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Abstract been observed that in many cases it is easier to develop
efficient fault-tolerant algorithms for the shared-memory
Providing shared-memory abstraction in message- model than for the message-passing model. Consequently,
passing systems often simplifies the development of disin such cases there is value in developing an algorithm first
tributed algorithms and allows for the reuse of shared- for the shared-memory model and then automatically con-
memory algorithms in the message-passing setting. A ro-verting it to run in the message-passing model. It is like-
bust emulation of atomic single-writer/multi-reader regis- Wise advantageous for message-passing algorithms to have
ters in message-passing systems was developed by Attiy@ccess to building blocks providing shared-memory abstrac-
Bar-Noy and Dolev (1995). This emulation was extended bytion in distributed settings.

Lynch and Shvartsman (1997) to multi-writer/multi-reader ~ Among the important results in this area are the algo-
registers using reconfigurable quorum systems. In this work rithms of Attiya, Bar-Noy and Dolev [5] who showed that it
we present a new atomic multi-writer/multi-reader register is possib]e to emulate atomic shared memory robusﬂy in
service that includes a fault-tolerant reconfiguration ser- message_passing systems. They show that any wait-free
vice. This new emulation has a substantially improved algorithm for the shared-memory model that uses atomic
performance and fault-tolerance characteristics. We intro- single-writer/multi-reader registers can be emulated in the
duce the concept aftermediate quorum configuratioasd ~ message-passing model where processors or links are sub-
show how they can be used by readers/writers during recon-ject to crash failures. These algorithms are based on pro-
figuration. The result is that the quorum reconfigurations cessor majorities and thus are able to tolerate failure pat-
are graceful readers and writers no longer “busy-wait”  terns where any minority of processors are disabled or are
during reconfigurations, but are able to complete their op- ynable to communicate. This result was further optimized
erations. An additional advance is that the reconfigurer is py Attiya [4] who improved the message complexity of the
eliminated as the Single point of failure. When the recon- bounded time_stamps a|gorithm_

figurer fails, readers and writers continue using interme-
diate configurations. In finite executions, read and write
operations terminate in bounded time using bounded num-
ber of messages (the bounds depend on the “currency” of
the configuration at the invoker of the operation). Finally,
the service places no restrictions on the installed quorum
configuration: a previously installed quorum system can be
replaced by ararbitrary new quorum system. Our algo-
rithms are specified using 1/0O Automata; the safety proofs
use the partial order techniques and invariants, and the per-
formance is assessed using operational reasoning.

Motivated by [5], Lynch and Shvartsman [26] developed
a robust emulation ahulti-reader/multi-writeratomic reg-
isters usingeconfigurable quorum systemghere a desig-
nated processor acts as the reconfigurer. The approach of
[26] recognized that a service providing an atomic register
abstraction in a distributed setting needs to support multiple
writers as well as multiple readers, and it must be able to
ensure atomicity using means that are more flexible and ef-
ficient than the majorities. As the result, that approach spec-
ified the multi-reader/multi-writer protocol that relies on
guorum systems, which in turn can be dynamically changed
during the system operation. The system providesii-
1. Introduction cation interface used to submit read/write requests, and a
managemeninterface used to install new quorum systems
. . " in response to failures and to changing processor loads. The
using either the shared-memory paradigm or the messagem,3nagement requests are submitted at a single reconfigurer

passing paradigm. For distributed algorithms to be practi- y,,+ s’ responsible for initializing and finalizing the installa-
cal, the algorithms must be efficient and scalable, and they;

| h d il It h tion of new configurations. The protocol [26] is complex
must tolerate asynchrony, and component failures. It has, g jnyolves several subtle phases. To insure safety of re-
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Figure 1. lllustrating the need to prevent writes from completing during reconfigurations in [26].
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omit most messages that have no impact on the protocol)namic quorum configurations. The emulation includes a
The system begins with the current quorum configuration fault-tolerant quorum reconfiguration service that allows a
with the read quorumga, b, c} and {c,d}, and identical  great deal of asynchrony and that does not use quorums for
write quorums (for simplicity). Responses from these quo- locking or mutual exclusion. The main results in this paper
rums are marked by dashed boxes. Assume that a new commake the following contributions:

figuration is submitted by the reconfigurerThis next quo- 1. We present a protocol for multi-reader/multi-writer
rum system has the read quorufes b} and{b, ¢, d}, and atomic registers that allowall read and write operations to
identical write quorums. Responses from these quorumscomplete in finite number of steps, using bounded number
are marked by solid line boxes. According to the algorithm, of messages, when the reconfigurations complete as well as
the reconfigurer uses a broadcast to query other processorghen the reconfigurer fails (provided the quorum systems
for the latest value and the version of the shared register,are not disabled).

see callout(1). Once a complete quorum responds, the 2. We introduce the concept imitermediate quorum config-
reconfigurer accepts the value with the maximum version urationsand thequorum-joinoperation that, giveanytwo
number. Now we assume that register writes are allowedquorum configurations, computes the corresponding inter-
to complete during the reconfiguration (of course the pro- mediate configuration.

tocol [26] prevents this). Suppose the processstarts a 3.  Our protocol ensures the liveness of the multi-
write (2) by quering other processors for their latest version reader/multi-writer protocol by using the intermediate con-
numbers and values values. l{et d} be the first respond-  figurations in the way that allows concurrent reconfigura-
ing quorum. The processerincrements the latest version tions and that tolerates the failure of the reconfigurer, thus
and propagates the new version and v@B)eNote thatthis  eliminating the reconfigurer as the single point of failure.
new version number is strictly greater than the version that4. The clients of our management interface can submit

the reconfigurer knows about. The write completes after thebitrary new quorum configurations, regardless of any inter-
quorum{c, d} confirms the write (3). Now the reconfig- section properties with any of the previous quorum config-
urer propagates its outdated version number and V@ye  urations.

