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Abstract 

Concurrent time stamping is at the heart of solu- 
tions to some of the moe,t fundamental problems 
in distributed computing. Based on concurrent- 
time-stamp-systems, elegant and simple solu- 
tions to core problems such as fcfs-mutual- 
exclusion, construction of a multi-reader-multi- 
writer atomic register, probabilistic consensus,... 
were developed. Unfortunately, the only known 
implementation of a concurrent time stamp sys- 
tem has been theoretically unsatisfying, since it 
requires unbounded size time-stamps, in other 
words, unbounded memory. Not knowing if 
bounded concurrent-time-stamp-systems are at 
all constructible, researchers were led to con- 
structing complicated problem-specific solutions 
to replace the simple unbounded ones. In this 
work, for the first time, a bounded implemen- 
tation of a concurrent-t:ime-stamp-system is pre- 
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sented. It provides a modular unbounded-to- 
bounded transformation of the simple unbounded 
solutions to problems such as above. It al- 
lows solutions to two formerly open problems, 
the bounded-probabilistic-consensus problem of 
Abrahamson [A881 and the J&f!-exclusion prob- 
lem of [FLBB85], and a more efficient construc- 
tion of mrmw atomic registers. 

1 Introduction 

The paradigm of concurrent time stamping is at 
the heart of solutions to some of the most fun- 
damental problems in coordination of concurrent 
processes [AM, CIL87, D65, DGS88, H88, L74, 
PB87, VA86]. 

A time stamp system of n asynchronous pro- 
cesses is traditionally conceived as consisting of 
n label registers, one per process, written by it 
and read by all others. The labels are unbounded 
natural-numbers, where each process can execute 
infinitely many labeling and scan operations on 
the label registers. A labeling operation is a se- 
quence of reads of other labels, followed by a 
write of a label greater than the maximal value 
read. The label values written, establish a total 
order on all labeling operations ever executed. 
A scan operation is a sequence of reads of all 
process’ labels, returning a subset of labels or- 
dered consistently with this total ordering. A 
concurrent-time-stamp-system (ctss) is a time- 
stamp-system in which any number of labeling 
or scan operations (by different processes) may 
overlap in time. A major requirement is that 
labeling and scan operations of any process be 
waitfree, that is, completed in finite time inde- 
pendently of the pace of other processes. 
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Concurrent time stamping is the basis for 
simple solutions to a wide variety of the basic 
problems in concurrency control. Examples of 
such problems include fcfsmutual-exclusion, con- 
struction of a multi-reader-multi-writer atomic 
register, probabilistic consensus, . . . Unfortu- 
nately, the only known implementation of the 
above paradigm is based on labels of unbounded 
size. This is a major drawback, since bounded 
memory size is a key requirement of the prob- 
lems at hand, implying these elegant and sim- 
ple unbounded solutions have little theoreti- 
cal value. Since it was unknown whether 
bounded concurrent-time-stamp-systems are con- 
structible, researchers were led to devising com- 
plicated problem-specific solutions to show that 
the above problems are solvable in a bounded 
way [B&37, BP87, CIL87, D65, DGS88, FLBB79, 
FLBB85, K78, L74, L86d, LH88, LV88, R86, P81, 
P83, PB87, VA86j. 

Israeli and Li in [IL871 were the first to isolate 
the notion of bounded-time-stamping as an inde- 
pendent concept, developing an elegant theory of 
bounded sequential-time-stamp-systems, that is, 
time-stamp systems in a world where no two op- 
erations are ever concurrent. They also devised 
a concurrent labeling scheme in which the labels 
provide a causality preserving relation. However, 
this relation is not a total ordering since unre- 
lated labels and cycles are possible. Moreover, 
this scheme deals only with labeling, and does 
not address the central problem of how labels can 
be scanned concurrently, therefore lacking some 
of the key properties of concurrent-time-stamp- 
systems. 

In this paper, for the first time, a bounded 
construction of a concurrent-time-stamp-system 
is presented. It allows a modular transforma- 
tion of the simple unbounded solutions to such 
core problems as above’. It provides a powerful 
tool, enabling the design of simple unbounded 
concurrent-time-stamp based algorithms, with 
the knowledge that such unbounded solutions im- 
mediately imply the bounded ones”. This is ex- 
emplified by providing the basis to solutions of 

the above flavor [ADMS88, ADS891 to two for- 
merly open problems, the bounded-probabilistic- 
consensus problem of [A881 (requiring to solve 
the probablistic-consensus problem of [CIL87] 
without using an atomic coin-flip operation), 
and the fifot-exclusion problem of FLBB79]. 
The only known solutions to the latter problem 
[DGS88, P88], achieve weaker forms of fairness 
than the original test and set based solution of 
[FLBB79]. 

Though one might think that the price of intro- 
ducing such a powerful modular transformation 
would be a blowup in memory size or number 
of operations, this is hardly the case. The con- 
struction presented in the paper requires n regis- 
ters of O(n) bits each, meeting the lower bound 
of [IL871 for sequential-time-stamp-system con- 
struction. Though because of lack of space, a 
complete comparison table cannot be provided 
in this paper, one example of the efficiency of 
the ctss solutions is given by the famous prob- 
lem of multi-reader-multi-writer atomic register 
construction. A simple solution based on trans- 
forming the unbounded [VA861 protocol (See 
Appendiz: A for a description), has the same 
space complexity of the only proven algorithm 
[PB87, S88], yet a better time complexity, O(n) 
memory accesses for a write, O(n logn) for a 
read, as compared with O(n2) for either in the 
former. Concurrent time stamp systems are in- 
formally defined in Section 2, and implemented 
in Section 3. Rigorous formal definitions and cor- 
rectness proofs based on the formalism of Lam- 
port [L86a, L86c] will be presented in the full 
paper. 

2 Concurrent Time Stamping 

To provide the reader with a better intuition for 
the more abstract formal definitions presented 
later, the properties of a concurrent-time-stamp- 
system are first outlined informally via the exam- 
ple of its unbounded natural-numberbased imple- 
mentation. 

‘See Appendiz A. 
‘Bounded time-stamp algorithms for a message pass- 

ing environment without faults are very similar to that 
described in this paper. Lack of space prevents us from 
describing it. 

