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Abstract

Di�racting trees are an e�ective and highly scalable distributed-pa-

rallel technique for shared counting and load balancing. This paper presents

the �rst steady-state combinatorial model and analysis for di�racting

trees, and uses it to answer several critical algorithmic design questions.

Our model is simple and su�ciently high level to overcome many im-

plementation speci�c details, and yet as we will show it is rich enough

to accurately predict empirically observed behaviors. As a result of our

analysis we were able to identify starvation problems in the original di�-

racting tree algorithm and modify it to a create a more stable version. We

are also able to identify the range in which the di�racting tree performs

most e�ciently, and the ranges in which its performance degrades. We

believe our model and modeling approach open the way to steady-state

analysis of other distributed-parallel structures such as counting networks

and elimination trees.

1 Introduction

Di�racting trees [19] are among the most e�ective and scalable distributed-

parallel techniques for shared counting, with a variety of applications to load

balancing and concurrent data structure design. Di�racting trees are a special

form of the counting networks of Aspnes, Herlihy, and Shavit [4]. They are

constructed from simple one-input two-output computing elements called bal-

ancers that are connected to one another by wires to form a balanced binary
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Figure 1: A Simple Counting Tree

tree. Tokens (processes) arrive on the balancer's input wire at arbitrary times,

and are output on its output wires. Intuitively one may think of a balancer as a

toggle mechanism (a bit that is repeatedly complemented), that given a stream

of input tokens, repeatedly sends one token to the left output wire and one to

the right, e�ectively balancing the number of tokens that have been output. To

illustrate this property, consider an execution in which tokens traverse the tree

sequentially, one completely after the other. Figure 1 shows such an execution

on a tree of width 4. As can be seen, the tree moves input tokens to output

wires in increasing order modulo 4. Trees of balancers having this property can

easily be adapted to count the total number of tokens that have entered the

network. Counting is done by adding a \local counter" to each output wire

i, so that tokens coming out of that wire are consecutively assigned numbers

i; i+ 4; i+ (4 � 2) : : :

However, under high loads, the toggle bits, especially the one at the root

balancer of the tree, will be hot-spots su�ering from contention and sequential

bottlenecks that are as bad as that of a centralized counter implementation.

Di�racting trees overcome the problem by having a \prism" mechanism in front

of the toggle bit of every balancer, allowing independent pairs of tokens to be

\di�racted" in separate memory locations in a coordinated manner one to the

left and one to the right. A coordinated pair of processors can leave the balancer

without either of them having to toggle the shared bit, since each pair of toggles

leaves the bit in the same state. The processors need simply to agree between

themselves which one would have gotten the "0" bit, and which the "1". The

di�raction mechanism uses randomization to ensure high collision/di�raction

rates on the prism, and the tree structure guarantees correctness of the output

values. Given appropriate hardware primitives, di�racting trees can be imple-

mented in a lock-free manner. In fact, assuming a hardware Fetch&Complement

operation allows making di�racting trees wait-free [12], that is, for each incre-
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ment operation termination is guaranteed in a bounded number of steps even if

all other processors fail.

When implementing di�racting trees [13], the following type of questions

are of critical importance. Given a typical system with P processors that cycle

repeatedly between performing an increment on a di�racting tree based counter

and performing some amount of work , what are the optimal choices of: (a)

the tree \size" (captured by its depth d) relative to the number of processors

P . If the tree is too small, it will be overloaded, bringing contention and less

parallelism than possible. If it is too deep, the counters at its leaves will not be

fully utilized, achieving less than optimal throughput. (b) The prism widths,

quanti�ed by L, the total number of prism locations in the balancers at a given

level of the tree. This parameter a�ects the chances of a successful pairing-

o�. If it is too large, then processors will tend to miss each other, failing to

pair-o� and causing contention on the toggle bit. If it is too small, contention

and sequential bottlenecking will occur as too many processors will be trying to

access the same prism locations at the same time.

Finally, even with an optimal choice of tree parameters for a certain maxi-

mum number of processors P , there is a wide range of intermediate concurrency

levels in which it is unclear what the rate of di�raction will be and hence per-

formance is hard to predict.

In this paper we present the �rst steady-state combinatorial analysis for di�-

racting trees, and use it to explain their behavior patterns and answer critical

design questions such as the ones posed above. Our model is simple and su�-

ciently high level to overcome many implementation speci�c details, and yet as

we will show it is rich enough to accurately predict empirically observed behav-

iors. As a result of our analysis we were able to identify starvation problems

in the algorithm of [19] and thus introduce a more stable di�racting balancer

algorithm (see section 2.3).

We were also able to identify the range (as a function of P , work, d and L)

in which the di�racting tree performs most e�ciently, and the ranges in which

its performance degrades. We show that when

P

dL

= O(1) and L � 2

d

, the

throughput of the system is optimal, and contention is low. With less processors,

di�raction probability decreases causing a rise in latency which reaches its peak

when P = d

p

L. We further derive performance bounds for very large and very

small values of P .

In the �nal section of this paper we provide a collection of experimental

benchmarks that show how accurately our model �ts with actual di�racting

tree performance.

The closest modeling work related to ours is the amortized contention model

of Dwork, Herlihy, and Waarts [9] used in the analysis of counting networks

[9] and of the randomized counting networks by Aiello, Venkatesan, Yung [3].
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However, unlike our work, that analysis is directed at modeling and quantifying

contention in the face of a worst case adversary, not the steady state behaviors

of the algorithms in normal (i.e. common case) executions.

