
Atomic Snapshots of Shared Memory

Yehuda Afek* Hagit Attiyat Danny DolevS

Eli Gafnis Michael Merritt f Nir Sh&vitll

Abstract

An atomic snapshot memory is a shared data
structure allowing concurrent processes to store
information in a collection of shared registers, all
of which may be read in a single atomic scan op-
eration. This paper presents three wait-free im-
plementations of atomic snapshot memory. Two
constructions implement wait-free single-writer
atomic snapshot memory from wait-free atomic
single-writer, n-reader registers. A third con-
struction implements a wait-free n-writer atomic
snapshot memory from n-writer, n-reader regis-
ters. The first implementation uses unbounded

*Tel-Aviv University and AT&T Bell Laboratories.
+ Laboratory for Computer Science, MIT. Supported

by NSF grants CCR-8611442 and CCR-8915206, by ONR
contract no N00014-85-K-0168, and by DARPA contracts
no N00014-83-K-0125 and N00014-89-J-1988.

*IBM Almaden Research Center and Hebrew
University.

STel-Aviv University and University of California, Los
Angeles, Supported by NSF Presidential Young Investiga-
tor Award under grant DCR84-51396 & matching funds
from XEROX Co. under grant W881111.

nAT&T Bell Laboratories.
IlIBM Almaden Research Center and Stanford Univer-

sity. Most of this work was performed while the author
was at the Hebrew University, Jerusalem, visiting AT&T
Bell Laboratories and the TDS group at MIT, supported
by NSF contract no CCR-8611442, by ONR contract no
N0014-85-K-0168, and by DARPA contracts no N00014-
83-K-0125 and N00014-89-J-1988.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice IS given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1990 ACM-0-89791-404-X/90/0008/0001 $1.50

(integer) fields in these registers, while the other
implementations use only bounded registers. All
operations require O(n2) reads and writes to the
component shared registers in the worst case.

1 Introduction

Obtaining an instantaneous global picture of a
system, from partial observations made over a
period of time as the system state evolves, is a
fundamental problem in distributed and concur-
rent computing. Indeed, much of the difficulty
in proving correctness of concurrent programs
is due to the need to argue based on “inconsis-
tent” views of shared memory, obtained concur-
rently with other process’s modifications. Veri-
fication of concurrent algorithms is thus compli-
cated by the need for a “non-interference” step
rOwi75, OG76]. By simplifying (or eliminating)
the non-interference step, atomic snapshot mem-
ories can greatly simplify the design and verifi-
cation of many concurrent algorithms. Examples
include exclusion problems [K78, L86c, DGS88],
construction of atomic multi-writer multi-reader
registers [VA86, Blo87, PB87, 338, LTV89], con-
current time-stamp systems [DS89], randomized
consensus [A88, AH89, ADS89, A901 and wait-
free implementation of data structures [AHgO].

This paper introduces a general formulation of
atomic snapshot memory, shared memory parti-
tioned into words written (updated) by individ-
ual processes, or instantaneously read (scanned)
in its entirety. It presents three wait-free imple-
mentations of atomic snapshot memories, con-
structed from wait-free atomic registers. (In

1

[A89a, A89b, AngO], Anderson independently in-
troduces the same notion and presents bounded
implementations. See Section 6 for a discus-
sion.) The first implementation uses unbounded
(integer) fields in these registers, and is partic-
ularly easy to understand. The second imple-
mentation uses bounded registers. Its correct-
ness proof follows the ideas of the unbounded
implementation. Both doustructions implement
a single-writer snapshot memory, in which each
word may be updated by only, one process, from
single-writer, n-reader registers.. The third algo-
rithm implements a multi-writer snapshot inem-
ory [A89b] from wait-free atomic n-writer, n-
reader registers, again echoing key ideas from
the earlier constructions. Each UJX&~ or scan
operation requires O(n2) reads and writes to the
relevant embedded atomic registers, in the worst
case.

A related data structure, multiple assignment,
allows processes to atomically update nontrivial
and intersecting subsets of the memory words,
and to read one location at a time. However,
multiple assignment has no wait-free implemen-
tation from read/write registers [HSS]. The fact
that wait-free atomic snapshot memories can
be implemented from wait-free atomic registers
stands in contrast to the impossibility results in
[H88].

Section 2 of this paper defines single-writer
and multi-writer atomic snapshot memories.
Section 3 contains an implementation of single-
writer snapshot memories from unbounded
single-writer multi-reader registers, Section 4
presents an implementation of single-writer
snapshot memories from bounded single-writer
registers, and Section 5 presents an imple-
mentation of multi-writer snapshot memories
from bounded multi-writer, multi-reader regis-
ters. Section 6 concludes with a discussion of
the results, related work and directions for fu-
ture research.

