
Bounded Polynomial Randomized Consensus
(PRELIMINARY VERSION)

Hagit Attiya* Danny DoIev Nir Shavit

Abstract

In jASS), Abrahamson presented a sohalon to the
randomized consensus problem of Chor, Israeli
and Li [C1L87], without assuming the existence of
an atomic coin flip operation. This elegant algo
rithm uses unbounded memory, and has expected
exponentia’ running time. In TAH89J. Aspens and
ilerlihy provide a breakthrough polynomial-time
a]gorithm however, it too is based on the use
of utbounded memory. in this paper, we present
a solution to the randomized consensus problem,
that is bounded in space and runs in polynomial
expected time.

1 Introduction

The Consensus Problem in shared memory en
vironment i5 that of providing an algorithm, by
which n processes, running asynchronously and
communicating via shared memory, can agree on
a vajue. Loosely speai<ing, the algorithm should
have the following properties:

WIT Laboratory for Computer Science! supported
by NSF contract no CCR-s€11442. by OAR ntraa no
N0014-85-K-0168, and by DARPA contract no 1400014-
53-K-o125

trBM Alinaden Research Center and Hebrew Univer
sity, Jerusalem.

Hebrew University, Jenisatem. Supported by an Is
raeli Comiutmications Ministry Award. Currently visit
ing the TDS groop aS MIT, supported by NSF contract
no CCR.86i 1442, by ONR contract no N0014-85-K-0168,
by DARPA contract no N00014-83-K-0125. and a special
grant from IBM.

lCeyword: Concunency, Atomic Registers Consensus,
S en alization.

1. Consi.stency: No two process decide on dif
ferent values;

2. Vahdziy: If all processes have the same ini
tial value, then processes decide on that
value,

3. Wait-freeness Each process is guaranteed
to decide after a finite number of steps, in
dependently of other processes.

in a shared memory in which only atomic read
and write operations are allowed there is no de
terministic solution to the problem. This result
was directly proved by [AGS8, CTLS7, LAST] and
implicitly can be deduced from [DDSS7, FLPS5].
ilerlihy u88} presents a comprehensive s1udy of
the problem, and of its implications on the con
struction of many synchronization primitives.

A rondonig:ed solution to the consensus pToh
km is one in which, rather than being guaraniced,
it is only expected that the number of steps until
a process decides is finite, that is, property (3)
above is replaced by:

3. Fin,tt erpcctcd veiling: The expected num
ber of stops until a proce decides is finite.

Such an algorithm, provides a basis for construct
ing novel universal synchronization primitives,
such as the fetch and cons of [1188], or the sticky
bits of [P89].

Thor. Israeli. and Li ICILSI] were the first to
provide a time-efflce,it randomized solution to
the problem. using hounded size ruemory Their
solution was based on the avaiLability of a pow
erful ato,n,c coin flip operation, In [A88], ibra
hamson presented a first soh,tion not assi, hug

the existence of such an operation, However,
this elegant algorithm uses unbounded memory,
and has exponential expected running time. The
question was thus raised:

Does ihere erist an algorithm that is
polynomial in ninning time and bonuded
in memory size?

An exponential time algorithm can be derived
from that of ‘ASS] (see [ADS89]) using a transfor.
mation based on the concurrent time stamp sys
tem techniques of tDSSOI. Aspens and ilerlihy
(in [A1188]) provide a breakthrough algorithm
that runs in polynomial expected time. Unfor
tunately, it is based on the use of unbounded size
memory in a “stronger” way than in [ASS). Since
for reasons presented in the sequel, there seems to
be no transformation of All8S’ to a hounded pro
tocol using concurrent. time stamping techniques,
the above question remained unaimwered.

In this paper, we present a solution to the
randomized consensus problem that both runs
n poynoinia expected time and is bounded in

memory size.

The main re3son for the simplicity in providing
an exponential time randomized consensus algo
rithm using bounded space, is that all one need
provide are actually the properties of consistency
and non-triviality. The wail-freeness, i.e. expo
nential expected running time, is (though hard
to analyze) just the result of the exponentially
small probability that processes flipping indepen
dent coins, will come up with the same value. To
provide the former two properties, one need only
create a locking mechanism that will provide ex
clusion. before allowing processes to decide on
a value. Such unbounded locking mechanisms
are based on time 5tamping concurrent lock set
t.ng events, a process that has been shown to be
inodularly replaceable using bounded concurrent
time-stamp systems.

In order to obtain an algorithm that runs in
expected polynomial time, as [AIISS1. one must
imit the ability of the adversary to create non-

decision scenarios while processes try to lock for
values. A way of doing this is by basing a pro
cess’ decision to attempt to lock for a value, on a
function of more than just one independent local
coin toss, preferably on many coin tosses by all

processes. This exact idea is abstracted into the
notion of creating a shared global coin [CMSS5].
Since attempts to lock for a value based on the
shared coin could still fail (because as shown in
[Alias]. one cannot create a perfect coin) re
peated g[obal coin tses are needed. When im
plementing multiple coin tosses, one must re
member that processes run at different paces, so
one should take care to a. prevent mixups be
tween locations in memory used ior new and old
coins, and b. provide independence among shared
coin flips (this means preventing proces in old
coin toss phases, from causing attempts of pro
cesses in]ater coin tosses to fail). The algorithm
uses an unbounded strip of coins, where for each
toss a separate set of memory locations i5 al
located; this allows to disinguisb between coin
tosses, and thus to meet the above requirement&

Summing the above, in achieving po[yr.omial
expected time, unboundedness is used, not to or
der any two specific coin flipping events by the
relative times in which they occurred (a prop
erty provided by concurrent time stamping), but
by how many coin flipping erents ,. one process
trailing behind the other.

