
The Asynchronous Computability Theorem

for t-Resilient Tasks

(Preliminary Version)

Maurice Herlihy

Digital Equipment Corporation

Cambridge Research Laboratory

herlihyQcrl.dec .com

Abstract

We give necessary and sufficient combinatorial con-

ditions characterizing the computational tasks that

can be solved by N asynchronous processes, up to

t of which can fail by halting. The range of pos-

sible input and output values for an asynchronous

task can be associated with a high-dimensional ge-

ometric structure called a simplicial complex. Our

main theorem characterizes computability y in terms

of the topological properties of this complex. Most

notably, a given task is computable only if it can be

associated with a complex that is simply connected

with trivial homology groups. In other words, the

complex has “no holes!”

Applications of this characterization include the

first impossibility results for several long-standing

open problems in distributed computing, such as

the “renaming” problem of Attiya et. al., the “k-set

agreement” problem of Chaudhuri, and a general-

ization of the approximate agreement problem.

1 Introduction

A decision task is an input/output problem where

N asynchronous processes start with input val-

ues, communicate either by shared memory or by

message-passing, and halt with output values. In

a fundamental paper in 1985, Fischer, Lynch, and

Paterson [11] showed that there exists a simple

Turing-computable task that is not computable

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Associaticln for Computing

Machinary. To copy otherwise, or to republish, requiras a fee

and/or specific permission.

25th ACM STOC ‘93-51931CA,LJSA

a 1993 ACM 0-89791-591-7/93/0005/01 11...$1.50

Nir Shavit

Computer Science Department

Tel-Aviv University

8hanir@math.t au.ac.il

in a message-passing system if even one process

may fail by halting (or may be infinitely slow).

Since then, a long and fruitful line of research has

evolved, directed toward providing a computabil-

ityy theory for asynchronous computation. Such a

theory could provide the designers of computer net-

works and multiprocessor architectures with mathe-

matical tools for recognizing when certain protocols

are impossible, for evaluating the power of alterna-

tive synchronization primitives, or for making ex-

plicit the assumptions needed to make a problem

solvable.

In this paper, we give the first complete combi-

natorial characterization of the computational tasks

solvable when up to t processes can fail by halt-

ing. Our results apply to shared memory when

1 < t < N, and to message-passing systems when

1 ~ t < N/2.l We show that one can associate

with the ranges of possible inputs and outputs of

an asynchronous task a high-dimensional geomet-

ric structure called a simplicial complex. Our main

theorem characterizes computability in terms of the

topological properties of this complex. The most

interesting of these properties is that the complex

may not have any holes: more formally, it must be

simply connected with trivial homology groups.

The first step toward a systematic characteriza-

tion of the asynchronously computable tasks was

taken in 1988, when in a pioneering paper, Biran,

Moran, and Zaks [6] gave a graph-theoretic char-

acterization of the tasks that could be solved by a

message-passing system in the presence of a single

failure. Although the problem has received consid-

erable attention since then, no one has succeeded in

extending their approach to encompass more than

a single failure.

In this paper, we solve this long-standing open

1Mesmgc-passing systems where N/2 < t < N are un-
interesting, because almost all tasks are easily seen to be
impossible.

111

question. For any input/output problem, in shared

memory or message paasing, we give a necessary

and sufficient condition for an algorithm to exist.

Applications of this theorem include the first im-

possibility results for the K-set agreement problem

of Chaudhuri [8], and a new, nearly-tight bound on

the renaming problem of Attiya et. al. [4]. We also

consider a generalization of the approximate agree-

ment problem [5, 9, 10, 15, 22] to arbitrary point-

sets.

Every data object can be assigned a consensus

number [16], which is the maximum number of pro-

cesses that can solve the consensus task [11] by ap-

plying operations to that object. An object’s con-

sensus number is a measure of its computational

power: If X has consensus number n, and Y con-

sensus number m < n, then in a system of n or more

concurrent processes, one can construct a wait-free

implementation of Y from X, but not vice-versa.

It is natural to ask whether an object’s consensus

number completely characterizes its computational

power. We show here for the first time that the an-

swer is no. In particular, the set agreement task lies

“between” read/write memory (consensus number

one) and any object wit h consensus number two.

Using different techniques than those introduced

here, Saks and Zaharoglou [23] have independently

proved the impossibility of K-set agreement in the

wait-free case where K = t = N – 1, and Borowsky

and Gafni [7] have independently proved impossibil-

ityy results for both renaming and K-set agreement.

2 Model

Informally, our model of computation consists of

a collection of sequential threads of control called

processes that communicate by reading and writing

variables in shared memory. Processes are sequen-

tial — each process applies a sequence of operations

to objects, alternately issuing an invocation and

then receiving the associated response. We make

no fairness assumptions about processes. A process

can halt, or display arbitrary variations in speed. In

particular, one process cannot tell whether another

has halted or is just running very slowly. Formally,

we model objects and processes as automata, using

a simplified form of the 1/0 automata formalism of

Lynch and Tuttle [21]. The details are omitted here

for lack of space.