Informally, the natural-number based ctss con- 
sists of n registers of unbounded size, each writ- 
ten by one of n asynchronous processes and read 
by all others. The labels are natural numbers 
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with the usual ordering among them3. Each pro- 
cess can execute infinitel:y many labeling or scan 
operations, any number of them concurrently 
with the operations of other processes. The scan 
is the operation of collecting a set of labels !, 
one of each process, by executing a sequence of 
reads of the labels in an .arbitrary order. The la- 
beling operation is simply a collecting of all the 
labels followed by a write of map + 1. The la- 
bels written during labeling operations are mono- 
tonically increasing, and, though some were pos- 
sibly created concurrently with others, define a 
total order on all labeling operations ever per- 
formed. Since for any two labeling operations 
that are non-concurrent, the order among the la- 
bels reflects the order among the operations, this 
order defines the manner in which all labeling op- 
erations could be serialized. Though no process 
ever knows all of this order, the order among the 
subset of labels returned by any scan is in fact 
the same as the total ordering on all the label- 
ing operations*, no matter how many labeling 
operations occurred while the labels were being 
scanned! 

A Concurrent Time Stamp System is an abstract 
data type shared among n concurrent and com- 
pletely asynchronous processes. There are two 
waitfree (see [H88, AG88]) operations that any 
process can execute on the ctss, a labeling oper- 
ation and a scan operation. Assume that each 
process’ program consists of these two opera- 
tions, whose execution generates a sequence of 
elementary operation executions, totally ordered 
by the precedes relation (of [L86a, L86c], denoted 
“ - “), and were any number of scan operation 
executions are allowed between any two labeling 
operation executions. The following 

L?] - SPl -* LPI - LPI - 
* $1 

i 
t $3’1 -2 $41 ,’ . 

I I . . 

is an example of suc’h a sequence by process i, 
where Lyl denotes process i’s kth execution of 

3 Process id’s are added lexicographically to break sym- 
metry, a well known technique which will be referred to 
in the sequel. 

4This property is simple to achieve using unbounded 
labels, since the ordering among the labeling operations is 
just the ordering among the labels. The fact that such a 
property is achievable using bounded size labels is some- 
what bafdling, since as the example in Se&ion 3 shows, the 
order among the labeling operations cannot be the order 
among the labels. 

a labeling operation, and SF1 the kth execution 
of a scan operation (the superscript [k] is used 
for notation, and is not visible to the processes). 
A global time model5 of operation executions is 
assumed. 

With each labeling operation execution LPI, a 
label eFkl is associated. A scan operation re- 
turns L pair (l, 4), where the label view e = 

{epll . . . $knl} is an ordered set of label8 (one 
per process), and 4 is an irreflexive total order 
among them, such that: 

Pl ordering: There exists an irreflexive total or- 
der _ on the set of all labeling operations, 
such that: 

a. precedence: For any pair of labeling op- 
eration executions I;!] and Lrl (where 

possibly p = q), if LFl - $1 , then 

LPI a Lp. 

b. consistancy: For any scan operation exe- 
cution Si[k1 returning (j, +), tp’ 4 e4[b1 
if and only if Ltl _ Ljb’. 

The above property formalizes the idea that a 
clss can be envisioned as a black box, inside 
which hides a mechanism (a logical clock) asso- 
ciating causally ordered time stamps - from an 
infinite totally ordered range - with each of the 
labeling operations, and where scanning is like 
peeping into this black box, each scan returning 
a view of a part of this hidden ordering. The 
black box metaphor is used to stress that it suf- 
fices to know of the existence of such a total or- 
dering =+, while the ordering itself need not be 
known. 

One should bear in mind that the asynchronous 
nature of the operations allows situations where 
a scan overlaps many consecutive labeling oper- 
ations of other processes. Also, several consecu- 
tive scans could possibly be overlapped by a sin- 
gle labeling operation. It is therefore important 

51mplying that for any two operations, a - b or 
b --* a (for more details see [L86c, B88] ). 

‘For the purposes of many of the applications (such as 
atomic register construction), one should allow the label 

to include an associated value field, denoted vahe@<tk’. 
For the sake of simplicity, discussion of how this added 
feature is implemented will be differed to the appendix. 
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that a requirement be made that the label view 
.t? returned by Syl be a meaningful one, namely, 
reflecting the ordering among labeling events im- 
mediately before or concurrent with the scan, and 
not just any possible set of labels. This will 
eliminate uninteresting trivial solutions and in- 
troduce a measure of liveness into the system. 
This requirement is formalized in the following 
definition, where --- is the can uflec2 relation 
of [L86alL86c]. 

P2 regularity: For any label et1 in e of Slkl, 
,$“I ---) Sjkl, and there is no $I such that 
$1 + LPI - S.lkl 

P s . 

Though such a regular concurrent time stamp 
system (PI-PZ) would suffice for some appli- 
cations (as in Lamport’s “Bakery Algorithm” 
[L74]), a more powerful monolonic concurrent 
time stamp system will be needed in applications 
such as the Multi-Reader-Multi- Writer Atomic 
Register construction (as in [VASS]). To this end 
the following third property is added: 

P3 monotonicity: For any label tpl in e of Syl, 

there does not exist an S.[k’3 with a label lIbl 3 P 

in its label view P, such that Si[kl - Sj[“‘l 

and $I - LF1 (possibly i = j). 

It is important to note that P3 does not imply 
that labeling and scan operations of all processes 
are serializable. It does however imply the se- 
rializability of the scans of all processes and la- 
beling of any one process. The scans “behave” 
as if the labels of any process are monotonically 
increasing, in the sense that a scan returns a la- 
bel of a labeling operation that is at least as late 
as that of any labeling operation of a label re- 
turned in the scans preceding it. In the follow- 
ing section, a bounded implementation of a con- 
current time stamp system from atomic registers 
is presented and informally justified. Rigorous 
definitions’ and correctness proofs will appear in 
the full version. 

‘The above definitions do not include, for example, 
initialization conditions of the system. 

fj = 1 ei = 2 fTj = 1 

Li Lj : I I .-* u 

Sl : 
r(i) r(j) 
HH 

s2 : 
p+ 

Figure 1: Scan Concurrent with Sequential La- 
belings 

3 The Implementation 

The description of the implementation is divided 
into two parts, the implementation of the labeling 
operation, and the implementation of the scan. 
The key property of the labeling operation is to 
allow establishing the causality-preserving total 
order _ among all labeling operation execu- 
tions. Though it is not required that a process 
“knows” what this order is, it is required that 
the set of labels that it “chooses” during a sys- 
tem execution is such, that an almighty outside 
observer, given a description of the execution and 
based on the labels, would be able to reconstruct 
I. This almighty observer could thus view all 
labeling operation execution intervals as if they 
were shrunk to points, that is, as if they were 
completely sequential. 