In {AI1B8), in addil.ion to the above use of un
bounded memory, the weak shared coin flip con
struction requires that each coin location in the
unbounded strip be in itself unbounded. Finally,
their use of a random walk to create the shared
coin is based on a snapshot view of memory. The
implementation of this snapshot operation ako
uses unbounded counters.

The main contribution of our paper is an im
plementation that achieves the properties of the
coin strip using bounded memory. It is based on
a technique for maintaining a ‘shrunken” version
of rIte strip, effectively pulling together processes
that opened a gap between one another. In addi
tion, it is shown how to perform the random walk
using only bounded coin locations. Finally, our
algorithm is based on the availability of a mem
ory primitive, on which a snapshot scan can be
performed We show how to implement such a
primitive boundedly.

The rest of the paper is organized as follows.
In Section a scannable memory primitive is de
fined and constructed. In Section 3 a bounded
memory implementation of a weak shared coin

is presented. In Section .4 the implementation of
the coin strip is presented. We introduce a to
ken game capturing the properties of the strip.
A shrunken version of the game is shown to pro
vide the same properties, and is then translated
into a game on a weighted graph. FinaLly, a con
current implenwutaticu, of the game on the graph
is presented. Section 5 shows how bounded size
strips of coins can be manipulated based on t.be
concurrent graph game. All the unbounded con
structs of the [A1188] type algorithm presented in
Section 5, are then replaced by the bounded ones,
providing the desired solution. In Section 6, an
outLine of the correctness proof of the algorithm
is presented. Due to Lack of space, some of the
proofs are omitted.

2 Snapshot Scanning

21 Definitions

A Scô,,nable Memorij V is an abstract data type
shared among n concurrent aEd completely asyn
chronous processes. There are two operations
that any process can execute on V a write oper
ation and a scan operation. As discussed below,
it is not assumed that these operations are nec
essarily waitfree [1188, AG8S].

Assume that each process’ program consists,
among other, of the above two operations, whose
execution generates a sequence of ekmentar, op
eration erect,uns. total]y ordered by tbe pre
des relation (of [L86a, L8& denoted

“‘—

The following

— —
—

— 2j — q3l
— — -

is an example of such a sequence by process i
where denotes process is kth execution of a
write operation, and the kth execution of a
scan operation (the superscript [kJ is used for no
tation, and is not visible to the processes). One
should bear in mind that the asynchronous na
ture of the operations aliows situations where
a scan overlaps many consecutive write opera
tiotis ofother processes. Also, several consecutive
scans could posib]y be overlapped by a single
write operation.

Let ——-.- he the can affect relation of :Lsea.
L8&]. A global tune model’ of operation exe
cutions is assumed (see [LSGa. 888]). The follow
ing definition attempts to capture the notion that
a psible effect of oce operation on the shared
memory (such as the writing of a value). existed
at a point in global time where the other was
being executed.

Definition 2.1. A write operat;on exeention
a] potentially coexists with another operation

execution oJ (0 stands for either a scan or
write) if W1 ———

OJ and there does not exist

a such that — IV[O’J —

With each write operation execution a
value written into V is associated. A scoi,
operation returns a view, a set of vaLues =

The following requirement is made to assure that
the snapshot view i returned by sj is a mean
ingful one, namely, returning the values of write
events immediately before or concurrent with the
scan, and not. just any possible set of values.

[a] — [b]P1 regularay: For any value v1 rt v of Sf
w,Ca] potentially coested with

The above eliminates uninteresting trivial so
lutions and introduces a measure of liveness into
the system. More importantly, it impli that
the behavior of the scannable memory is as if
it consists of disjoint registers. one per process.
which the designated process can write, and all
can read. This is very different from the behav
ior of multi reader multi writer atomic registers,
where the]at.est write of any process erases the
values written by others,

Though a scan as above is sufficient for many
applications, one is interested in a scan that re
turns an “instantaneous” view of memory, that
is, having the following stronger property:

1lxnplying thAt far any two operation executions,
a —‘ b orb —“ a.
2InitaiiaIion and safety ar similar to Aricrn, BL-.5

for single-wrAer a ,rnic rgiste, [LSOb]

P2 snapshot: For any two values and
in of S1, potentially coexisted with

or pv1 potentially coexisted with

or both -

Though P1-2 return ‘values that could have been
returned by an instantaneous scan, they do not
imply that scan operations of all processes are
señaiizabe. Moreover, they do not imp]y that
later scans will obtain later snapshot views. The
following property i5 therefore added, to formal
ize, together with P1-2 the idea that all scans
are serializable -

P3 scnn serializoOiLitv: Let and be aixy
las] [aJpair of scans. Let v and v a E -(In),

denote the corresponding values returned by
the two scans- Then either for every i €

a S a, or for every i € {1..n}, a

For the purpes of the applications in this pa
per, it is not required that both scan and write
operations be waiijree 11188, AGS8I. Since every
process’ execution sequence will be an alternating
sequence of scan followed by write, it will actu
ally suffice that in any infinite system execution
there exists a r.ew write operarion infiniteLy of
ten. In the full paper, a forma] treatment of this
property is provided.

