
Combining Funnels
A new twist on an old tale.. .

Nir Shavit* Asaph Zemacht
Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

Abstract

We enhance the well established software combining syn-
chronization technique of Goodman et al. to create com-
bining funnels. Previous software combining methods used
a statically assigned tree whose depth was logarithmic in
the total number of processors in the system. The new
method allows to dynamically build combining trees with
depth logarithmic in the actual number of processors ac-
cessing the data structure concurrently. The structure is
comprised from a series of combining layers through which
processor’s requests are funneled. These layers use random-
ization instead of a rigid tree structure to allow processors
to find partners for combining. By using an adaptive scheme
the funnel can change width and depth to accommodate dif-
ferent access frequencies without requiring global agreement
as to its size. Rather, processors choose parameters of the
protocol privately, making this scheme very simple to imple-
ment and tune. When we add an “elimination” mechanism
to the funnel structure, the randomly constructed “tree”
is transformed into a “forest” of disjoint (and on average
shallower) trees, thus enhancing the level of parallelism and
decreasing latency.

We present two new linearizable combining funnel based
data structures: a fetch-and-add object and a stack. We
study the performance of these structures by benchmarking
them against the most efficient software implementations of
fetch-and-add and stacks known to date, combining trees
and elimination trees, on a simulated shared memory mul-
tiprocessor using Proteus. Our empirical data shows that
combining funnel based fetch-and-add always outperforms
combining trees and the performance margin increases con-
siderably if the number of processors is unknown in advance
or if load is less than maximal. Elimination trees, which
are not linearizable, prove to be 10% faster than funnels un-
der highest load, but as load drops combining funnels adapt
their size, giving them a 34% lead in latency.

*Contact Author: &mail: l hanir~math.tau.ac.il.
+Supported by an Israeli Ministry of Science Eshkol Scholarship.

Pamission to mske digital or hard copies of all m part ofthis work for
pasonrl or clas8room use is granted without fee mwided that cotties
arcnotmadeordiskibutedfixprotitwk~ -r---

Ial dvantage and that
copiesbeuthisno(iasndthefullcitationonthefvstpage.Tooopy
oth~,torepublish,topostooserversortoredistributetolista,
requires prior specific pemhsim and/or a fee.
PODC 98 Puerto Vallarta Mexico
Copyright ACM 1998 O-89791-977-7/98/ 6...$3.00

1 Introduction

When different threads running a parallel application access
the same object simultaneously, a synchronization protocol
must be used to avoid interference. Since modern architec-
tures usually supply very basic synchronization primitives, it
is up to the programmer to handle more complex situations
in software. Synchronization methods should be simple and
easy to implement and offer both correctness and efficiency.
Correctness implies that for any interleaving of instructions
by any number of processors, the behavior of the synchro-
nized object always adheres to some well defined specifica-
tion. Efficiency, in this context, can be broken into several
categories: parallelism - as more threads (processors) are
added to the system the throughput should generally in-
crease; scalability - it should be possible for the method
to support an arbitrary number of threads; and robustness
- the time it takes to perform operations should minimize
sensitivity to load fluctuations. Finally, the method should
be widely applicable to avoid the need to invent a new syn-
chronization protocol for every application.

It is well documented [l, 7, 12, 211 that concurrent access
to a single object by many threads can lead to a degrada-
tion in performance due to contention. A relatively well
established method which has been used to alleviate this
“hot spot” contention is combining. Originally designed by
Gottlieb et al. to be used in switches of a network which
connects processors to memory [9, 201, combining seeks to
avoid contention by merging several messages with a like
destination. If a switch discovers two read operations at-
tempting to access the same word of memory, it will forward
only one message to the memory system. When a message
returns with the contents of the memory, the switch will dis-
patch two messages back to the processors to satisfy both
read requests. In the NYU Ultracomputer [lo], hardware
switches can perform combining on several different kinds
of messages, including reads, writes and fetch-and-add op-
erations [15]. The most notable example of software combin-
ing for performing fetch-and-add are the combining trees of
Goodman et al. [8] and Yew et al. [24]. In these algorithms,
the current value of a fetch-and-add counter is stored at the
root of a binary tree. Processors advance from the tree’s
leaves to its root, combining requests at each node along
their path. Whenever combining occurs, one processor con-
tinues to ascend the tree, while the other is delayed. When
a processor reaches the root, it adds to the counter the sum
of all the fetch-and-add operations with which it combined,
then it descends the tree, delivering the results to the de-
layed processors.

61

Combining trees are widely applicable and can be used
to enhance the implementation of any fetch-and-9 [lo, 151
synchronization primitive, as well as some simple data struc-
tures, such as sets. Scalability as the number of processors
P increases is achieved my making the tree deeper, adding
more levels to make sure that the number of leaves is [P/21.
Under maximal load, the throughput of such a tree will be
P/(2 log P) operations per time unit, offering a significant
speedup. Two mechanisms are used to keep contention at
tree nodes low. Processors are statically pre-assigned two to
a leaf, and every node contains a lock, processors must ac-
quire this lock in order to ascend from a node to its parent.
Thus, the number of processors that may concurrently en-
ter a node is at most two, regardless of the load. In practice
this means tree nodes can be made simple and require few
instructions to traverse.

Combining is thus a compelling idea for providing lin-
earizable parallel implementations. However, it turns out
that the very mechanisms that make the tree so useful under
high loads, namely static assignment and locking of nodes,
are actually drawbacks as the load drops.

The downside of static assignment is that even if the
tree is rarely accessed by all P processors simultaneously, its
depth must still be log P. The locking of tree nodes means
that a processor that misses a chance for combining is locked
out of the path to the root and must wait for an earlier one to
ascend the tree and return before it can progress. As noted
by Herlihy et al. [12], this makes combining trees extremely
sensitive to changes in the arrival rate of requests. Herlihy et
al. show that even a small drop from the maximal load will
cause a 50% drop in the level of combining, and from there
performance continues to degrade rapidly (this is discussed
in detail in Section 4 of this paper and in [23]).