The shared memory consists of an array of single-

reader/single-writer registers providing atomic read

and write operations with the obvious semantics.

From this single-reader/single-writer read/write

memory, one can construct an atomic snapahot

memory. Informally, this is a data structure par-

titioned into n segments Si, each of which can be

updated (written) by its “owner” process Pi, and all

of which can be scanned (read) by any given process

in one atomic operation. Each process Pi can thus

perform an update operation on S$, replacing all or

part of the contents of si with a new value, or a

scan operation on s, returning an %stantaneous”

view of the contents of all segments of s. (More

precise specifications and implementations of snap-

shot objects from single-reader/single-writer atomic

registers can be found elsewhere [1, 2, 17, 20].)

A vertez w is a pair consisting of a value, value(v),

and a process identifier, id(v). An n-dimensional

simpiez (or *simplex) is a set of n + 1 vertexes la-

beled with distinct process identifiers. We usually

use superscripts to indicate the dimension of a sim-

plex. P is a subsimplez of P, written P c S“, if

the former’s set of vertexes is a subset of the latter’s.

Let io!s(~) denote the set of n + 1 distinct process

identifiers in the vertexes of 9, and values(p) the

multiset of values. An ~simplex has a geometric

interpretation aa the convex hull of a set of n + 1

affinely-independent points in Euclidian space.

A simplicial complez (or complex) is a set of

simplexes C satisfying the following property: If

F c C and S! c F then St E C. Subcomplezes

are defined in the obvious way. Define the dimen-

sion of a complex to be the highest dimension of

any simplex it contains. An n-complex is pure if

every simplex it contains is a subsimplex of some

n-simplex. All complexes considered in this paper

are pure. As with simplexes, we usually use super-

scripts to indicate the dimension of a complex.

An (n + 1)-process decision task (Zn, On, A) is

given by an input complex l“, an output complex

On, and a recursive (computable) map A carrying

each m-simplex of P’, where O ~ m ~ n, to an

-subcomplex of 0“ in a way that (1) preserves

process identifiers: for all ~ in Zn, ids(~) =

ids(A(W)), and (2) is coherent: if S4 C ~, then

A(St) C A(V). Simplexes in Z“ and On are called

input and output simplezes.

Informally, each input simplex V corresponds to

a set of m + 1 possible input values, and the input

complex is the collection of all legal sets ,of inputs.

The complex A(Y) is the collection of all legal

output configurations in response to the set of input

values P. A solo execution by a set of processes U

is one where all processes in U complete the protocol

before any other process takes a step. Intuitively,

A(r) for m < n is the set of possible outputs of

solo executions by the processes in ids(V).

112

Input cumpex

C-3 M

/ N
~—.,,,.,,,,,,,,—

‘:::::::::::., -- ,
. :~;,,

. \
/ \,--1/ 1-1.

\
\

/
/ A(I) ,/ \ A(I) ‘\

/ \
/ / \ \

I \
\

, I !
\

I I
\

,’ \

CMtput ccmplex

Figure 1: The FETCH&ADD task.

Perhaps the simplest decision task is consensus

[11]. Each process starts with a binary input value

and chooses a binary output value. All output val-

ues must agree , and the output value must have

been someone’s input. The input complex con-

sists of simplexes of the form ((Po, be), (Pm, b~)),

where the bi independently range over {0, 1}. (This

complex is topologically equivalent to an n-sphere.)

The output complex consists of two disjoint n-

simplexes, corresponding to decision va,lues O and

1.

Figure 1 shows two input simplexes and their

corresponding output complexes for the fetch-and-

add task, in which each of n + 1 processes atom-

ically adds an integer input to a shared register,

initially zero , and returns the register’s previous

contents. The input and output complexes are in-

finite, although the output complex corresponding

to any specific input simplex is finite. Note that

vertexes with the same labels are the same and

should be mentally “glued together.” They are

drawn as distinct only for legibility. Figure 2 shows

a three-process renaming task [4] using four names.

(This output complex is topologically equivalent to

a Klein bottle.)
.

A protocol solves a decision task (Z”, On, A) in

an execution if the following condition~s hold. Let

Uo,un be the input values of Po, Pm, and

let P~,..., Pj be the processes that finish the pro-

tocol with values wi, . --, VJ. We require that (1)

no process takes an infinite number of steps with-

out choosing an output value, and (2) the simplex

(s~ = (Pot 740),... (.Pm, Un)) is a simplex of Zn and

((R, vi), . . . (~j, vj)) is a simplex in A(Sn). An exe-

cution is t-faultyif at most t processes fail. A proto-

col is t-resilient if it solves a decision task in every

t-faulty execution. A protocol is wait-free if it is

(n - I)-resilient.

Many complexes of interest have a simple but im-

portant topological property: they have no “holes”.

We now introduce the formal machinery needed to

make this notion precise. A more complete discus-

sion may be found in any standard text on algebraic

topology (e.g., [13, 14, 19, 24]).

