynamically the a synchronizer may add a delay of O(D) to the protocol, where D is
diameter of the network when it stabilizes (no new processes are added). Therefore,
a protocol that uses the a synchronizer plus the protocol of Luby or Karp-Wigderson,
would run in O(D + log n) expected time. This added delay occurs because the dynamic
addition of processes may cause a waiting chain of length O(D) in the protocol. That
is, a process may have to wait for a synchronizing pulse to propagate from a process
distance O(D) away. This also mean if the process at the start of the chain fails, the
process at the end of the chain cannot complete its execution. We elaborate on these
issues in Chapter 3.

1.4 Our results

We present a new dynamic MIS algorithm for symmetry-breaking in an asynchronous
network. We consider the time it takes for our protocol to construct an MIS after the
network has stabilized, that is, when the last process is activated. At that time, if there
are n active processes in the network, then we believe our protocol will converge to a
correct MIS in O(log n) expected time. However, the proof of the expected running
time we give in the thesis is subject to the proof of a conjecture we make about the
probabilistic behavior of the protocol. Our algorithm is also 2-wait-free. This means
any process i will tolerate the faults of any other processes greater than distance 2 away.
Processes are only dependent on their neighbors and their neighbors' neighbors for their
operations.

1.5 Structure of thesis

We present the formal network model and a more precise definition of the problem in
chapter 2. In chapter 3, we give the asynchronous protocol for the dynamic MIS problem
and the proof of its correctness. We also prove safety and liveness properties of the
protocol in this chapter ~long with an analysis of the time complexity of the algorithm.
Lastly we give the proof that the algorithm is 2-wait-free. Chapter 4 contains a discussion
of related work and open problems.

8

Chapter 2

Model and Problem Statement

2.1 Introduction

We assume that the communication network is a complete graph. The active graph will
be a subgraph of this graph, and our protocol runs on the active graph. We model each
process as a probabilistic timed I/O automaton (we give a formal definition below). Each
process has an input action from an external system that activates the process (WAKEUP
message). The input action message has the neighbor set of the newly activated process
and a value that may be used in the protocol. A process that has received a wakeup
message as an input we will define as active. We restrict the environment such that in
the set of legal inputs, the neighbor set included in the input must consist only of active
processes. Thus, the first process to be activated will receive a null neighbor set in its
input.

When a process gets activated, it sends a message to its neighbors telling them it
has joined the protocol. The communication links between a process and its neighbors
get activated when the process receives its WAKEUP message with its neighbor set.
Communication is only allowed between active processes.

Each process has an external action that has a value that is the result of it running
the protocol. The output set produced by active processes must have the property that
the activation of new processes does not cause old processes to change their outputs.

2.2 The formal model

In this section we give a formal presentation of our model. We start by giving an overview
of I/O automata and timed I/O automata. Finally we present probabilistic timed I/O
automata.

9

Figure 2-1: The dynamic MIS problem The figure shows how the active graph might grow on a
network of 6 processes. The solid lines represent active links and the shaded nodes represent active processes.
In (a) we have 3 active processes, (b) shows the activation of a fourth process, and (c) has the activation of
a fifth process. If the network stabilized after (c), then n = 5.

2.2.1 I/O automata

We define I/O automata and give a brief description of some of its properties. For a
more detailed description of the model see [20, 19]. An I/O automaton consists of five
components:

1. an action signature sig(A),

2. a set states (A) of states,

3. a nonempty set start(A) ~ of states,

4. a transition relation steps(A) ~states(A) x acts(A) x states(A) with the property
that every state s' and input action 7r there is a transition (Sf, 7r, s) in steps(A), and

5. an equivalence relation of part(A) partitioning the set local(A) into at most a count
able number of equivalence classes.

The action signature sig(A) is a partition of a set acts(S) into three disjoint sets in(S) ,
out(S) , and int(S) of input actions, output actions and internal actions respectively.
The union of the input actions and output actions we denote as external actions, those
actions visible to the environment of any automaton that has S as its action signature.
Each element of an automaton's transition relation represents a possible step in the
computation of the system the automaton models. We refer to an element (Sf, 7r, s) of
steps(A) as a step. The equivalence relation part(A) is used to identify the primitive
components of the system being modeled by the automaton: each class is thought of as
the set of actions under the local control of one system component.

When an automaton 'runs', it generates a string representing an execution of the sys
tem the automaton models: an execution fragment of A is a finite sequence so, 7r}, ••• , 7rn , Sn

10

or an infinite sequence So, 1rt, st, 1r2, ••• of alternating states and actions of A such that
(Si' 1ri+1, Si+t) is a step of A for every i. An execution is an execution fragment beginning
with a start state. The schedule of an execution a is the subsequence of a consisting of
all the actions of a. The behavior of an execution or schedule a is the subsequence of a
consisting of external actions.

We can model complex systems by composing automata modeling the simpler system
components. We can compose automata if they are strongly compatible; this means
that no action can be an output of more that one component, that internal actions of
one component are not shared by any other component, and that no action is shared by
infinitely many components. The results of such a composition is another I/O automaton.

2.2.2 Timed automata

In this subsection we summarize the description of timed automata as presented in [18].
A boundmap for an I/O automaton A is a mapping that associates a closed interval of
[0,00] with each class in part(A), where the lower bound of each interval is not 00 and
the upper bound is nonzero. Intuitively, the interval associated with a class C by the
boundmap represents the range of possible lengths of time between successive times when
C "gets a chance" to perform an action. A timed automaton is a pair (A, b), where A is
an I/O automaton and b is a boundmap for A.

