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Abstract

Concurrent time stamping is at the heart of solu-
tions to some of the most fundamental problems
in distributed computing. Based on concurrent-
time-stamp-systems, elegant and simple solu-
tions to core problems such as fefsmutual-
exclusion, construction of a multi-reader-multi-
writer atomic register, probabilistic consensus,...
were developed. Unfortunately, the only known
implementation of a concurrent time stamp sys-
tem has been theoretically unsatisfying, since it
requires unbounded size time-stamps, in other
words, unbounded memory. Not knowing if
bounded concurrent-time-stamp-systems are at
all constructible, researchers were led to con-
structing complicated problem-specific solutions
to replace the simple unbounded ones. In this
work, for the first time, a bounded implemen-
tation of a concurrent-time-stamp-system is pre-
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sented. It provides a modular unbounded-to-
bounded transformation of the simple unbounded
solutions to problems such as above. It al-
lows solutions to two formerly open problems,
the bounded-probabilistic-consensus problem of
Abrahamson [A88] and the fifo-£-exclusion prob-
lem of [FLBB85)], and a more efficient construc-
tion of mrmw atomic registers.

1 Introduction

The paradigm of concurrent time stamping is at
the heart of solutions to some of the most fun-
damental problems in coordination of concurrent
processes [A88, CIL87, D65, DGS88, H88, L4,
PB87, VAS6].

A time stamp system of n asynchronous pro-
cesses is traditionally conceived as consisting of
n label registers, one per process, written by it
and read by all others. The labels are unbounded
natural-numbers, where each process can execute
infinitely many labeling and scan operations on
the label registers. A labeling operation is a se-
quence of reads of other labels, followed by a
write of a label greater than the maximal value
read. The label values written, establish a total
order on all labeling operations ever executed.
A scan operation 1s a sequence of reads of all
process’ labels, returning a subset of labels or-
dered consistently with this total ordering. A
concurrent-time-stamp-system (ciss) is a time-
stamp-system in which any number of labeling
or scan operations (by different processes) may
overlap in time. A major requirement is that
labeling and scan operations of any process be
waitfree, that is, completed in finite time inde-
pendently of the pace of other processes.



Concurrent time stamping is the basis for
simple solutions to a wide variety of the basic
problems in concurrency control. Examples of
such problems include fefs-mutual-exclusion, con-
struction of a multi-reader-multi-writer atomic
register, probabilistic consensus,...  Unfortu-
nately, the only known implementation of the
above paradigm is based on labels of unbounded
size. This is a major drawback, since bounded
memory size is a key requirement of the prob-
lems at hand, implying these elegant and sim-
ple unbounded solutions have little theoreti-
cal value. Since it was unknown whether
bounded concurrent-time-stamp-systems are con-
structible, researchers were led to devising com-
plicated problem-specific solutions to show that
the above problems are solvable in a bounded
way [BI87, BP87, CIL87, D65, DGS88, FLBB79,
FLBB85, K78, L74, L86d, LH88, LV88, R86, P81,
P83, PBR7, VAg6).

Israeli and Li in [IL87] were the first to isolate
the notion of bounded-time-stamping as an inde-
pendent concept, developing an elegant theory of
bounded sequential-time-stamp-systems, that is,
time-stamp systems in a world where no two op-
erations are ever concurrent. They also devised
a concurrent labeling scheme in which the labels
provide a causality preserving relation. However,
this relation is not a total ordering since unre-
lated labels and cycles are possible. Moreover,
this scheme deals only with labeling, and does
not address the central problem of how labels can
be scanned concurrently, therefore lacking some
of the key properties of concurrent-time-stamp-
systems.

In this paper, for the first time, a bounded
construction of a concurrent-time-stamp-system
is presented. It allows a modular transforma-
tion of the simple unbounded solutions to such
core problems as abovel. It provides a powerful
tool, enabling the design of simple unbounded
concurrent-time-stamp based algorithms, with
the knowledge that such unbounded solutions im-
mediately imply the bounded ones?. This is ex-
emplified by providing the basis to solutions of

1See Appendiz A.

2Bounded time-stamp algorithms for a message pass-
ing environment without faults are very similar to that
described in this paper. Lack of space prevents us from
describing it.
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the above flavor [ADMS88, ADS89] to two for-
merly open problems, the bounded-probabilistic-
consensus problem of [A88] (requiring to solve
the probablistic-consensus problem of {CIL87]
without using an atomic coin-flip operation),
and the fifo-f-exclusion problem of [FLBBTY].
The only known solutions to the latter problem
[DGS88, P88], achieve weaker forms of fairness
than the original test and set based solution of
[FLBB79).