This paper is organized as follows: Section 2 gives a brief review of tree based

counting-networks and contains both the original di�racting tree algorithm, as

well as the new code developed based on the analysis. Section 3 introduces

the combinatorial model and analyzes the performance of di�racting trees in

the steady-state. In Section 4 we present empirical evidence collected through

benchmarks on a simulated shared memory machine to support the analysis and

Section 5 concludes this paper and lists areas of further research.

2 Counting Trees and Di�raction

Di�racting trees [19] are counting trees, a special form of the counting network

data structures introduced by Aspnes, Herlihy and Shavit [5]. They are binary

trees of nodes called balancers. A balancer is a computing element with one

input wire and two output wires. Tokens arrive on the balancer's input wire

at arbitrary times, and are output on its output wires. Intuitively one may

think of a balancer as a toggle mechanism, that given a stream of input tokens,

repeatedly sends one token to the left output wire and one to the right, e�ectively

balancing the output on each wire. We denote by x the number of input tokens

ever received on the balancer's input wire, and by y

i

; i 2 f0; 1g the number of

tokens ever output on its ith output wire. Given any �nite number of input

tokens x, it is guaranteed that within a �nite amount of time, the balancer will

reach a quiescent state, that is, one in which the sets of input and output tokens

are the same. In any quiescent state, y

0

= dx=2e and y

1

= bx=2c. We will abuse

this notation and use y

i

both as the name of the ith output wire and as the

count of the number of tokens output on that wire.

The di�racting tree is de�ned as follows. Let k be a power of two, and let

us de�ne the counting tree Binary[2k] inductively. When k is equal to 1, the

Binary[2k] network consists of a single balancer with output wires y

0

and y

1

.

For k > 1, we construct the Binary[2k] tree from two Binary[k] trees and one

additional balancer. We make the input wire x of the single balancer the root of

the tree and connect each of its output wires to the input wire of a tree of width

k. We then re-designate output wires y

0

; y

1

; : : : ; y

k�1

of the tree extending from

the 0 output wire as the even output wires y

0

; y

2

; : : : ; y

2k�2

of Binary[2k] and

the wires y

0

; y

1

; : : : ; y

k�1

of the tree extending from the balancer's 1 output wire

as the odd output wires y

1

; y

3

; : : : ; y

2k�1

.

One can extend the notion of quiescence to trees in the natural way, and

de�ne a counting tree of width w as a of tree balancers, Binary[w], with outputs

y

0

; ::; y

w�1

that satisfy the following step property:
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type balancer is

begin

lock: boolean

toggle: boolean

next: array [0..1] of ptr to balancer

end

globals

Width: integer

Root : ptr to root of Binary[width] tree

1 function typical_balancer(b: ptr to balancer) : ptr to balancer

2 begin

3 lock(b->lock)

4 i := b->toggle

5 b->toggle := not(i)

6 unlock(b->lock)

7 return b->next[i]

8 end

1 function fetch&incr(): integer

2 begin

3 b:= Root

4 while not leaf(b)

5 b := typical_balancer(b)

6 endwhile

7 i := increment_counter_at_leaf(b)

8 return i * Width + number_of_leaf(b)

9 end

Figure 2: A Shared-Memory tree-based counter implementation

In any quiescent state, 0 � y

i

� y

j

� 1 for any i < j.

To illustrate this property, consider an execution in which tokens traverse

the tree sequentially, one completely after the other. Figure 1 shows such an

execution on a Binary[4] counting tree, the tree moves input tokens to output

wires in increasing order modulow. Trees having this property are called count-

ing trees because they can easily be adapted to count the total number of tokens

that have entered the network. Counting is done by adding a \local counter"

to each output wire i, so that tokens coming out of that wire are consecutively

assigned numbers i; i +w; : : : ; i+ (y

i

� 1)w.

On a shared memory multiprocessor, one can implement a balancing tree

as a shared data structure, where balancers are records, and wires are pointers
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from one record to another. Each of the machine's asynchronous processors can

run a program that repeatedly traverses the data structure from the root input

pointer to some output pointer, each time shepherding a new token through the

network. Pseudo-code for this implementation appears in Figure 2. We do not

assume an atomic fetch-and-complement operation, instead, we use a lock to

avoid race conditions on the balancer's toggle bit.

Di�racting trees are counting trees whose balancers are of a novel type called

di�racting balancers. One could easily implement a balancer using a single

toggle bit. Each processor would toggle the bit inside the balancer, and ac-

cordingly decide on which wire to exit. However, if many tokens attempted

to pass through the same balancer concurrently, the toggle bit would quickly

become a hot-spot. Even if one applied contention reduction techniques such

as exponential back-o�, the toggle bit would still form a sequential bottleneck.

One can overcome this sequential bottleneck based on the following observation:

If an even number of tokens passes through a balancer, they are

evenly balanced left and right, yet the value of the toggle bit is un-

changed.

Thus, one can allow pairs of colliding tokens to \pair-o�" and coordinate among

themselves which is di�racted \right" and which di�racted \left". Then they

could both leave the balancer without either of them ever having to touch the

toggle bit. By performing the collision/coordination decisions in separate lo-

cations instead of a global toggle bit, one can increase parallelism and lower

contention. However, to guarantee good performance one must make sure that

many collisions occur, not an obvious task given the asynchrony in the system.