and after the new quorufu, b} responds, the reconfigurer Our system is designed in a modular way and is specified
confirms the installation of the new configuration to all pro- as a composition of components. We use Input/Output Au-
cessorg5), and once the quoruru, b} responds, it com-  tomata [27, 25] to specify all components and algorithms.
pletes the reconfiguration. The result is that a future readThe safety proofs, which are omitted for space reasons
might not return the value last written {8, 3), but the one  and are given in the full paper, use the partial order tech-
propagated by the reconfigurer(ih). Hence the atomicity  niques and invariants [25] . The safety of the system is
of the shared register is violated. Therefore the algorithmsshown assuming complete asynchrony of the processors
in [26] do not allow the step§2) or (3) to complete until and message-passing. The processors may have arbitrary
the reconfiguration completg¢s). This ensures the safety relative speeds (here stopped processors take infinite time
of the protocol at the expense of the liveness of reads ando complete a step), and messages may incur arbitrary in-
writes that are concurrent with a reconfiguration. In par- transit delay (here message loss corresponds to infinite de-
ticular, the system could starve if the reconfigurer stoppedlays).

during the installation of a new configuration, effectively We use operational reasoning to assess the conditional per-
leaving the emulated shared register permanently inaccesformance of the system. To do this we assume that there
sible. Note that the alternative, which favors reads/writes, is a constany that represents the upper bound on time it
and that blocks a concurrent reconfiguration is also not sat-takes for the active (non-stopped) processors to perform a
isfactory. local computation, and the upper bound on message delay
Contributions. In this paper we present a robust emula- for messages that are delivered. We also assume that the
tion of atomic multi-reader/multi-writer memory using dy- quorum systems are not disabled (i.e., we assume that the



processors in at least one read quorum and at least one writélects practical system concerns dealing with communica-
guorum are active). In our system, the installed quorum tion efficiency, with fault-tolerance and with system man-
configurations and the intermediate configurations can beagement (i.e., with supervision and control of the system so
sequentially numbered. We define the “distance” betweenthat it fulfills the requirements of its users, cf. [34]). When a
any two such configurations as the difference between theirquorum system needs to be reconfigured, this is done using

sequence numbers. We show the following: the management interface of our service. Reconfigurations
5. Any reconfiguration of quorums takes time at mbsj are transparent to the clients that are using the functional
and at mostn messages, whereis the initial number of  read/write interface. The management interface can be used
processors. to tune the performance of a distributed system based on

6. Lett be the time such that either all reconfigurations current and historical observations [33]. A resource man-
complete by time, or that the last reconfiguration active at ager can monitor system performance and availability and
t never completes. Any read or write operation, started atevolve the quorum system using the management interface.

processop that does not fail, takes at mosg + d - 5g Related work. The work of [5] shows how to use ma-
time, and at mosf2d + 4)n messages, whetgis the dis-  jorities in implementing atomic registers, and it is extended
tance between the highest configuration anywhereaad in [4]. Dynamic quorum-based emulation is given in [26].
the configuration op at the invocation of the operation. Quorum systems [16] are generalizations of majorities. A

7. If aread or a write operation at procespatarts attime  quorum systerfalso called a&oterig) is a collection of sets
t; and completes at timg, thent, —t; < 10g+(d+2c)-5g, such that any two sets, callggiorums intersect [15]. An-
and the number of messages sent is at r$t2d + 4c)n, other approach divides the quorum system into a collection
whered is the distance between the highest configuration of read quorums and a collection of write quorums such that
anywhere at; and the configuration of at¢;, andc is any read quorum intersects any write quorum, and any two
the number of reconfigurations that are concurrent with the write quorums intersect. Quorums have been used to imple-
operation. ment distributed mutual exclusion [15] and data replication
Developing protocols that meet the design goals in our protocols [12, 18]. Quorums can be used with replicated
setting is difficult. We do not assume the availability of data in transaction-style synchronization that limits concur-
reliable broadcasts, thus not all processors may learn of therency (cf. [8]). Many other replication techniques use quo-
ongoing installation of a new configuration. Furthermore, rums [1, 6, 7, 13, 14, 17]. An additional level of fault-
since we allow processors to take steps that are arbitrarilytolerance in quorum-based approaches can be achieved us-
long, the reconfigurer in particular may become out of date ing the byzantine quorum approach [28, 3].
with respect to reads and writes during the installation of a  We have recently used the techniques in [26] and in this
new configuration. We need a distributed solution that doeswork to develop a way of integrating dynamic quorums
not rely on the availability of the reconfigurer to take steps within a group communication service [11]. That work in-
at the same pace as any other processor at any given timeroduces the notion of primary configurations and provides
Finally, since we allowarbitrary new quorum systems to  a dynamic primary configuration group communication ser-
be installed, we cannot rely on any intersection propertiesvice. The group communication service also allows one to
among quorums of different configurations. implement atomic registers, however in that work we re-
The new emulation uses a single reconfigurer as in [26], quire that the new quorums have specific intersection prop-
however the ofe of the reconfigurer is different, resulting erties with previous configurations, whereas in this paper
in the reconfigurer no longer being a single point of fail- we allow forarbitrary new configurations to be installed.
ure. In its new ole, the reconfigurer is responsible for emit- Considering the fault tolerance of quorum assignments,
ting new quorum configurations, and it helps shepherdingthere exists a variety of previous research. Probabilistic ap-
the new configuration towards its installation. We show proaches such as [2, 24, 30, 31], develop methods to de-
that our system is not obstructed by a reconfiguration in termine the likelihood that progress is achieved given that
progress or by a tardy or stopped reconfigurer. In our sys-a non-adaptive quorum system is used. Processors are as-
tem, processors contribute to installations of new configura-sumed to fail with a known probability, so a quorum as-
tions and intermediate configurations while participating in signment can be selected maximizing the probability of
routine read/write operations. The overall solutions is spec-progress. This method can also be used with our emula-
ified in terms of the composition of two layers: The lower tion to allow a system monitor to evaluate the current sys-
layer uses th& primitive [26] that provides an unordered tem and to make decisions concerning its replacement. The
broadcast-convergecast service. We also show an impledeterministic approach in [9] generates a static quorum as-
mentation ofl’ using point-to-point channels. The lower signment that guarantees to mask a predetermined number
level admits other implementations and it is not difficult to of failures. Other approaches achieve adaptive deterministic
optimize its message complexity by replacing broadcastsfault-tolerance by having each processor, based on informa-
with multicasts to specific quorums and by cancelling un- tion about processor failures, compute the processors in its
necessary pending responses using notices piggybacked oquorum.
other messages. The higher layer algorithm emulates multi- ~ Another important approach to quorum adaptation is dy-
access registers where dynamic quorum systems are used t@amic voting [19, 21, 22]. In [21] no single processor acts
ensure atomicity [20, 23, 25]. as a reconfigurer and the approach relies on locking and re-
The solution implemented as a composition of layers re- quires that at least a majority of all the processors in some