Though one might think that the price of intro-
ducing such a powerful modular transformation
would be a blowup in memory size or number
of operations, this is hardly the case. The con-
struction presented in the paper requires n regis-
ters of O(n) bits each, meeting the lower bound
of [IL87] for sequential-time-stamp-system con-
struction. Though because of lack of space, a
complete comparison table cannot be provided
in this paper, one example of the efficiency of
the ctss solutions is given by the famous prob-
lem of multi-reader-multi-writer atomic register
construction. A simple solution based on trans-
forming the unbounded [VA86] protocol (See
Appendic A for a description), has the same
space complexity of the only proven algorithm
[PB8T, S88], yet a better titme complexity, O(n)
memory accesses for a write, O(nlogn) for a
read, as compared with O(n?) for either in the
former. Concurrent time stamp systems are in-
formally defined in Section 2, and implemented
in Section 3. Rigorous formal definitions and cor-
rectness proofs based on the formalism of Lam-
port [L86a, L86c] will be presented in the full

paper.

2 Concurrent Time Stamping

To provide the reader with a better intuition for
the more abstract formal definitions presented
later, the properties of a concurrent-time-stamp-
system are first outlined informally via the exam-
ple of its unbounded naturael-number based imple-
mentation.

Informally, the natural-number based ctss con-
sists of n registers of unbounded size, each writ-
ten by one of n asynchronous processes and read
by all others. The labels are natural numbers



with the usual ordering among them3. Each pro-
cess can execute infinitely many labeling or scan
operations, any number of them concurrently
with the operations of other processes. The scan
is the operation of collecting a set of labels ¢,
one of each process, by executing a sequence of
reads of the labels in an arbitrary order. The la-
beling operation is simply a collecting of all the
labels followed by a write of maz(£) + 1. The la-
bels written during labeling operations are mono-
tonically increasing, and, though some were pos-
sibly created concurrently with others, define a
total order on all labeling operations ever per-
formed. Since for any two labeling operations
that are non-concurrent, the order among the la-
bels reflects the order among the operations, this
order defines the manner in which all labeling op-
erations could be serialized. Though no process
ever knows all of this order, the order among the
subset of labels returned by any scan is in fact
the same as the total ordering on all the label-
ing operations?, no matter how many labeling
operations occurred while the labels were being
scanned!

A Concurrent Time Stamp System is an abstract
data type shared among n concurrent and com-
pletely asynchronous processes. There are two
waitfree (see [H88, AG88]) operations that any
process can execute on the ctss, a labeling oper-
ation and a scan operation. Assume that each
process’ program consists of these two opera-
tions, whose execution generates a sequence of
elementary operation erecutions, totally ordered
by the precedes relation (of [L86a, L86¢], denoted
“ — ”}, and were any number of scan operation
executions are allowed between any two labeling
operation executions. The following

P2 'L B D) © B

Si[zl S 51[3] —t S‘[‘l] —_ .

is an example of such a sequence by process 1,
k . .
where LE] denotes process i’s k'* execution of

3Process id’s are added lexicographically to break sym-
metry, a well known technique which will be referred to
in the sequel.

4 This property is simple to achieve using unbounded
labels, since the ordering among the labeling operatijons is
just the ordering among the labels. The fact that such a
property is achievable using bounded size labels is some-
what baffling, since as the example in Section 3 shows, the
order among the labeling operations cannot be the order
among the labels.
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a labeling operation, and Si[k] the k** execution
of a scan operation (the superscript [k] is used
for notation, and is not visible to the processes).
A global time model® of operation executions is
assumed.

With each labeling operation execution LEk], a
ladel! fE-k] is associated. A scan operation re-
turns a pair (£,<), where the label view ¢
{f[lk‘] . ,EHC"]} is an ordered set of labels® (one
per process), and < is an irreflexive total order
among them, such that:

P1 ordering: There exists an irreflerive total or-
der == on the set of all labeling operations,
such that:

a. precedence: For any pair of labeling op-

eration executions Lg,a] and L[qb] (where

possibly p = gq), if L,[D“] — L[qb], then
a b
9 = L.
b. consistancy: For any scan operation exe-
cution S/ returning (2, <), ¢4 < £{
if and only if L1* = L[,

The above property formalizes the idea that a
ctss can be envisioned as a black box, inside
which hides a mechanism (a logical clock) asso-
ciating causally ordered time stamps - from an
nfinite totally ordered range — with each of the
labeling operations, and where scanning is like
peeping into this black box, each scan returning
a view of a part of this hidden ordering. The
black box metaphor is used to stress that it suf-
fices to know of the existence of such a total or-
dering ==, while the ordering itself need not be
known.

One should bear in mind that the asynchronous
nature of the operations allows situations where
a scan overlaps many consecutive labeling oper-
ations of other processes. Also, several consecu-
tive scans could possibly be overlapped by a sin-
gle labeling operation. It is therefore important

5Implying that for any two operations, a — b or
b ~-—+ a (for more details see [L86c, B88] ).

SFor the purposes of many of the applications (such as
atomic register construction), one should allow the label

to include an associated value field, denoted value@éEk].

For the sake of simplicity, discussion of how this added
feature is implemented will be differed to the appendix.



that a requirement be made that the label view
£ returned by S,.[k] be a meaningful one, namely,
reflecting the ordering among labeling events im-
mediately before or concurrent with the scan, and
not just any possible set of labels. This will
eliminate uninteresting trivial solutions and in-
troduce a measure of liveness into the system.
This requirement is formalized in the following
definition, where --+ is the can affect relation
of [L86a,L86¢].

