
Graceful Quorum Reconfiguration
in a Robust Emulation of Shared Memory�

Burkhard Englerty Alexander A. Shvartsmanz

Abstract

Providing shared-memory abstraction in message-
passing systems often simplifies the development of dis-
tributed algorithms and allows for the reuse of shared-
memory algorithms in the message-passing setting. A ro-
bust emulation of atomic single-writer/multi-reader regis-
ters in message-passing systems was developed by Attiya,
Bar-Noy and Dolev (1995). This emulation was extended by
Lynch and Shvartsman (1997) to multi-writer/multi-reader
registers using reconfigurable quorum systems. In this work
we present a new atomic multi-writer/multi-reader register
service that includes a fault-tolerant reconfiguration ser-
vice. This new emulation has a substantially improved
performance and fault-tolerance characteristics. We intro-
duce the concept ofintermediate quorum configurationsand
show how they can be used by readers/writers during recon-
figuration. The result is that the quorum reconfigurations
are graceful: readers and writers no longer “busy-wait”
during reconfigurations, but are able to complete their op-
erations. An additional advance is that the reconfigurer is
eliminated as the single point of failure. When the recon-
figurer fails, readers and writers continue using interme-
diate configurations. In finite executions, read and write
operations terminate in bounded time using bounded num-
ber of messages (the bounds depend on the “currency” of
the configuration at the invoker of the operation). Finally,
the service places no restrictions on the installed quorum
configuration: a previously installed quorum system can be
replaced by anarbitrary new quorum system. Our algo-
rithms are specified using I/O Automata; the safety proofs
use the partial order techniques and invariants, and the per-
formance is assessed using operational reasoning.

1. Introduction
Algorithms for multiprocessors are commonly expressed

using either the shared-memory paradigm or the message-
passing paradigm. For distributed algorithms to be practi-
cal, the algorithms must be efficient and scalable, and they
must tolerate asynchrony, and component failures. It has

�This work was supported by a grant from the NSF CAREER Award
and an AFOSR contract.

yUniversity of Connecticut, Dept. of CS and Engineering, Storrs, CT
06269, USA, Email:burkhard@cse.uconn.edu

zUniversity of Connecticut, Department of Computer Science and En-
gineering, Storrs, CT 06269, USA and Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA,
Email: aas@cse.uconn.edu

been observed that in many cases it is easier to develop
efficient fault-tolerant algorithms for the shared-memory
model than for the message-passing model. Consequently,
in such cases there is value in developing an algorithm first
for the shared-memory model and then automatically con-
verting it to run in the message-passing model. It is like-
wise advantageous for message-passing algorithms to have
access to building blocks providing shared-memory abstrac-
tion in distributed settings.

Among the important results in this area are the algo-
rithms of Attiya, Bar-Noy and Dolev [5] who showed that it
is possible to emulate atomic shared memory robustly in
message-passing systems. They show that any wait-free
algorithm for the shared-memory model that uses atomic
single-writer/multi-reader registers can be emulated in the
message-passing model where processors or links are sub-
ject to crash failures. These algorithms are based on pro-
cessor majorities and thus are able to tolerate failure pat-
terns where any minority of processors are disabled or are
unable to communicate. This result was further optimized
by Attiya [4] who improved the message complexity of the
bounded time-stamps algorithm.

Motivated by [5], Lynch and Shvartsman [26] developed
a robust emulation ofmulti-reader/multi-writeratomic reg-
isters usingreconfigurable quorum systems, where a desig-
nated processor acts as the reconfigurer. The approach of
[26] recognized that a service providing an atomic register
abstraction in a distributed setting needs to support multiple
writers as well as multiple readers, and it must be able to
ensure atomicity using means that are more flexible and ef-
ficient than the majorities. As the result, that approach spec-
ified the multi-reader/multi-writer protocol that relies on
quorum systems, which in turn can be dynamically changed
during the system operation. The system provides anappli-
cation interface used to submit read/write requests, and a
managementinterface used to install new quorum systems
in response to failures and to changing processor loads. The
management requests are submitted at a single reconfigurer
that is responsible for initializing and finalizing the installa-
tion of new configurations. The protocol [26] is complex
and involves several subtle phases. To insure safety of re-
configurations, the protocol restricted the ability of some
reads and writes to make progress during reconfigurations.
We illustrate why this was necessary in [26] with the help
of Figure 1. The example shows the timelines of four pro-
cessors,a (the reconfigurer),b, c andd, where the arrows
represent selected message transmissions. The communi-
cation is done using quorum-acknowledged broadcasts (we

Read quorums Write quorums

Current configuration fa; b; cg; fc; dg fa; b; cg; fc; dg

Next configuration fa; bg; fb; c; dg fa; bg; fb; c; dg

a

b

c

d W

U

w
Æ Æ �

7

W

> > > >*

W

*

> > > >
^

3

^

3

U

?

W

-

-

-

-

h1

h2 h3

h4 h5
fc; dg

fc; dg fc; dg

fa; bg fa; bg

>

Figure 1. Illustrating the need to prevent writes from completing during reconfigurations in [26].

omit most messages that have no impact on the protocol).
The system begins with the current quorum configuration
with the read quorumsfa; b; cg and fc; dg, and identical
write quorums (for simplicity). Responses from these quo-
rums are marked by dashed boxes. Assume that a new con-
figuration is submitted by the reconfigurera. This next quo-
rum system has the read quorumsfa; bg andfb; c; dg, and
identical write quorums. Responses from these quorums
are marked by solid line boxes. According to the algorithm,
the reconfigurer uses a broadcast to query other processors
for the latest value and the version of the shared register,
see callout(1). Once a complete quorum responds, the
reconfigurer accepts the value with the maximum version
number. Now we assume that register writes are allowed
to complete during the reconfiguration (of course the pro-
tocol [26] prevents this). Suppose the processorc starts a
write (2) by quering other processors for their latest version
numbers and values values. Letfc; dg be the first respond-
ing quorum. The processorc increments the latest version
and propagates the new version and value(3). Note that this
new version number is strictly greater than the version that
the reconfigurer knows about. The write completes after the
quorumfc; dg confirms the write (3). Now the reconfig-
urer propagates its outdated version number and value(4),
and after the new quorumfa; bg responds, the reconfigurer
confirms the installation of the new configuration to all pro-
cessors(5), and once the quorumfa; bg responds, it com-
pletes the reconfiguration. The result is that a future read
might not return the value last written in(2; 3), but the one
propagated by the reconfigurer in(4). Hence the atomicity
of the shared register is violated. Therefore the algorithms
in [26] do not allow the steps(2) or (3) to complete until
the reconfiguration completes(5). This ensures the safety
of the protocol at the expense of the liveness of reads and
writes that are concurrent with a reconfiguration. In par-
ticular, the system could starve if the reconfigurer stopped
during the installation of a new configuration, effectively
leaving the emulated shared register permanently inacces-
sible. Note that the alternative, which favors reads/writes,
and that blocks a concurrent reconfiguration is also not sat-
isfactory.
Contributions. In this paper we present a robust emula-
tion of atomic multi-reader/multi-writer memory using dy-

