Reactive Diffracting Trees

Giovanni Della-Libera

M.LT.

and

Nir Shavit

Tel-Aviv University and M.I.T.

A shared counter is a concurrent object that provides a fetch-and-increment operation in a dis-
tributed system. Recently, diffracting trees have been introduced as an efficient way of implement-
ing shared counters in heavily loaded systems. Diffracting trees dynamically distribute processors
into small groups that can access a collection of disjoint local counters quickly in a globally co-
ordinated way. Their empirical performance under heavy load surpasses all other shared counter
implementations. However, diffracting trees of differing depths are optimal for only a limited load
range. There would thus be great benefit in designing a diffracting tree algorithm that would
effectively scale from a simple cetralized queue-lock based counter at low loads to the optimal size
diffracting tree counter as the load increases/decreases.

This paper presents the reactive diffracting tree data structure and its implementation on a
shared memory multiprocessor system. The reactive diffracting tree is a shared structure similar
to a diffracting tree, but which can grow and shrink to better handle changing access patterns
and the memory layouts, providing true scalability and locality. The tree mimics the behavior of
an optimal size diffracting tree for each concurrency range.

Empirical evidence, collected on the Alewife cache-coherent multiprocessor and the Proteus
simulator, shows that the reactive diffracting tree provides throughput within a constant factor
of optimal diffracting trees at all load levels. It also shows it to be an effective competitor with
randomized load balancing algorithms in several producer/consumer applications.

We believe that reactive diffracting trees will provide fast and truly scalable implementations
of many primitives on multiprocessor systems, including shared counters, k—exclusion barriers,
pools, stacks, and priority queues.

1. INTRODUCTION

Coordination problems in multiprocessor systems have received much attention
recently. In particular, shared counters and their applications are an important
area of study because the fetch-and-increment operation is a primitive that is be-
ing widely used in concurrent algorithm design. Since good hardware support for
implementing scalable shared counters in multiprocessor systems are not readily
available, there have been a variety of software solutions proposed for this problem.

A preliminary version of this paper appeared in the Proceedings of the 9th Annual Symposium on
Parallel Algorithms and Architectures (SPAA), June 1997.

2 . G. Della-Libera and N. Shavit

0-wire @ @ @

CIOIGIOIC) ®©0®

1-wire
Fig. 1. A Balancer at work

1.1 Background

Straightforward software solutions often involve protecting a centralized counter
register with a spin-lock, either a test-and-set lock with exponential backoff (see the
work of Agarwal and Cherian, Anderson, Rudolph et. al, and Graunke and Thakkar
[2; 3; 27; 13]) or a queue-lock (see the work of Anderson or Mellor-Crummey and
Scott[3; 25]). These algorithms are popular because they provide minimal latencies
in low load situations, when requests are sparse and mostly sequential in nature.
However, they can not hope to obtain good throughput under high loads due to
the bottleneck inherent in mutual exclusion.

More sophisticated concurrent algorithms proposed include the combining trees of
Yew, Tzeng, and Lawrie [34] and Goodman, Vernon, and Woest [11], the Combining
Funnels of Shavit and Zemach [33], the Counting Networks of Aspnes, Herlihy, and
Shavit [4], and the Diffracting Trees of Shavit and Zemach [32; 31]. These methods
are highly distributed and lower the contention on individual memory locations,
allowing for better performance at high loads. The software combining methods [11;
33; 34] have the advantage of providing linearizable [17] counter implementations!,
and under high loads their performance is comparable and even slightly better than
that of counting networks [14; 32; 33]. However, empirical studies show that both
the software combining methods and counting networks are inferior to diffracting
trees under high loads [32]. In such situations diffracting trees are two to three
times faster (their average latency for an increment operation is two to three times
smaller and throughput is two to three times larger).

What are Diffracting Trees? On an abstract level, diffracting trees are distributed
data structures constructed from simple one-input two-output elements called bal-
ancers. Tokens (processes) arrive on the balancer’s input wire at arbitrary times,
and are output on its output wires. One may think of a balancer as a toggle mech-
anism (a bit that is repeatedly complemented), that given a stream of input tokens,
repeatedly sends one token to the left output wire and one to the right, balancing
the number of tokens that have been output. Figure 1 shows how a balancer would
balance five distinct tokens (A-E) arriving sequentially in alphabetical order. A
diffracting tree consists of a collection of balancers that are connected to one an-
other by wires to form a balanced binary tree. It distributes input tokens to output
wires by having them toggle through a sequence of balancers from the root to leaves.
As depicted in Figure 2, tokens are output in increasing order modulo 8 to create

'Linearizable counting network constructions exist [15; 22; 24], but require limiting assumptions
on the underlying system’s behaviour.

Reactive Diffracting Trees . 3

Fig. 2. A Diffracing Tree

a step-like output pattern. Trees of balancers having this step-property can easily
be adapted to count the total number of tokens that have entered the network.
Counting is done by adding a “local” queue-lock protected counter to each output
wire i, so that tokens coming out of that wire are consecutively assigned numbers
i,i+8,i+ (8-2)..., as in Figure 3.

However, under high loads, the balancer toggle bits, especially the one at the
root balancer of the tree, will be accessed by many processes concurrently, forming
contention hot-spots [26] and sequential bottlenecks that are as bad as that of a
centralized spin-lock-protected counter implementation. Diffracting trees overcome
the problem by having a “prism” mechanism in front of the toggle bit of every bal-
ancer, allowing independent pairs of tokens to be “diffracted” in separate memory
locations in a coordinated manner one to the left and one to the right. A coordi-
nated pair of processors can leave the balancer without either of them having to
toggle the shared bit, since each pair of toggles leaves the bit in the same state. The
processors need simply agree between themselves which one would have gotten the
”0” bit, and which the ”1”. The diffraction mechanism uses randomization to en-
sure high collision/diffraction rates on the prism, and the tree structure guarantees
correctness of the output values.

Diffracting trees of varying depths provide optimal performance throughout the
load range, and the trivial diffracting tree, a counter protected by a queue-lock,
provides the best performance under low load. However, a diffracting tree of a given
depth has unwanted costs for lower loads due to its higher latencies, and as load
increases its performance will eventually levels out as it becomes overcapacitated
[31].

In summary, the prior art seems to be firmly divided into two camps: the central-
ized lock-based algorithms which work well in the low load cases and the distributed
algorithms that provide superior performance under high load. The lock-based algo-
rithms are championed by the queue-lock methods, and the distributed algorithms
are led by Diffracting Trees. One set of experiments we conducted revealed that in
a low load situation, the throughput over a fixed period of time for a queue-lock

4 . G. Della-Libera and N. Shavit

balancers 0 counters

08 16...

1917..

21018...
31119..
412 20...
51321...
614 22...
71523..

input wire

Fig. 3. A counting diffracting tree

based counter was 652 operations while the diffracting tree delivered only 46 opera-
tions. With the same period of time but under a high load, the queue-lock counter
went down to 595 operations, while the diffracting tree rose to 5010 operations. A
factor of 10 difference separates each of these sets of numbers.

1.2 Goals

The family of Diffracting Trees, from a degenerate tree consisting of a single queue-
lock based counter, to deep trees with a collection of counters at their leaves, provide
peak performance over the full range of concurrency levels. Our goal is to create
a single dynamically changing Diffracting Tree structure that can estimate the
system’s load at any point and assume the optimal size Diffracting Tree for that
load.

Lim and Agarwal [20; 21] recently came up with a reactive scheme that switched
between a test-and-test-and-set lock [27], a queue lock, and a combining tree. This
algorithm performed well from the low to mid-load ranges, as the combining tree
took over for the queue lock. The algorithm only applies to algorithms that have
one centralized lock-based counter, which precludes diffracting trees, but gave us
valuable insights to reactive policy making.

We now focus on the two main ideas necessary to create a reactive diffracting
tree algorithm.

—Localize decision making.
—Use cache-coherence to make global agreement inexpensive.

Localized decision making spares processors from continually deciding on the
overall structure of the shared counter, which is what Lim and Agarwal’s algorithm
requires. A major drawback with global decision making is that processors can get
delayed while they wait for a change to occur. By making the changes in the shared
counter local to only part of the counter data structure, the number of processors
directly delayed will drop significantly, and when other processors arrive in the

Reactive Diffracting Trees . 5

changed part of the structure, the decision will have already been made and they
can quickly adapt.

Cache-coherence makes localized decision making a reality. Keeping processors in
agreement globally is usually an expensive requirement. If an algorithm adds global
state which does not often change in high load situations, then this information can
be cached, making constant reference to it an inexpensive proposition. If the load
in an area of the tree is low, then changes can be made without high cost, which
enables localized decision making.

1.3 Reactive Diffracting Trees

Our algorithm, the Reactive Diffracting Tree (or RDT), uses the above two princi-
ples to make diffracting trees reactive. A significant change in the load of the system
will cause the RDT to grow or shrink into the matching optimal tree. These changes
occur in a localized fashion at some leaves of the tree, but in a way that quickly
applies to all leaves if a genuine global change of load occurred. However, in some
cases the tree’s memory layout is designed so that different ends of the trees are
layed out in separate parts of memory, the tree may become irregularly formed to
give optimal performance. State is added to the nodes of the tree to indicate if
they are acting as balancers or counters, and the caching of this state information
enables processors to pass through the tree without much delay.

