
Bounded Concurrent Time-Stamp Systems
Are Constructible

Abstract

Danny Dolev

Concurrent time stamping is at the heart of solu
tions to some of the most fundamental problems
in distributed computing. Based on concurrent
time-stamp-systems, elegant and simple solu
tions to core problems such as fcf,-mutual
exclusion, construction of a multi-reader-multi
writer atomic register. probabilistic consensus,..
were developed. Unfortunmely, the only known
implementation of a concurrent time stamp sys
tem has been theoretically unsatisfying since it
requires unbounded size time-stamps, in other
words, unbounded memory. Not knowing if
bounded concurrent-time-stamp-systems are at
all constructible, researchers were led to con
structing complicated problem-specific solutions
to replace the simple unbounded ones. In this
work for the first time, a bounded iruplemen
tation of a concurrent-time-stamp-system is pre
sented. It provides a modular unbounded-to-
bounded transformation of the simple unbounded
solutions to prob1err such as above- It al
lows solutions to two formerly open problems,
the bounded-probabilistic-consensus problem of
AbrahamBon [A88] and the fifo-t-exclusion prob

1BM Almaden Rearch Center and Hebrew Univer
sity Jerusalem.

‘Hebrew University, Jerusalem. Supported by a Lib
nitz Foundation Scholarship and Israeli Connntmications
Ministry Award. Currently visiting the TDS group at
MIT. supported by NSF coniract no CCR-S6]1442, by
ONR contract no N0014-8S-K-0168. by DARP.1 contract
no NJOt4-S3-K-Ol25. and a special grant fron [Bk!.
Parts of this research were aJ,o conducted while the author
was visiting AT&T Bell Laboratories and IBM Airnaden
Research C-enter.

Nir Shavitt

1cm of IFLBB85J, and a more efficient construc
tion of mrmw atomic registers.

I Introduction

The paradigm of concurrent time stamping is at
the heart of solutions to some of the mt fun
damental problems in coordination of concurrent
process [.488. C1L87, D65, DGSSS, 1188, L74,
P887. V.486].

A time stamp system of n asychronous pro
cesses is traditionally conceived as consisting of
n label registers, one per process, written by it
and read by all others. The labels are unbounded
natural-numbers where each process can execute
infinitely many labeling and scan operations on
the label registers. A labeling operation is a Se
quence of reads of other abe6. followed by a
write of a label greater than the maximal value
read. The label values written, tablish a tota
order on all labeling operations ever executed.
A scan operation is a sequence of reads of all
process’ iab&s returning a subset of labe}s or
dered consistently with this total ordering. A
roncnntnt-timr-siamp-syste,n (ciss) is a time-
stamp-system in which any number of labeling
or scan operations (by different processes) may
overlap in time. A major requirement is that
labeLing and scan operations of any process be
waitfree, that is, completed in finite time inde
pendently of the pace of other processes.

Concurrent time stamping is the basis for
simple solutions to a wide variety of the basic
problems in concurrency controL Examples of
such problems include fcfs-mutua]-exclusion, con
struction of a multi-reader-multi-writer atomic

Keywords: Concurrency, Tim, Stamping, Atomic Reg
isters, Sedajization.

register, probabilistic consensus... Unfortu
nately, the only known implementation of the
above paradigm i8 based on labels of unbounded
size. This is a major drawback, since bounded
memory size is a key requirement of the prob
lems at hand, implying these elegant and sim
pie unbounded solutions have little theoreti
cal value. Since it was unknown whether
hounded concurrent-time-stamp-systems are con
structible, researchers were led to devising com
plicated problem-specific solutions to show that
the above problems are solvable in a bounded
way (Bl87, flP87, dES?, D65, DGS8S, FEflH79,
FLBBS5, KTh. L74. L88d. LESS, LVSS, R86, PSI.
P83, PBS?, VAS6}

Israeli and Li in [fLSr were the first to isolate
the notion of bounded-time-stamping as an inde
pendent concept, developing a, elegant theory of
bounded sequentiai-time-stamp-systenis, that is,
time-stamp systems in a world where no two op
erations are ever concurrent. They also devised
a concurrent labeling scheme n which the labels
provide a causality preserving relation. However,
this relation is not a total ordering since unto
lated labels and cycles are possible. Moreover
this scheme deals only with labeling, and does
not address the central problem of how labels can
be scanned concurrently, therefore lacking some
of the key properties of concurrent-time-stamp
systems.

In this paper, for the first time a bounded
construction of a coneurrent-t me-stamp—system
is presented. It allows a modular transforma
tion of tbe simple unbounded solutions to such
core problems as above1. It provides a powerful
tool, enabling the design of simple unbounded
concurrent-time-stamp based algorithms with
the knowledge that such unbounded solutions im
mediately imply the bounded ones2. This is ex
emplified by providing the basis to solutions of
the above flavor jADMSSS, ADS89j to two for
merly open problems, the bounded-probabilistic
consensus problem of [ASS] (requiring to solve
the probablistic-consensus problem of {C[L871
without using an atomic coin-flip operation),
and the fifo-t-exclusion problem of !FLBB79].

1See ApptadirA.
2Bou.nded time-slap agoritluos for a maagc pass

ing envjrofinwtu without fault, are very similar to thaL
descdbed ii, this paper. Lack of space prevent. ii. from
dcribing it.

The only known solutions to the latter problem
[DGSSS, P88], achieve weaker forms of fairness
than the originai test and set based solution of
[FLBB79J.