In the timed automata model we have notions of "timed execution", "timed sched
ule", and "timed behavior" that corresponds to executions, schedules, and behaviors for
ordinary I/O automata. These will all include time information. A timed sequence is
the basic type of sequence that underlies the definition of a timed execution. A timed
sequence is a finite or infinite sequence of alternating states and (action, time) pairs,
so, (1rl' tt), S1, (1r2' t2), ••• , satisfying the following conditions:

1. The states so, St, ... are in states(A).

2. The actions 1rt, 1r2, ••• are in acts(A).

3. The times tt, t 2 , ••• are successively non decreasing nonnegative real numbers.

4. If the sequence is finite, then it ends in a state Si.

5. If the sequence is infinite then the times are unbounded.

2.2.3 Probabilistic timed I/O automata

In this subsection we briefly present probabilistic timed I/O automata. Probabilistic
timed I/O automata is essential the same as timed I/O automata, except instead of the
steps being deterministic base on the current state and the actions enabled in that state,
there is now a probability distribution over the next possible steps. In the probabilistic

11

timed model we also have an adversary that has power over which step is taken next in
an execution sequence.

More formally, probabilistic timed I/O automata is a triple (Ap, b, a) where Ap is a
probabilistic I/O automaton, b is a boundmap for Ap and a is an adversary. A prob
abilistic I/O automaton differs from an I/O automaton in the definition of the transi
tion relation. For probabilistic I/O automata we have transition relation steps(Ap) ~
states(Ap) x acts(Ap) x states(Ap) with the property that for every state s' and action
7r enabled in s' there is a set of states T with probability distribution Q S',1r over the set
such that there is a transition (s', 7r, s) in steps(Ap) for every sET.

When a probabilistic automaton 'runs', it generates a tree, the execution tree, repre
senting an execution of the system the automaton models. Nodes in the tree are states
and the branches represents the different states that can be reached when some action
that is enabled in that state is taken. A branch will happen with probability based on
the probability distribution defined on that state and action in steps(Ap). An execution
fragment of Ap is a path in the execution tree and is defined as in I/O automata. Execu
tion, schedule and behavior are also based on paths in the execution tree and are defined
as in I/O automata.

To find the probability that a particular event (state or action) happens in some finite
execution of the automaton, we look at the execution tree generated by the automaton,
find every path on which this event occurs and sum the probabilities of the event on
each path. To find the probability of an event on a path, we take the product of the
probability of each successive state in the path starting with the start state.

2.2.4 Our system

Our network is represented as a directed graph G = (V, E) where the nodes of the graph,
V, are the processes, and the edges E are the communication channels between processes.
We define Neighbors(i) as the set of Neighbors of a process i E V. We model each process
i E Vasa probabilistic timed IDA, Ai. However, we restrict our adversary a to what we
will call the link delay function. a takes as its argument a link and the global time and
returns the delay on that link. The link delay, d is bounded from below by 0 and from
above by the maximum delay v.

Each automaton Ai will have the following action signature.

Input actions: WAKEUPi(N, v) (where v some input value and
N ~ N eighbors(i))

Output actions: RETURN(v) (output value)

We place the following well-formedness constraint on the environment, in our model:
V WAKEUPi(N, v) and Vj E N there was a WAKEUP j earlier in the execution sequence.

We model the communication channels as IDA. Each process has a communication
channel to all its neighbors E V. However, we constrain a process i and only allow it

12

to communicate with a neighbor j when i receives the input WAKEUPi(N, v),j E N
or i receives a message from j. Each channel automaton has input actions of the form
SENDj(M) and output actions of the form RECEIVE(M). The transition relation is as
follows:

SEND(M)
Effect: messages ~ messages U{M}

RECEIVE(M)
Precondition: M E messages
Effect: messages ~ messages - {M}

2.3 The problem specification

In our model the active network is allowed to grow dynamically. A process may get new
neighbors at anytime during an execution. However, if a process has already produced
an output, we do not want this result to be invalidated by the addition of new processes.
Problems solved in this model must have this property. We call the property dynamic
extendability. Let I be the input set for the problem and 0 be the output set. For a graph
problem each element i[E I is a triple (i, Ni , Vi) and io E 0 is a pair (i, vD where i is the
process id, Ni is the neighbor set of process i, Vi is an input value, and v: is an output
value. We define proc(I) as the set of processes that are in the triples of the set I. I and
o grow dynamically as the network grows. A problem P is a set of specifications that
define a relationship between Vi and v: for every process i and also defines a relationship
on vi for all i. A solution S to problem P is a set of pairs, where each pair is the input
and output tuples for the same process, that satisfies the specifications of P. Formally
we say a graph problem is dynamically extendable if given some problem P and a solution
set S for P, then Vj ¢ proc(I) (a new input), such that Nj ~ proc(I), and VVj, 3vj such
that S U {((j, Nj , Vj), (j, vj))} solves P.

2.3.1 The MIS problem

An MIS on a graph is a subset of nodes such that no two nodes in the subset are connected
(independence) and every node is either in this subset or has a neighbor in the subset
(maximal). If at some time t, new processes stop entering the ne~work, then our protocol
should produce an MIS on the active network. For this problem there is no value included
in the neighbor set in the WAKEUP message, so an element io E I looks like (i, N i , _).

For notational convenience we write this as (i, Ni). An element of io E 0 will be (i, 0)
or (i, 1) where the 0 output means the process has a neighbor in the MIS or is not in the
MIS, and the 1 output means the process is in the MIS. The MIS problem P mis' has the
following specifications:

1. if (i, Ni) E I and (i, 1) E 0, then Vj E Ni , (j,O) E 0 (independence), and

13

2. let III = nand m = the number of processes i such that (i, 1) E O. Then I Ui Nil =
n - m (maximality).

Lemma 2.1 The MIS problem is dynamically extendable.

Proof. We can prove this lemma using induction on the number of active processes.
We assume we have a protocol that given input set I produces an output set 0 such
that the solution set S satisfies P mis. The base case is the empty network where we
have no active processes, thus, S is the empty set. The addition of a new process k will
not violate the dynamic extendability property because with the addition of the process
we have the solution S = {((k, Nk), (k, I))} which satisfies Pmis' Now assume we have
III = n ~ 1 and the corresponding 0 such that S solves P mis' Let jf = (j, Nj) be the
input of some newly activated process j such that j ~ proc(I) and N j ~ proc(I), then we
have two cases based on j's neighbors.

1. 3k E Nj such that (k, 1) E O.
We claim S U {((k, Nk), (k, O))} solves Pmis'
Property 1 still holds because by the inductive hypothesis the property was valid
before the addition of process j and since jo = (j, 0), the property will remain valid
for any process k E Nj •

Property 2 holds because III increases by 1 with the addition of j, m remains the
same and I Ui Nil increases by 1 because j is in this set.

2. Vk E Nj, ko == (k,O).
We claim S U {((j, Nj), (j, 1))} solves Pmis
Property 1 holds because Yk E Nj , we have ko = (k, 0) so the property holds for j
and by the inductive hypothesis it holds Vi E proc(I).
Property 2 holds because III increases by 1 with the addition of j, m also increase
by 1 because j will become a member of this set, and I Ui Nil remains unchanged.
o

2.4 k-wait-freedom

We say that a protocol is k-wait-free if for any process i, if all the processes in the distance
k neighborhood of i stop receiving new neighbors and continue to take steps, then i will
accomplish its task, that is, i will produce an appropriate output value.

14

Chapter 3

The MIS protocol

In this chapter we present the asynchronous dynamic MIS protocol. We first review the
elegant synchronous protocol of Luby [16], and discuss the difficulties in simulating such a
protocol in an asynchronous environment. In the rest of the chapter we give the analysis
for expected time and wait-dependency.

3.1 Review of Luby's protocol

Luby's synchronous MIS protocol, as given in [16] proceeds in rounds. In each round,
process i flips a coin Ci, where

C' _ {I with probability 1/(2d(i))
t - 0 otherwise,

where d(i) is the degree of node i in the underlying graph.
Process i then compares the value of its coin to the coins of its neighbors, and enters

the MIS if its coin is 1, and for all its neighbors, j, such that either d(j) > d(i) or
d(j) = d(i) and j > i, j's coin is O. When a process gets in the MIS, all its neighbors
also get removed from the protocol. Luby shows that in O(log n) expected rounds, this
constructs an MIS.

3.1.1 Luby's Analysis

Luby's analysis focuses on the number of edges that get removed in each round of the
protocol. Let E' be the set of edges in the graph, I be the set of processes in the MIS,
N(I') be the set of neighbors of processes in the MIS and Yk be the number of edges in
E' before the kth round of the protocol. The number of edges removed from E' due to
the kth round of the protocol is Yk - Yk+1 • The theorem that Luby proves is:

15

Proof of theorem Let G' = (V', E') be the the graph before the kth round of the
protocol. The edges removed due to the kth round of the protocol are edges with at least
one endpoint in the set l' U N(I'). Thus,

exp[Yk - Yk+1] > -2
1

. E d(i) . Pr[i E I' U N(J')]
ieV'

> !. E d(i) . Pr[i E N(I')]
2 ieV'

For all i E V' such that d(i) ~ 1, let

1
sum(i) = ~ d(')

jeadJ(i) J

The remainder of the proof is based on a lemma that states the Pr[i E N(I')] ~
1/4· min{sum(i)/2, I}. Thus,

exp[l-k - Yk+1] > ~. (~. E, d(i) . sum(i) + .~ d(i))

SUm(i)$2 SUm(i»2

> ~. (L ~ 2 ~~). + L ~ 1)
ieV' "EadJ(i) (J) ieV' "eadJ(i) SUm(i)$2 J SUm(i»2 J

> 1
8

1 (d(i) d(j))
E "2' d(j) + d(i) + (i,j)eE'

SUm(i)52
sum(j)$2

> 1 I 'I 1 S· E =S'Yk

Lemma Pr[i E N(I')] ~ 1/4· min{sum(i)/2, I}

(i,j)eE'
sum(i)52
sum(j»2

Proof. V j E V', let Ej be the event that coin(j) = 1 and let

1
Pj = Pr[Ej] = 2 . d(j)'

(
d(i))

2. d(j) + 1 +

Without lost of generality let adj(i) = {I"", d(i)} and let PI ~ ... ~ Pd(i).

Let Ei be the event El and for 2 ~ j ~ d(i) let

j-l

Ej = (n -,Ek) n E j •

k=1

16

E 2
(i,j)eE'

SUm(i»2
sum(j»2

Let

Then,

But

and

Aj = n lEv.
veadj(j)
d(v)~d(j)

d(i)

Pr[i E N(I')] ~ L Pr[Ej] . Pr[AjIEj].
j=1

Pr[AjlEjl ~ Pr[Ajl ~ I - ~ Pv ~ ~
veadJ(j)
d(v)~d(j)

d(i) [d(i)]
~ Pr[Ejl = Pr jld E j •

For k # j, Pr[Ej n E k] = Pj . Pk. Thus, by the principle of inclusion-exclusion, for 1 ~ I ~
d(i),

Pr [LJ Ej] ~ Pr [U Ej] ~ tpj -t t Pj· Pk.
3=1 3=1 3=1 3=1 k=3+1

Let a = E1~l Pj. The technical lemma that follows implies that

[

d(i)] 1 1
Pr W Ej ~ 2". min{a, I} ~ 2" . min {sum(i)/2, I}.

3=1

It follows that Pr[i E N(I')] ~ 1/4· min{sum(i)/2, l}.O
Technical Lemma. Let PI ~ ... ~ Pn 2:: 0 be real-valued variables. For 1 2:: I 2:: n, let

I

al LPh
j=1

I I

(JI - L L Pj· Pk,
j=lk=j+l

/1 al - c . (Jl,

where c > 0 is a constant. Then

maxhdl ::; I ::; n} ~ ~ . min{ an, lie}.

Proof omitted. See [16] for proof.

17

high j
degree

low
degree

Figure 3-1: The difficulty of asynchrony. Why luby's protocol does not work in the asynchronous
network. Process j with degree bigger than that process i communicates quickly with i, while the link between
i and k is slow. We cannot have j just freeze, whenever i is waiting to to hear from k, without causing
deadlocks. However, while i waits to hear from k that it is safe to enter the MIS, j flips again many times
and finally flips a 1, killing i's chances of getting in the MIS. An adversary can set link delays to cause such
bad performance.