We implemented and tested the RDT on the MIT Alewife machine of Agarwal
et. al [1]. However, the largest Alewife machine only has 32 nodes, limiting the
load range we could test with. We thus show that the Proteus Parallel Hardware
Simulator of Brewer et. al [6; 7], which we run with up to 256 processes, simu-
lates Alewife well, giving results that are comparable when normalized. For the
experiment described earlier where we measured throughput over a fixed period of
time, the single RDT structure provided under low load 243 operations and under
high load 3932 operations, as compared with 46 for the optimal queue-lock and
5010 for the optimal diffracting tree. The results we present in the experimental
section show that in general the RDT performs within a constant factor of optimal
diffracting trees at all load levels, and future work promises to lower this factor.

In summary, we believe that the RDT and its underlying concepts will prove an
effective paradigm for the design of future data structures and algorithms for multi-
scale computing. This remainder of this paper is organized as follows: Section 2
explains the design of the RDT and its asynchronous shared-memory implemen-
tation, and discusses different scaling policies. Section 3 provides the empirical
performance results on the Alewife machine and the Proteus simulator. Section 4
lists directions for further research.

2. REACTIVE DIFFRACTING TREES

In order to keep the presentation as self contained as possible, we begin by review-
ing the basics of diffracting trees. We then describe in detail the changes necessary
to make them reactive. This includes an implementation of the RDT on an asyn-

6 . G. Della-Libera and N. Shavit

type balancer is
lock: lock
toggle: int /* 0 or 1 */

Left: ptr to balancer /* wire y0 */
Right: ptr to balancer /* wire yl */
end
globals
Width: int

Root : ptr to root of Binary[width] tree

function simple_balancer(b: ptr to balancer) returns ptr to balancer
begin

lock (b->1ock)

k := b->toggle

b->toggle := 1-k /* toggle the bit */

unlock (b->1lock)

if k = 0 return b->Left

else return b->Right
end

function fetch&incr() returns int
begin

b:= Root

while not leaf(b)

b := simple_balancer (b)

endwhile

i := increment_counter_at_leaf (b)

return i * Width + number_of_leaf (b)
end

Fig. 4. A Shared-Memory tree-based counter implementation

chronous, cache-coherent, distributed shared-memory system. Finally, the reactive
scaling policy issue is discussed.

2.1 Diffracting Trees

The Diffracting Trees of Shavit and Zemach [32] are counting trees, a special form
of the Counting Network data structures introduced by Aspnes et. al [4] (See also
[8; 18; 19]).

A Counting Tree is a binary tree of nodes called balancers. A balancer is a
computing element with one input wire and two output wires. Tokens arrive on
the balancer’s input wire at arbitrary times, and are output on its output wires.
We denote by x the number of input tokens ever received on the balancer’s input
wire, and by y;, ¢ € {0, 1} the number of tokens ever output on its ith output wire.
Given any finite number of input tokens z, it is guaranteed that within a finite
amount of time, the balancer will reach a quiescent state, that is, one in which the

Reactive Diffracting Trees . 7

04812 ..
(21018...

61422 ..

1357..

Fig. 5. An irregular diffracting tree’s counting scheme

sets of input and output tokens are the same. In any quiescent state, yo = [2/2]
and y; = |2/2]. We will abuse this notation and use y; both as the name of the
ith output wire and as the count of the number of tokens output on that wire. As
explained earlier, Figure 1 shows how a balancer would balance five distinct tokens
(A-E) arriving sequentially and in alphabetical order.

The Counting Tree layout is defined as follows. Let k be a power of two, and
let us define the counting tree BINARY[2k] inductively. When k is equal to 1, the
BINARY[2k] network consists of a single balancer with output wires yo and y;.
For k > 1, we construct the BINARY[2k] tree from two BINARY[k] trees and one
additional balancer. We make the input wire = of the single balancer the root of
the tree and connect each of its output wires to the input wire of a tree of width k.

We then re-designate output wires yo,y1,...,yr—1 of the tree extending from the 0
output wire as the even output wires yo, Y2, . - ., Y2r—2 of BINARY[2k] and the wires
Yo, Y1,---,Yk—1 Of the tree extending from the balancer’s 1 output wire as the odd
output wires y1,¥ys, - .., Y2k—1-

One can extend the notion of quiescence to trees in the natural way, and define a
counting tree of width w as a tree of balancers, BINARY[w], with outputs yo, .., Yw—1
that satisfy the following step property:

In any quiescent state, 0 < y; —y; <1 for any ¢ < j.

Figure 2 shows a BINARY([8] tree moving input tokens to output wires in increasing
order modulo 8 while preserving the step property. The tree counts the total number
of tokens that have entered the network by way of the local counters attached to
each of the output wires (see Figure 3). Tokens coming out of that wire i are
consecutively assigned numbers i,i +w,...,i + (y; — Dw.

On a shared memory multiprocessor, one implements a balancing tree as a shared
data structure, where balancers are records, and wires are pointers from one record
to another. Each of the machine’s asynchronous processors run a program that
repeatedly traverses the data structure from the root input pointer to some output
pointer, each time shepherding a new token through the network. Pseudo-code
for this program appears in Figure 4. We use an MCS-queue-lock [25] to avoid
race conditions on the balancer’s toggle bit and on the shared local counters at the
leaves.

Diffracting Trees are counting trees whose balancers are of a novel type called

8 . G. Della-Libera and N. Shavit

Diffracting balancers. One could easily implement a balancer using a single toggle
bit. Each processor would toggle the bit inside the balancer, and accordingly decide

type balancer is

spin: int

size: int

prism: array[l..size] of int

toggle: int /¥ 0 or 1 *x/

lock: Lock

Left: ptr to balancer /* wire y0 */

Right: ptr to balancer /* wire yl */
endtype

location: global array[l..NUMPROCS] of ptr to balancer

function diff-bal(b: ptr to balancer) returns ptr to balancer

begin
location[MYID]
forever

b

rand_place = random(b->size)
his_id = Swap(b->prism[rand_place], MYID)
if CompareSwap(location[MYID], b, EMPTY) then
if CompareSwap(location[his_id], b, EMPTY) then
return b->Left
else location[MYID] = b
else return b->Right

repeat b->spin times
if location[MYID] != b then
if b->spin < MAXSPIN then
b->spin = b->spin * 2
return b->Right
end repeat

if TestTestSet(b->lock) then
if CompareSwap(location[MYID], b, EMPTY) then
k = b->toggle
b->toggle = 1 - k
release_lock(b->lock)
if b->spin > MAXSPIN then
b->spin = b->spin / 2
if k = 0 return b->Left
else return b->Right
else
release_lock(b->lock)
return b->Right
endfor
end

Fig. 6. Code for a Diffracting Balancer

Reactive Diffracting Trees . 9

prism

Ki2 (©)

Diff-Bal

® 60

prism

Diff-Ba 1

Diff-Bal
Fig. 7. The diffracting tree mechanisms

on which wire to exit. However, if many tokens attempted to pass through the same
balancer concurrently, the toggle bit would quickly become a hot-spot. Even if one
applied contention reduction techniques such as exponential back-off, the toggle
bit would still form a sequential bottleneck. One can overcome this sequential
bottleneck based on the following observation:

If an even number of tokens passes through a balancer, they are evenly
balanced left and right, yet the value of the toggle bit is unchanged.

Thus, one can allow pairs of colliding tokens to “pair-off” and coordinate among
themselves which is diffracted “right” and which diffracted “left”. Then they could
both leave the balancer without either of them ever having to touch the toggle bit.
By performing the collision/coordination decisions in separate locations instead of a
global toggle bit, one can increase parallelism and lower contention. Tokens that do
not collide are simply forwarded to access the toggle bit and are routed accordingly
as before. To guarantee good performance one must make sure that many collisions
and thus few toggle accesses occur, not an obvious task given the asynchrony in
the system.

To achieve this goal, Shavit et. al [32; 31] provide an efficient implementation of
the diffracting balancer that is based on adding a special prism array “in front” of
the toggle bit in every balancer. When a token (processor) P enters the balancer,
it first selects a location j in prism uniformly at random. P tries to “collide” with
the another processor that selected j, and if successful they leave the balancer one
to the left and the other to the right. Otherwise, P waits (“spins”) for a fixed
time spin to see whether some other processor R will enter and collide with it by
selecting the same location j in prism. If no collision occurs within time spin, P
attempts to access the queue-lock on the toggle, and if it fails, it starts all over
again by accessing the prism [31]. Figure 6 Figure 7 shows three tokens traversing
the tree, where tokens 1 and 3 collide on the first prism and are routed left and right
and token two does not collide and is thus routed to the toggle bit which routes it
to the left. Figure 6 shows the code for the diffracting balancer. This algorithm

10 . G. Della-Libera and N. Shavit

]
o Limit
State Count
Balancer
Counter
| | Counter Limit
Off

Fig. 8. A reactive diffracting tree node

has been shown to satisfy the balancing properties above [32].

2.2 Reactive Diffracting Trees

The steady-state analysis in [31] showed the importance of relation among the depth
of the tree, the size of the prisms, and the spin constant to tree performance. One
of the findings of their analysis is that a tree designed to serve P processes should
have a depth d and number of prism locations L such that dﬂL =0(1), L <d, and
L = cd2?, where c is a machine-dependent constant. Their idea was that given the
approximate range of load that a diffracting tree would be subject to, a developer
could choose appropriate values of d and subsequently decides on an appropriate
L. A reactive backoff scheme was also implemented in [31] to provide the best spin
constant.