Requiring this property alone, will however not 
be sufficient. As Example 3.1 shows, even if all la- 
beling operations are sequential, since labels are 
from a bounded range (and therefore the same 
labels are reused), a process scanning the labels 
concurrently with ongoing labeling operations, 
cannot deduce the order =+ from the order of 
the labels alone. 

Example 3.1. In Figure 1, segments represent 
operation execution intervals, where time runs 
from left to right. Two processes i and j per- 
form labeling operations sequentially, j followed 
by i, followed by many labelings, till eventually 
the labels are reused, and j for example uses the 
same label as before. A third process z performs 
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a scan concurrently with the labelings, reading & 
and then Q . Sl and S2 represent possible execu- 
tions of this same scan, the only difference being 
that many labeling operations of other processes 
occurred between the reads in S2. In both the 
case that the scan is of the form Sl and the case 
that it is of the form S2, the values collected are 
4 = 2 and lj = 1, where the o-rder among the 
labels is, say 1 < 2. However, in the case of Sl., 
j’s labeling preceded i’s, while in S2, i’s label- 
ing preceded j’s. Thus, the order of the labels 
is not the order among the labeling operations, 
introducing an unresolvabl(e ambiguity. 

Faced with the above ambiguity, it is clear that in 
order to design a scan operation, the properties 
of labeling operation imp’lementation should be 
such, that even though the order _ between any 
pair Lf”] and L,[b] is not conveyed by the order 
of their associated labels, the labels do provide 
enough information to allow an implementation 
of a scan operation. The new implementation 
will not require that by reading a pair of labels 
of processes i and j, one will be able to establish 
the order among their associated labeling opera- 
tion executions. Instead, it will be required that 
by reading the labels of i and j more than once 
(yet only a constant number of times), one will be 
able to choose from all the labels read, a label of 
i and a label of i, for which the order _ among 
the labeling operation executions can in fact be 
deduced. In the following sections, after present- 
ing these additional properties, a scan operation 
implementation that utilizes them will be shown. 

The basic communication primitive used in the 
presented implementations is a single-writer- 
multi-reader atomic register. Constructions of 
such registers from weaker primitives have been 
shown in [L86a, L86b, BP87, IL87, N87]. The 
concurrent-time-stamp-system will consist of n 
swmr atomic registers vi, i E (l..n}, each Vi 
written by process i, read by all, and having val- 
ues in some range V. In the unbounded natural 
number implementation of a ctss, V is just the 
unbounded set of natural numbers, and 4 for 
any labeling is the usual irreflexive total ordering 
among them. In the foll.owing subsections, the 
set of possible label values V, together with an 
irreflexive and antisymmetric relation 4 among 

them, are defined in terms of a precedence graph’ 
(V, 4 ). Each possible label value is a node in 
this graph. The order among the labels in any 
two registers is the order 4 established by the 
edges of the precedence graph. Based on the 
precedence graph, an implementation of the la- 
beling and scan operations will then be provided. 
Unlike in the unbounded natural number imple- 
mentation, and following the above discussion, 
the returned ordering 4 among labeling opera- 
tions is not the same as the ordering 4 . 

3.1 The Labels and the Precedence Rela- 
tion 

The following is the description of the precedence 
graph Tn. Though the precedence graph (of unl 
bounded size) defined by the natural numbers is 
acyclic, this will not be true for T”. 

Define A dominates B in G, where A and B 
are two subgraphs of a graph G (possibly single 
nodes), to mean that all nodes of A have edges di- 
rected to all nodes of B. Define the following gen- 
eralization of the composition operator of [IL87]. 
The cr-composition, Go, H, of two graphs G and 
H, where cx is a subset of the nodes of G, is the 
following non-commutative operation: 

Replace every node v E Q of G by a 
copy of H (denoted H,,) and let H,, (or 
V) dominate H, in Go, H if v dominates 
u in G. 

Define the graph T2 to be the following graph of 
5 nodes: a cycle of three nodes {3,4,5} (where 3 
dominates 5, which dominates 4, which in turn 
dominates 3), all dominating the nodes {2,1}, 
where node 2 in turn, dominates node 1. 

Define the graph Tk (a complete tournament) in- 
ductively to be: 

1. T1 is a single node. 

2. Tk = T2 oLy Tk-‘, where Q = (5,4,3,1} and 
k > 1. 

The graph T” = (V, “+ ) is the precedence 
graph to be used in the implementation of the la- 
beling and scan algorithms of a concurrent time- 
stamp system for n processes. For any process 

‘see [IL871 for lower bounds on the size of such graphs. 
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3 

4 

T2: 

T3: 

Figure 2: The Recursive Graph Structure for T2 
and T3 

i, each node in T” corresponds to a uniquely de- 
fined label value &. The label can be viewed as 
a string & [n. .I] of n digits, where each & [k] E 
(1.. .5} is the digit of the corresponding node in 
T2, replaced by a T” subgraph during the kth 
step of the inductive construction above. The 
digit f!i[n] is always 1, representing the complete 
T” graph, and if in &, &[[Ic] = 2, then &b] = 1 
for all j E (Iz - 1 ..l) (since node 2 is never ex- 
panded in the induction step). Therefore, given 
any label &, the Tk subgraph of T” in which its 
corresponding node is located is identified by the 
corresponding prefix !$[n..k]. 

To assure that based on the graph T” a total 
ordering among the label values returned by a 
scan can be established, one needs to break sym- 
metry among processes having the same label. As 
usual, process-ids are used. Thus, the label !Ji is 
assumed to be concatenated with the id of pro- 
cess i . The label and id are lexicographically or- 
dered. This, in terms of the graph T”, amounts 
to no more than assuming that each T1 graph 
consists of a total order tournament of n nodes, 
each process i always choosing the i th node in 
the order. For the sake of simplicity this point is 
not elaborated on in the sequel. 