previously updated quorum (or half of all the processors to unbounded delays with the additional assumption that the
in some previously updated quorum plus the distinguishedstate components defined in the specification are stored in
site) are still alive. The approach in [22] does not rely on non-volatile storage. Link failures may make some nodes
locking, but requires at least a predefirioh_quorumsize unreachable (some of the time or permanently).

number of processors to always be alive. The decentral- | safety proofs we do not malkenyassumptions about
ized on-line quorum adaptation of [7] assumes the use ofthe |ength of time it takes for a message to be delivered or
on locking. [7] allows up to: — 1 processor failures butno T evaluate the performance of the algorithms, we assume
link failures. Our approach takes a distributed system man-ihat either point-to-point messages are delivered and locally
agement view where reconfiguration must be graceful andprgcessed in bounded time (unknown to the processors), or
asynchronous, and it must not obstruct client operations.net delivered at all, and that the guorum systems are not
Furthermore, the quorums do not evolve spontaneously, bulyisabled, i.e., at least one quorum is able to respond.

are to be evolved in response to specific system policies and For the rest of the paper we define the following data

observations. types and convention®ID = U;cprp OID; is the set of
] _ unigue operation identifiers, whe€dD; is the set of iden-
2. Solution Structure, Models and Notation tifiers generated by processprand fori # j we have

The emulation system is architected in terms of two main O/Di N OID; = 0. N is the naturals starting with O

protocol layers.The higher layer provides the reconfigurable!S the set of register values, with a distinguishgde V.
atomic read/write register service to its users that has twoF0r any sets we defineS, to be.SU {1}, whereLl is a
interfaces. The application interface provides its client with distinguished null value.

read/write access to atomic registers, and the managemenj o Programming Notation and Methodology

interface allows a system manager (a user or a system) to

reconfigure the quorums by submitting new quorum config-  The specifications in this paper are done in terms of I/0O
urations. automata [25, 27]. Each automaton models a state machine
Functional interface: The clients of the service submit with states and transitions between states, where actions are
read requests (owrite requests) at any processoof the associated with sets of state transitions. There are input,
system. Once the operation completes, the client is in-output and internal actions labeled b, out andint re-
formed by means of theead-confirnfv) event containing  spectively. A particular action is enabled iff the precondi-
the read valuev (or write-confirm event concluding the tions (labeledrre:) of that action are satisfied. The state-
write). From the standpoint of the client, these read and ments given as effects (labeled:) are executed as a pro-
write operations are independent from any quorum recon-gram started on the existing state and atomically producing
figuration. the next state as the result of the transition.

Management interface: The management interface allows The automata arénput-enabled where the precondi-

an external system monitor to adapt the quorum system intions of the input actions are always true, and we omit the
response to the the changes in the environment, e.g., by répreconditions bre: true” from the specifications. We make
acting to failures and load imbalances. The monitor sub-;se of the compositions of automata that yield other au-
mits arbitrary new quorum configurations by means of the omata (see [25] for details). When we compose two au-
recor(C) request at the designated reconfigurer processorgmata, the actions that are unique to each automaton re-
r. When the reconfiguration completes, the monitor is in- main unchanged in the composition. When two automata

formed via theecon-confirmevent. , include identically named actions, one of the actions must
We do not specify the clients of the system, i.e., the userspe an input action and the other an output action. In the
of the read/writer service and the monitor. composition this produces an action with the same name,

_ The lower level provides the broadcast-convergecast seryhose precondition is the precondition of the output action,
vice (thel primitive) to the higher level. Itis presented in  and whose effects is the sequential composition of the ef-
Section 5. fects of the two actions. In our specifications, it is always
2.1. Model and Conventions possible to establish through static “compile-time” check-

We use the following message-passing model in this INg that the effects of the two actions being composed do
work. There arex asynchronous processors with unique NOt interfere with each other. Composition is associative
identifiers in the sePID. For simplicity we assum@[D =  &nd commutative. We useto denote the infix composi-
{1....,n}. Processor communicate at the level of abstrac- fion operator, and we use the product notafibto denote
tion of thenetwork layemusingpoint-to-pointmessages, i.e., Compositions of several automata.
in normal operations, any processor can send messages to An executiorn of an I/0 automatori is a sequence of
any other processor, the delivery is unreliable, but the mes-alternating states and actions .4fstarting with the initial
sages are not corrupted. In the cases where a message is sestate. Therace of a, denoted bytrace(«), is the subse-
to all processors, broadcast can be used without assumingjuence ofx consisting of all the external actions. We say
any atomicFIFO or causal properties. that automaton! implementautomatonB when the set of

The following failure model is used. Processor crashesthe traces ofd is a subset of the set of the tracesi®f In
and restarts are approximated by subjecting the processorthe performance analysis we consider finite executions.



3. Intermediate Configurations and Graceful
Reconfiguration

By graceful reconfiguratiorwe mean that the read and
write operations are able to successfully complete during
the reconfiguration, even if the reconfiguration is perma-
nently stalled because of a reconfigurer failure. Graceful
reconfiguration is implemented with the helpinfermedi-
ate quorum configurationsAs we will show, intermediate
configurations obviate the need for read/write operations to
“busy-wait” during reconfigurations.

In this section we le” denote a finite set (of processor
identifiers). We define:

Definition 3.1 Let R,)W < 2% such thatVR; € R,
VWin € W, R;N Wj 7'5 0, andW; N Wj 75 0, then
C = (R, W) is aquorum configuratiorof P, with R =
C.read, VW = C.write.

We define theqyuorum-joinoperation:

Definition 3.2 Let Q, Q' c 27. We define the quorum-
joinof QandQ'tobeQ X Q' ={XUY: X € QAY €
Q'}. We define the quorum-join of quorum configurations
C = (R, W)andC' = (R', W)tobeC X (' = (R X
R, W XMW,

We show that quorum-join of two quorum configurations
is also a quorum configuration:

Lemma 3.1 Let P be a setC = (R, W) be a quorum
configuration ofP. Then

1L.VX CP, VR, € R: (RRUX)NW; #0,VW; € W:
(Wi UX)NR; #0.

2.VX,Y C P,YW,W; e W: (W; UX)N(W; UY) #0.
3.VX,) Y C P,VR; € R,VW; € W: (RZ UX) n (Wj U
Y) #0.

Theorem 3.2 LetC = (R, W), C' = (R', W) be quorum
configurations of?, then
C X C'is a quorum configuration @P.

Our new algorithms (formally presented in Section 6)
useintermediate quorum configuratiorexpressed in terms
guorum-joins, to prevent the problem described in the ex-
ample in Figure 1. If a processor has a previously installed
configuratiorC, and it learns of a new proposed configura-
tionC’, then, instead of “busy-waiting” until the installation
of C' is finalized, it proceeds with its read/write operations
using the intermediate configuratiénX C’. The individ-
ual quorum intersection properties of b@tandC’ are pre-
served inC X C' (Lemma 3.1). The use of intermediate

4. Formal System Structure

We specify systems in a modular way as compositions
of automata and we define the following automata and their
compositions:
Reader/Writer: This automaton specifies the algorithm for
reads and writes. The automaton at processemdenoted
by A%, There are: reader/writer automata, one for each
ie{l,...,n}.
Reconfigurer: This automaton specifies the reconfigurer
algorithm. One of then processorsr, is selected to act
as the reconfigurer, who initiates installations of new con-
figurations. This automaton is denotedRgc
The broadcast/convergecast specification:This broad-
cast/convergecast used b” andRecis specified by au-
tomatonl'(¥). TheT primitive is defined as the composition
r=1mp, 10,
Communication channels: The low-level unidirectional
message-passing channel from procesdor; is denoted
by Chi, i
The brg)adcast/convergecast implementationThe broad-
cast/convergecast is implemented by the automédth at
eachi € {1,...,n} using the channels. Formally, is
implemented byl';,.,; that is defined as the composition
Limpt = M7 AD 0 Ty < j<nchi
The atomic Read/Write service (the system)We define
the systens that provides that atomic service as the com-
position of all A) automatal < i < n), the reconfigurer
Recand thel” primitive: S= TI7_, (A()) o Rec o T'. We use
S to prove the safety of our emulation in Section 7.1.
System implementation: To evaluate the performance of
the system, we define the system implementation, called
Simpt» as the composition of all automata < i <
n), the reconfigurefRec and the implementatiol;,,;:
Simpr= T (A®) 0 Rec o Ty The analysis is in Sec-
tion 7.2.

We now formally defind” andl';,,,,,; (Section 5), and the

algorithms for reader/writerl) and the reconfigureRec
(Section 6).

5. The Broadcast/Convergecast Primitivd’

The T primitive was introduced in [26], and we use it
for quorum-acknowledged broadcasts in our protocol and
for showing the safety of our solution. In the full paper,
we also formally present the implementationIaf called
Cimpt, and suggested in [26] and we Usg,,; in assessing
the performance of the protocol. Therimitive constitutes
the lower layer of the overall emulation.The service speci-

quorum configurations, as we show in Section 7.1, makesfied by the primitive provides the client with the ability to

it safe to proceed with reads and writes during the installa-
tion of a new configuration. Furthermore, this has the pos-
itive effect of “helping” the reconfigurer in installing new

configurations, since the messages sent by readers/writer;

propagate new configurations. Finally, the sizes of the quo-
rums in quorum-joins are no more than twice the maximum
size of the original quorums.

Theorem 3.3If Q;, Q> C 27, thenmax,{|g| : ¢ € Q1 X
o} < 2maxy{lg|: ¢ € Q1 Vg€ D}

performquorum-acknowledged broadcasisd it returns to
the client the results of theondenser functiothat is com-
puted on the responses to the broadcast.