The idea behind our new reactive algorithm is to move from the fixed Binary
structure to a flexible tree structure, one that would allow dynamic control of
the three parameters: Tree Depth, Prism Size, and Spin. The new structure will
craft the optimal diffracting tree for a given load. It will employ localized decision
making to allow the tree to change depth. As the number of processors P and
subsequently the load changes, the tree will expand or collapse to optimize d and
L. The spin constant will be dynamically determined using the reactive backoff
scheme described in [31].

We now describe a sequence of changes to the original diffracting tree algorithm
in order to turn it into a reactive diffracting tree. A formal I/O automata based
specification and correctness proof of this algorithm is outside the scope of this
paper and can be found in Della-Libera’s thesis [10].

2.3 lIrregular Diffracting Trees

We begin by relaxing the restriction that a counting tree is a balanced binary tree.
We only require that balancers in the tree have two children and counters be located
only at the tree leaves. The idea is that we can avoid the expense of a requiring
processors to agree to “globally” switch from one diffracting tree to another of an
entirely different size, if we can “locally” shrink and grow the tree from its leaves.
However, expanding or shrinking locally will cause the tree to be irregular at times,

Reactive Diffracting Trees . 11

typedef State oneof Balancer, Counter, Counter_Limit, or Off

type node is

node_lock: Lock
/* state and versioning section*/
state: State
ID: int /* version of node */
PID: int /* version of children */
/* balancer section */
spin: int
size: int
prism: array[l..size] of int
toggle: int

toggle_lock: Lock
/*counter section */

level: int
count: int
init: int
change: int

/% counter_limit section */
limit: int

/* binary tree section */
Left: ptr to node /* wire y0O */
Right: ptr to node /* wire yl x/
Parent: ptr to node
Sibling: ptr to node

endtype

Fig. 9. Definition of RDT node structure

and so we show how to design an irregular counting tree that counts correctly.

The idea is simple. In a balanced Binary counting tree of depth d, each balancer
is the root of a subtree of balancers with counters at their leaves. This subtree can
abstractly be viewed as an implementation of a single shared counter that hands
out the set of indexes corresponding to the values that would be returned by the
counters at its leaves. The complete subtree could thus be replaced by a pointer to
a single lock-based counter in place of the root balancer, and the tree would behave
exactly the same. Figure 5 shows an example of an irregular tree equivalent to
Binary[8] and how one would set the counter’s returned values to make it hand
indexes out correctly.

In more detail, one can assign each node a unique name by associating with it a
binary string s determined by the path leading to it from the root of the tree as in
the code of Figure 6. The string has, reading from left to right, a 0 digit for each
traversal to a left child and 1 for a traversal to a right child. Let level(s) be the
number of digits in s and nit(s) the positive integer whose binary representation
is s, with the least significant bit on the left. For example, in Figure 5 the counter
with path s = 010 handing out numbers 2,10, 18... has init 2 and level 3 and the

12 . G. Della-Libera and N. Shavit

counter with path s = 1 handing out numbers 1, 3,5... has it 1 and level 1.The
counter in a tree consisting of a single root counter would have init 0 and level 0.
It is now easy to see that in order to hand out correct sets of values a counter s in
an irregular tree must hand out in increasing order values from the set:

Values(s) = {init(s) + i % 2°v) i > 0}
The code implementing this formula appears in Figure 11.

Though our goal is dynamically changing trees, we note that irregular trees some-
times have an advantage even under static conditions. Locality issues may cause
parts of a balanced binary tree to be slower than others because of the memory
layout of the data structure. In such cases it pays off to make the tree irregular to
maximize performance on that given memory layout, and indeed in such cases one
sees a performance improvement using an irregular tree.

2.4 Growing and Shrinking the Trees

We now describe the design of a new algorithm for a given node in the reactive
diffracting tree. The key idea is that a node will contain the necessary state infor-
mation in order to function either as a Balancer or a Counter. We will thus be able
to change its functionality from one to the other based on a local load measure. If
a node is a counter and its load increases, it will “grow” by unfolding into a subtree
consisting of a balancer and two counters as its Left and Right children. If it is a
balancer with two children counters and the load on it decreases, it will “shrink”
by folding its two children counters and changing to function as a counter.

The first issue that arises when attempting to implement such a dynamic struc-
ture is that it is no longer possible for every processor to initially memorize the
complete structure of the tree, as it could in the static diffracting tree. Thus, upon
visiting a node of the tree, a processor would need to determine if that node was
a counter or balancer. We do so by adding to each node a shared state variable.
This state variable takes on three values, Counter, Balancer, or Off. The first
two are clear in the context of merging the types of data structures together. A
processor that visits a Balancer node balances, and one that visits a Counter node
counts. The Off state is used in order to avoid the need to dynamically allocate/de-
allocate memory for nodes as the tree grows and shrinks (allocation could take a
long time and bottleneck the processors, or a pointer to a deallocated node could
remain around long enough to cause a problem if it was reallocated). Instead, one
pre-assigns a maximal tree size creating an initial configuration of balancers and
counters from the root and leaving the rest of the nodes in the tree Off. To un-
fold a node it is set to Counter and when it is again folded it is turned back to
Off. A description of the node structure is provided in Figure 8 (The additional
Counter_Limit state is explained in the sequel).

The above scheme raises a key performance issue. The reason for the good per-
formance in diffracting trees is the highly distributed nature of the data structure
[32]. By having processors access disjoint memory locations contention is lowered
to a minimum. However, the state variable introduces a potential source of con-

Reactive Diffracting Trees . 13

1 root: global ptr to node /* main root of tree */
2 Bookkeeping: global array [1..NUMPROCS] of pair
3

4 function fetch_incr() returns int

5 answer: int

6 IDRecord: array [enumeration of nodes] of int
7 n: ptr to node

8 begin

9 IDRecord[root] = 0O

10 n = root

11 answer = INVALID

12

13 forever

14 if (n->ID !'= IDRecord[n]) then

15 n = n->Parent

16 continue

17

18 switch n->state

19 case Balancer:

20 Bookkeeping [MYID] = <n>

21 if ((n->state !'= Balancer) || (n->ID !'= IDRecord[n]))
22 n = n->Parent

23 continue

24 IDRecord[n->Left] = n->PID

25 IDRecord[n->Right] = n->PID

26 if n->state == Balancer then

27 n = diff-bal(n)

28 case 0ff:

29 n = n->Parent;

30 case Counter or Counter_Limit:

31 answer = increment_counter(n);

32 if valid(answer) then

33 return answer

34 else n = n—->Parent

35 endswitch

36 endfor

37 end

Fig. 10. Code for main traversal of RDT

tention since all processors accessing a given node in the tree will attempt to read
it concurrently. The way to overcome this problem and achieve good performance
is to use a cache coherence mechanism, either explicitly written or one provided
by the multiprocessor machine, in order to keep an updated copy of each node’s
state information locally. The idea is that if the cache coherence mechanism works
correctly, by adding a sensible scaling policy controlling tree size, state variables of
nodes in the upper parts of the tree (closer to the root) will most of the time have
valid cached copies and so the shared copies will rarely be concurrently accessed.

Unfortunately, with caching in place, there is a time delay until all caches are

14 . G. Della-Libera and N. Shavit

function increment_counter(n:ptr to node) returns int
answer:int

begin
acquire_lock(n->node_lock)
if (n->state == Counter or Counter_Limit) and
(n—>ID == IDRecord[n]) then
answer = n->count
n->count = n->count + power(2,n->level)
if n->count == n->limit then
n->state = Off
n->ID = n->ID + 1
release_lock(n->node_lock)
return answer
else
release_lock(n->node_lock)
return INVALID
end

Fig. 11. Code for counting in an RDT node

updated after a state change (an invalidation) [3]. This may cause a situation in
which a process accesses a node only to discover that it is in the Off state. We
overcome this problem by noticing that if a processor visits an Off node, it follows
that the tree folded beneath it. The solution is thus for a processor to trace up
the node’s ancestral path until it finds a non-Off node it can successfully visit,
eventually leaving the tree after accessing a some counter. Since each traversing
process accesses a counter once, even after backtracking, the remaining issue to be
dealt with is how to efficiently maintain consistency of the values returned by the
dynamically changing counters. In other words, how does one prevent duplicating
or omitting of values.

To better understand how consistency could be violated with the current design,
consider the following scenario. Consider an RDT in the initial shape of a Binary[2]
tree, consisting of a simple balancer at the root and two child counters. Clearly,
one counter hands out the even numbers and one the odd numbers. Assume that
the first number to be handed out is 0, and there are 10 increment requests made.
5 requests leave the root balancer along each of the two wires, but do not access the
counters yet. Next, the tree decides to shrink, turning into a Counter at the root
and turning the two children Off. Assume that the 5 requests along one wire arrive
at the “even” counter, see the Off state, and return to the parent, obtaining the
first 5 values, 0,1,2,3, and 4. Now, the tree decides to unfold again, and it initializes
the two Counters to next hand out values 5 and 6. Finally, the other 5 requests
access the odd counter. They receive 5, 7, 9, 11, and 13. Notice the problematic
gaps between the 10 numbers handed out.