3.2 The Labeling Operation 

Let the collect operation by any process i be a 
reading of all the registers ~j, j E { 1 ..n}, once 

‘Initiay, all I;rl~~,la are on node 111..11, thenode dom- 
inated by all others in T”. 

each, in an arbitrary order returning a label set e 
(not to be confused with e, the output label view 
of a scan operation). The labeling operation of a 
process i is of the form described below, where 
L : V” x (l..n} H V is a labeling function, re- 
turning a label value ei “greater than” all other 
label valuesg. This is a form similar to the natu- 
ral number ctss, where the labeling function C is 
just maz(!!) + 1. However, the interpretation of 
“greater than” is not as straightforward as in the 
natural number case. 

procedure labeling; 
begin 

e := collect; 
Vi := fqe, i) 

end; 

The definition of the labeling function ,C(!?, i) pre- 
sented below, is based on a recursively defined 
function Lk(G, e, &), which, given a Tk subgraph 
G, of T”, a set of labels e, and a “maximal” la- 
bel e, E e in T”, returns the label of a node in 
G that is, as termed above, “greater than” the 
other labels. For the sake of simplicity, and since 
the collected set of labels e remains unchanged 
in L(e, i) once it is collected (similarly the vari- 
able !, , once it is computed), it is treated as a 
global variable and is not passed as a parameter 
in all the utility functions used by Ic(e, i). The 
following functions are used in defining ,C: 

nzlm-labels(G) - a function that, for the given 
label set 1, returns how many of the labels are in 
sub-graph G; 

dam(z) - a function that, for a given digit 
z E {1..5} representing a node in the graph 
T2, returns the next dominating node; namely, 
dam(1) = 2, dam(2) = 3, dam(3) = 4, dom(4) = 
5 and dom(5) = 3; 

dominating-set(!?, ei) - a function that, for a set 
of labels e^ C e, and a label ei E e^, returns a subset 
of labels {r!, E e^]ei ? ej} U {.&I; and 

mar@) - a function that, for a set of labels e^ C e, 
returns a label 

(& E e^ : Idominating-set(e^, &)I 5 
[dominating-set@, ej)l, Vtj E e^), 
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the maximal label, i.e., the one 1leas.t dominated 
within this set. 

Denote the concatenation operation, where G is 
a string and z is a digit, by G.z. The following is 
thus the definition of the lalbeling function ,!Z(& i). 
The subgraphs G are identified with the relative 
prefixes, where T” is identified with the label 1: 

function L (k?, i); 
function L”(G); 
begin 
1: if k= 1 then retune G; 
2: if &[n..k] # G 

then return Lck-l.(G.l); 
3: if &[n..k-1] = G.2 

then return Lk-‘(G.3); 
4: if k > 2 then 

if 4’,[k-2] E {2,3: 4,5} and 
(e+..k-1] # !,[n..k-I]) 

then return ~Ck-‘L(G.dom(~~[k-l])); 
5: if (num_labels(e,Cn..k-11) < k-l) or 

((num-labels(e,[71..k-11) = k-l) and 
(&[n..k-11 = &,[n...k-11)) 
then return Lk-‘(G.&[k-11) 
else return .L k-l(G.clom(!&[k-l])); 

end Lk; 
begin 
4, := maz(dominating_set(e,ei)); 
return P(T”); 

end L; 

For the purpose of giving the reader some intu- 
ition about the properties of the labeling opera- 
tion, let it be assumed that one can talk about 
the values of the labels of all processes at “points 
in time”. Though the goal in the remainder of 
this section is to show how the labeling operation 
executions allow to define the order q, it will 
first be shown that they meet a much simpler re- 
quirement. The requirement is t,hat at any point 
in time, the subgraph of the precedence graph T” 
induced by the labeled nodes (those whose corre- 
sponding label is written in some vi), contains no 
cycle. Since T” is a complete tournament, this 
implies that at any point, in time, all labels are 
totally ordered. 

The labeling operat#ion executions maintain 
two “invariants,” namelJp, that at any point in 
time (1) there are labels on at most two of the 
three nodes in any cycle of any subgraph T” (the 

cycle consists of “supernodes” {3,4,5}, called su- 
pernodes since they are actually T’--’ subgraphs), 
and (2) there are no more than k labels in the cy- 
cle of any subgraph TL. Maintaining the second 
invariant is the key to maintaining the first, and 
the first implies that at any point in time, there 
are never any cycles among labels. 

The manner by which the invariance of (1) and 
(2) is preserved, is explained via several exam- 
ples. In these examples, T3 is a precedence graph 
for a system of three processes 2, y and z. All ex- 
amples start at a point in time where 1, la1 = 134, 
eIsl = 135 and lrc’ - - 
&ally ordered b; % . 

141, that is, all labels are 

Example 3.2. Assume that, the following se- 
quence of labeling operation executions occur se- 
quentially. Process y performs L,[&ll, reading 
!?!I, $I and .! [‘I 
to p1 = 142: ~r~~s~~~~~~o~~~~~~]~~~~~! 

ing the new label ehW1’, and thus moving to the 

T2 subgraph 14, (Ly[ht21 = 144, L,[“t21 = 145, 
LJWl = 143.. .), maintaining the above invari- 
ants, because the T2 graph is a precedence graph 
for 2 processes. If at some point 2 moves, in Li*‘l 
it will read the labels of both z and y as being in 
the T2 subgraph 14. Since numJabels(‘l4’)=2, 
by line 5 of ,C(&i), z will move to li*‘l = 151. 

The reader can convince himself that following 
[cl any labeling operation execution L, by some 

process z, the above invariants hold, and that 
for the set & of labels that were read in L,[“l’s col- 
lect operation (denoted read (Ld”‘)), it is the case 

that (V&F1 E read(L!“‘))($’ 4 e,[“‘), that is, the 
new label chosen is greater than all those read. 

As seen in the following example, in the con- 
current case, more than k labels may move into 
the same T” structure at, the same time. It is thus 
not immediately clear why the second invariant 
holds. 