3.2 The difficulty of asynchrony

In an asynchronous environment, it is not clear how to implement a protocol like Luby's.
Without a global clock, there is no way to insure that processes flip at the same rate.
If we do not control the rate a process flips as compared to its neighbors, many things
can go wrong. For instance, a fast-flipping process might have multiple chances to flip

-a 1 and kill slower-flipping neighbors (see Figure 3-1). Luby's protocol worked because
in each round every process only had one chance to kill a neighbor that flipped 1. With
asynchrony this is no longer guaranteed.

3.2.1 Synchronizer slowdown

To guarantee that neighbors only get one chance to kill a process that flipped a 1 we can
add the a synchronizer of [5] to adopt Luby's protocol to the asynchronous environment.
However, this may add an overhead of O(D) for the first step in the protocol after
the network has stabilized, where D is the diameter of the network after stabilization.
The a synchronizer adopts a synchronous protocol for an asynchronous environment by
generating pulses to simulate the rounds of the synchronous protocol (the pulse numbers
corresponds to rounds). In the simulation, a process can only take a step if all its
neighbors have the same pulse number. To see how the a synchronizer could add O(D)
for the first step in the protocol consider the following example of a dynamic MIS problem
(see Figure 3-2) :

1. 3 processes, po, PI, P2, get activated initially all with pulse o.
2. Process PI is very fast so it sees all its neighbors are 0 and increments its pulse to

1. However, the link delay function has set the link (Po, P2) to be very slow, so Po

18

@-...

Figure 3-2: Synchronizer slowdown. (a) shows the 3 initial processes with pulse O. In (b) PI has
incremented its pulse to 1, and the newly activated process P3 takes that pulse number. In (c) process P3 has
incremented its pulse to 2, so the newly activated P4 takes that pulse. In (d) we have the worst case scenario
where Pd has pulse number D (D is the diameter of the network). Thus, we now have a situation where Pd
is dependent on Po, so we have a waiting chain of length D.

will take a very long time to update its pulse.

3. Now a new process P3 gets activated and it is only connected to Pl. When P3 comes
in it sees the pulse of PI is 1, so it sets its pulse to 1. Its neighbor is 1, so P3 can
update its pulse to 2.

4. Next P4 comes in and is only connected to P3. It sees P3'S pulse is 2 so it sets its
pulse to 2. Its neighbors pulse is also 2, so P4 can update its pulse to 3.

5. New processes get activated in the same manner until we have a chain whose length
is the diameter of the network.

In such a scenario, the process at the end of the chain may have to wait for the pulse
to propagate from Po before the first step it takes in the execution of the protocol.
Additionally if po fails, then all the processes in the chain, even a process as far as O(D)
away, will stop making progress.

3.2.2 Freezing fast processes

The crux of the problem is as follows: suppose a process i flips a O. Then its neighbors
who have flipped 1 's should have a chance to enter the MIS before i flips again, but we do
not want to pay the overhead of a synchronizer. What we do instead is when a process
flips a 1 its neighbors freeze J while it checks to see if it will survive and enter the MIS.
Except, if we allow each of i's neighbors to freeze i in turn, i can stay frozen a long time
with no chance to enter the MIS.

19

The solution to this in our protocol is when a process i flips a 0, it freezes for each
neighbor's current coin flip before it flips again. When a neighbor flips again, this un
freezes i, and a neighbor who unfreezes i's new coin cannot freeze i again until i has
flipped a new coin too. What this gives us is that a fast neighbor may get at most 2
chances to kill a slower neighbor. That is, in our protocol if a process i flips a 1, then
each neighbor has at most 2 flips that has a chance to kill i's flip of 1. This is sufficient
to maintain the O(log n) expected time bound (see section 3.4.2 for proof). The freezing
mechanism also gives us wait-dependency of only 2 (proof in section 3.5).

3.3 The asynchronous MIS protocol

We start by describing the internal variables used by the process.

di : represents the pair (d(i), i) in process i.

Coin: the current value of i's flipped coin.

Coin(j): records information about neighbor j's coin. It has three possible values, UNSET if
process i's coin was just flipped and neighbor j's coin is unknown; 0 if (dj < di and coin
= 1) or (j's coin = 0); and 1 if (dj > di and j's coin = 1) or (j's coin = 1 and coin = 0).

Freeze(j): when coin = 0, this variable keeps track of whether i froze its current coin for
neighbor j, has already frozen and then unfrozen its current coin for neighbor j, or has
not yet frozen for j. These notions correspond to the values 1, 0, and UNMARKED
respectively.

Neighbors: set of adjacent vertices not known to be in the MIS nor to have a neighbor in the
MIS.

MIS-flag: flag that indicates i's status in the MIS.

U pdate-flag(j): flag that indicates that j is no longer in the protocol and should be removed
from the neighbor set of i.

All flags have initial value UNSET.

Below is a description of messages received by the process.

WAKEUPi(N, v): message from the environment to become active in the protocol.

(New,j): message from neighbor j saying than it is newly activated.

(Query,F,dj): message from neighbor j indicating j's coin = F, j's ID and current degree,
and also that this is a query message, requesting the value of i's coin.

(ACK,F, dj): message from neighbor j indicating j's coin = F, j's ID and current degree, and
also that this is an ack message in response to a query.

(InMIS,j): message from j saying it is in the MIS.

20

(Remove,j): message from neighbor j saying that it has a neighbor in the MIS and should be
removed from the set of active nodes.

Here we give an informal description of the how the protocol works. The crux of
the protocol lies in how a process responds to Query and ACK messages. Depending on
whether it flipped a 0 or a 1, i will respond differently to ACK and Query messages from
its neighbors. We first describe how it responds if the current flip of its coin is a o. When
an ACK message is received from a neighbor j, Coin(j) is set to the value of the coin j
sent in the ACK message. If Coin(j) is 1 i does not want to flip again until j has had a
chance to try to get in to the MIS, so Freeze(j) is set to 1. If the Coin(j) is 0, Freeze(j) is
set to o. If none of the neighbors had a coin that was 1 at the time it received i's Query,
then for all j Freeze(j) will be 0, so i can flip again. Meanwhile, when i receives a Query
message from a neighbor j, the sending of an ACK message is enabled. If Freeze(j) is 1,
it means j had frozen i on its previous flip, but did not get in the MIS and so has flipped
again. Since i will not allow j to freeze it a second time before i gets a chance to flip
again, it sets Freeze(j) to o. If now for all neighbors k Freeze(k) equal 0, i flips again.