An orientation for a simplex is a collection of or-

derings for the vertexes, consisting of one particular

ordering and all even permutations of it. An ori-

ented n-simplex is an n-simplex Sn together with

an orientation. By convention, (VO, . . ., v~) denotes

the oriented n-simplex with vertexes VO, V~ Ori-

ented in the even permutations of O, n. An OTi-

ented complez is a simplicial complex in which each

simplex is provided with an orientation.

Let {S:, ..., S;} be the set of oriented d-

simplexes in an oriented complex Cn. A d-chain

is a formal sum of the form ~~=o ~; “ @ ~ where ~i

is an integer. z When writing chains, we typically

omit d-simplexes with zero coefficients, unless they

are all zero, when we simply write O. We also write

1. Sd as Sd and – 1. Sd as –Sd. We identify –Sd

as S~ with the opposite orientation.

Let Sd=(vo, ..., v~) be an oriented d-simplex.

2Alt ernatively, the d-th chain g~oup of Cn is the free
abelian group on the set {$, s:}

113

Input complex

i---+

t-z

output wmplex
is a Kfain bottle

outputcomplex

of (n+t-1)-renaming

Figure 2: The RENAMING task.

Define facei (Sd), the ith face of Sd, to be the

(d– I)-simplex (vO, tii, v~), where circumflex

denotes omission. Define the boundary operator, i3,

on simplexes to be the chain:

d

8Sd = ~(–l)i .faryi(sd)
;=0

The boundary operator extends additively to

chains: ~(C~+C$) = 8Cf+tlC#. It is easily verified

that i36JCd = O for every &chain Cd.

A d-chain Cd is a d- cycle if i3Cd = 0, and it is a d-

boundary if there exists a Cd+l such that t3Cdtl =

Cd. Every boundary in a complex is a cycle, but

not necessarily vice-versa.

Definition 2.1 The set of d-cycles for a complex

define an abelian group, called the o%h homology

group for that complex. If every d-cycle is a d-

boundary, then the d-th homology group is the triv-

ial (single-element) group. For brevity, we say a

complex Cn has tm”vial d-th homology if its d-th ho-

mology group is trivial, and it has trivial homology

if it has trivial d-th homology for 1< d s n.

Informally, if Cn has trivial homology, then Cn

has no “holes” of dimension d: every d-cycle is a

&boundary, and can therefore be “filled in.” For

example, the fetch-and-add complex shown above

has a non-trivial first homology group because the

cycle bounding the hole is not a boundary.

A edge path in a complex C is a sequence of

vertexes IJO~.. . 1Vt such that each successive pair

vi, vi+l (not necessarily distinct) lie on a simplex.

Cn is path connected if every pair of vertexes is con-

nected by an edge path. An edge path is an edge

loop if V. = vl. The vertex V. is called the base

point of the loop. A loop is trivial if it consists only

of its base point. A loop is null- homotopic if it can

be reduced to a trivial loop by applying the fol-

lowing kinds of transformations: (1) if Vi, vi+l, vi+2

lie on a common simplex, then the subsequence

vi, vi+ 1, Vi+z can be replaced with the subsequence

Vi, Vi+2, and vice-versa, and (2) the subsequence

vi, vi can be replaced by vi, and vice-versa.

Definition 2.2 A complex C is simply connected

if it is path connected and all edge loops are null-

homotopic.

The set of edge loops in a complex with a fixed base

point define a group called the fundamental group

of the complex. If a complex is simply connected,

then its fundamental group is trivial. It is a stan-

dard result that any simply-connected complex has

trivial first homology ([19, Th. 18.1] or [14, Ch. ,

12]) (The converse, however, is false [14, p.150].)

L.t An and W be complexes. A simpkciat map

/6 : An + W carries vertexes of An to vertexes of

W such that every simplex of An maps to a sim-

plex of B“ (possibly of lesser dimension). Simplicial

maps preserve cycles and boundaries: if C is a cycle,

so is P(C), and if C = 8(D), then Y(C) = t3p(D).

We will exploit this property of simplicial maps to

derive a number of impossibility results for specific

problems.

114

(5

Figure 3: Commutative Diagram for Task Solution

3 Full Information Protocols

Informally, a full-information protocol is one in

which each process repeatedly exchanges its en-

tire history with each of the others until it has

“seen enough)’ to choose a decision value. Full-

information protocols have a regular structure that

makes them easier to analyze than arbitrary proto-

cols.

Definition 3.1 Following Fredrickson and Lynch

[12], an S-expression is either the symbol 1, an in-

put value v, or a list (vo . . . Vn) where each vi is an

S-expression. We use S[Z] to denote the Lth compo-

nent of a compound S-expression s.