namic quorum configurations. The emulation includes a
fault-tolerant quorum reconfiguration service that allows a
great deal of asynchrony and that does not use quorums for
locking or mutual exclusion. The main results in this paper
make the following contributions:
1. We present a protocol for multi-reader/multi-writer
atomic registers that allowsall read and write operations to
complete in finite number of steps, using bounded number
of messages, when the reconfigurations complete as well as
when the reconfigurer fails (provided the quorum systems
are not disabled).
2. We introduce the concept ofintermediate quorum config-
urationsand thequorum-joinoperation that, givenany two
quorum configurations, computes the corresponding inter-
mediate configuration.
3. Our protocol ensures the liveness of the multi-
reader/multi-writer protocol by using the intermediate con-
figurations in the way that allows concurrent reconfigura-
tions and that tolerates the failure of the reconfigurer, thus
eliminating the reconfigurer as the single point of failure.
4. The clients of our management interface can submitar-
bitrary new quorum configurations, regardless of any inter-
section properties with any of the previous quorum config-
urations.
Our system is designed in a modular way and is specified
as a composition of components. We use Input/Output Au-
tomata [27, 25] to specify all components and algorithms.
The safety proofs, which are omitted for space reasons
and are given in the full paper, use the partial order tech-
niques and invariants [25] . The safety of the system is
shown assuming complete asynchrony of the processors
and message-passing. The processors may have arbitrary
relative speeds (here stopped processors take infinite time
to complete a step), and messages may incur arbitrary in-
transit delay (here message loss corresponds to infinite de-
lays).
We use operational reasoning to assess the conditional per-
formance of the system. To do this we assume that there
is a constantg that represents the upper bound on time it
takes for the active (non-stopped) processors to perform a
local computation, and the upper bound on message delay
for messages that are delivered. We also assume that the
quorum systems are not disabled (i.e., we assume that the

1

processors in at least one read quorum and at least one write
quorum are active). In our system, the installed quorum
configurations and the intermediate configurations can be
sequentially numbered. We define the “distance” between
any two such configurations as the difference between their
sequence numbers. We show the following:
5. Any reconfiguration of quorums takes time at most15g
and at most6n messages, wheren is the initial number of
processors.
6. Let t be the time such that either all reconfigurations
complete by timet, or that the last reconfiguration active at
t never completes. Any read or write operation, started at
processorp that does not fail, takes at most10g + d � 5g
time, and at most(2d + 4)n messages, whered is the dis-
tance between the highest configuration anywhere att and
the configuration ofp at the invocation of the operation.
7. If a read or a write operation at processorp starts at time
t1 and completes at timet2, thent2�t1 � 10g+(d+2c)�5g,
and the number of messages sent is at most(4+ 2d+4c)n,
whered is the distance between the highest configuration
anywhere att1 and the configuration ofp at t1, andc is
the number of reconfigurations that are concurrent with the
operation.

Developing protocols that meet the design goals in our
setting is difficult. We do not assume the availability of
reliable broadcasts, thus not all processors may learn of the
ongoing installation of a new configuration. Furthermore,
since we allow processors to take steps that are arbitrarily
long, the reconfigurer in particular may become out of date
with respect to reads and writes during the installation of a
new configuration. We need a distributed solution that does
not rely on the availability of the reconfigurer to take steps
at the same pace as any other processor at any given time.
Finally, since we allowarbitrary new quorum systems to
be installed, we cannot rely on any intersection properties
among quorums of different configurations.

The new emulation uses a single reconfigurer as in [26],
however the rˆole of the reconfigurer is different, resulting
in the reconfigurer no longer being a single point of fail-
ure. In its new rˆole, the reconfigurer is responsible for emit-
ting new quorum configurations, and it helps shepherding
the new configuration towards its installation. We show
that our system is not obstructed by a reconfiguration in
progress or by a tardy or stopped reconfigurer. In our sys-
tem, processors contribute to installations of new configura-
tions and intermediate configurations while participating in
routine read/write operations. The overall solutions is spec-
ified in terms of the composition of two layers: The lower
layer uses the� primitive [26] that provides an unordered
broadcast-convergecast service. We also show an imple-
mentation of� using point-to-point channels. The lower
level admits other implementations and it is not difficult to
optimize its message complexity by replacing broadcasts
with multicasts to specific quorums and by cancelling un-
necessary pending responses using notices piggybacked on
other messages. The higher layer algorithm emulates multi-
access registers where dynamic quorum systems are used to
ensure atomicity [20, 23, 25].

The solution implemented as a composition of layers re-

flects practical system concerns dealing with communica-
tion efficiency, with fault-tolerance and with system man-
agement (i.e., with supervision and control of the system so
that it fulfills the requirements of its users, cf. [34]). When a
quorum system needs to be reconfigured, this is done using
the management interface of our service. Reconfigurations
are transparent to the clients that are using the functional
read/write interface. The management interface can be used
to tune the performance of a distributed system based on
current and historical observations [33]. A resource man-
ager can monitor system performance and availability and
evolve the quorum system using the management interface.
Related work. The work of [5] shows how to use ma-
jorities in implementing atomic registers, and it is extended
in [4]. Dynamic quorum-based emulation is given in [26].
Quorum systems [16] are generalizations of majorities. A
quorum system(also called acoterie) is a collection of sets
such that any two sets, calledquorums, intersect [15]. An-
other approach divides the quorum system into a collection
of read quorums and a collection of write quorums such that
any read quorum intersects any write quorum, and any two
write quorums intersect. Quorums have been used to imple-
ment distributed mutual exclusion [15] and data replication
protocols [12, 18]. Quorums can be used with replicated
data in transaction-style synchronization that limits concur-
rency (cf. [8]). Many other replication techniques use quo-
rums [1, 6, 7, 13, 14, 17]. An additional level of fault-
tolerance in quorum-based approaches can be achieved us-
ing the byzantine quorum approach [28, 3].

We have recently used the techniques in [26] and in this
work to develop a way of integrating dynamic quorums
within a group communication service [11]. That work in-
troduces the notion of primary configurations and provides
a dynamic primary configuration group communication ser-
vice. The group communication service also allows one to
implement atomic registers, however in that work we re-
quire that the new quorums have specific intersection prop-
erties with previous configurations, whereas in this paper
we allow forarbitrary new configurations to be installed.