§.1. The ImplementationA®

In the full paper we present a straightforward imple-
mentation of thel’ primitive. The implementation uses
send/receive point-to-point channels. Each channel is mod-
eled havingsend(m); ; andrecv(m);,; actions, fori, j €
PID. Such channels have very simple specification.Recall



Data-types: Condenser functions:

N2, configuration indices with selectors o = A(d).((a[k].val, alk].tag) :
act andbid (variables arer, z, cix) Vj : alk].tag > a[j].tag), maximum tag
C?, configuration pairs with selectors &€ = Aa).((alk].ciz, alk].cfg) :
act andbid (variables areX, Z) Vj : a[k].ciz > a[j].cix), max index and its config.
Acknowledgment values for the query phase State of the reader/writer: (for eachi € PID)
are of the typeM x Any x T x N2 x Q2. tag € T, initially tag = (0,0)
The selectors are: val € V, initially val =vo € V

msge M, the message type ¢fuery-ack”

vale A, the data object value prop-tag € T, tag used in propagating results,

tage T, the tag of the object _ initially (0,0)
cix € N*, the configuration index pair prop-val € Any, initially L
cfge C”, the quorum configuration pair statuse { query-ready, query-active, prop-ready,
U=N x N x 22 with selectors: prop-active, prop-don@, initially query-ready
act the index of the active quorum requeste { (“read” ), ()} U ({(“write” )} x A)
bid: the index of the proposed quorum ack-q a finite sequence d¥/ x ID, initially empty
grm: the currently used configuration usede U

Figure 2. Reader/writer A specification; Part |, data types and states

that we have defined the implementatiog,,; as the com- (ciz.act, ciz.bid),. They are such thatix.act, is the se-

position of A() and the channel automata. Main differences quence number of the active configuratiorpatix.bid, is
betweerl and each\ () are that inA(9, (1) instead of the the sequence number of the propose_d con_flgurathm at
global op, each processor maintains a state compoognt The indices are used to compare configurations and to de-
for invocations it initiates, and (2) messages are communi-t€ct the installation of new configurations. , ,
cated using the channels with the help of quenstsgand Each configuration .|ndex corresponds to a configuration
deliver-g We show thal';,,,,; implementd. pair, cfg, = (cfg.act, ciz.bid),, wherecfg.ac}, is the ac-
Theorem 5.1 T';,,,,, implements tive configuration afp and cfg.bid, is the proposed con-
A Timp .

o figuration atp. Whencix.act, = cix.bid,, it implies that
We next assess the conditional performancé gf,; (as . . P . L
suggested in [26]). cfg.act, = cfg.bid,, and that the proposed configuration is

. . accepted as active. Configuration index pairs are compared
Theorem 5.2 Suppose in any execution &f;,,,;: (a) there P 9 P P

. b he i ired f lexicographically. Wheriz.act, < ciz.bidy,, the config-
is a constant upper bourgl on the time required for a ,rat0n isintermediate When using read or write compo-
processor to read all received messages, perform a Iocacf

computation, and send replies, (b) the same upper boun ents of intermediate configurations, processors use joins
S ' ' X .. 1) of the appropriate componentsaffy.act, andcfg.bid,.
holds on time required for a message to be delivered if it ) pprop P og.ach 9.bid,

is ever to be delivered, and (c) there exists a set of proces6.2. The Reader/Writer Automaton 4

sorsQ € ¢.grm such that they receive the request and their  \We give the code of the algorithm for a reader/writer in
condensed acknowledgments are delivered to the invoker ofFigure 2 and in Figure 3. Figure 2 shows the common data-
thesubmit Then at most timég passes between tsabmit  types and states, while Figure 3 shows the transitions.

transition and the matchingspondransition, and there are The readers and the writers use the same algorithm. The
at most2n messages sent as the result ofshbmit only difference between the reads and the writes is that a

Finally note thatl';,,,; is intentionally designed to be writer assigns a new tag by incrementing the maximum tag
very simple to show thdt is easily implementable. found, while a reader simply uses the maximum tag.

; Each read or write operation consists of two phases in
6. Thg SharEd_Memory EmUIatl_on ] each of whichl" is invokgd one or more times. Itgrations
In this section we present the algorithm that implements occur only when the used configuration, i.e., the index-pair
the resilient multl—reader/multl-wrlter atomic reglster Ser- of active and proposed configuration at the invoking proces-
vice. We present the solutlon forone emulated_reglster. Thesor, is less than (lexicographically) the maximum configu-
solution is extended to multiple emulated registers by us- ration index returned to the invoking processor. If a higher
ing instances of the algorithm in parallel. We present the index is detected, it is adopted and the primitive is invoked
emulation algorithms in three parts. First we describe the again using the configuration(s) corresponding to the higher
representation of the registers and the quorum configuraindex pair. This ensures that obsolete configurations can

tions. Then we present the reader/writer automatioi, be detected by a processor that wants to perform a read or
and follow with the reconfigurer automat®ec a write. The first phasequery, uses active read quorums
6.1. Registers and Configurations if ciz.act = ciz.bid and the intermediate configuration if

ciz.act < ciz.bid. The second phasgpropagation uses
active write quorums itiz.act = ciz.bid and the interme-
diate configuration itiz.act < cixz.bid. Variabler (sub-
scripted when necessary) will be used to uniquely identify
Each processop also maintains pairs of quorum con- the client-level read or write operations occurring in some

figurations and configuration indices. A configuration in- €X€cution. Formally we make the following definition:
dex, cix,, is a pair of configuration sequence numbers Definition 6.1 The phases of an operatiarare defined as

The register is represented by its valud and its tag
tag, and it is replicated at all processors. Each tag is a pair
consisting of a sequence numiseigand a processor iden-
tifier pid. The tags are compared lexicographicady.f,).