Though one might think that the price of intro
ducing such a powerful modular transformation
would be a blowup in memory size or number
of operations, this is hardly the case. The con
struction presented in the paper requires ii regis
ters of 0(n) bits each, meeting the lower bound
of [1L87} for sequential-time-stamp-system con
struction. Though because of lack of 8pae, a
complete comparison table cannot be provided
in this paper, one example of the eciency of
the ctss solutions is given by the famous prob
lem of multi-r ader-n*ilti-wnitr atomic register
construction. A simple solution based on trans
forming the unbounded [VAS6] protocol (See
Appendiz A for a description), has the same
space complexity of the only proven algorithm
[PBS?, S881, yet a better time complexity, O(n
memory accesses for a write, O(nlogn) for a
read, as compared with 0(n2) for either in the
former. Concutrent time stamp systems are in
formally defined in Section t, and implemented
in Section 3. Rigorous formal definitions and cor
rectness proofs based on the formalism of Lam-
port [E86a, L86c] will be presented in the full
paper.

2 Concurrent Time Stamping

To provide the reader with a better intuition for
the more abstract formal definitions presented
later, the properties of a concurrent-time-stamp-
system are first outlined informally via the exam
ple of its unbounded naIra1-numberbased imple
mentation.

Informally, the natural-number based ctss con
sists of n registers of unbounded size, each writ
ten by one of n asynchronous processes and read
by all others, The labels are natural numbers
with the usual ordering among them3. Each pro
cesa can execute infinitely many LbeIing or scan
operations, any number of them concurrently
with the operations of other processes. The scan

3Pcoce.s id’s an added lexicographicaily to brraic sym
metry, a well blown technique which wW be referred to
in the sequel.

I

is the operation of collecting a set of labels 1,
one of each process, by executing a sequence of
reads of the labels in an arbitrary order. The la
beling operation is simply a co[[ectiug of all the
labels followed by a write of rnaz(t) + I. The la
bels written during labeling operations are mono-
tonically increasing, and, though smne were pos
sibly created concurrently with others, define a
total order on all labeling operations ever per
formed. Since for any two labeling operations
that are non-concurrent, the order among the la
bels reflects the order among the operations. this
order defines the manner in which all labeling op
erations could be serialized. Though no process
ever knows all of this order, the order among the
subset of labels returned by any scan is in fact
the same as the total ordering on all the label
ing operations4, no matter how many labeling
operations occurred while the Labels were being
scanned!

A Concurrent Time Stamp System is an abstract
data type shared among n concurrtnt and com
pletely asynchronous process. There are two
waitfree (see [1188, AGSS}) operations that any
process can execute on the cfls, a labeling oper
ation and a scan operation. Assume that each
process’ program consists of these two opera
tions, whose execution generates a sequence of
elementary operation erec,itions. totally ordered
by the precedes relation (of [L86a, LSGcj, denoted
“— “), and were any number of scan operation
executions are allowed between any two labeling
operation executions. The following

— g[1]
S— —

q[2] — — q(41 — -

is an example of such a sequence by process i,
where denotes process i’s kth execution of
a labeling operation and the kthl execution
of a scan operation (the superscript [kJ is used
for notation and is not visible to the processes).
A global time model5 of operation executions is

4This properly is simpir to achieve using unbounded
labels, since the ordeiing among the labeling operations is
just the ordeiing among the labels. The fact that such a
property is achievable using bounded size labels is some
what baflhins, since as the example in Sections shows, the
order among the labeling operations cannot be the order
amng the labels.

Tmplying that for any two operations, a 6 or
a (for mole detejis see [LSOc. BS8

assumed.

With each labeling operation execution L? a
label is associated. A scan operationre
turns a pair (t. —<). where the label view I =

Jk- Jk . 5ci is an ordered set of labels (one
per process). and -< is an srreflexit’e Lotal order
among them, such that:

Pt ordering: There exists an irreflnive total or
der on the set of all labeling operations,
such that:

a. precedence: For any pair of abeliig op
eration executions LV and L1 (where
possibJy p = q), if 4] then4a]

.

b. consistancy: For any scan operation exe
cution gIk returning Ct -), <
if and only if L —

The above property formalizes the idea that a
ctss can be envisioned as a black box, inside
which hides a mechanism (a logicaL clock) asso
dating caisaily orde,ed time stamps — from an
infinite totally ordered range — with each of the
labeling operations, and where scanning is like
peeping into this black box, each scan returning
a view of a part of this hidden ordering. The
black box metaphor is used to stress that it suf
fices to know of the existence of such a total or
dering ., while the ordering itseLf need not be
known.

One should bear in mind that the asynchronous
nature of the operations alLows sit uaLions where
a scan overlaps many consecutive labeling oper
ations of other processes. Also, several consecu
tive scans could possibly be overlapped by a sin
gle labeling operation. It is therefore important
that a requirement be made that the label view
1 returned by 5[k] be a meaningful one, namely.
reflecting the ordering among labeling events rn
medial.ely before or concurrent with the scan, and
not just any possible set of labels This will

For the purposes of many of the applications (such as
atomic register conslsuctnn), one should allow the [abe!
to include an assodated value field, denoted
For the sake of simplicity, disesion of how this added
feature is implemented will be differed to the appendix

eliminate nninterting trivial solutions and in
troduce a measure of livens into the system.
This requirement is formalized in the following
definition where —-—. is the can affect relation
of [L86a,LS&J

P2 reg,l4nty: For any label in I of
SJ, and there is no such that

L4’1 — L4b1

Though such a regular concurrent time stamp
system (P1-P2) would suffice for some appli
cations (as in Lamport’s Bakery Algorithm”
[L74j), a more powerful monotonic concurrent

time stamp system will be needed in applications
such as the M,ilti-Reader-MuZti- Writer Atomic
Register construction (as in {VA861). To this end
the following third property is added:

(a} — (*1P3 monotonwify: For any labeL 4 u, e or s,
there does not exist an with a label 46J

—,in its label view such that S —

and — LIid (possibly = j)

It is important to note that P3 does not imply
that labeLing and scan operations of all processes
are serializable. It does however imply the Se
rializability of the scans of all processes and la
beling of any one process. The scans “behave”
as if the labels of any process are monotonically
increasing, in the sense that a scan returns a la
bel of a labeling operation that is at least as late
as that of any labeling operation of a label re
turned in the scans preceding it. In the follow
ing section, a bounded implementation of a con
current time stamp system from atomic registers
is presented and informally justified. Rigorous
definitions7 and correctns proo will appear in
the full version.