Definition 3.2 The full-information complex F“

for an input simplex S’ is defined as follows. Each

vertex is labeled with an S-expression. Each n-

simplex Rn of P is constructed inductively by a se-

quence R;, R! where R~ = (1.. .1), R? = Rn,

and each R; is constructed from R;– 1 by replac-

ing some Lth component in one of two ways: (1) if

R;_ ~[i] = 1, then R; [i] = vi, where Vi is R’s input

value in S“, or (2) if R~_l[i] # 1, then RI [i] = R?,

where j < k and R? [i] = R#_ ~[i].

Note that the full-information complex is infinite.

A t-resilient protocol is a full-information proto-

col if it has the form shown in Figure 3. Let 6 be

a map from S-expressions to output values. An S-

expression s is a halting state if 6(s) is defined. The

processes share an array V. Pi starts by writing its

input value to V [i], and then it executes a sequence

of rounds. At round i, it repeatedly scans the ar-

ray until at least n – t + 1 processes have either

(1) written out a halting state, or (2) completed a

round greater than or equal to z – 1. A process ex-

ecuting this loop is said to be waiting at a barrier.

The process then scans the shared array V, creating

local COPY v, and updates v[i] to (vIo] . . . v[n]). If

6(v) is defined, it returns that value, and otherwise

it starts round z + 1.

Lemma 3.1 The output simplexes computed by

any execution of a full-information protocol lie in

V [i] : = input

round := O

loop

round : = round+l

/#1 barrier step */

repeat {

v := scan(v)

} until (at least n-1 processes have

either halted or reached round-1)

/* scan step */

v : = ecan(V)

/* update step */

V [i] := (P_i, v)
/* check for halting state */

if (delta(v) is defined)

then return delta(v)

Figure 4: A Full-Information Protocol

F’.

Theorem 3.2 A decision task (Zm, On, A) is t-

solvable if and only if there exists a t-resilient fuil-

information protocol (27’, F, 0), and a simplicial

map ~, called a decision map, such that the dia-

gram in Figure 2 commutes in the following sense:

for every input simplex W’, n – t 5 m S n,

6: 0(S’”) ~ A(r).

To show impossibility, we will focus on the deci-

sion map 6. This decision map is a simplicial map

from the full-information complex to the task’s out-

put complex. Simplicial maps preserve certain basic

topological properties, and therefore we will demon-

strate the impossibility of constructing a decision

map by showing that any full-information complex

is topologically incompatible with the tasks’ output

complexes.

The theorem also gives a sufficient condition for

solvability. The condition is existential, in the sense

that one cannot take an arbitrary task specification

and construct a matching implementation. Indeed,

by adapting a theorem of Toueg and Jayanti [18],

one can show that the problem of deciding whether

an arbitrary decision task has a t-resilient imple-

mentation is undecidable. Of course, if all com-

plexes are finite, one can always find a decision map

(if one exists) by enumeration and testing. Notice

that the sufficient condition of Biran, Moran and

Zaks [6] for l-resilient tasks is similar in nature: a

task is l-solvable if and only if an associated graph

satisfies certain properties, but there is no general

method for determining whether an arbitrary graph

115

satisfies those properties.

In a message-pawing system, processors commu-

nicate by sending and receiving asynchronous mes-

sages. A simulation of a message passing algorithm

with t < n/2 faults in shared memory with t < n/2

faults is an elementary exercise. Conversely, At-

tiya, Bar-Noy, and Dolev [3, Th. 9] have shown

how to translate any wait-free shared-memory al-

gorithm into a message-passing algorithm with t <

n/2 faults. Consequently, the Asynchronous Com-

putability Theorem holds for message-passing sys-

tems when t < n/2.

4 Topological Properties

We new derive some basic topological properties of

t-resilient protocols. First, we show that “a full-

information protocol has no holes.” More precisely,

if @ is a t-resilient full-information protocol, then

for every input simplex S9, n – t < q ~ n, @(S’q) is

simply connected with trivial homology. Second, we

show that @(Sg) must include a subcomplex with a

particular regular geometric structure.

Definition 4.1 A property p is simphcial if it sat-

isfies the following conditions. (1) p holds for any

single n-simplex, and (2) If Am and W are inter-

sect ing complexes such that p holds for An, W,

and An (l &, then p holds for .4” U W.

Being simply connected is a simplicial property

(from the Seifert/Van Kampen Theorem [14, 4.12]),

as is having trivial homology (from the Mayer-

Vietoris sequence).

For the remainder of this section, let n – t s q <

n. We will now show that for every input simplex

S9, and any simplicial property p, 0(S9) satisfies

P.

Definition 4.2 An output simplex Rq is reachable

from protocol state s if there is some execution

starting from s in which each process in ids(R9)

chooses its corresponding value from Rq. The reach-

able complex froms is the complex of reachable sim-

plexes from s.

A protocol state is critical for a property p if p

does not hold, but every group of n – t + 1 pro-

cesses includes at least one process whose next step

will leave the protocol in a state where p henceforth

holds. Such a process is called a critical process. A

critical state is maximal if every process is either

critical, waiting at a barrier, or halted with a deci-

sion value.