Now we describe how i responds if its coin is 1. On an ACK from neighbor j, it
will set Coin(j) to 0 if j's coin was 0, or if dj < di . Otherwise Coin(j) is set to 1.
If for all neighbors k Coin(k) is 0, i enters the MIS by setting its MIS-flag to 1 and
sending a message to all i's neighbors saying that it is in the MIS. If i did not beat out
all its neighbors to get in the MIS, and has received ACK's from all of them, it flips
again. Upon receiving a Query from j, the sending of an ACK message is enabled in i.
Freeze(j) is unaffected because Coin is equal to 1. However, we could have a scenario
where j was frozen by i and then unfrozen by i on i's latest flip. When i sent a Query to
j, j could have still been held by some other process and so sent a Coin = 0 in its ACK
to i. However, before i could receive ACK's from all its other neighbors, j could have
since gotten unfrozen by the neighbors who were holding it and flipped again. Thus, the
Query message could have a new value of Coin from j. Therefore, i might have to update
its value of Coin(j) based on this message. This update is only significant if the new coin
is 1, because it may affect the safety condition.

3.3.1 The code

Our protocol works in the model described in the previous chapter, where we also gave
the problem specification. Let i be the process with ID = i, and let d(i) be its degree
in the network. For notational convenience we will define di to be the ordered pair
(d(i), i) and say that di > dj if (d(i) > d(j) or d(i) = d(j) and i > j). Also we write
WAKEUPi(N) as shorthand for WAKEUPi(N, _). The code for a process i is shown in
below in figure 3-3.

21

Program RECEIVE(G):

C = WAKEUP.(N)
Effect: Neighbors - N

"'i E Neighbors put (New,/D) in send-buffer(j)

C = (New,i)
Effect:

"'i Freeze(j) - 0

Neighbors - Neighbors + {i}
if MIS-flag = 1, put (In-MIS,ID) in send-buffer(j)
if MIS-flag = 0, put (Remove,/D) in send-buffer(j)
if MIS-flag = UNSET, put (Query,Coin,d) in send-buffer(j)

C = Query(F,dj)
Effect: put (ACK,Coin,d) in send-buffer(j)

if Freeze(j) = 1,
then Freeze(j) - 0

if dj > d and F = 1 and Coin = 1 and Coin(j) = 0,
then Coin(j) - 1

C = ACK(F, dj)
Effect: if Coin = 1

C = Remove(j)
Effect:

C = InMIS(j)
Effect:

if dj < d or F = 0,
then Coin(j) - 0
else Coin(j) - 1

if "'k Coin(k) = 0,
then Enter-MIS
else if "'k Coin(k) -:f: UNSET,

then "'k Freeze(k) - 0
if Coin = 0,

then Coin(j) - F
if Coin(j) = 1,

then Freeze(j) - 1
else Freeze(j) - 0

update-flag(j) - 1

MIS-flag - 0
"'k E Neighbors, put (Remove,lD) in send-buffer(k)

Flip-Coin
Precondition: "'k Freeze(k) = 0
Effect: "'i s.t. update-flag(j) = 1, Neighbors - Neighbors - {i}

Coin = 1 with probability 1/4lNeighborsl
= 0 otherwise

"'i E Neighbors
Coin(j) - UNSET
Freeze(j) - UNMARKED
put (Query,Coin,d) in send-buffer(j)

SENDj(m)
Precondition: m E send-buffer(j)
Effect: send-buffer(j) - send-buffer(j) - m

procedure Enter-MIS
MIS-flag - 1
"'i E Neighbors put (InMIS,ID) in send-buffer(j)

Figure 3-3: MIS Algorithm

22

/* program on process i * /

3.4 Analysis of the algorithm

In this section we prove the safety and liveness properties of our algorithm, and we also
give the analysis of the expected running time.

3.4.1 Safety

Lemma 3.1 If i has MIS-flag = 1, then for all neighbors j of i, j has MIS-flag = o.

Proof. In the protocol, a process i will join the MIS only if Vj such that dj > di , Coin(j)
= 0 and it has set Coin = 1. Assume, by contradiction, that two neighbors i and j, both
enter the MIS. Let winneri be the last coin that i flipped before joining the MIS, and
let winnerj be the last coin that j flipped before joining the MIS. Then there must be
some time ti at which i flips the coin winneri and similarly define time tj. Notice that
by definition of the coins winneri = winnerj = 1. After a process flips its winning coin,
that coin will stay at 1 for all time. There are several cases.

1. tj is before ti, and at time tj, dj > die Then at time ti, when i queries all its
neighbors, the ACK from j will say Coin j = 1. Since j doesn't update its degree
until it flips again, and j hasn't flipped since time tj by assumption, j's ID remains
what it was at time tj, or possibly j has entered the MIS by time tie In either case
winnerj will not allow i to enter the MIS.

2. ti is before tj, and at time ti, di > dj . Same as Case 1, by symmetry.

3. ti is before t j, and at time ti, di < dj . There are several subcases.

(a) tj occurs while Coin(j) at i is still UNSET. Then this is the same as Case 1,
above.

(b) tj occurs after i has received an ACK from neighbor and j set its flag Coin(j),
but before i has heard from all neighbors. Then i has set its flag according
to the previous coin of j (which didn't win). j cannot enter the MIS until j
has queried all its neighbors (including i) and received ACKs. If i has not yet
heard from all its neighbors when it receives j's new query, it resets its flag
Coin(j) = winnerj, and winnerj will not allow i to enter the MIS.

(c) tj occurs after i has already received ACK's from all its neighbors. By as
sumption, all of i's neighbors of higher ID reported a flip of o. Therefore, i
has already sent an InMIS message to j which will reach j before it receives
an ACK from i by the FIFO property of the links, and so j will never enter
the MIS.