2 Atomic Snapshot Memories

Consider a shared memory divided into words,
where each word holds a data value. In the
single-writer case, there is one word for each pro-
cess, which only it writes (in its entirety) and
the others read. In the multi-writer case, any of
the words may be read or written by any of the
processes, An n-process atomic snapshot mem-
ory supports two types of operations, scqn; and
up&&;,. that are available to vch process Pi.:
Executions of scans and updates can each be
considered to have occurred as primitive atomic
events between the beginning and end of the
corresponding operation execution interval, so
that the “serialization sequence” of such atomic
events satisfies the natural semantics. That is,
each scan operation returns a vector V of values
such that each ok is the argument of the last up-
date to word Ic that is serialized before that scau.
(This variant of serializability is called “lineariz-
ability” [HW87].) This intuition is made precise
in the following subsection.

Two further restrictions are imposed on imple-
mentations of atomic snapshot memories. First,
following e.g. [L86b, H88], any snapshot im-
plementation is required to be constructed with
single-writer, multi-reader atomic registers as
the only shared objects. The single-writer al-
gorithms in Sections 3 and 4 satisfy this re-
striction directly, and the multi-writer algorithm
in Section 5 satisfies this restriction when the
embedded multi-writer registers are in turn im-
plemented with one of the previously known
constructions from single-writer registers, e.g.,
[PB87, LTV89].

The second restriction imposed on snapshot
memory implementations is that they satisfy the
property of wait-freedom [L86a, P83]. That is,
every snapshot operation by process Pi will ter-
minate in a bounded number of atomic steps
of Pi, regardless of the behavior of other pro-
cesses, assuming only that local steps of P; and
operations on embedded shared objects termi-
nate in bounded time. (The reader is referred to
[L86a, H88, AG88] for discussions and proposed
definitions of wait-freedom.)

2.1 A Specification of Single-Writer
Snapshot Memories

Following [LT87, H88], a single-writer atomic
snapshot memory for n processes and a
particular value set Value is an automaton
with two types of input Request actions:
UpdateRequest; and ScanRequest;, and two
types of output Return actions: UpdateReturni
and ScanReturn;(br , -.., v,), for any i E {Ln},
and for all v,v~, w, E Value. These actions
are called the interface snapshot actions.

The-formal specification of single-writer snap-
shot memory is based on a particular automa-
ton, SWS. In addition to the interface snap-
shot actions, SWS has two types of internal ac-
tions, Update;(w), and Scani(q, o,), for any
i f {l..n} and for all v,q,vun E Value. The
states of SWS contain an n-entry array Mem of
type Value and n interface variables H;. The
interface variables may hold as value any of the
interface snapshot actions, or a special value 1.

Process P; interacts with SWS by issuing a re-
quest (an UpdateRequest; or ScanRequest;
action). The result is to store the input ac-
tion in the variable Hi, enabling the appropriate
internal action (Update;(w) or Scan;(vr, Q)).
The internal action in turn assigns an ap-
propriate output action to Hi, and in the
case of Updai+(zI), assigns o to Memi as
well. The change to the interface value H; en-
ables the appropriate output (UpdateReturn; or
ScanReturq(vr , z)~) action). Initially, each

Hi = I and Memi = Vinit f Value.
The steps of SWS appear in Figure 1, with the

convention that actions without preconditions
are always enabled (e.g., input actions), and that
state components not explicitly described in the
effect of an action are presumed to retain their
old value.
Note that, while requests and returns by differ-
ent processes may be interleaved, these actions
only alter the interface variables for the associ-
ated processes. The “real” work is done by the
atomic internal actions, formalizing the intuition
that operations of atomic memories can be as-
sumed to have occurred at some instant between
the invocation and response. Accordingly, an op-

;TpdateRequest;;(v)

Effect: Hi := UpdateRequest;

Update;(v)

Precondition: Hi = UpdateRequesti(V)

Effect: Mem[i] := v

Hi := UpdateReturn;

tJpdateReturr+

Precondition: Hi = UpdateReturq

ScanRequest;

Effect: Hi := ScanRequest;

scan;(q, “., vn)

Precondition: Hi = ScanRequest;
Mem = (vl,v.)

Effect : Hi := ScanReturn;(vr, wn)

ScanReturn;(vr, un)

Precondition: Hi = ScanReturni(vr, v,)

Effect: Hi := I

Figure 1: The SWS automaton.

3

emion of SWS in (II is said to be serialized at the
point of its associated Update or Scan operation.

The well-formed behaviors of SWS are those
in which the environment never issues two
Request; inputs without waiting for an interven-
ing, matching Returni output. An automaton
A implements a single-writer atomic snapshot
memory provided A has the interface snapshot
actions as its input and output actions, and pro-
vided every well-formed behavior of A is also a
behavior of SWS. *

2.2 A Specification of Multi-Writer
Snapshot Memories

Multi-writer snapshot memories are straightfor-
ward generalizations of single-writer snapshot
memories, and can be specified analagously.
Specifically, a multi-writer snapshot memory for
n processes, a particular value set Value and m
memory elements is an automaton with input ac-
tions: UpdateReques$(k, v) and ScanRequest;,
and output actions: UpdateReturr+ and
ScanReturn;(ul , v,), for all i E {l..n}, k E

(1 Y”‘, m), and v,vl , 21, E Value.
Straightforward modifications of the automa-

ton SWS of Figure 1 are used to constrain imple-
mentations of multi-writer snapshot memories,
just as SWS constrained single-writer snapshot
memories. (The details are left to the reader.)