Lemma 4.1 Let p be a property that must even-

tually become true in every t-faulty execution, and

let s be a state where p does not hold. Any full-

information protocol has a maximal critical state for

Lemma 4.2 In executions where zero failures oc-

cur, the reachable complez is a single simplex.

Our proof strategy is the following. Since the

reachable complex eventually shrinks to a single

simplex, it eventually henceforth satisfies p. We

run the protocol to a maximal critical state for Q,

and we derive a contradiction in the style of Fischer,

Lynch, and Paterson [11], using an analysis of the

possible interactions among the pending update and

scan operations to show that the reachable complex

could not have violated p to begin with.

More formally, let S9 be an input simplex and p

any simplicial property. We can run any protocol

to a maximal critical state for p. Let C be the set

of critical processes. Let U be a subset of m critical

processes in C. We define C; to be the reachable

complex immediately after each process in U takes

a step. For brevity, C: = C/Pil, and Cq = UC: for

Pa E C. We will show that Cq is really the reachable

complex, and then that Cq satisfies p, and hence the

desired contradiction.

Lemma 4.3 Let C be the set of critical processes

in a maximal critical state and let

iEC

Then Cq is the veachabie complex in the mazimal

critical state.

Lemma 4.4 In a mazimal critical state, let W be a

set of critical processes about to perform operations

such that each pair of operations commutes. (FOT

example, all scans or all update s.) Let VO,!71

be subsets of W such that each ~Ui [= m and for

each distinct Ui and Uj, {Pij = Ui – Uj . Let

t
ZY = (J c;,.

i=O

We claim that Dq satisfies p..

Proof: We argue by induction on -4 and reverse

induction on m.

We now prove the base case for m. When m =

IWl, the only such complex is C%, which satisfies

the lemma because the current state is critical. We

assume the result for m + 1 and 1 ~ t < (1~1) and

116

prove it for m and 4 = O. The only such complex

is C~O, w hich also satisfies the lemma because the

current state is critical.

We assume the result for (4 – 1) sets c)f size m,

and will prove it for 4 sets.

Let 2X = Uf=OCfii, where UO, ..., U4 are process

sets of si~e m satisfying the conditions abcwe. ZY =
d9 u ~9 where d9 = cj, and ~9 = uf~~c~,.

Claim 4.5 For any sets U~ and Uj, C;< n C~j =

C;,”vj .

Proof: We first show that C&,Uv, ~ C&, n C;,.

By definition, each simplex in C$,uuj is reachable

in some execution where every process h Ui U Uj

takes a step before any other process takes a step.

The operations commute, so we can reorder them so

every process in Ua moves before any process in Uj,
yieldhg C~iUu, C C$i. By a symmetric iirgument,

CqUiUU, C C$, j yielding C;iuuj S C~i n Cj,i.
Conversely, each simplex in C;, n C$j is reachable

by at least two executions: one where every process

in Ui takes a step before any other prclcess, and

one where every process in Uj takes a step before

any other process. Moreover, these executions must

be indistinguishable to each process, and therefore

Therefore,

l-l

n%,) = (J%,,uu,
i=o

We now prove the induction step for .4. Let Vi =

Uiuul.

~ = (Ui – U/) u (Ul – Ui) u (Ui n Ut).

The first two terms have size one, and the third

m–l, so lV~l=m+l.

~–Vj=(U~U Uf)-(Uj UUf)={P~}

The Vo,. ... Vt_ 1 thus satisfy the conditions for the

induction hypothesis for m+ 1, and therefore Aq nB9
satisfies p. Moreover, Aq satisfies P by construc-

tion, and so does t?? by the induction hypothesis

for 1 – 1. Because ~ is simplicial, A9 U,& also sat-

isfies p. ■

Corollary 4.6 Uiew C: satisjies p.

We have just shown that if the critical processes

are poised to perform operations that commute, say,

all scans or all updates, then the simplicial prop-

erty p must already hold, contradicting our assump-

tions. Therefore, in any maximal critical state for

p, some processes must be about to scan, and others

about to update. We now show that this assump-

tion also leads to a contradiction.

As before, let C; be the reachable complex imme-

diately after critical process Pi moves.

Lemma 4.7 Let X be an arbitrary set of criticai

proce98e8 in any maximal cTitical state for p. We

,6X C; 9atisjie9 p.claim that Aq = U.

Proof: Divide X into two sets, R and W, such

that every process in R is about to scan the shared

variables, and each process in W is about to update

its variable. We argue by double induction, first on

m = [Xl = [RI + IWI, the total number of criti-

cal processes, and then on 1 = IRI, the number of

critical processes about to scan.

When m = O, Aq is empty, so assume the result

for m– 1 processes and arbitrary L For m processes

and 1 = O, the result follows from Corollary 4.6. We

now consider the induction step for 4.

