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Abstract

Transforming abstract algorithm specifications into exe-
cutable code is an error-prone process in the absence of so-
phisticated compilers that can automatically translate such
specifications into the target distributed system. This pa-
per presents a framework that was developed for translat-
ing algorithms specified as Input/Output Automata (IOA) to
distributed programs. The framework consists of a method-
ology that guides the software development process and a
core set of functions needed in target implementations that
reduce unnecessary software development. As a proof of
concept, this work also presents a distributed implementa-
tion of a reconfigurable atomic memory service for dynamic
networks. The service emulates atomic read/write shared
objects in the dynamic setting where processors can arbi-
trarily crash, or join and leave the computation. The al-
gorithm implementing the service is given in terms of IOA.
The system is implemented in Java and runs on a network
of workstations. Empirical data illustrates the behavior of
the system.

1. Introduction

Developing sophisticated distributed applications for ex-
tant distributed platforms presents a challenge, despite the
availability of distributed middleware. Although middle-
ware frameworks such as DCE, CORBA, and JINI support
construction of systems from components, their specifica-
tion capability is limited to the formal definition of inter-
faces and informal descriptions of behavior. These are not
enough to support careful reasoning about the behavior of
systems that are built using such services.

Specification of building blocks for distributed applica-
tions is an area of active research. However, even when
specifications and algorithms are formally stated, deriving a
distributed implementation from a specification is a labori-
ous and error-prone process.

∗This work is supported in part by the NSF Grants 9988304 and
0311368, and the NSF ITR Grant 0121277. The work of the second author
is supported additionally by the NSF CAREER Award 9984778.

Atomic (linearizable) shared memory is a powerful ab-
straction that makes it easier to develop and reason about
distributed applications that rely on shared data. To be use-
ful as system building blocks, algorithms that implement the
shared memory abstraction must be able to tolerate asyn-
chrony and failures encountered in distributed settings.

In this paper we present a distributed implementation
of a formally specified building block for a reconfigurable
atomic data service. Our implementation is developed with
the help of a framework that is designed to make the deriva-
tion process less error-prone. The system currently runs on
a network-of-workstation. We include experimental results
that explore the behavior of the service.

Background. The first scheme for emulating shared
memory in message-passing systems by using replica-
tion and accessing majorities of time-stamped replicas was
given in [14]. An algorithm for majority-based emulation of
atomic read/write memory was presented in [2]. A general-
ization for multiple writers using quorums is given in [12].

A new approach to implementing atomic read/write
objects for dynamic networks was developed by Lynch,
Shvartsman, and Gilbert [10, 7]. Their service, called
RAMBO, assumes a dynamic set of processors that can join
and leave the computation, and fail. As processors come
and go, reconfiguration of quorum systems is used to main-
tain atomicity. These algorithms are loosely coupled with
the reconfiguration service that uses consensus, and they al-
low for read and write operation to complete even during re-
configuration, and even if reconfiguration fails to terminate.
The algorithms implementing RAMBO are quite complex,
however they rely on conventional point-to-point channels
and tolerate arbitrary message latency and message loss.

The algorithms in [10, 7] are given using the In-
put/Output Automata (IOA) of Lynch and Tuttle [11]. There
is a wealth of distributed algorithms that have been speci-
fied in the IOA notation [9]. In recent years several auto-
mated tools have been developed to reason about, and to
simulate algorithms given as IOA [5, 1]. Current work is
underway to implement automated code generator for IOA.
However, deriving sophisticated distributed systems from
formally-specified algorithms remains a manual process.
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Contributions. An important consideration in formulat-
ing the RAMBO atomic shared memory service was that it
could be employed as a building block in real systems. Our
objective in this work is to develop a faithful implementa-
tion of RAMBO for a message-passing platform and using
it as a basis for practical optimizations and for performance
studies. Here we present our optimized implementation and
a general methodology we developed for deriving such dis-
tributed systems from the formal Input/Output Automata
(IOA) specifications. Our implementation was developed
in Java and it runs on networks of Linux workstations. In
more detail our contributions are as follows.

