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Abstract 

An atomic snapshot memory is a shared data 
structure allowing concurrent processes to store 
information in a collection of shared registers, all 
of which may be read in a single atomic scan op- 
eration. This paper presents three wait-free im- 
plementations of atomic snapshot memory. Two 
constructions implement wait-free single-writer 
atomic snapshot memory from wait-free atomic 
single-writer, n-reader registers. A third con- 
struction implements a wait-free n-writer atomic 
snapshot memory from n-writer, n-reader regis- 
ters. The first implementation uses unbounded 
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(integer) fields in these registers, while the other 
implementations use only bounded registers. All 
operations require O(n2) reads and writes to the 
component shared registers in the worst case. 

1 Introduction 

Obtaining an instantaneous global picture of a 
system, from partial observations made over a 
period of time as the system state evolves, is a 
fundamental problem in distributed and concur- 
rent computing. Indeed, much of the difficulty 
in proving correctness of concurrent programs 
is due to the need to argue based on “inconsis- 
tent” views of shared memory, obtained concur- 
rently with other process’s modifications. Veri- 
fication of concurrent algorithms is thus compli- 
cated by the need for a “non-interference” step 
rOwi75, OG76]. By simplifying (or eliminating) 
the non-interference step, atomic snapshot mem- 
ories can greatly simplify the design and verifi- 
cation of many concurrent algorithms. Examples 
include exclusion problems [K78, L86c, DGS88], 
construction of atomic multi-writer multi-reader 
registers [VA86, Blo87, PB87, 338, LTV89], con- 
current time-stamp systems [DS89], randomized 
consensus [A88, AH89, ADS89, A901 and wait- 
free implementation of data structures [AHgO]. 

This paper introduces a general formulation of 
atomic snapshot memory, shared memory parti- 
tioned into words written (updated) by individ- 
ual processes, or instantaneously read (scanned) 
in its entirety. It presents three wait-free imple- 
mentations of atomic snapshot memories, con- 
structed from wait-free atomic registers. (In 
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[A89a, A89b, AngO], Anderson independently in- 
troduces the same notion and presents bounded 
implementations. See Section 6 for a discus- 
sion.) The first implementation uses unbounded 
(integer) fields in these registers, and is partic- 
ularly easy to understand. The second imple- 
mentation uses bounded registers. Its correct- 
ness proof follows the ideas of the unbounded 
implementation. Both doustructions implement 
a single-writer snapshot memory, in which each 
word may be updated by only, one process, from 
single-writer, n-reader registers.. The third algo- 
rithm implements a multi-writer snapshot inem- 
ory [A89b] from wait-free atomic n-writer, n- 
reader registers, again echoing key ideas from 
the earlier constructions. Each UJX&~ or scan 
operation requires O(n2) reads and writes to the 
relevant embedded atomic registers, in the worst 
case. 

A related data structure, multiple assignment, 
allows processes to atomically update nontrivial 
and intersecting subsets of the memory words, 
and to read one location at a time. However, 
multiple assignment has no wait-free implemen- 
tation from read/write registers [HSS]. The fact 
that wait-free atomic snapshot memories can 
be implemented from wait-free atomic registers 
stands in contrast to the impossibility results in 
[H88]. 

Section 2 of this paper defines single-writer 
and multi-writer atomic snapshot memories. 
Section 3 contains an implementation of single- 
writer snapshot memories from unbounded 
single-writer multi-reader registers, Section 4 
presents an implementation of single-writer 
snapshot memories from bounded single-writer 
registers, and Section 5 presents an imple- 
mentation of multi-writer snapshot memories 
from bounded multi-writer, multi-reader regis- 
ters. Section 6 concludes with a discussion of 
the results, related work and directions for fu- 
ture research. 

2 Atomic Snapshot Memories 

Consider a shared memory divided into words, 
where each word holds a data value. In the 
single-writer case, there is one word for each pro- 
cess, which only it writes (in its entirety) and 
the others read. In the multi-writer case, any of 
the words may be read or written by any of the 
processes, An n-process atomic snapshot mem- 
ory supports two types of operations, scqn; and 
up&&;,. that are available to vch process Pi.: 
Executions of scans and updates can each be 
considered to have occurred as primitive atomic 
events between the beginning and end of the 
corresponding operation execution interval, so 
that the “serialization sequence” of such atomic 
events satisfies the natural semantics. That is, 
each scan operation returns a vector V of values 
such that each ok is the argument of the last up- 
date to word Ic that is serialized before that scau. 
(This variant of serializability is called “lineariz- 
ability” [HW87].) This intuition is made precise 
in the following subsection. 