To achieve this goal, the implementation of the di�racting balancer is based

on adding a special prism array \in front" of the toggle bit in every balancer.

When a token (processor) P enters the balancer, it �rst selects a location j in

prism uniformly at random. P tries to \collide" with the previous processor

that selected j, and if successful they leave the balancer one to the left and the

other to the right. Otherwise, P waits (\spins") for a �xed time spin to see

whether some other processor R will enter and collide with it by selecting the

same location j in prism. If no collision occurs within time spin, P toggles the

shared bit and leaves the balancer accordingly.

2.1 The Original Di�racting Tree Implementation

Figure 3 gives the data structure for di�racting balancers due to Shavit and

Zemach [20]. Each balancer record consists of a toggle bit (with accompanying

lock) and a prism array. The spin variable holds the amount of a time a pro-

cessor should delay at this node while waiting to be di�racted, and next[0..1]
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type balancer is

size: integer

spin: integer

prism: array [1..size] of integer

lock: boolean

toggle: boolean

next: array [0..1] of ptr to balancer

endtype

location: global array[1..NUMPROCS] of ptr to balancer

Figure 3: Di�racting balancer data structure

are the two balancers (or counters) which are descendants of this node of the

tree. An additional global location[1::n] array has an element per processor

p 2 f1 : : :ng (per processor, not per token), holding the address of the balancer

which p is currently traversing. The data structures of a di�racting tree of width

4 are depicted graphically in Figure 4.

Figure 5 gives the implementation of a di�racting tree balancer that was

used in [19].

� MYID { The ID of the processor executing the code.

� random(n) { Returns an integer number in the range [0; n� 1].

� SWAP(a,x) { Atomically writes x to address a, and returns the previous

value there.

� C&S(a,p,n) { Atomically compares the value at address a to p, if they

match, writes n to a and returns TRUE, otherwise returns FALSE.

� T&T&S(l) { Performs a Test&Test&Set operation [18] on the lock, l, re-

turns TRUE if the lock was captured.

The counters at the tree's leaves are implemented using a hardware F&I

operation. The code translates into the following sequence of operations per-

formed by a processor, p, shepherding a token through a balancer, b

0

(see also

accompanying illustration in Figure 4). First, p announces its arrival at b

0

, by

writing b

0

to location[p] (line 3). It then swaps its own PID for the one writ-

ten in a randomly chosen location in the prism array (line 4-5). Assuming it

has read the PID of an existing processor (e.g. r), p attempts to collide with it.

The collision itself is accomplished by performing two compare-and-swap oper-

ations. The �rst removes p from the set of processors waiting at this balancer

(thus assuring no other processor will collide with it), the second removes the
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Figure 4: A di�racting tree of width 4

other processor, completing the di�raction, and allowing p to be di�racted to

the next[0] balancer (lines 6-8). If the �rst compare-and-swap fails, it means

that some other processor has already managed to collide with p, so p is di�-

racted to the next[1] balancer (line 10). If the �rst succeeds but the second

compare-and-swap fails, it means that the processor with whom p was trying to

collide is no longer available, (e.g. if p were trying to collide with q), in which

case it goes on to the second part of the algorithm (line 9).

This part starts with p giving some other processor, who may have read its

ID from prism, time to di�ract it. This is done by repeatedly reading the value

of location[p] spin times (lines 12-15). Unless di�racted, p now attempts to

acquire the lock on the toggle bit (line 16). If successful, it �rst removes itself

from the set of waiting processors (line 17) and then toggles the bit and exits

the balancer (lines 18-21). If it could not remove itself from the set, it follows

that some other processor already collided with p, and it exits the balancer,

being di�racted to next[1] (lines 23-24).

2.2 The Critical Parameters

As a rule of thumb, when a large number of processors concurrently enter the

balancer, the chances for successful collisions in prism are high, and contention

on the toggle bit is unlikely. When there are few processors, each will spin a

short while, reach for the toggle bit and be o�, since all \spinning" is done on
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1 function do-node(node: ptr to balancer) returns ptr to balancer

2 begin

3 location[MYID] = node

4 rand_place = random(node.size)

5 his_id = SWAP(node.prism[rand_place],MYID)

6 if C&S(location[MYID],node,EMPTY) then

7 if C&S(location[his_id],node,EMPTY) then

8 return node.next[0]

9 else location[MYID] = node

10 else return node.next[1]

11 repeat forever

12 repeat node.spin times

13 if location[MYID] != node

14 return node.next[1]

15 endrepeat

16 if T&T&S(node.lock) then

17 if C&S(location[MYID],node,EMPTY) then

18 bit_val = node.toggle_bit

19 node.toggle_bit = 1 - bit_val

20 node.lock = OPEN

21 return node.next[bit_val]

22 else

23 node.lock = OPEN

24 return node.next[1]

25 endif

26 endif

27 endrepeat

28 end

Figure 5: Original version of di�raction node algorithm
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a locally cached copy of a memory location, it incurs no overhead. However,

there is a large range of concurrency levels where there are moderate numbers

of processors, and yet it is far from clear what level of di�raction is achieved.

Furthermore, it was observed by [19, 21] that too many concurrent processors

can also cause performance degradation.