3 The Implementation

The description of tbe implementation is divided
into two parts, the implementation of the labeling
operation, and the implementation of the scan.

TThe above definition, do not include, for vxample,
initialization conditions of the system

4=1 te2 4=1
L L: I II I

C h) r(j)
I It

S2:

Figure 1: Scan Concurrent witb Sequential La
belings

The key property of the labeling operation is to
allow establishing the causality-preserving total
order among all labeling operation execu
tions. Though it is not required that a process
‘knows” what this order i5, it is required that
the set of labek that it “chooses” during a sys
tern execution is such, that an almighty outside
observer given a dcription of the execution and
based on the labels, would be able to reconstruct
. This almighty observer could thus view all
labeling operation execution intervals as if they
were shrunk to points, that is, as if they were
completely sequential.

Requiring this property alone, will however not
be sufficient. As Erample 3.J shows, even if all Ia
beling operations are sequential, since labels are
from a bounded range (and therefore the same
labels are reused) a process scanning the labels
concurrently with ongoing labeling operations,
cannot deduce the order == from the order of
the labels alone,

Example 3.1. In Figure 1, segments represent
operation execution intervals, where time runs
from left to right. Two processes i and j per
form labeling operations sequentially, .j followed
by i, followed by many labelings, till eventually
the labels axe reused, and j for enmple uses the
same label as before. A third process performs
a scan concurrently with the labelings, reading Lj
and then ej. Si and 52 represent possible execu
tions of this same scan, the only difference being
that maiiy labeling operations of other processes
occurred between the reads in 52. In both the

case that the scan is of the form Si and the case
tbat it is of the form 52, the values collerted are
1, = 2 and Lj = 1, where the order among the
labels is, say 1< 2. However in the case of SI.
j’s labeling preceded i’s, while in 52, i’s label
ing preceded js. Thus, the order of the Labels
is not. the order among the labeling operations,
introducing an unresolvable ambiguity.

Faced with the above ambiguity, it is clear that in
order to design a scan operation, the properties
of labeling operation implementation should be
such, that even though the order = between any
pair LJc’1 and Lb) is not conveyed by the order
of their associated labels the labels do provide
enough information to allow an implementation
of a scan operation. The new implementation
will not require that by reading a pair of]abels
of processes i and j, one will be able to establish
the order among their associated labeling opera
tion executions. Instead, it will be required that
by reading the labels of i and j more than once
(yet only a constant number of times). one wUl be
able to choose from all the labels read, a label of
i and a label of j, for which the order among
the labeling operation executions can in fact be
dednced. In the following sections, after present
ing these additional properties, a scan operation
implementation that utilizes them will be shown.

The basic communication primitive used in the
presented implementations is a single-writer
,n,ilti-reader aomic reg.ster. Constructions of
urh registers from weaker primitives have been
shown in L86a. L86b, BPS7, 1L87. N87J. Tbe
conrnrnin-1ime-starnp.sysiem will consist of n
s,nnr atomic registers v, I C ‘(l..n}, each vt
written by process ;, read by all, and having val
ues in some range V. In the unbounded natural
number implementation of a tEss, v is just the
unbounded set of natural numbers, and Z for
any labeling is the usual irreflexive total ordering
among them. In the following subsections, the
set of possible label values V, together with an
irrefiexive and antisymmetric relation among
them, are defined in terms of a precedence graph8
(V <). Each possible label value is a node in
this graph. The order among the labels in any
two registers is the order X< established by the
edges of the precedence graph. Based on the

precedence graph, an implementation of the la
beling and scan operations will then be provided.
Unlike in the unbounded natural number imple
mentation. and following the above discussion.
the returned ordering anng labeling opera-
dons is not the same the ordering

3.1 The Labels and the Precedence Rela
tion

The following is the description of the precedence
graph T”. Though the precedence graph (of un
bounded size) defined by the natural numbers is
acyclic, this will not be true for 7”.

Define A dominates B in G, where A and B
are two subgraphs of a graph G (possibly ingie
nodes), to mean that all nodes of A have edges di
rected to all nodes of B. Define the following gen
eralization of the composition operator of [IL87.
The a-composition. Go H, of two graphs G and
II, where a is a subset of the nodes of C is the
&illowing non-conimurative operation:

Replace every node v e a of C by a
copy of B (denoted H0) and let .H. (or
v) dominate H in GoaH if v dominates
u in G.

Define the graph T2 to be the following graph of
5 nodes: a cycle of three nodes {3,45} (where 3
dominates 5, which dominates 4, which in turn
dominates 3). all dominating the nodes {2.]}.
where node 2 in turn, dominates node I.

Define the graph Tk (a complete tournament) in
ductively to be:

1. T’ is a single node.

2. P = o T1, where a = {5, 4.3,1) and
k >1.

The graph T = (V V<) is the precedence
graph to be used in the implementation of the la
beling and scan algorithms of a concurrent time-
stamp system for n processes. For any process
i, each node in 7” corresponds to a uniquely de
fined label value £. The label can be viewed as
a string £jIn..ij of n dits, where each PiIk C
{i - . . .5} is the digit of the corresponding node inee [1LS7] fcr lower bounds on the ±e of such gmpI.

Fipre 2: The Recursive Graph Structure for T’
and T3

V replaced by a P subgraph durhig the k”
step of the inductive construction above, The
digit L [n} is always 1, representing the complete
T” graph, and if a 4, e[k] = 2 then £41] =
for all j € (k— 1..1} (since node 2 is neve, ex
panded in the induction step). Therefore, given
any label 4, the P subgraph of 7” in which its
corresponding node is located is identified by the
corresponding prefix L[n..k}.