4. ti is before tj, and at time ti, dj > di . Same as case 3, by symmetry. 0

23

3.4.2 Analysis of expected running time

For a process i that flips a 1, let coinj be the coin process j reports to i after i's flip of
1, and let nextj be j's next coin.

Lemma 3.2 If i flips a 1 and for all neighbors j of bigger degree coinj = 0 and nextj
0, then i enters the MIS.

Proof. In our protocol, a process k gets in the MIS if the following 3 conditions are
satisfied:

1. it flips a 1,

2. at the moment the query arrives at the neighbor, all its neighbors of higher degree
each has coin = 0, and

3. no neighbor of higher degree flips again and flip a 1 after it sent an ack to k and
before k gets a chance to enter the MIS.

Condition 3 is needed because a process j might have been frozen when it responded to
the query from its neighbor and subsequently gets unfrozen. If that happens and the
next flip of j produces a 0, then when j queries k it will freeze based on k's coin being
1. All three conditions are clearly satisfied by i by the statement of the lemma. 0

Lemma 3.3 A process will flip again or enter the MIS within time 2v after flipping a 1,
and will flip again within time 5v after flipping a 0, where v is the maximum link delay.

Proof. If coin = 1, then a process only needs to receive ack's from all its neighbors
before it enters the MIS or flip again. Thus, the delay is at most 2v.

If coin = ° for some process i, then clearly the worst case occurs when Freeze flags
get marked 1 since a process will have to wait until all these flags get marked 0 before it
can flip again. Freeze flags get marked 1 only after i receives ack's in response to queries.
Process i sends the queries and receives the acks within time 2v. If Freeze(j) got marked
1 it means j must have flipped a 1. We are interested in the case where j loses and does
not enter the MIS since if it did enter the MIS, both it and j would get removed from the
protocol. Freeze(j) will get marked 0 when i receives a new query message from j. Since
j flipped a 1 and we assume it does not enter the MIS, it will flip again within time 2v
and thus send a query message to i which will arrive at i within time 3v. When i gets a
query message it will flip again for a total delay between flips of at most 5v. D.

Lemma 3.4 Let ao and al be two paths in the execution tree generated by our MIS
protocol. Suppose that ao and al are the same up to time to, but in ao j flips 0 and in
al j flips 1 at to. Assume j does not get in the MIS on its flip at to. Then the amount
of time it takes j to flip again in ao is greater than or equal to the time it takes j to flip
aga'ln 'In al regardless of the coin flips of other processes.

24

Proof. By the design of the protocol, at to for both ao and a1 j sends a query to all its
neighbors and gets acks in response. The time it takes for the j to send the queries and
receive the acks from its neighbors is identical for ao and a1. The times are identical
because the link delay function sets the delays based on time t}:le message is being sent
and the link on which it is been sent on. This is identical for both ao and a1. When it
gets the last ack from its slowest neighbor, j will immediately flip again in a1. However,
in ao when j gets the last ack, it might immediately flip again if none of its neighbors
had a coin of 1. In this case the time to flip again for ao would be the same as for a1.

However, if there was a neighbor that had flipped a 1, then j will get frozen, and will not
flip again until that neighbor has flipped again or got in the MIS. In this case the time
before j flips again will be greater in ao than in a1. 0

Lemma 3.2 proves that a process i gets in the MIS if it flips a 1 and coinj and nextj
is 0 for all its neighbors j of bigger degree. However, for the purpose of our analysis we
take a step back and look at the situation where i flips 0 and then 1. Let to be the time
i flips O.

In the execution tree generated by our protocol, we call the occurrence of the action
where any process k flips a coin Ck. For process j, if this flip of j is the last one before
Ci on a branch of the execution tree, we call this action cj. The coin of j at cj will be
coinj, and the coin of j after will be nextj. The execution tree we look at will start at
time to. We can start our execution tree at this point because of the next lemma.

Lemma 3.5 If cj occurred before time to then coinj = 0 with probability 1.

Proof. We examine the case where the last Cj before to produced a 1, and the case
where it produced a o.

1. If when i sent a query to j after it flipped at time to it got an ack from j indicating
that j's coin is 1, then i will freeze and cannot flip again until j flips again and
unfreezes it. This flip of j happens after to. Thus, when Ci happens, the flip of j
after to or some later flip will be cj.

2. If when i sent a query to j after it flipped at time to it got an ack from j indicating
that j's coin is 0, then i may not feeze and could flip again before j gets a chance
to flip. In this case cj could be before to. 0

Since we will only need to show that the Pr[coinj = 0] ~ (1 - 1/ 4d(i)), this case only
helps us.

Conjecture 3.1 If a process i flips 0 and 1 on consecutive flips, then Pr[coinj = 0 n
nextj = 0] ~ (1 - 1/4d(i))2 for any neighbor j.

The intuition that forms the basis for this conjecture is based on two properties of
the algorithm.

25

1. Lemma 3.5 proves that if cj happened before to, then coinj will be 0 with probability
1, so we can ignore this case.

2. If we are not in case 1, so there is at least one flip of j after to, then lemma 3.4 says
that j will sit on a 0 at least as long as it sits on a 1. The intuition behind why
this lemma helps us is that if j could sit on a 1 for a long time then it could sit on
that 1 until Ci occurs thereby increasing the probability that coinj = 1. However,
since j cannot sit on a 1 longer than it does on a 0, the probability that coinj = 1
is not increased by how long j sits on a 1.

However, analyzing all the various cases that can develop in the execution tree has proved
to be extremely complex, so we have not been able to prove the conjecture as yet.

The lemmas and the theorem that follow in this section are proved subject to the
condition that conjecture 3.1 is true.

For all j E V', let Ej be the event that coinj = 1 and let

Without lost of generality let, adj(i) = {l,···,d(i)} and let PI ~ ~ Pd(i).

Let F j be the event that j flipped 01 on consecutive coins. Let Fi be the event that
coink = 1 when the query j sends after it flips 1 arrives at k. Let E~ be the event El
and for 2 :::; j :::; d(i) let

j-l

Ej = (n ,Ek) n E j •

k=1

Let F{ be the event Fl and for 2 :::; j :::; d(i) let

j-l

Fj = (n ,Fi) n Fj •

k=1

Lemma 3.6 Pr[FJ] ~ 3/4 Pr[Ej].