(1) Transforming abstract algorithm specifications into
executable code is an error-prone process in the absence
of sophisticated compilers that can automatically translate
such specifications into the target distributed system. We
present a framework for mapping algorithms specified as
IOA to distributed programs. The framework includes a
methodology that guides the software development process
and a core set of functions needed in target implementa-
tions that reduce unnecessary software development. Each
automaton in an IOA specification include signature that
defines the interface of the automaton, state that defines the
persistent private state of the automaton, and transitions that
define, in precondition-effect style, the actions of the au-
tomaton that show how and when it interacts with its en-
vironment and alters its state. We define precise rules for
deriving Java code for signature, state, and transitions. We
also specify how the precondition evaluations are sched-
uled, how the effects of the actions are executed, and how to
change the state of the automata atomically. Composition-
ality of automata is one of the strengths of the IOA formal-
ism. We develop procedures for translating automata com-
positions that ensure that individual automata can fail indi-
vidually without affecting the rest of the system. Finally, we
provide components that streamline the development of sys-
tems where the individual automata communicate by means
of asynchronous point-to-point channels.

(2) Using our methodology we implemented the dis-
tributed reconfigurable atomic memory algorithm [10, 7]
and explored its behavior in the distributed setting. Our
system, implemented in Java, currently runs a network of
Linux workstations. The overall translation process is rela-
tively straightforward due to our methodology.

We present selected optimizations of RAMBO, includ-
ing optimized memory usage, reduced number of messages,
and improved performance and fault-tolerance. Our imple-
mentation preserves the logical structure of the IOA spec-
ification of RAMBO, making it easier to develop and rea-
son about the optimizations. All optimizations preserve the
safety properties (atomicity) of the original system.

We present selected empirical results. This includes ob-
servations about the scalability of system throughput as we

increase the number of nodes, and about the impact of re-
configuration on the system throughput.

Finally, our approach improves on the methodology of
Cheiner and Shvartsman [3], who developed conversion
rules for implementing IOA algorithms as C++ programs
using MPI. Our approach substantially improves the trace-
ability of the derived code to the source specifications and
allows for the implementation of systems that tolerate node
failures (this was not possible with [3]).

Structure of the extended abstract. In Section 2 we
overview the IOA formalism. Section 3 describes the tech-
niques used to translate the IOA code. In Section 4 we de-
scribe the RAMBO algorithm. In Section 5, we describe our
implementation of RAMBO. In Section 6 we present empir-
ical results. The conclusions is in Section 7.

2. Input/Output Automata Overview

The Input/Output Automaton [9, 6], or I/O Automaton,
is a general model used for formal descriptions of asyn-
chronous and distributed algorithms. The model provides
a precise way of describing and reasoning about asyn-
chronous interacting components in terms of labeled transi-
tion systems. We provide a concise description of the model
and refer the reader to [9, 6] for more details.

An I/O automaton is a state machine in which the tran-
sitions are associated with named actions. The actions are
classified as either input, output or internal. The input and
output actions interact with the automaton’s environment.
The internal actions work on the automaton’s local state.
I/O automata code is given in a precondition-effect style.
For each action, the code specifies the preconditions under
which the action is permitted to occur, as a predicate on
the automaton state, and the effects that occur as the result.
The input actions are always enabled (i.e., the precondition
clause of an input action is always true). The code in the
effects clause is executed atomically to change the state.

Each automaton has a name and includes: (a) a signa-
ture, which defines the disjoint sets of the input, output,
and internal actions, (b) a set of states, normally given as
a collection of state variables, (c) a set of start states or ini-
tial states that is nonempty subset of the set of all states,
(d) a state-transition relation, which contains steps or tran-
sitions, given as triples (state, action, state).