Th assure that based on the graph T’ a total
ordering among the label values returned by a
scan can be tablished, one needs to break sym
metry among processes having he same label. As
usual, prvcess-ids are used. Thus, the label 4 is
assumed to be concatenated with the id of pro
cess L The label and id are lexicographically or
dered. Tins, in terms of the graph T’. amouifls
to no more than assuming that. each T1 graph
consists of a total order tournament of n nodes,
each process i always choosing the ith node in
the order. For the sake of simplicity this point s
not elaborated on in the sequel.

3.2 The Labeling Operation

Let the collect operation by any process be a
reading of all the registers v1, j E { 1..n), once
each, Sn an arbitrary order returning a abeI set I
(not to be confused with €, the output label view
of a scan operation). The labehng operation of a
process i is of the form described below, where

£ : V’ x {l n) — V is a labeling frncüon, re
turning a label value 4 greater than” all other
label values9. This is a form similar to the natt
rat number flas, where the labeling function £ is
just mat(t) + 1. However, the interpretation of
“greater than” is not as straightforward as in the
,adfural neimber case.

The definition of the labeling function £(, i) pre
sented below, is based on a recursively defined
function £“(G, f,L), which, given a P subgraph
C, of 2”, a set of labels £, and a ‘maximal” la,
belt, EL in P, returns the label of a node in
C that is, as termed above, ‘greater than” the
other labels. For the sake of simplicity, and since
the collected set of labels £ remains unchanged
in e(e. 1) once it is collected (shnila,ly th€ vasi
able t, once it is computed), it i5 treated as a
global variable and is not passed as a parameter
in all the utility functions used by £(L, i). The
following functions are used in defining £:

num_labcls(G) — a function that, for the given
label set 1, returns how many of the labels are in
sub-graph C;

dom(x) a function that, for a given digit
z C {1..5} representing a node in the graph
T2 returns the next donñnating node; namely.
dom(1) = 2, dorn(2) = 3, dom(3) = 4, dorn(4) =
5 and dom(5) = 3;

daminatingjet(t,4) — a function that, for a set
oflabels L C L, and a label L C f, returns a subset
of labels {4CEjij £j}U{4);and

maz(l) —a function that, for a set of labels jç I,
returns a label

(F, C dominatingset(t, L)
IdarninaUng_set(t £)I, Vt,j E

the maximal label, i.e., the one least. dominated
within this set.

3

4

procedure (abel.ng;
begin

£ coflect

end;

TnitioJ1y, aE labels are canode 111.11, the node dam
nate by aft others T”.

Denote the concatenalion operation, where 0 is
a string and xis a digit, by G,x. The following is
thus the definition of the labeling function £(, I).
The subgraphs G are identified with the reLative
prefixes, where P’ is identified with the label 1:

function £ (t, 1);
function £k(G);
begin

1:
2:

then return
3 if £r:nk_1] = G.2

then returnO1(G.3);
4: ifk>2then

ift[k—2] € {2,3,4,5} and
(t[n..k—1] [nik—I])

then returnO1(G.dom(tr[— ‘rn
5: if (num_la&eIs(t[n.k— 1]) <k—I) or

((num_lab€ls(tr[n..k— 1) = k—I) and
(ij[nk—1] 4[n..k—t]JJ
then return .Ck_(G.e[k_ 1])
else return £(G.dom(t[k—1));

end C:
begin
1. := max(daminatingset(C,t));
return £“(T”);

end £;

For the purpose of giving the reader some intu
ition about the properties of the labe]ing opera-
Lion, let it be assumed that one can talk about
the values of the labels of all processes at ‘points
in time”. Though the goal in the remainder of
this section is to show how the labeling operation
executions allow to define the order , it will
first be shown that they meet a much simpler re
quirement. The requirement is that at any point
in time, the subgraph of the precedence graph T’
induced by the labeled nodes (those whose corre
sponding label is written in some vi), contains no
cycle, Since T’ is a complete tournament, tIns
implies that at any point in time, aLl labels are
totally ordered.

The labeling operation executions maintain
two “invariants,” namely, that at any point in
time (1) there are labeLs on at mt two of the
three nodes in any cycle of any subgraph Tk (the
cycle consists of “supernodes” {345J, called su
pernodes since they are actually T subgraphs),

and (2) there are no more thank labels in the cy
cle of any subgraph T”. Maintaining the second
iiivariant is the key to maintaining the first and
the first implies that at any point in time] there
are never any cycles among Labels.

The manner by which the invariance of (1) and
(21 is preserved, is expLained via several exam
pl. In these examples, T3 is a precedence graph
for a system of three procees x, y and z- All cx
amples start at a point in time where = 34

= 135: and = 141, that is. ll labels are
totally ordered by

Example 3.2. Assume that the following se
quence of labeling operation executions occur se
quentially. Process y performs reading

‘a] [b [t]£ and £2 . and moving. based on £ (f. ,)
to = 142. Process z performs Lh1, read
ing the new label and thus moving to the
T2 subgraph 14, (L4’1 = 144, LJ° 45.
L41 = 143..). maintaining the above invari
ants, because the T2 graph is a precedence graph
for 2 processes. If at some point z moves, in L,>’
it will read the labels of both z and y as being in
the T2 subgraph 14. Since numiabcls(’14’)=2
by line 5 ofe(t,i), x will move to 4M’ = 151.

The reader can convince himself that following
any labeling operation execution Ut] by
process z, the above invariants hold, and that
for the set I of labels that were read in JJr] s col
lect operation (denoted read (Lid)), it a the case
that (y4b]

read(LA1fl(E4 < that is the
new label chosen i5 greater than all those read.