Considering the fault tolerance of quorum assignments,
there exists a variety of previous research. Probabilistic ap-
proaches such as [2, 24, 30, 31], develop methods to de-
termine the likelihood that progress is achieved given that
a non-adaptive quorum system is used. Processors are as-
sumed to fail with a known probability, so a quorum as-
signment can be selected maximizing the probability of
progress. This method can also be used with our emula-
tion to allow a system monitor to evaluate the current sys-
tem and to make decisions concerning its replacement. The
deterministic approach in [9] generates a static quorum as-
signment that guarantees to mask a predetermined number
of failures. Other approaches achieve adaptive deterministic
fault-tolerance by having each processor, based on informa-
tion about processor failures, compute the processors in its
quorum.

Another important approach to quorum adaptation is dy-
namic voting [19, 21, 22]. In [21] no single processor acts
as a reconfigurer and the approach relies on locking and re-
quires that at least a majority of all the processors in some

2

previously updated quorum (or half of all the processors
in some previously updated quorum plus the distinguished
site) are still alive. The approach in [22] does not rely on
locking, but requires at least a predefinedMin quorumsize
number of processors to always be alive. The decentral-
ized on-line quorum adaptation of [7] assumes the use of
Sanders [32] mutual exclusion algorithm, which again relies
on locking. [7] allows up ton� 1 processor failures but no
link failures. Our approach takes a distributed system man-
agement view where reconfiguration must be graceful and
asynchronous, and it must not obstruct client operations.
Furthermore, the quorums do not evolve spontaneously, but
are to be evolved in response to specific system policies and
observations.

2. Solution Structure, Models and Notation
The emulation system is architected in terms of two main

protocol layers.The higher layer provides the reconfigurable
atomic read/write register service to its users that has two
interfaces. The application interface provides its client with
read/write access to atomic registers, and the management
interface allows a system manager (a user or a system) to
reconfigure the quorums by submitting new quorum config-
urations.
Functional interface: The clients of the service submit
read requests (orwrite requests) at any processori of the
system. Once the operation completes, the client is in-
formed by means of theread-confirm(v) event containing
the read valuev (or write-confirm event concluding the
write). From the standpoint of the client, these read and
write operations are independent from any quorum recon-
figuration.
Management interface:The management interface allows
an external system monitor to adapt the quorum system in
response to the the changes in the environment, e.g., by re-
acting to failures and load imbalances. The monitor sub-
mits arbitrary new quorum configurations by means of the
recon(C) request at the designated reconfigurer processor
r. When the reconfiguration completes, the monitor is in-
formed via therecon-confirmevent.

We do not specify the clients of the system, i.e., the users
of the read/writer service and the monitor.

The lower level provides the broadcast-convergecast ser-
vice (the� primitive) to the higher level. It is presented in
Section 5.
2.1. Model and Conventions

We use the following message-passing model in this
work. There aren asynchronous processors with unique
identifiers in the setPID. For simplicity we assumePID =
f1: : : : ; ng. Processor communicate at the level of abstrac-
tion of thenetwork layerusingpoint-to-pointmessages, i.e.,
in normal operations, any processor can send messages to
any other processor, the delivery is unreliable, but the mes-
sages are not corrupted. In the cases where a message is sent
to all processors, broadcast can be used without assuming
any atomic,FIFO or causal properties.

The following failure model is used. Processor crashes
and restarts are approximated by subjecting the processors

to unbounded delays with the additional assumption that the
state components defined in the specification are stored in
non-volatile storage. Link failures may make some nodes
unreachable (some of the time or permanently).

In safety proofs we do not makeanyassumptions about
the length of time it takes for a message to be delivered or
the amount of time it takes to perform a local computation.
To evaluate the performance of the algorithms, we assume
that either point-to-point messages are delivered and locally
processed in bounded time (unknown to the processors), or
not delivered at all, and that the quorum systems are not
disabled, i.e., at least one quorum is able to respond.

For the rest of the paper we define the following data
types and conventions:OID = [i2PIDOID i is the set of
unique operation identifiers, whereOIDi is the set of iden-
tifiers generated by processori and for i 6= j we have
OID i \ OIDj = ;. N is the naturals starting with 0.V
is the set of register values, with a distinguishedv0 2 V .
For any setS we defineS? to beS [f?g, where? is a
distinguished null value.

2.2. Programming Notation and Methodology

The specifications in this paper are done in terms of I/O
automata [25, 27]. Each automaton models a state machine
with states and transitions between states, where actions are
associated with sets of state transitions. There are input,
output and internal actions labeled byInp , Out and Int re-
spectively. A particular action is enabled iff the precondi-
tions (labeledPre:) of that action are satisfied. The state-
ments given as effects (labeledEff:) are executed as a pro-
gram started on the existing state and atomically producing
the next state as the result of the transition.

The automata areinput-enabled, where the precondi-
tions of the input actions are always true, and we omit the
preconditions “Pre: true” from the specifications. We make
use of the compositions of automata that yield other au-
tomata (see [25] for details). When we compose two au-
tomata, the actions that are unique to each automaton re-
main unchanged in the composition. When two automata
include identically named actions, one of the actions must
be an input action and the other an output action. In the
composition this produces an action with the same name,
whose precondition is the precondition of the output action,
and whose effects is the sequential composition of the ef-
fects of the two actions. In our specifications, it is always
possible to establish through static “compile-time” check-
ing that the effects of the two actions being composed do
not interfere with each other. Composition is associative
and commutative. We useÆ to denote the infix composi-
tion operator, and we use the product notation� to denote
compositions of several automata.

An execution� of an I/O automatonA is a sequence of
alternating states and actions ofA starting with the initial
state. Thetrace of �, denoted bytrace(�), is the subse-
quence of� consisting of all the external actions. We say
that automatonA implementsautomatonB when the set of
the traces ofA is a subset of the set of the traces ofB. In
the performance analysis we consider finite executions.

3

3. Intermediate Configurations and Graceful
Reconfiguration

By graceful reconfigurationwe mean that the read and
write operations are able to successfully complete during
the reconfiguration, even if the reconfiguration is perma-
nently stalled because of a reconfigurer failure. Graceful
reconfiguration is implemented with the help ofintermedi-
ate quorum configurations. As we will show, intermediate
configurations obviate the need for read/write operations to
“busy-wait” during reconfigurations.

In this section we letP denote a finite set (of processor
identifiers). We define:

Definition 3.1 Let R;W � 2P such that8Ri 2 R,
8WiWj 2 W , Ri \ Wj 6= ;, andWi \ Wj 6= ;, then
C = hR, Wi is a quorum configurationof P , with R =
C:read,W = C:write.

We define thequorum-joinoperation:

Definition 3.2 Let Q;Q0 � 2P . We define the quorum-
join of Q andQ0 to beQ 1 Q0 � fX [Y : X 2 Q ^ Y 2
Q0g. We define the quorum-join of quorum configurations
C = hR, Wi andC0 = hR0, W 0i to beC 1 C0 � hR 1

R0;W 1W 0i.