This brings us to the questions most often asked by practitioners imple-

menting di�racting trees [13]. Given a system with P processors that cycle

repeatedly between performing an increment on a di�racting tree based counter

and performing some amount of work , what are the optimal choices of:

1. d | The depth, and hence the \size" of the tree (the width is 2

d

). If

the tree is too small, it will be overloaded, bringing contention and less

parallelism than possible. If it is too deep, the counters at its leaves will

not be fully utilized, achieving less than optimal throughput.

2. L | The total number of prism locations at a given level of the tree. At

level i there are 2

i

prisms of size L=2

i

. This parameter a�ects the chances

of a successful pairing-o�. If it is too large, then processors will tend to

miss each other, failing to pair-o� and causing contention on the toggle

bit. If it is too small, contention and sequential bottlenecking will occur

as too many processors will be trying to access the same prism locations

at the same time.

It is these and similar questions that our work attempts to address.

2.3 The New Algorithm

We begin by modifying the di�racting tree algorithm presented in Section 2.1.

Touitou [22] reports the following when running a benchmark on the proto-

type MIT Alewife machine [2]. In his benchmark, processors repeatedly attempt

to increment a di�racting tree based counter until some �xed number of incre-

ments has been performed. During su�ciently long runs, some processors end

up performing all the increments, while all others remain \starving" in the tree.

He conjectured that this is caused by processors that were not di�racted and

queue up in front of the lock on a toggle bit. The solution was to add a second

layer prism between the �rst layer and the toggle bit, a method which empiri-

cally exhibits more stability at the price of slightly increased latency [21]. The

combinatorial model of the next section shows that this form of starvation is an

inherent phenomenon in the old code due to the fact that processors that do

not di�ract can leave the balancer only by toggling the shared bit, that is, by

passing through a sequential bottleneck. Our analysis shows that in su�ciently

long runs one will reach a permanent global state in which processors are piled

10



1 function do-node(node: ptr to balancer) returns ptr to balancer

2 begin

3 location[MYID] = node

4 forever /* Moved up to encompass entire algorithm */

5 rand_place = random(node.size)

6 his_id = SWAP(node.prism[rand_place],MYID)

7 if C&S(location[MYID],node,EMPTY) then

8 if C&S(location[his_id],node,EMPTY) then

9 return node.next[0]

10 else location[MYID] = node

11 else return node.next[1]

12 repeat node.spin times

13 if location[MYID] != node then

/* diffracted? probably a high load better to spin longer */

14 if node.spin < MAXSPIN then

15 node.spin = node.spin * 2

16 endif

17 return node.next[1]

18 endif

19 endrepeat

20 if T&T&S(node.lock) then

21 if C&S(location[MYID],node,EMPTY) then

22 bit_val = node.toggle_bit

23 node.toggle_bit = 1 - bit_val

24 node.lock = OPEN

/* toggled? probably a low load better to spin less */

25 if node.spin > 1 then

26 node.spin = node.spin / 2

27 endif

28 return node.next[bit_val]

29 else

30 node.lock = OPEN

31 return node.next[1]

32 endif

33 endif

34 endfor

35 end

Figure 6: New version of di�raction node algorithm
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up at the toggle bits. This would also be true of the method of [21] unless many

levels of prisms a re used, resulting in poor latency.

The improved algorithm presented in this article solves this problem by

allowing processors to repeatedly return to attempt di�ractions on the prism

after failing to acquire the toggle bit. It is a dynamic form of the method

used by [21], but does not su�er from the same latency increase since it always

uses the \right" number of prisms. Figure 6 shows the new algorithm. The

forever loop has been moved up to encompass the entire di�raction attempt

(Instead of being between lines 11 and 12 it is now on line 4). Now if a processor

could not di�ract the processor whose ID it has read from prism, and was not

subsequently di�racted by a processor who read its ID, and could not acquire

the lock on the toggle bit, then it will go on to make a fresh di�raction attempt,

starting the process anew.

The method suggested in [19] to overcome starvation was to allow proces-

sors waiting for the toggle bit to rewrite their IDs to prism so that later ar-

riving processors might di�ract them (this is equivalent to adding the code

node.prism[rand place]=MYID between lines 26 and 27 of Figure 5). This of-

fers only a partial remedy, since if many processors wait for the toggle bit, no

di�ractions occur even if the processors' PIDs are written in the prism array. In

any su�ciently long run some processors will get stuck, forever waiting for the

toggle bit. In the next section we prove that the new algorithm, when run with

the optimal tree of depth d and the optimal prism width L/2

i

, does not su�er

from this starvation phenomenon.

Figure 6 also gives the code for the dynamic update of the spin variable

(lines 14-16 and 25-27), a performance enhancement technique that was used

both in [19] and here. The spin variable serves both as a delay in which a

processor may be di�racted and as a method to exponentially back-o� from the

toggle bit. Spin time is doubled when a processor is di�racted and halved if

it captures the lock on the toggle bit. The reasoning behind the update policy

is that if a processor is di�racted, it implies there are many other processors

in the system, if it has captured the toggle bit, there are probably only a few

active processors. With many processors, waiting avoids overloading the toggle

bit and has a good chance of yielding a di�raction, with only a few processors,

waiting for a di�raction is a waste of time { better to go for the toggle bit

directly. MAXSPIN is a system dependent constant which de�nes the maximum

amount of time a processor might spin.