Proof.

Pr[Fj] = (1 - 4d~j)) . 4d~j)·
Since 1 -1/4d(i) ~ 3/4, Pr[Fj] ~ 3/4Pr[Ej]. Also Since

j-l (n ,Fi) and Fj are independent events, we get
k=1

j-l

Pr[Fj] = 3/4 . Pr[(n ,Fi) n Ej •

k=1

26

If we assume conjecture 3.1, then we get ,Ft = (1 - 1/4d(i)) = ,Ek • Thus, we have
Pr[FJ] ~ 3/4 Pr[Ej].D

Let I' be the set of processes in the MIS, N(I') be the set of neighbors of processes in
the MIS and

Aj = n (coinv = 0 n nextv = 0)
veadj(j)
d(v)~d(j)

For all i E V' such that d(i) ~ 1, let

d(i)
and let a = Lj=l Pi'

1
sum(i) = ~ d(.)'

jeadJ(i) J

Lemma 3.7 In any time interval of 7v, Pr[i E N(I')] ~ 3/16 . min{ sum(i)/4, I}.

Proof. From lemma 3.2 we know

d(i)

Pr[i E N(I')] ~ I: Pr[Fj] . Pr[AjIFj].
i=l

But

Pr[Aj I Fj] > Pr[A j]

> n (1 - Pv?
veN(j)

d(v)~d(j)

> n 1 - 2pv

veN(j)
d(v)~d(j)

> I- I: 2pv
veN(j)

d(v)~d(j)

> 1/2.

From Luby's proof given in section 3.1 we know

d(i)

L Pr[Ej] > ~. min{a:, I}
j=l

~ . min{ sum(i)/4, I}

27

From lemma 3.6 we get

d(i)

E Pr[Fj]
j=l

3 d(i)

- EPr[E/]
4 j=l

> ~. min{sum(i)/4, I}

Thus,

d(i)

L Pr[Fj1· Pr[AjIF/l > ~. ~ . min{sum(i)/4, I}
j=l

- 1
3
6' min{sum(i)/4, I}

Lemma 3.3 shows that processes always flip again within time 5v. If that flip is a 1, then
it takes 2v time units to check with its neighbors to see if it gets in the MIS. Thus, a
process can flip and check whether is in the MIS in time 7v.D

Let E' be the set of edges in the graph, Yt be the number of edges in E' at time t
and let Yt+711 be the number of edges in E' at time t + 7 v. The number of edges removed
from E' in that time interval due to the protocol is Yt - Yt+711.

Subject to the proof of conjecture 3.1 we can show the following theorem.

Theorem 3.1 exp[Yt - Yt+711] ~ 6
3
4. Yt. Thus, we will get an MIS on the graph in expected

O(log n) time.

Proof. We follow Luby's proof, except lemma 3.7 gives a different bound for Pr[i E

N(I')]. Thus,

exp[Yt - Yt+711] > ~. E d(i) . Pr[i E I' U N(I')]
2 ieV'

> ~. E d(i) . Pr[i E N(I')]
2 ieV'

From lemma 3.7 we know Pr[i E N(J')] ~ 3/16 . min{sum(i)/4, I}. Thus,

exp[Yt - Yt+711] > ~. (~ . E d(i) . sum(i) + E d(i))
32 4 ieV' "eV'

SUm(i):54 SUm(i»4

> :2' (L ~ 4 ~~). + L ~ 1)
ieV' jeadJ(i) (J) ieV' jeadJ (i)

SUm(i):54 SUm(i»4

28

3
L 1 (d(i) d(j)) L (d(i)) L > 4"' d(j) + d(i) + 4. d(j) + 1 + 32 (i,j)eE' (i,j)eE' (i,j)eE'

SUm(i)~4 SUm(i)~4 SUm(i»4
sum(j)~4 sum(j»4 sum(j»4

> ~ . IE'I = ~ . YtD
64 64

3.5 Proof of 2-wait-freedom

In Chapter 2 section 2.4 we said a process is k-wait-free if for any process i, if all the
processes in the distance k neighborhood of i stop receiving new neighbors and continue
to take steps, then i will accomplish its task.

Theorem 3.2 The dynamic MIS protocol is 2-wait-free.

Proof. If i flips a 1, then it only needs to get acks from its immediate neighbors in order
to proceed with the protocol. By the definition of 2-wait-free, all of i's neighbors will
continue to take steps, so they will respond accordingly. Even if the neighbors of i are
waiting for acks from some of their neighbors, by the design of the protocol, as long as
they are still taking steps they will still respond to queries with an ack.

If i flips a 0, then it's dependency may extend out to the distance 2 neighborhood.
This happens because if i has a neighbor j that flipped aI, then i will get frozen by j.
i can only flip again after j flips again or gets in the MIS. For j to flip again it has to
get acks from all its neighbors. Thus, i will need all of j's neighbors to be taking steps
for it to proceed. We showed above that when j flips a 1 it is only be dependent on its
immediate neighbors, so i's dependency would not extend beyond these neighbors of j.
By the design of the protocol frozen processes still send acks in response to queries. They
are only frozen in the sense that they will not flip until unfrozen, and since processes can
only get frozen on flips of 0, and processes that flip 0 cannot freeze other process, there
is no chain of frozen processes. 0

29

2

Chapter 4

Conclusion

In the thesis we provided a randomized solution, that we believe runs in O(log n) expected
time, for the asynchronous dynamic MIS problem. Significantly, the algorithm is also
2-wait-free. The previous best known solutions using the a synchronizer of [5] plus the
algorithm of [15] or [16] and constructs an MIS in O(D + log n) expected time, where D
is the diameter of the network after it stabilizes. These algorithms are also D-wait-free.

We think that the fact that our algorithm is 2-wait-freedom is an important property
because k-wait-freedom as we have defined it in this thesis captures important properties
of distributed algorithms. Our definition matches the idea that in an asynchronous
system, a process should not be slowed or stopped by slow or faulty processes or links
that are far away. If a distributed protocol is k-wait-free then the operations of a process
cannot be affected by processes greater than distance k away. Thus, in our protocol a
process will tolerate any failure outside of its distance 2 neighborhood.