P2 regularity: For any label e,E"] in £ of Si[k],
L,Ea] - S,»[k], and there is no L‘,Eb] such that
. L[b] . S~[k]
P i

Though such a regular concurrent time stamp
system (P1-P2) would suffice for some appli-
cations (as in Lamport’s “Bakery Algorithm”
[L74]), a more powerful monotonic concurrent
time stamp system will be needed in applications
such as the Multi-Reader- Multi- Writer Atomic
Register construction (as in [VA86]). To this end
the following third property is added:

P3 monotonicity: For any label Z,Ea] in £ of S’,-[k],
there does not exist an Sj[kl] with a label e},b]
in its label view £, such that S — §[*'
and L,Eb] — L,Ea] (possibly i = j).

It is important to note that P3 does not imply
that labeling and scan operations of all processes
are serializable. It does however imply the se-
rializability of the scans of all processes and la-
beling of any one process. The scans “behave”
as if the labels of any process are monotonically
increasing, in the sense that a scan returns a la-
bel of a labeling operation that is at least as late
as that of any labeling operation of a label re-
turned in the scans preceding it. In the follow-
ing section, a bounded implementation of a con-
current time stamp system from atomic registers
is presented and informally justified. Rigorous
definitions” and correctness proofs will appear in
the full version.

"The above definitions do not include, for example,
initialization conditions of the system.
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Figure 1: Scan Concurrent with Sequential La-
belings

3 The Implementation

The description of the implementation is divided
into two parts, the implementation of the labeling
operation, and the implementation of the scan.
The key property of the labeling operation is to
allow establishing the causality-preserving total
order = among all labeling operation execu-
tions. Though it is not required that a process
“knows” what this order is, it is required that
the set of labels that it “chooses” during a sys-
tem execution is such, that an almighty outside
observer, given a description of the execution and
based on the labels, would be able to reconstruct
—. This almighty observer could thus view all
labeling operation execution intervals as if they
were shrunk to points, that is, as if they were
completely sequential.

Requiring this property alone, will however not
be sufficient. As Example 3.1 shows, even if all la-
beling operations are sequential, since labels are
from a bounded range (and therefore the same
labels are reused), a process scanning the labels
concurrently with ongoing labeling operations,
cannot deduce the order = from the order of
the labels alone.

Example 3.1. In Figure 1, segments represent
operation execution intervals, where time runs
from left to right. Two processes ¢ and j per-
form labeling operations sequentially, j followed
by i, followed by many labelings, till eventually
the labels are reused, and j for example uses the
same label as before. A third process z performs



a scan concurrently with the labelings, reading ¢;
and then ¢;. S1 and S2 represent possible execu-
tions of this same scan, the only difference being
that many labeling operations of other processes
occurred between the reads in S2. In both the
case that the scan is of the form S1 and the case
that it 1s of the form 52, the values collected are
£ = 2 and ¢; = 1, where the order among the
labels is, say 1 < 2. However, in the case of S1,
i’s labeling preceded #’s, while in 52, #'s label-
ing preceded j’s. Thus, the order of the labels
is not the order among the labeling operations,
introducing an unresolvable ambiguity.

Faced with the above ambiguity, it is clear that in
order to design a scan operation, the properties
of labeling operation implementation should be
such, that even though the order = between any
pair L}a] and Ly[b] 1s not conveyed by the order
of their associated labels, the labels do provide
enough information to allow an implementation
of a scan operation. The new implementation
will not require that by reading a pair of labels
of processes ¢ and j, one will be able to establish
the order among their associated labeling opera-
tion executions. Instead, it will be required that
by reading the labels of i and j more than once
(yet only a constant number of times), one will be
able to choose from all the labels read, a label of
1 and a label of j, for which the order = among
the labeling operation executions can in fact be
deduced. In the following sections, after present-
ing these additional properties, a scan operation
implementation that utilizes them will be shown.

The basic communication primitive used in the
presented implementations is a single-writer-
multi-reader atomic regisier. Constructions of
such registers from weaker primitives have been
shown in [L86a, L86b, BP87, IL87, N87]. The
concurreni-time-stamp-system will consist of n
swmr atomic registers v;, i € {l..n}, each v;
written by process i, read by all, and having val-
ues in some range V. In the unbounded natural
number implementation of a ctss, V is just the
unbounded set of natural numbers, and % for
any labeling is the usual irreflexive total ordering
among them. In the following subsections, the
set of possible label values V, together with an
irreflexive and antisymmetric relation X among
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them, are defined in terms of a precedence graph®
(V, X ). Each possible label value is a node in
this graph. The order among the labels in any
two registers is the order X established by the
edges of the precedence graph. Based on the
precedence graph, an implementation of the la-
beling and scan operations will then be provided.
Unlike in the unbounded natural number imple-
mentation, and following the above discussion,
the returned ordering < among labeling opera-
tions is not the same as the ordering X .

3.1 The Labels and the Precedence Rela-
tion

The following is the description of the precedence
graph T". Though the precedence graph (of un-
bounded size) defined by the natural numbers is
acyclic, this will not be true for T™.