Transitions of the reader/writer:
Inp write(v),
Eff. request= (“write”, v )
Inp read,
Eff. request= (“read” )
out submi{(“query” ,z, Z ), (X (a).(“query-ack”), o, £ ), ¢,id)p
Pre: status= query-ready
request ( )
cix.act = cix.bid = q =cfg.act.read
cix.act < Cix.bid = q =cfg.act.read X cfg.bid.read
Eff. status:= query-active
used:= (ciz.bid, ciz.act, q)
Inp respond(“query-ack”, (v, t),(z, Z) ), id)p
Eff. if (used.act, used.bjd> z then
if request (“write” ,w) then
prop-val:= w; prop-tag:= (t.seq + 1, p)
else
prop-val:= v; prop-tag:= ¢
status:= prop-ready
else
cix:= z; cfg:= Z
status:= query-ready
Inp deliver((“query”, z, Z ), id)p
Eff. append({“query-ack”, val, tag, ciz, cfg), id ) to ack-q
if 2 >, ciz then
cix =z, cfg == Z
out submif(“propagate”, v, t, z, Z ), (A (8).(“‘prop-ack”), £ ), ¢, id)p
Pre: status= prop-ready
cix.act = cix.bid = ¢ =cfg.act.write
cix.act < cix.bid = q =cfg.act.write X cfg.bid.write
v = prop-val t = prop-tag
Eff. status:= prop-active
used.act= cix.act
used.bid= cix.bid
used.grm=q

Inp respond(“prop-ack”, (z, Z) ), id)p
Eff. if (used.act, used.bjd> z then
status:= prop-done
else
cix = z; cfg:= Z
status:= prop-ready
Inp deliver((“propagate”, v, t, z, Z ), id)p
Eff. append{“prop-ack”, ciz, cfg), id ) to ack-q
if t >1cq tag then
val :=v;; tag :=1
if 2 >, cizthen
ciz = z;, cfg:=2Z
Inp deliver((“query-install”, z, Z ), id),
Eff. append{“install-ack”, val, tag ), id ) to ack-q
if 2 >, cizthen
cix:=z; cfg:=2
Inp deliver((“recon-done”, z, Z), id),
Eff. append(“recon-ack” ), id ) to ack-q
if 2 >, cizthen
cix:=z; cfg:=2
out read-confirntv),
Pre: v = prop-val
status= prop-done request= (“read” )
Eff. request= ()
status:= query-ready
Out write-confirm,
Pre: status= prop-done
request= (“write”, =)
Eff. request= ()
status:= query-ready
out ack(r, id),
Pre: headack-g = (r, id )
Eff. ack-qg:= tail(ack-g

Figure 3. Reader/writer A®™ specification; Part II, transitions

follows: The operation is in itsquery phase after the tran-  transitions of the reconfigurer.

sition of thesubmit of “query” and prior to thesubmit of The reconfigurer has three phases. In dadhinvoked
“propagate”; « is in its propagate phase after the transition once. In thequery-installphase at'submit” of query-

of the submit of “propagate” and prior to the response to install, the Join of a read quorum and a write quorum in
its client. a the active configuration are informed about the proposed

The writer (reader) accepts a clieatite (read) request configuration and queried about the register value with the
and invoked by using thesubmitaction to query all pro- ~ Maximum tag. In theropagatephase it propagates this tag
cessors in a read quorum (active or intermediate) for their@nd the associated value to a write guorum in the new con-

tags. When thigjuery phase completes with thhespond  guration. In therecon-idiephase it announces to a write
action, a writer on one hand, constructs the propagation tagguorum in the new configuration that the reconfiguration is
prop-tagwhose sequence number is the successor of the secOMPIete. _ _ . .
quence number of the maximum tag returned and whose _ NOté that the incrementing afiz.bid, occurs at're-
second component is the processor's identifier. It then in- SPONd” t0 install-ack (ciz.act, at“respond” to recon-
vokesT to propagaterop-tagand the new valuprop-val ack), i.e., _after the reconflgurgr has received ponﬁrmatlon
to all processors in a write quorum (active or intermediate). tNat theJoinof a read and a write quorum (a write quorum)

A reader, on the other hand, simply invoke$o propagate hhas refceived tr]le ne(\j/v_ cor:\figuration ir;]dex. Th_ij isbused in
the maximum tag and the associated value. the safety proofs and is the reason, why, as said above, pro-

Each processor has a queaek-q that is used for ac- cessors can have configuration indices that are greater than

knowledgments to be sent out subsequently for the Corre_thevsoréfi%_uratiﬁn ir;}dices a]E tEe recon;‘igurer.f I as fol
spondingdelivertransitions. e define the phases of the reconfigurer formally as fol-

. lows:
6.3. The Reconfigurer AutomatonRec W

The reconfigurer automatoRec at processor main-
tains the quorum configuration sequence pait. and the

configuration paircfg.. In any global state, the configu- is'in fits propagatephase after the transition of tseibmit
ration index at any processpris defined to becurrent if

ciz, > ciz,. The subtle point of this definition is that if of “propagate” and prior to thesubmitof “recon-done”

Yersiwrit t thei f. tion indi The reconfigurer is in itsecon-idlephase after the transi-
readers/writers are current, their configuration indices canqo of the submitof “recon-done” and prior to thesub-

not only be equal, but also be greater than the conflgura—mit of the next-query-install’; - is also in its‘recon-idle”

tion indices at the reconfigurer. This is essential in proving : : - ¥ " O
the correctness of the emulation. In Figure 4, we define thephase prior to theubmitof the first"query-install”.

Definition 6.2 The reconfigurer is in its query-install
phase after the transition of trebmitof “query-install”
and prior to thesubmitof “propagate”. The reconfigurer



State of the reconfigurerr:

The components are the same as for the reader/writer, exceptrahaestis omitted, andstatusis given as: status €
{idle, new-config, query-active, query-done, prop-active, prop-done, recon-comp }, initially idle.

Transitions of the reconfigurer:

Inp recon(C)
Eff. cfg.bid:=C
status:= new-config . .
out submi{(“query-install™, z, Z ), (X (a).(“install-ack”), o ), ¢, id)»
Pre: status= new-config
z = (ciz.act, ciz.bid + 1) A Z =cfg
q = cfg.act.read X cfg.act.write
Eff. status:= query-active
Inp respond(“install-ack”, (v, t) ), id),
Eff. prop-val:= v; prop-tag:= ¢
cix.bid := cix.act-1
status:= query-done
Out submif(“propagate”, v, ¢ ), A (a).(“prop-ack”), ¢, id),
Pre: status= query-done
v = prop-valA t = prop-tag
q = cfg.bid.write
Eff. status:= prop-active
Inp respond(“prop-ack” ), id),
Eff. status:= prop-done

Out submif(“recon-done”, z, Z ),
A (a).(“recon-ack”), g, id),
status= prop-done
z = (ciz.bid, ciz.bid)
7 = (cfg.bid, cfg.bid)
q = cfg.bid.write
Eff. status:= recon-comp
Inp respond(“recon-ack” ), id),
Eff: status:= recon-ready
cix := (cix.bid, cix.bid)
cfg:= (cfg.bid, cfg.bid)
Out recon-confirm
Pre: status=recon-ready
Eff: status:=idle
(The actiongleliverandackare
identical to those in Figure 3.)

Pre:

Figure 4. Specification of the reconfigurer

7. System Analysis

In this section we show correctness of the emulation al-

Rec.

to use this Lemma, we show that there exists a partial order
of read and write operations in a sequence of actions of a

gorithms and assess the system performance. To show th&ead/write register that satisfies certain conditions.

atomicity of the emulation we use the systash The per-
formance is shown for the implementatiSg,,,;.

7.1. Correctness (Safety)

We state the atomicity theorem for the sysi§rand out-
line its proof. The proof uses an approach similar to [26],
and is the most technically challenging part of this work (for
the complete proof see the full paper).

Theorem 7.1 S implements an atomic multi-writer multi-
reader register.

We say that in a given executianof S operationr prop-
agatesa tag if the tag is used in th&ubmitaction in the
propagation phase af. The tag propagated by operation
is denoted byr, (7). Wherea is clear from the context we
omitit and user ().

A client-level read (write) operation is invoked by its
correspondingead (write) event. The response event of
the read (write) operation is its correspondiagd-confirm
(write-confirm) event. We defin€CP, the client-preceding
order as follows:

Definition 7.1 If in an executiony, the confirm event of the
operationr; precedes the request event of the operatign
thenm; <., .

Suppose for some executiarthe actions of an operation
« include the actions df for someid, starting with thesub-
mit event and including theespondevent. Then since the
identifierid is unique it also uniquely identifies the client-
level operationr. Therefore we can let(id) stand forr(x),
(where the propagation tagn) is defined for an operation
7 in therespondaction uniquely identified byd, or when
7(7) is propagated by thE primitive using unique identi-
fierid.)

To simplify our proofs of the correctness 8f we use a
succinct and effective way of expressing the eventuality of
certain outcomes based on the current knowledgdilla “
notion (also used in [26]). fill” predicts the acknowledg-
ment vector for a currentinvocation and thereby allows us to
simplify our invariants and reduces the size of their proofs.

The fill notion produces a “virtual” acknowledgment
from each processor based on taking the actual acknowledg-
ment if it is already defined, else a predicted acknowledg-
ment determined as follows. Ifdeliverhas occurred gt
without the correspondingck, then the value is the queued
acknowledgment; if theleliver has not occurred, then the
value is the acknowledgment that would be produced if the
deliver occurred as the next event.

Definition 7.2 For the invocation of thd® primitive with

the unique identifierid, let pu, M x States, —

M be the function computed in the effects of the
deliver action by processorp to construct the ac-
knowledgment message upon the receipt of a mes-
sage from thesubmiter. We define fill (p,id) =

if op(id) = L then L

else ifp € op(id).acks then op(id).acc[p] .

else ifdm : (m,1d) € ack-q, then (the unique)n

elsepp(m, statep

The key to the proofis a multi-part invariant Lemma 7.2,
shown in Figure 5 which we now explain and whose proofis
in the full paper. Par is the most important part; it relates
the tags of operations where one follows another. Rarts
andI2 are auxiliary invariants.

Partslla,b,c deal with the properties of the tags of com-
pleted operations and the state of the reconfiguration. Part
I1a says that for any completed read or write operatipif
no new quorum system is being processed by the reconfig-
urerr, then there exists a proposed write quorum such that

We show the atomicity of the read and write operations all processors in it reflect either or some other operation
for any execution by using Lemma 13.16 of [25]. To be able that supersedes it.



Lemma 7.2 In all reachable states:

11

12

13 If

install a new configuration, then no matter what active read

If T € completed, then:
(a) If r is in itsrecon-idlephase, then:
W e cfg.bidwrite, : Vi € W : 7(7) <jez tag;

(b) If r is in its query-install phase having invoked
I' using identifieroid,., then: VR € cfg.actread, :
7(7) <iex max;ep{fill(i,0id,).tag}
(c) If r is in its propagatephase having invokel using
identifieroid, and tagr,, then:

1. (1(m) < 7) A (Vi € op(oidy).acks : T <iex tag;)
or

2.3 € cfg.bid.write.: Vi € W: 7(7) <jes tag;.
V' ¢ completed :
(@) If ' <., mandr at processop is in thequeryphase
having invoked™ using identifieroid, then for anyR €
usedgrm,, either

1. 7(7") <jex max;er{fill(i,oid).tag}, or

2. (used.act, used.bid), <je,
(max;er{ fill(i, oidy).ciz.act},
max;er{ fill(i, oidy).ciz.bid}).
(b) If = is in the propagationphase having invokel
using identifierid, either:

1. (used.act, used.bid), is current, or

2.3W € c¢fg.bid write,: Vi € W: 7(7) <feg tag;, OF

3. YW € used.qrm,, (used.act, used.bid), <ies
(max;ew { fill(i, 0id).ciz.act},
max;ew { fill(i, oid).ciz.bid}).
T =<¢p M2 @Ndr(my) is defined, then:
(@) 7(m1) <jez T(m2) Wwhenm, is a read,
(b) 7(m1) <iex T(m2) Whenms is a write.

Figure 5. Main Invariant

Partllb says that if the reconfigurerhas invoked" to

Partl3 is the key part. It says that a read completely fol-
lowing another operation has a tag that is at least as large,
and that a write has a tag strictly larger than any other oper-
ation that precedes it.

The partial order required by Lemma 13.16 [25] and
yielding the proof of Theorem 7.1 is now constructed in the
following way: For an execution. of S containing no in-
complete operations, let sequeritbe the projection of
containing the invocation/response events of read and write
operations. Letl be the set of operations i We define
the (irreflexive) partial ordePO = (II, <) on the operations
by letting: 71 < ma for oy, e € 11, if (@) 7(m1) <jex T(m2),
or if (b) 7, is a write, 75 is a read, ane(m;) =je, 7(m2).

7.2. Conditional Performance Analysis

In this section we assess the performance of the com-
posed system, calle$};,,;, that differs fromS only in that
it usesI';n,,; instead of” (recall thatI';,,; formally imple-
mentsl’). For S, we show that the reconfiguration is not
obstructed by the concurrent client level read/write opera-
tions, and, more importantly, that the client level read/write
operations are not obstructed by a tardy or stopped recon-
figurer — the reconfiguration graceful

To assess the performance of the atomic multi-
writer/multi-reader service, we carry over the assumptions
of Theorem 5.2. In particular, we use the same upper bound
g on local processor operations and message delays, and we
assume that the quorum systems are not disabled.

The next theorem shows that the performance of any
reconfiguration does not depend on any client-level oper-
ations.

Theorem 7.3 Any reconfiguration takes time at makig
and at mos6n messages.

Finally we show that reads and writes are not obstructed

quorum it ends up using, it is guaranteed to obtain a tag thatby reconfigurations.

is at least as large as the tag of any completed operationpefinition 7.3 Let ciz, andciz, be two configuration in-
This guarantee is expressed usingfihenotation.

propagate the maximum tag it found to a new write quorum,
then this tag is as high as the tag of any completed operatiorbe
and any processors that have acknowledged the propagategl,
tag have updated their own tagsthat there is a proposed

Partllc says that if the reconfigurerhas invoked" to

write quorum such that all processors in it reflect either
some other operation that supersedes it.

either (1) the tag returned by tlygieryis guaranteed to be

at least as high as the tag of an operation preceding this on
in the client-preceding order — this is expressed with the
help of thefill notation, or (2) the operation will detect that
its configuration is obsolete — the guarantee of detection is

Partl2a says that for any read or write in ilgieryphase,

expressed usinfil .

Partl2b says that for any operatianin its propagation

dex pairs. We define thdistancedist(ciz, , cizs) between
these pairs a§ciz.act; +ciz.bidy) —(ciz.acto+ciz.bids)).

Intuitively, given an execution of the system, the distance
tween any two configuration index pairs gives the num-
r of different configurations (including intermediate) that

came into existence since the least (with respect to the lexi-
cographical order) of these two index pairs became known.

Theorem 7.4 In any execution, if (a) all reconfigurations
complete by timet or if (b) a reconfiguration does not
omplete by time, but the reconfigurer does not perform
ny further steps after timg then any processags that
does not permanently stop, completes its read or write op-
eration in timel0g + dist(cizp, ciz;) - 5g, using at most
(2 dist(cizp, cizy) + 4) - n messages, wher@z, is the
configuration index pair gt at the invocation of the oper-
ation andciz; is the maximum of all index pairs that exist

phase, at least one of the following conditions is guaran-anywhere in the system at

teed to hold: (1) its propagation tag is either being propa-

gated using the current configuration, or (2) the tag is al- Theorem 7.5 If an execution contains a read or a write op-
ready reflected in a write quorum of the new configuration, eration at processqgr that starts at time; and completes
or (3) 7 will detect that its configuration is obsolete — again at time t,, thent, — 1 < 10g + (dist(cizy,cizy, ) +
this guarantee of detection is expressed ufihg

2¢) - 59, and the number of messages sent is at most



(4+ 2 dist(cizy, cize, ) + 4c) - n, whereciz), is the config-
uration index pair ap at¢; andciz,, is the maximum of all
index pairs that exist anywhere in the systenyatindc is

the number of reconfigurations that are concurrent with the

operation.

8. Conclusions and Discussion
We presented a robust service that emulates atomic[16]

multi-writer/multi-reader registers in message passing sys-
tems. The service uses dynamically reconfigurable quo-

[14]

[15]

rum systems to ensure atomicity in a way that does not[17]
rely on locking or mutual exclusion. The reconfigurations
aregraceful| since they do not obstruct concurrent reads or
writes. The emulation works with any quorum system and
does not require that any two quorums from distinct quo- [19]
rum systems have a non-empty intersection. The emulation
contains no single points of failure.

Acknowledgments: We thank Maurice Herlihy and Nancy
Lynch for insightful comments, and Idit Keidar for several
valuable observations.
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