3 The Unbounded
Single-Writer Algorithm

The algorithm is based on two observations:
Observation 1: Suppose every update leaves
a unique, indelible mark whenever it writes to
the memory. If two sequential reads of the entire
memory return identical values, where one read
started after the first completed, then the values
returned constitute a snapshot [PB87].

This observation aloBe supports a simple un-
bounded algorithm, although one which is not

*Alternative approaches to specifying concurrent ob-
jects are via their serial specification [HW87] or as a set
of axioms (cf. [L86a, M86]). Axiomatic specifications for
snapshot memories appear in [A89a, A89b, ADS89].

wait-free. The kth update by processor P; sim-
ply writes the update value v and a sequence
number k to a shared register in a single atomic
write. Scanners repeatedly collect the values of
all n registers, until two such collect operations
return identical values. By Observation 1, such
a successful double collect is a snapshot.

Because updates may occur between every two
successive collect operations, this algorithm is
not wait-free. However, the scanner may at-
tribute every unsuccessful double collect to a par-
ticular updating process, whose sequence num-
ber was observed to change. Thus:
Observation 2: If a scan sees another process
move (complete an update) twice, that process
executed a complete update operation within the
interval of the scan.

Suppose every update performs a scan and
writes the snapshot value atomically with the
value and sequence number. Now a scanner who
sees two updates by the same process can borrow
the snapshot value written by the second update.

A straightforward implementation uses the
following shared data structures. (See Fig-

ure 2.) Each process P; has a single-writer, n-
reader atomic register, pi, that Pi writes and
all processes read. The register has three fields,
vaZue(ri) (of type Value), seq(r;) (of type inte-
ger) and view(r;) (a vector of n entries of type
Value). The valzle and view fields are initialized
to vin;t and the seq fields are initialized to 0.

The value of seqi is stored (locally) across invo-
cations of update;. In addition, each scan opera-
tion has a local vector moved, in which it records,
for each other process, whether it has performed
an update operation that overlapped the scan
operation. The collect operation by any process
i reads each register rj, j E { l..n}, in an arbi-
trary order, returning a vector of records read,
indexed by process id.

4

procedure scani
begin

0: for j = 1 to n do movedi := 0 od;
1: ii := collect;

/* (value, seq, view) triples */
2: 5 := collect;
3: if (Vj E {l..n})

(seq(aj) = seq(bj)) then
/* Nobody moved. */

4: return (vaZw(b~),uaZw(b.));
5: for j = 1 to n do
6: if seq(aj) # seq(bj) then

/* Pj moved */
7: if movedi = 1 then

/* Pj moved once before! */
8: return (WieW(bj));

9: else movedj := movedj + 1 ;
od;

10: got0 line 1 ;
end scani;

procedure update; (value)
begin

1: S := scani; /* Embedded scan. */
2: Ti Z= (vuZue,Seqi + 1,s) ;

end update;;

Figure 2: The unbounded single-writer algo-
rithm.

3.1 Correctness Proof

The proof strategy is to construct an explicit
serialization. That is, given an infinite or
finite run of the system, calls and returns
from the update; procedures are identified with
the UpdateRequest; and UpdateReturn; actions,
and calls and returns from scani procedures (un-
less called from within updates), are identified
with the ScanRequesti and ScanReturn; ac-
tions. The scan and update operations them-
selves consist of sequences of more primitive
operations that are either reads and writes of
atomic registers, or manipulations of local data.
The former are atomic by assumption; the latter
are trivially atomic. Hence, an arbitrary run of
an n-process system can be considered to be a
(possibly infinite) q se uence of interface snapshot
actions, and atomic reads, writes or local data
manipulations. Given this sequence, Scani and
Updatei actions are added so that the resulting
sequence, projected on the actions of SWS, is a
schedule of that automaton. Hence, the algo-
rithm is atomic.

Consider then any sequence (Y = 7r17rz where
each rj is either an action of SWS, a read
readi(rj = V) by Pi of atomic register rj re-
turning V, a write write;(l-; = v) by P; of v
to ri, or a local computation event. Denote by
CQ the L-length prefix of a. Although the in-
ternal states of the atomic register implemen-
tations are not knowrl, for any such finite pre-
fix ok of cu it is natural to define the state
of the shared memory after q, or stute(cwk),
to be the vector (al,a.), where ai is the
value of the last write by process Pi in CQ, or
the initial value if Pi has not yet written. If
state(crk) = (~1, a,), then snapshot de-
notes (vuZue(ul), vuZue(u,)). The sequence
snapshot(snapshot(q), snupshot(cr2)...
serves as the basis for the serialization of CY.

The update operations are serialized at the
same point in the run as their embedded writes.
A scan; operation has a successful double collect
when the test in line 3 is passed; following the
two collects ?i := collect in line 1 and 6 := cot-
Zect in line 2, the sequence numbers in iE and 6
are identical. Scans with successful double col-

5

lects are serialized between the end of the collect
in line 1 and the beginning of the second col-
lect in line 2. Lemma 3.1 proves that the values
returned by such a scan constitute a snapshot
during this interval.