There is no obvious way of getting around these difficul-
ties. For example, combining trees are not amenable to an
adaptive strategy which might shrink the tree when average
load is low (e.g. the reactive locks of Lim and Agarwal [IS])
since there is no easy way to lower the number of nodes and
still limit simultaneous access to a node to no more than
two processors. Furthermore, decentralized algorithms for
dynamically changing tree size (see for example the Reac-
tive Diffracting Trees of Della-Libera and Shavit [S]) tend to
be complex and require significant tuning efforts. Naive at-
tempts to remove the locks and allow processors to pipeline
requests up the tree would mean nodes (especially the root)
could be reached by many processors at a time. The need
to handle this increased parallelism and contention would
complicate the protocol used in the tree nodes and increase
latency.

In summary, is seems that allowing pipelining of requests,
eliminating unnecessary waiting, and modifying the tree al-
gorithm to be adaptive, would benefit performance. How-
ever, there seems to be no simple way to fit them into the
binary combining tree framework.

1.1 Beyond trees: the new approach

In this paper we present a new general method for imple-
menting the “combining” paradigm on shared memory mul-
tiprocessors. It allows us to reap most of the benefits of com-
bining without the drawbacks of using a tree structure. Our
method, combining funnels, replaces the “static” tree with
a series of “randomized” combining layers through which
requests are funneled and combined.

In broad terms, the combining funnel approach can be
stated as follows. Given a simple data object with combin-

able [9, 151 operations, which operates correctly in a paral-
lel environment (though not necessarily efficiently), parallel
performance can be enhanced by adding a combining fun-
nel structure as a front end. All processors attempting to
access the object pass through the layers of the funnel and
can collide with others heading for the same object. When
a collision occurs the colliding processors perform a local-
ized combining protocol much in the same way as commu-
nication network switches combine messages. When pro-
cessors emerge from the funnel, they apply their (possibly
combined) operation to the object.

The implementation of the layers of the funnel is based
on a technique similar to the one used by the authors in the
design of the diffracting tree prism array [23]. The prism ar-
ray is a randomized software “bulletin-board” which allows
pairs of processors to find each other and collide. While
diffracting trees use these collisions to “diffract” pairs of
processors, here we will use them to combine sets of re-
quests. The combining layer is an array of locations 1..W.
A processor chooses an element uniformly at random from
some subrange of l..W and tries to combine with other pro-
cessors who concurrently choose the same random element.
The randomized access removes the need for static assign-
ment of processors to elements, and since prism locations are
never locked, unnecessary spin-waiting can be eliminated.
The funnel itself is constructed from a cascade of combin-
ing layers leading to the central copy of the data structure.
Each processor can independently and dynamically choose
the depth (what layer) to start at and the subrange (what
width) to randomly choose from at a given depth (see Fig-
ure 3 for a graphic depiction of this property). The choice
is easily modified in response to the processor’s local indi-
cators of system load. The resulting protocol “adapts” the
effective size of the data structure to the request load in
a highly decentralized manner through convergence of the
independent choices made by individual processors.

Adaptive algorithms, allowing the data structure to change
behavior to accommodate different access frequencies, have
been used both in locking (see Karlin et al. [14] and Lim
and Agarwal [17]) and for more general fetch-and-+ opera-
tions [16]. The work of Lim and Agarwal [16] showed the
performance benefit of dynamically switching between lock-
ing an object and using (static) combining trees, based on
whether the overhead of the latter justifies the added poten-
tial for parallelism. Combining funnels take this idea one
step further by using a single funnel structure to support
an entire range of sizes, from a simple lock to full funnel.
Unlike the approach of Lim and Agarwal we do not require
global agreement as to the size of the data structure, al-
lowing each processor to choose the parameters of the fun-
nel individually. This lack of coordination lowers overhead
and simplifies the protocol. Though it means that differ-
ent processors might end up with different size decisions:
some using large funnels, some small, this does not affect
the algorithm’s correctness, and as we will show, produces
significant performance advantage.

In a typical execution of the funnel, as operations collide
many small combining trees are created, further collisions
create larger trees and one ends up with a collection of con-
current combining trees “growing” towards the central struc-
ture. Trees are created and destroyed “on-the-fly” based on
those processors concurrently passing through the funnel.
Unless trees collide and combine, each tree advances inde-
pendently. Since layers are never locked, slow trees don’t de-
lay faster ones, improving both parallelism and robustness.
These and other combining funnel behaviors are shown in

62

Figure 1: A whole slew of behaviors of a linearizable com-
bining funnel based stack. Pushes are denoted by a ‘I+”
sign, and pops by a I‘-“. Two pushing processors collide
to create a new combining tree; a pair of opposite signed
trees collide and, through local agreement, exit the funnel
immediately; the tree rooted at 4 overtakes the tree rooted
at p which is delayed for some reason.

Figure 1.
One can further enhance the performance of combining

funnels for data structures that allow elimination in addi-
tion to combining (as defined in the work of Shavit and
Touitou [22]). For example, we show that if the implemented
data structure is a stack, one can preserve linearizability
even if collections of “push” and “pop” operations that meet
in a given layer of the funnel are eliminated. That is, the
pushes return success and each pop returns one of the en-
queued values it collided with, and all exit the funnel with-
out ever reaching the central structure. In effect the tree
structure is replaced by a forest of independent trees of re-
quests, each of which can be satisfied in parallel.

This paper presents implementations of two combining
funnel based data structures: a fetch-and-add object which
can serve as a template for a general fetch-and-9 object;
and a concurrent stack. Both data structures are lineariz-
able, a property found in combining trees but not in previous
prism based methods such as diffracting trees and elimina-
tion trees. We studied their performance by benchmark-
ing them against the most efficient software implementa-
tions known to date: combining trees and elimination trees.
We found that the combining funnel based fetch-and-add
performs considerably better than combining trees of fixed
height. In a system of 256 processors where only 64 attempt
to access the object, the fixed size tree is 8 levels deep (where
6 would suffice) and is outperformed by combining funnels
by 70%. In stacks, under highest load, elimination trees
provide 10% better latency. As the number of processors
drops or local work between accesses increases, the trend is
reversed and combining funnels gain the lead, e.g 34% lower
latency at 32 processors. Unlike elimination trees whose
latency increases as load on the object drops, the adaptive
combining funnel has the property that decreasing load leads
to an improvement in latency. In summary, our linearizable
fetch-and-add and linearizable stack are by far the fastest
such structures known to date.