As seen in the following example, in the con
current case, more than k labels may move into
the same T” structure at the same time. It is thus
not immediately clear why the second invariant
holds.

Example 3.3. Assume that the following se
quence of labeling operation executions occur
concurrently. Processes x and y begin perform
ing Lk’1 and L413 concurrently, reading dt
46] and jC] and computing £, such that

e+Il = 142. If they then continue to complete
their operations by writing their labels, though
they have the sank node as a label, they wern

if k= 1 then return G;
ftr.k G

concurrent, and can be ordered by relative Id. If
any of them then continued to perform a new la
beling operation, since num_labels (‘14’) > 2, it
would choose labeL 151, not entering the cycle.
However, let us suppose that they do not both
complete writing their labels, that is, x stops
just before writing o+1l

, v, while gj writes
4411

= 142. Process z then performs L?hI,

reading the new label and the old label
thus moving to Lhl = 143. Processes y and
continue to move into and in the cycle of the T2
subgraph 14, since they continue to read ‘s old
label. Then, at some point r completes L’1,
and there are tbree labels in 14 (two of them in
the cycle)- However, if x now perforn a new Ia.
beling L2thI, it will read the labels of boLl, z and
y as being in 14. Since num_labels(’14’) > 2, by
lineS of £ (, 1), x will move to t42] = 151, not
entering the cycle.

Generalizing the above example, even 1 many
processes move into ark subgraph, without read
ing one another’s labels, at most k of them will
enter the cycle in P. The reason is the following
well known flag pnncipalW:

If k+ I people, each first raise a flag, and
then count tbe number of raised flags,
at least one person must see k + 1 flags
raised -

By the defin[tion of the labeling function C. each
process moving into the cycle of ark subgraph,
must first move to either supernode 1 or 2 iu P
only then can it perform a labeling into the cycle.
The move to 1 or 2 is the raising of the flag, and
the move into the cycle is the counting of all flags.

The following example shows that even though
by the above, there are at most k labels at a time
in any P structure, the sets of labels recjd in a
labeling operation execution, may contain cycles.

Example 34. Process begins performing
Ta)reading £ = 134- Process y then per

forms LL411, reading a) £ and tP, and mov
ing to = 142- Process x performs L1°’1,

1flpf follows by the fact that the last person to start
counting flags must have seen Ac + I flags raised.

reading the new label t’ and LId, and thus by
lam S of C, moving to 4+q

= 151. Protess y
then performs reading flbl and moving
to = 152. Finally, process z reads 4I.

thus read = 134, t21 = 152, and = 141,
three labels on a cycle.

In order to select a label dominating all others,
must tablish where the “maximal label” among
them is. To overcome the problem that the labels
read form cycles (as in the above example), the
labeling function £ (4 z) does not take into ac
count ‘old values” such as it considers only
the labels that dominate the current label LI.
In order to maintain the first invariant,: shoald
move to tV = 131, to dominate the current
labels of both r and y. However, there is seem
ugly a problem, since z did not read the label

= 1M, and so, how can it decide what label
to choose in order to dcminate L°’ = 151’ The
solution is due to the fact that z can deduce the
existence of = 151, since in all of the cycle
of 7’S there are 3 labels, and in order to move to
e41 = 152, y must have read some label in node
151 of the T2 subgraph 15 By simple elimina
tion this must be the label of z. This simple nile
is maintained by application of line 4 in C. How
ever, if the above scenasio occurred in the cycle
of a P graph, where k > 3, then in order to al
low the same reasoning as above, it must be that
if z read = 152 (or f2] {153. 154, 155)),
it can conclude that A, — 2 other labels were read
by LS42 in the T’ subgraph 15. It is for this
purpose that supernode 1 of any P graph where
k > 2, is not a single node, but a *I subgraph.
A proc can thus choose the node 2. only af
ter it established that there were k — 1 labels in
supernode 1. Since node 2 is a bridge,” that
some process must “cross” (choose) before any
process can move into the cycle, the above rea
soning holds.

Though the above invaxinnts hold, it follows
from Erampk 3.4 that the property that the cho
sen new label is greater than all those read, true
for sequential labeling operation executions, does
not hold in the concurrent case. Fortunately,
there is a similar property that does bold, a prop
erty that will prove important in the implemen
tation of the scan. Let the notation rJL) and

w(LJ1) denote the read of v and write of t,1 dur
ing a labeling operation execution LJ by a pro
cess t

Definition 3.1. Labeh’2g LLa) is ubscrved by
Lb (denoted LJ - L4) tfr(L) = or
there exists an such that = £A and

LA1.

The relation is actually the transitive do
- a]sure of the read relation. Let ,naxamai_obs(L

he the set of operation executions

4L4 YE {1..n}, LJ --)5- Ld’ and
(VL)(ifL — L1 thenL4bJ —$‘- L)}.

that i, hicludiug the latest label ob5erved for
each process. in the concurrent executions, in
stead of the new label being greater tban all the
labels read, it is the case that

(Vt € maximaLobs(L4fl(tj,bl x

namely, the new label chosen is greater than the
latest of those observed. For the labeling Lsboih]

of Example £4, though z read = 143, and
X< it is the case tbat its maximal nb-

served label is t?. and .<

Finally, the following is the irreflexive total or
der on the labeling operation executions as
required by property P1.

Definition 3.2. Given any two distinct labeling
operotion executions L43 and L4b] L4 L1
if either

1. L or

2. Lk’3-P,V3.- L4b], L?1-’14- Lk’, and 41 x<

Intuitively. since with every LIaI there s an 8580-

ciated jabel is a “lexicographical” or
La ader on a pairs (L .1,.). The first element

in the pair is ordered by -‘% a partial or
der that is consistant with the ordering — (if

— L1 then in L, y read or a Jater
label). The second element is ordered by <
an irrefiexive and antisymmetric relation. In the
full paper it is proven, that the ‘static” relation

on the abels, completes the “dynamic” par
tia] order to a total order on all labeling
operation executions.