To solve this problem, we need to make sure that once a balancer becomes a
counter, all requests that have passed through that balancer and have not been
satisfied return back to the same node and access it again. The way to do this is

Reactive Diffracting Trees . 15

to use a versioning scheme. When a balancer becomes a counter, the two children
will increase their version numbers, so that if a processor arrives at a node with
a different version number? from that which it expected given its parents version
number, it will revisit the parent node and get updated. To make versioning effi-
cient, each processor caches the versioning numbers throughout its traversal of the
tree, and if at any point it finds an inconsistent version number, it traverses back
up the tree until it finds agreeing version numbers, which in the worst case will
require traversing back to the Root node whose version number never changes. To
reduce size and complexity in the implementation, the versioning scheme can be
folded into the state variable , since versioning really is additional state. However,
for simplicity, it is kept separate here. The definition of the new node structure is
given in Figure 9.

Figure 10 contains the code for the main traversal of a processor through a
reactive diffracting tree. The Bookkeeping work is explained later in this chapter.

2.5 A Walk Through the Traversal Code

The traversal starts with some base initializations, starting the traversal at the root
node (Lines 9-11). The traversal is structured as an infinite loop (Lines 13-36) that
continues until an answer is found and the loop is broken. The first thing that is
checked is whether a processor’s view of the version (IDRecord[n]) of the current
node is equal to the node’s actual version (n->ID). If it is not, the processor moves
up the hierarchy to n’s parent and restart the loop (Lines 14-16).

It then enters the main part of the loop which is a switch of the current node’s
state (n->state) (Lines 18-35). If the node is a balancer, the processor performs
some bookkeeping to track what node it is at (Line 20), does a sanity check to make
sure the checks it performed are still valid (Lines 21-23), then stores away what it
expects the node’s children’s versions to be when it reachs them. (Lines 24-25).
Finally, it performs the balancing step and continues the loop with n becoming one
of the nodes children (Lines 26-27). The next part of the switch is the Off state,
which means the processor reached a node after it was folded. In that case it simply
moves up to n’s parent and continues (Lines 28-29).

Finally, the processor reaches the case where it hits a Counter or Counter_Limit.
It attempts to increment the counter (Line 31). If it is successful, then it exits the
function with the correct answer (Line 33), otherwise it moves up to n’s parent and
continues (Line 34).

2.6 The Folding Mechanism

We now describe how the transitions that reshape the tree structure work. The
folding transition occurs locally at the bottom of the tree: two sibling counters
fold into their parent balancer, becoming a new counter. The unfolding transition

2Technically, these version numbers are integers from an unbounded range, but they are bounded
by the values of the counters, so any implementation which handled the overflow of the counters
could handle this as well.

16 . G. Della-Libera and N. Shavit

Eml] gml]
18 o @ @
I:l State Count I:l State Count
5 G
EE Limit Counter—>Off “EE Limit
18 [N L]
< State Count State Count
& 11
Balancer—> Limit Balancer—> EE Limit
Counter Counter \B
State Count State Count

Fig. 12. Two cases of Folding, Parent node at Level 1

transforms a counter at the tree leaf into a balancer with two counters as children.
The algorithms we present here lock all of the three nodes involved to perform a
transition, but this can be reduced to having one lock at a time. For the sake of
simplicity we avoid the reduced version which requires extra state information and
significantly complicates the transition code.

We begin by describing the algorithm’s folding mechanism, the code for which
appears in Figure 14, but leave for later the discussion as to how a process decides to
trigger folding. Upon deciding that a balancer and its children counters need to be
folded, a processor will attempt to acquire the three node locks. If it is successful,
then it tests whether the three nodes are a balancer with two child counters. Once
the locks are obtained and the states are checked, the two child counters’ values are
compared. Now, the values these two counters hand out are alternating values their
parent would have handed out as a single counter. Imagine the ordered sequence
Values of indexes that their parent would hand out if it was a single counter. By
definition one of the child counters hands out the values which appear in the odd
positions of the sequence, and the other hands out the even-positioned values. The
ideal situation in folding is that the two counters’ current values are consecutive
in the list Values. The init value, the next value to be handed out by the parent
counter, can be set to the lower of the two. The children can then be turned Off,
and the parent can thus be set to Counter. This is demonstrated by the right-hand
picture in Figure 12, describing such a folding transition with a parent node at level
1.

Fuld el
1@ [oh 1@ [oh

State Count State Count
58 S
m —>Counter m —>Counter
L 8 o) =

Counter—>

Counter—>
Balancer L

Balancer L

B

iz
\Em D
Count

State State Count

Fig. 13. Two cases of Unfolding, Parent node at level 1

Reactive Diffracting Trees . 17

There are however cases where the two counters’ values are not consecutive on
the sequence of Values, and in which additional reasoning is required. For example,
consider a situation as in the righthand part of Figure 12 where the parent is at
level 1 and the larger child-counter (incrementing by 4 each time) handed out the
value 13. The smaller counter handed out 3. The larger counter must have thus
handed out 5 and 9. However, we cannot set the limit of the parent to 13 without
guaranteeing that 7 and 11 that should be handed out by the smaller counter will
be handed out. A scheme could be implemented that allowed for storing the values
that weren’t handed out in a queue in the new counter node, but this would add
another level of complexity and significantly decrease performance. We thus need an
idea that allows the algorithm to transition quickly without centralized accounting
for the unreturned values.

We proceed as follows. After locking the three nodes, we take the maximum of
the two child-counter values, find its position in the parent’s Values sequence, and
pick the value in the preceding position as a special limit value. When folding, the
parent counter is assigned the limit as its init value. The larger counter is turned
Off. The reasoning is that it has clearly handed out the value preceding the limit
(recall that counters alternate in handing out values in the parents Values sequence)
and has not handed out its current maximum value. By turning it to Off we are at
worst forcing processors accessing it to go back to the parent, but no values past
and including the limit will be handed out by mistake.

Finally, the state of the smaller counter is set to a new Counter_Limit state, which
acts just like a Counter, except that if the counter’s value reaches the limit value,
it turns Off and hands out no more values (including the limit which is not handed
out). The reasoning for this is that by the definition of the step property for
the parent node balancer in the tree (before the locking mechanism of the folding
started), there must be at least enough pending processors to traverse the smaller
counter to increase its count to reach the limit value (by definition it is the smaller
counter that hands out the limit value).

Let us return to the right-hand part of Figure 12 which depicts an example of one
such situation where the larger child-counter incrementing by 4 each time handed
out the value 13. The smaller counter handed out 3. The parents sequence of
Values end with {...,3,5,7,9,11,13}. The limit is thus set to 11, which would
have been handed out by the smaller child counter. We know the larger child
counter already returned 5 and 9 before setting its current count to 13. This means
that the smaller child counter still has to return 7 to make the output sequence
complete with a new init value of 11. Fortunately, we know that there must be a
processor with a pending request that will access the smaller child-counter to get
this 7. This is because the larger child-counter’s transitioning from 5 to 9 and 9
to 13 requires four tokens (processors) diffracting through the balancer, that is, at
least two tokens sent in the direction of the smaller child-counter.

18 . G. Della-Libera and N. Shavit

2.7 A Walk Through the Folding Code

Figure 14 contains the folding code. A processors starts the function by acquiring
the three node locks so that it can perform state changes atomically (Lines 8-

1 function attempt_fold(n:ptr to node) returns boolean
2 nLeft, nRight, nMax, nMin: ptr to node

3 valLimit: int

4 begin

5 nLeft = n->Left

6 nRight = n->Right

7

8 acquire_lock(nLeft->toggle_lock)

9 acquire_lock(nRight->toggle_lock)

10 acquire_lock(n->toggle_lock)

11

12 if (n->state == Balancer) and

13 (nLeft->state == Counter) and (nRight->state == Counter) and
14 ((nLeft->count != nLeft->change) or (nRight->count != nRight->change)) then
15

16 n->state = Counter

17 n->PID = n->PID + 1

18 valLimit = MAX(nLeft->count,nRight->count) - power(2,n->Level)
19 n->count = valLimit

20 n->change = n->count

21

22 Assign nMin, nMax to be nLeft, nRight,
23 such that nMin->count < nMax->count
24

25 nMax->state = Off

26 nMax->ID = nMax->ID + 1

27

28 if nMin->count < valLimit then

29 nMin->state = Counter_Limit

30 nMin->1limit = valLimit

31 else

32 nMin->state = 0ff

33 nMin->ID = nMin->ID + 1

34

35 release_lock(nRight->node_lock)

36 release_lock(nLeft->node_lock)

37 release_lock(n->node_lock)

38 return TRUE

39 else

40 release_lock(nRight->plock)

41 release_lock(nLeft->plock)

42 release_lock(n->plock)

43 return FALSE

44 end

Fig. 14. Code for folding

Reactive Diffracting Trees . 19

10). It then checks the conditions necessary for folding: that the parent of the
current node is a balancer, both its children are counters, and at least one child
has done some counting (Lines 12-14). Then, the parent node is updated with the
new state information. It becomes a Counter, it’s PID (parent’s view of child’s
ID) is incremented, and it receives a new value, which is calculated by taking the
maximum of it’s two children’s values and subtracting one increment from it (Lines
16-20). The processor then sorts out which of the two children has a larger counter
value (Lines 22-23). The larger child (nMax) is turned Off and its ID is incremented
(Lines 25-26). If the smaller child (nMin) is in balance with the bigger child, then
its turned Off and it’s ID is incremented (Lines 32-33). Otherwise, it becomes a
Counter_Limit and it’s limit is set (Lines 28-31). Finally, whether the folding was
done or not, all locks are released and the appropriate value is returned (Lines
33-41).