Define A dominates B in G, where A and B
are two subgraphs of a graph G (possibly single
nodes), to mean that all nodes of A have edges di-
rected to all nodes of B. Define the following gen-
eralization of the composition operator of [IL87].
The a-composition, Goy H, of two graphs G and
H, where a is a subset of the nodes of G, is the
following non-commutative operation:

Replace every node v € @ of G by a
copy of H (denoted H,) and let H, (or
v) dominate Hy in Gog H if v dominates
uin G.

Define the graph T2 to be the following graph of
5 nodes: a cycle of three nodes {3,4,5} (where 3
dominates 5, which dominates 4, which in turn
dominates 3), all dominating the nodes {2,1},
where node 2 in turn, dominates node 1.

Define the graph T (a complete tournament) in-
ductively to be:

1. T! is a single node.

2. T* = T? 04 T, where o = {5,4,3,1} and
kB> 1.

The graph T" (V, <) is the precedence
graph to be used in the implementation of the la-
beling and scan algorithms of a concurrent time-

stamp system for n processes. For any process

8see [T187] for lower bounds on the size of such graphs.



T3:

Figure 2: The Recursive Graph Structure for 72
and T3

1, each node in T™ corresponds to a uniquely de-
fined label value ¢;. The label can be viewed as
a string £;[n..1] of n digits, where each 4[k] €
{1...5} is the digit of the corresponding node in
T2, replaced by a T* subgraph during the k**
step of the inductive construction above. The
digit ¢;[n] is always 1, representing the complete
T» graph, and if in &, 4[k] = 2, then 4[j] = 1
for all j € {k—1..1} (since node 2 is never ex-
panded in the induction step). Therefore, given
any label #;, the T* subgraph of T™ in which its
corresponding node is located is identified by the
corresponding prefix ¢;[n..k].

To assure that based on the graph 7™ a total
ordering among the label values returned by a
scan can be established, one needs to break sym-
metry among processes having the same label. As
usual, process-ids are used. Thus, the label ¢; is
assumed to be concatenated with the id of pro-
cess ¢. The label and id are lexicographically or-
dered. This, in terms of the graph T, amounts
to no more than assuming that each T graph
consists of a total order tournament of n nodes,
each process ¢ always choosing the ith node in
the order. For the sake of simplicity this point is
not elaborated on in the sequel.

3.2 The Labeling Operation

Let the collect operation by any process 7 be a
reading of all the registers v;, j € {1..n}, once
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each, in an arbitrary order returning a label set ¢
(not to be confused with £, the output label view
of a scan operation). The labeling operation of a
process ¢ is of the form described below, where
L:V" x {1.n} — V is a labeling funclion, re-
turning a label value ¢; “greater than” all other
label values®. This is a form similar to the natu-
ral number ciss, where the labeling function £ is
just maz(€) + 1. However, the interpretation of
“greater than” is not as straightforward as in the
natural number case.

procedure labeling,

begin
£ := collect;
v = L(4,1)
end;

The definition of the labeling function L(£, i) pre-
sented below, is based on a recursively defined
function ,Ck(G, £,£;), which, given a T* subgraph
G, of T™, a set of labels ¢, and a “maximal” la-
bel ¢, € £ in T*, returns the label of a node in
G that is, as termed above, “greater than” the
other labels. For the sake of simplicity, and since
the collected set of labels £ remains unchanged
in L(¢,%) once it is collected (similarly the vari-
able £,, once it is computed), it is treated as a
global variable and is not passed as a parameter
in all the utility functions used by £(¢,7). The
following functions are used in defining C:

num_labels(G) — a function that, for the given
label set £, returns how many of the labels are in
sub-graph G;

dom(z) — a function that, for a given digit
z € {1..5} representing a node in the graph
T?, returns the next dominating node; namely,
dom(1) = 2, dom(2) = 3, dom(3) = 4, dom(4) =
5 and dom(5) = 3;

dominating_set(é, 4;) — a function that, for a set
of labels £ C £, and a label ¢; € £, returns a subset
of labels {¢; € £]¢; X £;}U{¢4}; and

maw(é) — a function that, for a set of labels £ C ¢,
returns a label
(bz € £ : |dominating_set(£,£;)] <
|dominating_set(, £;)|,V¢; € £),

9Tnitially, all 1al,cl> are on node 111..11, the node dom-
inated by all otheys in T7.



the maximal label, i.e., the one least dominated
within this set.

Denote the concatenation operaiion, where G is
a string and z is a digit, by G.z. The following is
thus the definition of the labeling function L(¥, 7).
The subgraphs G are identified with the relative
prefixes, where 1™ is identified with the label 1:

function £ (¢, 9);

function ¥ (G);
begin
1: if k=1 then return G,

2: ifly[n.k]£ G
then return L¥1(G.1);
3: ifln.k—1]=G.2
then return £¥'(G.3);
4: if k> 2 then
if £;[k—2] € {2,3,4,5} and
(&{n. k—1] # £y[n..k—1))
then return £*(G.dom(€,[k~1)));
5: if (num_labels(;[n..k—1]) < k—1) or
((num_labels(€;[n..k—1]) = k—1) and
(6i[n..k=1] = £p[n..k~-1]))
then return £FY(G .2, [k—1])
else return L5 (G.dom(4; [k —1]));
end Ck;
begin
£z = maxz(dominating _set({, £;));
return £L*{(T");
end L;

For the purpose of giving the reader some intu-
ition about the properties of the labeling opera-
tion, let it be assumed that one can talk about
the values of the labels of all processes at “points
in time”. Though the goal in the remainder of
this section is to show how the labeling operation
executions allow to define the order =, it will
first be shown that they meet a much simpler re-
quirement. The requirement is that at any point
in time, the subgraph of the precedence graph 77"
induced by the labeled nodes (those whose corre-
sponding label is written in some v;), contains no
cycle. Since T™ is a complete tournament, this
implies that at any point in time, all labels are
totally ordered.

The labeling operation executions maintain
two “invariants,” namely, that at any point in
time (1) there are labels on at most two of the
three nodes in any cycle of any subgraph T% (the
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cycle consists of “supernodes” {3,4,5}, called su-
pernodes since they are actually 75! subgraphs),
and (2) there are no more than k labels in the cy-
cle of any subgraph T*. Maintaining the second
invariant is the key to maintaining the first, and
the first implies that at any point in time, there
are never any cycles among labels.

The manner by which the invariance of (1) and
(2) is preserved, is explained via several exam-
ples. In these examples, T2 is a precedence graph
for a system of three processes z, y and z. All ex~
amples start at a point in time where &!—a] = 134,
el = 135, and €1 = 141, that is, all labels are
totally ordered by ¥ .

Example 3.2. Assume that the following se-
quence of labeling operation executions occur se-

quentially. Process y performs L!}H’H, reading

e! 2l and ¢ and moving, based on £ (£, v)
to Zy[,b'HJ = 142. Process z performs L,;[&H], read-
ing the new label ElEbH], and thus moving to the
T? subgraph 14, (LI = 144, LI = 145,
Ly[Ha] = 143...), maintaining the above invari-
ants, because the T2 graph is a precedence graph
for 2 processes. If at some point £ moves, in Ll[;m]
it will read the labels of both z and y as being in
the T2 subgraph 14. Since num_labels('14')=2,
by line 5 of £ (£, 1), z will move to £1*] = 151,

The reader can convince himself that following
any labeling operation execution L,z[c] by some
process z, the above invariants hold, and that
for the set £ of labels that were read in L!’s col-
lect operation (denoted read (L,,[C])), it 1s the case
that (Vﬂ}b] € read(Lz[c]))(fy] X lz[c]), that is, the
new label chosen is greater than all those read.

As seen in the following example, in the con-
current case, more than k labels may move into
the same T* structure at the same time. It is thus
not immediately clear why the second invariant
holds.

Example 3.3. Assume that the following se-
quence of labeling operation executions occur
concurrently. Processes x and y begin perform-
ing Ll and L;bﬂ] concurrently, reading Eia],
eﬁ”] and EZICJ and computing £, such that E,—E“H] =
ElEH—I]

142. If they then continue to complete



their operations by writing their labels, though
they have the same node as a label, they were
concurrent, and can be ordered by relative id. If
any of them then continued to perform a new la-
beling operation, since num_labels(’14") > 2, it
would choose label 151, not entering the cycle.
However, let us suppose that they do not both
complete writing their labels, that is, z stops
just before writing E,E 1 o vz, while y writes
B[bH] = 142. Process z then performs L[°H]
reading the new label E[H'l] and the old label lf[a]

thus moving to LIl = 143, Processes y and z
continue to move into and in the cycle of the 72
subgraph 14, since they continue to read z’s old
label. Then, at some point z completes L[&H]
and there are three labels in 14 (two of them in
the cycle). However, if £ now performs a new la-

beling LLM‘Z], 1t will read the labels of both = and
y as being in 14. Since num_labels('14’) > 2, by
line 5 of £ (¢,1), = will move to el = 151, not
entering the cycle.

Generalizing the above example, even if many
processes move into a TF subgraph, without read-
ing one another’s labels, at most & of them will
enter the cycle in T%. The reason is the following
well known flag principali®:

If k+1 people, each first raise a flag, and
then count the number of raised flags,
at least one person must see k + 1 flags
raised.

By the definition of the labeling function £, each
process moving into the cycle of a T* subgraph,
must first move to either supernode 1 or 2 in T%,
only then can it perform a labeling into the cycle.
The move to 1 or 2 is the raising of the flag, and
the move into the cycle is the counting of all flags.

The following example shows that even though
by the above, there are at most % labels at a time
in any T* structure, the sets of labels read in a
labeling operation execution, may contain cycles.