Assume Aq satisfies p, where IR U WI = m,

IRI = -4 – 1, and P, @ X is a critical process about

to scan. We now show that C$ U Aq satisfies p. If

no failures are possible, then the result follows from

Lemma 4.2. Otherwise, notice that the simplexes in

C: n Aq are reachable only in executions where all

processes other than P. finish their last scans before

P, updates its variable. The simplexes reachable by

such executions form the reachable complex for an

(m – 1)-process full-information protocol with one

fewer failure. By the induction hypothesis for m– 1,

C: n A9 satisfies p. Moreover, C: satisfies p because

P, is critical, and so does Ag by the induction hy-

pothesis for t – 1. We have shown that p is satisfied

by C:, Aq, and C$ n Ag, and the result follows be-

cause p is a simplicial property. ■

Theorem 4.8 If (Zn, 3n, ~) is a t-resilient full-

information p?’otocoi, then foT eveTy input .$impiez

Sq wheTe q ~ n – t, @(S9) satisfies p.

Corollary 4.9 If (Zn, ~, @) is a t-Tesilient full-

information protocol, then for every input simplez

Sq where q > n – t, 0(S9) is simply connected with—

tTiviai homology.

We now show that full-information complexes

have a regular geometric structure that can be ex-

ploited to prove a variety of impossibility results. In

particular, any n-dimensional full-information com-

plex includes a subcomplex, called a span, that

117

“looks” like a t-simplex that has been subdivided

into a set of smaller t-simplexes in a regular way.

(Such a subdivision is called a triangulation.) This

span has a nice recursive structure: if the span is

a triangulation of St then each vertex of St cor-

responds to a solo execution of some set of n – t

processes, all vertexes along an edge of St – 1 to solo

executions by some set of n—t + 1 processes, and

so on. Our notion ofa span is essentially a general-

ization of the spanning trees of Biran, Moran, and

Zaks [6] when t = 1,

A span is a pseudomanifoid every (n – 1) simplex

is a subsimplex of either one or two n-simplexes.

The subcomplex J“ of A“ generated by the (n –

1)-simplexes contained in exactly one n-simplex is

called the boundary subcomplez. Once we prove that

spans exist, then we can exploit the many theorems

of algebraic topology (such as Sperner’s Lemma [19,

Lemma 5.5]) that apply to pseudomanifolds.

Definition 4.3 The barycentric subdi-

vision bary(Sn) of input simplex Sn is the complex

whose vertexes are the subsimplexes in Sn. A sim-

plex (S0, Sn) (where the Si are subsimplexes of

Sn) is in ba~y(Sm) if for some permutation io, in

Of o,.. .n, SiO c . . . c Sim C Sn. Let bary4(Sn)

denote the result of 1 successive barycentric subdi-

visions.

Let T be the set of n – t processes with indexes

greater than t +-1, ~-t-1 the subsimplex of Sn

with process ids in T, and St a subsimplex of Sn

containing no process ids from T.

Definition 4.4 A span for S1 is a simplicial map

c : bary”(St) ~ @(St U ~-t-l) for some ~ ~ O,

such that if 1 > 0, then for O < i < t, a restricted

to hwy” (facei (Sz)) is a span for facei (SZ).

Lemma 4.10 If St is an input simplez with no ids

from T, then St has a span.

Proof: (Skeich.) We make use of the following

classical theorems of algebraic topology. (1) Any

complex has a ‘(realization” as a point set in Eu-

clidian space [19, Th. 14.2]. (2) The Hurewicz Iso-

morphism Theorem ([19, Th. 23.1]) implies that if

a complex An @ simply connected with trivial ho-

mology, then any continuous map from the l-sphere

to An can be extended to a continuous map of the

(i! + I)-disk to An. (3) The Simplicial Approxima-

tion Theorem ([13, Th. 5. 11]) states that any con-

tinuous map from A“ to 13n can be “approximated”

by a simplicial map from baryr (An) to fT, for some

r>o.—

Spans are constructed by induction on L We

(temporarily) treat all simplexes as subsets of Eu-

clidian space (allowing maps to be continuous). If A

is a complex, let [Al denote the associated point set.

The spans for the faces of St define a continuous

map @ : lba~yr(~l)l -+]@(St U ~–t–l)l. Because

Ibary’ (St)/ is homomorphic to an (4 – I)-sphere,

and 10(S4 U ~~–~– 1, I is simply connected with triv-

ial homology, the Hurewicz Isomorphism Theorem

implies that 4 can be extended to a continuous map

from the l-disk lbary”(SZ)/ to I@(St U ~-t-’)l.

By the Simplicial Approximation Theorem, there

exists a simplicial map a carrying baryR(S4) for

some R > r, to @(Sf U WT–*–l) that agrees with

~ on vertexes in bury’ (it). The map a is a span

for S~. ■

5 Impossibility Results

5.1 Set Agreement

In the K-set agreement task, each of n + 1 processes

starts with an arbitrary input value in a private

register, and halts after returning an output value.

In every t-resilient execution the output values must

satisfy the following conditions: Validity every out-

put value is some process’s input value, and Con-

sistency the set of output values has cardinality

at most K. This problem was first proposed by

Chaudhuri [8] in 1989, along with a conjecture that

it has no t-resilient solution for K s t. We now

show that this conjecture is correct.