Two further restrictions are imposed on imple- 
mentations of atomic snapshot memories. First, 
following e.g. [L86b, H88], any snapshot im- 
plementation is required to be constructed with 
single-writer, multi-reader atomic registers as 
the only shared objects. The single-writer al- 
gorithms in Sections 3 and 4 satisfy this re- 
striction directly, and the multi-writer algorithm 
in Section 5 satisfies this restriction when the 
embedded multi-writer registers are in turn im- 
plemented with one of the previously known 
constructions from single-writer registers, e.g., 
[PB87, LTV89]. 

The second restriction imposed on snapshot 
memory implementations is that they satisfy the 
property of wait-freedom [L86a, P83]. That is, 
every snapshot operation by process Pi will ter- 
minate in a bounded number of atomic steps 
of Pi, regardless of the behavior of other pro- 
cesses, assuming only that local steps of P; and 
operations on embedded shared objects termi- 
nate in bounded time. (The reader is referred to 
[L86a, H88, AG88] for discussions and proposed 
definitions of wait-freedom.) 



2.1 A Specification of Single-Writer 
Snapshot Memories 

Following [LT87, H88], a single-writer atomic 
snapshot memory for n processes and a 
particular value set Value is an automaton 
with two types of input Request actions: 
UpdateRequest; and ScanRequest;, and two 
types of output Return actions: UpdateReturni 
and ScanReturn;( br , -.., v,), for any i E {Ln}, 
and for all v,v~, . . . . w, E Value. These actions 
are called the interface snapshot actions. 

The-formal specification of single-writer snap- 
shot memory is based on a particular automa- 
ton, SWS. In addition to the interface snap- 
shot actions, SWS has two types of internal ac- 
tions, Update;(w), and Scani(q, . . . . o,), for any 
i f {l..n} and for all v,q, . . ..vun E Value. The 
states of SWS contain an n-entry array Mem of 
type Value and n interface variables H;. The 
interface variables may hold as value any of the 
interface snapshot actions, or a special value 1. 

Process P; interacts with SWS by issuing a re- 
quest (an UpdateRequest; or ScanRequest; 
action). The result is to store the input ac- 
tion in the variable Hi, enabling the appropriate 
internal action (Update;(w) or Scan;(vr, . . . . Q)). 
The internal action in turn assigns an ap- 
propriate output action to Hi, and in the 
case of Updai+( zI), assigns o to Memi as 
well. The change to the interface value H; en- 
ables the appropriate output (UpdateReturn; or 
ScanReturq(vr , . . . . z)~) action). Initially, each 

Hi = I and Memi = Vinit f Value. 
The steps of SWS appear in Figure 1, with the 

convention that actions without preconditions 
are always enabled (e.g., input actions), and that 
state components not explicitly described in the 
effect of an action are presumed to retain their 
old value. 
Note that, while requests and returns by differ- 
ent processes may be interleaved, these actions 
only alter the interface variables for the associ- 
ated processes. The “real” work is done by the 
atomic internal actions, formalizing the intuition 
that operations of atomic memories can be as- 
sumed to have occurred at some instant between 
the invocation and response. Accordingly, an op- 

;TpdateRequest;;( v) 

Effect: Hi := UpdateRequest; 

Update;(v) 

Precondition: Hi = UpdateRequesti(V) 

Effect: Mem[i] := v 

Hi := UpdateReturn; 

tJpdateReturr+ 

Precondition: Hi = UpdateReturq 

ScanRequest; 

Effect: Hi := ScanRequest; 

scan;(q, “., vn) 

Precondition: Hi = ScanRequest; 
Mem = (vl, . . ..v.) 

Effect : Hi := ScanReturn;(vr, . . . . wn) 

ScanReturn;(vr, . . . . un) 

Precondition: Hi = ScanReturni(vr, . . . . v,) 

Effect: Hi := I 

Figure 1: The SWS automaton. 
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emion of SWS in (II is said to be serialized at the 
point of its associated Update or Scan operation. 