2.8 The Unfolding Mechanism

Unfolding is a bit simpler than folding, but has its own challenges. Figure 15
contains the code for unfolding. The same three locks are initially set, the node
states are checked, making sure that only a node that is currently a Counter with
two Off children is unfolded. Then one of the child counters is set to the current
counter’s value and the other child counter is set to the counters following value.
One would want that upon changing the current parent counter to a balancer,
the next request always goes to the smaller child counter value. We thus set the
balancer’s toggle bit in the direction of the child with the smaller value. An example
of the two possible cases for a parent node at level 1 is shown in Figure 13. 3

The biggest problem with unfolding is mainly an implementation issue. Consider
when the folding and unfolding actions would occur. Folding occurs when there
was a below-average load in a given area of the tree. There is thus little delay
and contention once the node locks are acquired, since there just aren’t that many
processors around. On the other hand, unfolding can be a costly process, since it
occurs because of high load in a given area of the tree.

To minimize this problem, our implementation releases the parent lock as soon
as it’s state is set, so that the processors that are waiting to access the counter
can sooner find out that it is now a diffracting balancer and can be accordingly
routed to the child-counters. We also added an optimization that has the processor
releasing the parent node’s lock go through and tell all of the processors waiting in
the queue-lock leading to the node’s counter that the state has changed, so they
can diffract without delay. This gives the diffracting balancer a good start under
high loads. A future optimization could lie in implementing a tree lock [25] instead
of a queue lock so this release could occur even faster.

3 An alternative to the above algorithm would be to keep consistent the role of the Left or first child
as the primary child in balancing. Then, the processor returning the smaller value would always
be routed there. Since the toggle bit would then always be reset to 0, the change amounts to a
technical difference. We chose the first method because it allows each node to have a consistent
set of Values, simplifying the formal reasoning about how it works [10].

20 . G. Della-Libera and N. Shavit

2.9 A Walk Through the Unfolding Code

Figure 15 contains the unfolding code. A processor executing the unfolding function
first caches the node’s current version and then takes care of some bookkeeping,
mainly checking to see whether any processors are currently diffracting through this
node. If this is the case the processor gives up (Lines 7-9). Otherwise, it acquires
the locks for this node and it’s children to guarantee atomicity (Lines 11-13). It
checks the conditions needed for unfolding, namely that the node has been used for
counting, is a Counter, both children are Off, and the version is consistent with the
one cached at the beginning of the unfolding function’s execution (Lines 15-17). It
then updates the parent node’s information, making it a Balancer and incrementing
it’s PID (parent’s view of child’s ID) by one (Lines 19-20). Then, based on the final
value of the parent node, it decides which child to initially point to (Lines 21-25).
Finally, the parent’s lock is released so that other nodes can start balancing (Lines
26).

The children’s information is then updated. Both become Counters, their ID’s are
incremented, their values are set based on the final value of the parent node, and
their changed values are recorded for future reference (Lines 28-39). Finally, regard-
less of whether unfolding was completed, all locks are released and the appropriate
value is returned (Lines 41-48).

2.10 The Bookkeeping Mechanism

The missing item from the unfolding section was the Bookkeeping mechanism. We
now explain its necessity. A Balancer, upon folding into a Counter, must force all of
the delinquent processors that were already diffracted through the node to return
and traverse it again. Our use of versioning guarantees this will happen. However,
imagine that the said node now wishes to unfold again. When it becomes a Balancer,
the new processors will balance through it and have correct forecasts for the new
child Counters. However, consider a processor currently traversing the node that
had also traversed this node in its first incarnation as a Balancer. It received the
forecast for its children, then also Counters, and began to balance. While it was
attempting to diffract or access the toggle bit, all of these state changes occur-
ed, and the node was now into its second incarnation as a Balancer. If this old
processor were to diffract against a new processor, then it would upset the balance
of the system, since it would arrive at one child Counter, find an incorrect version
number, and return to the parent, while its partner from diffraction would arrive
at the other child Counter and correctly access it. Now, imagine this happened
potentially many times, and each time the old processor went towards the same
Counter. When it came time to fold again, there would be no processors left to
bring the troubled Counter back into balance with its sibling.

The solution to this problem is simple and the code is given in the main traversal
(Figure 10) and unfolding code (Figure 15). We create a global bookkeeping array,
one in which every processor has an entry. A processor, upon visiting a Balancer,
registers in its entry of the array the balancer it is visiting. It then rechecks to make
sure that the node is still a Balancer with the forecasted ID and enters the balancing

Reactive Diffracting Trees .

21

function attempt_unfold(n:ptr to node) returns boolean

nLeft, nRight: ptr to node
val, ID, i: int

begin

end

nLeft = n->Left
nRight = n->Right
ID = n->ID
for i from 1 to NUMPROCS
if (Bookkeeping[i] = n) return FALSE;

acquire_lock(nLeft->toggle_lock)
acquire_lock(nRight->toggle_lock)
acquire_lock(n->toggle_lock)

if (n->state == Counter) and (n->count != n->change) and
(nLeft->state == 0ff) and (nRight->state == 0ff) and
(n->ID == ID) then

n->state = Balancer

n->PID = n->PID + 1

val = n->count

if ((val - n->init) / power(2,n->level)) mod 2 == 1
n->toggle = 1

else
n->toggle = 0

release_lock(n->toggle_lock)

nLeft->state = Counter
nRight->state = Counter
nLeft->ID = nLeft->ID + 1
nRight->ID = nRight->ID + 1
if ((val - n->init) / power(2,n->level)) mod 2 == 1
nRight->count = val
nLeft->count = val + power(2,n->level)
else
nLeft->count = val
nRight->count = val + power(2,n->level)
nLeft->change = nLeft->count
nRight->change = nRight->count

release_lock(nRight->toggle_lock)
release_lock(nLeft->toggle_lock)
return TRUE
else

release_lock(nRight->toggle_lock)
release_lock(nLeft->toggle_lock)
release_lock(n->toggle_lock)
return FALSE

Fig. 15. Code for unfolding

22 . G. Della-Libera and N. Shavit

function increment_counter_wrapper(n:ptr to node) returns int
startTime, elapsedTime, answer, timeRatio : int
success : boolean;

begin
startTime = GetTime ()
answer = increment_counter(n)
elapsedTime = GetTime() - startTime

TotalTime[n] += elapsedTime
TotalHits[n] += 1

if (TotalHits[n] > MINIMUM_HITS)
timeRatio = TotalTime[n] / TotalHits[n]
if (timeRatio > UNFOLDING_LIMIT)
success = unfold_node(n)
else if (timeRatio < FOLDING_LIMIT)
success = fold_node(n)

if (success)
TotalTime[n] =
TotalHits [n]

o
o O

return answer
end

Fig. 16. Code for Scaling Policy

section of the code. If the information on the second check was inconsistent with
the processor’s “recollection” of its state in its former traversal of this node, it will
go up the tree until it gets back on track. Now, the final piece is a restriction
on unfolding. In order for a processor to unfold a Counter, it must traverse the
bookkeeping array and make sure no processor is registered as visiting this node
as a Balancer. If this traversal is successful, it then unfolds the node if the node’s
ID was the same as before the bookkeeping array traversal. This scheme is correct
for the following reason. Consider the two events: (1) a processor sees that the
node is a Balancer and puts itself into the node’s bookkeeping array location, and
(2) an unfolding processor sees that the node was a Counter and that the first
processor’s bookkeeping entry did not have this node registered. The ordering of
these two events on a machine that guarantees atomicity per memory location, (as
the Alewife machine does [9]), implies that either the first processor will see the
update upon its recheck, or the unfolding processor will learn that it was out of
date and will not unfold.

2.11 Reactive Cache Sizing

The choice of cache size for the algorithm is an interesting study topic on its own.
The steady-state analysis [31] predicts that there should be ¢d2? prism locations in

Reactive Diffracting Trees . 23

the diffracting tree, where ¢ is a constant and d is the depth. Now, in the reactive
tree, we have changing depths. The solution is thus for each processor to keep an
estimate of the tree’s current depth. A skeletal cache of the state is enough for a
processor to average the depths of the various paths into the tree and come up with
an average depth. Given the best experimental constant ¢ and a large enough prism
to handle the largest allowed tree, processors can then simply pick a value randomly
within their expected prism size. In practice eventually processors will converge to
the same average depth providing the most efficient balancing regardless of the size
of the tree.

2.12 The Reactive Folding and Unfolding Policy

There are three main qualifications that a good scaling policy should meet.

—The policy should react quickly to large changes in the load.

—The policy should keep the overhead that it causes low and factor it into its
decision making process.

—The policy should keep the number of “false positives,” that is, unnecessary
changes in tree size, low and limit many consecutive oscillations.

Keeping this in mind, most of our policy development was focused on studying
the contention at a counter lock. We felt that this was a good estimate for the
overall load of the tree. If the lock was always empty when a processor arrived
at the counter, then that counter should be folded into its parent. If the lock was
always overloaded, then the counter should be unfolded. We found that observing
the time it took to access the counter was a good measure. MCS queue-locks [25]
have the nice property that the times measured are stable under consistent load
levels, unlike the oscillating times a spin-lock [3] would provide.