We show that quorum-join of two quorum configurations
is also a quorum configuration:

Lemma 3.1 Let P be a set,C = hR, Wi be a quorum
configuration ofP . Then
1. 8X � P , 8Ri 2 R: (Ri [X) \Wi 6= ;, 8Wi 2 W :
(Wi [X) \ Ri 6= ;.
2. 8X;Y � P , 8WiWj 2 W : (Wi [X) \ (Wj [Y) 6= ;.
3. 8X;Y � P , 8Ri 2 R, 8Wi 2 W : (Ri [X) \ (Wj [
Y) 6= ;.

Theorem 3.2 Let C = hR, Wi, C0 = hR0,W 0i be quorum
configurations ofP , then
C 1 C0 is a quorum configuration ofP .

Our new algorithms (formally presented in Section 6)
useintermediate quorum configurations, expressed in terms
quorum-joins, to prevent the problem described in the ex-
ample in Figure 1. If a processor has a previously installed
configurationC, and it learns of a new proposed configura-
tion C0, then, instead of “busy-waiting” until the installation
of C0 is finalized, it proceeds with its read/write operations
using the intermediate configurationC 1 C0. The individ-
ual quorum intersection properties of bothC andC0 are pre-
served inC 1 C0 (Lemma 3.1). The use of intermediate
quorum configurations, as we show in Section 7.1, makes
it safe to proceed with reads and writes during the installa-
tion of a new configuration. Furthermore, this has the pos-
itive effect of “helping” the reconfigurer in installing new
configurations, since the messages sent by readers/writers
propagate new configurations. Finally, the sizes of the quo-
rums in quorum-joins are no more than twice the maximum
size of the original quorums.

Theorem 3.3 If Q1;Q2 � 2P , thenmaxqfjqj : q 2 Q1 1

Q2g � 2maxqfjqj : q 2 Q1 _ q 2 Q2g.

4. Formal System Structure
We specify systems in a modular way as compositions

of automata and we define the following automata and their
compositions:
Reader/Writer: This automaton specifies the algorithm for
reads and writes. The automaton at processori is denoted
by A(i). There aren reader/writer automata, one for each
i 2 f1; : : : ; ng.
Reconfigurer: This automaton specifies the reconfigurer
algorithm. One of then processors,r, is selected to act
as the reconfigurer, who initiates installations of new con-
figurations. This automaton is denoted byRec.
The broadcast/convergecast specification:This broad-
cast/convergecast used byA(i) andRec is specified by au-
tomaton�(i). The� primitive is defined as the composition
� = �n

i�1 �
(i).

Communication channels: The low-level unidirectional
message-passing channel from processori to j is denoted
by chi;j .
The broadcast/convergecast implementation:The broad-
cast/convergecast is implemented by the automata�(i) at
eachi 2 f1; : : : ; ng using the channels. Formally,� is
implemented by�impl that is defined as the composition
�impl = �n

i=1�
(i) Æ�1�i;j�nchi;j

The atomic Read/Write service (the system):We define
the systemS that provides that atomic service as the com-
position of allA(i) automata (1 � i � n), the reconfigurer
Recand the� primitive: S= �n

i=1(A
(i)) ÆRec Æ�. We use

S to prove the safety of our emulation in Section 7.1.
System implementation: To evaluate the performance of
the system, we define the system implementation, called
Simpl , as the composition of allA(i) automata (1 � i �
n), the reconfigurerRec and the implementation�impl :
Simpl= �n

i=1(A
(i)) Æ Rec Æ �impl . The analysis is in Sec-

tion 7.2.
We now formally define� and�impl (Section 5), and the

algorithms for reader/writerA(i) and the reconfigurerRec
(Section 6).

5. The Broadcast/Convergecast Primitive�
The � primitive was introduced in [26], and we use it

for quorum-acknowledged broadcasts in our protocol and
for showing the safety of our solution. In the full paper,
we also formally present the implementation of�, called
�impl , and suggested in [26] and we use�impl in assessing
the performance of the protocol. The� primitive constitutes
the lower layer of the overall emulation.The service speci-
fied by the primitive provides the client with the ability to
performquorum-acknowledged broadcasts, and it returns to
the client the results of thecondenser functionthat is com-
puted on the responses to the broadcast.

5.1. The Implementation�(i)

In the full paper we present a straightforward imple-
mentation of the� primitive. The implementation uses
send/receive point-to-point channels. Each channel is mod-
eled havingsend(m)i;j andrecv(m)j;i actions, fori; j 2
PID . Such channels have very simple specification.Recall

4

Data-types:
N

2, configuration indices with selectors
act andbid (variables arex; z; cix)

C2, configuration pairs with selectors
act andbid (variables areX;Z)

Acknowledgment values for the query phase
are of the typeM �Any � T �N2 �Q2.
The selectors are:
msg2M , the message type of“query-ack”
val2 A, the data object value
tag2 T , the tag of the object
cix2 N2, the configuration index pair
cfg2 C2, the quorum configuration pair
U = N �N � 2Q with selectors:

act: the index of the active quorum
bid: the index of the proposed quorum
qrm: the currently used configuration

Condenser functions:
� � � (a).(ha[k]:val; a[k]:tagi :

8j : a[k]:tag � a[j]:tag), maximum tag
� � � (a).(ha[k]:cix; a[k]:cfgi :

8j : a[k]:cix � a[j]:cix), max index and its config.

State of the reader/writer: (for eachi 2 PID)
tag 2 T , initially tag = h0; 0i
val 2 V , initially val = v0 2 V
prop-tag 2 T , tag used in propagating results,

initially h0; 0i
prop-val2 Any , initially ?
status2 f query-ready, query-active, prop-ready,

prop-active, prop-doneg, initially query-ready
request2 f h“read” i, h ig [(fh“write” ig � A)
ack-q, a finite sequence ofM � ID, initially empty
used2 U

Figure 2. Reader/writer A(i) specification; Part I, data types and states

that we have defined the implementation�impl as the com-
position of�(i) and the channel automata. Main differences
between� and each�(i) are that in�(i), (1) instead of the
globalop, each processor maintains a state componentop
for invocations it initiates, and (2) messages are communi-
cated using the channels with the help of queuesout-qand
deliver-q. We show that�impl implements�.
Theorem 5.1 �impl implements�.
We next assess the conditional performance of�impl (as
suggested in [26]).
Theorem 5.2 Suppose in any execution of�impl : (a) there
is a constant upper boundg on the time required for a
processor to read all received messages, perform a local
computation, and send replies, (b) the same upper bound
holds on time required for a message to be delivered if it
is ever to be delivered, and (c) there exists a set of proces-
sorsQ 2 q:qrm such that they receive the request and their
condensed acknowledgments are delivered to the invoker of
thesubmit. Then at most time5g passes between thesubmit
transition and the matchingrespondtransition, and there are
at most2n messages sent as the result of thesubmit.