3.3 The Scan Operation

The scan algorithm consists of two main steps.
performing a sequence of Sn Log n collect opera
tions “, and analyzing the collected labe]s to se
lect a set for which an order —< caE be returned.

Let C {1..8}, rn E {l.jlogn]}, and
k € {1.nJ denote variables, each holding a set of
labels (1mk ., £k) coLlected in the c” j_

lec operation execution of the mt level of the
k” phase. Let half(r) and other..half() be corn
plementary functions, that for a given set r, re
turn two disjoint subsets ri and r2. such that
ri U r2 = rand—IS ru — r2 1.

The scan algorithm returns the set of labels 1,
one of each procs. and the ordering -< among
them is represented by he vector 0 ho]ding a
permutation of numbers in 41 ..n}, the number in
the i’ position representing the relative order of
the label £12

function scan;
function select(m,k,r);
begin

if ,r = 1 then return (x z Er):
else

fi;

x : sclect(m— 1, khalf(r));
y select(m— 1. k, oiher_half(r)):
if(&1c2 € {1.8})

(ci < c2) A (fc1lThk - e;2mk)

ii;

then return y
else return x

end select
begin

ft {1.n};
O[1..nJ := 0;
!:
for k 1 to n do

Not that the scan algorithm requir a sanning pro
c ,nI to read other !abcl,. and do no require it to
write. This h& of a need for WO Way communication
bel.ween the scanner the]abelers is a properly found in
the niplementation of the n4turd ni’nhr based ci,..
1For the sake of simplicity, though the returned Labels

in £ cou]d contain various data associated with the given
labeling operation (that is data written into the re.gi€ter
v, together with the implementation label value), the scan
hoplementalion will return only the implementation label
value £,.

od;

form I to flogn do
for c I to 8 do

£ c,ni,k collect

od;
od;

for k n downto I do
S select(flognl,k,R);
1= lu {j8JIQn1k};

ON
I? 1?— {s};

ad;
return (O);

end scan;

The scan operal.ion, as noted above, begins
with a sequence of 8n log “1 collect operations,
for which the returned labels are all saved in a set
of variables tehulk c E {i ..8}, m € L.flog 1b
and k E {1..n}. The remainder of the algorithm
defines how to choose n of these labels, one per
process, for which -< (i.e.) can be established.
The following is an outline of how this select[on
process is performed -

By the order of label collection, the labels read
in phase k = 1 are the earliest to have been col
]ected, thosefor k = n the last. Fromthe8logn
collected labe’ sets of each phase. the algorithm
selects one label. The selected label in the kth

phase will be the largest in the order -<. As
it turns out, to guarantee that this is the case,
it suffices that the following Condition .1 holds
(shgbtiy abusing notation in the definition):

For the label1c°g ‘.1 k collected in the
[log nlt’ level of the kth phase, and any
label of a process yE 1?, collected
in the 1’’ level ofthe k2hT phase, it is the

S.1logn.kcase that Lsik .w

Maintaining Condition I is sufficient to assure
that the label returned in the kth phase is the
A- largest. Let it be shown that the labeling op
eration execution of a label retorned in a phase
A-’ < k, preceded (iii the ordering =) that of
the label returned in the phase k. The follow
ing shows that this is the case for the labelsjs.rlognl.k j;,[IognJk—I and j8hb0812 returned
in phases k, A- — 1, and k —2 respectively. The

same line of proof call be extended inductively to
all V < k.

By Condition 1,
. L:rIosn1)k Since

the read of £,1k was performed after that of
1s,çogn.k—t either the label of the same label
ing operation execution was read in both cases,
or L:cbosflk_1 . By similar rea
soning Sflogn1k—2]IlonLk_l which by
transitivity of ., establishes

8.jogn.k

The seleci function applied in any phase, is a
recursively defined “winner take all’ type selec
tion algorithm, among all the processes in 1?. It
returns the id of the winner.” a process s meet
ing Condition I. At any leveL m of the applica
tion of select select(m, A-, r). the winners of the
selections at level m — 1 are paired up, and from
each pair one “winner” process is selected, to be
passed on to the (m+l)thl level of selection. Af
ter at most flog Rfl levels, s, the winner of all
selections, is returned.

Based on the definition of the select function,
maintaining the following Condition P suffices to
assure that the label of the process s returned by
select(m, k, r), meets Condition .1.

Of the two processes x and yin the ap
plication of stied at lev& m of phase
A-, the one returned, say r. Is such that

=. Lk where 11.rn,k and
£2’ respectively are the labels asso
ciated with these labeling operation ex
ecutions.

Maintaining Conddion P suffices for the follow
ing reason. If at level m process x was se
lected between r and y, and at level in— pro
cess y was selected between y and z, by the
same line of proof as above, from Lm.k
L:.nk and L1m_1k . L:m_k, it follows that

. By induction this iruplys
Condition I.

Recall Erampk 3.1, implying that it is impos
siNe to establish the order ‘ among two]abel
ing operation executions, from the order among
their associated labels alone. To overcome this
problem. instead of attempting to decide the or
der between two given labeling operation execu
tions, the algorithm will choose a pair out of

several given labeling operation executions, for
which the order can be determined. Thus.
to allow the sdect operation at level rn of phase
F, to choose a “winner” process, say x, for which
Lt,mk L8,m,lc labels of x andy from 8 con
secutive collects will be analyzed.