We designed our policy by setting thresholds for these times. Passing below a
folding threshold or taking longer than the unfolding threshold was a good indi-
cation that the local area should change. However, the data structure should not
change based on the “opinion” of one processor. Our final policy is thus a variant of
Lim’s policy in his reactive data structure paper [20]. It uses a string of consecutive
times to decide if to allow a transition. The minimum number of consecutive times
is a constant that is decided upon by experimentation. The code for implementing
this policy appears in Figure 16.

This policy met all three qualifications. A large change in the load will move
the time consistently below or above these thresholds and allow for a change. The
overhead will be low since only one test is needed to see if the time is within the
thresholds, stopping any current streaks and allowing the processor to continue.
Finally, by requiring consecutive times, a nice hysteresis affect occurs, because it
could not immediately change back in the other direction.

This choice of policy is a simple example that works rather effectively, as con-
firmed in the experimental section, yet there is room for improvement. Future
approaches could include on-line competitive schemes [23] or policies that measure

24 . G. Della-Libera and N. Shavit

overall the balancer performance. Since the balancers are tuned by the dynamic
prism sizing, a study of the toggling behavior and diffracting rates could reveal a
pattern which indicates when it should fold and when its children should unfold.

3. EXPERIMENTAL RESULTS

We evaluated the performance of an implementation of Reactive Diffracting Trees
on a shared-memory multiprocessor machine. The MIT Alewife machine developed
by Agarwal et. al. [1] was our target machine. However, the largest Alewife has
only 32 nodes, and we were interested in scalability for more than 100 processors.
We must thus rely on simulations to provide higher concurrency level results. To
support such testing, we conducted the same experiments on the Proteus* simula-
tor, developed by Brewer et. al. [7], where we were able to extend our results to 256
processes. We performed a correlation study to show that the results were compara-
ble. The set of benchmarks under which we tested RDT include index-distribution,
sudden spikes in load levels, and producer/consumer runs, all of which demonstrate
the advantages (and disadvantages) of the RDT.

3.1 Experimental Environments

The MIT Alewife machine [1] consists of a multiprocessor with cache-coherent dis-
tributed shared memory. Each node consists of a Sparcle processor, an FPU, 64KB
of cache memory, a 4MB portion of globally-addressable memory, the Caltech MRC
network router, and the Alewife Communications and Memory Management Unit
(CMMU). The CMMU implements a cache-coherent globally-shared address space
with the LimitLESS cache-coherence protocol [9]. The LimitLESS cache-coherence
protocol maintains a small, fixed number of directory pointers in hardware, and re-
lies on software trap handlers to handle cache-coherence actions when the number
of read copies of a cache block exceeds the limited number of hardware directory
pointers. The current implementation of the Alewife CMMU has 5 hardware direc-
tory pointers per cache line.

The synchronization primitives that Alewife provides for performing a read-
modify-write operation are based on a set of colored load/store operations [1]. Using
such operations Alewife supports a memory with full/empty bits: every memory lo-
cation has a full/empty bit associated with it and has operations which allow a
processor during a load or store to atomically set the bit to full if empty and vice-
versa. This allows mutually exclusive access to the information in the location.

The simulation part of our work was performed using Proteus, a multiprocessor
simulator developed by Brewer et. al. [7]. We simulated a distributed-shared-
memory multiprocessor similar to the MIT Alewife machine. Proteus simulates
parallel code by multiplexing several parallel threads on a single CPU. Each thread
runs on its own virtual CPU with accompanying local memory, cache and commu-
nications hardware, keeping track of how much time is spent using each component.
In order to facilitate fast simulations, Proteus does not perform complete hardware

4Version 3.00, dated February 18, 1993

Reactive Diffracting Trees . 25

Throughput - Proteus - work = 0

2500 : ‘

T
Queue-Lock —~—
DTree[2] -+--
DTree[4] -8--
DTree[8] -x X
RDT -&--
2000 B

1500 | T .

1000

Operations per 10”5 Cycles

500 -

35

5 20
Processors

Fig. 17. Diffracting Trees, Queue-Lock Based Counter, and RDT on Proteus

simulations. Instead, operations which are local (do not interact with the parallel
environment) are run directly on the simulating machine’s CPU and memory. The
amount of time used for local calculations is added to the time spent performing
(simulated) globally visible operations to derive each thread’s notion of the current
time. Proteus makes sure a thread can only see global events within the scope of
its local time.

3.2 Index Distribution Benchmark

Indez-distribution is the simple algorithm of making a request and waiting some
time before the request is repeated. In this case, the amount of time between re-
quests is randomly chosen between 0 and work, a constant that determines the
amount of load present. The value work = 0 represents the familiar counting
benchmark, providing the highest possible load for the number of processors given.
A higher value, usually work = 1000 is chosen to better distribute the requests
over time, providing a lower-load environment. We ran this benchmark for a
fixed amount of time on the Alewife machine (107 cycles), varying the number
of processors® and the value of work. We also ran this benchmark on the Proteus
simulator (10° cycles), and correlated the results. Since there are usually startup
costs, the algorithms were run for some fixed time before the timing was started.

We mainly collected throughput data. The throughput is the total number of
get_next_index() operations that completed in the time allowed. We also ex-
amined latency, the average amount of time between the call to get_next_index ()

5Throughout this paper, each processor only runs one process

26 . G. Della-Libera and N. Shavit

Throughput - work = 0

2200 T T T T
Proteus Optimal Composite —<—
Alewife Optimal Composite -+~
2000 B
1800 | B
3 1600 |]
[}
>
@)
g 1400 | T
5 P g
@ / P:->DTree[8]
o e
2 1200 + E
2 S
® P:->DTree[4] A:->DTree[4]
o A
& 1000 E
800 B
600 B
A&P:Queuelock
400 Il Il Il Il Il Il
0 5 10 15 20 25 30 35

Processors
Fig. 18. Optimal Composite on Proteus and normalized Alewife
and its completion, but these numbers are clearly related and one can be calculated

from the other.

Throughput - Proteus - work = 0

16384 T T T T

T
Queue Lock ~—
DTree[2] -+--
L DTree[4] -8-- 3
8192 DTree[8] -x o
DTree[16] -&-
DTree[32] -¥--

Operations per 10”5 Cycles

32 L L L L L L L
1 2 4 8 16 32 64 128 256
Processors

Fig. 19. Throughput of Diffracting Trees and Queue Lock on Proteus

The algorithms we ran were the Reactive Diffracting Tree, Diffracting Trees of
widths 2, 4, and 8 (and on Proteus, 16 and 32), and an a queue-lock based counter.

Reactive Diffracting Trees . 27

Average Latency - Proteus - work = 0

32768 ‘ : ‘ :

T
Queue Lock ——
DTree[2] -+--
DTree[4] -8--
16384 - DTree[8] 1
DTree[16] -&-
DTree[32] -*-- A+

8192

4096

2048 F

Cycles per Operation

1024 4 ..

512

256

128 L L L L L L L
1 2 4 8 16 32 64 128 256
Processors

Fig. 20. Latency of Diffracting Trees and Queue Lock on Proteus

In this and all other benchmarks in this paper we used the following data structure
implementations.

The queue-locks we used were the MCS queue locks of Mellor-Crummey and
Scott [25]. The MCS queue-lock consists of a queue in the form of a linked-list
of processors, each pointing towards its successor, waiting for its predecessor to
wake it up once it is done with the lock. There is a tail pointer which directs new
processors to the end of the queue. The queue-lock code was implemented using
an atomic register-to-memory-swap operation.

The Diffracting Tree algorithm we used is the improved Diffracting Tree algo-
rithm of [31]. We used queue-locks on the counters at the leaves of the Diffracting
Tree as opposed to spin-locks in the original implementation of [32]. A detailed
empirical study of the effects of using queue-locks can be found in [10].

The Steady-State analysis of [31] suggests that there should be cd2¢ prism loca-
tions in the tree, with c2? locations on each level of the tree, where ¢ is a constant.
We experimented by comparing trees at each level and found that ¢ = 1/2 was the
best factor overall.

3.2.1 Alewife Results. This section presents the first performance results for
Diffracting Trees on the Alewife machine. ¢ For the Reactive Diffracting Tree,
we set the number of consecutive timings before a change to be 80, a good ex-
perimental number that limited the number of oscillations. Our experiments also

6in fact, for any counting networks structure, as the experiments of Herlihy et. al [14] were
conducted on the ASIM Alewife simulator.

28 . G.

Della-Libera and N. Shavit

Throughput - Alewife - work = 0
T

90000 ‘ ‘
DTree[2] <-—
DTree[4] -+~ e
80000 - DTree[8] - h
RDT -x
70000 x o g
X
T
3 60000 |-]
[}
>
o
™~
& 50000 E
-
@
o
2 40000 E
S
Sl
g
& 30000 - g
20000 - T/ 8
A fai
X //
10000 |- R
...
et
0 Il Il Il Il Il Il
0 5 10 5 20 25 30 35
Processors
Fig. 21. Alewife Throughput for Diffracting Trees, Queue-Lock Based Counter, and RDT

determined that the best fold and unfold threshold times were 150 and 800 cycles.
Figure 21 shows throughputs for a queue-lock based counter, diffracting trees of
depth 1, 2, and 3, and the RDT. The most interesting result is that the RDT sur-
passes all of the diffracting trees shown for a brief range. This is due to its ability to

131072

65536

32768

Operations per 1077 Cycles

16384

8192
1

Throughput - Alewife - work = 0

T T T
Optimal Composite ~<—
RDT —+-

->DTree[8]

->DTree[4]

QueueLock

Processors

Fig. 22. Optimal Composite vs. RDT

32

Reactive Diffracting Trees .