Example 3.3. Assume that the following se- 
quence of labeling operation executions occur 
concurrently. Processes z and y begin perform- 
ing Li*‘] and Ljwl] concurrently, reading ekl, 

$I and lb1 and computing Cc, such that f$&” = 
$+ll = 142. If they then continue to complete 
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their operations by writing their labels, though 
they have the same node as a label, they were 
concurrent, and can be ordered by relative id. If 
any of them then continued to perform a new la- 
beling operation, since nzlmAabels(‘l4’) > 2, it 
would choose label 151, not entering the cycle. 
However, let us suppose that they do not both 
complete writing their labels, that is, z stops 
just before writing !$*‘I to vI, while y writes 
p = 142. Process z then performs L,[*i’, 
reading the new label eiN1l and the old label kkl, 

thus moving to L,[*il = 143. Processes y and z 
continue to move into and in the cycle of the T2 
subgraph 14, since they continue to read x’s old 
label. Then, at some point t completes Liti’], 
and there are three labels in 14 (two of them in 
the cycle). However, if 2 now performs a new la- 
beling Li&21, it will read the labels of both z and 
y as being in 14. Since nzlmJabels(‘l4’) > 2, by 

line 5 of L (l!, i), z will move to .&*“I = 151, not 
entering the cycle. 

Generalizing the above example, even if many 
processes move into a T” subgraph, without read- 
ing one another’s labels, at most k of them will 
enter the cycle in T”. The reason is the following 
well known flag principall’: 

If k+ 1 people, each first raise a flag, and 
then count the number of raised flags, 
at least one person must see k + 1 flags 
raised. 

By the definition of the labeling function L, each 
process moving into the cycle of a T” subgraph, 
must first move to either supernode 1 or 2 in T”, 
only then can it perform a labeling into the cycle. 
The move to 1 or 2 is the raising of the flag, and 
the move into the cycle is the counting of all flags. 

The following example shows that even though 
by the above, there are at most k labels at a time 
in any Tk structure, the sets of labels read in a 
labeling operation execution, may contain cycles. 

Example 3.4. 
$+ll 

Process z begins performing 
reading 1)’ = 

forms’~~~‘I, reading [~Y,4~~Y~~~~Y, ~~~~~~ 

ing to $+‘I = 142. Process x performs LL*“, 

“Proof follows by the fact that the last person to start 
counting flags must have seen k + 1 flags raised. 

reading the new label libtll and ekl, and thus by 

line 5 of L, moving to &@+‘I = 151. Process y 
then performs Ljjbtl, reading !?i*” and moving 

to ef-@l = 152. Finally, process z reads eJhzl. It 
thus read !$I = 134, lJtizl = 152, and &I = 141, 
three labels on a cycle. 

In order to select a label dominating all others, z 
must establish where the “maximal label” among 
them is. To overcome the problem that the labels 
read form cycles (as in the above example), the 
labeling function L (e, z) does not take into ac- 

bl count “old values” such as & ; it considers only 
the labels that dominate the current label .!pl. 
In order to maintain the first invariant, z should 
move to 1l[*‘l = 131, to dominate the current 
labels of both I and y. However, there is seem- 
ingly a problem, since z did not read the label 
&+ll = 151, and so, how can it decide what label 
to choose in order to dominate eL*‘l = 151? The 
solution is due to the fact that z can deduce the 
existence of eiti1l = 151, since in all of the cycle 
of T3 there are 3 labels, and in order to move to 
f$+ll = 152, y must have read some label in node 
151 of the T2 subgraph 15. By simple elimina- 
tion this must be the label of x. This simple rule 
is maintained by application of line 4 in L. irow- 
ever, if the above scenario occurred in the cycle 
of a Tk graph, where k > 3, then in order to al- 
low the same reasoning as above, it must be that 
if z read ejW21 = 152 (or ejN21 E {153,154,155}), 
it can conclude that k - 2 other labels were read 
by L,jbc2’ in the Tk-l subgraph 15. It is for this 
purpose that supernode 1 of any Tk graph where 
k > 2, is not a single node, but a Tk-’ subgraph. 
A process can thus choose the node 2, only af- 
ter it established that there were k - 1 labels in 
supernode 1. Since node 2 is a “bridge,” that 
some process must “cross” (choose) before any 
process can move into the cycle, the above rea- 
soning holds. 

Though the above invariants hold, it follows 
from Example 3.4 that the property that the cho- 
sen new label is greater than all those read, true 
for sequential labeling operation executions, does 
not hold in the concurrent case. Fortunately, 
there is a similar property that does hold, a prop- 
erty that will prove important in the implemen- 
tation of the scan. Let the notation rj(L!k’) and 

461 



w(Ly’) denote the read of vj and write of vi dur- 

ing a labeling operation execution rk1 Li by a pro- 
cess i. 

Definition 3.1. Labeling LPI is observed by 

L,[“l (denoted LPI -+* LJ”‘) ifr 1: (.$I)- !?[“I of 
there exists an L,[“l such that rz(,?$) =Yki: and 
&I Z>& L [cl I - 

The relation -S-L is actually the transitive clo- 
sure of the read relation. :Let mazimal_obs(Lk’) 
be the set of operation executions 

{Lfl 1 y E {l..n} L[“l -O&s LPI and 
(VLt’l)( ifL [bl 4 L rb7 :lhen Lp’l -+ LPI)} 

Y Y , 

that is, including the “latest” label observed for 
each process. In the concurrent executions, in- 
stead of the new label being greater than all the 
labels read, it is the case that 

(V.t$ E mazimal_obs(L~]))(~~] S eel), 

namely, the new label chosen is greater than the 
latest of those observed. For the labeling LJotl] 
of ,&ample 3.4, though 2: read et1 = 143, and 
&WI v+ $1 , it is the case that its maximal ob- 
served label is A?:~‘~, and &*lJ S ej&r’. 

Finally, the following is the irreflexive total or- 
der * on the labeling operation executions as 
required by property PI. 

Definition 3.2. Given any two distinct labeling 

operation executions L, ra1 and L,[bl, LPI _ L,[bl 
if either 

Intuitively, since with every LPI there is an asso- 
ciated label $I, =+ is a “lexicographical” or- 
der on a pairs (LPI,&“). The first element 
in the pair is ordered by >&s. , a partial or- 
der that is consistant with the ordering - (if 
L;Ll - L PI then in ,!$I, y read !!:I or a later 
label). Tht second element is ordered by 2 
an irreflexive and antisymmetric relation. In thl 
full paper it is proven, that the “static” relation 
4 on the labels, completes the “dynamic” par- 
tial order sJ% to a total order on all labeling 
operation executions. 

3.3 The Scan Operation 

The scan algorithm consists of two main steps, 
performing a sequence of 8n log n collect opera- 
tions 11, and analyzing the collected labels to se- 
lect a set jfor which an order 4 can be returned. 