Definition 5.1 The carrier of a vertex v in

bary” (Sm) is the smallest-dimensional subsimplex

S! C Sm such that v ~ bary” (Sz).

Lemma 5.1 (Sperner’s Lemma) If x is a map

sending each vertex v of bary? (Srn) to a vertez in its

carrier, then there is at least one m-simplez Rm =

{r~,..., rm} in ba~y’ (Sm) such that the X(ri) are

all distinct.

A protocol for the t-set agreement task is canoni-

cal if, in every t-faulty execution, no process chooses

the input from the n – t processes with the high-

est ids. Any t-set agreement protocol @ can easily

be transformed into a canonical protocol (0’. Each

process tags its input with with its process id, runs

@, writes its decision value (including the origina-

tor’s id) to a shared array prefer, and waits until

n – t + 1 processes have written their values. The

process then decides the value from prefer tagged

with the least id.

118

Theorem 5.2 The K-set agreement task has no t-

fauity solution for K ~ t.

Proof: It is enough to show that no canonical t-

resilient t-set agreement protocol exists. E\y way of

contradiction, let @ be such a protocol. Pick an in-

put simplex S“ = St U ~-t- 1 in which each process

Pi has a distinct input vi. By Lemma 4.10, there

exists a span c : bary’(St) ~ @(St u S~-t-l). Let

St = (s.,.. .,st). Define x : bary”(St) + St as

follows: x(v) = Si, where value(a(v)) = vi. Each

value(v) is chosen by some process in a solo exe-

cution by the processes in ids(S1) U T. Because

the protocol is canonical, however, value(v) can-

not be an input value for any process in T, so x

must carry each vertex v to a vertex in its carrier.

The map x is thus a Sperner labeling for St, and

Sperner’s Lemma implies that there exists a sim-

plex in bary’ (St) whose vertexes are mapped to all

t+ 1 inputs. This simplex corresponds to an exe-

cution that yields t + 1 distinct decision values, a

cent radict ion. ■

It is easily shown that one cannot solve two-

process consensus using an arbitrary ot)ject that

solves 2-set agreement. It follows that the computa-

tional power of set agreement lies “between” that of

read fwrite memory and any object with consensus

number two.

Corollary 5.3 An object’s computational power is

not completely characterized by its consensus num-

ber.

5.2 Renaming

Another open problem that has attracted consider-

able attention is the renaming problem of Attiya et

al. [4]. Each process is given a unique input name

taken from a range O . . . IV where N > n. Each

process then chooses a unique output name taken

from a smaller range O . . . K. To rule out trivial

solutions (such as Pi chooses output name i), we

require that the name chosen by a process depend

only on its input name and the execution, and not

on the process’s id.

For n+ 1 processes, it is known that the renaming

task has a t-resilient solution for n + t + 1 or more

output names, and none for n + 2 or fewer [4]. We

now narrow this gap by showing that there is no

solution for n + t— 1 or fewer output names, leaving

open the question whether there is a solution for

exactly n + t names.

Theorem 5.4 There is no t-resilient renaming

protocol for n + 1 processes, 2n – 1 or more input

names, and n + i — 1 or fewer output names.

(Because of space limitations, we summarize the

proof for the wait-free case.) Let Et be the complex

generated by a single l-simplex, where vertexes are

labeled with O, L

Theorem 5.5 [Spanier, 8.D.2] Let 4 : A“ 4 &“

be a simplicial map. For O ~ i ~ n, the number of

simplezes of An mapped to facei(tn) has the same

parity as the number of simpiexes of An mapped to

&n.

Let @ be a wait-free renaming protocol where in-

put names range from O to at least 2n – 2, and out-

put names from O to 2n – 2. Pick n + 1 input names

so that all processes choose output names of the

same parity in solo executions. Let cr : bary’ (S1) -+

@(S1) for r ~ O be a span. If ~ is a function on

bary” (St), q$(Pi, Si) is shorthand for d(v), where

a(v) = (P,, Si). Define @ : baryT(Sf) ~ t~+l as fol-

lows: #(Pi, Si) is the vertex (i+ (name(si) mod 2)

(mod 1 + 2)).

Lemma 5.6 The number of simplezes of baryr (St)

mapped to facei(&4+1) is odd for i = Z+ 1, and even

otherwise.

The proof is an inductive argument based on The-

orem 5.5.

When 4 = n, @ sends the vertexes of at least one

simplex Tn of bary~ (Sn) to distinct vertexes of P,

implying that the names at vertexes of Tn are either

all even or all odd. Since there n + 1 processes but

only 2n — 1 names, we have a contradiction.