Lemma 3.1 Let a = 7r17r2... be a run of the un-
bounded algorithm in which a particular scan; op-
eration has a successful double collect: ti := col-
lect in line 1 and 6 := collect in line 2. Let
r, and r, be the last read of the first collect
and the first read of the second collect, respec-
tively. Then for every prefix CY,, of cr, u 5 v 5 w,
snapshot = (vaZue(bl),value(b.)).

Proof: By contradiction. That is, suppose that
two successive reads by Pi of rj in lines 1 and 2
return the same sequence number, and that an
update by Pj is serialized between the two reads.
Since the update is serialized with its embedded
write, a write by Pi to ri also occurs between the
two reads. Furthermore, the sequence number in
the second read must be strictly greater than the
sequence number in the first read, a contradic-
tion. The lemma follows. n

The remaining scans return when they observe
an updater move twice: they will be serialized in
the same interval as the embedded scan. The
next lemma guarantees that this interval is con-
tained in the interval of the scan.

Lemma 3.2 Let a = 7rl7r2... be a run of the un-
bounded algorithm in which a particular scan; op-
eration observes changes in process Pj ‘s sequence
number field during two difierent double collects.
Then the value of rj read during the last collect
was written by a scanj operation that began after
the first of the four collects.

These two lemmas imply that all scans are cor-
rectly serialized somewhere in their intervals.

Lemma 3.3 Let (Y = x17r2... be a run of the un-
bounded algorithm in which a particular scan; op-
eration beginning in event 7rU returns (~1,v.)
in event 7rW. Then snapshot(cw,) = (VI, v,)
for some v, u 5 v 2 w.

By the pigeon-hole principle, in n + 1 double
collects one must be successful or some updater
must be observed moving twice. Hence scans are
wait-free. This in turn implies that updates are
wait-free.

Lemma 3.4 Every scan or update operation by
process P; returns after O(n2) atomic steps of P;,
Vi E {l..n}.

This discussion is summarized in the following
theorem.

Theorem 3.5 The unbounded algorithm imple-
ments a wait-free single-writer snapshot mem-
ory.

4 The Bounded
Single-Writer Algorithm

The sequence numbers in the unbounded algo-
rithm enable scan operations to detect changes
to the memory due to concurrent updates. To
achieve the same effect with bounded registers,
each scanner/updater pair of processes commu-
nicates via two atomic bits, each written by one
and read by the other. Before performing a dou-
ble collect, a scan operation sets its bit equal to
the value read in the other bit. If after the dou-
ble collect, the bits are observed by the scanner
to be not equal, then the updater changed its bit
(moved) after the scanner’s first read of that bit.

Specifically, the bounded single-writer algo-
rithm of Figure 3 replaces the unbounded se-
quence number field of r; with n pairs of hand-
shake bits [P83, L86b]. That is, for each pro-
cess pair (P;, Pj) the register r; contains the bit
field p;,j. Additional atomic single-writer single-
reader bits q;,j are written by P; and read by Pi-
The qi,j bits are written when Pi scans, (to the
values read from the pj,i bits) and the pi,j bits
are written when Pi updates, (to the negations of
the values read from the qj,i bits). An additional
toggle bit, toggle(ri), is changed during every up-
date, to ensure that each write operation changes
the register value.

6

procedure scan;
begin

0: for j = 1 to n do movedj := 0 od;
0.5: for j = 1 to n do ~i,j := pj,i(Tj) od;

/* Handshake. */
1: si := collect;

/* (value, bit vector, bit, view) tuples */
2: 6 := collect;
3: if (Vj E {l..n}),

(Pj,i(Uj> = PjJbj) = Qi,j

and toggZe(aj) = toggZe(bj)) then
/* Nobody moved. */

4: return (vaZue(bl), value(&));
5: else for j = 1 to n do
6: if Pj,i(“j) # Qi,j Or Pj,iCbj) # Qi,j

or toggle(q) # toggte(bj) then
/* Pj moved */

7: if moveclj = 1 then
/* Pj moved once before! */

8: return (view(bj));
9: else movedj := movedj + 1 ;

od;
10: got0 line 0.5 ;

end scan;;

procedure updatei (value)
begin

0: for j = 1 to n do fj I= ‘qj,; od;
/* Collect handshake values. */

1: S := scan;; /* Embedded scan. */
2: r; := (value, f, +oggEe(q), 3) ;

end update;;

Figure 3: The bounded single-writer algorithm.

4.1 Correctness Proof

For this algorithm, a szlccessfvl double collect is a
pair si := collect; 6 := collect; with all handshake
bits pj,i = qi,j and corresponding toggle bits in
si and 8 identical. The main issue that has to
be argued is that the handshake and toggle bits
guarantee that a successful double collect pro-
duces a snapshot. This is proven in the following
lemma.

Lemma 4.1 Let (Y = w17r2... be a run of the
bounded algorithm in which a particular scani
operation has a successful double collect: a :=
collect in line 1 and b := collect in line 2. Let
?T, and r,,, be the lust read in line 1 and the
first read of line 2, respectively. Then for ev-
ery prefix (Y,, of O, u < v ,< w, snapshot =
(vaZue(bl),vuZue(b.)).