The method used in [20] to prove correctness is based on analysis of the

di�erent values taken by the elements of the location array during the exe-

cution of the algorithm. Those methods carry over to the new algorithm with

only slight modi�cations. We will show this for the most important lemma

of [20], the rest of the proof can be deduced in a similar manner. The proof

is constructed around the pairing of canceling tokens, those that leave the bal-
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ancer through the return node.next[0] of line 9, and canceled tokens, those

that leave the balancer through the return node.next[1] of lines 11, 17 or

31. Since all other tokens go through the toggle bit, showing that the num-

ber of canceled tokens is equal to the number of canceling tokens is enough to

prove that a balance is maintained on the balancer's output wires. We denote

by C&S

p

(location[r]; b; EMPTY) = true , a successful compare-and-swap oper-

ation performed by processor p on location[r], changing its value from b to

EMPTY. Similarly, write

q

(location[r] := b) , denotes the operation of writing b

to location[r] by q.

Lemma 2.1 Given processors q 6= r, if q performs C&S

q

(location[r]; b; EMPTY) =

true , then the token currently shepherded by r through b is a canceled token.

Proof: Lemmas 5.8 and 5.10 of [20] prove that if q's C&S operation, on r's

element of location was successful, then r was in fact shepherding a token

though b at that same time. This token is performing operations in the code

somewhere between lines 4 and 34. In order for r's token to leave through one of

the returns on lines 9 or 28, it must perform a C&S

r

(location[r]; b; EMPTY) =

true operation. This can't happen since the success of q's operation changed

location[r] to empty. Since r can only shepherd one token at a time, and

only r can perform a write

r

(location[r] := b) , it follows that all subse-

quent C&S

r

(location[r]; b; EMPTY) operations must fail. If r's token can't

leave through lines 9 or 28, it is a canceled token.

3 The Combinatorial Model

We use the following steady-state combinatorial process to model the perfor-

mance of di�racting trees in the shared memory environment.

The di�racting tree has depth d. The root, which is at level 0, is a balancer

with a prism array of L cells, and one toggle bit. Level i < d has 2

i

balancers,

each with a prism of dL2

�i

e cells, and one toggle. Each leaf of the tree has one

counter.

The combinatorial process works as follows: There are P processors. Each

processor proceeds from root to leaf via a sequence of balancers on increasing

levels. Once a processor reaches a leaf (which is a counter, on which a fast

operation such as a hardware fetch&increment is performed) it proceeds to a

`working state'. It returns to the root of the tree after r steps, where r is

distributed geometrically G(

1

work

), (i.e., the expected time that a process stays

in the `work' state is work). Our model assumes the empirically veri�ed fact

that, under equal loads, an operation on a counter is at least as fast as the

13



sequence of operations performed when di�racting on a prism. This is true, so

long as contention on the counter is not too great.

Each step has two parts. In the �rst part each processor currently at a

balancer chooses a random cell of the prism. If two processors choose the same

prism cell, both move to the next level. If only one chooses that cell, it stays at

the same level. If more than two choose the same prism cell simultaneously, two

move to the next level, the rest stay at their current balancer. In the second

part of the step, each processor that it still in that balancer tries to reach the

toggle. If at least one processor reaches the toggle, one processor moves to the

next balancer, and the toggle changes its state. Each \step" in our model is a

simpli�cation of the actual algorithm, since it represents sequences of operations

that in practice vary in their execution time in di�erent balancers. Also, we

ignore interference between processors, if three processors pick the same location

in the prism, we assume two will be di�racted, in reality, the third might interfere

with the di�raction of the other two. Another simpli�cation is the assumption

that a processor appears in only one place in the prism, this is inaccurate. Since

IDs are only erased from the prism as a result of swapping, it is possible for

some processor's ID to be written in many places in the prism. Nevertheless, we

will show the model is rich enough to accurately predict empirically observed

behavior.

3.1 Analysis

Label the nodes of the tree 1; :::; 2

d+1

� 1 in a breadth �rst search order, i.e.

the 2

i

nodes at level i have labels 2

i

; :::; 2

i+1

� 1. Let X

t

j

denote the number

of processors at node j at time t, let W

t

denote the number of processors in

the `work' state at time t, and let �

t

j

denote the state of the toggle of balancer

j at time t. Let

�

X

t

= (X

t

1

; :::; X

t

2

d+1

�1

), and

�

�

t

= (�

t

1

; :::; �

t

2

d+1

�1

). Clearly

f(

�

X

t

;W

t

;

�

�

t

); j t � 1g de�nes a Markov chain. This chain is �nite, aperiodic,

and irreducible, thus it has a stationary distribution. Our goal is to characterize

the performance of the di�racting tree process in the stationary distribution as

a function of P , L, d, and work.

Let Z

t

i

denote the number of processors moving from level i < d to level i+1

at step t. Since in the stationary distribution E[X

t

j

] = E[X

t+1

j

], the expected

number of processors moving into a balancer in a given step equals the expected

number of processors moving out of that balancer. Thus, in the steady state

E[Z

t

i

] = E[Z

t

i+1

] = E[Z];

where E[Z] denote the expected number of processors moving from any one

level of the tree to the next level.
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The value we are interested in is E[T ], the expected number of steps, in the

steady state, from the time a processor enters the root of the tree until the time

it returns to the root. We �rst prove a relation between E[T ] and E[Z].