Finally note that�impl is intentionally designed to be
very simple to show that� is easily implementable.

6. The Shared-Memory Emulation
In this section we present the algorithm that implements

the resilient multi-reader/multi-writer atomic register ser-
vice. We present the solution for one emulated register. The
solution is extended to multiple emulated registers by us-
ing instances of the algorithm in parallel. We present the
emulation algorithms in three parts. First we describe the
representation of the registers and the quorum configura-
tions. Then we present the reader/writer automatonA(i),
and follow with the reconfigurer automatonRec.
6.1. Registers and Configurations

The register is represented by its valueval and its tag
tag, and it is replicated at all processors. Each tag is a pair
consisting of a sequence numberseqand a processor iden-
tifier pid. The tags are compared lexicographically (<lex).

Each processorp also maintains pairs of quorum con-
figurations and configuration indices. A configuration in-
dex, cixp, is a pair of configuration sequence numbers

hcix:act; cix:bidip. They are such thatcix.actp is the se-
quence number of the active configuration atp, cix.bidp is
the sequence number of the proposed configuration atp.
The indices are used to compare configurations and to de-
tect the installation of new configurations.

Each configuration index corresponds to a configuration
pair, cfgp = hcfg :act ; cix :bid ip, wherecfg.actp is the ac-
tive configuration atp and cfg.bidp is the proposed con-
figuration atp. Whencix.actp = cix.bidp, it implies that
cfg :actp = cfg :bidp , and that the proposed configuration is
accepted as active. Configuration index pairs are compared
lexicographically. Whencix :actp < cix :bidp , the config-
uration isintermediate. When using read or write compo-
nents of intermediate configurations, processors use joins
(1) of the appropriate components ofcfg.actp andcfg.bidp.

6.2. The Reader/Writer AutomatonA(i)

We give the code of the algorithm for a reader/writer in
Figure 2 and in Figure 3. Figure 2 shows the common data-
types and states, while Figure 3 shows the transitions.

The readers and the writers use the same algorithm. The
only difference between the reads and the writes is that a
writer assigns a new tag by incrementing the maximum tag
found, while a reader simply uses the maximum tag.

Each read or write operation consists of two phases in
each of which� is invoked one or more times. Iterations
occur only when the used configuration, i.e., the index-pair
of active and proposed configuration at the invoking proces-
sor, is less than (lexicographically) the maximum configu-
ration index returned to the invoking processor. If a higher
index is detected, it is adopted and the primitive is invoked
again using the configuration(s) corresponding to the higher
index pair. This ensures that obsolete configurations can
be detected by a processor that wants to perform a read or
a write. The first phase,query, uses active read quorums
if cix:act = cix:bid and the intermediate configuration if
cix:act < cix:bid. The second phase,propagation, uses
active write quorums ifcix:act = cix:bid and the interme-
diate configuration ifcix:act < cix:bid. Variable� (sub-
scripted when necessary) will be used to uniquely identify
the client-level read or write operations occurring in some
execution. Formally we make the following definition:

Definition 6.1 The phases of an operation� are defined as

5

Transitions of the reader/writer:
Inp write(v)p

Eff: request:= h“write”, v i
Inp readp

Eff: request:= h“read” i
Out submit(h“query” ,z;Z i, h� (a).(“query-ack”), �; � i, q; id)p

Pre: status= query-ready
request6= h i
cix:act = cix:bid) q =cfg:act:read
cix:act < cix:bid) q =cfg:act:read 1 cfg:bid:read

Eff: status:= query-active
used:= hcix :bid ; cix :act; qi

Inp respond(h“query-ack”, hv; ti; hz;Zi i, id)p
Eff: if hused.act, used.bidi � z then

if request= h“write” ,w i then
prop-val := w; prop-tag:= ht:seq + 1; pi

else
prop-val := v; prop-tag:= t

status:= prop-ready
else

cix:= z; cfg := Z
status:= query-ready

Inp deliver(h“query” , z;Z i, id)p
Eff: appendhh“query-ack”, val; tag; cix; cfg i, id i to ack-q

if z >lex cix then
cix := z; cfg := Z

Out submit(h“propagate”, v; t; z; Z i, h� (a).(“prop-ack”), � i, q; id)p
Pre: status= prop-ready

cix:act = cix:bid) q =cfg:act:write
cix:act < cix:bid) q =cfg:act:write 1 cfg:bid:write
v = prop-val; t = prop-tag

Eff: status:= prop-active
used.act:= cix.act
used.bid:= cix.bid
used.qrm:= q

Inp respond(h“prop-ack” , hz;Zi i, id)p
Eff: if hused.act, used.bidi � z then

status:= prop-done
else
cix := z; cfg := Z
status:= prop-ready

Inp deliver(h“propagate”, v; t; z; Z i, id)p
Eff: appendhh“prop-ack” , cix; cfg i, id i to ack-q

if t >lex tag then
val := v;; tag := t

if z >lex cix then
cix := z;; cfg := Z

Inp deliver(h“query-install” , z;Z i, id)p
Eff: appendhh“install-ack” , val; tag i, id i to ack-q

if z >lex cix then
cix := z; cfg := Z

Inp deliver(h“recon-done”, z, Zi, id)p
Eff: appendhh“recon-ack” i, id i to ack-q

if z >lex cix then
cix := z; cfg := Z

Out read-confirm(v)p
Pre: v = prop-val

status= prop-done; request= h“read” i
Eff: request:= h i

status:= query-ready
Out write-confirmp

Pre: status= prop-done
request= h“write”, � i

Eff: request:= h i
status:= query-ready

Out ack(r; id)p
Pre: head(ack-q) = hr, id i
Eff: ack-q:= tail(ack-q)

Figure 3. Reader/writer A(i) specification; Part II, transitions

follows: The operation� is in itsquery phase after the tran-
sition of thesubmit of “query” and prior to thesubmit of
“propagate”; � is in itspropagate phase after the transition
of thesubmit of “propagate” and prior to the response to
its client. 2

The writer (reader) accepts a clientwrite (read) request
and invokes� by using thesubmitaction to query all pro-
cessors in a read quorum (active or intermediate) for their
tags. When thisqueryphase completes with therespond
action, a writer on one hand, constructs the propagation tag
prop-tagwhose sequence number is the successor of the se-
quence number of the maximum tag returned and whose
second component is the processor’s identifier. It then in-
vokes� to propagateprop-tagand the new valueprop-val
to all processors in a write quorum (active or intermediate).
A reader, on the other hand, simply invokes� to propagate
the maximum tag and the associated value.