Proof: As in the proof of Lemma 3.1, the proof
is by contradiction. That is, suppose that two
successive reads by .Z’i of ri in a collect pair pro-
duce values of pj,;(rj) that are equal to qi,j’s most
recently written value, and identical toggZe(rj)‘s.
Assume that a write by P’ to rj is serialized be-
tween these two atomic read operations. Con-
sider the last such write operation by P’; being
last, it must write the same handshake bit b and
toggle bit t read by Pi. Since during an update
Pj assigns to pj,; the negation of the value read
in qi,j, that read of qi,j must have preceded Pi’s
most recent write to qi,j of b. This implies the
following sequence of events:

readj(qi,j = lb),
/* update: handshake read */

write;(qi,j = b),
/* scan: handshake write */

read;(pj,a(rj) = b, toggZe(rj) = t)
/* scan: first collect */

writej(pj,;(rj) = b, toggZe(rj) = t)
/* update: write “/

read;(pj,;(ri) = b, toggZe(rj) = t).
/* second: second collect */

The first operation, the read by Pi, is a part of
the same update as the later write by Pj, which
by assumption is the last write by Pj serialized

7

between the two reads by Pi. It follows that no
other write operation by Pj can be serialized be-
tween Pi’s two reads. Then the two reads by Pi of
~j return values written by two successive writes
by Pj, yet the toggle bits are identical, a con-
tradiction. (The first of these writes by Pj does
not appear in the sequence above: it is Pj’s most
recent previous write, and must precede the first
event of the sequence, Teedj(q;,j = lb).) Hence,
no write operation by Pi can be serialized be-
tween Pi’s two reads, and the claim follows. n

The serialization, remaining lemmas and theo-
rem from the unbounded algorithm translate di-
rectly to the bounded algorithm. (It is important
that each update operation changes the value,
handshake and toggle fields in a single atomic
write operation.)

Lemma 4.2 Let cx = 7r17r2... be a run of the
bounded algorithm in which a particular scan;
operation observes changes in process Pj ‘s hand-
shake or toggle bits during two diflerent double
collects. Then the value of Tj read during the
last collect was written by a scanj operation that
began after the first of the four collects.

Lemma 4.3 Let Q = 7r17r2... be a run of the
bounded algorithm in which a particular scan; op-
eration beginning in event r, returns (VI, vn)
in event 7rW. Then snapshot(cr,) = (VI, v,J
for some v, u < v 2 20.

Lemma 4.4 Every scan or update operation by
process P; returns after O(n2) atomic steps of P;,
Vi E {l..n}.

Theorem 4.5 The bounded algorithm imple-
ments a wait-free single-writer snapshot mem-
ory.

5 The Bounded Multi-writer
Algorithm

Because processes may now write to any memory
location, the handshake bits and view fields are
uncoupled from the value fields. The latter are
stored in multi-writer, multi-reader registers rk,
where now the index JC is a memory address not

related to process indices. To ensure that each
successive write to these registers has an observ-
able effect, an id field and toggle bit field are also
included: successive update operations by Pi to
word k write i in the id(rk) field and alternate
values in the toggle field, (The id field also al-
lows a scan operation to attribute an observed
change to a specific process.)

Because the handshake bits are not written
atomically with the rk registers, a scan may
observe changes by the same update operation
twice: once changing the handshake bits, and
once changing the value of a memory word.
Hence, a scan operation must observe process Pj
move three times before the value in viewj can
be borrowed.

Hence, the algorithm of Figure 4 requires a
multi-writer multi-reader register rk for every
memory address k E { 1, . . . , m), holding fields
vaZue(rk), id(rk) and toggZe(rk) of type Value,
{l..n), and boolean. In addition, for every pro-
cess P; there are 2n single-writer multi-reader
boolean registers pi,j and qi,j, Qj E { l..n}, and a
single-writer multi-reader register view;, holding
a vector of m entries each of type Value. The
scan and update operations of a process i are
described in Figure 4.

5.1 Correctness Proof

The serialization is defined as in the previ-
ous algorithms, with updates serialized with the
(atomic) writes to the value registers. For this al-
gorithm, a successful double collect occurs when
the test in line 3 is passed. This test depends on
steps 0.5 through 2.5, recording the handshake
bits and the shared registers rj twice: Step 0.5
implicitly collects the values of each. pi,;, by stor-
ing pj,; in qi,j. The next three lines explicitly
record the values of the rk registers and the hand-
shake bits in a, 6 and 6, respectively. The test is
passed if the handshake bits and id, toggle fields
of the registers contain identical values in each
pair of respective reads. Again, the main issue
that has to be argued is that a successful double
collect produces a snapshot.