Consider some automaton A. A transition of automaton
A is an element of state-transition relation that contains an
element (s, π, s′), where s represents the state before ac-
tion π occurred and s′ represents the state after action π
occurred. If A has transition (s, π, s′) then we say that π is
enabled in s. A transition relation π of automaton A is de-
scribed in precondition-effect style, which groups together
all transitions that involve a particular type of action into a
single piece of code (see a simple example in Figure 1).
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Domains: I , a set of processes M , a set of messages

States: S ⊆ M , the set of messages in the channel

Signature:

Input: Snd(m)i,j , m ∈ M , const i, j ∈ I

Output: Rcv(m)j,i , m ∈ M , const i, j ∈ I

Internal: Lose(m), m ∈ M

Transitions:
Input Snd(m)i,j

Effect:
S := S ∪ {m}

Output Rcv(m)j,i

Precondition:
m ∈ S

Effect:
S := S − {m}

Internal Lose(m)
Precondition:

m ∈ S
Effect:

S := S − {m}

Figure 1. Channeli,j automaton specification.

Algorithm Alg

Automaton A1

State

var-1, ..., var-k

Transitions

Output Snd(m)

Output W

Input Z(z)

�

�

�

�
�
�

�
�Channel1,2

Automaton A2

State

〈state of A2〉
Transitions

Internal X

Input Rcv(m)

Output Z(z)

�

�

�

��

� �

Figure 2. A skeleton of a specification is depicted. Al-
gorithm Alg is the composition of three automata: A1, A2,
and Channel1,2. A1 can send messages to A2 via the chan-
nel, while A2 communicates with A1 using a rendezvous
action Z. (Preconditions and effects are omitted.)

Automata Compositon. Complex systems can be con-
structed by composing automata representing individual
system components. Composition identifies actions with
the same name in different component automata. In a com-
position, when actions with same name from different au-
tomata are matched, we refer to such actions as combina-
tion actions; the rest of the actions are referred to as regular
actions. When we compose a collection of automata, out-
put actions of the components become output actions of the
composition, internal actions of the components become in-
ternal actions of the composition, and actions that are inputs
to some components but outputs of none become input ac-
tions of the composition.

The automata in a composition communicate by means
of combination actions. When any component automaton
performs a step involving a combination action π, so do
all component automata that include the action π. (Please
note that this presents an implementation challenge. The
implementation has to make sure that the execution of π’s
transition relation over all participating automata is atomic.
This is especially difficult when the component automata
are mapped to distinct processors in a network.)

1: class A1 {
2: private static A1-state state;
3: public static A1-state gs-state(A1-state S) {
4: if(S == null) return state;
5: state = S;
6: return null;
7: }
8: public void A1( ) { }
9: public static void init( ) {

10: S = new A1-state( ); S.init();
11: A1-output-Snd a1 = new A1-output-Snd( );
12: (new Thread(a1)).start();
13: A1-output-W a2 = new A1-output-W( );
14: (new Thread(a2)).start();
15: A-input-Z a3 = new A-input-Z( );
16: (new Thread(a3)).start();
17: }
18: public static synchronized void scheduler(int 〈thread-id〉) {
19: 〈thread-id〉.transition-code( );
20: } }

Figure 3. The structure of a single automaton’s translation.

The states and start states of the composition are vectors
of states and start states of the component automata. (For
examples see Figures 1 and 2.)

3. IOA Translation

The section presents a collection of rules developed to
translate algorithms specified in IOA notation into programs
in the Java language. These rules guide the programmer
in faithfully encoding the structure of the algorithm and
the interactions among the component automata in a way
that help eliminate logic errors and to reduce redundant and
repetitive work. Throughout this section we use the exam-
ple given in Figure 2. The target language assumed here is
Java 2 Platform Std. Ed. v1.4.0. The choice of Java was
made because of the tools that this language provides.

IOA specification of an automaton is considered a type
based on which a class is created and named 〈automaton
name〉. Consider the automaton A1 from Figure 2. The
specification of A1 is translated as a Java class named A1

(see Figure 3). This corresponding Java class contains the
following methods: (1) a state access method, which allows
automaton’s actions to read and update the state, (2) the init
method, where the state variables are instantiated and the
threads representing automaton’s actions are started, and
(3) the scheduler method controlling execution of local ac-
tions of this automaton. All public methods of this class
constitute its interface and will be accessible to all inherit-
ing classes.

Translating Automaton’s Signature. The signature of
an automaton defines its interface (see Figure 6 for a de-
tailed example). For the automaton A1 in Figure 2, the
signature (that is not shown in the figure) consists of the
three action definitions: output Snd(m), output W, and in-
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1: class A1-input-Z extends A1 implements Runnable {
2: public void A1-input-Z( ){ }
3: public static void init( ) {
4: // If needed initiate any local variables.
5: }
6: public void run( ) {
7: while(true) scheduler(A1-input-Z);
8: }
9: private void transition-definition( ) {

10: A-state copy = gs-state(null); // get state
11: if (〈Z-preconditions〉) {
12: 〈Z-effect〉 // The effect code goes here.
13: gs-state(copy) // update state
14: } } }

Figure 4. Action signature and transition translation.

put Z(z). In the translation, each action in the signature
is treated as a type, based on which a Java class is cre-
ated and named 〈automaton〉-〈kind〉-〈action name〉, e.g.,
A1-input-Z, see Figure 4. These classes are children of
〈automaton name〉 class, hence they inherit the parent’s
interface, including methods to access the state, and the
schedule method.

Translating Automaton’s State Variables. The state
variables of an automaton are encapsulated in a class named
〈automaton〉-state, e.g., for the automaton A1, it is called
A1-state. This class is used to create a private instance of
the automaton’s state.

Each variable of A1-state is declared as private and is
coupled with a dedicated public get/set method. Lastly, the
state class contains an initialization method for the state
variables. This method is called by the automaton after
its state is instantiated. (Of course the translation must be
careful to using concrete data types that have finite repre-
sentation, where the abstract data types may have infinite
representation.)

Translating Automaton’s Transitions Transitions define
the semantics of the actions in the signature. Each transi-
tion is encoded as a private method of 〈automaton〉-〈kind〉-
〈action〉, Figure 4, lines 10 to 14. An action is a state
transition that occurs as a result of executing the transi-
tion definition code for the specific values of parameters (if
any). This task is performed by a Java thread created from
〈automaton〉-〈kind〉-〈action〉 class. We refer to it as the ac-
tion thread. All action threads are initiated and started in
〈automaton〉 class.

IOA transitions are defined in the precondition-effect
style. The predicate of the precondition is converted to the
corresponding Java code. The effect is given as sequen-
tial code, and the translation is straightforward. Following
a call to the assigned transition method, the action thread
reads and checks the state of the automaton, Figure 4, line
10. If the preconditions are satisfied in the current state (line
11), then the action is enabled, and the effects code of the
transition definition is executed (line 12). If the precondi-

tions are not satisfied then the action thread returns without
changing the state. This process is repeated until stopped.

Scheduling. We implement a control mechanism, called
schedule, that enables the action threads to run. To en-
sure that the state is changed atomically, the mechanism al-
lows only a single action thread to get/set the automaton’s
state and to execute its transition definition. The schedule
is implemented by placing Java’s synchronize keyword in
front of the schedule method of 〈automaton〉 class. After
a thread enters the schedule method it makes a call to the
corresponding transition definition method.

The synchronize mechanism provides a semaphore that
allows locking and unlocking of the method by a single
thread. A FIFO queue is associated with the lock. When
multiple threads contest for the semaphore, only one suc-
ceeds and the rest is placed on the queue.

Note that whenever a thread is ready to execute, it may
have to wait at most once for any other thread that previ-
ously became ready to execute. Since the number of threads
is fixed at compile-time, our mechanism implements a fair
scheduling policy. The implementation can be easily refined
to introduce different scheduling policies.