Lemma 3.1

E[T ] =

P

E[Z]

:

Proof: Let Q

i

be the probability that in the stationary distribution a given

processor at level i proceeds to level i+ 1 of the tree at a given step. Let E[Y

i

]

denote the expected number of processor at level i. Since E[Y

i

]Q

i

= E[Z],

Q

i

=

E[Z]

E[Y

i

]

. Let E[W ] denote the expected number of processors at the `work'

state in the stationary distribution, then E[Z] =

E[W ]

work

: Thus,

E[T ] = work+

d

X

i=1

1

Q

i

=

E[W ]

E[Z]

+

P � E[W ]

E[Z]

=

P

E[Z]

:

We do not have a full characterization of the stationary distribution, but we

can obtain a su�ciently good estimate for E[Z]. To simplify the presentation we

focus on the case in which work = 1, which was also studied in the simulations.

Theorem 3.2 Let � =

P

dL

. In the steady state distribution

E[Z] � (1� o(1))2L

�

2

�

2

+ 2�+ 1

:

Proof: Since we are interested in a lower bound for E[Z] we can ignore the

contribution of the toggles. To approximate the performance of the discrete

time Markov chain we study a related continuous time, density dependent jump

Markov chain (see [15, Chapers 7-8] or [10, Chapter 11] for detailed discussion

of density dependent jump Markov processes and the convergence theorem we

use here).

Processors in the continuous Markov process execute the same steps as in

the discrete process. The only di�erence is that in the continuous process the

time interval between any two actions of a processor is a random variable ex-

ponentially distributed with expectation 1 (instead of deterministically 1 in the

discrete process).

Without loss of generality we can assume that no two events occur simul-

taneously in the continuous process. We need however to carefully de�ne the
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toggle

prism

k(pj) = 2k(j)

p(j) j

k(j)

k(p(j))mp(j)(t)
k(j)mj(t)

k(j)mj(t)

k(p(j))mp(j)(t)

Figure 7: A model of processor advancement in a di�racting tree

di�raction process so that the continuous process accurately models the discrete

one. When processor p

i

is active, it chooses a prism cell and stays there for a

random interval of time, till the next time it is active. If the prism cell has no

di�raction pair in it at time t we say that the cell is `free'. If p

i

chose a free

cell that already has another processor that chose that cell after it became free

the two processors are matched, and the cell becomes `occupied'. After another

random time interval the two matched processors are di�racted to the next level

of the tree, and the cell becomes free again. Note that processors that chose

a cell when it was occupied are not di�racted even if they stay there after it

becomes free.

Let ` = 2

d+1

� 1. The state of the continuous process at time t is de�ned

by three vectors �s(t) = (s

1

(t); :::; s

`

(t)), �m(t) = (m

1

(t); :::;m

`

(t)), and �x(t) =

(x

1

(t); :::; x

`

(t)). Where s

i

(t) is the fraction of prism cells at node i which are

free and have one new processor (a processor that arrived after it became free)

at time t, m

i

(t) is the fraction of occupied cells at node i at time t, and x

i

is

the number of processors at node i at time t divided by the number of prism

cells at that node.

We formulate a system of di�erential equations that measures the expected

change in the system's state in a short interval of time. We denote the parent

of node j by p(j).

For j = 1; :::; `:

8

>

<

>

:

dx

j

dt

= 2m

p(i)

� 2m

j

ds

j

dt

= (x

j

� 2m

j

+ 2m

p(j)

)(1 � 2s

j

�m

j

)� s

j

dm

j

dt

= (x

j

� 2m

j

+ 2m

p(j)

)s

j

�m

j

(1)
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To see the relation between the above system and the Markov process note

that in the continuous model the expected number of events in interval dt among

g processors is gdt. Let k(j) denote the number of prism cells at node j, then

the change in x

j

(t) in interval dt is given by

dx

j

(t) =

1

k(j)

(k(p(j))m

p(j)

(t)dt� 2m

j

(t)k(j)dt):

Since k(p(i)) = 2k(i) we get the �rst di�erential equation above (see illustration

in Figure 7). We get the second equation by observing that a total of k(j)(x

j

(t)�

2m

j

(t) + 2m

p(j)

(t)) processors will choose a cell in node j when they become

active. k(j)(x

j

(t) � 2m

j

(t) + 2m

p(j)

(t))dt processors become active in time

interval dt. Each has probability (1 � s

j

(t) � m

j

(t)) to pick a free cell with

no new processors, and probability s

j

to transform a free cell with one new

processor to an occupied processor. The last term counts free cells with one

new processors that loose that processor. Similar derivations give the third

relation.

Consider �rst a deterministic process controlled by the above set of di�er-

ential equations. A necessary and su�cient condition for (�s; �m; �x) to be a �xed

point of that process is that for all i

dx

i

dt

= 0,

ds

i

dt

= 0, and

dm

i

dt

= 0. The

solution of the above system gives:

m

j

=

�

2

�

2

+ 2�+ 1

:

The density dependent jump Markov process satis�es the conditions of Kurtz's

convergence theorem (see Theorem 8.1 in [15]). Thus, as L; d!1 the behavior

of the Markov process converges to that of the deterministic process.

We can now use the above analysis to characterize the performance of the

di�racting tree. We need however to add another bound which we ignored

above, namely that there are exactly 2

d

counters at the leaves of the tree.