The rest of the article is organized as follows. Section 2
presents the combining funnel scheme and gives an in-depth
look at fetch-and-add and stacks, Section 3 describes how
adaption is incorporated into the funnel, Section 4 gives

benchmark results, and Section 5 concludes the paper and
discusses areas of further research. In the appendix one can
fmd detailed pseudo-code for both data structures imple-
mented.

2 Combining Funnels

Figure 2: Schematic depiction of combining funnel mecha-
nism

We first present our combining-funnel scheme in a gen-
eralized form and then show how both fetch-and-add and
stacks fit into the framework. The idea, illustrated in Fig-
ure 2, is to maintain a single “central object” and use a series
of funnel layers as a “front-end” to make access to it more
efficient. Our only requirement in terms of parallelism from
the central object is that it must correctly handle simulta-
neous access attempts by multiple processors. This can be
achieved simply by protecting access to the object by locks.
The combining funnel handles efficiency and prevents the
object from becoming a serial bottle-neck.

Normally a processor would first acquire the object’s
lock, then apply its operation and finally release the lock.
Instead, it will now first “pass through” a series of combin-
ing layers. The function of the layers is to hand each passing
processor the ID of another processor that has recently gone
through the same layer. Since each object has its own funnel
this ID is likely to belong to a processor that is concurrently
trying to access the same object. The fist processor now
attempts to collide with the one whose ID it got. If success-
ful, processors can exchange information and update their
operations accordingly. For example, processors p and q ac-
cess a stack object concurrently with operations PUSH(A)
and PUSH(B) respectively. Processor p passes through one
of the stack’s layers and exits with q’s ID. If p manages to
collide with q the results could be for p’s operation to be-
come PUSH({A,B}) and q’s to change to “WAIT for B to be
PUS&d”. We say p becomes q’s parent since p is going to be
performing both operations.

In a shared memory environment, a funnel layer can be
implemented using an array. A processor arriving at the
array picks a location at random and applies a register-to-
memory-swap operation on it,’ reading the ID written there
and writing its own ID in its place. By overwriting existing
IDS, we can keep the array up-to-date and avoid accumulat-
ing stale information. By using an array with several loca-
tions we allow many processors to pass through the layer at

‘A read followed immediately by a write would also work, the
correctness of the algorithm does not depend on access to the layer
being atomic.

63

the same time. Wider layers (arrays) provide more paral-
lelism and reduce contention, narrower layers are more likely
to be up-to-date. Upon exiting each layer in the funnel (ID
in hand), processors first attempt to collide, then advance
to the next layer. Implementing layers in message pass-
ing is described in [23]. The following presents a high-level
step-by-step description of the combining-funnel scheme for
a processor p, where initially LocationCp] contains the pair
< object = X, operation= F >.

1. Foreach funnel layer do

Swap. Read q from random location in layer,
write p there.
Attempt to collide with q, if Succeeded com-
bine operations.
Delay. Allow some other processor a chance to
read p’s ID and collide with p. If collided behave
accordingly.

2. Exit funnel. Attempt to perform p’s operation on the
central object.

3. Succeeded? Distribute results. Failed? goto 1.

Referring back to our stack example we will show how
p and q execute the algorithm. The Location array keeps
track of which object a processor is currently operating on,
p marks that it is going to apply a PUSH(A) operation on
the funnel associated with stack S by setting Locationlp]
to < object = S, operation = PUSH(A) >. Let us as-
sume p has read q’s ID from a funnel layer at step la and
now attempts to collide with q. The collision will succeed
if both processors are available for collision, that is both
processors are in funnel S and neither is currently collid-
ing with someone else, this condition can be checked us-
ing the Location array. If the collision succeeds, p calcu-
lates the combined operation setting the operation field of
Location[p] to PUSH({A,B}) and of Location[q] to “WAIT
for B to be PUSHed”, q is now unavailable for further col-
lisions. In step lc processors delay to give others an oppor-
tunity to collide with them, here q will discover the collision
with p and wait for notification that B has been pushed into
the stack. Once notified, q will exit the funnel. After pass-
ing through all layers, processors access the central object,
though they may opt not to wait on a busy lock and instead
traverse the funnel again. Once the processor performs its
operation on the object, it must deliver results e.g. when
p completes its operation on the stack, it informs q that B
has been pushed. After passing through all layers they can
attempt to acquire the central object. The width of fun-
nel layers decreases with each level since it is assumed that
collisions will reduce the number of accesses to subsequent
layers. Determining the number of layers to use and the
width of each layer is of critical importance and is discussed
in Section 3.

2.1 Linearizable Fetch-and-Add and Stack objects

The central object for a combining funnel based fetch-and-
add is a location in memory where the current value of the
counter is stored. Exclusive access to the counter can be pro-
vided using any locking method or through an atomic fetch-
and-add primitive in hardware. Fetch-and-add objects sup-
port one operation: ADD(z) which atomically adds the value
t to the counter and returns its previous value. Combining
in fetch-and-add is based on the observation that when two

processors want to perform FEIA(X,a) and Fbd(X,b) re-
spectively, if one of them instead performs FBd(X,a + b)
and returns X’s current value to itself and X + a to the
other - both requests to be satisfied. To facilitate the com-
bining phase we will define another operation, WAIT, which
is not a true operation, but rather indicates that a processor
is stalled pending the completion of its operation by some-
one else, namely, its parent. All processors enter the object
with an ADD operation. When ADD(Z) and ADD(y) collide,
step lb changes the specification of one to ADD(z + y> and
that of the other to WAIT. The processor who is assigned
ADD(z + y> becomes the parent of the stalled processor. To
support the distribution phase, parents are responsible for
keeping a list of children, holding the identity and request
sizes of processors they combined with. Processors in the
distribution phase go over the list of children and deliver a
result to each of them. Processors who discover they have
become children (i.e. the operation field of their element
of Location is changed to WAIT) delay in step lc pending
delivery of a result and must then distribute values to their
own children.