Each processor has a queue,ack-q, that is used for ac-
knowledgments to be sent out subsequently for the corre-
spondingdeliver transitions.

6.3. The Reconfigurer AutomatonRec

The reconfigurer automatonRec at processorr main-
tains the quorum configuration sequence paircixr and the
configuration paircfgr. In any global state, the configu-
ration index at any processorp is defined to becurrent, if
cixp � cixr. The subtle point of this definition is that if
readers/writers are current, their configuration indices can
not only be equal, but also be greater than the configura-
tion indices at the reconfigurer. This is essential in proving
the correctness of the emulation. In Figure 4, we define the

transitions of the reconfigurer.
The reconfigurer has three phases. In each� is invoked

once. In thequery-install phase at“submit” of query-
install, theJoin of a read quorum and a write quorum in
the active configuration are informed about the proposed
configuration and queried about the register value with the
maximum tag. In thepropagatephase it propagates this tag
and the associated value to a write quorum in the new con-
figuration. In therecon-idlephase it announces to a write
quorum in the new configuration that the reconfiguration is
complete.

Note that the incrementing ofcix:bidr occurs at“re-
spond” to install-ack (cix:actr at “respond” to recon-
ack), i.e., after the reconfigurer has received confirmation
that theJoinof a read and a write quorum (a write quorum)
has received the new configuration index. This is used in
the safety proofs and is the reason, why, as said above, pro-
cessors can have configuration indices that are greater than
the configuration indices at the reconfigurer.

We define the phases of the reconfigurer formally as fol-
lows:

Definition 6.2 The reconfigurerr is in its query-install
phase after the transition of thesubmitof “query-install”
and prior to thesubmitof “propagate”. The reconfigurer
is in its propagatephase after the transition of thesubmit
of “propagate” and prior to thesubmitof “recon-done”.
The reconfigurer is in itsrecon-idlephase after the transi-
tion of the submitof “recon-done” and prior to thesub-
mit of the next“query-install” ; r is also in its“recon-idle”
phase prior to thesubmitof the first“query-install” . 2

6

State of the reconfigurerr:

The components are the same as for the reader/writer, except thatrequest is omitted, andstatus is given as: status 2
fidle;new-con�g ; query-active; query-done; prop-active; prop-done; recon-compg, initially idle.

Transitions of the reconfigurer:
Inp recon(C)r

Eff: cfg.bid:= C
status:= new-config

Out submit(h“query-install” , z;Z i, h� (a).(“install-ack”), � i, q; id)r
Pre: status= new-config

z = hcix:act; cix:bid+ 1i ^ Z =cfg
q = cfg:act:read 1 cfg:act:write

Eff: status:= query-active
Inp respond(h“install-ack” , hv; ti i, id)r

Eff: prop-val := v; prop-tag:= t
cix.bid := cix.act+1
status:= query-done

Out submit(h“propagate”, v; t i, � (a).(“prop-ack”), q; id)r
Pre: status= query-done

v = prop-val^ t = prop-tag
q = cfg:bid:write

Eff: status:= prop-active
Inp respond(h“prop-ack” i, id)r

Eff: status:= prop-done

Out submit(h“recon-done”, z;Z i,
� (a).(“recon-ack”), q; id)r

Pre: status= prop-done
z = hcix:bid; cix:bidi
Z = hcfg:bid; cfg:bidi
q = cfg:bid:write

Eff: status:= recon-comp
Inp respond(h“recon-ack” i, id)r

Eff: status:= recon-ready
cix := hcix.bid, cix.bidi
cfg := hcfg.bid, cfg.bidi

Out recon-confirmr
Pre: status= recon-ready
Eff: status:= idle

(The actionsdeliverandackare
identical to those in Figure 3.)

Figure 4. Specification of the reconfigurer Rec.

7. System Analysis
In this section we show correctness of the emulation al-

gorithms and assess the system performance. To show the
atomicity of the emulation we use the systemS. The per-
formance is shown for the implementationSimpl .

7.1. Correctness (Safety)
We state the atomicity theorem for the systemS and out-

line its proof. The proof uses an approach similar to [26],
and is the most technically challenging part of this work (for
the complete proof see the full paper).
Theorem 7.1 S implements an atomic multi-writer multi-
reader register.

We say that in a given execution� of S operation� prop-
agatesa tag if the tag is used in thesubmitaction in the
propagation phase of�. The tag propagated by operation�
is denoted by��(�). Where� is clear from the context we
omit it and use�(�).

A client-level read (write) operation is invoked by its
correspondingread (write) event. The response event of
the read (write) operation is its correspondingread-confirm
(write-confirm) event. We defineCP, theclient-preceding
order as follows:
Definition 7.1 If in an execution�, the confirm event of the
operation�1 precedes the request event of the operation�2,
then�1 <cp �2.

Suppose for some execution� the actions of an operation
� include the actions of� for someid, starting with thesub-
mit event and including therespondevent. Then since the
identifier id is unique it also uniquely identifies the client-
level operation�. Therefore we can let�(id) stand for�(�),
(where the propagation tag�(�) is defined for an operation
� in the respondaction uniquely identified byid, or when
�(�) is propagated by the� primitive using unique identi-
fier id.)

We show the atomicity of the read and write operations
for any execution by using Lemma 13.16 of [25]. To be able

to use this Lemma, we show that there exists a partial order
of read and write operations in a sequence of actions of a
read/write register that satisfies certain conditions.

To simplify our proofs of the correctness ofS, we use a
succinct and effective way of expressing the eventuality of
certain outcomes based on the current knowledge, a “fill ”
notion (also used in [26]). “fill ” predicts the acknowledg-
ment vector for a current invocation and thereby allows us to
simplify our invariants and reduces the size of their proofs.

The fill notion produces a “virtual” acknowledgment
from each processor based on taking the actual acknowledg-
ment if it is already defined, else a predicted acknowledg-
ment determined as follows. If adeliverhas occurred atp
without the correspondingack, then the value is the queued
acknowledgment; if thedeliver has not occurred, then the
value is the acknowledgment that would be produced if the
deliver occurred as the next event.
Definition 7.2 For the invocation of the� primitive with
the unique identifierid, let �p : M � Statesp !
M be the function computed in the effects of the
deliver action by processorp to construct the ac-
knowledgment message upon the receipt of a mes-
sage from thesubmit-er. We define fill(p; id) �
if op(id) = ? then?
else ifp 2 op(id):acks then op(id):acc[p]
else if9m : hm; idi 2 ack-qp then (the unique)m
else�p(m; statep)

The key to the proof is a multi-part invariant Lemma 7.2,
shown in Figure 5 which we now explain and whose proof is
in the full paper. PartI3 is the most important part; it relates
the tags of operations where one follows another. PartsI1
andI2 are auxiliary invariants.