2.2 Boimded Implementation
Scannable Memory

The implementation is based on the use of
singl,-wriicr-m,,ltz.reader and twowriier-iwo
reader atomic registers. The scannable mem
ory V will consist of n singIe-wrier-multi-reader
atomic registers 14, 1 C {1..n}, each V written
by process and read by all. In addition, for ev
ery pair of processes i and;, a pair of two-writer
two-rraderatomic registers A11 and A11 are main
tained Bounded constructions of such registers
from weaker primitives are shown in BIS7, L86b.
1L88, BP87, N87, SAG87, LV8S. DS891. Register

is used by to inform j that it has updated
¼, and by j to mark that it has read 14 To
3To save n tht complexity ôfcomnicting multi wñter

rtgistej-s. the arrows technique of [D(]S8S] can be used.

simplify the proofr (and only for this purpose).
an alternating bit field i assumed to be added
to eacb register 14, such that two values written
in consecutive writes by the same process, always
differ.

The main idea behind the implementation of
the scan and write operations is as follows. A
value of 1 in register A11 denotes an “asrow”
pointingfromj to i, avajue of 0 denotes an arrow
from 4 to j. To scan the memory, a process i will
direct all arrows A11 towards other processes, per
form a collecting of values followed by a collecting
of arrows, and repeat these two collections again.
If the values have not changed and no arrow has
been redirected wwa.rds it. process i has collected
a snapshot in its second read of every register.
To write a value, a process j directs the arrows
.4jj towards any possibly-scanning process, noti
fying that it has started a write, then writes the
value. The following aTe the wrte and 3rn pro
cedures of a process i, where we use the notation
j e {I..n} — {i} to denote that indexing is per
formed in some arbitrary order.

procedure write (value);
begin

for j € On) — {i} do Aj 1 od;
V, value;

end ,vrite

Assume that a proce. during the execution of
of the scan operation, has seen no arrows redirected,

and both va]ues being the same. It can thus de
duce that no process whose corresponding value it
returns, could have performed ts following write.
completely before any of the other writes whose
values it returns. The Teason is that if thai. were
the case, the writing process would have turned
the arrow and the scan would have gone through
another round.

function sen
begin

L: forjc{l..n}—{i) doA,,:=O
for j C {l..n} — {i} do V1j]
for j € {1..n} — {i) do V2[ji
for j C {1..n} — {i} do AU] A11

4the two phas of baJe-coliecLing are aiso used to
simplify the proofs.

oct

od;
Dcl;
od;

if (j)(A[j] = iv V1j] V2j])
then goto L fi:

return V2:
end scan;

Though the write operation is waitfree, the scan
operation is of course not, because scans may re
peatedly be forced to return to line L. ilowever.
scans do not wait for other scans, and the above
can only happen on account of repeated execution
ofnew write operations by some process. Thus, it
can be proven that the implementation provides
the type of progress described in the previous sec
tion.

The following i3 the main core of the proofs of
properties P1-3. The notation rljb](ly) for ex
ample, will denote the first read in scan operation
execution of register lj.

il — bLemma 2.1. For any value v in t’ of S;.
Ilpotentially coexisted with

Proof Assume by way of contratEction that the
claim do not hold. There must thus exist sonic
value rjG inrofSj, such that —(Y’---— S;M)

or (i47)(lIc[a)
—

y[a1
— sJ5 By the

assumption of globai time. ___ irn

p]ies sJ 140] which by atomic register ax

ion, B4 of :Lssc:, it cannot be that was re
turned. Thus the second condition must hold.
which by the scan algorithm impLies

(a] , [a’] [hi
WE (1) —.. to1 — r21 (L)

N . -where t’ was returned in r2, (k), a contradic
tion to atomic register axiom ff4 of [L86c]. •

This implies P1, the following proves Thi is met.

[il [bLemma 2.2. For any wo taltscs lj and In

11 of w1”1 potentially coexisled wh or
,-(b]

potentially coexistsd wii or both.

Proof Assume by way of contradiction that the
claim does not hold. There must thus exist two
values v?1 and vJ in of S, such that neither

nor W07, potentially coexisted with the
other. W.Lo.g. it must he that

— (°‘l —

By the scan algorithm. u’(At) — r-fl).

Sinre and not u1 was returued in rr (li;).

Because ic’: —

it must be that
— wf (Aik)

— Also, be

cause was returned in r4kV). it is must be

the case that — rid(11). Again by the

scan algorithm, rLc (t) — rj (Aik). From the
above, by the transitivity of — it follows that

— w](A) — r(Afk).

Since in w?(Ajk) a value of 0 was written. this

value must have been read in rkd (Aik), a contra
diction to the terniir.tion condition of the scar
aigorithm.

Using similar arguments the next two lemas
prove P3. The following lemma establish that
in the two reads of any scan operation executicu.
the value written in the exact same write is re
t ‘:rn ed -

Lemma 2.3. In any scan operation eIccli9]

for any value v3 in VH. ,oJ was read Ui

both rit and r21.

Proof Assume by way of contradiction that the
above does not hold. Since the values read in

(cj frIrik and r2 must be the same, and two con
secutive writes have different toggle bit values, it

must be that for vJ I and returned in r1

and r2 respectiveLy, there must exist a write

operation execution WI[aI such that

— — w[a]

lit a manner similar to that of the former proof,
by the ordering of reads of A1* and 14, it must be
that

[C] (C]

Wk (Aik) — rik ()
[s)]

— (ç) — w (Aik)

v(V.) — r2j(Vi) — rid (Aik).

