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memory. The first Implementatlcm m this paper uses unbounded (integer) flcld~ In these register<,
and ]s particularly eaiy to understand. The second ]mplementatwn uses bounded registers. Its

correctness proof follows the Ideas of the unbounded ]mplcmentatlon. Both constructions
implement a single-writer snapshot memory. m which each word m.q bc updated by only onc

process, from single-wnter. /z-reader registers. The third algorithm ]mplements a multl-wrltm

snapshot memory from atomic n-wnter, n-reader reg]sters. agwn echoing key ]Llcas from the
earher constructions. All operations require (!)(nz ) reads and wrltcs to the component shared
reg]sters m the worst case.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: De~lgn Sty Ies—Jzarcd rru+~wn;
C. 1.2 [Processor Architectures]: Multiple Dtita Stream Arch] tecturc> (Multiprocessors )—~7z~~lt~/]le-
zn.$tnlcttotz-streat?t, }rzttltcple-dattl -stre(zwz procesro~ Y (MILID); D.4. 1 [Operating Systems]: Procew
Management—co?zc~Lme/~cv, rrzzdtpvces~zng / }tt~{ltzprograt} zwzzngj wzchtcmzmtzo~l

General Terms: Algorithms. Concurrency. Shared Memozy

Additional Key Words and Phrases: Atomic, consistent state, Fault-tolerance, snapshot

1. Introduction

Obtaining an instantaneous global picture of a system, from partial observa-

tions made over a period of time as the system state evolves, is a fundamental

problem in distributed and concurrent computing. Indeed, much of the diffi-

culty in proving correctness of concurrent programs is due to the need to argue

based on “inconsistent” views of shared memory, obtained concurrently with

other process’s modifications. Verification of concurrent algorithms is thus

complicated by the need for a “noninterference” step [26, 27]. By simplifying

(or eliminating) the noninterference step, atomic snapshot memories can
greatly simplify the design and verification of many concurrent algorithms.

Examples include exclusion problems [14, 19, 20], construction of atomic multi-

writer multi-reader registers [23, 29–3 1], concurrent time-stamp systems [15],

approximate agreement [11], randomized consensus [1, 6, 7, 10] and wait-free

implementation of data structures [8],

This paper introduces a general formulation of atomic snapshot nwnoly, a

shared memory partitioned into words written (updated) by individual pro-

cesses, or instantaneously read (scanned) in its entirety. It presents three

wait-free implementations of atomic snapshot memories, constructed from

atomic registers. Anderson independently introduces the same notion and

presents bounded implementations [2–4]. Section 6 discusses relationships

between the various implementations. The first implementation in this paper

uses unbounded (integer) fields in these registers. and is particularly easy to

understand. The second implementation uses bounded registers. Its correctness

proof follows the ideas of the unbounded implementation. Both constructions
implement a single-writer snapshot memory, in which each word m~y be

updated by only one process, from single-writer, ~1-reader registers. The third

algorithm implements a multi-writer snapshot memory [3] from atomic n-writer,

n-reader registers, again echoing key ideas from the earlier constructions. Each

update or scmz operation requires O(n z ) reads and writes to the relevant

embedded atomic registers, in the worst case.

A related data structure, nwltiple msignrnent, allows processes to atomically

update nontrivial and intersecting subsets of the memory words, and to read

one location at a time. However, multiple assignment has no wait-free imple-

mentation from read/write registers [17]. The fact that wait-free atomic

snapshot memories can be implemented from atomic registers stands in con-
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trast to the impossibility results in [17]. The construction of atomic snapshot

memories (and data objects that can be built using them) sheds some light on

the borderline between what can and what can not be implemented from

atomic registers.

Section 2 of this paper defines single-writer and multiwriter atomic snapshot

memories. Section 3 contains an implementation of single-writer snapshot

memories from unbounded single-writer multireader registers, Section 4 pre-

sents an implementation of single-writer snapshot memories from bounded

single-writer registers, and Section 5 presents an implementation of multi-writer

snapshot memories from bounded multi-writer, multi-reader registers. Sec-

tion 6 concludes with a discussion of the results, related work and directions

for future research.