Let ec~m~k,c E {1..8), m E {l..[lognl}, and 
k E { l..n} denote variables, each holding a set of 
labels {fJtSmSk, ..,Q-lk} collected in the cth col- 
lect operation execution of the rnth level of the 
Icth phase. Let half(r) and other-half(r) be com- 
plementary functions, that for a given set 7, re- 
turn two disjoint subsets rl and r2, such that 
rl U r2 = r and -1 5 jr11 - 1r21 < 1. 

The scan algorithm returns the set of labels 2, 
one of each process, and the ordering 4 among 
them is represented by the vector 0 holding a 
permutation of numbers in {l..n}, the number in 
the ifh position representing the relative order of 
the label &12. 

function scan; 
function select (m, k, r); 
begin 

if IrI = 1 then return (zz : x E r); 
else 

x := seJect(m-1, k,half(r)); 
y := select(m-l,k, other-half(r)); 
if (3~1, c2 E (1.A)) 

(d c c2) A (e,$+ 4 e;21mlk) 
then return y 
else return 2 

fi; 
fi; 

end select; 
begin 

R := (1.~); 

O[l..n] := 0; 
e := 0; 
for k := 1 to n do 

“Note that the scan algorithm requires a scanning pro- 
cess only to read other labels, and does not require it to 
write. This lack of a need for two way communication 
between the scanner the labelers is a property found in 
the implementation of the natural number based ctss. 

“For the sake of simplicity, though the returned labels 
in ? could contain various data associated with the given 
labeling operation (that is, data written into the register 
v1 together with the implementationlabel value), the scan 
implementation, will return only the implementation label 
value ei . 
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for m := 1 to [log 7~1 do 
for c := 1 to 8 do 

ec,m,k := collect 
od; 

od; 
od; 
for k := n downto I do 

s := select ([log nl , k, R); 
e:=Tiu {~p%4~~]; 

O[sj := k; 
R := R - (s}; 

od; 
return (2, 0); 

end scan; 

The scan operation, as noted above, begins 
with a sequence of 8nrlognl collect operations, 
for which the returned labels are all saved in a set 
of variables lc~m~k ,c E {1..8), m E {l..rlognl}, 
and k E {l..n). The remainder of the algorithm 
defines how to choose n of these labels, one per 
process, for which + (i.e. a) can be established. 
The following is an outline of how this selection 
process is performed. 

By the order of label collection, the labels read 
in phase k = 1 are the earliest to have been col- 
lected, those for k = n the last. From the 8rlog in] 
collected label sets of each phase, the algorithm 
selects one label. The selected label in the kth 
phase will be the k largest in the order 4’. As 
it turns out, to guarantee that this is the case, 
it suffices that the following Con&lion 1 holds 
(slightly abusing notation in the definition): 

For the label !.$rlognl’k, collected in the 
[log nlth level of the kth phase, and any 
label e$rlk of a process y E R, collected 
in the lSt level of the kth phase, it is the 
case that L$‘v” _ L,8’r’ogn”k. 

Maintaining Condition 1 is sufficient to assure 
that the label returned in the kth phase is the 
Ic largest. Let it be shown that the labeling op- 
eration execution of a label returned in a phase 
k’ < k, preceded (in the ordering S) that of 
the label returned in the phase Ic. The follow- 
ing shows that this is the case for the labels 

1, s,k%nl,k ,8,rhd,k-l and ~,8$wdW 
J Y returned 

in phases k, k - 1, and Ic - 2 respectively. The 

same line of proof can be extended inductively to 
all k’ < k. 

By Condition 1, Lillpk z$- L,8’r’ogn1’k. Since 
the read of 1y811jk was performed after that of 

.e, 8Pr10gfi1’k-1, either the label of the same label- 
ing operation execution was read in both cases, 
or L8hnl,k-l _ f%b3d7k B 

Y z . y similar rea- 

soning L, %b3nl>k-2 a L;hVl A-1, which by 
8,rlognl,k-2 

transitivity of ===s, establishes L, 
Lm%4,k I 

The select function applied in any phase, is a 
recursively defined “winner take all” type selec- 
tion algorithm, among all the processes in R. It 
returns the id of the “winner,” a process s meet- 
ing Condition 1. At any level m of the applica- 
tion of select select(m, k, P), the winners of the 
selections at level m - 1 are paired up, and from 
each pair one “winner” process is selected, to be 
passed on to the (m+ l)th level of selection. Af- 
ter at most [log IRlj levels, s, the winner of all 
selections, is returned. 

Based on the definition of the select function, 
maintaining the following Condition 2 suffices to 
assure that the label of the process s returned by 
select(m, k, r), meets Condition I. 

Of the two processes 2 and y in the ap- 
plication of select at level m of phase 
k, the one returned, say x, is such that 
L ‘lrnlk _ L1;8~m~k, where ltJ”‘lk and 

Y 
fJ8~m~k respectively are the labels asso- z 
ciated with these labeling operation ex- 
ecutions. 

Maintaining Condition 2 suffices for the follow- 
ing reason. If at level m process x was se- 
lected between x and y, and at level m- 1 pro- 
cess y was selected between y and z, by the 
same line of proof as above, from L~I”‘~~ a 
L8J”~k and L~J+l~k _ L~P”+‘*~, it follows that 
,$6-W a L 

C:ndition 1. 
8~m~k. By induction this implys 2 

Recall Example 3.1, implying that it is impos- 
sible to establish the order _ among two label- 
ing operation executions, from the order among 
their associated labels alone. To overcome this 
problem, instead of attempting to decide the or- 
der between two given labeling operation execu- 
tions, the algorithm will choose a pair out of 
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several given labeling operation executions, for 
which the order =+ can be determined. Thus, 
to allow the select operation at level m of phase 
k, to choose a “winner” process, say 2, for which 
L1*mrh & L2mlk, labels of 1: and y from 8 con- 
se\utive collects will be analyzed. 