Consider the case in which

P

dL

!1. In that case E[Z] =MIN [L�o(L); 2

d

],

and E[T ] = MAX[

P

L

; P2

�d

]. If L < 2

d

then congestion in the prism cells

degrades the performance, if L > 2

d

the main congestion is in the counters. In

both cases the performance is less than optimal.

If P satis�es

P

dL

= O(1), then E[Z] =MIN [O(L); 2

d

]. If L � 2

d

, then E[Z]

is linear in L, and E[T ] = O(P=L) = O(d), which is optimal up to a constant

factor.

As P gets smaller,

P

dL

! 0, the di�racting probability decreases, and the

performance degrades. If P = 
(d

p

L), E[Z] = 
(

P

2

d

2

L

) �

P

d

p

L

, and E[T ] =

O(d

p

L). If P = o(d

p

L), most of the contribution is from the toggles. As long
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as P > d at least one processor moves forward in each level, E[Z] � 1, and

E[T ] � P . If P < d, E[T ] � d.

Note that when P = O(dL), which is the interesting range, the expected

number of processors trying to access a prism cell simultaneously is O(1), and

with high probability no more than logL processors try to reach the same cell

simultaneously. These bounds justify our de�nition of a step, and conform

with the experimental results showing that di�racting trees have low memory

contention.

The starvation observed in experimenting with the old algorithm can be

easily understood when it is analyzed in our model. We can show that in each

step in each balancer a constant fraction of the processors reach the toggle, and

since in that algorithm processors do not return to the prism to try and di�ract

again, and given that the toggle processes only one processor at a time, there is

congestion built up in the toggle queue.

Finally we comment about adapting the di�racting tree to various ratios

between the speed of accessing a prism cell and the speed of the counter. If the

counter is ` times faster than a di�racting process, we can trim the di�racting

tree so that a prism of size ` feeds one counter. On the other hand if the speed

of a di�raction or a toggle step is ` times faster than the counter, each leaf of the

full di�racting tree should feed a binary tree of depth dlog

2

`e with ` counters

in the leaves.

4 Experimental Results

In order to verify the validity of our theoretical analysis we ran a set of bench-

marks on a simulated distributed-shared-memory multiprocessor similar to the

MIT Alewife machine [2] developed by Agarwal, et. al. Alewife is a large-scale

multiprocessor that supports cache-coherent distributed shared memory and

user-level message-passing. The nodes communicate via messages on a two-

dimensional mesh network. A Communication and Memory Management Unit

on each node holds the cache tags and implements the memory coherence proto-

col by synthesizing messages to other nodes. Our experiments make use of the

shared memory interface only. To simulate the Alewife we used Proteus

1

, a mul-

tiprocessor simulator developed by Brewer, Dellarocas, Colbrook and Weihl [7].

Proteus simulates parallel code by multiplexing several parallel threads on a

single CPU. Each thread runs on its own virtual CPU with accompanying local

memory, cache and communications hardware, keeping track of how much time

is spent using each component. In order to facilitate fast simulations, Proteus

does not do complete hardware simulations. Instead, operations which are local

1

Version 3.00, dated February 18, 1993.
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global

integer work /* the work parameter */

integer sum_latency, latencyN, list_place

diffracting_tree counter

real avg_latency[], total_latency

per processor code {

local

integer latency, start, end, i, j, randw

forever

start = current_time()

i = fetch_and_increment(counter)

end = current_time()

atomically {

latency = end - start

sum_latency = sum_latency + latency

latencyN = latencyN + 1

if latencyN == 1000 then

avg_latency[list_place] =

sum_latency / latencyN

list_place = list_place + 1

sum_latency = 0

latencyN = 0

endif

}

randw = random(work)

repeat randw times

/* nothing */

endrepeat

if i > MAXINDEX then quit

endfor

}

when all processors are done do {

local

integer i

for i = 2 to list_place-1 do

total_latency = total_latency + avg_latency[i]

endfor

total_latency = total_latency / ( list_place - 2 )

}

Figure 8: Code for Measuring Fetch&Increment Latency
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Figure 9: Latency of di�racting trees, logarithmic scale

(do not interact with the parallel environment) are run uninterruptedly on the

simulating machine's CPU and memory. The amount of time used for local

calculations is added to the time spent performing (simulated) globally visible

operations to derive each thread's notion of the current time. Proteus makes

sure a thread can only see global events within the scope of its local time.

In our benchmarks we measured the average latency of processors accessing

a distributed Fetch&Increment counter implemented as a di�racting tree with

hardware Fetch&Increment counters at its leaves. The average latency is the

average number of cycles it takes the counter to deliver an index. In these ex-

periments work was very close to 0. In each simulation a counter was accessed

between 10,000 and 20,000 times, and the time to deliver an index was mea-

sured for each access. The average latency was measured after each 1000 indices

delivered, the average of these times is the latency of the counter. In order to

take into account start-up times we ignored the latency of the �rst 2,000 indices

delivered. The pseudo-code in Figure 8 illustrates how the measurements were

performed. In the code, current time gives the number of cycles since some

agreed global event, fetch and increment is the di�racting tree, MAXINDEX is

the last index to be delivered and total latency is estimate of the counter's la-

tency. By monitoring the di�erent values in the avg latency array for di�erent

values of i, we can make sure that the simulation has reached a steady state.