This implies that the value of U written in
uJ1(Ajk) must have been read in rLd(A ik), a con
tradiction to the scans termination condition. •

Lemma 2.4. Let and SJC] be any pair of
scans. Let and i E {1 ..n}, denote the
corresponding ralues returned by the two scans.
Then either for every i € {1..n}, o a. or for
every i C {l..n), a

Proof Assume by way of contradiction that the
claim do not hoLd. There must thus exist values[a) III] fr] [a’) (5’Jv1 and in v and v1 and in v
sach that a <a’ and b > b’.

Lemma 2-3 implies that the value returned in
both reads of a scan operation execution is of the
same write operation. In the scan operation exe
cution ofy, Since in ri4 (Vi), 4° was returned,
w (½) — r1 (Vi). Since in r2! (/), RI

was not returned, r2(3(Vj) wj(). By the
order of reads in a scan it thus follows that

w:3’) (I,,’)
___..

rl4C) (/)
— r2() —

fly similar arguments, regasding the scan oper&
t-ion execution of:

wJ(vj) —a r1t)()

—

fly transitivity, the combination of these two Se
quences of operation executions contradicts the
antisymrnetry property 0r the partial order
I

3 A Bounded Implementation of a
Shared Coin

The implementation of the weak shared coin is
based on the random walk technique of jAn88].
For lack ofspace we explain only the modification
allowing to bound the size of the counters used to
imupiement the coin. The main idea of the modi
fication used is rather straightforward. The coin
implemented by the random walk is weak, that

is. involves a small probability that procses will
disagree on the coin’s outcome. Thus, one can al
low a process to always decide heads in case its
counter overflows, as long as the probability of
this event can be absorbed into the probability
of processes disagreeing on the outcome.

Let ë =< ci,...,c, > be an array of coun
ters implementing a shared coin. Each counter
q has values in the range {—(m + fl..(rn + 1)}.
written by its corresponding process i. Let
wa&_vake() = c1. The following are thus
the functions of process i, for determining if the
random walk has led to a coin value, and for per
forming a step in the random walk by process i.

function coin_value (e);
begb

1: ifc1Ø{—rn.snl then
return hedsfi;

2: if walk_value() > 6 n then
return heads

3: elseif wa&_value(e) < —‘6 ii then
r€turn taiL,

4: else return,4ndecided ft (1;
end coistvalue;

procedure walLstep;
begin

ifflip= heads then cj c + 1
else c := ej — I 41:

end walk..step;

Lemma 3.1 (Aspnes and HerEby). The
probability that two processes will disagree on the
coins o,itcome is (1— 1)/(26).

Lemma 3.2 (Aspnes and Herlihy). The
expected number of steps until the coin is decided
is(6 + 1)’n2.

Look at a random walk starting from 0 with
barriers at 6 and —b, consisting of the stops:

, C {—I.+I) for all 1.

The following is a bound on the probability that
after ,n steps, none of the barriers was crossed.
Define

Sm Prob [itoi 6]
L ‘=1

Clearly, the desired probability is bounded from
above by Sm. Thus,

Lemma 3.3. Let in = (f(b)&)2,for some June

tion f, then there exists a constant C, such that
Sm yfl;3 (proof omrnited).

Based on the above, one can prove that by
chcicing in to be arge enough, the probability
that the adversary can force processes to disagree
because of the deterministic choice of heads in
case of counter overflow, is negIibIe as formal
ized by the following lemma:

Lemma 3.4. There exists a constant C such that
the probability that in the random walk generated
by a seqience of executions of the algorithm on a
9ICI2 coin ë,

C-b-n
Prob [led nil

v/.

4 The Rounds Strip

In this section a method i5 shown for replacing
the unhoLnded strip of round locations required
by the agorithm of AIISS], by a bounded con
struct. The important observation is that this
algorithm utilizes the rounds strip in a very re
strictfd way. Informally

Observation 1. There exists a constant K such
that at any point in the computation:

1. The actions performed by any process arc
not affected &y values of processes that are
strictly more than K rounds &ehind it.

2. If a process performs round r and cannot
decide, then there is a disagreement about
the value of the shared coin of round r — K.
This implies that when this process proceeds
to round r + 1, it can withdraw its contri
bution to the coin of round r — K, without
affecting the perfonnance of the algorithm.

Thus, a complete picture of the rounds in which
processors are located is not necessary; rather, it
suffices to maintain a compressed’ description of
the distances between these round numbers, and
to save processes’ contributions to the K latest
coins that were flipped. The following subsec
tions present the data structure used to maintain
these distances concurrently.

In the next subsection, a simple game is pre
sented in order to make precise the notion of
“compression” mentioned above. Then, in Sec
tion 4.2, we show how to store and play this game
using a directed weighted graph. In order to sim
phfy the presentation this game is scque,itiaL In
Section 4.3. a data structure that implements the
game on the graph is defined, as well as the pro
cedures for playing the game on this graph con
currelly.

The main problem is how to maintain the rele
vant values using bounded space, given that pro
cesses are asynchronous. For example] it could
be that process will start flipping a coin in a
round r when round r is maximal, and during its
coin flipping other processes will move to higher
rounds, that are a1 unbounded number of coin
1bps ahead.