Let it first be shown that if the following Con- 
dition 3 holds for y, tha,t is 

(3cl,c2 E {l..8))(cl ,< c2) A (e$‘+ 4 
e cZ,m,k Y 19 

then L~l~m~k _ L,J2Jn~’ (this: because of the 
order of label collecting, will imply Li,mpk ) 
L 8,m,k 

). Assume by way of contradiction 
tlat L,e’,m>k _ I;;:W&. Since e;llmlk v-< 
,f c%m,k 
Y ’ it must be by the definition of ==$ 

that ~c%m,k -“-bl, ,r$,fn,k~ It cannot be that 
ec2,m,kY E maximaz~oQs (Lpq since by the 
p;operties of the labeling schemi, for the label 
e!l E maximaz-obs(~~l m,k), e!l “4 eylk. 
Thus, there must be a different labeling op- 

eration execution e!J E maximahobs (LG1prn,‘), 
Lc2,m,k -c LPI y . This label e,rbl was already ob- 
se;ved (i.e. must have been written), before the 

end of the read of ~.$~m~k. Thus, -$‘I, or a la- 
bel later than it, must have been read instead of 
f?c2~m~k, in the collect c2 of level m in phase k, a Y 
contradiction. 

It remains to be shown that if Condition 3 does 
not hold for y, it is the case that L~~m~k I 
L 8~m~k, and z can be correctly returned. As- 
s:me by way of contradiction that Condition 3 
does not hold for y. It cannot, by the same 
arguments as above, be that Condition 3 holds 
for CC, that is, (3cl,c2 E {l..8})(cl < c2) A 
(e;‘prn,’ 4 eJ2~m~k>. Therefore, it must be that 
there are four nonconsecutive collects of lcl~m~k, 
cl E {I,3,5,7), and fo,ur nonconsecutive collects 
0f e c2~m~k, c2 E {2,4,6, S} such that the labels 
cm+ cl E {1,3,5,7} are all different from one 
aLother, and the labels ~~~~~~~~~ c2 E {2,4,6,8} 
are all different from one another. The reason is 
that if any two of them are the same, say eflm*k 
and elJ”lk, then in orde:r for the above Condi- 
tion 3 not to hold for z cl = 4 and c2 = 3, it 
must be that e$mlk 4 t!,j’srntk. But since fJ3*mpk 
and e~~m~k are the sam’e, it would followYthat 

e4tnslk 4 15~m~k, and Condition 3 would hold for 
y: a contraYdiction. 

To complete the proof, it remains to be shown 
that if the labels ~~l~m~k, cl E {1,3,5,7} are all 
different from one another, and the labels eJ2~m~k, 
c2 E (2,4,6,8} are all different from one another, 
then L~~m~k =+ L8~mlk. The situation above is 
such that during t3che 8 collect operations, each 
of the processes z and y executed a new labeling 
operation at least 3 times. It can be formally 
shown13 that the third new labeling operation 
execution L.$m~k, after x and y moved at least 
3 times, occurred completely after the initial la- 
beling of y, that is, L~~m~k - Ll*“‘lk. 

Formal proofs will be presented in the full pa- 
per. As a final comment, note that for algorithms 
where only the maximum label is required, and 
not a complete order among all returned labels 
(like in construction of a mrmw atomic register or 
solutions to the mutual exclusion problem), only 
one phase of label collection is required, that is, 
only 8 logn collects14. 

4 Acknowledgements 

We would like to thank Yehuda Afek and Mike 
Merritt for many important conversations and 
comments. It was a subtle observation of Mike’s 

l$ 
re arding pairwise-consistancy among scans, that 
e us eventually to the current ctss definitions. 

References 

[ADMS88] Y, Afek, D. Dolev, M. Merritt, and N. Shavit, 
“A Bounded frfo solution to the I-exclusion 
problem,” in preparation. 

L4381 K. Abrahamson, “On Achieving Consensus 
Using a Shared Memory,” PTOC. 7th ACM 
Symp. on Principles of Distributed Comput- 
ing, 1988, pp. 291-302. 

[AGSS] J. H. Anderson, and M. G. Gouda, “The 
Virtue of Patience: Concurrent Program- 
ming With and Without Waiting,” unpub- 
lished manuscript, Dept. of Computer Science, 
Austin, Texas, Jan. 1988. 

[ADS891 H. Attiya, D. Dolev, and N. Shavit, “A 
Bounded Probabilistic Shared-Memory Con- 
sensus Algorithm,” unpublished manuscript. 

13This claim is not true if less than 3 new labelings took 
place. 

14The number of collects in each phase can be lowered 
to 5logn, if one gives up the property that the order of 
reads in a collect be arbitrary 

464 



w381 

[B187] 

[BP871 

[CIL87] 

[D65] 

[DGS88] 

S. Ben-David, “The Global Time Assumption 
and Semantics for Concurrent Systems,” Proc. 
7th ACM Symp. on Principles of Distributed 
Computing, 1988, pp. 223-231. 

B. Bloom, “Constructing two-writer atomic 
registers,” Proc. 6th ACM Symp. on Princi- 
ples of Distributed Computing, 1987, pp. 249- 
259. 

J. E. Burns, and G. L. Peterson, “Constructing 
Multi-Reader Atomic Values from Non-Atomic 
Values,” PTOC. 6th ACM Symp. on Principles 
of Distribuled Computing, 1987, pp. 222-231. 

B. Chor, A. Israeli, and M. Li, “On Processor 
Coordination Using Asynchronous Hardware”, 
Proc. 6th ACM Symp. on Principles of Dis- 
tributed Computing, 1987, pp. 86-97. 

E. W. Dijkstra, “Solutionof a Problem in Con- 
current Programming Control,” CACM 8, 9, 
1965, p. 569. 

D. Dolev, E. Gafni, and N. Shavit, “Toward a 
Non-Atomic Era: L-Exclusion as a Test Case,” 
Proc. 20th Annual ACM Symp. on the Theory 
of Computing, 1988. 

[FLBB79] M. J. Fischer,N. A. Lynch, J. E. Burns, and A. 
Borodin, “Resource Allocation with Immunity 
to Limited Process Failure,” PTOC. 20th IEEE 
Symp. on Foundations of Computer Science, 
1979, pp. 234-254. 

[FLBB85! M. J. Fischer, N. A. Lynch, J. E. Burns, and A. 
Borodin, “Di&ibuted fife’ Allocation bf Iden- 
tical Resources Using Small Shared Space,” 
MIT/LCS/TM-290,1985. 

wQ31 

[IL871 

[K781 

IL741 

[LSSa] 

[L86b] 

[L86c] 

[L86d] 

M. P. Herlihy, “WaitFree Implementations of 
Concurrent Objects,” Proc. 7th ACM Symp. 
on Principles of Distributed Computing, 1988, 
pp. 276-290. 