The well-formed behaviors of SWS are those 
in which the environment never issues two 
Request; inputs without waiting for an interven- 
ing, matching Returni output. An automaton 
A implements a single-writer atomic snapshot 
memory provided A has the interface snapshot 
actions as its input and output actions, and pro- 
vided every well-formed behavior of A is also a 
behavior of SWS. * 

2.2 A Specification of Multi-Writer 
Snapshot Memories 

Multi-writer snapshot memories are straightfor- 
ward generalizations of single-writer snapshot 
memories, and can be specified analagously. 
Specifically, a multi-writer snapshot memory for 
n processes, a particular value set Value and m 
memory elements is an automaton with input ac- 
tions: UpdateReques$(k, v) and ScanRequest;, 
and output actions: UpdateReturr+ and 
ScanReturn;(ul , . . . . v,), for all i E {l..n}, k E 

(1 Y”‘, m), and v,vl , . . . . 21, E Value. 
Straightforward modifications of the automa- 

ton SWS of Figure 1 are used to constrain imple- 
mentations of multi-writer snapshot memories, 
just as SWS constrained single-writer snapshot 
memories. (The details are left to the reader.) 

3 The Unbounded 
Single-Writer Algorithm 

The algorithm is based on two observations: 
Observation 1: Suppose every update leaves 
a unique, indelible mark whenever it writes to 
the memory. If two sequential reads of the entire 
memory return identical values, where one read 
started after the first completed, then the values 
returned constitute a snapshot [PB87]. 

This observation aloBe supports a simple un- 
bounded algorithm, although one which is not 

*Alternative approaches to specifying concurrent ob- 
jects are via their serial specification [HW87] or as a set 
of axioms (cf. [L86a, M86]). Axiomatic specifications for 
snapshot memories appear in [A89a, A89b, ADS89]. 

wait-free. The kth update by processor P; sim- 
ply writes the update value v and a sequence 
number k to a shared register in a single atomic 
write. Scanners repeatedly collect the values of 
all n registers, until two such collect operations 
return identical values. By Observation 1, such 
a successful double collect is a snapshot. 

Because updates may occur between every two 
successive collect operations, this algorithm is 
not wait-free. However, the scanner may at- 
tribute every unsuccessful double collect to a par- 
ticular updating process, whose sequence num- 
ber was observed to change. Thus: 
Observation 2: If a scan sees another process 
move (complete an update) twice, that process 
executed a complete update operation within the 
interval of the scan. 

Suppose every update performs a scan and 
writes the snapshot value atomically with the 
value and sequence number. Now a scanner who 
sees two updates by the same process can borrow 
the snapshot value written by the second update. 

A straightforward implementation uses the 
following shared data structures. (See Fig- 

ure 2.) Each process P; has a single-writer, n- 
reader atomic register, pi, that Pi writes and 
all processes read. The register has three fields, 
vaZue(ri) (of type Value), seq(r;) (of type inte- 
ger) and view(r;) ( a vector of n entries of type 
Value). The valzle and view fields are initialized 
to vin;t and the seq fields are initialized to 0. 

The value of seqi is stored (locally) across invo- 
cations of update;. In addition, each scan opera- 
tion has a local vector moved, in which it records, 
for each other process, whether it has performed 
an update operation that overlapped the scan 
operation. The collect operation by any process 
i reads each register rj, j E { l..n}, in an arbi- 
trary order, returning a vector of records read, 
indexed by process id. 
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procedure scani 
begin 

0: for j = 1 to n do movedi := 0 od; 
1: ii := collect; 

/* (value, seq, view) triples */ 
2: 5 := collect; 
3: if (Vj E {l..n}) 

(seq(aj) = seq(bj)) then 
/* Nobody moved. */ 

4: return (vaZw(b~), . . ..uaZw(b.)); 
5: for j = 1 to n do 
6: if seq(aj) # seq(bj) then 

/* Pj moved */ 
7: if movedi = 1 then 

/* Pj moved once before! */ 
8: return (WieW(bj)); 

9: else movedj := movedj + 1 ; 
od; 

10: got0 line 1 ; 
end scani; 

procedure update; (value) 
begin 

1: S := scani; /* Embedded scan. */ 
2: Ti Z= (vuZue,Seqi + 1,s) ; 

end update;; 

Figure 2: The unbounded single-writer algo- 
rithm. 