4.1 The Game

Imagine the changes to the processes’ round num
bers as a game played on the natural numbers
(viewed as an infinite ordered set of points):

Each processor controls a token, placed at a
specific poüfl, initially 0. Denot.e by r the loca
tion of i’s token. Each processor can perform the
step inove_token that places its token at place
r + 1. The game is a (possibly infinite) sequence
of the form mot’c_token1,moveJoken,,

At any stage of the game. the collection of
tokens’ pitions forms a multi-set of integers,
S = ft, r, }. Let the the ordering permuta
tion of S. i.e., S = {r,t; < rf(.)) S . S rqn)}.
Let K he some fixed constant. We now intro
duce two transformations, that, when applied to
the set S produce a “compressed” representation
of it without losing important information.

Shrinking. One is interested in the exact dis
tance between two token if and only if, the dis
tance between them is le than K. The goal
of the first transformation is to shrink’ gaps of
length strictly larger than K to be of size K.
Informally, ShrinkK(S) is a new set S’ in which

remains in its current position, while any
two consecutive tokens (r.(I) and rW(.+ 0) that
are more than K apart, become K apart, while

the distance between tokens that are less than K
apart, relirnin unchanged.

Formally, let S = kr, S T)) Let
gap1 = r(1; — r,,otj;, for I I< n, and define
shrinkk(S) = {r.)

.•
< r(0)}, (for some

parameter K) inductively as follows:

(1) r(l) =

(2) Assume we have defined r’(.), then

J r’+K ifgap,>K

—

j r’,. 1) 9Oj otherwise

Intuitively, any gap” in the sequence, whose
length is strictly larger than K, is “shrunk” to be
of length exactly K.

The shninken token game is conducted by ex
ecuting a shrinkk on the set of token places
afrer each ,nore_token, step, before he next
move_token+1 step.

Normalizing. It is easy to see that after apply
ing shrinkK to any set 5, the distance between
the maximal element and the minimal element. is
at most Kn. To compress the values even further
they axe normaliied, so that all vaiues remain in
a bounded range.

The ordering permutation of S’ = shrinkK(S)
is still r. The transformation normc2lizek(S’)
‘naps each element r eS’ to (r — r,())-- K-n.
That i5. [he maximal token(s) is pitioned at
K. n, and the reM. of the tokens are move be
hind it while maintaining the distances between
tokens. Notice that for any set S all the val
ues in normahzeK(shrinkK(S)) are in the range
ro..K.ni.

The ormaiized shrunken game, is conducted
by applying shrinkx and then TLOrT?Ia1IZEK ro
the set of token places after each move_token,1
step, before the next move_tokenj,+, step.

An important property preserved by the nor
rnalized shrunken game is:

Non-Passive Shrinking. For any two token
pc.siions r and rj in a stare of the game.
st. 0 r

—

r S K if for later token posi
tions, r and ,j, we have = (rt—r)_1,
then there is a rnove_tokeiz between the two
states.

4.2 Representation as a Finite Graph

Given a state S of the above game. we defirte
its dütance gnph C(S). as follows: C is a di
rected weighted graph with nod V = {1..nJ.
corresponding to tokerts, one pe. process edges
E = {(i, j) r r) indicating relative order of
token locations, and weights w(i,j), defined for
any (if) E £ as

w(if)={ —ri if r1 — r,, 5 K
otlierwise

The following properties of the distance graph CL
are implied from the definition of the normalized
shrunken token game:

1. For any i and j in V. at least one of (ii) or
(j, I) is in E: both edges are in E if and only
if the weight of both iso.

2. There is no positive cycle, that is, a cycle
induding an edge (if) with w(i,j) >0.

3. Let P(ij be the set of all directed simpe
paths from ito). For every path C P(i. i)
let W(,,)

= w(u. v). It follows frau,
the above properties that 0 lV(o) Kn.

4. For any two directed paths , and W2 C
P(i, j), either W(,) = 1v(2), or there ex
ists an edge (nv) C pi stich that w(rt.v) =

K.

5. For any land j, such that PCI.)) L define

dist(i, j) = max

and define manpaths(i. j) to be

{ C P(i,j) W(y) = dtst(i. j)}

Then W(o) — r1 for every ç C
max_p at hs(i,f).

Let inc (i, 0) be defined as the following trans
formation of graph C for a given I:

for all j i in V do
if (1 I) C G and

(3k)Uj,i) € max_paths(k,i)) then
w(j, 1) := w(j, i) — 1 fi;

if(i.j) £ G and

o <w(i,j) <K then
w(i, j) w(i, 3) + 1 41;

if’ w(j,i) <0 then
£ E

— {(iO} U {(i,j)};
u,(ij= —wtj.i) B:

od;

Claim 4.1. For a saie 5 rtached from state S
by a token_move of jim token game A, G(S’)
inc(i, G(S)).

4.3 Implementation of the Graph

Property (I) of the distance graph implies that
the weights of all (undirected) edges suffice to
induce the directed gTaph structure. The weights
are maintained in a collection of e [1. nJ of edge
counters, one per each (undirected) edge (e[i] is
not used). Each pair e[j] and ej[i] of counters
in the range {0. .3K— 1}, represents two pointers
(of i and 3. respective]y) to a cycle of sbe 3-K.
By incrementing the counter, a process moves its
pointer a. in clockwise direction (all arithmetics
in this subsection is mothilo 3K.