5.3 Approximate Agreement

Let K be a point set in Euclidian space Rt, and let

hull(K) be the convex hull of K. In the generalized

approximate agreement task, each Pi starts with an

input xi in K, and halts with an output yi in K

satisfying (1) agreement all yi lie within some fixed

~ of one another, and (2) validity: all yi lie within

the convex hull of the xi. This problem has been

studied in the special case where K = R in the

Byzantine [9, 10, 22] and fail-stop models [5, 15].

Here we consider only the wait-free case.

Definition 5.2 K has a hole of radius r around

point z if z is in huli(K), and that no point of K

lies within distance r of o.

Theorem 5.7 The generalized approximate agree-
ment task has no wait-free solution if K has a hole

of radius E.

119

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Y. Afek, H. Attiya, D. Dolev, E. Gafni,

M. Merritt, and N. Shavit. Atomic snapshots.

Ninth ACM Symposium on Principles of

Distributed Computing, 1990.

J. Anderson. Composite registers. In Proceedings

of the 9th ACM Symposium on Principles of

Distributed Computing, pages 15-30, August 1990.

H. Attiya, A. Bar-Noy, and D. Dolev. Sharing

memory robustly in message-passing systems. In

Proceedings of the 9th Annual ACM Symposium

on Principles of Distributed Computing, pages

377-408, August 1990.

H. Attiya, A. Bar-Noy, D. Dolev, D. Keller,

D. Peleg, and R. Reischuk. Achievable cases in an

asynchronous environment. In Proceedings of the

28th IEEE Symposium on Foundations of

Computer Science, pages 337–346, October 1987.

H. Attiya, N. Lynch, and N. Shavit. Are wait-free

algorithms fast ? In Proceedings of the 31st

Annual Symposium on the Foundations of

Computer Science, October 1990.

0. Biran, S. Moran, and S. Zaks. A combinatorial

characterization of the distributed tasks which are

solvable in the presence of one faulty processor.

In Proceedings of the 7th Annual A CM

Symposium on Principles of Distributed

Computing, pages 263–275, August 1988.

E. Borowsky and E. Gafni. Generalized flp

impossibility result for i-resilient asynchronous

computations. In Proceedings of the 1993 ACM

Symposium on Theory of Computing, May 1993.

S. Chaudhuri. Agreement is harder than

consensus: set consensus problems in totally

asynchronous systems. In Proceedings of the

Ninth Annual ACM Symposium on Principles of

Distributed Computing, pages 311–234, August

1990.

D. Dolev, N.A. Lynch, S.S. Pinter, E.W. Stark,

and W.E. Weihl. Reaching approximate

agreement in the presence of faults. Journal of the

ACit4j 33(3):499-516, July 1986.

A. Fekete. Asymptotically optimal algorithms for

approximate agreement. In Proceedings of the 5th

Annual ACM Symposium on Principles of
Distributed Computing, August 1986.

M. Fischer, N.A. Lynch, and M.S. Paterson.

Impossibility of distributed commit with one

faulty process. Journal of the ACM, 32(2), April

1985.

G.N. Fredrickson and N.A. Lynch. Electing a

leader in a synchronous ring. Joz6rma~ of the

ACM, 34(1):98–115, January 1987.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

P.J. Giblin. Graphs, Surfaces, and Homology.

Chapman and Hill, London and New York, 1981.

Second edition.

M.J. Greenberg and J.R. Harper. Algebraic

Topology: A First Course. Mathematics Lecture

Notes Series. The Benjamin/Cummings

Publishing Company, Reading MA, 1981.

M.P. Herlihy. Impossibility results for

asynchronous PRAM. In Proceedings of the 2nd

Annual Symposium on Parallel Algorithms and

Architectures, July 1991.

M.P. Herlihy. Wait-free synchronization. A CM

Tmnsactions on Programming Languages and

Systems, 13(1):123-149, January 1991.

A. Israeli and M. Li. Bounded time-stamps. In

Proceedings of the 28th IEEE Symposium on

Foundations of Computer Science, pages 371-382,

October 1987.

P. Jayanti and S. Toueg. Some results on the

universality, impossibility, and decidability of

consensus. In Proceedings of WDA G 92, 1992,

S. Lefschetz. Introduction to Topology. Princeton

University Press, Princeton, New Jersey, 1949.

M. Li, J. Tromp, and P.M. Vitzinyi. How to share

concurrent wait-free variables. Technical Report

CT-91-02, University of Amsterdam, Amsterdam,

Netherlands, March 1991.

N.A. Lynch and M.R. Tuttle. An introduction to

input/output automata. Technical Report

MIT/LCS/TM-373, MIT Laboratory for

Computer Science, November 1988.

S. Mahaney and F.B. Schneider. Inexact

agreement: Accuracy, precision, and graceful

degradation. In Proceedings of the dth Annual

ACM Symposium on Principles of Distributed

Computing, August 1985.

M. Saks and F. Zaharoglou. Wait-free k-set

agreement is impossible: The topology of public

knowledge. In proceedings of the 1993A CM

Symposium on Theory of Computingj May 1993.

E.H. Spanier, Algebraic Topology.

Springer-Verlag, New York, 1966.

120