The most straightforward implementation of a central
object for a stack is simply to take a regular serial stack and
surround it by a locking mechanism. If two PUSH operations
collide we can combine by having one processor, after ac-
quiring the stack’s lock, push both values into the stack. By
extension, trees of PUSH operations will work the same way,
the root performs all the operations once it has the lock on
the stack, this will take a time linear in the total number
of operations in the tree. We can improve on this naive
approach if we make the following observation, if a tree is
homogeneous (contains only one kind of operation, either
PUSH or POP) then when the the root goes to perform the
operations one by one, each operation has a different value
of the stack pointer, SP i.e. is done on a different element
of the stack. We can therefore view homogeneous trees as
a kind of fetch-and-add operation, where the root adds to
(or subtracts from, in the case of POP) the current value of
SP the size of its tree and delivers to each child an index.
Children then continue the process till each node in the tree
knows which element of the stack it is supposed to operate
on. Any node that receives an index can then immediately
perform its stack operation on it. Once the root knows that
all operations in its tree are complete, it can release the lock
on the stack and allow the next tree to begin operations.
This parallel approach reduces the time to complete a tree
of operations from linear in the total number of processors
in the tree, to linear in the depth of tree, which will usually
be much smaller.

What about combining opposite operations? Observe
that if a PUSH is followed immediately by a POP the stack
is returned to exactly the state it had prior to both op-
erations. In a sense adjacent PUSH and POP operations are
nothing more than one processor passing a value to another,
using the stack as a conduit. Combining can be applied here
by having the processor performing PUSH(Z) pass z directly
to the processor performing POP circumventing the central
stack altogether. This eliminationtechnique is due to Shavit
and Touitou [22]. Here we wish to generalize this approach
to handle entire trees of operations, rather than single pro-
cessors. In doing so we encounter the problem of eliminating
trees with different layouts. To avoid the layout problem we
will only allow collisions between roots of equal sized trees.
Thus, the root of a tree of n PUSH operations may only collide
with a similar root, creating a tree of 2n PUSH operations,
or with the root of a tree of n POP operations leading to

64

the elimination of both trees. Since all aggregate operations
are formed through an identical series of collisions, all are
homogeneous and all have the same layout.

2.2 Line&ability

Linearizability is a correctness condition introduced by Her-
lihy and Wing [13] that allows one to easily reason about
and compose concurrent objects. Informally, an implemen-
tation of an object is linearizable if we can associate with
every operation a moment in time between the start of the
operation and its end, and say that the operation appears
to have occurred then. We now explain why our fetch-and-
add and stack implementations are linearizable. We do so by
showing a linearization order consistent with the “real-time”
order of operations exists.

Let us imagine a run of the fetch-and-add algorithm in
which all combining attempts fail. Processors go through
the funnel, swap values on the layer array, but never man-
age to collide with a partner. In this scenario, each processor
carries only its own add request and applies it when it ac-
quires the lock on the central object. This is correct since
the linearization order corresponds exactly with the order
in which processors acquire the lock. Now let us assume
combining does occur, but that when p acquires the lock on
the counter it applies the operations in its tree one by one.
Notice that since each operation is applied separately and
that during this time only p operates on the object, a cor-
rect linearization order exists and corresponds to the order
in which p applies the operations. In actuality, recall that
processors outside p’s tree can only examine the object af-
ter p releases the lock, so from their point of view it doesn’t
matter whether p applies all operations at once or one at a
time. For processors inside p’s tree the distribution phase
returns to each of them exactly the same value it would have
received had p applied the operations one by one. Thus, for
every processor the case in which p applies the operations
one at a time is indistinguishable from the case in which all
operations are applied at once. The return values which are
determined by the distribution phase at each parent implic-
itly determine the order in which the increment requests are
linearized. For example, in our code the linearization order
corresponds to pre-order numbering of the nodes of the tree.

The argument regarding linearizability of our stack im-
plementation runs along similar lines, with only the elim-
inating processors requiring special attention. Consider a
pair of processors p and q performing a push and a pop re-
spectively. At some point p learns that it must eliminate
with q, at a later point p will write its value for q to read.
Since a push/pop pair leaves the stack in exactly the same
state we can linearize this pair of operations anywhere be-
tween these two points. So long as we do not linearize any
operation between them, this will ensure that all processors
have a consistent view of the stack. Since there can be only
a countable number of operations in the time interval, we
can always find a linearization point.

3 Adaption

Combining funnels, like diffracting and elimination trees,
are a parameterized data structure: performance of the al-
gorithm is determined by certain parameters which must be
chosen and tuned for each application. The number of lay-
ers, the width of each layer and the delay at each level can
all be optimized based on the expected load on the object
and the specifics of the machine being used. As noticed

by previous researchers [14, 17, 161 using an adaptive data
structure we can provide a solution that dynamically adjusts
its parameters based on actual conditions encountered. The
number of collisions a processor is involved in at each access
to the object can serve as an indicator of the load. Few
collisions serve as evidence to low load, and suggest using
smaller layers and lower depth. In fact, it may even be
possible to avoid the use of a funnel altogether and achieve
latency equal to that of a simple locking object. Conversely,
many collisions imply wider layers and deeper funnels are
needed. Widening layers increases their parallelism as more
processors can collide simultaneously. Deepening the funnel
increases the number of collisions and reduces the number
of accesses to the central object.

We propose the following method for choosing funnel
paramaters and applying an adaptive strategy to adapt to
encountered load. Using benchmarking techniques deter-
mine the set of parameters that gives best performance un-
der maximum possible load. Generally, maximal load oc-
curs when all processors run a program which does nothing
but contineously access the object. Note that for our stack
object, all processors should apply one type of operation
in this test, since otherwise eliminations willl occur, which
will reduce “pressure” on the central object. The combining
funnel used in the application should be implemented us-
ing these “maximal load” parameters which processors can
change dynamically in response to load fluctuations. Deci-
sions on parameter changes are made locally by each proces-
sor, layers or funnels don’t actually grow or shrink, instead
processors choose a random layer location from a subset of
the full width, or pass through less (or more) layers be-
fore trying to gain access to the central object. Figure 3
illustrates two possible adaption strategies. In the one on
the left, which better fits our fetch-and-add implementation,
processors which believe the load is high enter the funnel at
the very top going through all layers, those that believe oth-
erwise can enter the funnel further down and traverse less
and narrower layers. On the right hand side is an adaption
strategy for the stack. Here processors must always enter on
the first level since the level determines the depth of their
tree, though if they perceive the load to be low, they can
choose to use only part of the layer’s width and attempt to
access the central object more often.

High load

Figure 3: Two methods of adapting layer sizes to different
loads. Shaded areas are used when the load is low.

65

For fetch-and-add the algorithm adapts as follows. Each
time a processor p passes through the funnel, it marks 1, the
number of levels passed through before a collision occurred.
Let i denote the average of 1 over N successive operations.
Assuming some suitably chosen threshold values T and K,
if i < T, an indication of high contention, p increments a
private counter c when c reaches K, p adapts by s$rting
deeper inside the funnel on its next operation. If 1 1 T,
an indication of low contention, c is decremented, and when
c reaches 0, p adapts by starting at a layer higher up the
funnel on its next operation.

For stacks we use a slightly different approach. Each
processor keeps a value 0 < f < 1, by which it multiplies
the layer width at each level to choose the interval into which
it will randomly swap (e.g. if f = 0.5 only half the width is
used). When a processor p successfully acquires the central
object it increments a private counter c, and when c reaches
some limit K, f is halved. If p fails to acquire the central
object, c is decremented, and when c reaches 0, f is doubled.

A major advantage of combining funnels over tree based
methods such as combining trees and elimination trees is
that they are substantially easier to adapt to different ma-
chine loads. The difference between shrinking a layer array
and removing levels from a tree is that processors need not
coordinate the move to a different layer size. When using
trees, it seems that all processors must agree on the exact
size of the tree at all times, otherwise correctness is lost as
some processors skip leaves that may be in use by other pro-
cessors. When using combining funnels, no coordination is
necessary, it is possible for processors to have different ideas
about layer’s width or funnel depth. Each processor makes
its decisions locally based on what it perceives the load to
be.

3.1 Code for Data Structures

The information kept by each processor performing an oper-
ation is logically divided into private and public data. The
public data is just the information which processors that
collide with this one need inorder to update their own oper-
ations. In our implementations only the processor’s current
operation and status (e.g. is it currently inside funnel Z) are
made public. Eveything else is private.

Fetch-and-Add Figure 4 lists pseudo-code for our fetch-
and-add implementation. We assume per-processor data is
accessed through a my pointer, and that ob j and op encapsu-
late data and functions specific to the object and operation
(respectively) being performed. Per-processor public data
used here is a Location word which is used for collisions,
and an Operation word which points to the public part of a
processor’s operation. The following is a brief walk-through
of the code. Lines 1-5 set up the data structures for the op-
eration. Lines 8-17 contain the collision code, a processor
p picks a random layer locations, swaps its my pointer for
the one written there, q, and attempts to collide by lock-
ing itself and 9 (lines 8-11). If the collision succeeds, 4 is
added to p’s list and p continues (lines 12-15). If p discovers
that it has been collided with, either immediately or after a
short delay, it goes on to wait for a value (lines 17-19 and
21,29). After passing through all layers, p attempts to per-
form a fetch-and-add operation on the central counter using
compare-and-swap (line 23), if this succeeds p moves to the
distribution phase. The distribution phase begins with code
that waits for a result (lines 32-33), when it arrives p iter-
ates over all processors in its list, handing out a value to

Fetch-and-Add(object *obj , operation-typa *op 1
I

I n=O
2 subtotal = op->um
3 op->rrsu1t = BRPTY
4 my->Location = obj
5 my->Dp*ration = op
6 whila(i) <
7 for(i=O; i < lumbesOflay~rs; it+) <
a r = random0 X obj->layerWidthCil
9 q = SWAP(obj->layarCil trl , RYID 1

10 if (CaS(my->Location, obj, BULL)) I
11 if (CaS(q->Location, obj. YULL)) I
12 listtnttl = (q , q->Operation->wxa)
13 op->tum t= q->Opwation->aum
14 3
is my->Location = obj
16 3
17 l lo* goto distribute
18 for(i=O;itobj->SpinCll; it+)
19 if (my->Location != obj) goto distribute
20 3
21 if(CaS(my->Location,obj,NLL)) I
22 val = obj->countar;
23 if(CaS(obj->counter , val. val t op->sum)) <
24 op->ruult = val
26 goto dittributr
26 3
27 my->Loc.ation=obj
28 3
29 else goto distribute
30 3
31 distribute:
32 shile(op->rwult == ERPYY) I* #pin */;

33 VP1 = op->r*sult
34 for(i=0; i<n; it+) f
35 (q , qclum) = listCi3
36 q->Dpwation->rosult = val t subtotal
37 subtotal t= qwm
38 3
3

Figure 4: Code for Fetch and Add implementation

each of them by setting their op->result field (lines 34-37).

Stack Code for the stack implementation is somewhat
more involved though still quite simple. The same public
data is used here as before with an additional per-processor
public word Comm used to relay different types of informa-
tion between processors. We begin as before with a setup
phase (lines 1-4) followed by an attempt to collide (lines
7-10). Two differences bear mentioning: (1) We add the
processor’s level, 1 to its location marker to make sure col-
lisions only occur between processors on the same level; (2)
We allow processors to attempt operation on the central
stack not only when they exit the funnel but also once ev-
ery obj->Attempts unsuccessful collision attempts (line 6).
If a collision occurs p checks q’s operation, if they are the
same q is added to p’s list and p advances one level (lines
11-14). Otherwise p writes to the Costs word of the proces-
sor performing the PUSH (either p or q) the other processor’s
my pointer (lines 16-20). This way the PUSH-ing processor
knows the ID of the POP-ing processor and can coordinate the
rest of the elimination. As before lines (24-29) deal with un-
successful collisions and delays. If p manages to acquire the
central stack (lines 32-47), it first updates the stack pointer
and the object’s TICKET counter, then releases the lock. The
routine updat esp (sp, op , z) increments sp by z if op is
a PUSH and decrements it by z otherwise, in neither case is
sp allowed to exceed appropriate bounds. The size of the
update in line 33 is 2’ since, having been on the l-th layer, p

66

Stack(object *obj , op9retion-typb *op)
I
I
2
3
4
5
6
7
8

9
IO

11

12
13
14
16
16
17
18
19
20
21
22
23
24
26
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
46
46
47
48
49
60
51
52
53
14
66
66
57
58
69
50
61
62
63
64
66
66
67
68
69
70
7i
72
73
74

3

1=0
my->comm = LllPTY
my->op = op
my->Location = < obj , 1 >
nhilr(1) I

for(n=O;n < obj->AttwaPta tt 1 < obj->Lwrll; ntt) <
r = random0 X obj->HidthCll
q = SHAP(obj->layrrCll trl, my1
if(CaS(my->Location. <id.l>, DULL)) (

if(CaS(q->Location, <id,l>, BULL)) I
if(q->Op->command == op->command) 4

my->ListCll : q
my->Location = <id , ttl>
n-o

3
I, i

if(op->command == PUSH) I
my->Comm = < COLLIDB. q. 0 >

Is
q->Comm = < COLLIDE , my. 0 >

goto collided
3

3
*llr my->Location = < id , 1)

3
8lsr goto collided
for(i=O;i<obj->Spin; it+)

if(my->Location != <id. l>) goto collided
3
if(CaS(my->Location, <id,l>, SULL)) (

if(Acqnirad(obj->locIr)) I
ap = obj->SP
obj->SP mytick.t ==“$;~;;;-;;;;, op-‘--nd t 1((l)

Bal*aa@(obj->lock)
myplacr = updata-ap(tp , op->command , 1)
for(i=l-i; i>=O; i--1 (

my->Limt[iI->Comm = <STACK , my, ap >
rp = updata-sp(ap, op->command , l<<i)

3
while (obj->IOHSBkVIUC != myticket) ;
my->Go = I<<1
rat = obj->do-singlr(myplac@,op)
Dtcrrmtnt(my->Go)
nhila(my->Go > 0)
obj->IOWSgRVIHG tt
r.tu?xl ret

3
*Isa my->Location = < id , 1 >

3
ala@ gpto collidrd

3
collidrd:

nhil*(my->Comm ii= EMPTY) ;
< typo , q , va1 > q my->com
snitch(typo 1 I

cam STACI: /t root acquired SP r/
sp = updata-lp(val. op->command, 1)
for&l-i; i>=O; i--l I

my->LirtCil->Comm = < STACK , q, ap >
“P = updata-ap(tp. op->command. l<<i)

3
whil*(q->Go==O);
op->rrsult = obj->do-singlo(val.op)
Dwram*nt(q->Go)
brmk

caa. COLLIDB I* aliminatad and PUSHing rl
for(i=l-I; i>=O; i--1

my->liltCil->Comm = < COLLIDX , q->lirtCil. 0 >
q-Xomm = < VALUE , 0, op->data >
break

case VALUE I* aliminatrd and POPing tl
op->twult = va1

3

Figure 5: Part 1 of code for stack implementation

knows that it is at the root of a tree of 2’ operations. After
releasing the lock, p distributes stack pointer values to all
processors in its tree (lines 37-40) much in the same way as
is done in the fetch-and-add operation. Now p waits for all
pending operations to complete (lines 41) before giving the
processors in its tree the “go ahead” to begin by setting its
my-X0 word (line 42). The my->Go word serves as a double
barrier, first barring processors from starting their opera-
tions before their tree’s turn arrives, then stalling the root
until all processors in its tree are done. After performing its
own stack operation (line 43) p waits for all operations in its
tree to complete (line 45) before incrementing NOWSERVING
and allowing the next processor to proceed (line 46). Pro-
cessors which notice that they have been collided with, jump
to the end part of the code. Here they must first wait for up-
dates to their COINS word to reveal the nature of the collision.
If the processor which collided with them has captured the
central stack (line 57), they must distribute stack pointer
values to their children (lines 59-62), and once given the
“go ahead” by the root, perform their operation (lines 63-
64). In an elimination, first the PUSH-ing processor informs
each processor in its list of the identity of a POP-ing pro-
cessor with which it must eliminate (lines 68-69), then it
performs a singleton elimination with its partner (line 70).
Eliminated POP-ing processors spin on their Comm word in
line 54 till their PUSH-ing partner delivers a value to them.

4 Performance

global connt, latency

benchmark0
x

vhils(connt < B) I
v = random(0, work)
for(i=0; i<w; it+)

I
start = TIME0
if (FETCH-AE-ADD) I

a = fetch-and-add(l)
1
if (STACK) I

I = rmndom(O,i)
if (r==O) push(a)
else a = pop0

>
latency += TIHEO - stmrt
count++

1
)

Figure 6: Code for benchmarking fetch-and-add and stack
implementations. Global variables are seen by all threads
but require no synchronization to access.

Currently, combining trees and elimination trees are the
most effective parallel fetch-and-add and stack structures,
respectively. We compared combining funnels to these algo-
rithms. We also compared to a simple locking variant of each
data structure in order to have a point of reference for per-
formance in low load situations. Our tests were performed
on a simulated 256 processors distributed-shared-memory
multiprocessor similar to the MIT Alewife machine [2] of
Agarwal et al. using Proteus’, a multiprocessor simulator

‘Veraion 3.00, dated February 18, 1993.

67

Comb-Prism +-

“4 8 16 32 64 128 256

2000 Combining Prism +
1000

4 64 1024 16384 262144
Work

Figure 7: Latency of different fetch-and-add implementa-
tions with varying number of processors (top) and local work
(bottom).

developed by Brewer et al. [4, 51. In our benchmarks, pro-
cessors alternate between doing local work and accessing the
shared object being tested. We ran two sets of benchmarks
(see Figure 6), one in which we vary the number of proces-
sors and keep local work a small constant and the other in
which we vary local work and keep the number of processor
at the maximum. In each experiment we measure latency,
the amount of time (in cycles) it takes for an average access
to the object. The span of the work parameter tested rep-
resents the full range of access patterns, from maximal load
were processors spend all their time in the data structure
(work=O) to minimal load were the time spent inside the
data structure is less than 1% of the time spent spinning
in work loop. Funnel parameters were chosen as described
in Section 3 (that is, 256 processors and work was set to
0) and adaption threshold values 2’ and K were chosen as
those which gave the best performance (from a list of values
which seemed logical) for 64 and 16 processors. For funnels,
adaption is incorporated into the implementation of the ob-
ject and the overhead it entails is counted in the latency of
the operations.

Fetch-and-Add performance. The graph in the left part
of Figure 7 shows the performance of fetch-and-add imple-
mentations as the number of processors changes and local
work is a small constant. We plotted two curves for com-
bining trees, one in which the height of the tree is optimal
(marked H=opt) i.e. for p processors a tree of height [logp/2]
is used. The other curve is of a tree of constant height eight
(marked H=8), needed to support 256 processors - the max-
imum number of processors in our simulations. The curve
marked MCS represents performance of a single counter pro-
tected by an MCS-lock [19]. The graph shows that combin-

ing funnels are only substantially more expensive than the
MCS-lock for eight or fewer processors, at sixteen processors
both methods perform about equally, beyond this level of
concurrency latency of the MCS-lock increases rapidly and
it becomes totally unusable beyond 48 processors. Combin-
ing funnels outperform optimal height combining trees by a
small amount for all levels of concurrency. Notice, that this
result indicates that even if one could dynamically adapt be-
tween different tree sizes [16], perfectly choosing the correct
size tree every time and with no overhead (such as mea-
suring load or synchronizing the move to a new sized tree),
performance would still not be as good as when employ-
ing adaptive funnels. The power of adaption is evidenced
by exa mining the curve for constant height combining tree.
When using 64 processors, the combining tree is two levels
too deep and has 70% higher latency than the funnel, halve
the number of processors and the tree becomes three levels
too deep and twice as slow as our method. In the right-hand
graph of Figure 7 256 processors are used with varying lo-
cal work. The combining tree had height eight even though
the tree is unlikely to reach that level of concurrency. This
has a very adverse effect on the amount of combining in the
tree and results in a “spike” in the latency curve. This is
the worst possible scenario for combining trees since pro-
cessors that do not combine are essentially locked out of
the path to the root. No such sudden increase appears in
the latency curve of combining funnels, since no predeflned
“tree” structure exists and paths cannot be locked. The sit-
uation where processors are constantly arriving “too late”
to combine and must wait for their would-be partners to
ascend and then descend the entire tree does not arise. If
there are many processors in the data structure chances of
colliding are good since combining can occur between any
pair of processors. As concurrency drops the shrinking layer
width helps keep chances of colliding high while the shrink-
ing depth lowers latency. Comparison with the MCS lock
shows that that method is only applicable for very sparse
access patterns i.e. for rarely used objects, however, under
such circumstances it can be up to three times as fast as
combining funnels.

Stack performance. In [22], Shavit and Touitou compare
different stack implementations and the one based on elimi-
nation trees is shown to outperform the rest. We compared
our stack implementation to the non-linearizable elimination
tree and to two linearizable methods: a serial stack protected
by an MCS lock and a combining tree based stack. We
found that combining trees are always substantially slower
than combining funnels, 10 times slower at maximum load.
This is mostly due to elimination though we found that even
if elimination is not used e.g. all operation are PUSH, trees
were three times slower than funnels. For this reason we
do not display these results in our graphs, concentrating on
other methods instead.

In Figure 8 we again see that the latency of simple MCS
based locking is unsurpassed at low concurrency levels, but
adding more processors or reducing local work render the
method impractical. At the opposite end of the spectrum,
at 256 processors elimination trees outperform combining
funnels by about 10% (the parameters used by both methods
have been optimized for this case). However, the latency
curve for elimination trees has a downward slope, indicating
an increase in latency as processors are removed from the
simulation (this is consistent with the results of [22]), while
the curve for combining funnels slopes up - fewer processors
mean lower latency. Thus at 64 processors the difference

68

Combinine Prism
MCS -t-

Elimination Tree -Q-
Comb. Tree [H-Opt] 1 .-X--

0' I I I I I I
4 8 16 32 64 128 256

Processors

3000

2500

c Combining Prism +-- I
500 MCS -t-. Lb.. 4

Elimination Tree -0.-
0 ’ I I I

4 64 1024 16384 262144
Work

Figure 8: Latency of different stack implementations with
varying number of processors (top) and local work (bottom).

is 16% and at 32, 34% in favor of combining funnels. The
graph for varying local work tells a similar story, initially
elimination trees have a slight edge in performance, but at
around the middle of the graph3 the curve begins to slope
upwards. The explanation lies in the inability of elimination
trees to adapt their height. As concurrency drops so do
chances of diffraction, thus processors are forced to descend
further down the tree before either eliminating or storing
their element at the leaves.

5 Discussion

Combining funnels are a generalized framework for devel-
oping highly concurrent data objects. We have shown how
they enable taking simple fetch-and-add and stack objects,
and by following a structured step-by-step approach, creat-
ing effective parallel data structures.

Currently all our experiments were done by simulation.
However, machines large enough to benefit from these meth-
ods are slowly becoming more common. We hope to be able
to try these methods out in a real world setting in the near
future. We are currently looking for a large scale applica-
tion into which we might “plug-in” our methods and see if
performance has really improved. Also of interest are com-
posite data structures made up of several smaller objects,
some implemented using combining funnels.

6 Acknowledgments

We would like to thank Dan Touitou for his many helpful
comments.

*At this point the processors are spending about half their time
doing local work and the other half updating the stack.

PI A. Agarwal and M. Cherian. Adaptive Backoff Syn-
chronization Techniques. In Proceedinga of the 16th In-
ternational Symposium on Computer Architecture, pp.
396-406, May 1989.

PI A. Agarwal, D. Chaiken, K. Johnson, D. Krantz, J.
Kubiatowicz, K. Kurihara, B. Lim, G. Maa, and D.
Nussbaum. The MIT Alewife Machine: A Large-Scale
Distributed-Memory Multiprocessor. In Scalable Shared
&femory Multiprocessors, Kluwer Academic Publishers,
1991. Also as MIT Technical Report MIT/LCS/TM-
454, June 1991.

PI T.E. Anderson. The Performance of Spin Lock Alterna-
tives for Shared-Memory Multiprocessors. IEEE Trans-
actions on Parallel and Diatributed Systems, 1(1):6-16,
January 1990.

[41 E.A. Brewer, C.N. DelIarocas. PROTEUS User Docu-
mentation. MIT, 545 Technology Square, Cambridge,
MA 02139, 0.5 edition, December 1992.

[51 E.A. Brewer, C.N. Dellarocas, A. Colbrook and W.E.
We&l. PROTEUS: A High-Performance Parallel-
Architecture Simulator. MIT Technical Report
/MIT/LCS/TR-561, September 1991.

PI G. Della-Libera and N. Shavit. Reactive Diffracting
Trees In Proceedings of the 9th Annual Symposium
on Parallel Algorithms and Architectures (SPAA), June
1997.

[71 D. Gawlick. Processing ‘hot spots’ in high performance
systems. In Proceedings IEEE COMPCON’IC, Feb.
1985.

b31 J.R. Goodman, M.K. Vernon, and P.J. Woest. Effi-
cient Synchronization Primitives for Large-Scale Cache-
Coherent multiprocessors. In Proceedings of the Third
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), pages 64-75, April 1989.

PI I A. Gottlieb, R. Gr-
ishman, C.P. Kruskal, K.P. McAuIiffe, L. Rudolph, and
M. Snir. The NYU Ultracomputer - designing an MIMD
parallel computer. IEEE Transactions on Computers,
C-32(2):175-189, February 1984.

References

[lo] A. Gottlieb, B.D. Lubachevsky, and L. Rudolph. Basic
techniques for the efficient coordination of very large
numbers of cooperating sequential processors. ACM
Transactions on Programming Languages and Systems,
5(2):164-189, April 1983.

Pll

D21

D31

G. Graunke and S. Thakkar. Synchronization Al-
gorithms for Shared-Memory Multiprocessors. IEEE
Computer, 23(6):60-70, June 1990.

M.P. Herlihy, B.H. Lim and N. Shavit. Scalable Concur-
rent Counting. ACM Transactions on Computer Sys-
tems, 13:4, (1995) 343-364.

M.P. Herlihy and J.M. Wing Linearizability: A cor-
rectness condition for concurrent objects. ACM Trans-
actions on Programming Languagea and Systems, 12(3)
pp. 463-492, July 1990.

69

[14] A. Karlin, K. Li, M. Manasse and S. Owicki. Empirical
Studies of Competitive Spinning for A Shared Memory
Multiprocessor. In 13th ACM Symposium on Operating
System Principle8 (SOSP), pp. 41-55, October 1991.

[15] C.P. Kruskal, L. Rudolph, and M. Snir. Efficient syn-
chronization on multiprocessors with shared memory.
In Fifth ACM SIGACT-SZGOPS Symposium on Prin-
ciples of Distributed Computing, August 1986.

[16] B.H. Lim and A. Agarwal. Reactive Synchronization
Algorithms for Multiprocessors. In Sixth International
Conference on Architectural Support for Programming
Language8 and Operating Sy8tems (ASPLOS VZ), pp.
25-35, 1994.

[li’] B.H. Lim and A. AgarwaI. Waiting Algorithms for
Synchronization in Large-Scale Multiprocessors. In
ACM Transactions on Computer Systema, 11(3):253-
294, August 1993.

[18] N.A. Lynch and MR. Tuttle. Hierarchical Cor-
rectness Proofs for Distributed Algorithms. In
Sixth ACM SIGACT-SIGOPS Symposium on Princi-
ples of Distributed Computing, pp. 137-151, August
1987. FuIl version available as MIT Technical Report
MIT/LCS/TR-387.

[19] J.M. Mellor-Crummey and M.L. Scott. Algorithms
for Scalable Synchronization on Shared-Memory Multi-
processors. ACM Transactions on Computer Systems,
9(1):21-65, Feb 1991.

[20] G.H. Pfister et al. The IBM research parallel proces-
sor prototype (RP3): introduction and architecture. In
International Conference on Parallel Processing, 1985.

[21] G.H. Pfister and A. Norton. ‘Hot Spot’ contention
and combining in multistage interconnection networks.
IEEE Transactions on Computers, C-34(11):933-938,
November 1985.

[22] N. Shavit, and D. Touitou. Elimination Trees and the
Construction of Pools and Stacks In Proceedings of the
7th Annual Symposium on Parallel Algorithms and Ar-
chitectures (SPAA), pages 54-63, July 1995.

[23] N. Shavit and A. Zemach. Diffracting Trees. ACM
Transactions on Computer Systems, 14(4), pp. 385-
428,Nov 1996.

[24] P.C Yew, N.F. Tzeng, and D.H. Lawrie. Distribut-
ing Hot-Spot Addressing in Large-Scale Multiproces-
sors. IEEE Transaction8 on Computers, C-36(4):388-
395, April 1987.

70