29

expand only where needed, supplying irregularly sized trees which perform better

in this range.

16384
8192
4096

(%]
ke

[}

>

(6]

L 2048

o

-

o
[N
2
5 1024
©
[
o
o

512

256

128

Fig. 23.

8192

4096
2048

[%]

ke

o

>

(6]

L1024

o

-

@

o

2

5 512

8

[

o

o

256

128

64

Fig. 24.

Throughput - Proteus - work = 0

Throughputs of Optimal Composite vs. RDT on Proteus

T T T T T
Optimal Composite —~—
RDT -+
->DTree[32]
«*/
A
->DTree[8] }
L A 4
A+
->DTree[4]
,/’*//
Queuelock
,»/”“}—/ /
/’+<<"——
Il Il Il Il Il Il Il
1 2 4 8 16 32 64 128 256
Processors

under high load

Optimal Composite —<—
RDT —+-

QueueLock

Throughput - Proteus - work = 1000
T

Throughputs of Optimal Composite vs.

8 16 32 64 128
Processors

RDT on Proteus under low load

30 . G. Della-Libera and N. Shavit

Average Latency - Proteus - work = 0
18000 T T T T T

RDT —+—
DTree[32] -+--
DTree[8] -8-- |

16000

14000

12000

10000

Cycles per Operation

8000

6000

4000

2000 '*e“’/ 1 ‘

Il Il Il Il
-100000 -50000 0 50000 100000 150000 200000 250000 300000 350000 400000
Cycles after Change

Fig. 25. Average latency of RDT over time in response to sudden surge

Since the Reactive Diffracting Tree should represent the optimal diffracting trees
at their peak performance points, we constructed a composite graph of the diffract-
ing tree and queue-lock counter throughputs, with the highest throughput from any
diffracting tree or queue-lock counter at a given load level chosen for the graph. We
show the optimal composite vs. the RDT for the Alewife in Figure 22 under high
load. The throughput and latency appear to stay within a factor throughout its per-
formance. The average ratio between the throughput of the RDT and the optimal
composite is 1.27.

3.2.2 RDT Results on Proteus. Unfortunately, the Alewife machine only has 32
nodes. Since larger Alewife versions are not available, we relied on simulations to
provide higher load results. We used the Proteus simulator to simulate the Alewife
machine, although our simulation does not fully implement Alewife’s LimitLESS
cache-coherence policy.

It is thus important to compare the results gathered on the Alewife with the same
benchmarks on Proteus, to make sure that the results can be carried over. Figure 17
is the counterpart to Figure 21. Notice that the shapes of the Diffracting Trees
look similar, although they seem to flatten out more quickly on the Alewife than
on the Proteus. But, we really need to see two curves side by side. We construct a
Proteus optimal composite for throughput for 1 to 32 processors and normalize the
Alewife curve to it. This graph is shown in Figure 18. The results show that the
Alewife trees have a higher optimal load level, but the graphs still look comparable,
a good result for Proteus.

We now extend the Proteus results up to 256 processes, and add Diffracting Trees
of depths 4 and 5. Figure 19 shows the throughputs and latencies of Diffracting

Reactive Diffracting Trees . 31

producer:
repeat
produce(val);
wait until the element is consumed;
until a total of 2560 elements are consumed

consumer:
repeat
consume ()
until a total of 2560 elements are consumed

Fig. 26. Code for Producer/Consumer

Trees of depth 0 (queue-lock based counter) through 5. The Proteus environment
is different enough to require a change in some of the constants. The difference
in the timing mechanisms forced us to move the fold threshold up to 200 cycles.
However, the queue-locks had more stable waiting times, enabling us to bring the
consecutive timings threshold down to 25.

We show the comparison between the optimal composite and the RDT in Fig-
ure 23 for high load case (work = 0) and in Figure 24 for low load case (work =
1000). The results showed that Proteus charged more for the overhead required
in computing the changes, but this seems to be a constant factor that is machine-
dependent. This could be attributed to the cache-coherence differences between
the two architectures. For the high load case, the average ratio between the two
throughputs was 1.56, and in the low load case, the average factor was 1.41.

3.3 Large Load-Change Benchmark

We measured the response of a RDT to a sudden spike in load levels, measuring
the average latency of the RDT in fixed width intervals before and after the change
occurred, and graphing the change in the average latency over time. Here, the
system constant for the number of consecutive timings was set at 10 to better
handle sudden changes.

We ran the index-distribution benchmark with 32 participating processes for a
fixed amount of time and work = 0, to allow the tree to best fit the load. The
tree sized to a depth 3 tree. We then started timing for four time intervals of
25,000 cycles, and allowed an increase in the number of processors to 256, timing
for 400,000 additional cycles. The tree grew to depth 5. Figure 25 shows the plot of
these measurements. As you can see, it takes about 100,000 cycles for the curve to
level off, which given an eventual average latency of 4,000 cycles, indicates that it
took about 25 equivalent passes through the tree to expand 2 levels, which is what
would be expected with the consecutive timings constant set at 10. The throughput
before the change occurred was around 340 operations per 25,000 cycles. At the top
of the spike, the throughput goes up to around 440 operations, and as the latency
drops off, the throughput rises quickly to 1500 operations and remains steady.

32 . G. Della-Libera and N. Shavit

The plot also contains Diffracting Trees of depth 3 and 5 with their average
latency at 256 processors, which are what the RDT emulates before and after the
change. Here is a good example of the tradeoff that a developer must consider in
choosing to use the RDT. Imagine that the developer initially used the diffracting
tree of depth 3. The triangle on the left formed by the RDT and the depth 3
Diffracting Tree represents the spike in latency that the algorithm must necessarily
absorb in order to change, and is a loss to the developer. However, the quadrilateral-
like shape formed between the RDT and the Diffracting Tree of depth 3 to the right
of the triangle is the region that a developer gains in using the RDT. Of course, the
developer could choose to use the depth 5 tree all along, but the RDT outperforms
this tree in the lower load case, which may usually be the common case.

3.4 Producer/Consumer Benchmarks

Job pools are data structures that store a collection of jobs that need to be per-
formed by the a collection of processors. Any processor can enqueue (produce) a
new job into the pool or dequeue (consume) a job in order to perform it. The
shared counter implementation of a job pool consists of two shared counters and an
array of locations, where each location can in turn be a local queue [30] protected
by a full/empty bit [1] or a spin-lock. To enqueue a job, a processor requests a
value from the producer counter and places the job at the corresponding location
(the index modulo the array width) in the array, then sets the full/empty bit to
full. To dequeue a job, a processor requests a value from the consumer counter and
goes to find a job in the appropriately indexed location. If the location is empty
it waits until it is full, then removes an entry from that location, and if it is now
empty it sets the locations bit to empty.

Elapsed Time - Proteus - Producer/Consumer
1e+08 T T T

RSU —<—
RDT -+~
Queue-Lock -8--

1le+07

1e+06 e

Cycles (Normalized)

100000

10000 L L L L L
4 8 16 32 64 128 256
Processors

Fig. 27. Producer/Consumer Performance

Reactive Diffracting Trees . 33

Elapsed Time - Proteus - 10-Queens
4e+06 T T T

RSU —-—
RDT ~+-

3.5e+06 [~

3e+06

2.5e+06 |-

2e+06 |

Cycles

1.5e+06 |-

1e+06

500000 |

0 50 100 150 200 250 300
Processors

Fig. 28. 10-Queens Performance

An alternative job pool scheme consists of one of many randomized load balanc-
ing techniques. Here, processors keep local job queues from which they choose jobs
to execute, and participate in load balancing to best distribute their job allocations.
We compare the RDT based job pool to the randomized load balancing scheme of
Rudolph et. al(RSU) [28], which we chose as a representative of this class of algo-
rithms (though one could alternately have chosen an algorithm like the job-stealing
scheme of Blumofe and Leiserson [5]). In RSU, a processor about to dequeue a
job attempts to load balance with probability inversely proportional to the size of
its job queue. If it decides to load balance, it picks a processor at random and
attempts to equalize their job queue sizes.

In high load situations where processors frequently enqueue and dequeue jobs,
randomized load balancing algorithms currently outperform shared structures such
as diffracting trees [30]. The lock-based counters do well against RSU in the low
load levels, and the distributed counters seem to come close to RSU’s level of
performance, but overall, no shared structure has been able to effectively compete
with RSU. We now show that the RDT is an effective competitor.

3.4.1 10-Queens. The n-Queens problem is a classical test benchmark for job-
queue style algorithms. In this benchmark, which mimics the behavior of an al-
gorithm for solving the classical n-queens chess problem, every consume operation
produces 10 new jobs at a higher depth until a limit is hit. The recursive nature
of the algorithm leads it to apply different load levels on the producer and con-
sumer functions. Under low loads, the counters can become lock-based algorithms
and compete effectively against RSU. As the number of processors participating
increases, the trees can grow larger to give the distributed performance necessary

34 . G. Della-Libera and N. Shavit

Initialization

produce one instance with depth=0
repeat

instance = consume() ;

wait 8000 cycles;

if instance’s depth < 3 then
produce 10 instances with depth greater by 1
until all instances have been consumed

Fig. 29. Code for 10-Queens

to compete with RSU. Figure 28 shows how close the diffracting tree comes close
to RSU in total time elapsed throughout the differing load levels.