PartsI1a,b,cdeal with the properties of the tags of com-
pleted operations and the state of the reconfiguration. Part
I1a says that for any completed read or write operation�, if
no new quorum system is being processed by the reconfig-
urerr, then there exists a proposed write quorum such that
all processors in it reflect either� or some other operation
that supersedes it.

7

Lemma 7.2 In all reachable states:
I1 If � 2 completed, then:

(a) If r is in its recon-idlephase, then:
9W 2 cfg.bid:writer : 8i 2 W : �(�) �lex tagi

(b) If r is in its query-install phase having invoked
� using identifieroidr, then: 8R 2 cfg.act:readr :
�(�) �lex maxi2Rffill(i; oidr):tagg
(c) If r is in itspropagatephase having invoked� using
identifieroidr and tag�r, then:
1. (�(�) � �r) ^ (8i 2 op(oidr):acks : �r �lex tagi)

or
2. 9W 2 cfg.bid.writer: 8i 2W : �(�) �lex tagi.

I2 8� =2 completed :
(a) If �0 �cp � and� at processorp is in thequeryphase
having invoked� using identifieroid, then for anyR 2
used:qrmp, either
1. �(�0) �lex maxi2Rffill(i; oid):tagg, or
2. hused:act; used:bidip <lex

hmaxi2Rffill(i; oidp):cix:actg;
maxi2Rffill(i; oidp):cix:bidgi.
(b) If � is in thepropagationphase having invoked�
using identifieroid, either:
1. hused:act; used:bidip is current, or
2.9W 2cfg :bid :writer: 8i 2 W : �(�)�lex tagi, or
3. 8W 2 used :qrmp :hused:act; used:bidip <lex

hmaxi2W ffill(i; oid):cix:actg;
maxi2W ffill(i; oid):cix:bidgi.

I3 If �1 �cp �2 and�(�2) is defined, then:
(a) �(�1) �lex �(�2) when�2 is a read,
(b) �(�1) <lex �(�2) when�2 is a write.

Figure 5. Main Invariant

PartI1b says that if the reconfigurerr has invoked� to
install a new configuration, then no matter what active read
quorum it ends up using, it is guaranteed to obtain a tag that
is at least as large as the tag of any completed operation.
This guarantee is expressed using thefill notation.

PartI1c says that if the reconfigurerr has invoked� to
propagate the maximum tag it found to a new write quorum,
then this tag is as high as the tag of any completed operation
and any processors that have acknowledged the propagated
tag have updated their own tagsor that there is a proposed
write quorum such that all processors in it reflect either� or
some other operation that supersedes it.

PartI2a says that for any read or write in itsqueryphase,
either (1) the tag returned by thequeryis guaranteed to be
at least as high as the tag of an operation preceding this one
in the client-preceding order – this is expressed with the
help of thefill notation, or (2) the operation will detect that
its configuration is obsolete – the guarantee of detection is
expressed usingfill .

PartI2b says that for any operation� in its propagation
phase, at least one of the following conditions is guaran-
teed to hold: (1) its propagation tag is either being propa-
gated using the current configuration, or (2) the tag is al-
ready reflected in a write quorum of the new configuration,
or (3)� will detect that its configuration is obsolete – again
this guarantee of detection is expressed usingfill .

PartI3 is the key part. It says that a read completely fol-
lowing another operation has a tag that is at least as large,
and that a write has a tag strictly larger than any other oper-
ation that precedes it.

The partial order required by Lemma 13.16 [25] and
yielding the proof of Theorem 7.1 is now constructed in the
following way: For an execution� of S containing no in-
complete operations, let sequence� be the projection of�
containing the invocation/response events of read and write
operations. Let� be the set of operations in�. We define
the (irreflexive) partial orderPO = h�;�i on the operations
by letting:�1 � �2 for �1; �2 2 �, if (a) �(�1) <lex �(�2),
or if (b) �1 is a write,�2 is a read, and�(�1) =lex �(�2).

7.2. Conditional Performance Analysis
In this section we assess the performance of the com-

posed system, calledSimpl , that differs fromS only in that
it uses�impl instead of� (recall that�impl formally imple-
ments�). ForSimpl we show that the reconfiguration is not
obstructed by the concurrent client level read/write opera-
tions, and, more importantly, that the client level read/write
operations are not obstructed by a tardy or stopped recon-
figurer – the reconfiguration isgraceful.

To assess the performance of the atomic multi-
writer/multi-reader service, we carry over the assumptions
of Theorem 5.2. In particular, we use the same upper bound
g on local processor operations and message delays, and we
assume that the quorum systems are not disabled.

The next theorem shows that the performance of any
reconfiguration does not depend on any client-level oper-
ations.

Theorem 7.3 Any reconfiguration takes time at most15g
and at most6n messages.

Finally we show that reads and writes are not obstructed
by reconfigurations.

Definition 7.3 Let cix1 andcix2 be two configuration in-
dex pairs. We define thedistancedist(cix1; cix2) between
these pairs asj(cix:act1+cix:bid1)�(cix:act2+cix:bid2)j.

Intuitively, given an execution of the system, the distance
between any two configuration index pairs gives the num-
ber of different configurations (including intermediate) that
came into existence since the least (with respect to the lexi-
cographical order) of these two index pairs became known.

Theorem 7.4 In any execution, if (a) all reconfigurations
complete by timet or if (b) a reconfiguration does not
complete by timet, but the reconfigurer does not perform
any further steps after timet, then any processorp that
does not permanently stop, completes its read or write op-
eration in time10g + dist(cixp; cixt) � 5g, using at most
(2 dist(cixp; cixt) + 4) � n messages, wherecixp is the
configuration index pair atp at the invocation of the oper-
ation andcixt is the maximum of all index pairs that exist
anywhere in the system att.

Theorem 7.5 If an execution contains a read or a write op-
eration at processorp that starts at timet1 and completes
at time t2, then t2 � t1 � 10g + (dist(cixp; cixt1) +
2c) � 5g, and the number of messages sent is at most

8

(4+ 2 dist(cixp; cixt1) + 4c) �n, wherecixp is the config-
uration index pair atp at t1 andcixt1 is the maximum of all
index pairs that exist anywhere in the system att1, andc is
the number of reconfigurations that are concurrent with the
operation.

8. Conclusions and Discussion
We presented a robust service that emulates atomic

multi-writer/multi-reader registers in message passing sys-
tems. The service uses dynamically reconfigurable quo-
rum systems to ensure atomicity in a way that does not
rely on locking or mutual exclusion. The reconfigurations
aregraceful, since they do not obstruct concurrent reads or
writes. The emulation works with any quorum system and
does not require that any two quorums from distinct quo-
rum systems have a non-empty intersection. The emulation
contains no single points of failure.
Acknowledgments:We thank Maurice Herlihy and Nancy
Lynch for insightful comments, and Idit Keidar for several
valuable observations.