2. Atomic Snamhot Memories

Consider a shared memory divided into words, where each word holds a data

value. In the single-writer case, there is one word for each process, which only

it writes (in its entirely) and the others read. In the multiwriter case, any of the

words may be read or written by any of the processes. An n-process atomic

snapshot memory supports two types of operations, scan, and update, by each

process F’,, i E {1 “ “ n}. The scant operation has no arguments and returns a

vector of n elements from an arbitrary set of data values. The upatel operation

takes a data value as an argument and does not return a value. Executions of

scans and updates can each be considered to have occurred as primitive atomic

events between the beginning and end of the corresponding operation execu-

tion interval, the call by the process and the return by the memory, so that the

“serialization sequence” of such atomic events satisfies the natural semantics.

That is, each scan operation returns a vector ~ of data values such that each

dk is the argument of the last update to word k that is serialized before that

scan. This variant of serializability is called “linearizability” [18].) This intuition

is made precise in the following subsection.

Two further restrictions are imposed on implementations of atomic snapshot

memories. The restriction can be described as the architectural restrictions

imposed on solutions (cf. [17, 21]), and requires that any snapshot implementa-

tion be constructed with single-writer, multireacier atomic registers as the only

shared objects. The single-writer algorithms in Sections 3 and 4 satisfy this

restriction directly, and the multi-writer algorithm in Section 5 satisfies this

restriction when the embedded multi-writer registers are in turn implemented

with one of the previously known constructions from single-writer registers, for

example, [23] and [29].

The second restriction imposed on snapshot memory implementations is that

they satisfy the property of wait-freedom [22, 281. That is, every snapshot

operation by process P, will terminate, regardless of the behavior of other

processes, assuming only that local steps of P, and operations on embedded

shared objects terminate. The reader is referred to [5], [17], and [~~1 for

discussions and proposed definitions of wait-freedom. The update and scan
operations implemented in this paper require at most 0( n2) local operations

and reads and writes to the component shared registers. They are thus

wait-free under any of the proposed definitions.

The next two subsections give automata-based formal specifications of snap-

shot memories. These specifications do not include the architectural restric-
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tions described above. Including them would be straightforward, though te-

dious—the interested reader is referred to [17]. Alternative approaches to

specifying concurrent objects are via their serial specification [18] or as a set of

axioms (cf. 22, 25]). Axiomatic specifications for snapshot memories appear in

[2], [3], and [15].

2.1. SPECIFICATION OF SINGLE-WRITER SNAPSHOT MEMORIES. Following

[17] and [24], a single-writer atomic snapshot memory for n processes and a

particular data set Data is an automaton with two types of input Request

actions: UpdateRequest, (d) and Scan Request,, and two types of output

Return actions: UpdateReturn,(dl,..., d.), for any i G {1,..., n}, and for all d,

d,,.. ., d,, G Data. (In brief, the actions are labels on state transitions, and

input actions must be enabled from every state –the snapshot memory cannot

prevent a process from issuing a Request, and the process cannot prevent the

memory from issuing a Request. Automata interact by identifying common

actions. ) The Request and Return actions are called the inte}face snapshot

aciions. Intuitively, the environment requests (calls) operations by issuing input

actions, and the algorithm returns answers using output actions. Formally, the

environment may be modeled as n processes, automata 1’,, ..., P., with the

snapshot memory input and output actions as complementary output and input

actions.

The formal specification of single-writer snapshot memory is based on a

particular automaton, the canonical single-writer snapshot automaton. That is, a

correct implementations S of a single-writer snapshot memory is one that the

processes cannot distinguish from the canonical automaton. If the processes

interact with S, the resulting behauior, or sequence of interface actions, is one

which could occur when interacting with the canonical automaton.

In addition to the interface snapshot actions, the canonical automaton has

two types of internal actions, Updatel( d), and Scan, (all,. . . . d,,), for any

iG {l,..., n} and for all d, d,, . . ., d,, ~ Data. The states of the canonical
automaton contain an n-entw array Menz of the type Data and n interface

variables H,. The interface variables may hold as value any of the interface

snapshot actions, or a special value L .