Assume e1 [j]
— e [] e [1] — e [j] then the edge

is (ij), and w(i, j) € [j] — e [I], and vice versa.
Thus, given two edge counters ei[jj and ea[i1, the
existence of a given directed edge is determined
by the rule

i. j) € G if (eU] — ej [i) < (e[i
— ej[jl)

and the weight w(i,j) of the edge (ii) is (e1[j]—
ej [1]). Note that if e1 [3] = e3 [i] then we have
both edges, (i,j) and (ii) with both weights
equal toO. To keep the weight u’(i. j) in the rasge
{0 K}. a process i does not increment e,cjl un
less it is the trailing pointer. or it leads by less
than K.

Let wakcqrapt. be the procedure that, given
the coliection of al] edge counters, creates a graph
representation, as described above. The following
procedure is thus the (possibly concurrent) imple
mentation of one increment move en the graph G.

41;

(3k)((j, i) £ max_patlis(k, 0)) or
((ii) € G and w(i,j) <K) then
e[j] ej[j] + 1 mod 3K

5 The Algorithm

Based on Observation 1 (SecEon 4), if a pro
cess advanced K rounds ahead of another, it can
erase its contribution to the trailing process’ coin.
A trailing process performing neiLco fri_value us
ing that location will possibly see that process
counter as 0, but this can only cause it to perform
an additional expecl.ed 0(n’) sI.eps (by Lemma
32), before advancing to the next round5,

The round field of aiiy value consists of two
fields: cota and edge_rounters. The coin field
is an array of coin counters cRc C {O.K}.
with an added currcnLroin pointer in the range
{0.K}6. These counters are used to maintain
the local parts of coins corresponding to the [at-.
eat K rounds executed by process z. The counter
to be used for the next coin of process i is de
termined by the function next(current_coirij re
turning currentcoinj mod (K + fl. The edge
counters field is an array of ii edge counters as de
scribed in Subsection 4.3. Initially all the above
are 0. The following is thus the bounded impie
nwntation of the coin flipping and round incre
menting operations for process i.

function next_coin_value(round);
begin

C := make_graph .e.jI..nl):
coini[nezt(currentcoind.;

for 3 1 to n skip i do
if (3.1) € G and w(j, I) < K then

lj1 := coin, [(ctirrfnt_coinJ —

w(j, i) + 1) mod (K + 1)]
else a[j] := 0 Ii od;

return coi..value(e);
end;

function nc_groph(e:F1.n]..e1..&);
begin

G := maka.graph(e1 I.nL.ei.nD;
for j : 1 to ,, skip i do

1’ ((i, 0 € G and

Scvera1 modificaticms that will irnpcove the expected
runnllg Lime here and elsewhere in the algorithm are pos
sible. but are not thtroduced for the sake of sin’.jilicitv.

€J the procedures below, a1] fie]ds are first written
to a ‘ocal variable, on which the trie operation ‘,f the
scannable memory is then performed.

ott;
end;

procedure flip_nextcoin(round);
begin

walkstep (roin4next (c,nentcoinj]);
end

function inc(rouu;
begin

c,irnnt_co,nj := ncrt (currriaLeoin1);
co,n1[nesrt(ctsrreni_eoin1)j 0;
incgraph(ci[1.nj, ..,e,,[1..nfl:

end;

In the above procedure, note that a process
prepar. when advancing to a new round, the
coin counter for flipping the coin in the next
round.

We assume thai. processors start with binary
initial values; however, the protocol can be cx
tended to handle arbitrary initiaL values. Lt K
be 2, the following is thus the consensus algo
rithm for processor i, with initial value vj. Pro
cess is a kaderif for all , (i,j) is in C, that
is having r1 equal to or dominating all other rj.
Process i agrees with process j, if both prefer the
same value ii

write (pref: ti1 rond: :nc(round)])
repeat forever
1: scan;
2: if all who disagree

frail by K and I’m a leader
then decide(prej);

3: elseif leaders agree then
4: write ({prcf: v, round: inc(round)])
5: elseif pref L then
6: write({prcf: 1, round: roundj)

elsef neyt_co,,t.tahj c(round) =

undecided then
7: write(’pnf: L,

else
round:flip_next_co2n (round)J)

& write ([pref: nex_coiitsalue (round),
ro,nd: tnc(round)])

fi fi IZI fi.
end:

lidity, and that it terminates in polynomial ex
pected time. To simplify the proofs, the notion
of a virtual global round is introduced, support
ing the iflasion that a process has an anbounded
and monotonically non-decreasing round num
ber, and that a unique shared coin is associated
with each round.

6.1 Virtual Global Rounds

The serializability property (P3) of scan opera
tion executions, implies that there s some Linear
ordering on the scan operation executions per
formed by all processes. Througbout the proof
let 5a} denote the d’ scan in this ordering, if
the scan is performed by process j, denote it
by sJ. One scan operation execution is said
to be later than another, if it is greater in this
ordering. In the consensus protocol processes al
ternate between performing write and scan oper
ations. This implies that between any two scans.s4aJ ands4+1), there is at most. one wrfte by
any process. Denote by var{a} the value of any
variable var that was read by

With each process i, in the 0h
scan a

virtual global round is associated, denoted by
rozsnd(i,Si}). The definition is by induction on
the ordering among scan operation executions.

Base case. For all 1, round(i, = 0.

Inductive step. Given rondO,51a_1), let

and

max = max4Ep a) round(i, S’-),

old_leaders(S{”-1)=

{j I ronui,S)) = mail

newJeaders(S’}) =

{j f C oldjeaders(S{’J) and
ej[1..n]{”}(j)

Based on the above definitions. define
round(i,S{0}) as follows. If ,rewJeaders(5i))
0, let j € new_leaders(S{a)) and define

6 Proof of Correctness

The foiowing section outlines the proofs that the
algorithm has the properties of consistency. Va-

roiind(iS4)=

Tnax+ 1 iE ncwieaders(S {al
“lax-I- 1 — disi(i, j’) otherwise.