8

procedure scani
begin

0: for j = 1 to n do movedi := 0 od;
0.5: for j = 1 to n do ~;,j := pi,; od;

/* Handshake. */
1: ii := colZect(rk : k E {I,. . ., m}) ;

/* (value, id,bit) triples */
2: 6 := coZlect(rk : k E (1,. . . , m}) ;
2.5: FL := cdkct(pj,; : j E {~..KI}) ;

/* handshake bits */
3: if (Vj E {l..n)) ((ri,j = hj)

and (Vk E (1,. . . , m})
(id&) = id(bk))

and (Vk E {l,...,m})
(toggle(uk) = toggZe(bk)) then

/* Nobody moved. */
4: return (vaZUe(bl), .,., walzle(b,));
5: else for j = 1 to n do
6: if ((Qi,j# hj)

or ((jk,id(bk) = j)

(id(a) # id(h)
or to99le(ak) # to99Wk))N

then /* Pj moved */
7: if movedi = 2 then

/* F’j moved twice before! */
8: ret urn (viezuj);
9: else movedj := movedj + 1 ;

od;
10: got0 line 1 ;
end scani;

procedure updatei (k,vaEue)
/* Process Pi writes value to word k */
begin

0: for j = 1 to TZ do p;,j := ~qj,; od;
/* Handshake. */

1: viewi := scani; /*Embedded scan:*/
/* view; is a single-writer register */

1.5: tk := +k;
/* local variable t saved between calls */

2: rk := (value, i, tk) ;
/* rk is a multi-writer register */

end update;;

Lemma 5.1 Let (Y = 7r1~2... be a run of the
bounded multi-writer algorithm in which a pur-
titular scani operation has a successful double
collect, including ii := collect in line 1 and 6

a- collect in line 2. Let T, and rW be the last .-
read of line 1 and the first read of line 2, respec-
tively. Then for every prefix (Ye of CY, u 5 o 5 w,
snupshot(cu,) = (value(bl), vaZue(b,)).

Proof: As in the proofs of Lemmas 4.1 and 3.1,
the proof is by contradiction. Suppose then that
two successive reads by Pi of rk both produce
the values id(Q) = j and toggZe(rk) = t, and the
two reads of pj,; also produce the same value, c.
Assume that an update to word k and hence a
write to Tk is serialized between the two atomic
reads of rk in lines 1 and 2. Consider the last
such write operation: because the second read by
P; returned id(Q) = j, this last write is by Pi.
Since the first read by P; also returned id(rk) = j
and the same toggle value t, there must be an-
other intervening write by P’ to rk, with toggle
value +, serialized between the two reads by Pi.
It follows that the last write by Pj is part of
an update that began after Pi’s first read of rk.
Within that update, pj,; is set to l~i,j. Hence-
forth, the value of pj,i cannot change until qi,j
does, so the last read by Pi of pj,i recorded in hi
must see it equal to lq;,j, a contradiction. Hence,
no writes can be serialized between the two reads
Of Tk.

Figure 4: The bounded multi-writer algorithm.

9

The full sequence of atomic events constructed
in this argument is as follows:

read;(pj,; = c),
/* Pi’s first handshake collect */

write;(q;,j = c),
/* Pi’s handshake write */

read;(id(rk) = j, toggZe(rk) = t)
/* Pi’s first rk collect */

writej(id(rk) = j, toggZe(rk) = 7t))
/* Pj’s toggle bit write */

readj(qi,j = c)
/* Pj’s handshake read for second write */

writej(pj,i = ~2)
/* Pj’s handshake write for second write */

writej(id(rk) = j, toggle(rk) = t))
/* Pj’s assumed write */

read;(id(rk) = j, toggle(q) = t))
/* Pi’s second rk collect */

readi(pj,; = c),
/* Pi’s second handshake collect */

It follows that a scanner with a successful double
collect can conclude that no writes are serialized
between the last read in line 2 and the first read
in line 3. Hence, the values read are a snapshot,
and the lemma follows. w

The previous lemma says that the scans with
successful double collects can be serialized cor-
rectly. It remains to argue that the scans which
return borrowed values use values from scans
that run entirely within their interval. As dis-
cussed, the crucial embedded scan lemma must
make concession to the non-atomicity of writes
to the handshake and value registers.

Lemma 5.2 Let cr = 7r17r2... be a run of the
bounded multi-writer algorithm in which a par-
ticular scan; operation detects changes in process
Pj ‘S handshake bit or writes by Pj to value regis-
ters during three different double collects. Then
the value of viewj read by Pi after the last col-
lect was returned by a scani operation that began
after the first of the six collects.

Proof: The proof of this lemma rests on the
sequence of relevant atomic write steps that Pj
makes in successive updates:

write t0 pj,;

write to VieWj

write to rkl

write t0 Pi,;

write to VkUJj

write to rkz

Observing any three changes, in the pi,; or
value registers, means that an intervening scan
must have taken place and have been recorded
in viewi. Either this scan or a more recent scan
by Pj will be read by Pi. n

These two lemmas imply:

Lemma 5.3 Let (Y = 7rlx2... be a run of
the bounded multi-writer algorithm in which a
particular scani operation beginning in event
7rU returns (vI,...,~,) in event 7rW. Then

snapshot(cu,) = (VI,v.) for some 0, u 5 v < -
W.

As before, the pigeon-hole principle implies
that in 2n + 1 double collects one must be suc-
cessful or some updater must be observed moving
three times. Hence scans are wait-free. This in
turn implies that updates are wait-free.