The IOA formalism makes a nondeterministic choice
of a single action among all enabled actions. In our im-
plementation, the schedule chooses the first action thread
corresponding to an enabled action from the synchronized
method’s queue. (An execution of a thread corresponding
to a disabled action does not change state, and only incurs
a modest computation cost.) Thus our implementation re-
stricts the set of possible executions—of course this pre-
serves the safety properties of the source algorithm.

Translating Local Combination Actions. We now dis-
cuss the translation of local action combination pairs, that
is the combinations in the composition of automata that are
mapped onto the same network node. This is an impor-
tant part of the overall translation. The challenges here are
to: (a) maintain the atomicity of the update of the combined
state by the effects of the actions of the composed automata,
and (b) ensure that a failure or a block of a single automa-
ton does not cascade through the system by damaging or
blocking other automata.

The implementation uses a “delicatessen” with “ticket
numbers” paradigm, where the output action thread plays
the role of the “customer” and the input action thread plays
the role of the “server.” Here the “transaction” ensures
that the respective automata states are changed atomically.
Timeouts are used to ensure that the implementation does
not block when individual automata crash (or block for
whatever reason). (The details are given in [13].)

If neither the server, nor the customer fail, they will syn-
chronize in the delicatessen and correctly update their re-
spective states. If either the customer or the server fail to
synchronize, neither state will be updated. If either of them
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Figure 5. RAMBO component architecture depicting the
Joiner and Reader-Writer automata at nodes i and j, the
Channel automata, and the Recon service.

crash, the state of the crashed automaton is lost (this is not a
problem). What is important here is that neither the crash of
an automaton, nor the failure to “transact,” cause blocking
of any other enabled action.

Note, this method can be extended to the composition of
more then two automata (when the participating automata
are mapped onto the same node).

Remote Combination Action Pairs. Translation of a re-
mote combination action pair, that is the combination in au-
tomata that reside on different network nodes, uses the same
logic as its local equivalent. All communication is imple-
mented using timeout-send, timeout-receive and nonblock-
ing network calls. The nonblocking receive call is imple-
mented in Java using a minimum timeout value on a socket
of one millisecond. The “delicatessen” handshake mecha-
nism is replaced by the TCP-handshake mechanism.

Communication via Channel Automata. Point-to-point
communication in IOA is normally modelled as channel au-
tomata. Figure 1 and 2 illustrates a complete IOA specifi-
cation of a channel from some fixed process i to some fixed
process j (Channeli,j). The channel delivers only the mes-
sages that were sent. It does not order messages, and it can
lose messages. The channel has three actions. The input
Snd action accepts a message at processor i, the output Rcv
action delivers a message to processor j, and the internal
lose action forgets a message. Note that if one wants to
model a lossless channel, we simply remove the Lose ac-
tion. If we want a FIFO channel, we use a queue instead of
a set to model the state of the channel.

There are various types of channels, for example, a chan-
nel can be specified to be FIFO (or unordered), to be lossless
(or lossy), etc. When such channels are implemented, the
choice of the most appropriate underlying communication
medium must be carefully assessed.

Our derivation of channel implementations from IOA
specifications follows the methodology proposed in [5].

4. Description of the RAMBO Algorithms

We now present the algorithms implementing the Recon-
figurable Atomic Memory Service [10, 7], called RAMBO

and specified in terms of I/O automata. RAMBO implements
atomic read/write shared memory in a dynamic network set-
ting, in which participants may join or fail during the course
of computation. In order to achieve fault tolerance and
availability, RAMBO replicates objects at several network
locations. In order to maintain memory consistency in the
presence of small and transient changes, the algorithm uses
configurations, each of which consists of a set of members
plus sets of read-quorums and write-quorums. The quorum
intersection property requires that every read-quorum inter-
sect every write-quorum. To accommodate larger and more
permanent changes, the algorithm supports reconfiguration,
by which the set of members and the sets of quorums are
modified. Such changes do not cause violations of atom-
icity. Any quorum configuration may be installed at any
time – no intersection requirement is imposed on the sets of
members or on the quorums of distinct configurations.