Process P, interacts with the automaton by issuing a request (an Up-

dataRequest,( d) or Scan Requestl action). The result is to store the input

action in the state variable ~,, enabling the appropriate internal action

(Update,(d) or Scan, (all,... , d.)). The internal action in turn assigns an

appropriate output action to H,, and in the case of Update,(d), assigns d to

Mere, as well. The change to the interface value H, enables the appropriate
output (UpdateReturn, or Scan Return[(cil, . . . . d,, ) action). Initially, each
H, = L and A4em, = dln,t E Data.

The steps of the canonical single-writer snapshot automaton appear in

Figure 1, with the convention that actions without preconditions are always

enabled (e.g., input actions), and that state components not explicitly described

in the effect of an action are presumed to retain their old value. Note that,

while requests and returns by different processes may be interleaved, these

actions only alter the interface variables for the associated processes. The

“real” work is done by the atomic internal actions, formalizing the intuition

that operations of atomic memories can be assumed to have occurred at some

instant between the invocation and response. Accordingly, an operation of the
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UpdateRequest, (d) Scan Request,

Effect: H, := UpdateRequest, (d) Effect: H, := Scan Request,

Update,(d) Scan, (do,...,).)

Precondition: H, = UpdateRequest, (d) Precondition: H, = ScanRequest,

Effect: Mern[i] := d Mern = (all,..., d~)

H, := UpdateReturn, Effect: H, := ScanReturn, (all, . . ..d~)

UpdateReturn, ScanReturn, (all,..., d~)

Precondition: H, =UpdateReturn, Precondition: H, = Scan Return, (all, . . ..d., )

Effect: H, := 1 Effect: H% := 1

FIG. 1. The canonical single-writer snapshot automaton.

canonical automaton in a is said to be serialized at the point of its associated

Update or Scan operation.

The well-fovned behaviors of the canonical automaton are those in which no

pair of Requestl inputs occurs without an intervening Return[ output. Intu-

itively, this means that each process has only one pending operation at any

time. An automaton S preserz~es well-fonnedness, provided it is never the first to

violate well-formedness—if no process has input two concurrent Requests,

then S will not output redundant Returns. That is, if am is a finite sequence of

interface snapshot actions that is a behavior of S, with m a single output event

and a is well formed, then am is well formed.

Definition 1. An automaton S implements a single-writer atomic snapshot

memo~y (for the appropriate number of processes and data set) if and only if S

has the interface snapshot actions as its input and output actions, S preserves

well-formedness, and provided every well-formed behavior of S is also a

behavior of the canonical single-writer snapshot automaton.

2.2. SPECI~ICATION OF MULTI-WRITER SNAPSHOT MEMORIES. Multi-writer

snapshot memories are straightforward generalizations of single-writer snap-

shot memories, and can be specified analogously. Specifically, a multi-writer

snapshot memory for n processes, a particular data set Data and m memory

elements is an automaton with input actions: UpdateRequest,(k, d), Scan-

Request,, and output actions: UpdateReturnl, Scan Return l(dl,..., d,,,), for all
i={l ,.. .,n}, k~{l, m}, and, and d,dl, ..., d,. G Data. Call these the nudti-

writer inte$ace snapshot actions. (Except for the addition of the address field k

to the UpdateRequest actions, and ScanReturn containing m rather than n

values, these are the same as the single-writer interface snapshot actions.) The

canonical multi-writer stzapshot automaton in Figure 2 is obtained via straight-

forward modifications of the canonical single-writer snapshot automaton. (The

internal Update action has the additional address field k, and the Scan action

specifies m rather than n values.) Well-formedness is defined just as for
single-writer memories.