3.4.2 Sparse Producer/Consumer Actions. The pitfall of RSU and the other ran-
domized load balancing algorithms is the poor performance that occurs under sparse
access patterns. To exhibit this, we make half the active processors consumers and
the other half producers. Producers initially produce a job and wait until that job
is consumed before they produce a new job. This continues until a total of 2560
jobs have been completed. This creates a sparse access pattern in the system since
any load balancing transaction could at most shift one job, which is the necessary
consumption for the production to continue. We ran this system for RSU, a RDT
based job pool, and a centralized job pool protected by a queue-lock. We measure
the time elapsed between the beginning of the benchmark until 2560 elements are
consumed, and show the results in Figure 27. As one can see, the RDT provides
near queue-lock performance in low-loads, and approaches the performance of RSU
in higher loads.

4. CONCLUSION

Our work on a reactive diffracting tree structure was inspired by Lim and Agarwal’s
reactive lock constructions[20; 21]. Following our work, Shavit and Zemach [33]
have recently presented combining funnels, a reactive data structure based on the
combining paradigm [12; 11]. We hope these new structures will encourage other
researchers to adopt the reactive approach in designing scalable data structures for
multiprocessor machines. Below are some examples of further work to be done.

(1) One should attempt to improve the current implementation by designing a
single lock version of the algorithm (locking one node only to perform folding or
unfolding). This will require overcoming the complexity of keeping the output
values from the tree consistent. Once this step is taken, the RDT will be closer
to being wait-free [16]: the state variable will still need to be checked during
the counters fetch-and-increment operation, but a hardware based conditional-
fetch-and-increment would be enough to make this algorithm wait-free.

(2) One should implement a message passing version of the RDT algorithm. In a
message passing system, different processors act as nodes in the tree, passing

Reactive Diffracting Trees . 35

messages to other nodes as a substitute for traversing the tree. This allows a
processor to solely control a node, providing better ability to estimate the load
levels and accurately decide when to grow or shrink.

One should design a reactive elimination tree, a form of the diffracting tree
presented by Shavit and Touitou [29], that supports both enqueue and dequeue
operations on structures such as pools or stacks. Unlike a Diffracting tree, and
elimination tree allows both tokens and anti-tokens, allowing them to be elim-
inated if they collide. This collision corresponds to an enqueue and a dequeue
exchanging values locally, and greatly enhances performance since collided op-
erations do not need to traverse the tree. It would be interesting to design
folding and unfolding mechanisms that preserve global consistency given that
there are both tokens and anti-tokens concurrently in the data-structure.

REFERENCES

(1]

2]
(3]
(4]

(5]

[9]

[10]

[11]

(12]

[13]

A. Agarwal, D. Chaiken, K. Johnson, D. Krantz, J. Kubiatowicz, K. Kurihara, B. Lim,
G. Maa, and D. Nussbaum. The MIT Alewife machine: A large-scale distributed-memory
multiprocessor. In Proceedings of Workshop on Scalable Shared Memory Multiprocessors.
Kluwer Academic Publishers, 1991. An extended version of this paper has been submitted
for publication. Also, appears as MIT Technical Report MIT/LCS/TM-454, June 1991.

A. Agarwal and M. Cherian. Adaptive backoff synchronization techniques. In Proceedings of
the 16th International Symposium on Computer Architecture, pages 396—406, May 1989.

T. Anderson. The performance of spin lock alternatives for shared memory multiprocessors.
IEEE Transactions on Parallel and Distributed Systems, 1(1):6-16, January 1990.

J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of the ACM, 41(5):1020—
1048, September 1994. Earlier version in Proceedings of the 23rd ACM Annual Sym-
posium on Theory of Computing, pp. 348-358, May 1991. Also, MIT Technical Report
MIT/LCS/TM-451, June 1991.

R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing.
In 35th Annual Symposium on Foundations of Computer Science, pages 356—368, Santa
Fe, New Mexico, 20-22 November 1994. IEEE.

E. A. Brewer, , and C. N. Dellarocas. Proteus user documentation, version 4.0, March 1992.

E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl. Proteus: A High-Performance
Parallel-Architecture Simulator. Technical Report MIT/LCS/TR-516, MIT Laboratory
for Computer Science, September 1991.

Costas Busch and Marios Mavronicolas. A logarithmic depth counting network (abstract).
In Proceedings of the Fourteenth Annual ACM Symposium on Principles of Distributed
Computing, page 274, Ottawa, Ontario, Canada, 2-23 August 1995.

D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS directories: A scalable cache co-
herence scheme. In asplosIV, pages 224-234, Santa Clara, California, 1991.

G. Della-Libera. Dynamic diffracting trees. Master’s thesis, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
02139, July 1996.

J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficent synchronization primitives for large-
scale cache-coherent multiprocessors. In Proceedings of the 3rd International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 64—
75, Boston, Massachusetts, April 1989.

A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, and M. Snir. The NYU
Ultracomputer designing an MIMD parallel computer. IEEE Transactions on Computers,
(C-32(2):175-189, February 1984.

G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory multiprocessors.
IEEE Computer, 23(6):60-70, June 1990.

36

(18]
[19]

20]

21]

(22]

(23]

24]

(25]

(26]

(27]

(28]

(30]
31]

32]

. G. Della-Libera and N. Shavit

M. Herlihy, B. H. Lim, and N. Shavit. Scalable concurrent counting. ACM Transactions on
Computer Systems, 13(4):343-364, November 1995.

M. Herlihy, N. Shavit, and O. Waarts. Low contention linearizable counting. In Proceedings
of the 32nd Annual Symposium on the Foundations of Computer Science (FOCS), pages
526-535, San Juan, Puerto Rico, October 1991. IEEE. Detailed version with empirical
results appeared as MIT Technical Memo MIT/LCS/TM-459, November 1991.

M. P. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124-149, January 1991.

M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463-492, July 1990.

M. Klugerman. Small-Depth Counting Networks. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA 02139, 1994.

M. Klugerman and C. G. Plaxton. Small-depth counting networks. In Proceedings of the 24th
ACM Symposium on Theory of Computing (STOC), pages 417-428, 1992.

B. H. Lim. Reactive Synchronization Algorithms for Multiprocessors. PhD thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technolgy,
February 1995.

B. H. Lim and A. Agarwal. Reactive synchronization algorithms for multiprocessors. In Pro-
ceedings of the Sizth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VI),, pages 25-35, October 1994.

Nancy A. Lynch, Nir Shavit, Alexander A. Shvartsman, and Dan Touitou. Counting networks
are practically linearizable. In Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Distributed Computing, pages 280-289, Philadelphia, Pennsylvania, USA,
23-26 May 1996.

M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for on-line prob-
lems. volume 20 of Proceedings of the Symposium on Theory on Computing, pages 322—
333, 1988.

Marios Mavronicolas, M. Papatriantafilou, and P. Tsigas. The impact of timing on lineraiz-
ability in counting networks. In Proceedings of the Eleventh International Parallel Pro-
cessing Symposium, pages 684-688, May August 1996.

J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems, TOCS, 9(1):21-65,
February 1991. Earlier version published as TR 342, University of Rochester, Computer
Science Department, April 1990, and COMP TR90-114, Center for Research on Parallel
Computation, Rice UNIV, May 1990.

G. Pfister and V. Norton. ”hot spot” contention and combining in multistage interconnection
networks. IEEE Transactions on Computers, C-34(10):943-948, 1985.

L. Rudolph and Z. Segall. Dynamic decentralized cache schemes for MIMD parallel processors.
In Proceedings of the 11th Annual Symposium on Computer Architecture, pages 340-347,
June 1984.

L. Rudolph, M. Slivkin, and E. Upfal. A simple load balancing scheme for task allocation
in parallel machines. In Proceedings of the 3rd ACM Symposium on Parallel Algorithms
and Architectures, pages 237-245, July 1991.

N. Shavit and D. Touitou. Elimination trees and the construction of pools and stacks. In
SPAA’95: Tth Annual ACM Symposium on Parallel Algorithms and Architectures, pages
54-63, Santa Barbara, California, July 1995. Also, Tel-Aviv University Technical Report,
January 1995.

N. Shavit and D. Touitou. Elimination trees and the construction of pools and stacks. Theory
of Computing Systems, 30(6):645-670, November/December 1997.

N. Shavit, E. Upfal, and A. Zemach. A steady state analysis of diffracting trees. Theory of
Computing Systems, 31(4):403-423, July/August 1998.

N. Shavit and A. Zemach. Diffracting trees. ACM Transactions on Computer Systems,
TOCS, 14(4):385-428, November 1996.

Reactive Diffracting Trees . 37

[33] N. Shavit and A. Zemach. Combining funnels. In Proceedings of the Seventeenth Annual
ACM Symposium on Principles of Distributed Computing, pages 61-70, Puerto Vallarta,
Mexico, June 28th — July 2nd 1998.

[34] P. C Yew, N. F. Tzeng, and D. H. Lawrie. Distributing hot-spot addressing in large-scale
multiprocessors. IEEE Transactions on Computers, pages 388-395, April 1987.