In cace the set ,?euckaders(S{a5) =
, let f E

oldJeaders(S’) and define

round(i,) = mar — dist(t,j).
The above definition is simply that if one of the
leaders in the former scan operation execution
moved, all new processes are ordered relative to
it, and otherwise they are ordered relative to the
old leaders. Note that though the virtual global
round of a process might change even without
its performing an inc operation. it cau only in
crease, that is, the virtual g]obal round is a non-
decreasing function.

In the following subsections, a round means a
virtual global round unless otherwise stated. A
process p is said to be in round r, starting from
the firsi. scan operation execution in which it was
returned as being in r (determined by applying
the above definition), and in all later scan oper
ation executions until it is returned as being in a
round i > r. A round is said to be among the K
largest (for some constant K) starting from the
earliest scan operation execution in which sortie
process is in this round and no other process is
in a round greater by K, and until the first later
scan operation execution for which there is a pro
cess in a round greater by K.

6.2 Consistency and Validity

Though we have attempted to maintain the gen
eral structure of the correctness and complex
ity proofs for the unbounded implementation of
{A1188], by introducing v[rtual global rounds, the
differences between our rounds strip implenienta
tion and the infinite rounds strip used in [Aff88],
force us to modify some of the statements, and
to change most of the proofs.

For simplicity, it is assumed that there are only
two possible input vaiues. where t denotes the
value different from u, for € fO. i}. A procs
p prefrrs v in round r, if for some scan S ‘) it is
the case that round(p,S{a)) = r, and pref,1° =

v. We have

Lemma 6.1. If process p prefers v in round r
and prefers i3 in round r’ > r, then same process

p preferred V in round r”

Proof (Sketch) By tbe algorithm, a process
changes its preference only by executing inc. Let

be the scan performed by p before exe
cuthig this Inc. This can occur only if some
other process, say q, had pref0) = fi, and
that in the graph returned in q has non
negative distance from p. Since rounds are
monotonically non-decreasing, it is the case that
rond(q,S) round(p, S) and the claim
follows.

The above lemma and the code of the ago
ritbm impli the following two lemmas.

Lemma 6.2. If no process prefers 5 at round
when round r is among the 2 largest round5, then
no process pr4ers U at any ro,snd r’ > r,

Lenuna 6.3. If no process prefers V at round
when round r is among theE largest rounds, then
no process is busy in any rtnind r’ > r.

Lemma 6.4. If every process that completed
round r, when round r was among the 2 largest
rounds, preferrcd v in round r, then every non
faulty process decides v by round r -- 1.

Lemma 6.4 implies validity, since if all pro
cesses start with the same input value they all
prefer this vaLue in round 1. Hence alL processes
wi]l halt at round 2.

Lemma 6.5. If any process decides in round r,
then no process will ever be in a round larger than
r + 2.

The above lemma implies that all processes will
execute round r when it is among the 2 largest
rounds. We use this fact to prove that the algo
rithm has the consistency property.

Lemma 6.6. If some process decides in round
lb en ull processes u’iil denSe on the same
by round r + 1.

6.3 Expected Running Time

A process is said to have seLected its preference
for round r detenninzstically, if it executed the

corresponding inc in line 6. Similarly, a proces
sor is said to have selected its preference for round

randomly, if it executed the corresponding inc
in line LU. The following lemma assures that all
processors that select their preference determin
isticaly, select the same value.

Lemma 6.7. If processes p and q dctcnnin
zst?callg selected ,‘ and v’, re.spective?y, as their
preferences for rozi,,d r, when r was amng the 2
largest rounds then v =

Hence. one may talk about the deternilrtistic
value preferred in a certain round. The next
lemma shows that the scheduler is forced to de
cide on the deterministic value of a round before
any process starts flipping a coin for that round.

Lemma 6.8. Jf process p is deterministic in
round r, and process q is randomized in round
r, then p wrote it, preference for round r kfore
q sta rEed to perform flip_nerLcozn.

This lemma implies that decisions in different
rounds are independent events- Thus, the prob
ability of deciding in any round is that of a se
quence of independent Bernou]li trials, with suc
cess probability e, for some constant > U (this
follows from Lemmas 3.1 and 3.4), Hence the
expected number of rounds executed before the
algorithm terminates is constant. As each shared
coin is fLpped in polynomial expected number of
steps (Lemma 3.2), the algorithm terminates in
a polynomial expected number of steps.

Acknowledgements. The authors wish to
thank Ychuda Afek and Michael Merritt for oh
servations regarding scannable memory, made in
the courge of ongoing research. Thanks are also
due to Boy Mhularn for helpful discussions.

References

[ASS] K. Abrahamson, Achieving Consensus
Using a Shared Memory,’ Proc. 7th ACM
5yrnv. on Pr,nc,vies of Ci, ibutd Comput
ng, 18, pp 291-302.

[AGSS T H. Anderson, and t1 G. Gauda, “The
Virtue of Patience: Concurrent Program
ming With an Without ‘aittg7 unph
lished manuscript, Dept. of Computer Science,
Austin, Texas, Jan. 1988.

IAHSS] J. Aspnes, wd M. P. Herlihy, Fast Random
ied Conaenss using Shared Memory,” sub
miLLed to publication.