Let it first be shown that if the following Con
dition 3 holds for y, that is

(Jcl,c2 C {1..S))(cl < c2) A (t’”’ x<

then Lfimk . L;2.mk (this, becaise of the
order of label collecting, will imply Llmk

Assume by way of contradiction
that Lti,m,k . L;_mk. Since :1mk v.,<

it must be by the definition of
that L;2.mk L:l.mk. It cannot be that

E maximaL.obs(L’”), since by the
properties of the labeling scheme, for the label

e marimal_obs(I4’”) [bJ v.,< t:lm:1.
Thus, there must ke a different labeling op
eration execution C rnazimal_obs(L1’’j,

— This label was already ob
served (i.e. must have been written), before the
end of the read of41,mk Thus, 4, or a la
bel later than it, must have been read instead of
£c2,m,k in the collect c2 of level in in phase F, a
contradict[on.

It remains to be shown that if ConditionS does
nol hold for y, it is the case that _

L°’ k, and z can be correctly returned, As
sume by way of contradiction that CondiEon 3
does not hold for y. It cannot by the same
arguments as above, be that Condition 3 holth
for a, that is, (JcI,e2 C {1..8})(cl < c2) A
(jCi.Tfl.k Y< £2mk). Therefore, it must be that
there are four noncousecutive collects of
ci C {1, 3,5,7), and four nonconsecutive collects
of £ c2,fllk c2 € {2, 46, 8} such that the labels
£d1]T.’ cI E {1,3,b,7} are all different from one
another, and the labels d2k c2 e 2,4,68}
are au different from one another. The reason is
that if any two of them are the same, say
and £“, then in order for the above Condi
tion Snot to hold for r ci = 4 and c2 = 3. it
must be that 4,mk < qn.k. But since
and LImb are the same, it would follow that

and Condition S would hold for
y. a contradiction.

To complete the proof, it re]]lains to be shown
that if the labels q1”k, ci e {13, 5, 7} are a))
different from one another, and the labels £2mk,

c2 C {2, 4,6,8) are all different from one another.
then Limb = The situation above is
such that during the 8 collect operations, each
of the processes z and y executed a new labeling
operation at least 3 times. It can be forniaflv
shown’3 that the third new labeling operation
execution L,_,k, after a and y moved at least
3 times, occurred completely after the initial la
beling of i, that is, L,°”t —

Formal proofs will be presented in the full pa
per. As a final comment, note that for algorithms
where only the maximum label is required, and
not a complete order among all returned labels
(like in construct[on of a mrrnw atomic register or
solutions to the miAtTlaZ exclusion problem), only
one phase of label collection is required. that is,
only Slogn collects’4.

4 Acknowledgements

We would like to thank Yehuda Afek and Mike
Merritt for many important conversations and
comments. It was a subtle observation of Mike’s
re arding pairwise-consistancy among scans, that
le us eventually to the current tin definitions.

References
‘ADMSSS] V kfek, D. Dole,. M. Menitt, and N. Shavit,

“A Bounded Mo solution to the i-exclusion
pmblem, in preparation.

[ASS] K. Abrahnnson. On Achieving consensus
lJsing a Shared Memory.” Proc. flit A GM
Symp. ot Principles of Distributed Gomput
ins, 1985, pp. 291-302.

[AGSS] J. H. Anderson, and M. G. (]ouda, The
Virtue of Patience: Concurrent Program
ming With and Without Waiting,” unpub
lished manuscript, Dept. of Computer Science,
Austin, Texas, Jan. 1988.

[ADSSOj H. Attiya, 0. Dole,, and N. Sha’yit. A
Bounded Probabilistic Shared-Memory Con
seius Algorithm.” unpublished manuscript

:STMS dam, is mc true ifk,. than S new lat’elings iock
place.

The number of collects in each phase can be lowered
to Slog n, if one &ves up the property that the order of
reads in a collect be arbitrary).

[BS8i S. Ben-David. Tbe Global Time Aumption
and Semantics for Concurrent Systems,” Proc.
7t& ACM Urn,, at Princiie. of Düfriôtfcd
Conpiaing, 1988, pp. 223-231.

[8187] 8. Bloom. “Constructing two-writer atomic
registers,” Proc. gtk A CM Svnr. on Princi
pits f Di,1riôaed Compatng, i7, pp. 249-
259

l’] 3. E. Burns, and G.E. Petemon, Constructing
Multi-Reader Atomic Values from Non-Atomic
Values,” Proc. 8th ACM Symp. on Principles
of Dstri5idd Co’npttin9, 1987, pp. 222-231.

LCILS7I B- Chor, A. Israeli, and M. Li, “On Processor
Coordination Using Asynchronous Haraware”
Proc. 6th ACM Smp. oa Principles of Di,
tributed Compttiag, 1987, pp. 86-97.

(D65} E. W. flijkstra, Solution ala Problem in Can
current Froramming Control.” CA CM 8, 9,
15, p. 569.

[DGSss P. Dolev, E, Gafni, and N. Shavit, ‘Toward a
Non-Atomic Era: L-Exclusion as a Test Case,”
Proc. 30*4 A anita? ACM Urn;. on the Theory
of Cotnp.tinp. 1gM.

[FLBB79] a J. Fischer, N. A. Lynch, S. E. Burns, andA.
Borodin •Etsource AUocation with Imman’ty
to Limited Process Failure,” PrDC. 0U. IEEE
Symp. on Foundations of Comp.ter Science,
1979, pp. 334-254.

FLBBSS] M i. Fisth, NA. Lynch, i.E-Burns, a,dA.
Borodin, “DiKtribtztad flEa Allocation of Men
twal Resources Using Small Sh.sed Spate,”
MIT/LCS/TM-290, 1985.

[H88] M. P. Hertihy, “WaitEree Implementations of
Concurrent Objects,” Pcr. 7ff. ACM Syrn;.
on Pri,ciples of Disfributed Cornptsting, 1988,
pp. 276-290

[1L87] A. Israeli and M. Li, “Bounded Time Stamps,”
Proc. 28th Annual IEEE Spnp. on Foitnda
tions of Conputer Science, 1987, pp. 371-382.