3.1 Correctness Proof 

The proof strategy is to construct an explicit 
serialization. That is, given an infinite or 
finite run of the system, calls and returns 
from the update; procedures are identified with 
the UpdateRequest; and UpdateReturn; actions, 
and calls and returns from scani procedures (un- 
less called from within updates), are identified 
with the ScanRequesti and ScanReturn; ac- 
tions. The scan and update operations them- 
selves consist of sequences of more primitive 
operations that are either reads and writes of 
atomic registers, or manipulations of local data. 
The former are atomic by assumption; the latter 
are trivially atomic. Hence, an arbitrary run of 
an n-process system can be considered to be a 
(possibly infinite) q se uence of interface snapshot 
actions, and atomic reads, writes or local data 
manipulations. Given this sequence, Scani and 
Updatei actions are added so that the resulting 
sequence, projected on the actions of SWS, is a 
schedule of that automaton. Hence, the algo- 
rithm is atomic. 

Consider then any sequence (Y = 7r17rz . . . . where 
each rj is either an action of SWS, a read 
readi(rj = V) by Pi of atomic register rj re- 
turning V, a write write;(l-; = v) by P; of v 
to ri, or a local computation event. Denote by 
CQ the L-length prefix of a. Although the in- 
ternal states of the atomic register implemen- 
tations are not knowrl, for any such finite pre- 
fix ok of cu it is natural to define the state 
of the shared memory after q, or stute(cwk), 
to be the vector (al, . . ..a.), where ai is the 
value of the last write by process Pi in CQ, or 
the initial value if Pi has not yet written. If 
state(crk) = (~1, . . . . a,), then snapshot de- 
notes (vuZue(ul), . . . . vuZue(u,)). The sequence 
snapshot( snapshot(q), snupshot(cr2)... 
serves as the basis for the serialization of CY. 

The update operations are serialized at the 
same point in the run as their embedded writes. 
A scan; operation has a successful double collect 
when the test in line 3 is passed; following the 
two collects ?i := collect in line 1 and 6 := cot- 
Zect in line 2, the sequence numbers in iE and 6 
are identical. Scans with successful double col- 
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lects are serialized between the end of the collect 
in line 1 and the beginning of the second col- 
lect in line 2. Lemma 3.1 proves that the values 
returned by such a scan constitute a snapshot 
during this interval. 

Lemma 3.1 Let a = 7r17r2... be a run of the un- 
bounded algorithm in which a particular scan; op- 
eration has a successful double collect: ti := col- 
lect in line 1 and 6 := collect in line 2. Let 
r, and r, be the last read of the first collect 
and the first read of the second collect, respec- 
tively. Then for every prefix CY,, of cr, u 5 v 5 w, 
snapshot = (vaZue(bl), . . ..value(b.)). 

Proof: By contradiction. That is, suppose that 
two successive reads by Pi of rj in lines 1 and 2 
return the same sequence number, and that an 
update by Pj is serialized between the two reads. 
Since the update is serialized with its embedded 
write, a write by Pi to ri also occurs between the 
two reads. Furthermore, the sequence number in 
the second read must be strictly greater than the 
sequence number in the first read, a contradic- 
tion. The lemma follows. n 

The remaining scans return when they observe 
an updater move twice: they will be serialized in 
the same interval as the embedded scan. The 
next lemma guarantees that this interval is con- 
tained in the interval of the scan. 

Lemma 3.2 Let a = 7rl7r2... be a run of the un- 
bounded algorithm in which a particular scan; op- 
eration observes changes in process Pj ‘s sequence 
number field during two difierent double collects. 
Then the value of rj read during the last collect 
was written by a scanj operation that began after 
the first of the four collects. 

These two lemmas imply that all scans are cor- 
rectly serialized somewhere in their intervals. 

Lemma 3.3 Let (Y = x17r2... be a run of the un- 
bounded algorithm in which a particular scan; op- 
eration beginning in event 7rU returns (~1, . . ..v.) 
in event 7rW. Then snapshot(cw,) = (VI, . . . . v,) 
for some v, u 5 v 2 w. 

By the pigeon-hole principle, in n + 1 double 
collects one must be successful or some updater 
must be observed moving twice. Hence scans are 
wait-free. This in turn implies that updates are 
wait-free. 

Lemma 3.4 Every scan or update operation by 
process P; returns after O(n2) atomic steps of P;, 
Vi E {l..n}. 

This discussion is summarized in the following 
theorem. 

Theorem 3.5 The unbounded algorithm imple- 
ments a wait-free single-writer snapshot mem- 
ory. 

4 The Bounded 
Single-Writer Algorithm 

The sequence numbers in the unbounded algo- 
rithm enable scan operations to detect changes 
to the memory due to concurrent updates. To 
achieve the same effect with bounded registers, 
each scanner/updater pair of processes commu- 
nicates via two atomic bits, each written by one 
and read by the other. Before performing a dou- 
ble collect, a scan operation sets its bit equal to 
the value read in the other bit. If after the dou- 
ble collect, the bits are observed by the scanner 
to be not equal, then the updater changed its bit 
(moved) after the scanner’s first read of that bit. 