(ADS89] H. .Attiya, D. Dolev, and N. Shavit, “A
Sounded Probabilistic Shared-Memory Con
sensus A)gorithm. unpubisbed manucñpL

[B88] S. Ben-David. &fl Global Time Asuinpcion
and Semantics for Concurrent Systems,” Pr,e
It?. ACM S,,np. o Prir.cipifs of Distnb
Comp’stng, 1988, pp. 223-23L

[B187] B. Bloom, Constncting two-writer atomic
registers,” Proc. 6th A CM Symp. on PrOzci
pies of D€stribmted Computing, 1987, pp. 249-
259.

BPS,i J. £.Bunm. end ci. L. Pet€non, Ccnstructirr
Muti-Rea(1er Atomic Values from Nan-Atomc
Values,” Pr. 6th 1CM S,mp. on Pnncpiee
o’ Di3rited Comting, 1987. pp. 222-231.

CLLS7I B. Chor, A. IsraeLi, and SI. Li, On Proc,&.c.r
Coordination Using Asynchronous Hardware”
Proc. 6th ACM Syrnp. on Principles of Dis
tributed Computing, 1987, pp. 86-97,

[CMSSS] B. Chor, M. Merritt and OB. Shmoys, Sint
rile ConstantTime Consensus Protocols in Re
a1iste Failure Mtdels, Proc. 4t ACM S,rnp.
on Pritipks of Disfrihttd Computing, 1985.
pp. 152-162.

[DDSS7] D. Dolev, C. Dwork. and I. Sto&xneyer, ‘On
he Minima) Synetronisyn Needed for Dis

Idhuted Consensus,” .1. 4CM 34, 1987, pp.
77-97.

[DGSSS] D. Dolev, E. Cafni, and N. Shavit, ‘Toward a
Non-Atomic Era: L-Exclusion as a Test Case,”
Proc. 20th A natal ACM Symp. on the Thcorij
of Comnling. l9.

DSS9’ D. Dole’. aM N. Shavit, “Bounded Concur
rent Time-Stamp Systans Are Constructible:”
Proc. 212k An,ssi 4CM Smp. os fleor1 of
Computing, 1989 to appear.

[FLPS5J M. J. Fischer, N. A. Lynch, and M. S. Pater
son, “hnpossibility of Distributed Consensus
with One Faulty Procsor.’ J. ACM32, 1985,
pp. 374-382.

H88] IA. P. Heuiihy. WaitFre Implementations o
Concurrent Objects,” Proc. 7:4 ACM S,rr.r.
on Principles of Di.trib,jted Computing. 1985,
pp. 276-290.

IIL83 A. laeli and NI. Li, Bounded Time Stamps,”
Proc. tsth .4nnual JEFF Symp. on Founda
lions of Computer Science, 1987, pp. 371-382.

[L26a1 L. Lainport, On Interprocess Comnnmica
Lion. Part I: Basic Formalism” Distributed
Computing 1. 2*986, 77-85.

[h86b] L. Lamport. “On ffiterprocs Comniunica
lion. Part 1], Algorithm,.” Distril ted Corn
piting 1, £1986. pp. 80-10’.

:L4 L. Lampor’., “The S(atuej Exclusion Problem,
Part I: A Theory of Interprocess Communica
tion,” .1. ACM 33, 21986, pp. 313-326,

Ld L. [.ampor. The Mutual ErLuion Etoblern.
Pan II, Statement and Solutions,” .1. ACM
33, 21986, pp. 327-348,

[LVSS] M. Li, and P. Vitanyi, ‘Uniform Construc
tion for Wait-Free Variables,’ unpublished
manuscript, 1988.

LLAS7I M. G. Loui, and H. Abu-Amara, “Memory Re
quire’ntnts [or Agreement Among Unreliable
Aynthronoos Procs’, A dnnce. is Cnn
ptting Research, vol. 4. 1987. pp. 163—183.

N87 R. Newman-Wolfe, A Protocol far W&t
free Atomic. Multi Reader Shared Variables,”
P,oc. 6g ACM Sini. n Pnnciples cf Li.,
frib,sted Conplin2,1987, pp. 232.248.

tP83J (3. L. Peterson, “Concunent Reading While
Writing,” ACM TOPLAS 5, 1 1983, pp. 46-
55.

[PB87] C. L. Peterson, and J. E. Burns, ‘Concur
rent Reading While Writing II The Multi
Writer Case,” Pr,c. 28i4 A Rnat IEEE 5ym.
on Fondati,ns of Corptter Science, 1987,
pp. 383-392.

P89] 5, PlotIcin. Sticky Sirs and the Univ,aJity
of Coesus.” to appear in Proe. 8tA ACM
Symp. on Pnneiples of Dir,btted Compsl
in2,

(588] R. Schaffer, ‘On the Correcl,s of Atomic
Multi-Writer Registers,” MIT/LOS/TM-3M,
June 1988.

ISAG8TI A. K. Singh, 3. H. Andenott and M. C.
Cottda, “The Elu.ive Atomic Re&ster Revis
ted,’ Proc. Utk .4CM 5rp on Principle, of
Distribted Comp’.tiug. 1987, pp 2—221.

[VASe] P. Vitanvi. and B. Awerbuch, “Atomic Shared
Restei Access by Asynchronous Kasdware,”
Pr6e. !7k Anah4I IEEE on Fonda,
hon. of Compvtr Science. 1986, pp. 233-243.