A. Israeli and M. Li, “Bounded Time Stamps,” 
PTOC. 28th Annual IEEE Symp. on Founda- 
tiona of Computer Science, 1987, pp. 371-382. 

H. P. Katseff, “A New Solution to the Crit- 
ical Section Problem,” PTOC. 10th Annaal 
ACM Symposium on the Theory of Compst- 
ing, 1978, pp. 8688. 

L. Lamport, “A new Solution of Dijkstra’s 
Concurrent programmi ng problem,” CACM 
17, 8 1974, pp. 453-455. 

L. Lamport, “On Interprocess Co-unica- 
tion. Part I: Basic Formalism,” Distributed 
Computing 1, 2 1986, 77-85. 

L. Lamport, “On Interprocess Communica- 
tion. Part II: Algorithms,” Distribated Com- 
puting 1, 2 1986, pp. 86-101. 

L. Lamport, “The Mutual Exclusion Problem. 
Part I: A Theory of Interprocess Communica- 
tion,&’ J. ACM 33, 2 1986, pp. 313-326. 

L. Lamport, “The Mutual Exclusion Problem. 
Part II: Statement and Solutions,“ J. ACM 
33, 2 1986, pp. 327-348. 

[LV88] 

[LH88] 

IN871 

P311 

1P831 

[PB87] 

P881 

m361 

P3381 

[SAG871 

[VA861 

M. Li, and P. Vitanyi, “Uniform Construc- 
tion for Wait-Free Variables,” unpublished 
manuscript, X988. 

E. A. Lyclclama and V. Hadzilacos, “A Fair 
Mutual Exclusion Algorithm With Small Com- 
munication Variables,” submitted for publica- 
tion, 1988. 

FL Newman-Wolfe, “A Protocol for Wait- 
free Atomic, Multi Reader Shared Variables,” 
PTOC. 6th ACM Symp. on Principles of Dis- 
tributed Computing, 1987, pp. 232-248. 

G. L. Peterson, “Myths about the Mutual- 
Exclusion Problem,” IPL 12, 3 1981, pp. 115- 
116. 

G. L. Peterson, “Concurrent Reading While 
Writing,” ACM TOPLAS 5, 1 1983, pp. 46- 
55. 

G. L. Peterson, and J. E. Burns, “Concur- 
rent Reading While Writing II : The Multi- 
Writer Case,” Proc. 28th Annual IEEE Symp. 
on Foundations of Computer Science, 1987, 
pp. 383-392. 

G. L. Peterson, personal communication. 

M. Raynal, Algorithms for Mutual Exclusion, 
North Oxford Academic, 1986. 

R. Schaffer, “On the Correctness of Atomic 
Multi-Writer Registers,” MIT/LCS/TM-364, 
June 1988. 

A. K. Singh, J. H. Anderson and M. G. 
Gouda, “The Elusive Atomic Register Revis- 
ited,” PTOC. 6th ACM Symp. on Principles of 
Distributed Computing, 1987, pp 206-221. 

P. Vitanyi, and B. Awerbuch, “Atomic Shared 
Register Access by Asynchronous Hardware,” 
Proc. 27th Annual IEEE Symp. on Founda- 
tions of Computer Science, 1986, pp. 233-243. 

A Some Examples of Applications 

The following is a simple unbounded algorithm 
for solving the famous problem of constructing a 
mrmw atomic register, from swmr atomic regis- 
ters. This solution is a version (due to Li and Vi- 
tani [LVSS]) of the elegant and simple unbounded 
Vitani-Awerbuch algorithm [VA86]. It is based 
on the use of a natural number ctss. Each pro- 
cess i writes to a mrsw atomic register denoted vi. 
Each register contains two fields, a label, that is, 
a natural number, and a value associated with it 
(value@label using the notation of [LV88]). The 
following is an implementation of the read and 
write by a process i. 
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function read; 
begin 

recad 01, ,., 27,; 
select the maximal time-stamp &; 
return valUe@l,; 

end; 

procedure write(value); 
begin 

read ~1, .., v,; 
select the maximal time-stamp e,; 
write into vi the l)alue and 4, + 1; 

end; 

Note that the write operation is just a labeling, 
and the read is a scan followed by returning the 
value associated with the maximal label. As men- 
tioned earlier, one would need to let the labels 
of the ctss include their associated values. Re- 
placing the above unbounded operations by the 
Labeling and Scan operations of the bounded 
concurrent-time-time-stam.p system will immedi- 
ately produce a bounded solution to the problem. 
Note again that the general implementation of 
the scan operation, as described in this extended 
abstract requires 8n log n ‘collects, but since only 
the maximum (and not a total ordering) of the 
labels is required, it can be reduced to 8 logn col- 
lects, as will be elaborated upon in the full paper. 

The following is a f;fo solution to the Z-Exclusion 
Problem due to [ADMS88], based on the use of a 
ctss. In the following, the scan and label opera- 
tions of process i are as described, where the ctss 
is implemented using swmr atomic registers, and 
xi, i E (1, “, n} are s2ornr safe registers. 

do forever 
xj := true; 
labeling ; 

L: (Z,+) := scan; 
if I( j 1 xj A (4, 4 ei)].j > I then goto L fi; 
critical section 
xi := false; 
remainder section 

od; 

can be achieved. It is interesting to note that 
the amount of shared memory needed meets the 
lower bound of [FLBB79]. If one is interested in 
the unbounded implementation, just substitute 
lj := max(.!l, .., 1,) + 1 for the labeling operation, 
and read(fJr ) .., 4,) for the scan. Notice that for 
1 = 1, the above is a very simple solution to the 
fundamental mutual exclusion problem of [D65]. 
Other algorithms such as the unbounded imple- 
mentation of a ctss in the Bakery Algorithm of 
Lamport [L74], can also be modularly replaced, 
and by adding a simple modification to allow the 
ctss to include restarts, the solution can be made 
to be resiliant to restart failures [L74, L86d]. 

The only known bounded fife solution to the 
problem, due to [FLBB79] was based on the use 
of a strong form of Test and Set. It was un- 
known whether a level of fairness higher than n2- 
waiting (see [DGS88]) without use of test and set 
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