Example 3.4.
z[OH]

Process z begins performing
, reading Z[] = 134. Process y then per-
forms Ly [b+] , reading Z,E“], K[b] and 219, and mov-
ing to £y [HI] = 142. Process z performs L[GHJ,

10Proof follows by the fact that the last person to start
counting flags must have seen k + 1 flags raised.
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reading the new label ﬁy[bﬂl and lz[c], and thus by
line 5 of £, moving to ¢l = 151. Process y
then performs L[H' ], reading £; [4+1] 5nd moving
to Eybﬂ] = 152. Finally, process z reads Z[H'ZI It
thus read £} = 134, £{"** = 152, and o = 141,
three labels on a cycle

In order to select a label dominating all others, z
must establish where the “maximal label” among
them is. To overcome the problem that the labels
read form cycles (as in the above example), the
labeling function £ (4, z) does not take into ac-
count “old values” such as &E ], it considers only
the labels that dominate the current label Ezc].
In order to maintain the first invariant, z should
move to E},[&H] = 131, to dominate the current
labels of both z and y. However, there is seem-
ingly a problem, since z did not read the label
&EGH] = 151, and so, how can it decide what label
to choose in order to dominate €£¢1+1] = 1517 The
solution is due to the fact that z can deduce the
existence of Z,[,GH] = 151, since in all of the cycle
of T3 there are 3 labels, and in order to move to
E[bH] = 152, y must have read some label in node
151 of the T2 subgraph 15. By simple elimina-
tion this must be the label of . This simple rule
is maintained by application of line 4 in £. How-
ever, if the above scenario occurred in the cycle
of a T* graph, where k > 3, then in order to al-
low the same reasoning as above, it must be that
if z read £ = 152 (or £ € {153, 154, 155}),
it can conclude that k — 2 other labels were read
by L35b+2] in the 7% subgraph 15. It is for this
purpose that supernode 1 of any 7% graph where
k > 2, is not a single node, but a T%! subgraph.
A process can thus choose the node 2, only af-
ter it established that there were k — 1 labels in
supernode 1. Since node 2 is a “bridge,” that
some process must “cross” (choose) before any
process can move into the cycle, the above rea-
soning holds.

Though the above invariants hold, it follows
from Erzample 3.4 that the property that the cho-
sen new label is greater than all those read, true
for sequential labeling operation executions, does
not hold in the concurrent case. Fortunately,
there is a similar property that does hold, a prop-
erty that will prove important in the implemen-

tation of the scan. Let the notation rj(Li[k]) and



w(L,-[k]) denote the read of v; and write of v; dur-
ing a labeling operation execution Lim by a pro-
cess 1.

Definition 3.1. Labeling L,Ea] 1s observed by
L (denoted LI = LMYy ifr (L) = £ or
there erists an L1 such that r,(Lg,b]) = Ez[c] and
AR ALS

The relation < is actually the transitive clo-

sure of the read relation. Let mazimal_obs (L,[,a])
be the set of operation executions

{,ngb] Jy € {1..n}, ,LJEb] obs, ,L’Ea] and
VEENGFLY — LV then L) 5o LIN)),

that is, including the “latest” label observed for
each process. In the concurrent executions, in-
stead of the new label being greater than all the
labels read, it is the case that

(V£ € mazimal_obs (LL*))(£f1) % elehy,

namely, the new label chosen is greater than the
latest of those observed. For the labeling LZ[GH]
of Ezample 3.4, though :z read daJ = 143, and
Zz[°+1] % ,E-al, it is the case that its maximal ob-

served label is K,E"H], and L’z[am % Ezfc’q].

Finally, the following is the irreflexive total or-
der = on the labeling cperation executions as
required by property PI.

Definition 3.2. Given any two distinct labeling
operalion executions Lx{a] and L,J[b], L,!-“] =5 Ly]
if either

1. Ll v I o
2. Ll L Lo LI and ol % oM.

Intuitively, since with every L% there is an asso-
ciated label f_z[-a], = is a “lexicographical” or-
der on a pairs (LI, £I°). The first element
in the pair is ordered by -*» a partial or-
der that is consistant with the ordering — (if
L;Ea] — L_,,[b] then in Ly[b|, y read éza] or a later
label). The second element is ordered by %<,
an irreflexive and antisymmetric relation. In the
full paper it is proven, that the “static” relation
% on the labels, completes the “dynamic” par-
tial order “*» to a total order on all labeling
operation executions.

3.3 The Scan Operation

The scan algorithm consists of two main steps,
performing a sequence of 8nlogn collect opera-
tions !, and analyzing the collected labels to se-
lect a set £ for which an order < can be returned.

Let £5™* ¢ € {1..8}, m € {1..[logn]}, and
k € {1..n} denote variables, each holding a set of
labels {£5™% .., £5™*} collected in the ¢* col-
lect operation execution of the m!* level of the
k*® phase. Let half(r) and other_half(r) be com-
plementary functions, that for a given set r, re-
turn two disjoint subsets r1 and #2, such that
rlUr2=rand -1 < |rl|—|r2| < 1.

The scan algorithm returns the set of labels ¢,
one of each process, and the ordering < among
them is represented by the vector O holding a
permutation of numbers in {1..n}, the number in
the i** position representing the relative order of
the label £;12,

function scan;
function select(m,k,r);

begin
if |r] = 1 then return (z : z € r);
else
z := select(m—1, k,half(r));
y := select(m—1,k, other_half(r));
if (3el,c2 € {1..8})
(el < e2) A (e1m™E % ge2mk)
then return y
else return z
fi;
fi;
end select;
begin
R = {1l..n};
O[1..n] := 0;
2 :=0;

fork:=1tondo

11 Note that the scan algorithm requires a scanning pro-
cess only to read other labels, and does not require it to
write. This lack of a need for two way communication
between the scanner the labelers is a property found in
the implementation of the natural number based ctss.