The RAMBO algorithm for a processor in a network con-
sists of two kinds of automata: (i) Joiner automata, which
handle join requests, (ii) Reader-Writer automata, which
handle read and write requests, and manage configuration
upgrades. These component communicate by means of of
point-to-point Channels. (Observe that the implementa-
tion of the Channel automata satisfies the RAMBO assump-
tions about the channel, specifically that messaging is asyn-
chronous and that messages are not corrupted.) The algo-
rithm also interacts with an underlying Recon service that
emits a sequence of configurations based on the reconfig-
uration requests from the environment. This high-level ar-
chitecture is given in Figure 5.

To avoid a complete restatement in this extended ab-
stract, we refer the reader to [10, 7] for the description of
algorithms and their specifications.

The external signature for the RAMBO algorithm appears
in Figure 6. The algorithm is specified for a single mem-
ory location, and extended to implement a complete shared
memory. A client at node i uses the joini action to join
the system. After receiving a join-acki, the client can issue
readi and writei requests, which results in read-acki and
write-acki responses. The client can issue a reconi request
to install a new configuration. Finally, the faili action is
used to model node i failing.

The read and write operation consist of two phases. Dur-
ing each phase, quorums of processors are accessed, re-
quiring a round-trip message delay. Assuming that there
is some upper bound d on message delays, this means that
each phase can take as little as 2d time. In fact the upper
bound latency of 4d was shown for read and write opera-
tions in the absence of reconfiguration [10]. The analysis
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Domains:

I , a set of processes; V , a set of legal values

C, a set of configurations, each consisting of members,

read-quorums, and write-quorums

Input:

join(rambo, J)i, J ⊆ I − {i}, i ∈ I , such that if i = i0 then J = ∅
readi, i ∈ I

write(v)i , v ∈ V , i ∈ I

recon(c, c′)i, c, c′ ∈ C, i ∈ members(c), i ∈ I

faili, i ∈ I

Output:

join-ack(rambo)i, i ∈ I

read-ack(v)i , v ∈ V , i ∈ I

write-acki, i ∈ I

recon-ack(b)i, b ∈ {ok, nok}, i ∈ I

report(c)i, c ∈ C, i ∈ I

Figure 6. RAMBO: External signature

of operation latency with ongoing reconfiguration is much
more complicated. However, it can be shown that for cer-
tain benign steady-state settings where processors do not
fail too quickly after becoming members of new configura-
tions, and where the configuration upgrades keep up with
reconfigurations, the operation latency is at most 8d [10, 7].

5. RAMBO Implementation and Optimization

Starting with the IOA code for RAMBO, the implementa-
tion skeleton is readily produced using the rules outlined in
the previous section. This activity is straightforward and is
amenable to future automatic translation. The main remain-
ing activity is to faithfully translate the transition definition
code that consists of the sequential code for the precondi-
tions and effects.

The RAMBO algorithm is loosely coupled with the con-
sensus algorithm that is used in reconfiguration (in fact, read
and write operations terminate even if consensus fails to ter-
minate [10, 7]). Given that any consensus algorithm can
be used with RAMBO, we do not discuss this further. In
the remainder we discuss several optimizations of RAMBO.
(For all algorithmic changes, we formally modified the IOA
specifications from [10, 7] and reasoned about the correct-
ness of the refined algorithms; for lack of space the IOA
code is not presented here.)

Memory Use Optimizations. IOA algorithms often use
abstract objects, e.g. sets, that are infinite, that may grow
without bound, or that may be needlessly replicated for con-
venience. In many cases these objects can be redefined so
that only a modest space is needed to represent them. We
have done this in RAMBO, of course making sure that the
semantics is preserved.

Another type of optimization (currently in progress) ad-

dresses the situation where state components are replicated
in multiple automata that are mapped onto the same net-
work node. This is the case with the local knowledge about
the configurations. For example, when the Recon automa-
ton at node i learns about a new configuration, the algo-
rithm allows it to immediately inform the Reader-Writeri

automaton. This requires replicating memory and a some-
what costly local combination. Using a shared data struc-
ture for both automata, the whole process is streamlined.
The correctness of this optimization is immediate.