Specifically, the bounded single-writer algo- 
rithm of Figure 3 replaces the unbounded se- 
quence number field of r; with n pairs of hand- 
shake bits [P83, L86b]. That is, for each pro- 
cess pair (P;, Pj) the register r; contains the bit 
field p;,j. Additional atomic single-writer single- 
reader bits q;,j are written by P; and read by Pi- 
The qi,j bits are written when Pi scans, (to the 
values read from the pj,i bits) and the pi,j bits 
are written when Pi updates, (to the negations of 
the values read from the qj,i bits). An additional 
toggle bit, toggle(ri), is changed during every up- 
date, to ensure that each write operation changes 
the register value. 
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procedure scan; 
begin 

0: for j = 1 to n do movedj := 0 od; 
0.5: for j = 1 to n do ~i,j := pj,i(Tj) od; 

/* Handshake. */ 
1: si := collect; 

/* (value, bit vector, bit, view) tuples */ 
2: 6 := collect; 
3: if (Vj E {l..n}), 

(Pj,i(Uj> = PjJbj) = Qi,j 

and toggZe(aj) = toggZe(bj)) then 
/* Nobody moved. */ 

4: return (vaZue(bl), . . . . value(&)); 
5: else for j = 1 to n do 
6: if Pj,i(“j) # Qi,j Or Pj,iCbj) # Qi,j 

or toggle(q) # toggte(bj) then 
/* Pj moved */ 

7: if moveclj = 1 then 
/* Pj moved once before! */ 

8: return (view(bj)); 
9: else movedj := movedj + 1 ; 

od; 
10: got0 line 0.5 ; 

end scan;; 

procedure updatei (value) 
begin 

0: for j = 1 to n do fj I= ‘qj,; od; 
/* Collect handshake values. */ 

1: S := scan;; /* Embedded scan. */ 
2: r; := (value, f, +oggEe(q), 3) ; 

end update;; 

Figure 3: The bounded single-writer algorithm. 

4.1 Correctness Proof 

For this algorithm, a szlccessfvl double collect is a 
pair si := collect; 6 := collect; with all handshake 
bits pj,i = qi,j and corresponding toggle bits in 
si and 8 identical. The main issue that has to 
be argued is that the handshake and toggle bits 
guarantee that a successful double collect pro- 
duces a snapshot. This is proven in the following 
lemma. 

Lemma 4.1 Let (Y = w17r2... be a run of the 
bounded algorithm in which a particular scani 
operation has a successful double collect: a := 
collect in line 1 and b := collect in line 2. Let 
?T, and r,,, be the lust read in line 1 and the 
first read of line 2, respectively. Then for ev- 
ery prefix (Y,, of O, u < v ,< w, snapshot = 
(vaZue(bl), . . ..vuZue(b.)). 

Proof: As in the proof of Lemma 3.1, the proof 
is by contradiction. That is, suppose that two 
successive reads by .Z’i of ri in a collect pair pro- 
duce values of pj,;( rj) that are equal to qi,j’s most 
recently written value, and identical toggZe(rj)‘s. 
Assume that a write by P’ to rj is serialized be- 
tween these two atomic read operations. Con- 
sider the last such write operation by P’; being 
last, it must write the same handshake bit b and 
toggle bit t read by Pi. Since during an update 
Pj assigns to pj,; the negation of the value read 
in qi,j, that read of qi,j must have preceded Pi’s 
most recent write to qi,j of b. This implies the 
following sequence of events: 

readj(qi,j = lb), 
/* update: handshake read */ 

write;(qi,j = b), 
/* scan: handshake write */ 

read;(pj,a(rj) = b, toggZe(rj) = t) 
/* scan: first collect */ 

writej(pj,;(rj) = b, toggZe(rj) = t) 
/* update: write “/ 

read;(pj,;(ri) = b, toggZe(rj) = t). 
/* second: second collect */ 

The first operation, the read by Pi, is a part of 
the same update as the later write by Pj, which 
by assumption is the last write by Pj serialized 
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between the two reads by Pi. It follows that no 
other write operation by Pj can be serialized be- 
tween Pi’s two reads. Then the two reads by Pi of 
~j return values written by two successive writes 
by Pj, yet the toggle bits are identical, a con- 
tradiction. (The first of these writes by Pj does 
not appear in the sequence above: it is Pj’s most 
recent previous write, and must precede the first 
event of the sequence, Teedj(q;,j = lb).) Hence, 
no write operation by Pi can be serialized be- 
tween Pi’s two reads, and the claim follows. n 

The serialization, remaining lemmas and theo- 
rem from the unbounded algorithm translate di- 
rectly to the bounded algorithm. (It is important 
that each update operation changes the value, 
handshake and toggle fields in a single atomic 
write operation.) 