References
[1] D. Agrawal and A. El Abbadi, “Resilient Logical Structures

for Efficient Management of Replicated Data”, TR, Univ. of
California Santa Barbara, 1992.

[2] Y. Amir, A. Wool, “Evaluating Quorum Systems over the
Internet”, Proc. of 26th Intl. Symp. on Fault-Tolerant Com-
puting, pp. 26-35.

[3] L. Alvisi, D. Malkhi, L. Pierce, and M. Reiter, “Fault de-
tection for Byzantine quorum systems”,(extended abstract),
Proc. of the 7th IFIP International Working Conference on
Dependable Computing for Critical Applications, 1999.

[4] H. Attiya, “Efficient and Robust Sharing of Memory in
Message-Passing Systems”,Distributed Algorithms, 10th In-
ternational Workshop, WDAG’96, 1996.

[5] H. Attiya, A. Bar-Noy and D. Dolev, “Sharing Memory Ro-
bustly in Message Passing Systems”,J. of the ACM, vol. 42,
no. 1, pp. 124-142, 1996.

[6] M. Bearden, R. P. Bianchini Jr., “The Synchronization Cost
of On-line Quorum Adaptation”, in10th (ISCA) Interna-
tional Conference on Parallel and Distributed Computing
Systems (PDCS’97).

[7] M. Bearden, R. P. Bianchini Jr., “A Fault-tolerant Algorithm
for Decentralized On-line Quorum Adaptation”, inProc.
28th Intl. Symp. on Fault-Tolerant Computing Systems.

[8] P.A. Bernstein, V. Hadzilacos and N. Goodman,Concur-
rency Control and Recovery in Database Systems, Addison-
Wesley, Reading, MA, 1987.

[9] A. Bouabdallah, “On Mutual Exclusion in Faulty Distributed
Systems”, inOperating Systems Review (ACM SIGOS),
28(1), Jan. 1994, pp. 80-87.

[10] R. De Prisco, A. Fekete, N. Lynch and A. Shvartsman, “A
Dynamic View-Oriented Group Communication Service”, in
Proc. of 16th ACM Symp. on Principles of Distributed Com-
puting, 1998.

[11] R. De Prisco, A. Fekete, N. Lynch, A. Shvartsman, “A Dy-
namic Primary Configuration Group Communication Ser-
vice”, to appear in13th International Conference of Dis-
tributed Computing, 1999.

[12] S.B. Davidson, H. Garcia-Molina and D. Skeen, “Consis-
tency in Partitioned Networks”,ACM Computing Surveys,
vol. 15, no. 3, pp. 341-370, 1985.

[13] A. El Abbadi, D. Skeen and F. Cristian, “An Efficient
Fault-Tolerant Protocol for Replicated Data Management”,

in Proc. of the Fourth ACM Symp. on Princ. of Databases,
pp. 215-228, 1985.

[14] A. El Abbadi and S. Toueg, “Maintaining Availability in Par-
titioned Replicated Databases”,ACM Trans. on Database
Systems, vol. 14, no. 2, pp. 264-290, 1989.

[15] H. Garcia-Molina and D. Barbara, “How to Assign Votes in
a Distributed System,”J. of the ACM, vol. 32, no. 4, pp. 841-
860, 1985.

[16] D.K. Gifford, “Weighted Voting for Replicated Data”, in
Proc. of 7th ACM Symp. on Oper. Sys. Princ., pp. 150-162,
1979.

[17] K. Goldman and N. Lynch, “Nested Transactions and Quo-
rum Consensus”, inProc. of the 6th ACM Symp. on Princ. of
Distr. Comput., pp. 27-41, 1987

[18] M.P. Herlihy,Replication Methods for Abstract Data Types,
Doctoral Dissert., MIT, LCS/TR-319, 1984.

[19] M.P. Herlihy, “Dynamic Quorum Adjustment for Partitioned
Data”, ACM Trans. on Database Systems, 12(2), June 1987,
pp. 170-194.

[20] M.P. Herlihy and J.M. Wing. “Linearizability: A correctness
condition for concurrent objects”,ACM TOPLAS, vol. 12,
no. 3, pp. 463-492, 1990.

[21] S. Jajodia and D. Mutchler, “Dynamic Voting Algorithms for
Maintaining the Consistency of a Replicated Database”, in
ACM Trans. Database Systems, 15(2):230-280, 1990.

[22] E. Lotem, I. Keidar, and D. Dolev, “Dynamic Voting for Con-
sistent Primary Components”, inProc. ACM Symp. on Prin-
ciples of Distributed Systems, 1997.

[23] L. Lamport, “On Interprocess Communication: Part I and
II”, Dist. Comput., vol. 1, pp. 77-101, 1986.

[24] M. Liu, D. Agrawal and A. El Abaddi, “On the Implementa-
tion of the Quorum Consensus protocol”,Proc. Parallel and
Distributed Computing Systems, 1995.

[25] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann
Publishers, San Mateo, CA, 1996.

[26] N.A. Lynch and A.A. Shvartsman, “Robust emulation
of shared memory using dynamic quorum-acknowledged
broadcasts”, inProc. 27th Intl. Symp. on Fault-Tolerant
Computing Systems, 1997.

[27] N.A. Lynch and M.R. Tuttle, “An Introduction to In-
put/Output Automata”,CWI Quarterly, vol.2, no. 3, pp. 219-
246, 1989.

[28] D. Malki and M. Reiter, “Byzantine Quorum Systems”, In
Proceedings of the 29th ACM Symposium on Theory of Com-
puting, pp. 569-578, 1997.

[29] J.-F. Paris and P.K.Sloope, “Dynamic Management of Highly
Replicated Data”, inIEEE 11th Symp. on Reliable Distr. Sys-
tems, pp. 20-27, 1992.

[30] D. Peleg and A. Wool, “The Availability of Quorum Sys-
tems”,Information and Computation, 123(2), Dec. 1995, pp.
210-223.

[31] S. Rangarajan, S. Tripathi, “A Robust Distributed Mutual Ex-
clusion Algorithm”,Distributed algorithms, Proceedings 5th
Intl. Workshop,WDAG ’91, Delphi, 1991, Springer-Verlag,
pp. 295-308.

[32] B. Sanders, “The Information Structure of Distributed Mu-
tual Exclusion Algorithms”,ACM Transactions on Com-
puter Systems, 5(3), Aug. 1987, pp.284-299.

[33] A.A. Shvartsman, “Dealing with History and Time in a Dis-
tributed Enterprise Manager”,IEEE Network, vol. 7, no. 6,
pp. 32-41, 1993.

[34] M. Sloman, ”Management: What and Why”, inNetwork and
Distributed Systems Management, M. Sloman, Ed., Addison-
Wesley, 1994.

9