The random number function we used was Proteus' fast random() which is

an implementation of the ACM Minimal Standard Random Number Genera-
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Figure 10: Latency of di�racting trees, linear scale

tor [17, 8].

We now show how our combinatorialmodel ties together the choice of di�rac-

ting tree parameters depth, d, and prism locations per level, L, to the number of

processor, P . A di�racting tree is shown to operate optimally when P = O(dL)

and L = 2

d

(the number of counters), i.e. the number of processors should be

approximately equal to the number of prism locations in the tree. The constant

hidden by the O notation is small and depends on a particular machine's ability

to handle multiple accesses to the same memory location. This is an expected

result and �ts well with the saturation model of Aspnes, Herlihy, and Shavit for

counting networks [4].

The following �gures show how our model accurately predicts the exper-

imental results. Figure 9 shows the latency of di�racting trees �ve and six

levels deep. In these experiments we use binary trees with d levels (meaning

2

d

counters) and L = 2

d

. The graphs have a distinctive shape. The left hand

part corresponding to a small number of processors shows a low latency, that

increases as more processors are added. When the number of processors is very

small, the slope of the graph is low, indicating a nearly constant latency, this

�ts the term E[T ] = d. As more processors are added, the slope increases due to

the sequential bottleneck at the toggle bits, this �ts the term E[T ] = O(P ) for

the range d � P � d

p

L. There is a local maxima of bad performance reached

when P = O(d

p

L), here, as our model predicts, there are too few processors

to achieve di�ractions, but too many to be processed by the toggle bit. At

this point, we approach the bound E[T ] � O(d

p

L) which is the algorithm's
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worst case performance. In fact, these results imply that one should avoid using

the trees in this range of concurrency. As more processors are added latency

decreases linearly, in accordance with the formula E[T ] = O(P=L). The close-

up graphs in Figure 10, especially the depth 6 tree, show this linear decrease

well. The depth 5 tree also shows how latency increases again as concurrency

increases. Note that the calibration of our graphs, and hence the phenomena we

are modeling, are very �ne relative to the changes in latency for other types of

data structures. For example, in [19], combining trees [11] are shown to have a

latency increase by 2500 units over the tested concurrency range, and so the 300

unit change in latency of di�racting trees would be considered almost constant.

See [19] for details.
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Figure 11: Latency of di�racting trees with di�erent width prisms

Figure 11 shows the e�ects of changing L, the total number of prism locations

in a level of the di�racting tree while keeping the other parameters constant.

Here we used a tree of depth 3 and 64 processors, with almost no work. The

number of counters in the tree does not change, it remains 2

d

= 8. We vary the

number of locations in a prism array of a balancer at level i so that there are

dL=2

i

e per prism. The left hand side of the graph corresponds to a small L and

a large P , this approximates the case where

P�L

dL

!1. We expect the latency

to behave as E[T ] =

P

L

, and this is indeed the case. When L is this small

di�ractions are constantly occurring on the prisms which can't keep up with

the 
ow of new processors. This situation continues up to an optimum point,

after which increasing L lowers the chance that two processors will pick the
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same location in the prism, and thus latency begins to rise. Since the number

of di�ractions in the tree is O(

P

2

dL

) we get a linear increase in latency. We can

expect the rise in latency to taper o� when L is large such that no di�ractions

are occurring, this can be observed in the right hand side of the graph.
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Figure 12: Comparison of old and new di�racting tree algorithms in terms of

average and maximal latency.

Finally, we present empirical evidence which indicates that the new algo-

rithm solves the starvation problem discussed in Section 2.3. Figure 12 shows

a comparison between the average and maximal latencies of the old and new

algorithms. In these experiments we ran a di�racting tree based counter for sev-

eral thousand increment requests. After every thousand requests we measured

the average time for an index to be delivered and the maximum time any single

processor waited for an index. As can be seen, maximal times increase rapidly

in the old version { an indication of starvation, but remain stable for the new

version implying that the starvation problem has indeed been remedied.

5 Conclusions

In this paper we have presented the �rst analysis of di�racting trees capable of

addressing critical design issues. We have identi�ed four ranges of P for which

there are speci�c performance bounds.

23



� If

P

dL

= O(1) and L � 2

d

, then the throughput of the system is optimal

and the expected latency is O(d), which is optimal up to a constant factor.

� As P gets smaller, the di�racting probability decreases, and the perfor-

mance degrades, reaching a formerly unnoticed local maxima in latency

at about P = d

p

L, where the latency is O(d

p

L).

� For even smaller values of P , processor advancement is mainly due to the

toggle bits. Thus when P = o(d

p

L), the expected latency is MAX[P; d].

� When work= O(1) and P is substantially larger than dL, the expected

throughput is L � o(L) and if L < 2

d

then the expected latency is

P

L

which is the best one can expect considering the contention on a prism

cell. If L > 2

d

the main congestion is in the counters. In both cases the

performance is less than optimal.

Finally, our model shows that when P = O(dL), which is the optimal range,

the contention in the tree is low: the expected number of processors trying to

access a prism cell simultaneously is O(1), and with high probability no more

than logL processors try to reach the same cell simultaneously.

We strongly believe our model and modeling approach pave the way to

steady-state combinatorial analysis of other distributed-parallel data structures

such as counting networks and other di�racting tree based data structures such

as elimination trees [21], pools [21], priority queues, and so on.
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