Lemma 4.2 Let cx = 7r17r2... be a run of the 
bounded algorithm in which a particular scan; 
operation observes changes in process Pj ‘s hand- 
shake or toggle bits during two diflerent double 
collects. Then the value of Tj read during the 
last collect was written by a scanj operation that 
began after the first of the four collects. 

Lemma 4.3 Let Q = 7r17r2... be a run of the 
bounded algorithm in which a particular scan; op- 
eration beginning in event r, returns (VI, . . . . vn) 
in event 7rW. Then snapshot(cr,) = (VI, . . . . v,J 
for some v, u < v 2 20. 

Lemma 4.4 Every scan or update operation by 
process P; returns after O(n2) atomic steps of P;, 
Vi E {l..n}. 

Theorem 4.5 The bounded algorithm imple- 
ments a wait-free single-writer snapshot mem- 
ory. 

5 The Bounded Multi-writer 
Algorithm 

Because processes may now write to any memory 
location, the handshake bits and view fields are 
uncoupled from the value fields. The latter are 
stored in multi-writer, multi-reader registers rk, 
where now the index JC is a memory address not 

related to process indices. To ensure that each 
successive write to these registers has an observ- 
able effect, an id field and toggle bit field are also 
included: successive update operations by Pi to 
word k write i in the id(rk) field and alternate 
values in the toggle field, (The id field also al- 
lows a scan operation to attribute an observed 
change to a specific process.) 

Because the handshake bits are not written 
atomically with the rk registers, a scan may 
observe changes by the same update operation 
twice: once changing the handshake bits, and 
once changing the value of a memory word. 
Hence, a scan operation must observe process Pj 
move three times before the value in viewj can 
be borrowed. 

Hence, the algorithm of Figure 4 requires a 
multi-writer multi-reader register rk for every 
memory address k E { 1, . . . , m), holding fields 
vaZue(rk), id(rk) and toggZe(rk) of type Value, 
{l..n), and boolean. In addition, for every pro- 
cess P; there are 2n single-writer multi-reader 
boolean registers pi,j and qi,j, Qj E { l..n}, and a 
single-writer multi-reader register view;, holding 
a vector of m entries each of type Value. The 
scan and update operations of a process i are 
described in Figure 4. 

5.1 Correctness Proof 

The serialization is defined as in the previ- 
ous algorithms, with updates serialized with the 
(atomic) writes to the value registers. For this al- 
gorithm, a successful double collect occurs when 
the test in line 3 is passed. This test depends on 
steps 0.5 through 2.5, recording the handshake 
bits and the shared registers rj twice: Step 0.5 
implicitly collects the values of each. pi,;, by stor- 
ing pj,; in qi,j. The next three lines explicitly 
record the values of the rk registers and the hand- 
shake bits in a, 6 and 6, respectively. The test is 
passed if the handshake bits and id, toggle fields 
of the registers contain identical values in each 
pair of respective reads. Again, the main issue 
that has to be argued is that a successful double 
collect produces a snapshot. 
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procedure scani 
begin 

0: for j = 1 to n do movedi := 0 od; 
0.5: for j = 1 to n do ~;,j := pi,; od; 

/* Handshake. */ 
1: ii := colZect(rk : k E {I,. . ., m}) ; 

/* (value, id,bit) triples */ 
2: 6 := coZlect(rk : k E (1,. . . , m}) ; 
2.5: FL := cdkct(pj,; : j E {~..KI}) ; 

/* handshake bits */ 
3: if (Vj E {l..n)) ((ri,j = hj) 

and (Vk E (1,. . . , m}) 
(id&) = id(bk)) 

and (Vk E {l,...,m}) 
(toggle(uk) = toggZe(bk)) then 

/* Nobody moved. */ 
4: return (vaZUe(bl), .,., walzle(b,)); 
5: else for j = 1 to n do 
6: if ( (Qi,j# hj) 

or ( (jk,id(bk) = j) 