Theorem 5.4 The bounded multi-writer algo-
rithm implements a wait-free multi-writer snap-
shot memory.

10

6 Discussion and Directions
for Further Research

The distributed snapshot of Chandy and Lam-
port [CL851 p rovides a simple solution to the sim-
ilar problem for message-passing systems. The
distributed snapshot algorithm has proven a use-
ful tool in solving other distributed problems
(see, e.g., [G86, BT84]), and it is likely snapshot
memories will play a similar role in concurrent
programming.

Interestingly, distributed snapshots are not
true instantaneous images of the global state,
such as scans of snapshot memories produce.
However, distributed snapshots are indistin-
guishable, within the system itself, from true
instantaneous images. By applying the emu-
lators of [ABD] to the constructions presented
in this paper, implementations of atomic snap-
shot memory are obtained in message-passing
systems. Snapshots obtained this way are true
instantaneous images of the global state. In addi-
tion, these implementations are resilient to pro-
cess and link failures, as long as a majority of
the system remains connected.

Anderson [A89a, An901 has obtained, indepen-
dently, bounded implementations of single-writer
atomic snapshots. Memory operations in Ander-
son’s implementation of the single-writer snap-
shot memory perform @(an) reads and writes to
atomic single-writer multi-reader registers, in the
worst case.

Anderson originally posed the multi-writer
snapshot problem, and uses single-writer atomic
snapshots to construct multi-writer atomic snap-
shots [A89b, AngO]. Together with the bounded
single-writer algorithm of this paper, this pro-
vided the first polynomial construction of a
shared memory object that can be instanta-
neously checkpointed. The multi-writer algo-
rithm of this paper gives an alternative im-
plementation, building instead on multi-writer
atomic registers. The efficiency of these con-
structions may be compared by considering two
compound constructions, tracing back to oper-
ations on single-writer atomic registers. An-
derson’s multi-writer algorithm, based on the

bounded single-writer algorithm of this paper,
requires O(n4) single-writer operations per up-
date or scan operation in the worst case. Our
multi-writer algorithm, based on multi-writer
registers, in turn implemented from single-writer
registers, requires O(n3) single-writer operations
per update or scan operation in the worst case
(using the most efficient known construction of
multi-writer registers from single-writer, due to
Li, Tromp and Vitanyi [LTV89]). It is interesting
to speculate whether other, more efficient solu-
tions can be found.

Indeed, an interesting open question is the in-
herent complexity of implementing atomic snap-
shots, in terms of both time and space. In all
known bounded algorithms the scanners write to
the updaters-is this necessary? The scans do a
large number of reads-is this also necessary?

Another question is to find other applications
for atomic snapshots, in addition to the ones de-
scribed.

The most challenging avenue of research
seems to be the relation between the power of
unbounded and bounded wait-free algorithms.
Can any primitive that is not syntactically
unboundedt be implemented using bounded
shared memory ? Specifically, is there a uniform
transformation of any unbounded wait-free solu-
tion for some problem into a bounded wait-free
solution? Even a precise definition of this class
of problems is not obvious.

Finally, snapshot memories, though appar-
ently more powerful than registers, nevertheless
have bounded wait-free implementations from
those simple primitives. Herlihy showed that
many interesting primitives do not have wait-free
implementations from registers [H88]. Is it possi-
ble to “close the gap” further, and construct yet
more powerful primitives from registers? More
ambitiously, is it possible to construct a hierar-
chy of objects implementable from atomic regis-
ters, providing a theoretical basis for the intu-
ition that snapshot memories are more powerful
singIe-writer registers?
Acknowledgements: The authors would like

tclearly, procedures that return integer or other uu-
bounded values will not have bounded implementations.

11

to thank Maurice Herlihy and Nancy Lynch for

helpful discussions.

References

w31

[ASSal

[A89b]

[An901

[AGBB]

[AH891

WI

[AH901

WDI

[ADS891

K. Abrahamson, “On Achieving Consensus
Using a Shared Memory,” Proc. 7th ACM
Symp. on Principles of Distributed Comput-
ing, 1988, pp. 291-302.

J. H. Anderson, “Composite Registers,”
TR-89-25, Department of Computer Sci-
ence, The University of Texas at Austin,
September 1989.

J. H. Anderson, “Multiple-Writer Compos-
ite Registers,” TR-89-26, Department of
Computer Science, The University of Texas
at Austin, September 1989.

J. H. Anderson, ‘Composite Registers,”
Proc. 9th ACM Symp. on Principles of Dis-
tributed Computing, 1990, this proceedings.

J. H. Anderson, and M. G. Gouda, “The
Virtue of Patience: Concurrent Program-
ming With and Without Waiting,” unpub-
lished manuscript, Dept. of Computer Sci-
ence, Austin, Texas, January 1988.

J. Aspnes, and M. P. Herlihy, “Fast Ran-
domized Consensus using Shared Memory,”
Journal of Algorithms, September 1990, to
appear.

J. Aspnes, “Time- and Space-Efficient Ran-
domized Consensus,” Proc. 9th ACM Symp.
on Principles of Distributed Computing,
1990, this proceedings.