[1(781 H. P. Katseff, “A New Solution to the Crit
cal Sztion Problem.” Proc. lath Anna?
ACM Sijmpositm n thr Theory of Comput
ing, 1978, pp. 86-88.

[L74j L. Lamport, “A new Solution of Dijkstra’s
Concurrent progr.mmin problem,” 0.4CM
17, 8 1974. pp. 4.53.455.

LO6a U. Laxaport ‘On lntuprocess Co,nmunica
tion. Part 1: Basic Formalism,” Distributed
Computing 1, 3 1986, 77.85.

LSSb3 U. tampon, “On ht&process Co.nrrnmica
ton. Part II: Algorithms,” Distributed Con.
p.t:ag 1, 198€, pp. 86-lOl.

[L86c] L. Lamport, ‘The Mutual Exclusion Problem.
Part I: A Theory of Interprocess Communica
tion,” .1. ACM 33, 2 1986, pp. 313-326.

LSSdj L. Lamport, “The Mutuai Exdusion Problem.
Part TI: Statement and Solutioi,” J. ACM
83, t 1986, pp. 327-348.

[LVSSj M. La, and P. Vita,,yi, ‘UnifOini Caistruc
that foe Wait-Fee Vmth1.” unpublished
nanusaipt, 1988.

[EMs] E. A. Lycklama and V. HadiIacos, A Fair
Mutual Exclusion Algorithm With Small Corn
municaton Vasiatles.” sutrnittM for puNk.
Lion, 19Q8.

çNsIj K. Newman-Wolfe, A Protocol for Wa3t-
free Atomic, Multi Reader Shared Variables,”
Proc. 6th ACM Symp on Principles of Dii
tributed Comp’iting, 1987, pp. 232-248.

Pgl’ 0. L. Peterson, Myths about the Mutual
Exdusjon Probient” IEL 1±, 31981, pp. 115-
116.

Ps3J 0. L. Peterson, “Concurrent Reading While
Writing,” ACM TOPLAS 5, 1 1983, pp. 40-
55-

[PBSTI 0. L, Peterson, and S. E. Bun, Concur
rent Reading Vhile Writing II The Multi-
Writer Case,” Proc. 38th Annual IEEE Sy,np.
on Fo’4ndations of Computer Science, 1987,
pp. 383-392,

0. L. Petenon. penonal communication.

M. Raynal, Algorithms for Mutual Erclusiom,
North Oxford Academic, 1988.

(SSSJ R. Schafer, ‘On the Correctns of Atomic
Multi-Writer Rt!iatnw,” MIT/LCS/TM-364.
June 1988.

[SAGS?) A. K. Singh, 3. H. Anderson and M. C.
Gonda, “The Elusive Atomic Register kevin-
ted,” Proc. 6th ACM Smp. on Principles of
Distn&3ted Coniling, 1987, pp 2C6-221.

[VASS] P. Vitanyi. and B. Awerbuch. Atmnic Shared
Register Access by Asynchronous hardware,”
Proc. 27th Annual IEEE Symp. on Founda
tions of Compister Science, 198€, pp. 233-243.

LflSI
pus]

A Some Examples of Applications

The following is a simple unbounded algorithm
for solving the famous problem of constructing a
mnnw ,tomic rtgister from swmr atomic regis.
ers. This solution is a version (due to Li and Vi
tani [LVSS]) of the elegant and simple unbounded
Vftani-Awerbuch algorithm TVA6t It is based
on the use of a natural number ctss. Each pro
cess i writes to a mrsw atomic register denoted v.
Each register contains two fields, a label, that is,
a nauraI number, and a value associated with it
(vuh4elabel using the notation of [LVSS]). The
following is an implementation of the read and
wnte by a process

function read; can be achieved. It is interesting to note that
begin the amount of shared memory needed meets the

read v1, .,v; lower bound of [FLBBT9J. If one is interested in
select the maximal time-stamp 4; the unbounded implementation, just substitute
return vaCuet2; 4 max(t,, 4j+ I for the Lobe ling operation.

end; and read(fi, ..,t) for the scan. Notice tbat for
= 1. the above is a very simple solution to the

procedure wnicIvalue); fundamental mfwal exclusion problem of [D65].
begin Other algorithms such as the unbounded imple

read v1, .., v; mentation of a ctss in the Bakery Algorithm of
select the maximal time-stamp 4; Lamport [L74], can also be modularly replaced,
write into v the vab4e arid ‘z + I; and by adding a simple modification to allow the

end; dss to include restarts, the solution can be made
to be resiliant to stañ failures [L74. LSSd

Note that the write operation is just a labeling,
and the read is a scan foUowed by returning the
value associated wil.h the maximai labeL As men
tioned earlier, one would need to let the labels
of the dss include their associated values. Re
placing the above unbounded operations by the
Labeling and Scan operations of the bounded
toncurrent-tirne-time-stamp system wili immedi
ately produce a bounded solution to the problem
Note again that the general implementation of
the scasi operation, as described in this trtcnded
abstract requires Sn log n collects, but since only
the maximum (and not a total ordering) of the
labels is required, it can be reduced to 8logn col
lects, as will be elaborated upon in the full paper.

The following is a fifo solution to the i-Exclusion
Problem due to [ADMS88], based on the use of a
ctss. In the following, the 5can and label opera
tions of process tare as 4escrbed, where the ciss
is implemented using swmr atom,c registers, and
zt, i € {i, •.,n} are swmr safe registers.

do forever
true:

labeling;
L: (L) scan:

if (j; z A (1, %flj ? l then goto L fi;
crttical section
xi false;
remainder section

od;

The only known bounded fifo solution to the
problem, due to rFLBB79] was based on the us

a strong form of Test and Set. It was un
known whether a level of fairness higher than fl2.

waiting (see [DGSSS}) without use of test nd set