(id(a) # id(h) 
or to99le(ak) # to99Wk))N 

then /* Pj moved */ 
7: if movedi = 2 then 

/* F’j moved twice before! */ 
8: ret urn (viezuj); 
9: else movedj := movedj + 1 ; 

od; 
10: got0 line 1 ; 
end scani; 

procedure updatei (k,vaEue) 
/* Process Pi writes value to word k */ 
begin 

0: for j = 1 to TZ do p;,j := ~qj,; od; 
/* Handshake. */ 

1: viewi := scani; /*Embedded scan:*/ 
/* view; is a single-writer register */ 

1.5: tk := +k; 
/* local variable t saved between calls */ 

2: rk := (value, i, tk) ; 
/* rk is a multi-writer register */ 

end update;; 

Lemma 5.1 Let (Y = 7r1~2... be a run of the 
bounded multi-writer algorithm in which a pur- 
titular scani operation has a successful double 
collect, including ii := collect in line 1 and 6 

a- collect in line 2. Let T, and rW be the last .- 
read of line 1 and the first read of line 2, respec- 
tively. Then for every prefix (Ye of CY, u 5 o 5 w, 
snupshot(cu,) = (value(bl), . . . . vaZue(b,)). 

Proof: As in the proofs of Lemmas 4.1 and 3.1, 
the proof is by contradiction. Suppose then that 
two successive reads by Pi of rk both produce 
the values id(Q) = j and toggZe(rk) = t, and the 
two reads of pj,; also produce the same value, c. 
Assume that an update to word k and hence a 
write to Tk is serialized between the two atomic 
reads of rk in lines 1 and 2. Consider the last 
such write operation: because the second read by 
P; returned id(Q) = j, this last write is by Pi. 
Since the first read by P; also returned id( rk) = j 
and the same toggle value t, there must be an- 
other intervening write by P’ to rk, with toggle 
value +, serialized between the two reads by Pi. 
It follows that the last write by Pj is part of 
an update that began after Pi’s first read of rk. 
Within that update, pj,; is set to l~i,j. Hence- 
forth, the value of pj,i cannot change until qi,j 
does, so the last read by Pi of pj,i recorded in hi 
must see it equal to lq;,j, a contradiction. Hence, 
no writes can be serialized between the two reads 
Of Tk. 

Figure 4: The bounded multi-writer algorithm. 
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The full sequence of atomic events constructed 
in this argument is as follows: 

read;(pj,; = c), 
/* Pi’s first handshake collect */ 

write;(q;,j = c), 
/* Pi’s handshake write */ 

read;(id(rk) = j, toggZe(rk) = t) 
/* Pi’s first rk collect */ 

writej(id(rk) = j, toggZe( rk) = 7t)) 
/* Pj’s toggle bit write */ 

readj(qi,j = c) 
/* Pj’s handshake read for second write */ 

writej(pj,i = ~2) 
/* Pj’s handshake write for second write */ 

writej(id(rk) = j, toggle(rk) = t)) 
/* Pj’s assumed write */ 

read;(id(rk) = j, toggle(q) = t)) 
/* Pi’s second rk collect */ 

readi(pj,; = c), 
/* Pi’s second handshake collect */ 

It follows that a scanner with a successful double 
collect can conclude that no writes are serialized 
between the last read in line 2 and the first read 
in line 3. Hence, the values read are a snapshot, 
and the lemma follows. w 

The previous lemma says that the scans with 
successful double collects can be serialized cor- 
rectly. It remains to argue that the scans which 
return borrowed values use values from scans 
that run entirely within their interval. As dis- 
cussed, the crucial embedded scan lemma must 
make concession to the non-atomicity of writes 
to the handshake and value registers. 

Lemma 5.2 Let cr = 7r17r2... be a run of the 
bounded multi-writer algorithm in which a par- 
ticular scan; operation detects changes in process 
Pj ‘S handshake bit or writes by Pj to value regis- 
ters during three different double collects. Then 
the value of viewj read by Pi after the last col- 
lect was returned by a scani operation that began 
after the first of the six collects. 

Proof: The proof of this lemma rests on the 
sequence of relevant atomic write steps that Pj 
makes in successive updates: 

write t0 pj,; 

write to VieWj 

write to rkl 

write t0 Pi,; 

write to VkUJj 

write to rkz 

Observing any three changes, in the pi,; or 
value registers, means that an intervening scan 
must have taken place and have been recorded 
in viewi. Either this scan or a more recent scan 
by Pj will be read by Pi. n 

These two lemmas imply: 

Lemma 5.3 Let (Y = 7rlx2... be a run of 
the bounded multi-writer algorithm in which a 
particular scani operation beginning in event 
7rU returns (vI,...,~,) in event 7rW. Then 

snapshot( cu,) = (VI, . . ..v.) for some 0, u 5 v < - 
W. 