J. Aspnes and M. P. Herlihy “Wait-
Free Data Structures in the Asynchronous
PRAM Model,” Proc. of the 2nd Annual
Symposium on Parallel Algorithms and Ar-
chitectures, July 1990, Crete, Greece, to ap-
pear.

H. Attiya, A. Bar-Noy and D. Dolev, “Shar-
ing Memory Robustly in Message-Passing
Systems,” Proc. 9th ACM .!?ymp. on Prin-
ciples of Distributed Computing, 1990, this
proceedings.

H. Attiya, D. Dolev, and N. Shavit,
“Bounded Polynomial Randomized Con-
sensus,” Proc. 8th ACM Symp. on Prin-
ciples of Distributed Computing, 1989, pp.
281-293.

12

[BT84]

[Blo87]

[CL851

[DGS88]

[DS89]

WY

P81

[HW87]

W781

[LSSa]

[L86b]

[LSSC]

G. Bracha, and S Toueg, “A Distributed
Algorithm for Generalized Deadlock Detec-
tion” Proc. 3rd ACM Symp. on Principles
of Distributed Computing, 1984, pp. 285-
301.

B. Bloom, “Constructing Two-
Writer Atomic Registers,” Proc. 6th ACM
Symp. on Principles of Distributed Comp-
uting, 1987, pp. 249-259.

K. M. Chandy and L. Lamport, “Dis-
tributed Snapshots: Determining Global
States of Distributed Systems,” ACM
Transactions on Computing Systems, pages
63-75, February 1985.

D. Dolev, E. Gafni, and N. Shavit, “Toward
a Non-Atomic Era: &Exclusion as a Test
Case,” Proc. 20th Annual ACM Symp. on
the Theory of Computing, 1988, pp, 78-92.

D. Dolev, and N. Shavit, “Bounded Con-
current Time-Stamp Systems Are Con-
structible!” Proc. 21th Annual ACM Symp.
on Theory of Computing, 1989, pp. 454-
465.

E. Gafni, “Perspective on Distributed Net-
work Protocols: A Case for Building
Blocks,” MILCOM ‘86, October 1986,
Monterey, California.

M. P. Herlihy, “Wait Free Implementations
of Concurrent Objects,” Proc. 7th ACM
Symp. on Principles of Distributed Comput-
ing, 1988, pp. 276-290.

M. P. Herlihy and J. M. Wing, “Axioms for
Concurrent Objects,” l&h ACM Symp. on
Principles of Programming Languages, Jan-
uary 1987, pp. 13-25.

H. P. Katseff, “A New Solution to the Crit-
ical Section Problem,” Proc. I&h AnnzlaI
ACM Symp. on the Theory of Computing,
1978, pp. 86-88.

L. Lamport, “On Interprocess Communica-
tion. Part I: Basic Formalism,” Distributed
Computing I, 2 1986, 77-85.

L. Lamport, “On Interprocess Communi-
cation. Part II: Algorithms,” Distributed
Computing 1, 2 1986, pp. 86-101.

L. Lamport, “The Mutual Exclusion Prob-
lem. Part II: Statement and Solutions,”
J. ACM 33, 2 1986, pp. 327-348.

[LT87] N. Lynch and M. Tuttle. “Hierarchical
Correctness Proofs for Distributed Algo-
rithms.” Proc. 6th ACM Symp. on Prin-
ciples of Distributed Computation, 1987,
pp. 137-151. Expanded version: Technical
Report MIT/LCS/TR-387, Laboratory for
Computer Science, Massachusetts Institute
Technology, Cambridge, MA., April 1987.

[LTV891 M. Li, J. Tromp and P. M.B. Vitanyi, “How
to Share Concurrent Wait-Free Variables,”
SCALP 1989. Expanded version: Report
CS-R8916, CWI, Amsterdam, April 1989.

W361 J. Misra, “Axioms for Memory Access in
Asynchronous Hardware Systems,” ACM
Transactions on Programming Languages
and Systems, Vol. 8, No. 1 (January 1986),
pp. 142-153.

[OG76] S. Owicki and D. Gries, “An Axiomatic
Proof Technique for Parallel Programs,”
Acta Informutica, 6(1):319-340, 1976.

[Owi75] S. Owicki, A raomatic Proof Techniques for
Parallel Programs. PhD thesis, Cornell Uni-
versity, August 1975.

[P831 G. L. Peterson, “Concurrent Reading While
Writing,” ACM Transactions on Program-
ming Languages and Systems, Vol. 5, No. I
(January 1983,), pp. 46-55.

[PBS71 G. L. Peterson, and J. E. Burns, “Concur-
rent Reading While Writing II : The Multi-
Writer Case,” Proc. 28th Annual IEEE
Symp. on Foundations of Computer Sci-
ence, 1987, pp. 383-392.

w31 R. Schaffer, “On the Correctness of Atomic
Multi-Writer Registers,” MIT/LCS/TM-
364, June 1988.

[VA861 P. M. B. Vitanyi and B. Awerbuch, “Atomic
Shared Register Access by Asynchronous
Hardware,” Proc, 27th IEEE Annual Symp.
on Fozlndations of Computer Science, pp.
233-243, 1986.

13