12For the sake of simplicity, though the returned labels
in 2 could contain various data associated with the given
labeling operation (that is, data written into the register
v; together with the implementation label value), the scan
implementation, will return only the implementationlabel
value ¢;.
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for m := 1 to [logn] do
for ¢ := 1 to 8do
gemik = collect

od;
od;
od;
for k := n downto f do
s := select([log n], k, R);

£:=17U {2,8’[108"1’k};

Ols] := k;
R:= R - {s};
od;
return (£, 0);
end scan;

The scan operation, as noted above, begins
with a sequence of 8n{logn]| collect operations,
for which the returned labels are all saved in a set
of variables £5™* ¢ € {1..8}, m € {1..[logn]},
and k € {1..n}. The remainder of the algorithm
defines how to choose n of these labels, one per
process, for which < (i.e. =) can be established.
The following is an outline of how this selection
process is performed.

By the order of label collection, the labels read
in phase & = 1 are the earliest to have been col-
lected, those for k = n the last. From the 8[log ]
collected label sets of each phase, the algorithm
selects one label. The selected label in the k*?
phase will be the k largest in the order <. As
it turns out, to guarantee that this is the case,
it suffices that the following Condition I holds
(slightly abusing notation in the definition):

For the label £2 ’“°8"]’k, collected in the
[log n]** level of the k™ phase, and any
label £3:1% of a process y € R, collected
in the 1° level of the k*? phase, it is the

case that LS1F —> L8 llegnl.k

Maintaining Condilion 1 is sufficient to assure
that the label returned in the k** phase is the
k largest. Let it be shown that the labeling op-
eration execution of a label returned in a phase
k' < k, preceded (in the ordering =) that of
the label returned in the phase k. The follow-
ing shows that this is the case for the labels
& [logn],k’ Kys'rk)g"]’k—l and Ef,[logn],k—z returned
in phases k, k—1, and k—2 respectively. The
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same line of proof can be extended inductively to
all k' < k.

By Condition 1, Lys,l,k = p30ognlk gijce
the read of Z;"I"’ was performed after that of

Z;’rbg"]'k—l, either the label of the same label-
ing operation execution was read in both cases,
or I'Jys’ﬂognl’k"JL = Ls'n‘)g"]’k. By similar rea-
soning Lf’rbgn]’k—z = L;’[logn1’k_1, which by
transitivity of ==>, establishes L lognl k=2
Ls,[logn],k‘

The select function applied in any phase, is a
recursively defined “winner take all” type selec-
tion algorithm, among all the processes in R. It
returns the id of the “winner,” a process s meet-
ing Condition 1. At any level m of the applica-
tion of select select(m,k,r), the winners of the
selections at level m — 1 are paired up, and from
each pair one “winner” process is selected, to be
passed on to the (m4-1)" level of selection. Af-
ter at most [log|R|] levels, s, the winner of all
selections, is returned.

Based on the definition of the select function,
maintaining the following Condition 2 suffices to
assure that the label of the process s returned by
select(m, k,r), meets Condition 1.

Of the two processes ¢ and y in the ap-
plication of select at level m of phase
k, the one returned, say z, is such that
Lyl'm”‘ = L[3™F where Zyl""'k and
£5™* respectively are the labels asso-
ciated with these labeling operation ex-
ecutions.

Maintaining Condition 2 suffices for the follow-
ing reason. If at level m process z was se-
lected between z and y, and at level m—1 pro-
cess y was selected between y and z, by the
same line of proof as above, from Lyll'""c =
LEm* and L}k —y [B™LE it follows that
L3m2F —p [8&mF By induction this implys
Condition 1.

Recall Fzample 3.1, implying that it is impos-
sible to establish the order = among two label-
ing operation executions, from the order among
their associated labels alone. To overcome this
problem, instead of attempting to decide the or-
der between two given labeling operation execu-
tions, the algorithm will choose a pair out of



several given labeling operation executions, for
which the order == can be determined. Thus,
to allow the select operation at level m of phase
k, to choose a “winner” process, say z, for which
Lhmk —=s [8mE labels of £ and y from 8 con-
secutive collects will be analyzed.

Let it first be shown that if the following Con-
dition 3 holds for y, that is

(3cl,c2 € {1..8})(cl < c2) A (g1 ™F X
Zycz'm’k),

then LLm™Fk — Lycz"""’ (this, because of the
order of label collecting, will imply L1™* =
L}™¥%)y.  Assume by way of contradiction
that Lit™F — L[2™k  Since £e1m™F V<
£:2™% it must be by the definition of =
that Lg2mk ers [ Lk 1t cannot be that
£k € mazimal_obs(L{V™F), since by the
properties of the labeling scheme, for the label
Zy[b] € mazimal_obs (LS ™F), fy[b] V<o gk,
Thus, there must be a different labeling op-
eration execution ly[b] € mazimal_obs (LE1™*),
Lg2mk —s L{). This label £} was already ob-
served (i.e. must have been written), before the
end of the tead of £5™*%  Thus, ¢’ or a la-
bel later than it, must have been read instead of
1,’;2'”‘”“, in the collect ¢2 of level m in phase k, a
contradiction.