As before, the pigeon-hole principle implies 
that in 2n + 1 double collects one must be suc- 
cessful or some updater must be observed moving 
three times. Hence scans are wait-free. This in 
turn implies that updates are wait-free. 

Theorem 5.4 The bounded multi-writer algo- 
rithm implements a wait-free multi-writer snap- 
shot memory. 
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6 Discussion and Directions 
for Further Research 

The distributed snapshot of Chandy and Lam- 
port [CL851 p rovides a simple solution to the sim- 
ilar problem for message-passing systems. The 
distributed snapshot algorithm has proven a use- 
ful tool in solving other distributed problems 
(see, e.g., [G86, BT84]), and it is likely snapshot 
memories will play a similar role in concurrent 
programming. 

Interestingly, distributed snapshots are not 
true instantaneous images of the global state, 
such as scans of snapshot memories produce. 
However, distributed snapshots are indistin- 
guishable, within the system itself, from true 
instantaneous images. By applying the emu- 
lators of [ABD] to the constructions presented 
in this paper, implementations of atomic snap- 
shot memory are obtained in message-passing 
systems. Snapshots obtained this way are true 
instantaneous images of the global state. In addi- 
tion, these implementations are resilient to pro- 
cess and link failures, as long as a majority of 
the system remains connected. 

Anderson [A89a, An901 has obtained, indepen- 
dently, bounded implementations of single-writer 
atomic snapshots. Memory operations in Ander- 
son’s implementation of the single-writer snap- 
shot memory perform @(an) reads and writes to 
atomic single-writer multi-reader registers, in the 
worst case. 

Anderson originally posed the multi-writer 
snapshot problem, and uses single-writer atomic 
snapshots to construct multi-writer atomic snap- 
shots [A89b, AngO]. Together with the bounded 
single-writer algorithm of this paper, this pro- 
vided the first polynomial construction of a 
shared memory object that can be instanta- 
neously checkpointed. The multi-writer algo- 
rithm of this paper gives an alternative im- 
plementation, building instead on multi-writer 
atomic registers. The efficiency of these con- 
structions may be compared by considering two 
compound constructions, tracing back to oper- 
ations on single-writer atomic registers. An- 
derson’s multi-writer algorithm, based on the 

bounded single-writer algorithm of this paper, 
requires O(n4) single-writer operations per up- 
date or scan operation in the worst case. Our 
multi-writer algorithm, based on multi-writer 
registers, in turn implemented from single-writer 
registers, requires O(n3) single-writer operations 
per update or scan operation in the worst case 
(using the most efficient known construction of 
multi-writer registers from single-writer, due to 
Li, Tromp and Vitanyi [LTV89]). It is interesting 
to speculate whether other, more efficient solu- 
tions can be found. 

Indeed, an interesting open question is the in- 
herent complexity of implementing atomic snap- 
shots, in terms of both time and space. In all 
known bounded algorithms the scanners write to 
the updaters-is this necessary? The scans do a 
large number of reads-is this also necessary? 

Another question is to find other applications 
for atomic snapshots, in addition to the ones de- 
scribed. 

The most challenging avenue of research 
seems to be the relation between the power of 
unbounded and bounded wait-free algorithms. 
Can any primitive that is not syntactically 
unboundedt be implemented using bounded 
shared memory ? Specifically, is there a uniform 
transformation of any unbounded wait-free solu- 
tion for some problem into a bounded wait-free 
solution? Even a precise definition of this class 
of problems is not obvious. 

Finally, snapshot memories, though appar- 
ently more powerful than registers, nevertheless 
have bounded wait-free implementations from 
those simple primitives. Herlihy showed that 
many interesting primitives do not have wait-free 
implementations from registers [H88]. Is it possi- 
ble to “close the gap” further, and construct yet 
more powerful primitives from registers? More 
ambitiously, is it possible to construct a hierar- 
chy of objects implementable from atomic regis- 
ters, providing a theoretical basis for the intu- 
ition that snapshot memories are more powerful 
singIe-writer registers? 
Acknowledgements: The authors would like 

tclearly, procedures that return integer or other uu- 
bounded values will not have bounded implementations. 
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