
A Steady State Analysis of Di�racting

Trees

Nir Shavit � Eli Upfal y Asaph Zemach z

July ��� ����

Abstract

Di�racting trees are an e�ective and highly scalable distributed�pa�

rallel technique for shared counting and load balancing� This paper presents

the �rst steady�state combinatorial model and analysis for di�racting

trees� and uses it to answer several critical algorithmic design questions�

Our model is simple and su�ciently high level to overcome many im�

plementation speci�c details� and yet as we will show it is rich enough

to accurately predict empirically observed behaviors� As a result of our

analysis we were able to identify starvation problems in the original di��

racting tree algorithm and modify it to a create a more stable version� We

are also able to identify the range in which the di�racting tree performs

most e�ciently� and the ranges in which its performance degrades� We

believe our model and modeling approach open the way to steady�state

analysis of other distributed�parallel structures such as counting networks

and elimination trees�

� Introduction

Di�racting trees ���� are among the most e�ective and scalable distributed�
parallel techniques for shared counting� with a variety of applications to load
balancing and concurrent data structure design� Di�racting trees are a special
form of the counting networks of Aspnes� Herlihy� and Shavit �	�� They are

�MIT and Tel�Aviv University� Supported by National Science Foundation grant CCR�

�������� Contact Author	 shanir�theory�lcs�mit�edu�
yThe Weizmann Institute
 Israel
 and IBM Almaden Research Center
 California� Work

at the Weizmann Institute supported in part by the Norman D� Cohen Professorial Chair of

Computer Science
 a MINERVA grant
 and a grant from the Israeli Academy of Science�
zTel�Aviv University� Supported by an Eshkol Fellowship from the Israeli Ministry of

Science�

�

0

1

2

3

y

y

y

y

x6 5 4 3 2 1

5 3 1 1 5

3

2 6

4

6 4 2

=

=

=

=

=

Figure �
 A Simple Counting Tree

constructed from simple one�input two�output computing elements called bal�
ancers that are connected to one another by wires to form a balanced binary
tree� Tokens �processes� arrive on the balancer
s input wire at arbitrary times�
and are output on its output wires� Intuitively one may think of a balancer as a
toggle mechanism �a bit that is repeatedly complemented�� that given a stream
of input tokens� repeatedly sends one token to the left output wire and one to
the right� e�ectively balancing the number of tokens that have been output� To
illustrate this property� consider an execution in which tokens traverse the tree
sequentially� one completely after the other� Figure � shows such an execution
on a tree of width 	� As can be seen� the tree moves input tokens to output
wires in increasing order modulo 	� Trees of balancers having this property can
easily be adapted to count the total number of tokens that have entered the
network� Counting is done by adding a �local counter� to each output wire
i� so that tokens coming out of that wire are consecutively assigned numbers
i� i� 	� i� �	 � �� � � �

However� under high loads� the toggle bits� especially the one at the root
balancer of the tree� will be hot�spots su�ering from contention and sequential
bottlenecks that are as bad as that of a centralized counter implementation�
Di�racting trees overcome the problem by having a �prism� mechanism in front
of the toggle bit of every balancer� allowing independent pairs of tokens to be
�di�racted� in separate memory locations in a coordinated manner one to the
left and one to the right� A coordinated pair of processors can leave the balancer
without either of them having to toggle the shared bit� since each pair of toggles
leaves the bit in the same state� The processors need simply to agree between
themselves which one would have gotten the ��� bit� and which the ���� The
di�raction mechanism uses randomization to ensure high collision�di�raction
rates on the prism� and the tree structure guarantees correctness of the output
values� Given appropriate hardware primitives� di�racting trees can be imple�

�

mented in a lock�free manner� In fact� assuming a hardware Fetch�Complement
operation allows making di�racting trees wait�free ����� that is� for each incre�
ment operation termination is guaranteed in a bounded number of steps even if
all other processors fail�

When implementing di�racting trees ����� the following type of questions
are of critical importance� Given a typical system with P processors that cycle
repeatedly between performing an increment on a di�racting tree based counter
and performing some amount of work � what are the optimal choices of
 �a�
the tree �size� �captured by its depth d� relative to the number of processors
P � If the tree is too small� it will be overloaded� bringing contention and less
parallelism than possible� If it is too deep� the counters at its leaves will not be
fully utilized� achieving less than optimal throughput� �b� The prism widths�
quanti�ed by L� the total number of prism locations in the balancers at a given
level of the tree� This parameter a�ects the chances of a successful pairing�
o�� If it is too large� then processors will tend to miss each other� failing to
pair�o� and causing contention on the toggle bit� If it is too small� contention
and sequential bottlenecking will occur as too many processors will be trying to
access the same prism locations at the same time�

Finally� even with an optimal choice of tree parameters for a certain maxi�
mum number of processors P � there is a wide range of intermediate concurrency
levels in which it is unclear what the rate of di�raction will be and hence per�
formance is hard to predict�

In this paper we present the �rst steady�state combinatorial analysis for di��
racting trees� and use it to explain their behavior patterns and answer critical
design questions such as the ones posed above� Our model is simple and su��
ciently high level to overcome many implementation speci�c details� and yet as
we will show it is rich enough to accurately predict empirically observed behav�
iors� As a result of our analysis we were able to identify starvation problems
in the algorithm of ���� and thus introduce a more stable di�racting balancer
algorithm �see section �����

We were also able to identify the range �as a function of P � work� d and L�
in which the di�racting tree performs most e�ciently� and the ranges in which
its performance degrades� We show that when P

dL
� O��� and L � �d� the

throughput of the system is optimal� and contention is low� With less processors�
di�raction probability decreases causing a rise in latency which reaches its peak
when P � d

p
L� We further derive performance bounds for very large and very

small values of P �

In the �nal section of this paper we provide a collection of experimental
benchmarks that show how accurately our model �ts with actual di�racting
tree performance�

The closest modeling work related to ours is the amortized contention model
of Dwork� Herlihy� and Waarts ��� used in the analysis of counting networks

�

��� and of the randomized counting networks by Aiello� Venkatesan� Yung ����
However� unlike our work� that analysis is directed at modeling and quantifying
contention in the face of a worst case adversary� not the steady state behaviors
of the algorithms in normal �i�e� common case� executions�

This paper is organized as follows
 Section � gives a brief review of tree based
counting�networks and contains both the original di�racting tree algorithm� as
well as the new code developed based on the analysis� Section � introduces
the combinatorial model and analyzes the performance of di�racting trees in
the steady�state� In Section 	 we present empirical evidence collected through
benchmarks on a simulated shared memory machine to support the analysis and
Section � concludes this paper and lists areas of further research�

� Counting Trees and Di�raction

Di�racting trees ���� are counting trees� a special form of the counting network
data structures introduced by Aspnes� Herlihy and Shavit ���� They are binary
trees of nodes called balancers� A balancer is a computing element with one
input wire and two output wires� Tokens arrive on the balancer
s input wire
at arbitrary times� and are output on its output wires� Intuitively one may
think of a balancer as a toggle mechanism� that given a stream of input tokens�
repeatedly sends one token to the left output wire and one to the right� e�ectively
balancing the output on each wire� We denote by x the number of input tokens
ever received on the balancer
s input wire� and by yi� i � f�� �g the number of
tokens ever output on its ith output wire� Given any �nite number of input
tokens x� it is guaranteed that within a �nite amount of time� the balancer will
reach a quiescent state� that is� one in which the sets of input and output tokens
are the same� In any quiescent state� y� � dx��e and y� � bx��c� We will abuse
this notation and use yi both as the name of the ith output wire and as the
count of the number of tokens output on that wire�

The di�racting tree is de�ned as follows� Let k be a power of two� and let
us de�ne the counting tree Binary��k� inductively� When k is equal to �� the
Binary��k� network consists of a single balancer with output wires y� and y��
For k � �� we construct the Binary��k� tree from two Binary�k� trees and one
additional balancer� We make the input wire x of the single balancer the root of
the tree and connect each of its output wires to the input wire of a tree of width
k� We then re�designate output wires y�� y�� � � � � yk�� of the tree extending from
the � output wire as the even output wires y�� y�� � � � � y�k�� of Binary��k� and
the wires y�� y�� � � � � yk�� of the tree extending from the balancer
s � output wire
as the odd output wires y�� y�� � � � � y�k���

One can extend the notion of quiescence to trees in the natural way� and
de�ne a counting tree of width w as a of tree balancers� Binary�w�� with outputs

	

type balancer is

begin

lock� boolean

toggle� boolean

next� array ������ of ptr to balancer

end

globals

Width� integer

Root � ptr to root of Binary�width� tree

� function typical�balancer	b� ptr to balancer
 � ptr to balancer

� begin

� lock	b
�lock

� i �� b
�toggle

� b
�toggle �� not	i

� unlock	b
�lock

� return b
�next�i�

� end

� function fetch�incr	
� integer

� begin

� b�� Root

� while not leaf	b

� b �� typical�balancer	b

� endwhile

� i �� increment�counter�at�leaf	b

� return i � Width � number�of�leaf	b

� end

Figure �
 A Shared�Memory tree�based counter implementation

y�� ��� yw�� that satisfy the following step property

In any quiescent state� � � yi � yj � � for any i � j�

To illustrate this property� consider an execution in which tokens traverse
the tree sequentially� one completely after the other� Figure � shows such an
execution on a Binary�	� counting tree� the tree moves input tokens to output
wires in increasing order modulow� Trees having this property are called count�
ing trees because they can easily be adapted to count the total number of tokens
that have entered the network� Counting is done by adding a �local counter�
to each output wire i� so that tokens coming out of that wire are consecutively
assigned numbers i� i �w� � � � � i� �yi � ��w�

�

On a shared memory multiprocessor� one can implement a balancing tree
as a shared data structure� where balancers are records� and wires are pointers
from one record to another� Each of the machine
s asynchronous processors can
run a program that repeatedly traverses the data structure from the root input
pointer to some output pointer� each time shepherding a new token through the
network� Pseudo�code for this implementation appears in Figure �� We do not
assume an atomic fetch�and�complement operation� instead� we use a lock to
avoid race conditions on the balancer
s toggle bit�

Di�racting trees are counting trees whose balancers are of a novel type called
di�racting balancers� One could easily implement a balancer using a single
toggle bit� Each processor would toggle the bit inside the balancer� and ac�
cordingly decide on which wire to exit� However� if many tokens attempted
to pass through the same balancer concurrently� the toggle bit would quickly
become a hot�spot� Even if one applied contention reduction techniques such
as exponential back�o�� the toggle bit would still form a sequential bottleneck�
One can overcome this sequential bottleneck based on the following observation

If an even number of tokens passes through a balancer� they are
evenly balanced left and right� yet the value of the toggle bit is un�
changed�

Thus� one can allow pairs of colliding tokens to �pair�o�� and coordinate among
themselves which is di�racted �right� and which di�racted �left�� Then they
could both leave the balancer without either of them ever having to touch the
toggle bit� By performing the collision�coordination decisions in separate lo�
cations instead of a global toggle bit� one can increase parallelism and lower
contention� However� to guarantee good performance one must make sure that
many collisions occur� not an obvious task given the asynchrony in the system�

To achieve this goal� the implementation of the di�racting balancer is based
on adding a special prism array �in front� of the toggle bit in every balancer�
When a token �processor� P enters the balancer� it �rst selects a location j in
prism uniformly at random� P tries to �collide� with the previous processor
that selected j� and if successful they leave the balancer one to the left and the
other to the right� Otherwise� P waits ��spins�� for a �xed time spin to see
whether some other processor R will enter and collide with it by selecting the
same location j in prism� If no collision occurs within time spin� P toggles the
shared bit and leaves the balancer accordingly�

��� The Original Di�racting Tree Implementation

Figure � gives the data structure for di�racting balancers due to Shavit and
Zemach ����� Each balancer record consists of a toggle bit �with accompanying

�

type balancer is

size� integer

spin� integer

prism� array ����size� of integer

lock� boolean

toggle� boolean

next� array ������ of ptr to balancer

endtype

location� global array����NUMPROCS� of ptr to balancer

Figure �
 Di�racting balancer data structure

lock� and a prism array� The spin variable holds the amount of a time a pro�
cessor should delay at this node while waiting to be di�racted� and next������

are the two balancers �or counters� which are descendants of this node of the
tree� An additional global location����n� array has an element per processor
p � f� � � �ng �per processor� not per token�� holding the address of the balancer
which p is currently traversing� The data structures of a di�racting tree of width
	 are depicted graphically in Figure 	�

Figure � gives the implementation of a di�racting tree balancer that was
used in �����

� MYID � The ID of the processor executing the code�

� random�n� � Returns an integer number in the range ��� n� ���

� SWAP�a	x� � Atomically writes x to address a� and returns the previous
value there�

� C
S�a	p	n� � Atomically compares the value at address a to p� if they
match� writes n to a and returns TRUE� otherwise returns FALSE�

� T
T
S�l� � Performs a Test�Test�Set operation ���� on the lock� l� re�
turns TRUE if the lock was captured�

The counters at the tree
s leaves are implemented using a hardware F
I

operation� The code translates into the following sequence of operations per�
formed by a processor� p� shepherding a token through a balancer� b� �see also
accompanying illustration in Figure 	�� First� p announces its arrival at b�� by
writing b� to location�p� �line ��� It then swaps its own PID for the one writ�
ten in a randomly chosen location in the prism array �line 	���� Assuming it
has read the PID of an existing processor �e�g� r�� p attempts to collide with it�

�

p

location

r qs

p

0

b0

prism

toggle

b1

b2

q

1

0

s

counter0

counter1

counter2

counter3

b0 b0 b0 b1

1. n

Figure 	
 A di�racting tree of width 	

The collision itself is accomplished by performing two compare�and�swap oper�
ations� The �rst removes p from the set of processors waiting at this balancer
�thus assuring no other processor will collide with it�� the second removes the
other processor� completing the di�raction� and allowing p to be di�racted to
the next��� balancer �lines ����� If the �rst compare�and�swap fails� it means
that some other processor has already managed to collide with p� so p is di��
racted to the next��� balancer �line ���� If the �rst succeeds but the second
compare�and�swap fails� it means that the processor with whom p was trying to
collide is no longer available� �e�g� if p were trying to collide with q�� in which
case it goes on to the second part of the algorithm �line ���

This part starts with p giving some other processor� who may have read its
ID from prism� time to di�ract it� This is done by repeatedly reading the value
of location�p� spin times �lines ������� Unless di�racted� p now attempts to
acquire the lock on the toggle bit �line ���� If successful� it �rst removes itself
from the set of waiting processors �line ��� and then toggles the bit and exits
the balancer �lines ������� If it could not remove itself from the set� it follows
that some other processor already collided with p� and it exits the balancer�
being di�racted to next��� �lines ����	��

�

� function do
node	node� ptr to balancer
 returns ptr to balancer

� begin

� location�MYID� � node

� rand�place � random	node�size

� his�id � SWAP	node�prism�rand�place��MYID

� if C�S	location�MYID��node�EMPTY
 then

� if C�S	location�his�id��node�EMPTY
 then

� return node�next���

� else location�MYID� � node

�� else return node�next���

�� repeat forever

�� repeat node�spin times

�� if location�MYID� �� node

�� return node�next���

�� endrepeat

�� if T�T�S	node�lock
 then

�� if C�S	location�MYID��node�EMPTY
 then

�� bit�val � node�toggle�bit

�� node�toggle�bit � �
 bit�val

�� node�lock � OPEN

�� return node�next�bit�val�

�� else

�� node�lock � OPEN

�� return node�next���

�� endif

�� endif

�� endrepeat

�� end

Figure �
 Original version of di�raction node algorithm

�

��� The Critical Parameters

As a rule of thumb� when a large number of processors concurrently enter the
balancer� the chances for successful collisions in prism are high� and contention
on the toggle bit is unlikely� When there are few processors� each will spin a
short while� reach for the toggle bit and be o�� since all �spinning� is done on
a locally cached copy of a memory location� it incurs no overhead� However�
there is a large range of concurrency levels where there are moderate numbers
of processors� and yet it is far from clear what level of di�raction is achieved�
Furthermore� it was observed by ���� ��� that too many concurrent processors
can also cause performance degradation�

This brings us to the questions most often asked by practitioners imple�
menting di�racting trees ����� Given a system with P processors that cycle
repeatedly between performing an increment on a di�racting tree based counter
and performing some amount of work � what are the optimal choices of

�� d � The depth� and hence the �size� of the tree �the width is �d�� If
the tree is too small� it will be overloaded� bringing contention and less
parallelism than possible� If it is too deep� the counters at its leaves will
not be fully utilized� achieving less than optimal throughput�

�� L � The total number of prism locations at a given level of the tree� At
level i there are �i prisms of size L��i� This parameter a�ects the chances
of a successful pairing�o�� If it is too large� then processors will tend to
miss each other� failing to pair�o� and causing contention on the toggle
bit� If it is too small� contention and sequential bottlenecking will occur
as too many processors will be trying to access the same prism locations
at the same time�

It is these and similar questions that our work attempts to address�

��� The New Algorithm

We begin by modifying the di�racting tree algorithm presented in Section ����

Touitou ���� reports the following when running a benchmark on the proto�
type MIT Alewife machine ���� In his benchmark� processors repeatedly attempt
to increment a di�racting tree based counter until some �xed number of incre�
ments has been performed� During su�ciently long runs� some processors end
up performing all the increments� while all others remain �starving� in the tree�
He conjectured that this is caused by processors that were not di�racted and
queue up in front of the lock on a toggle bit� The solution was to add a second
layer prism between the �rst layer and the toggle bit� a method which empiri�
cally exhibits more stability at the price of slightly increased latency ����� The

��

combinatorial model of the next section shows that this form of starvation is an
inherent phenomenon in the old code due to the fact that processors that do
not di�ract can leave the balancer only by toggling the shared bit� that is� by
passing through a sequential bottleneck� Our analysis shows that in su�ciently
long runs one will reach a permanent global state in which processors are piled
up at the toggle bits� This would also be true of the method of ���� unless many
levels of prisms a re used� resulting in poor latency�

The improved algorithm presented in this article solves this problem by
allowing processors to repeatedly return to attempt di�ractions on the prism
after failing to acquire the toggle bit� It is a dynamic form of the method
used by ����� but does not su�er from the same latency increase since it always
uses the �right� number of prisms� Figure � shows the new algorithm� The
forever loop has been moved up to encompass the entire di�raction attempt
�Instead of being between lines �� and �� it is now on line 	�� Now if a processor
could not di�ract the processor whose ID it has read from prism� and was not
subsequently di�racted by a processor who read its ID� and could not acquire
the lock on the toggle bit� then it will go on to make a fresh di�raction attempt�
starting the process anew�

The method suggested in ���� to overcome starvation was to allow proces�
sors waiting for the toggle bit to rewrite their IDs to prism so that later ar�
riving processors might di�ract them �this is equivalent to adding the code
node�prism�rand place��MYID between lines �� and �� of Figure ��� This of�
fers only a partial remedy� since if many processors wait for the toggle bit� no
di�ractions occur even if the processors
 PIDs are written in the prism array� In
any su�ciently long run some processors will get stuck� forever waiting for the
toggle bit� In the next section we prove that the new algorithm� when run with
the optimal tree of depth d and the optimal prism width L��i� does not su�er
from this starvation phenomenon�

Figure � also gives the code for the dynamic update of the spin variable
�lines �	��� and ������� a performance enhancement technique that was used
both in ���� and here� The spin variable serves both as a delay in which a
processor may be di�racted and as a method to exponentially back�o� from the
toggle bit� Spin time is doubled when a processor is di�racted and halved if
it captures the lock on the toggle bit� The reasoning behind the update policy
is that if a processor is di�racted� it implies there are many other processors
in the system� if it has captured the toggle bit� there are probably only a few
active processors� With many processors� waiting avoids overloading the toggle
bit and has a good chance of yielding a di�raction� with only a few processors�
waiting for a di�raction is a waste of time � better to go for the toggle bit
directly� MAXSPIN is a system dependent constant which de�nes the maximum
amount of time a processor might spin�

The method used in ���� to prove correctness is based on analysis of the

��

� function do
node	node� ptr to balancer
 returns ptr to balancer

� begin

� location�MYID� � node

� forever �� Moved up to encompass entire algorithm ��

� rand�place � random	node�size

� his�id � SWAP	node�prism�rand�place��MYID

� if C�S	location�MYID��node�EMPTY
 then

� if C�S	location�his�id��node�EMPTY
 then

� return node�next���

�� else location�MYID� � node

�� else return node�next���

�� repeat node�spin times

�� if location�MYID� �� node then

�� diffracted� probably a high load better to spin longer ��

�� if node�spin � MAXSPIN then

�� node�spin � node�spin � �

�� endif

�� return node�next���

�� endif

�� endrepeat

�� if T�T�S	node�lock
 then

�� if C�S	location�MYID��node�EMPTY
 then

�� bit�val � node�toggle�bit

�� node�toggle�bit � �
 bit�val

�� node�lock � OPEN

�� toggled� probably a low load better to spin less ��

�� if node�spin � � then

�� node�spin � node�spin � �

�� endif

�� return node�next�bit�val�

�� else

�� node�lock � OPEN

�� return node�next���

�� endif

�� endif

�� endfor

�� end

Figure �
 New version of di�raction node algorithm

��

di�erent values taken by the elements of the location array during the exe�
cution of the algorithm� Those methods carry over to the new algorithm with
only slight modi�cations� We will show this for the most important lemma
of ����� the rest of the proof can be deduced in a similar manner� The proof
is constructed around the pairing of canceling tokens� those that leave the bal�
ancer through the return node�next��� of line �� and canceled tokens� those
that leave the balancer through the return node�next��� of lines ��� �� or
��� Since all other tokens go through the toggle bit� showing that the num�
ber of canceled tokens is equal to the number of canceling tokens is enough to
prove that a balance is maintained on the balancer
s output wires� We denote
by C�Sp�location�r�� b� EMPTY� � true � a successful compare�and�swap oper�
ation performed by processor p on location�r�� changing its value from b to
EMPTY� Similarly� writeq�location�r�
� b� � denotes the operation of writing b
to location�r� by q�

Lemma ��� Given processors q �� r� if q performs C�Sq�location�r�� b� EMPTY� �
true � then the token currently shepherded by r through b is a canceled token�

Proof� Lemmas ��� and ���� of ���� prove that if q
s C�S operation� on r
s
element of location was successful� then r was in fact shepherding a token
though b at that same time� This token is performing operations in the code
somewhere between lines 	 and �	� In order for r
s token to leave through one of
the returns on lines � or ��� it must perform a C�Sr�location�r�� b� EMPTY� �
true operation� This can
t happen since the success of q
s operation changed
location�r� to empty� Since r can only shepherd one token at a time� and
only r can perform a writer�location�r�
� b� � it follows that all subse�
quent C�Sr�location�r�� b� EMPTY� operations must fail� If r
s token can
t
leave through lines � or ��� it is a canceled token�

� The Combinatorial Model

We use the following steady�state combinatorial process to model the perfor�
mance of di�racting trees in the shared memory environment�

The di�racting tree has depth d� The root� which is at level �� is a balancer
with a prism array of L cells� and one toggle bit� Level i � d has �i balancers�
each with a prism of dL��ie cells� and one toggle� Each leaf of the tree has one
counter�

The combinatorial process works as follows
 There are P processors� Each
processor proceeds from root to leaf via a sequence of balancers on increasing
levels� Once a processor reaches a leaf �which is a counter� on which a fast
operation such as a hardware fetch�increment is performed� it proceeds to a

��

�working state
� It returns to the root of the tree after r steps� where r is
distributed geometrically G� �

work�� �i�e�� the expected time that a process stays

in the �work
 state is work�� Our model assumes the empirically veri�ed fact
that� under equal loads� an operation on a counter is at least as fast as the
sequence of operations performed when di�racting on a prism� This is true� so
long as contention on the counter is not too great�

Each step has two parts� In the �rst part each processor currently at a
balancer chooses a random cell of the prism� If two processors choose the same
prism cell� both move to the next level� If only one chooses that cell� it stays at
the same level� If more than two choose the same prism cell simultaneously� two
move to the next level� the rest stay at their current balancer� In the second
part of the step� each processor that it still in that balancer tries to reach the
toggle� If at least one processor reaches the toggle� one processor moves to the
next balancer� and the toggle changes its state� Each �step� in our model is a
simpli�cation of the actual algorithm� since it represents sequences of operations
that in practice vary in their execution time in di�erent balancers� Also� we
ignore interference between processors� if three processors pick the same location
in the prism� we assume two will be di�racted� in reality� the third might interfere
with the di�raction of the other two� Another simpli�cation is the assumption
that a processor appears in only one place in the prism� this is inaccurate� Since
IDs are only erased from the prism as a result of swapping� it is possible for
some processor
s ID to be written in many places in the prism� Nevertheless� we
will show the model is rich enough to accurately predict empirically observed
behavior�

��� Analysis

Label the nodes of the tree �� ���� �d�� � � in a breadth �rst search order� i�e�
the �i nodes at level i have labels �i� ���� �i�� � �� Let Xt

j denote the number
of processors at node j at time t� let W t denote the number of processors in
the �work
 state at time t� and let � tj denote the state of the toggle of balancer

j at time t� Let Xt � �Xt
�� ���� X

t
�d������ and

 � t � �� t�� ���� �
t
�d������ Clearly

f� Xt�W t� � t�� j t � �g de�nes a Markov chain� This chain is �nite� aperiodic�
and irreducible� thus it has a stationary distribution� Our goal is to characterize
the performance of the di�racting tree process in the stationary distribution as
a function of P � L� d� and work�

Let Zt
i denote the number of processors moving from level i � d to level i��

at step t� Since in the stationary distribution E�Xt
j � � E�Xt��

j �� the expected
number of processors moving into a balancer in a given step equals the expected
number of processors moving out of that balancer� Thus� in the steady state

E�Zt
i � � E�Zt

i��� � E�Z��

�	

where E�Z� denote the expected number of processors moving from any one
level of the tree to the next level�

The value we are interested in is E�T �� the expected number of steps� in the
steady state� from the time a processor enters the root of the tree until the time
it returns to the root� We �rst prove a relation between E�T � and E�Z��

Lemma ���

E�T � �
P

E�Z�
�

Proof� Let Qi be the probability that in the stationary distribution a given
processor at level i proceeds to level i� � of the tree at a given step� Let E�Yi�
denote the expected number of processor at level i� Since E�Yi�Qi � E�Z��

Qi �
E�Z�
E�Yi�

� Let E�W � denote the expected number of processors at the �work

state in the stationary distribution� then E�Z� � E�W �
work

� Thus�

E�T � � work�
dX
i��

�

Qi

�
E�W �

E�Z�
�
P � E�W �

E�Z�
�

P

E�Z�
�

We do not have a full characterization of the stationary distribution� but we
can obtain a su�ciently good estimate for E�Z�� To simplify the presentation we
focus on the case in which work � �� which was also studied in the simulations�

Theorem ��� Let � � P
dL

� In the steady state distribution

E�Z� � ��� o�����L
��

�� � ��� �
�

Proof� Since we are interested in a lower bound for E�Z� we can ignore the
contribution of the toggles� To approximate the performance of the discrete
time Markov chain we study a related continuous time� density dependent jump
Markov chain �see ���� Chapers ���� or ���� Chapter ��� for detailed discussion
of density dependent jump Markov processes and the convergence theorem we
use here��

Processors in the continuous Markov process execute the same steps as in
the discrete process� The only di�erence is that in the continuous process the
time interval between any two actions of a processor is a random variable ex�
ponentially distributed with expectation � �instead of deterministically � in the
discrete process��

��

toggle

prism

k(pj) = 2k(j)

p(j) j

k(j)

k(p(j))mp(j)(t)
k(j)mj(t)

k(j)mj(t)

k(p(j))mp(j)(t)

Figure �
 A model of processor advancement in a di�racting tree

Without loss of generality we can assume that no two events occur simul�
taneously in the continuous process� We need however to carefully de�ne the
di�raction process so that the continuous process accurately models the discrete
one� When processor pi is active� it chooses a prism cell and stays there for a
random interval of time� till the next time it is active� If the prism cell has no
di�raction pair in it at time t we say that the cell is �free
� If pi chose a free
cell that already has another processor that chose that cell after it became free
the two processors are matched� and the cell becomes �occupied
� After another
random time interval the two matched processors are di�racted to the next level
of the tree� and the cell becomes free again� Note that processors that chose
a cell when it was occupied are not di�racted even if they stay there after it
becomes free�

Let 	 � �d�� � �� The state of the continuous process at time t is de�ned
by three vectors s�t� � �s��t�� ���� s��t��� m�t� � �m��t�� ����m��t��� and x�t� �
�x��t�� ���� x��t��� Where si�t� is the fraction of prism cells at node i which are
free and have one new processor �a processor that arrived after it became free�
at time t� mi�t� is the fraction of occupied cells at node i at time t� and xi is
the number of processors at node i at time t divided by the number of prism
cells at that node�

We formulate a system of di�erential equations that measures the expected
change in the system
s state in a short interval of time� We denote the parent
of node j by p�j��

��

For j � �� ���� 	

���
��

dxj
dt

� �mp	i
 � �mj
dsj
dt

� �xj � �mj � �mp	j
��� � �sj �mj�� sj
dmj

dt
� �xj � �mj � �mp	j
�sj �mj

���

To see the relation between the above system and the Markov process note
that in the continuous model the expected number of events in interval dt among
g processors is gdt� Let k�j� denote the number of prism cells at node j� then
the change in xj�t� in interval dt is given by

dxj�t� �
�

k�j�
�k�p�j��mp	j
�t�dt� �mj�t�k�j�dt��

Since k�p�i�� � �k�i� we get the �rst di�erential equation above �see illustration
in Figure ��� We get the second equation by observing that a total of k�j��xj�t��
�mj�t� � �mp	j
�t�� processors will choose a cell in node j when they become
active� k�j��xj�t� � �mj�t� � �mp	j
�t��dt processors become active in time
interval dt� Each has probability �� � sj�t� � mj�t�� to pick a free cell with
no new processors� and probability sj to transform a free cell with one new
processor to an occupied processor� The last term counts free cells with one
new processors that loose that processor� Similar derivations give the third
relation�

Consider �rst a deterministic process controlled by the above set of di�er�
ential equations� A necessary and su�cient condition for � s� m� x� to be a �xed
point of that process is that for all i dxi

dt
� �� dsi

dt
� �� and dmi

dt
� �� The

solution of the above system gives

mj �
��

�� � ��� �
�

The density dependent jump Markov process satis�es the conditions of Kurtz
s
convergence theorem �see Theorem ��� in ������ Thus� as L� d�	 the behavior
of the Markov process converges to that of the deterministic process�

We can now use the above analysis to characterize the performance of the
di�racting tree� We need however to add another bound which we ignored
above� namely that there are exactly �d counters at the leaves of the tree�

Consider the case in which P
dL

�	� In that case E�Z� �MIN �L�o�L�� �d��
and E�T � � MAX�P

L
� P��d�� If L � �d then congestion in the prism cells

degrades the performance� if L � �d the main congestion is in the counters� In
both cases the performance is less than optimal�

��

If P satis�es P
dL

� O���� then E�Z� �MIN �O�L�� �d�� If L � �d� then E�Z�
is linear in L� and E�T � � O�P�L� � O�d�� which is optimal up to a constant
factor�

As P gets smaller� P
dL

� �� the di�racting probability decreases� and the

performance degrades� If P � !�d
p
L�� E�Z� � !� P

�

d�L
� � P

d
p
L
� and E�T � �

O�d
p
L�� If P � o�d

p
L�� most of the contribution is from the toggles� As long

as P � d at least one processor moves forward in each level� E�Z� � �� and
E�T � � P � If P � d� E�T � � d�

Note that when P � O�dL�� which is the interesting range� the expected
number of processors trying to access a prism cell simultaneously is O���� and
with high probability no more than logL processors try to reach the same cell
simultaneously� These bounds justify our de�nition of a step� and conform
with the experimental results showing that di�racting trees have low memory
contention�

The starvation observed in experimenting with the old algorithm can be
easily understood when it is analyzed in our model� We can show that in each
step in each balancer a constant fraction of the processors reach the toggle� and
since in that algorithm processors do not return to the prism to try and di�ract
again� and given that the toggle processes only one processor at a time� there is
congestion built up in the toggle queue�

Finally we comment about adapting the di�racting tree to various ratios
between the speed of accessing a prism cell and the speed of the counter� If the
counter is 	 times faster than a di�racting process� we can trim the di�racting
tree so that a prism of size 	 feeds one counter� On the other hand if the speed
of a di�raction or a toggle step is 	 times faster than the counter� each leaf of the
full di�racting tree should feed a binary tree of depth dlog� 	e with 	 counters
in the leaves�

� Experimental Results

In order to verify the validity of our theoretical analysis we ran a set of bench�
marks on a simulated distributed�shared�memory multiprocessor similar to the
MIT Alewife machine ��� developed by Agarwal� et� al� Alewife is a large�scale
multiprocessor that supports cache�coherent distributed shared memory and
user�level message�passing� The nodes communicate via messages on a two�
dimensional mesh network� A Communication and Memory Management Unit
on each node holds the cache tags and implements the memory coherence proto�
col by synthesizing messages to other nodes� Our experiments make use of the
shared memory interface only� To simulate the Alewife we used Proteus�� a mul�

�Version ����
 dated February ��
 �����

��

global

integer work �� the work parameter ��

integer sum�latency� latencyN� list�place

diffracting�tree counter

real avg�latency��� total�latency

per processor code �

local

integer latency� start� end� i� j� randw

forever

start � current�time	

i � fetch�and�increment	counter

end � current�time	

atomically �

latency � end
 start

sum�latency � sum�latency � latency

latencyN � latencyN � �

if latencyN �� ���� then

avg�latency�list�place� �

sum�latency � latencyN

list�place � list�place � �

sum�latency � �

latencyN � �

endif

�

randw � random	work

repeat randw times

�� nothing ��

endrepeat

if i � MAXINDEX then quit

endfor

�

when all processors are done do �

local

integer i

for i � � to list�place
� do

total�latency � total�latency � avg�latency�i�

endfor

total�latency � total�latency � 	 list�place
 �

�

Figure �
 Code for Measuring Fetch�Increment Latency

��

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 16 32 64 128 256

La
te

nc
y

Processors

Depth=5
Depth=6

Figure �
 Latency of di�racting trees� logarithmic scale

tiprocessor simulator developed by Brewer� Dellarocas� Colbrook and Weihl ����
Proteus simulates parallel code by multiplexing several parallel threads on a
single CPU� Each thread runs on its own virtual CPU with accompanying local
memory� cache and communications hardware� keeping track of how much time
is spent using each component� In order to facilitate fast simulations� Proteus
does not do complete hardware simulations� Instead� operations which are local
�do not interact with the parallel environment� are run uninterruptedly on the
simulating machine
s CPU and memory� The amount of time used for local
calculations is added to the time spent performing �simulated� globally visible
operations to derive each thread
s notion of the current time� Proteus makes
sure a thread can only see global events within the scope of its local time�

In our benchmarks we measured the average latency of processors accessing
a distributed Fetch�Increment counter implemented as a di�racting tree with
hardware Fetch�Increment counters at its leaves� The average latency is the
average number of cycles it takes the counter to deliver an index� In these ex�
periments work was very close to �� In each simulation a counter was accessed
between ������ and ������ times� and the time to deliver an index was mea�
sured for each access� The average latency was measured after each ���� indices
delivered� the average of these times is the latency of the counter� In order to
take into account start�up times we ignored the latency of the �rst ����� indices
delivered� The pseudo�code in Figure � illustrates how the measurements were
performed� In the code� current time gives the number of cycles since some

��

2850

2900

2950

3000

3050

3100

40 60 80 100 120 140 160 180 200

La
te

nc
y

Processors

Depth=5

3600

3800

4000

4200

4400

100 150 200 250 300 350 400

La
te

nc
y

Processors

Depth=6

Figure ��
 Latency of di�racting trees� linear scale

agreed global event� fetch and increment is the di�racting tree� MAXINDEX is
the last index to be delivered and total latency is estimate of the counter
s la�
tency� By monitoring the di�erent values in the avg latency array for di�erent
values of i� we can make sure that the simulation has reached a steady state�
The random number function we used was Proteus
 fast random�� which is
an implementation of the ACM Minimal Standard Random Number Genera�
tor ���� ���

We now show how our combinatorialmodel ties together the choice of di�rac�
ting tree parameters depth� d� and prism locations per level� L� to the number of
processor� P � A di�racting tree is shown to operate optimally when P � O�dL�
and L � �d �the number of counters�� i�e� the number of processors should be
approximately equal to the number of prism locations in the tree� The constant
hidden by the O notation is small and depends on a particular machine
s ability
to handle multiple accesses to the same memory location� This is an expected
result and �ts well with the saturation model of Aspnes� Herlihy� and Shavit for
counting networks �	��

The following �gures show how our model accurately predicts the exper�
imental results� Figure � shows the latency of di�racting trees �ve and six
levels deep� In these experiments we use binary trees with d levels �meaning
�d counters� and L � �d� The graphs have a distinctive shape� The left hand
part corresponding to a small number of processors shows a low latency� that
increases as more processors are added� When the number of processors is very
small� the slope of the graph is low� indicating a nearly constant latency� this

��

�ts the term E�T � � d� As more processors are added� the slope increases due to
the sequential bottleneck at the toggle bits� this �ts the term E�T � � O�P � for
the range d � P � d

p
L� There is a local maxima of bad performance reached

when P � O�d
p
L�� here� as our model predicts� there are too few processors

to achieve di�ractions� but too many to be processed by the toggle bit� At
this point� we approach the bound E�T � � O�d

p
L� which is the algorithm
s

worst case performance� In fact� these results imply that one should avoid using
the trees in this range of concurrency� As more processors are added latency
decreases linearly� in accordance with the formula E�T � � O�P�L�� The close�
up graphs in Figure ��� especially the depth � tree� show this linear decrease
well� The depth � tree also shows how latency increases again as concurrency
increases� Note that the calibration of our graphs� and hence the phenomena we
are modeling� are very �ne relative to the changes in latency for other types of
data structures� For example� in ����� combining trees ���� are shown to have a
latency increase by ���� units over the tested concurrency range� and so the ���
unit change in latency of di�racting trees would be considered almost constant�
See ���� for details�

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 4 16 64 256 1024

La
te

nc
y

Prism Width

Depth=3

Figure ��
 Latency of di�racting trees with di�erent width prisms

Figure �� shows the e�ects of changing L� the total number of prism locations
in a level of the di�racting tree while keeping the other parameters constant�
Here we used a tree of depth � and �	 processors� with almost no work� The
number of counters in the tree does not change� it remains �d � �� We vary the
number of locations in a prism array of a balancer at level i so that there are

��

dL��ie per prism� The left hand side of the graph corresponds to a small L and
a large P � this approximates the case where P�L

dL
�	� We expect the latency

to behave as E�T � � P
L
� and this is indeed the case� When L is this small

di�ractions are constantly occurring on the prisms which can
t keep up with
the "ow of new processors� This situation continues up to an optimum point�
after which increasing L lowers the chance that two processors will pick the
same location in the prism� and thus latency begins to rise� Since the number

of di�ractions in the tree is O�P
�

dL
� we get a linear increase in latency� We can

expect the rise in latency to taper o� when L is large such that no di�ractions
are occurring� this can be observed in the right hand side of the graph�

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 3 4 5 6 7 8 9

La
te

nc
y

Time Period

New algorithm - average latency
Old algorithm - average latency

New Algorithm - maximal latency
Old Algorithm - maximal latency

Figure ��
 Comparison of old and new di�racting tree algorithms in terms of
average and maximal latency�

Finally� we present empirical evidence which indicates that the new algo�
rithm solves the starvation problem discussed in Section ���� Figure �� shows
a comparison between the average and maximal latencies of the old and new
algorithms� In these experiments we ran a di�racting tree based counter for sev�
eral thousand increment requests� After every thousand requests we measured
the average time for an index to be delivered and the maximum time any single
processor waited for an index� As can be seen� maximal times increase rapidly
in the old version � an indication of starvation� but remain stable for the new
version implying that the starvation problem has indeed been remedied�

��

� Conclusions

In this paper we have presented the �rst analysis of di�racting trees capable of
addressing critical design issues� We have identi�ed four ranges of P for which
there are speci�c performance bounds�

� If P
dL

� O��� and L � �d� then the throughput of the system is optimal
and the expected latency is O�d�� which is optimal up to a constant factor�

� As P gets smaller� the di�racting probability decreases� and the perfor�
mance degrades� reaching a formerly unnoticed local maxima in latency
at about P � d

p
L� where the latency is O�d

p
L��

� For even smaller values of P � processor advancement is mainly due to the
toggle bits� Thus when P � o�d

p
L�� the expected latency is MAX�P� d��

� When work� O��� and P is substantially larger than dL� the expected
throughput is L � o�L� and if L � �d then the expected latency is P

L

which is the best one can expect considering the contention on a prism
cell� If L � �d the main congestion is in the counters� In both cases the
performance is less than optimal�

Finally� our model shows that when P � O�dL�� which is the optimal range�
the contention in the tree is low
 the expected number of processors trying to
access a prism cell simultaneously is O���� and with high probability no more
than logL processors try to reach the same cell simultaneously�

We strongly believe our model and modeling approach pave the way to
steady�state combinatorial analysis of other distributed�parallel data structures
such as counting networks and other di�racting tree based data structures such
as elimination trees ����� pools ����� priority queues� and so on�

References

��� A� Agarwal and M� Cherian� Adaptive Backo� Synchronization Techniques�
In Proceedings of the ��th International Symposium on Computer Archi�
tecture� June �����

��� A� Agarwal et al� The MIT Alewife Machine
 A Large�Scale Distributed�
Memory Multiprocessor� In Proceedings of Workshop on Scalable Shared
Memory Multiprocessors� Kluwer Academic Publishers� ����� An extended
version of this paper has been submitted for publication� and appears as
MIT�LCS Memo TM�	�	� �����

�	

��� B� Aiello� R� Venkatesan and M� Yung� Optimal Depth Counting Networks�
personal communication�

�	� J� Aspnes� M�P� Herlihy� and N� Shavit� Counting Networks� Journal of
the ACM� Vol� 	�� No� � �September ���	�� pp� �������	��

��� J� Aspnes� M�P� Herlihy� and N� Shavit� Counting Networks and Multi�
Processor Coordination� In Proceedings of the 	
rd Annual Symposium on
Theory of Computing� May �����

��� E�A� Brewer� C�N� Dellarocas� Proteus User Documentation� MIT� �	�
Technology Square� Cambridge� MA ������ ��� edition� December �����

��� E�A� Brewer� C�N� Dellarocas� A� Colbrook and W�E� Weihl� Proteus� A
High�Performance Parallel�Architecture Simulator� MIT Technical Report
�MIT�LCS�TR����� September �����

��� D�G� Carta Two Fast Implementations of the �Minimal Standard� Random
Number Generator� CACM� ������ January �����

��� C� Dwork� M� P� Herlihy� and O� Waarts� Contention in shared memory
algorithms� In Proceedings of the 	�th ACM Symposium on Theory of Com�
puting� pp� ��	����� May ����� Expanded version
 Digital Equipment Cor�
poration Technical Report CRL ������

���� S�N� Ethier and T�G� Kurtz� Markov Processes� Characterization and Con�

vergence� John Wiley and Sons� �����

���� J�R� Goodman� M�K� Vernon� and P�J� Woest� E�cient Synchronization
Primitives for Large�Scale Cache�Coherent multiprocessors� In Proceedings
of the
rd ASPLOS� pages �	���� ACM� April �����

���� M�P� Herlihy� Wait�Free Synchronization� ACM Transactions on Program�
ming Languages and Systems� �����
�����	�� January �����

���� S� Kahan � TERA Computer Company� Personal communication� May
�����

��	� V�F� Kolchin� B�A� Senast
yanov� and V�P� Chistyakov� Random Alloca�

tion� V�H� Winston � Sons� Washington D�C� �����

���� T�G� Kurtz� Approximation of Population Processes� CBMS�NSF Reginal
Conf� Series in Applied Math� SIAM� �����

���� J�M� Mellor�Crummey and M�L� Scott� Algorithms for Scalable Synchro�
nization on Shared�Memory Multiprocessors� Technical Report �	�� Uni�
versity of Rochester� Rochester� NY �	���� April �����

��

���� S�K� Park and K�W� Miller� Random number generators
 Good ones are
hard to �nd� CACM� �������October �����

���� L� Rudolph� Decentralized cache scheme for an MIMD parallel processor�
In ��th Annual Computing Architecture Conference� ����� pp� �	���	��

���� N� Shavit and A� Zemach� Di�racting Trees� In Proceedings of the �th ACM
Annual Symposium on Parallel Algorithms and Architectures �SPAA
� pp�
������	� June ���	�

���� N� Shavit and A� Zemach� Di�racting Trees� In ACM Transactions on
Computer Systems� Nov� �����

���� N� Shavit� and D� Touitou� Elimination Trees and the Construction of
Pools and Stacks In Proceedings of the �th Annual Symposium on Parallel
Algorithms and Architectures �SPAA
� pages �	���� July �����

���� D� Touitou � Tel�Aviv University� Personal communication� October ���	�

��

