
Counting Networks’

James Aspues Maurice Herlihy Nir Shavit

June 10, 1991

Abstract

Many fundamental multi-processor coordination problems can be expressed as

counting problems: processes must cooperate to assign successive values from a

given range, such as addresses in memory or destinations on an interconnection

network. Conventional solutions to these problems perform poorly because of

synchronization bottlenecks and high memory contention.

Motivated by observations on the behavior of sorting networks, we offer a

completely new approach to solving such problems. We introduce a new class of

networks called counting networks, i.e., networks that can be used to count. We

give two counting network constructions of depth log2 n, using nlog2 ii “gates,”

avoiding the sequential bottlenecks inherent to former solutions, and substantially

lowering the memory contention.

Finally, to show that counting networks are not merely mathematical creatures,

we provide exper mental evidence that they outperform conventionai synchroniza

tion techniques under a variety of circumstances.

‘A preliminary version of this worl appeared in the Proceethngs of the flrd ACM Symposium 01’

the Theory of Computing. Ncw Or? ans May 1991.

tCarncgie Mellon University Department of Computer Science.

Digital Equipment Corporation, Cambridge Research Lab.

M1T Lab, for Computer Science. Supported by ONR contract N00014-91-J-1046, NSF grant CCR

8915206, DARPA contract N00014-S9-3-1988. and by a Rothscbild postdoctoral fel’owship. A large

part of this work was performed while the author was at IBM’s Almaden Research tutr.

Keywords: Counting Networks. Parallel Processing, Hot-Spots, Network Routing.





1 Introduction

Many fundamental multi-processor coordination problems can be expressed as counting

problems: processors collectively assign successive values from a given range, such as

addresses in memory or destinations on an interconnection network. In this paper,

we offer a completely new approach to solving such problems, by introducing counting

networks, a new class of networks that can be used to count.

Counting networks, like sorting networks 2, 5, 7], are constructed from simple two

input two-output computing elements called balanctrs, connected to one another by

wires. However, while an n input sorting network sorts a collection of ii input values

only if they arrive together, on separate wires, and propagate through the network in

lockstep, a counting network can count any number N > n of input tokens even if they

arrive at arbitrary times, are distributed unevenly among the input wires, and propagate

through the network asynchronously.

Figure 2 provides an example of an execution of a 4-input, 4-output, counting net

work. A balancer is represented by two dots and a vertical line (see Figure 1). Intuitively,

a balance,’ is just a toggle mechanism . alternately forwarding inputs to its top and bot

tom output wires. It thus balances the number of tokens on its output wires. In the

example of Figure 2, input tokens arrive on the network’s input wires one after the other.

For convenience we have numbered them by the order of their arrival (these numbers are

not used by the network). As can be seen, the first input (numbered 1) enters on line 2

and leaves on line 1, the second leaves online 2, and in general, the Nth token will leave

online N mod 4. (The reader is encouraged to try this for him/herself.) Thus, if on the

ith output line the network assigns to consecutive outputs the numbers i, i +4, i + 24,

it is counting the number of input tokens without ever passing them all through a shared

computing element!

Counting networks achieve a hi&h level of throughput by decomposing interactions

among processes into pieces that can be performed in parallel. This decomposition

has two performance benefits: It eliminates seriaj bottlenecks and reduces memory

contention. in practice, the performance of many shared-memory algorithms is often

limited by conflicts at certain widely-shared memory locations, often called h0t spots

[25]. Reducing hot-spot conflicts has been the focus of hardware architecture design

[12, 13, 17, 24] and experimental work in software [3, 10, 11, 20, 221.

Counting networks are also non-blocking: processes that undergo halting failures

or delays while using a counting network do not prevent other processes from making

progress. This property is important because existing shared-memory architectures are

‘One can implement a balancer using a read-modify-write operation such as Compart & Swap, or a

short critical section.

1



themselves inherently asynchronous: process step times are subject to timing uHcertain
ties due to variations in instruction complexity. page faults, cache misses, and operating
system activities such as preemption or swapping.

Section 2 defines counting networks. In Sections 3 and 4, we give two distinct count
ing network constructions, each of depth less than or equal to log2 n, each using less
than or equal to (it log2 n)/2 balancers. Section 7 describes how to verify that a given
network counts. To illustrate that counting networks are useful, we use counting net
works to construct high-throughput shared-memory implementations of concurrent data
structures such as shared counters, producer/consumer buffers, and barriers. A shared
counter is simply an object that issues the numbers U to ni— 1 in response to ii requests
by processes. Shared coimters are central to a number of shared-memory synchroniza
tion algorithms (e.g., [8, 9. 13, 26;). A producer/consumer buffer is a data structure in
which items inserted by a pool of producer processes are removed by a pool of consumer
processes. A barrier is a data structure that ensures that no process advances beyond a
particular point in a computation until all processes have arrived at that point. Com
pared to conventional techniques such as spin locks or semaphores. our counting network
implementations provide higher throughput, less memory contention, and better toler
ance for failures and delays. The implementations can be found in Section 5.

Our analysis of the counting network construction is supported by experiment. In
Section 6, we compare the performance of several implementations of shared counters,
producer/consumer buffers, and barrier synchronization on a shared-memory multipro
cessor. When the level of concurrency is sufficiently iLigh, the counting network imple
mentations outperform conventionaL implementations based on spin locks, sometimes
dramatically.

In summary, counting networks represent a new class of concurrent a]gorithms. They
have a rich mathematical structure, they provide effective solutions to important prob
lems, and they perform well in practice. Ve believe that counting networks have other
potential uses, for example as interconnection networks {27] or as load halancers[23J. and
that they deserve further attention.

2 Networks That Count

2.1 Counting Networks

Counting networks belong to a larger class of networks called balancing networks, con
structed from wires and computing elements called balancers, in a manner very similar
to that in which comparison networks 7j are constructed from wires and comparators.
We begin by describing balancing networks.

9



Input output

A balancer is a computing e]ement with two input wires and two output wires2 (see
Figure 1). Tokens arrive on the balancer’s input wires at arbitrary times, and are output
on its output wires. Intuitively, one may think of a balancer as a toggle mechanism, that
given a stream of input tokens, repeatedly sends one token to the left output wire and
one to the right, effectively balancing the number of tokens that have been output on its
output wires. We denote by i’-. i E (0, i} the number of input tokens ever received on
the balancer’s ith input wire, and similarly by y. i € {O. i} the number of tokens ever
output on its ith output wire. Throughout the paper we will abuse this notation and
use x (y) both as the name of the ith input (output) wire and a count of the number
of input tokens received on the wire.

Let the state of a balancer at a given time be defined as the collection of tokens on
its input and output wires. For the sake of clarity we will assume that tokens are all
distinct. We denote by the pair (t, b) the state transition in which the token I passes
from an input wire to an output wire of the balancer b.

We can now formally state the safety and liveness properties of a balancer:

1. In any state x0 + x1 ito + u, (i.e. a balancer never creates output tokens).

2. Given any finite number of input tokens iii = to + xi to the balancer, it is guar
anteed that within a finite amount of time, it will reach a quiescent state, that is,
one in which the sets of input and output tokens are the same, in any quiescent
state, x + xj = ya + Vt = rn

3. In any quiescent state, ito = [in/21 and y = [m/2j.

A balancing network of width w is a collection of balancers, where output wires are
connected to input wires, having in designated input wires xo, x, .., x_ (which are
not connected to output wires of balancers), w designated output wires j/o, Vi, .., Mw—i

2Jj Figure 1 as well as in the sequel we adopt the notation of 17] and and draw wires as horizontal
lin with balancers stretched vertically.

xo

XI

F + x 1
> ‘°I 2 I 76421

[_.> y1a[)<0’<ij 53

Figure 1: A Balancer.

I
1357

246

3



Inputs outputs

13 26 126
26 3 37

47 4

Figure 2: A sequential execution for a BLT0NIC(4] counting network.

(similarly uncollected), and containing no cycles. Let the state of a network at a given
time be defined as the union of the states of all its component balancers. The safety
and liveness of the network follow naturally from the above network definition and the
properties of balancers, namely, that it is always the case that x1
and for any finite sequence of vu input tokens, within finite time the network reaches a
qi.tiescent state, i.e. one in which >Z’ y, = m.

It is important to note that we make no assumptions about the timing of token tran
sitions from balancer to balancer in the network the network’s behavior is completely
asynchronous. Although balaiwer transitions can occur concurrently. it is convenient to
model them using an interleaving semantics in the style of Lynch and Tuttle [19. An €re
cution of a network is a finite sequence 5o, j, sj, - - - e,. 3,. or infinite sequence o, e1. si,...

of alternating states and balancer transitions such that for each (si, e,+l, s+i). the tran
sition e41 carries state s to sj,. A schedule is the subsequence of transitions occurring
in an execution. A schedule is valid if it is induced by some execution, and complete if it
is induced by an execution which results in a quiescent state. A schedule s is sequential
if for ally two transitions cj = (ti. b) and e2 = (ti. b). where t, and t are the same
token, then all transitions between them also involve that token.

On a shared memory multiprocessor, a balancing network is implemented as a shared
data structure, where balancers are records, and wires are pointers from one record to
another. Each of the machine’s asynchronous processors runs a program that repeatedly
traverses the data structure from some input pointer to some output pointer, each time
shepherding a new token through the network (see section 5).

\Ve define the depth of a balancing network to be the maximaL depth of auy wire,
where the depth of a wire is defined as 0 for a network input wire, and

max(depth(xo). depih(x1)j -r 1

for the output wires of a ba[ancer having input wires o and .r1. We can thus formulate
the following straightforward yet useful lemma:

431

5

762

14 5 .15
15

26

37

4

4



Lemma 2.1 If the transition of a token from input to output by any balancer takes at
most A time, then any input token will exit the network within time at most A times
the network depth.

A counting network of width u, is a balancing network whose outputs Yo, ., i/rn—i

satisfy the following step property:

In any quiescent state, 0
—

1 for any i <j.

To illustrate this property, consider an execution in which tokens traverse the iletwork
sequentially, one completely after the other. Figure 2 shows such an execution on a
ThTONIC[4] counting network which we will define formally in Section 3. As can be
seen, the network moves input tokens to output wires in increasing order modulo w.
Balancing networks having this property are called counting networks because they can
easily be adapted to count the total number of tokens that have entered the network.
Counting is done by adding a “local counter” to each output wire i, so that tokens
coming out of that wire are consecutively assigned numbers i, i + w,. . . , i + (y — l)w.
(This application is described in greater detail in Section 5.)

The step property can be defined in a number of ways which we will use interchange
ably. The connection between them is stated in the following lemma:

Lemma 2.2 If yo, . ,Y,—i is a sequence of non-negative integers, the following state
ments are all equivalent:

1. For anyi <j, 0 YiY 1.

2. Either y = y for all i,j, or there exists some c such that for any i < c and j
— 1/i = 1.

3. Ifm=’y1,y1=[1
It is the third form of the step property that makes counting networks usable for count
ing.

Proof: We will prove that 1 implies 2, 2 implies 3 and 3 implies 1.

Assume 1 holds for the sequence yo, .. Y—i. If for every 0 i <j W y —y = 0,
then 2 follows. Otherwise, there exists the largest a such that there is a b for which
a <band Ya — Yb = 1. From a’s being largest we get that y — Ya+i = 1, and from 1 we

5



get th = y, for any 0 I a and y = Yatl for any a + I S i to. Choosing c = a -4- I
completes the proof. Thus 1 implies 2.

Assume by way of contradiction that 3 does not hold and 2 does. Without loss of
generality, there thus exists the smallest a such that ‘it = y and Ya - If

Ya < then since = in, by simple arithmetic there must exist a & $ a such

that Yb > and similarly if y, > there exists a b $ a such that y <

Since Iy& —
yJ 2, no c as in 2 exists, a contradiction. Thus 2 implies 3.

Finally, for any index a < 6, since 0 < a < b < w, it must be that 0 <

[] 1. Thus 3 implies 1.

The requirement that a quiescent counting network’s outputs have the step prop
erty might appear to te]l us little about the behavior of a counting network during an
asynchronous execution, but in fact it is surprisingly powerful. Even in a state in which
many tokens are passing through the network, the network must eventually settle into
a quiescent state if no new tokens enter the network. This constraint makes it possible
to prove such important properties as the following:

Lemma 2.3 Suppose that in a given execution a counting network with ontput sequence
Yw—i is in a stai where in tokens have entered the network and in’ tokens have

left it. Then there exist non-negative integers d1, 0 < < in, such that d1 = in — in’

and a’. + d =

Proof: Suppose not. There is some execution e for which the non-negative integers d.
0 < i < to do not exist. If we extend e to a complete execution c’ allowing no additional
tokens to enter the network, then at the end of c’ the network will be in a quiescent
state where the step property does not hold, a contradiction.

In a -sequential execution, where tokens traverse the network one at a time, the
network is quicent every time a token leaves. In this case the i-th token to enter wiil
leave on output i mod w. The lemma shows that in a concurreni, asynchronous execution
of any counting net-work, any “gap” in this sequence of mod w counts corresponds to
tokens still traversing the network, This critical propert-y holds in any execution, even if
quiescent states never occur, and even though the definition makes no explicit reference
to non-quiescent states.

6



X3

x4 711fl W’r V. Y
x3 ]êa# • Yfl’J 4. ye

—a b • •

Merger2k]

Figure 3: Recursive Structure of a BITONJc[8] Counting Network.

2.2 Counting vs. Sorting

A balancing network and a comparison network are isomorphic if one can be constructed
from the other by replacing balancers by comparators or vice versa. The counting
networks introduced in this paper are isomorphic to the Bitonic sorting network of
Batcher [5] and to the Periodic Balanced sorting network of Dowd, Perl, Rudolph arid
Saks [6). There is a sense in which constructing counting networks is “harder” than
constructing sorting networks:

Theorem 2.4 If a balancing network counts, then its isomorphic comparison network
sorts, but not t’ice versa.

Proof: It is easy to verify that balancing networks isomorphic to the EVEN-ODD or
INSERTION sorting networks [7] are not counting networks.

For the other direction we construct a mapping from the comparison network tran
sitions to the isomorphic balancing network transitions.

By the 0-1 principle [7], a comparison network which sorts all sequences of 0’s and
l’s is a sorting network. Take any arbitrary sequence of 0’s and l’s as inputs to the
comparison network, and for the balancing network place a token on each 0 input wire
and no token on each 1 input wire. We now show that if we run both networks in
lockstep, the balancing network will simulate the comparison network.

On every gate where two 0’s meet in the comparison network, two tokens meet in
the balancing network, so two C’s leave on each wire in the comparison network, and
both tokens leave in the balancing network. On every gate where two l’s meet in the
comparison network, no tokens meet in the balancing network, so two l’s leave on each
wire in the comparison network, and no tokens leave in the ba]ancing network. On every
gate where a C and 1 meet in the comparison network, the 0 leaves on the lower wire and
the 1 on the upper wire, while in the balancing network the token leaves on the lower
wire, and no token on the upper wire.

11 the balancing network is a counting network, i.e., it has the step property, then
the comparison network must have sorted the input sequence of 0’s and l’s.

7



Corollary 2.5 The depth of any counting network is at least Q(logn).

3 A Bitonic Counting Network

Counting networks, of course, would not be interesting if we could not exhibit examples of
constructible networks. In this section we describe how to construct a counting network
whose width is any power of 2. The layout of this network is isomorphic to Batcher’s
famous Bitonic sorting network [5, 7], though its behavior and correctness arguments
are completely different. We give an inductive construction, as this will later aid us in
proving its correctness.

Define the width in balancing network MERGER[ZVJ as follows. It has two sequences
of inputs of length w/2, x and x’, and a single sequence of outputs y, of length in.

MERCER[W] will be constructed to guarantee that in a quiescent state where the se
quences x and ? have the step property, y will also have the step property, a fact which
will be proved in the next section.

We define the network MERGER[w] inductively (see example in Figure 4). Since
in is a power of 2, we will repeatedly use the notation 2k in p]ace of w. When k is
equal to 1, the MERGER[21CJ network consists of a single balancer. For k > 1, we
construct the MERGER[2k] network from two MERGER[k] networks and k balancers.

Using a MERGER[k] network we merge the even subsequence to, x2, . , XIC_ of x with
the odd subsequence a4, x,. . .

, 4_ (i.e., 10,...,1k2,11, . . . ,
is the input to the

MERCER[k] network.) while with a second MERGER[k] network we merge the odd sub
sequence of x with the even subsequence of x’. Call the outputs of these two MERGER[k]

networks z and z’. The final stage of the network combines z and z’ by sending each
pair of wires z and z into a balancer whose outputs yield Y2i and Y2+1-

The MERGER[w] network consists of log w layers of w/2 balancers each- MERGER[w]
guarantees the step property on its outputs only when its inputs also have the step
property— but we can ensure this property by filtering these inputs through smaller
counting networks. We define BITONIO[w] to be the network constructed by passing
the outputs from two B1roNlc[w/2] networks into a MERGEB[w] network, where the
induction is grounded in the BTT0NIC[1] network which contains no balancers and simply
passes its input directly to its output. This construction gives us a network consisting
of (Iow+1) layers each consisting of zv/2 balancers.

8



. a

E. Z?
Tc ‘b ;
1° .? ?

y.

y5
yo

w y7

.
—

1°
—4k t

p
x2

x3

ys ‘(S

Y6 ‘(5

K7 1.

Mergerf8i Mergertsi

Figure 4: A MERGER [8] balancing network.

3.1 Proof of Correctness

In this section we show that BITONIC[w] is a counting network Before examining the
network itself, we present some simpte lemmas about sequences having the step property.

Lemma 3.1 if a sequence has the step property, then so do all its subsequences.

Lemma 3.2 if x0, . , tk_j has the step property, then its even and odd subsequences
satisfy:

k—I k/2—1 k—I

= [ 11/21 and E 121+1 = [zr/2j

Proof: Either x2 = 121+1 for 0 < i < k/2, or by Lemma 2.2 there exists a unique
j such that x2 = x2.1 + 1 and x2 = Xj1 for all i $ j, 0 i < k/2. In thefirst case, x2 = = Ex/2, and in the second case = [Ex/2] and

Lemma 3.3 Let °, . , Xkl and y, . . . Yk—I be arbitrary sequences having the step
property. ifrJ x = EJj y, then x y for all 0 < Ic.

Proof: Let vu = = By Lemma 2.2,x = y
=

Lemma 3.4 Let 10, . and yo, . . . , Yk—I be arbitrary sequences having the step
property. If)J x = y + 1, then there exists a unique j, 0 i < Ic, such that

= 1/5 + , and x = y for iji, 0 < i < Ic.

9



Proof: Let in = = Ey + 1. By Lemma 22, x = and =

These two terms agree for all i.O i < k, except for the unique i wuch that i = in — I
(mod k). •

We now show that the MERGER[u,j networks preserves the step property.

Lemma 3.5 If MERGFR[2k] is quiescent, and its inputs r0,. XI_I and 4,..
both have the step property, then its outpids Yo, .. yzk—I have the step property.

Proof: We argue by induction on log k.

If 2k = 2, MERGER[2kJ is just a balancer, so its outputs are guaranteed to have the
step property by the definition of a balancer.

If 2k >2, Let z0,
.,2k—j be the outputs of the first MERGER[kJ subnetwork, which

merges the even subsequence of r with the odd subsequence of i’, and let 4....
be the outputs of the second. Since x and r’ have the step property by assumption, so
do their even and odd subsequences (Lemma 3.1), and hence so do z and z’ (induction
hypothesis). Furthermore, Zn [Ex,/21 + LE/2i and Ez = Lx/2j + IEx/21
(Lemma 3.2). A straightforward case analysis shows that E z and E can differ by at
most 1.

We claim that C S —
yj 5 I for any i < j. If = z. then Lemma 3.3 implies

that z = z for 0 i < k/2. After the final layer of balancers,

— Yj = jIj2j —

and the result follows because z has the step property. Similarly, if z and Z z differ
by one, Lemma 3.4 implies that 2 = z for 0 5 i < k/2, except for a unique j such that
z and z differ by one. The difference 0 5 y — , 5 1 for any i <j can be expressed as
the difference between earlier and later terms either of z or of z’. and the result follows
because these two sequences both have the step property.

The proof of the following tbeorem is now immediate.

Theorem 3.6 in any quiescent state, the outputs of HIT0NFC(wj have the step property.

L0



4 A Periodic Counting Network

In this section we show that the bitonic network is not the only counting network with
depth O(log2n). We introduce a new counting network with the interesting property
that it is periodic, consisting of a sequence of identical subnetworks. Each stage of this
periodic network is interesting in its own right, since it can be used to achieve barrier

synchronization with low contention. This counting network is isomorphic to the elegant

balanced periodic sorting neiwork of Dowd, Perl, Rudolph, and Saks [6]. However, its

behavior, and therefore also our proof of correctness, are fundamentally different.

We start by defining chains and cochains. notions taken from 16?. Given a sequence

= {.rIi = 0..... ii — l}, it is convenient to represent each hidex (subscript) as a

binary string. The level i chain of x is the subsequence of r whose indices have the

same i low-order bits. For example, the subsequence xE of entries with even indices is a
level 1 chain, as is the subsequence x of entries with odd indices. The A-cochain of z,

denoted t4, is the subsequence whose indices have the two low-order bits 00 or 11. For

example, the ,4-cochain of the sequence x0, z is x, £3 fl4, z7. The B-cochain x 5

the subsequence whose low-order bits are 01 and 10.

Define the network BL0CR[k) as follows. When Ic is equal to 2, the BL0CK[k] net

work consists of a single balancer. The BL0CK[2k] network for larger k is constructed

recursively. We start with two BLocK[k] networks A and B. Given an input sequence

x, the input to A is x, and the input to B is x. Let y be the output sequence for the

two subnetworks, where A is the output sequence for A and y8 the output sequence for

B. The final stage of the network combines each y and y in a ing]e balancer, yielding

final outputs z2 and Z21t1. Figure 5 describes the recursive construction of a BLOCK [8]

network. The PERI0UIC[2k] network consists of log Ic BL0CK[2k] networks joined so

that the output wire of one is the th wire of the next. Figure 6 is a PERIODICj8]

counting network

Ths recursive construction is quite different from the one used by Dowd a al. We

chose this construction because it yields a substantially simpler and shorter proof of

correctness.

4.1 Proof of Correctness

In the proof we use the technical lemmas about input and output sequences presented

in Section 3. The following lemma will serve a key role in the inductive proof of our

construction:

3flespite the apparent similarities between the layouts of the BLOCK and MERGER networks, there

is no permutation of wires that yields one from the other.

11



Xi yl
X2 y2
X3

x4 f4

Xo

X7 Yl

Slock(s) 8ockf8]

Figure 5: A BLOCK [8] balancing network.

Lemrna4.1 Fori>1.

I. The level i chain of x is a level i 1 chain of one ofi’s cochains.

2. The level i. chain of a cochain of i a level i + 1 chain of r.

Proof: Follows immediately from the definitions of chains and cochains.

As will be seen, the price of modularity is redundancy, that is. balancers in Lower level
blocks will be applied to sub-sequences that already have the desired step property. We
therefore present the following lemma that amounts to saying that applying balancers
“evenly” to such sequences does not hurt:

Lemma 4.2 If x and x’ are sequences each having the step property, and pairs x and
are routed through a balancer, yielding outputs y and y, then the sequences y and y’

each have the step property.

Proof: For any i <j. given that x and x’ have the step property, 0 — x I and
0 — x I and therefore the difference between any two wires isO < x1 — (x -‘

x) 2. By definiiion, for any i, y
= 2 and y

=
and so for any i < j, it

is the case that 0 S — y 5 1 and 0 y — y < 1, implying the step property.

To prove the correctness of our construction for PERIODIC[A71, ve will show that if a
block’s level i input chains have the step property, then so do its level i—i output chains,
for i in {0. log k—i). This observation implies that a sequence of log k BLocKrk
networks will count an arbitrary number of inputs.

12



Lemma 4.3 Let BLocxl2kJ be quiescent with input seqvcnce x and output sequence y.

If 1E and x0 both have the step property, so does y.

Proof: We argue by induction on log k. The proof is similar to that of lemma 3.5.

For the base case, when 2k = 2, BLocK[2kj is just a ba]ancer, so its outputs are

guaranteed to have the step property by the definition of a balancer.

For the induction step, assume the result for BLocx[k) and consider a BL0cKj2kJ.

Let z be the input sequence to the block, z the output sequence of the nested blocks A

and B, arid y the block’s final output sequence. The inputs to A are the level 2 chains
1EE and x00, and the inputs to B are x and xE. By Lemma 4.1, each of these is a

level 1 chain of 1A and rB. These sequences are the inputs to A and B, thernse]ves of

size k, so the induction hypothesis rnplies that the outputs z’ and z8 of A and B each

has the step property.

Lemma 3.2 implies that C
— z4° 1 and 0 zxOE

—. Zx?° 1.

It follows that the sum of A’s inputs, + E’?°, and the sum of B’s inputs,

r0 + x?°, differ by at most 1. Since balancers do not swallow or create tokens1

zA and E zB also differ by at most 1. If they are equal, then Lemma 3.3 implies that

= = z2, = z21. For i <j,
— A

—
—

— 1i/2i

and the result follows because zA has the step property.

SimilarLy, if E 2( and : differ by one, Lemma 3.4 implies that z = z for

0 < k, except for a unique £ such that zt and z differ by one. If i <j and i 21

and j 21 + 1. then y
— y is equal to the difference between earlier and later terms of

either zA or ZB. and the result follows because the latter have the step property. Finally,

since z and zf are joined by a balancer in the last layer, 3/21 — yu÷i = 1, and the result

is established.

Theorem 4.4 Let BL0CK[2k] be quiescent with input sequence x and output sequence

y. If all the level i input chains to a block have the step property, then so do all the level

— 1 output chains.

Proof: We argue by iuductiori on i. Lemma 4.3 provides the base case, when i is 1.

For the induction step, assume the result for chains up to i — 1. Let x be the input

sequence to the block, z the output sequence of the nested blocks A and B, and y the

block’s final output sequence. If i > 1, Lemma 4.1 implies that every level i chain of x

is entirely coutained in one cochain or the other. Each level i chain of x contained in r

13



st Blocklol 2rW BlockiS) 3rd SlockiBi

Yo
yl

y2

y4
ye
y6

y7

Figure 6: A PERIODIC [8] counting network.

(xB) is a level i — 1 chain of xA (TB), each has the step property, and each is an input to
A (B). The induction hypothesis applied to A and B implies that the level i — 2 chains
of z’ and zB have the step property. By Lemma 4.1 implies that the level i — 2 chains
of zA and zB are the level i — 1 chains of z. By Lemma 4.2, if the level i — 1 chains of z
have the step property, so do the level i — 1 chains of y.

By Theorem 2.4, the proof of Theorem 4.4 constitutes a simple ahernative proof that
the balanced periodic comparison network of [6] is a sorting network.

5 Implementation and Applications

In a MIMD shared-memory architecture, a balancer call be represented as a record
with two fields: toggle is a boolean value that alternates between 0 and 1, and next is
a 2-element array of pointers to successor ba]ancers, A balancer is a leaf if it has no
successors. A process shepherds a token through the network by executing the procedure
shown in Figure 7. It toggles the balancer’s state, and visits the next balancer, halting
when it reaches a leaf. Advancing the toggle state can be accomplished either by a short
critical section guarded by a spin lock4, or by a read-modify-write operation (rmw for

short) if the hardware supports it. Note that all values are bounded.

We illustrate the utility of counting networks by constructing highly concurrent im
plementations of three common data structures: shared counters, producer/consumer
buffers, and barriers. In Section 6 we give some experimental evidence that counting
network implementations have higher throughput than conventional implementations
when contention is sufficiently high.

4A spin lock is just a shared boolean flag that is raised and lowered by at most one processor at a
time, while the other processors wait.

xo
xi
X2

x3
x4

xc

X5

14



balancer = [toggle: boolean, next: array [0.1] of ptr to balancer]
traverse(b: balancer)

loop until leaf(b)
rmw(b.toggle —i b.toggle)

b b.next[i]
end ioop

end traverse

Figure 7: Code for Traversing a Balancing Network

5.1 Shared Counter

A shared counter [9, 8, 13, 26] is a data structure that issues consecutive integers in
response to increment requests. More formally, in any quiescent state in which in incre
ment requests have been received, the values 0 to in — 1 have been issued in response. To
construct the counter, start with an arbitrary width-tv counting network. Associate an
integer cell cj with the th output wire. Initially, Cj holds the value i. A process requests
a number by traversing the counting network. When it exits the network on wire i, it
atomically adds to to the value of c and returns cj’s previous value.

Lemmas 2.1 and 2.3 imply that:

Lemma 5.1 Let x be the largest number yet returned by any increment request on the
counter. Let R be the set of numbers less than x which have not been issued to any
increment request. Then

1. The size of I? is no greater than the number of operations still in progress.

2. If y € R, then i’ x
— wIRI.

3. Each number in R will be returned by some operation in time z d + & where
d is the depth of the network, is the maximum balancer delay, and . is the
maximum time to update a cell on an output wire.

5.2 Producer/Consumer Buffer

A producer/consumer buffer is a data structure in which items inserted by a pool of m
producer processes are removed by a pool of m consumer processes. The buffer algorithm
used here is essentially that of Cottlieb, Lubachevsky, and Rudolph [13]. The buffer is

15



a in-element array buff [Ow — i]. There are two zn-width counting networks, a producer
network, and a consumer network. A producer starts by traversing the producer networlc
leaving the network on wire i. It then atomically inspects buff[i, and, if it is 1, replaces
it with the produced item. If that position is full, then the producer waits for the item
to be consumed (or returns an exception). Similarly, a consumer traverses the consumer
network, exits on wire j. and if buffj] holds an item, atomically replaces it with 1. If
there is no item to consume, the consumer waits for an item to be produced (or returns
an exception).

Lemmas 2.1 and 2.3 imply that:

Lemma 5.2 Suppose rn producers arid in’ consumers have entered a producer/consumer
buffer built out of coiintiig networks of depth d. Assume that the time to update each
buff[i] once a process has left the covvting network is negligible. Then if m in’, every
producer leaves the network in time 2d& Similorly, if m rn’, every consumer leaves
the network in time 2th1,

5.3 Barrier Synchronization

A barrier is a data structure that ensures that no process advances beyond a particular
point in a computation unti] aN processes have arrived at that point. Barriers are often
used in highly-concurrent numerica] computations to divide the work into disjoint phases
with the property that no process executes phase i while another process concurrently
executes phase i - I.

A simple way to construct an n-process barrier is by exploiting the following key
observation: Lemma 2.3 imp]ies that as soon as some process exits with value n, the
last phase must he complete, since the other n — 1 processes must already have entered
the network.

We present a stronger result: one does not need a full counting network to achieve
barrier synchronization. A thrcshold network of width w is a balancing network with
input sequence x, and output sequence y, such that the following holds:

In aTy quiescent state, Yw—t m if and only if mw x < (in + i)w.

Informally, a threshold network can ‘detect” each time w tokens have passed through
it. A counting network is a thresho[d network, but not vice-versa.

Both the BL0CK{w] network used in the periodic construction and the MERGER[w]

network used in the bitonic construction are threshold networks, provided the input
sequence satisfies the following smoothness property:

16



A sequence x0, ..., x,,_, is smooth if for a]] i < j, — 1.

Every sequence with the step property is smooth, but not vice-versa. The following
two lemmas state that smoothness is “stable” under partitioning into subsequences or
application of additional balancers.

Lemma 5.3 Any subsequence of a smooth sequence is smooth.

Lemma .3.4 if the input sequence to a balancing network is smooth, so is the output
sequence.

Proof: It is enough to observe that if the inputs to a balancer differ by at most one,

then so do the outputs.

Theorem 5.5 If the input sequence to BLOCK[w] is smooth, then BLOCK[wj is a thresh
old network.

Proof: Let x1 be the block’s input sequence, z the output sequence of nested blocks
A and B, and y the block’s output sequence.

We first show that if Yw—1 = rn. then in in z < (m+ 1)ui. We argue by induction
on to, the block’s width. If w = 2, the result is immediate. Assume the result for to k
and consider BLOCR[2k] in a quiescent state where Y2k—1 = in. Since x is smooth by
hypothesis, by Lemma 5.4 so are z and y. Since Y2k—1 and 112k—2 are outputs of a common
balancer. y2k—2 is either in or in + 1. The rest is a case analysis.

If Y2k—i = Y2k—2 = in, then Z2k_1 = = In. By the induction hypothesis and
Lemma 5.3 applied to A and B, ink <>x < (in + 2)k and ink < (in + 1)k,
and therefore 2mk < x + x <2(m + l)k.

If y2k3 = In + 1, then one of z,4 and zr is in, and the other is in + 1. Without
loss of generality suppose = in + 1 and z = in. By the induction hypothesis,
(in + 1)k < (in + 2)k and ink ExP < (in + 1)k. Since x is smooth, by
Lemma 5.3 x is smooth and some element of r8 must be equal in, which in turn
implies that no element of exceeds in + 1. This bound implies that (in + 1)k = >Z x.
It follows that 2mk + A, + < 2(rn + 1)k, yielding the desired result.

We now show that if into < Ex, < (in -J- 1)w, then Ym-l = in. We again argue by
induction on to, the block’s width. If to = 2, the result is immediate. Assume the result
for a = k and consider BL0CK[2k] it, a quiescent state where 2ink L < 2(m + 1)k.
Since x is smooth, by Lemma 5.1 in Y2i—1 Furthermore, since x is smooth, by
Lemma 5.3, either ink < (in + 1)k and ink < (in + 1)k or vice versa,

which by the induction hypothesis implies that z_1 + z_1 2rn + 1. It follows that

Y2k—1 < m + 1, which completes our claim.

17



The proof that the MERGER[w] network is also a threshold network if its inputs are
smooth is omitted because it is almost identical to that of Theorem 5.5. A threshold
counter is constructed by associating a local counter q with each output wire i, just as
in the counter construction.

We construct a barrier for n processes, where n = 0 mod in, using a width-in threshold
counter. The construction is an adaptation of the “sense-reversing” barrier construction
of [14] as follows. Just as for the counter construction, we associate a local counter c1
with each output wire i. Let F be a boolean flag, initially false. Let a process’s phase
at a given point in the execution of the barrier algorithm be defined as 0 initially, and
incremented by 1 every time the process begins traversing the network. With each phase
the algorithm will associate a sense, a boolean value reflecting the phase’s parity: true
for the first phase, false for the second, and so on. As illustrated in Figure 8, the token
for process P after a phase with sense s, enters the network on wire F mod w. If it
emerges with a value not equal to n—i mod n, then it waits until F agrees with s before
starting the next phase. If it emerges with value n — 1 mod vi, it sets F to s, and starts
the next phase.

As an aside, we note that a threshold counter implemented from a BL0CK[k] network
can be optimized in several additional ways. For example, it is only necessary to associate
a local counter with wire in—i, and that counter can be modulo n rather than unbounded.
Moreover, all balancers that are not on a path from some input wire to exit wire in —

can be deleted.

Theorem 5.6 1fF exits the network with value ii after completing phase , then every
other process has completed phase , and no process has started phase + 1.

Proof: We first observe that the input to BLOCK[w] is smooth, and therefore it is a
threshold network. We argue by induction. When P receives value v = ii at the end of
the first phase, exactly vi tokens must have entered BLOCK[tV], and all processes must
therefore have completed the first phase: Since the boolean F is still false, no process has
started the second phase. Assume the result for phase . If Q is the process that received
value vi at the end of that phase, then exactly vi tokens had entered the network when
Q performed the reset of F. If P receives value v = vi at the end of phase + 1, then
exactly ( + 1)n tokens have entered the network, implying that an additional n tokens
have entered, and all n processes have finished the phase. No process will start the next
phase until F is reset.

18



barrier()
v exit wre of traverse(wire P rood w)

if v = — 1 (mod to)

then F s

else wait until F = s

end if

S := —‘S

end barrier

Figure 8: Barrier Synchronization Code

6 Performance

6.1 Overview

In this section, we analyze counting network throughput for computations in which

tokens are eventually spread evenly through the network. To ensure that tokens are

evenly spread across the input wires, each processor could be assigned a fixed input

wire, or processors cou’d choose input wires at random.

The network saturation S at a given time is defined to be the ratio of the number

of tokens ii present in the network (i.e. the number of processors shepherding tokens

through it) to thc number of balancers. If tokens are spread evenly through the network,

then the saturation is just the expected number of tokens at each balancer. For the

B1TONIC and PERIODIC networks, S = 2n/wd. The network is oversaturated if S > 1,

and undersatiirated if S < 1.

An oversaturated network represents a full pipeline, hence its throughput is domi

nated by the per-balancer contention, not by the network depth. If a bajancer with S

tokens makes a transition in time (5), then approximately w tokens emerge from the

network every i(S) time units. yielding a throughput of w/(S). is an increasing

function whose exact form depends on the particular architecture, but similar measures

of degradation have been observed in practice to grow linearly [3, 201. The throughput

of an oversaturated network is therefore maximized by choosing w and d to minimize S,

bringing it as close as possible to 1.

The throughput of an undersaturated network is dominated by the network depth,

not by the per-balancer contention, since the network pipeline is partially empty. Ev

ery O(l/S) time units, to tokens leave the network, yielding throughput O(wS). The

throughput of an undersaturated network is therefore maximized by choosing w and d

to increase 8, bringing it as close as possibLe to 1.

19



70

G0

C,

60

50

40.

30.

20.

10.

0

0 10

concurrency (num. of proc.)

Spin-lock

Bitonicf4J

Bitonief 16)

BitoniciS)

1

20

Figure 9: Bitonic Shared Counter Implementations

This analysis is necessarily approximate, hut it is supported by experimental evi
dence. In the remainder of this section, we present the results of trning experiments for
several data structures implemented using counting networks. As a control, we compare
these figures to those produced by more convcntonal implerneiftations using spin locks
These implementations were done oFt an Encore Multimax, using \lu[-T [16, a parallel
dialect of Lisp. The spin lock is a simple “testand-test-and-set” loop 211 written in as
sembly language, and provided by the Mul-T run-time system. ‘flour implementations,
each balancer is protected by a spin lock.

20



U,

0)
E

Figure 10: Periodic Shared Counter Implementations

6.2 The Shared Counter

We compare seven shared counter implementations: bitonic and periodic counting net
works of widths 16. 8, and 4. and a conventional spin lock irnp]ementation (which caa be
considered a degenerate counting network of width 2). For each network, we measured
the elapsed time necessary for a 2° (approximately a million) tokens to traverse the
network, controlling the level of concurrency

For the bitonic network, the width-16 network has 80 balancers, the width-8 network
has 24 balancers. and the width-4 network has 6 balancers. In Figure 9, the horizontal
axis represents the number of processes executing concurrently. When concurrency is 1,

120.

100

80

60

40.

2O

0

Spin-lock

Psriodicf 16]

PexIod44l

Peri ad icf8]

4-

0 10 20

concurrency (nuni. of proc.)

21



spin width 2 width 4 width 8
bitonic 57.74 17.51 10.44 14.25
periodic 17.90 12.03 19.99

Figure 11: Producer/Consumer Buffer Implementations

each process runs to completion before the next one starts. The number of concurrent
processes increases until all sixteen processes execute concurrently. The vertical axis rep
resents the elapsed time (in seconds) until all 220 tokens had traversed the network. With
no concurrency, the networks are heavily undersaturated, and the spin lock’s throughput
is the highest by far. As saturation increases, however, so does the throughput for each
of the networks. The width-4 network is undersaturated at concurrency levels less than
6. As the level of concurrency increases from 1 to 6, saturation approaches 1, and the
elapsed time decreases. Beyond 6, saturation increases beyond 1, and the elapsed time
eventually starts to grow. The other networks remain undersaturated for the range of
the experiment; their elapsed times continue to decrease. Each of the networks begins
to outperform the spin lock at concurrency levels between 8 and 12. When concurrency
is maximal, all three networks have throughputs at least twice the spin lock’s. Notice
that as the level of concurrency increases, the spin lock’s performance degrades in an
approximately linear fashion (because of increasing contention).

The performance of the periodic network (Figure 10) is similar. The width-4 network
reaches saturation 1 at 8 processes; its throughput then declines sflghtly as it becomes
oversaturated. The other networks remain undersaturated, and their throughputs con
tinue to increase. Each of the counting networks outperforms the spin lock at sufficiently
high levels of contention. At 16 processes, the widtli-4 and width-8 networks have almost
twice the throughput of the single spin-lock implementation. Each bitonic network has
a slightly higher throughput than its periodic counterpart.

6.3 Producer/Consumer Buffers

We compare the performance of several producer/consumer buffers implemented using
the algorithm of Gottlieb, Lubachevsky, and Rudolph [13] discussed in Section 5. Each
implementation has 8 producer processes, which continually produce items, and 8 con
sumer processes, which continually consume items. If a producer (consumer) process
finds its buffer slot full (empty), it spins until the slot becomes empty (full).

We consider buffers with bitonic and periodic networks of width 2, 4, and 8. As
a final control, we tested a circular buffer protected by a single spin lock, a structure

22



Spin lock Barrier 4 Barrier 8 Barrier 16
time (seconds) 62.05 43.53 41.27 42.32

Figure 12: Barrier Implementations

that permits no concurrency between producers and consumers. Figure 6.2 shows the
time in seconds needed to produce and consume 220 tokens. Not surprisingly, the single
spin-lock impLementation is much slower than any of the others. The width-2 network
is heavily oversaturated, the bitonic width-4 network is slightly oversaturated, while the
others are undersaturated.

6.4 Barrier Synchronization

Figure 12 shows the time (in seconds) taken by 16 processes to perform 216 barrier
synchronizations. The remaining columns show BL0CK[k] networks of width 4, 8. and
16. The last column shows a simple sense-reversing barrier in which the BLOCK network
is replaced by a single counter protected by a spin lock. The three network barriers are
eqnally fast, and each takes about two-thirds the time of the spin-lock implementation.

7 Verifying That a Network Counts

The 0-1 law’ states that a comparison network is a sorting network if (and only if)
it sorts input sequences consisting entirely of zeroes and ones, a property that greatly
simplifies the task of reasoning about sorting networks. In this section, we present an
analogous result: a ha!ancing network having m balancers is a counting network if (and
only if) it satisfies the step property for all sequential executions in which up to 2’” tokens
have traversed the network. This result simplifies reasoning about counting networks,
since it is not necessary to consider all concurrent executions. However, as we show,
the number of tokens passed through the network in the longest of these sequential
executions cannot be less than exponential in the network depth.

We begin by proving that it suffices to consider only sequential executions

Lemma 7.1 Let s ôe a valid schedule of a given balancing network. Then there exists
a valid sequential schedule s’ suck that She iumber of tokens which pass through each
balancer in s and s’ is equal.

23



Proof: Lets = so. p. q si, where o, ‘ are sequences of transitions, p and q aie indi

vidual transitions involving distinct tokens P and Q, and where “ is the concatenation

operator. If p and q do not occur at the same balancer, then s q p si is a valid

schedule. If p and q do occur at the same balancer, then so q p. s is a valid schedule

where s is constructed from sj by swapping the identities of P and cQ. In each case we

can swap p and q without changing the preceding sequence of transitions o and without

changing the number of tokens that pass through any balancer during the execution.

Now suppose that s is a comp]ete schedule. We will transform it into a sequential

schedule by a process similar to se]ec.tion sorting. Choose some total ordering of the

tokens in s. Split s into o o where o is the empt.y sequence and to = s. Now

repeatedly carry out the following procedure which constructs 5j4.j t, from s

while t, is nonemptv let p he tile earliest transition in t1 whose token is ordered as less

than or equal to all tokens in t,. Move p to the beginning of t by swapping it with

each earlier token in t as described above, and let s,1 =
. p and be the suffix of

the resulting schedule after p. This procedure i easily seen to maintain the following

invariant:

1. After stage i, s t is a va[id schedule in which each balancer passes the same
number of tokens as in s.

2. After stage i, s is sorted by token.

Thus when the procedure terminates, we have a valid sequential schedule s’ in which
each balancer passes the same number of tokens as in s.

Theorem 7.2 A balancing ,,etwork with rn balaneers satisfies the step property in all
executions if (and only if) it satisfies it in all sequential executions in which np to 2”’
tokens traverse the network.

Proof: Since by definition the step property depends only on the number of tokens
that pass through the network’s output wires, it follows from Lemma 7.1 that a balancing
network satisfies the step property in all executions if (and only if) it satisfies it in all
sequential executions. It remains to be shown that verifying the step property in all
executions involving at most 2m tokens will suffice.

Consider sequential executions of a balancing network with rn balancers. When the
network is quiescent, its state is completely characterized by specifying for each balancer
the output wire to which it wifl send the next token, yielding a maximum of 2 distinct
quiescent states. In a sequential execufion. each tne a token traverscs the network, it
carries the network fronu one quiescent state to another. Thus, in any execution, after
at most 2”’ tokens the network must reenter a previously occupied stae.

24



How tight is this bound? We now construct a balancing network that is not a

counting network, yet satisfies the srep property for any execution in which the number

of tokens is less than exponential in the network depth.

First, consider the following balancing network STAGE 2w!. Take two counting net

works A and B of width w having outputs wires a0 through a,_1 and b through b_1

respectively. Add a layer of w balaucers such that the i-tb balancer has inputs a and

L__ and outputs a and b,_11. The resulting network STAGE 12w] is not a. counting

network; however, it is easily extended to one by virtue of the following leimna.

Lemma 7.3 For any input to STAGE [2w], there exists a permutation r, of the output

sequence a,. - a_1 and a permutation r oft/ic output sequence bb &_ such thai

the sequence ir3(4. . a_1) r&(l4,, - &._,) has the step property.

Proof: Let us begin by showing that the total inputs to any two balancers in the last

layer differ by at most 1. Since the sequences a0,.. . , a,,_i and ho, . - , 6w—i have the step

property, there exists a e (similar)v there exists a eb) such that a = a0 ill ca and

a, = a0 — 1 if i > C.

Suppose C < w_1_c&. Thena1-i-6_1_1is ao+(bo— I) for C, (no— l)+(b0—1)

for c < i < in—i — cb, and (ao — I) + ho for i is, —1 — c. A similar analysis shows

that when C in—i — c each a1 + b__ is either a0 + b or a0 + 6o — 1.

Thus there is always a Ic such that every balancer in the last layer outputs either

k or k + I tokens. If k is even, then b = k/2 for all i and a = a + b_1_1 — k/2.

which is either k/2 or k/2 + I. One can obtain a sequence with the step property by

setting 7r to sort the values in a’. If k is odd, then each a is (Ic + 1)72 and each 6 is

a,,_1_ -4- b — (Ic + 1)72. which will be either (Ic + i)/2 or (Ic + i)/2 — 1. In this case

having b sort the values in 6’ produces the desired result.

By Lemma 2.2 it follows that

Corollary 7.4 For any ra tokens thpul Lu STAGE [2wJ, E a = EZ? fm —i/2w] and

z&: E2’1[rni/2w1

In other words, the total number of tokens that end up on the as,. . . , a_1 (respectively

• . bf0_1) output wires is the same as in a proper counting network.

An immediate consequence of the Lemma 7.3 and Theorem 7.2 is that if we pass

the outputs at,.. a1 and b, . - , b’,1 to two separate balancing networks, each of

which is isomorphic to a sorting network, we will obtain a (not very efficient) counting

network. But we are not interested in getting a working counting network; what we wish

25



to construct is a ba]ancing network which counts all input sequences up to some bound.
but fails on sequences with more tokens.

We construct such a balancing network (denoted ALMOST [2w) as follows. Take a
STAGE [2w1 network and modify it by picking some x other than 0 or to — 1 and deleting
the final balancer between a and b_1_. Denote this balancing network as STAGE’12w1.
Let ALMOST [2w be the periodic network constructed from k stages, for some k > 0.
each a STAGEt[2w] network, the outputs of one stage connected to the inputs of the
next.

Let A and B1 be the sums of the number of tokens input to each of the two sub-
networks A and B n the t-th stage of ALMOST [2w]. Let y = {yo,. . , Y— } be the
sequence given by y = [(A3 + B0 — i)/2w] (that is, y, is the number of tokens that
would exit on output wire i if ALMOST [2k] were a counting network). A0. =

and B0. = y. Note that A + B = A0 + B = A0. + B0. for all t and that by
Lemma 2.2, [(A0. — i)/wl = asid [(B0. — 1)/wi = Yw-*i for all i.

Finally, let the imbalance S = A — = —(B1 — B0.); this quantity represents
“how far” the network is from balancing the tokens between the A and B subnetworks
in stage t, in other words, how many excess tokens mast be moved from the A part of
the network to the B part (clearly, if the quantity is negative then tokens should be
moved from B to .4).

The following lemma follows from argumeats almost identical to those of Lemma 54.

Lemma 7.5 If the input seqience to a balancilig netwo,k has the step property, then so

does the outpia eque;ice.

Lemma 7.6 If 6 = 0 then the output sequences of stage t of ALMOST [2w] have the
step property.

Proof: If E = 0. then A = so a = [(4 — i)/wi = (.10. — = y for each
i (Lemma 2.2); similarly b = y+ arid thus the outputs of the counting networks form
the sequence y. Since y has the step property it is left unchanged by the final layer of
balancers (Lemma 7.3).

Lemma 7.7 6,+, [[(A—r)Iw1—flBc_(w_1_r/w11

Proof: Ifabalanc-er were placed between a and after stage t, then the STAGET[2w]

network would become a STAGE [2w] counting network, and by Corollary 7.4, exactly
A0. tokens would emerge from the A half of the network after stage t + 1. Therefore,
removing the balancer shifts precisely this number of tokens (possibly negative) from
the B part of the network to the A part.

26



Lemma 7.8 6,, = bj/w + c where —1 <C < 5/2.

Proof: From Lemma 7.7 it follows that:

- [(Be -(w- 1 -xfl/w]
t+1

—

2

- x)/wl - [(Be + x)/wj

I 2

—
—

x)/w — (B +x)/w+c1

I 2
x c1

=
to 2

— 25+(A—B) x c1
— w 2

St
=—+c

U)

where 0 < c1 <2 and 0 c2 < 1, which, adding 0 S — B to and 0 < x 5 vi — 1,

hnplies—1<c<5/2.

Lemma 7.9 If6 $0 then —1.

Proof: It is clear from Lemma 7.7 that and 6 must have the same sign; thus we

need only show that 3 increases when it is negative and decreases when it is positive, fly

definition, if & 0 the sequence a0, . . . , b0,. . . b...1 (recall these are the outputs

of the A aud B parts in the t + 1-th STAGE’ before the last layer of balancers) does not

have the step property. Since each of the sequences a0,. a,.1 and b0,. .. L.1 in itself

has the step property, the step property of as,. . . a.._i, bo,. . , b1 must be violated in

one of the following two ways by some a- and b5:

L a < b. Then 6 < 0 (or else y a1 < b Yw+j which contradicts the step

property of y.) Furthermore, since a aei and b 4, it follows that 60 > a_1,

and at least one token is moved from B to A by the balancer between those two

outputs, increasing S.

2. a b + 2. Then 5. > 0; furthermore ao a > b, + 2 b_1 + 2; thus the

balancer between a0 and b_ will move at least one token from A to B, reducing

6.

27



Theorem 7.10 There exists a width-2w balancing net work that has the step property in
all xetutions with up to tokens, yet is not a counting network.

Proof: Lemmas 7.6 and 7.9 together imply that if &I s, then the outputs of stage

+ s will have the step property. We may conc[ude from Lemma 7.8 that I&t+i[<
I&/m+5/2. Solving this recurrence yields the upper bound 16d < [fio[wtf (5/2)m

Now suppose the network is given an input involving at most w tokens. Then Vo
cannot possibly exceed tot, and after t stages < 1 + (5J2)m:0t < 5; since must
be an integer, it follows that L6tI 4. Thus the outputs of stage t + 4 will have the step
property, and a network with k = t + 4 stages will count up to tokens.

To see that this k-stage network is not a counting network, suppose lSol >
From Lemma 7.8 it follows that ISt+11 > IbtI/w — 5/2 and solving as above yields

16k+i > ISoIur(kfT) — (5/2) > 1. Since 5k+1 0, the outputs of stage Ic (and
hence the entire network) cannot have the step property.

8 Discussion

Counting networks deserve further study. We believe tha.t they represent. a start toward
a general theory of low-contention data structures. Work is needed to develop other
primitives, to debve upper and lower bounds and new performance measures. We have
made a start in this drecton by deriving constructions and lower bounds for li,,eari:able
counting networks [15]. networks which guarantee that the values assigned to tokens
reflect the real-time order of their traversals. Work is also needed in experimental
directions, comparing counting networks to other techniques. for example those based
on exponential backoff [1], and for understanding their behavior in architectures other
than the single-bus architecture provided by the Encore.

We c1ose by raising an open question: does there exist an O(logn)-depth count
ing network? From TheoreTn 7.2. one can easily show that “smoothing + sorting =

counting.’ that is, given a balancing network which smoothes its output sequence (see
Section 5.3). and a balancing network isomorphic to an sorting network, the baiancing
network constructed by JO;]m)g the outputs wires of the first to the input wires of the
second is a counting network (Rarcliiner and Klugerman (181 have recently used this ob
servation to construct an O(log ii log log ri) depth counting network based on [2]). Since
it is known that there exists an O(log n)-depth sorting network [2], ii. follows that there

28



exists an O(log n)-depth counting network if and only if there exists an Q(log n)-depth

smoothing network.

9 Acknowledgments

Orli Waarts made many important remarks. The serialization lemma and the observa

tion that smoothing + sorting = counting, are products of our cooperation with her and

with Eli Cafni, to whom we are also in debt. Our thanks to Heather Woll, and Shanghua

Teng for several helpful discussions, to Cynthia Dwork for her comments, and to David

Kranz and Randy Osborne for Mul-T support. Finally, the first and third authors wish

to thajik David Michael Herlihy for remaining quiet during phone calls.

5SmootMng networks are interesting iii their own right since they can be used as hardware solutions

to problems such as load balancing (cf. [23)).

29



References

11] A. Agarwal and M. Cherian. Adaptive Backoff Synchronization Techniques 16th Sympo
sium on Computer Architecture, June 1989.

[2] M. Ajtai, J. Komlos and E. Szemeredi. An O(nlogn) sorting network. In Proceedings of
the 15th ACM Symposium on the Theory of Computing, 1-9, 1983.

[3] I.E. Anderson. The performance implications of spin-waitiug alternatives for shared-
memory multiprocessors. Technical Report 89-04-03, University of Washington, Seattle,
WA 98195, April 1989. To appear, IEEE Transactions on Parallel and Distributed Sys
tem s.

[4] J. Aspnes, M.P. Herlihy, and N. Shavit. Counting Networks and Multi-Processor Coor
dination In Proceedings of the 23rd Annual Symposium on Theory of Computing, May
1991, New Orleans, Louisiana.

[5] K.E. Batcher. Sorting networks and their applications. In Proceedings of AFIPS Joint
Computer Conference, 32:338-334, 1968.

[6] M. Dowd, Y. Pert, L. Rudolph, and M. Saks. The Periodic Balanced Sorting Network
Journal of the ACM, 36(4):738—757, October 1989.

[7] T.H. Cormen, CE. Leiserson, and R. L. Rivest. Introduction to Algorithms MIT Press,
Cambridge MA, 1990.

[8] CS. Ellis and T.J. Olson. Algorithms for parallel memory allocation. Journal of Parallel
Programming, 17(4):303—345, August 1988.

[9] E. Freudenthal and A. Gottlieb Process Coordination with Fetch-and-Increment In Pro
ceedings of the 4th International Conference on Architecture Support for Programming
Languages and Operating Systems, April 1991, Santa Clara, California. To appear.

[10] D. Gawlick. Processing ‘hot spots’ in high performance systems. In Proceedings COMP
CON’85, 1985.

[11] 1. Goodman, M. Vernon, and P. Woest. A set of efficient synchronization primitives for a
large-scale shared-memory multiprocessor. In 3rd International Conference on Architec
tural Support for Programming Languages and Operating Systems, April 1989.

[12] A. Cottlieb, R. Grishnian, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, and M. Snir. The
NYU ultracomputer — desigiung an mimd parallel computer. IEEE Transactions on Com
puters, C-32(2);175—189, February 1984.

[13] A. Gottlieb, B.D. Lubachevsky, and L. Rudolph. Basic techniques for the efficient coor
dination of very large numbers of cooperating sequential processors. ACM Transactions
on Programming Languages and Systems, 5(2):164—189, April 1983.

30



[NJ D. Hensgen and R.Finkel and U. Manber. Two algorithms for barrier synchronization.

International Journal of Parallel Programming. 17(1):1-17, 1988.

[15} MR Nerhliy, N. Sliavit, and 0. Waarts. Low-Contention Linearizable Counting. In S2th

IEEE Symposium on Foundations of Computer Science, October 1991, to appear.

[16j D. Kranz, R. Haistead, and E. Mohr. “MuI-T, A Nigh-Performance Parallel Lisp”, ACM

SIGPLAN ‘89 Conference on Prognimrning Language Design and Implementation, Port

land, OR, June 1989, pp. 21—90.

17) C.P. Kruskal, L. Rudolph, and M. Snir. Efficient synchronization on multiprocessors with

shared memory. In Fifth ACM SIGA CT-SIGOPSSymsium on Principles of Distributed

Conipziiiny, August 2986.

[is] M. ICarchmer and M. Ktugerman. An O(lognloglogn) depth counting network. In

preparation, MIT. May 1991.

[19] NA. Lynch and MR.. Tuitle. Hierarchical Correctness Proofs for Distributed Algorithms.

In Sixth ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,

August 1987, pp. 137—151. Full version available as MIT Technical Report MIT/LCS/TR—

387.

[20j J.M. ?rfeltor-Crummey and M.L. Scott. Algorithms for scalable synchronization on shared-

memory multiprocessors. Technical Report Technical Report 342, University of Rochester,

Rochester, NY 14627, April 1990.

[21] L. Rudolph. Decentralized cache scheme for an MIMD parallel processor. In 11th Annual

Computing Architecture Conference, 1983, pp. 340-347.

[22] 3M. Mellor-Crummey and ML. Scott Synchronization without Contention In Proceedings

of the 4th International Conference on Architecture Support for Programming Langttagcs

and Ope ruling Systems. April 1991. Santa Ciara, California. To appeal.

[23] D. Peleg and E. Upfal. The token distribution problem. In 27th IEEE Symposium on

Foundations of Computer Science. October 1986.

[24j Gil. Pflster et al. The IBM research parallel processor prototype (RP3): introduction

and architecture. In International Conference on Parallel Processing, 1985.

25j Gil. Pfster and A. Norton. ‘hot spot’ contention and combining in multistage inter

connection networks. IEEE Transactions on Computers, C-34(11):933—938. November

1985.

[26] 11.5. Stone. Database applications of the fetch-and-add instruction. IEEE Transactions

on Computers. C-33(7):604—612, July 1984.

127) U. Vishkin. A parallel-design distributed-implementation (P1)1)1) general purpose com

puter. Theoretical Computer Science, 32:157—172, 1984.

31