4.1 Related work

Symmetry breaking has many applications in distributed computing. It is essential for
solutions to deadlock resolution, leader election, mutual exclusion, and resource alloca
tion. In [6], the main idea in our dynamic MIS protocol is employed to solve the general
resource allocation problem of which the dining philosophers problem is one formulation.
They way this is done is that the MIS protocol is run at every process, when a process
gets in the MIS this means it has access to all its resource and can execute it job. When
that process finishes executing its job, its neighbors continue to run the MIS protocol
until they get in the MIS. The solution to the dining philosophers problem we believe
runs in expected optimal time O(8), where 8 is the maximum number of competing pro
cesses any process has. However, we get this expected running time subject to the proof
of the conjecture we make in chapter 3. The previous best known randomized result
of Awerbuch and Saks, [10], had a expected running time of 0(82

), and the best know
deterministic protocol due to Choy and Singh [11] has a running time of 0(82

). The wait
dependency of 2 also holds for the dining philosophers algorithm. The algorithm with

30

the previous best known wait-dependency was that of [11] which has a wait-dependency
of 4.

4.2 Open problems

The most obvious open problem that this thesis poses is proving the conjecture we make
in the previous chapter. Proving probabilistic statements about asynchronous protocols
are notoriously difficult, and a proof for this conjecture might give insights into proving
claims about other probabilistic asynchronous protocols.

The property of k-wait-freedom needs to be studied further in message passing asyn
chronous systems. Finding k-wait-free solutions, where k is a small constant, for other
distributed problems is an area for exploration.

Our protocol for the dynamic MIS problem is a randomized protocol. Finding and a
deterministic protocol that achieves comparable response time is an important problem.
While Luby can remove randomness from his MIS algorithm to make it deterministic in
the PRAM model [16], computing an MIS in the distributed model of computation in
poly-logarithmic time remains an open question. (The best known deterministic running

time for MIS is O(nO(I/yilogn)) [22].) Finding a deterministic poly-logarithmic solution
to the MIS problem would also give a deterministic optimal solution to the resource
allocation problem.

31

Bibliography

[1] Y. Afek, G.M. Landau, B. Schieber, and M. Yung. The power of multimedia: com
bining point-to-point and multiaccess networks. In Proc. of the 7th ACM Symp. on
Principles of Distributed Computing, pages 90-104, Toronto, Canada, August 1988.

[2] Yehuda Afek, Baruch Awerbuch, and Eli Gafni. Applying static network protocols to
dynamic networks. In Proc. 28th IEEE Symp. on Foundations of Computer Science,
pages 358-370, October 1987.

[3] Yehuda Afek and Eli Gafni. End-to-end communication in unreliable networks. In
Proc. 7th ACM Symp. on Principles of Distributed Computing, pages 131-148. ACM
SIGACT and SIGOPS, ACM, 1988.

[4] Yehuda Afek and Eli Gafni. Bootstrap network resynchronization. In Proc. 10th
ACM Symp. on Principles of Distributed Computing, 1991.

[5] Baruch Awerbuch. Complexity of network synchronization. J. of the ACM,
32(4):804-823, October 1985.

[6] Baruch Awerbuch, Lenore Cowen, Mark Smith. The philosophers eat at Wendy's: A
fast wait-free self-stabilizing symmetry breaker. Unpublished manuscript, November
1992.

[7] Baruch Awerbuch, Yishay Mansour, and Nir Shavit. End-to-end communication
with polynomial overhead. In Proc. 30th IEEE Symp. on Foundations of Computer
Science, 1989.

[8] Baruch Awerbuch and Silvio Micali. Dynamic deadlock resolution protocols. In
Proc. 27th IEEE Symp. on Foundations of Computer Science, October 1986.

[9] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-stabilization by lo
cal checking and correction. In Proc. 32nd IEEE Symp. on Foundations of Computer
Science, pages 268-277, October 1991.

[10] Baruch Awerbuch and Mike Saks. A dining philosophers algorithm with polynomial
response time. In Proc. 31st IEEE Symp. on Foundations of Computer Science,
1990.

32

[11] M. Choy and A.K. Singh. Efficient fault tolerant algorithms for resource allocation
in distributed systems. In Proc. 24th ACM Symp. on Theory of Computing, 1992.

[12] Edsger W. Dijkstra. Solution of a problem in concurrent programming control
Comm. of the ACM, 8(9):569, September 1965.

[13] E. W. Dijkstra. Hierarchical ordering of sequential processes. A CTA Informatica,
pages 115-138, 1971.

[14] Robert G. Gallager, Pierre A. Humblet, and P. M. Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Trans. on Programming Lang. and Syst.,
5(1):66-77, January 1983.

[15] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent
set problem. J. of the ACM, 32(4):762-773, October 1985.

[16] Michael Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM J. on Comput., 15(4):1036-1053, November 1986.

[17] N. Lynch. Upper bounds for static resource allocation in a distributed system.
Journal Of Computation And Systems Sciences, 23(2):254-278, October 1981.

[18] N. Lynch and H. Attiya. Using Mappings to Prove Timing Properties. Technical
Report MIT /LCS/TM-412.e, Laboratory for Computer Science, MIT April 1992.

[19] N. Lynch and M. Tuttle. Hierarchiacal Correctness Proofs for Distributed Algo
rithms. In Proc. 7th ACM Symp. on Principles of Distributed Computing, 1987, pp
137-151.

[20] N. Lynch and M. Tuttle. An Introduction to Input/Output Automata. CWI
Quarterly, 2(3), 1989.

[21] N. Lynch and B. Patt-Shamir. Distributed Algorithms: Lecture Notes for 6.852J
Unpublished manuscript, Fall 1992.

[22J Alessandro Pasconesi and Aravind Srinivasan. Improved algorithms for network
decompositions. In Proc. 24th ACM Symp. on Theory of Computing, 1992.

33

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033