Managing the Number of Messages. To propagate in-
formation through the system, the participating nodes send
gossip messages, involving all-to-all exchange of informa-
tion. When gossip is not throttled, the unnecessary network
congestion may adversely affect performance. RAMBO al-
lows for gossip messages to be sent non-deterministically at
arbitrary times. The correctness of the algorithm does not
depend on the timing of these messages.

Our implementation removes the gossip non-
determinism: each node sends such messages as soon
as it is locally known that these message need to be sent to
process a new operation (e.g., read or write), or in response
to a new operation in progress. Otherwise the node sends
these messages at some predetermined intervals (as in the
performance evaluation in [10, 7]).

Our next optimization is aimed at reducing network com-
munication when the number of nodes is large, and read and
write operations by the nodes that do not belong to active
configurations are infrequent.

We divide the set of nodes participating in RAMBO into
two groups: those that belong to some active configurations,
referred to as owners, and the rest, called the clients. We
allow only the owners to send gossip messages (of course
both the owners and the clients are allowed to perform read
and write operations).

Claim 5.1 Restricting gossip preserves correctness (safety)
of RAMBO.

The quantitative advantage of this optimization is as fol-
lows. Suppose n processors join the system, and r of them
are owners. Without the optimization, for each complete
gossip round (assuming for the moment some global clock),
the total of n2 gossip messages are sent. With the optimiza-
tion, only r2 gossip messages are sent per gossip round.
Since r ≤ n, substantial savings can be realized given the
quadratic nature of gossip.

(We also developed an optimization to reduce the size
and number of gossip messages [8]. Gossip messages in-
clude the set of processor identifiers that joined the system.
This information need not be gossiped to the nodes that have
previously received it. The results in Section 6 do not take
advantage of this optimization.)
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Figure 7. System throughput of Read/Write operations

Improving Performance and Fault-Tolerance. When a
node is executing a read or a write operation in RAMBO

algorithms, it is required that at least one quorum from
each locally known active configuration is successfully con-
tacted. The active configurations are fixed at the start of the
operation. However, during the operation, it may be the
case that some older configurations are upgraded and that
the members of the old configurations become slow, leave
the system, or fail. It may also be the case that some re-
sponse messages are lost. If any of this occurs, then the
operation may be delayed or even blocked.

Our optimization allows for slow or blocked operations
(the distinction is not knowable locally) to restart in the state
where the locally known collection of active configurations
is potentially more up to date. This is done by imposing
an adaptive time-out on read and write operations based on
the prior performance of operations. Operations that are
interrupted after the time-out are restarted using the latest
known active configurations. This occurs transparently to
the clients of the service.

Claim 5.2 Restarting a read or a write operation preserves
correctness (safety) of RAMBO.

We believe that this type of optimization deserves future
attention and we plan to identify other interesting scenarios
where blocking is not necessary to preserve atomicity.

6. Empirical Results

We implemented and evaluated RAMBO on the dedicated
cluster of fourteen Linux workstations connected via a 100
Mbps Ethernet network switch. The results in this section
represent averages of the observed behavior over a series
of instrumented runs. The significance of the observations
is in the relative performance characteristics and behavior
patterns of the system—several machines used in the exper-
iments are quite old, some running at 100 MHz.

Throughput and Scalability. Figure 7 shows how the
overall throughput of read/write operations of our imple-
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Figure 8. System throughput of Read/Write operations

mentation as the function of the number of participating
nodes. In this series of runs, fixed and infrequent recon-
figurations are performed by two dedicated reconfigurers,
with exception of the first run since only one processor is
used and it does not perform any reconfigurations. In all
other runs the quorums in the configurations consist of pro-
cessor majorities, thus the replication is increased linearly
in the number of participating processors. This means that
the reconfiguration “burden” is increased, as is the need to
contact a linear number of replicas for each read or write,
however the distribution and availability also increases sub-
stantially. All processors used in the runs are performing
read and write operations (including processors designated
as reconfigurers). Please note that since reconfiguration is
present the configuration upgrade is enabled and runs con-
currently with read/write and reconfiguration operations.