It remains to be shown that if Condition 3 does
not hold for y, it is the case that L}™% =
L&8™* and x can be correctly returned. As-
sume by way of contradiction that Condition 3
does not hold for y. Ii cannot, by the same
arguments as above, be that Condition 8 holds
for z, that is, (Jcl,c2 € {1..8})(cl < ¢2) A
(ggtmk X ge2mky - Therefore, it must be that
there are four nonconsecutive collects of £°1.™k
cl € {1,3,5,7}, and four nonconsecutive collects
of £2m™* 2 € {2,4,6,8)} such that the labels
E;l’m"‘, cl € {1,3,5,7} are all different from one
another, and the labels £52™# ¢2 € {2,4,6,8}
are all different from one another. The reason is
that if any two of them are the same, say ff”"'k
and €™, then in order for the above Condi-
tion 3 not to hold for £ ¢l = 4 and ¢2 = 3, it
must be that £hm* % l,’;’m'k. But since [ys'm’k
and £>™F% are the same, it would follow that
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ghmk X g5mE and Condition 3 would hold for
v, a contradiction.

To complete the proof, it remains to be shown
that if the labels £51™%, c1 € {1,3,5,7} are all
different from one another, and the labels £52™*
c2 € {2,4, 6,8} are all different from one another,
then Lyl'”"k = L3™k The situation above is
such that during the 8 collect operations, each
of the processes z and y executed a new labeling
operation at least 3 times. It can be formally
shown'3 that the third new labeling operation
execution L3™F  after z and y moved at least
3 times, occurred completely after the initial la-
beling of y, that is, L}'™* — L3™F,

Formal proofs will be presented in the full pa-
per. As afinal comment, note that for algorithms
where only the maximum label i1s required, and
not a complete order among all returned labels
(like in construction of a mrmw atomic register or
solutions to the mutual exclusion problem), only
one phase of label collection is required, that is,
only 8logn collects!*.
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A Some Examples of Applications

The following is a simple unbounded algorithm
for solving the famous problem of constructing a
mrmw alomic register , from swmr atomic regis-
ters. This solution is a version (due to Li and Vi-
tani [LV88]) of the elegant and simple unbounded
Vitani-Awerbuch algorithm [VA86]. It is based
on the use of a natural number ctss. Each pro-
cess 1 writes to a mrsw atomic register denoted v;.
Each register contains two fields, a label, that is,
a natural number, and a value associated with it
(value@label using the notation of [LV88]). The
following is an implementation of the reed and
write by a process i.



function read;

begin
read vy, .., Uy;
select the maztmal time-stamp €;;
return value@/f,;

end;

procedure write(value);
begin
read vy, .., Un;
select the mazimal time-stamp £,;
write into v; the value and £, + 1;
end;

Note that the wrile operation is just a labeling,
and the read is a scan followed by returning the
value associated with the maximallabel. As men-
tioned earlier, one would need to let the labels
of the ctss include their associated values. Re-
placing the above unbounded operations by the
Labeling and Scan operations of the bounded
concurrent-time-time-stamp system will immedi-
ately produce a bounded solution to the problem.
Note again that the general implementation of
the scan operation, as described in this ertended
abstract requires 8n log n collects, but since only
the maximum (and not a total ordering) of the
labels is required, it can be reduced to 8logn col-
lects, as will be elaborated upon in the full paper.

The following is a fifo solution to the I-Ezclusion
Problem due to [ADMS88], based on the use of a
ctss. In the following, the scan and label opera-
tions of process ? are as described, where the ciss
1s implemented using swmr atomic registers, and
z;, 1 € {1,..,n} are swmr safe registers.

do forever
x; = lrue;
labeling ;
L: (8, <) := scan;
if {ilzj A4 < £4)}] > 1 then goto L fi;
eritical section
z; .= false;
remainder section

od;

The only known bounded fifo solution to the
problem, due to [FLBB7¢] was based on the use
of a strong form of Tesi and Set. It was un-
known whether a level of fairness higher than n2-
waiting (see [DGS88]) without use of test and set
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can be achieved. It is interesting to note that
the amount of shared memory needed meets the
lower bound of [FLBB79)]. If one is interested in
the unbounded implementation, just substitute
4; := maz (£, ..,£,) +1 for the labeling operation,
and read(£y,..,4,) for the scan. Notice that for
{ = 1, the above is a very simple solution to the
fundamental mutual ezclusion problem of [D65).
Other algorithms such as the unbounded imple-
mentation of a ctss in the Bakery Algorithm of
Lamport [L74], can also be modularly replaced,
and by adding a simple meodification to allow the
ctss to include restarts, the solution can be made
to be resiliant to restart failures [L74, L86d].