The throughput of read/write operations is relatively high
when using a single node—here no network delays are in-
curred. The throughput drops when the second node is in-
troduced. This is attributed to messaging latency. As fur-
ther nodes are introduced, throughput is increased approxi-
mately linearly with the number of nodes. Thus the system
throughput scales well, at least up to the fourteen participat-
ing processors.

Throughput and Reconfiguration. We now describe the
series of experiments that explored the impact of the recon-
figuration frequency on the throughput of read and write op-
erations. Here we vary the rate at which new configurations
are submitted to the system.

The result is shown in Figure 8. The vertical axes shows
the throughput of read/write operations and the horizontal
axes shows the delay between the completion of one recon-
figuration to the start of another. The experiment involved
nine machines performing read/write operations (without
delay), and one machine acting as the submitter of recon-
figuration requests (it is of course possible to have more
then one machine submitting reconfiguration requests, but
we use one to better control the rate of the reconfiguration in

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) 



the experiments). Again, since new configurations are con-
tinuously proposed and installed the configuration upgrade
operation is enabled and runs concurrently with read/write
and reconfiguration operations.

The experiment was conducted for seven different recon-
figuration rates, i.e., we changed the amount of wait time
between the completion of one reconfiguration and start of
another. An important observation is that at zero delay the
consensus service itself limits the rate of reconfiguration.

The results predictably indicate that frequent reconfigu-
ration negatively impact system throughput. Of course net-
work congestion is a possible reason, however, the analysis
of RAMBO [10, 7] predicts that in a steady state with on-
going reconfigurations, read and write operations take up to
twice as long. This is because during each phase a new con-
figuration may be discovered, and this requires that a quo-
rum in the new configuration is accessed. It is also the case
that if multiple new configurations are submitted at about
the same time, only one “winning” configuration becomes
the new next configuration. Thus in most settings, new con-
figurations will be installed only once or twice concurrently
with the ongoing read or write operations.

Results collected thus far illustrate the behavior of the
RAMBO implementation on up to fourteen nodes in the
LAN setting. In the future we plan to test the system in
a WAN setting using a much larger number of nodes. This
will give us a better idea of the behavior and scalability of
the implementation.

On the Expense of Reconfiguration. In the experiments
described thus far, we measured the throughput of read and
write operations in the presence of reconfigurations. It is
also interesting to compare this to the behavior of the sys-
tem where no reconfigurations occur. We have conducted
a series of experiments similar to those described in Sec-
tion 6, but using a single configuration (the quorums are
again majorities). Interestingly, the results are very close to
those reported in Figure 7. This suggests that the cost of
reconfiguration is not particularly significant in our setting.
This also helps explain why the graph in Figure 8 is nearly
“flat.” It will be interesting to re-evaluate the expense of
reconfiguration in the settings with faster machines.

7. Discussion

Developing dependable fault-tolerant distributed sys-
tems continues to be a challenge. Many systems are lack-
ing formal specifications and precisely stated guarantees re-
garding fault-tolerance and performance. Even when such
specifications are available, developing reliable systems that
are faithful to the specifications is a laborious and error-
prone process. We presented a collection of rules for de-
veloping fault-tolerant distributed systems that are formally
specified using the Input/Output Automata (IOA) formal-

ism. These rules guide developers in producing dependable
code from formal specifications, and reduce the possibil-
ity of logic errors that are often made during translation.
We used our methodology in developing a fault-tolerant
implementation of a distributed atomic memory system,
RAMBO [10, 7]. The resulting implementation maintains
the modularity of the original formal specification. This
substantially improves the traceability of the algorithmic
properties.
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