Definition 2. An automaton S implements a multi-writer atomic snapshot

memoiy (for the appropriate number of processes and data set) if and only if S

has the multi-writer interface snapshot actions as its input and output actions,
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UpdateRequest, (k, d) Scan Request,

Effect: H, .= UpdateRequestz( k,d) Effect: H, := Scan Request,

Update, (k, d) Scan, (all,..., dm)

Preeonditlon: H, = UpdateRequest, (k, d) Precondition: H, = Scan Request,

Effect: Mem[k] := d Mern = (all,..., dm)

H, .= UpdateReturn L Effect: H, := Scan Return, (all,..., cZm,)

UpdateReturn, Scan Returnz(dl,..., din,)

Precondltiou: H, =UpdateReturn, Precondition: H, = Scan Return, (all,..., dm)

Effect: H, := 1 Effect: HZ=L

FIG.2 Thecanomcalm ulti-wrlters napshotautomaton

S preserves well-formedness, and provided every weH-formed behavior of S is

also a behavior of the canonical multi-writer snapshot automaton.

2.3. REASONING ABOUT READ / WRITE REGISTERS. A complete formal

specification must describe the details of the lower-level interface, in which

processes are permitted to reference local variables and to interact via reads

and writes to atomic read/write registers. The specifications of snapshot

memories based on canonical automata are examples of a general technique

for specifying shared atomic objects. Read/write registers are instances of

shared atomic primitives that are almost trivial to specify in this way, in which

every operation on these shared primitives is modeled as a Request action

input to the register, an internal Read and Write, and a Return action output

by the register.

An automaton that satisfies such a specification (that is, an implementation

of the appropriate canonical automaton) is indistinguishable from the canoni-

cal automaton. Thus, it is a valid proof technique to ignore any specific

implementation details of the read/write registers, and to assume that these

operations occur as atomic actions sometime within the corresponding opera-

tion interval, just as happens in the canonical automaton [18, 22, 24].

The sections that follow present the algorithms in familiar pseudo-code style.

Translating them into preconditions and effects on appropriately named inter-

nal and external actions is a straightforward but tedious exercise.

3. The Unboumled Single-Writer Algorithtn

The algorithm is based on two observations:

Obsenwtiotl 1. Suppose every update leaves a unique, indelible mark when-

ever it writes to the memoly. Then if two sequential reads of the entire

memory return identical values, where one read started after the first com-

pleted, then the values returned constitute a snapshot [29].

This observation alone supports a simple unbounded algorithm, although

one that is not wait-free. The kth update by processor P, simply writes the

update value d and a sequence number k to a shared register in a single

atomic write. Scanners repeatedly collect the values of all n registers, until two



Atomic Snapshots of Shared Memoty 879

procedure scam

begin

O: for j = 1 to n do moved[j] := O od;

1: while true do
9.J. a[l.. n] := collect

3:

/* (data, seq, view) triples. *I

b[l..n] := collect I* (data, seq, view) triples. */

4: if(Vj E{l, ..., n}) (a[j]. seq = b[j]. seq) then

5: return (b[l].data, .. .. b[n].data); /“ Nobody moved. ‘/

6: else for j = 1 to n do

7: if a[j].seq # b[j].seq then /“ P3 moved. “/

8: if moved[j] = 1 then /“ P, moved once before! “/

9: return (b[j].view);

10: else rnoved[j] := moved[j] + 1 ;

od;

od;

end sca~;

procedure update, ( data)

begin

1:s[l..n] := scan,; /“ Embedded scan. ‘/

2: r-t := (data, ~,.seq+l, s[l..n]) ;

end update,;

FIG. 3. The unbounded single-writer algorithm.

such collect operations return identical values. By observation 1, such a

successful double collect is a snapshot.

Because updates may occur between every two successive collect operations,

this algorithm is not wait-free. However, the scanner may attribute every

unsuccessful double collect to a particular updating process, whose sequence

number was observed to change. Thus:

Obsen’ation 2. If a scan sees another process move (complete an update)

twice, that process executed a complete update operation within the interval of

the scan.

Suppose every update performs a scan and writes the snapshot value

atomically with the value and sequence number. Now a scanner who sees two

updates by the same process can borrow the snapshot value written by the

second update.

A straightforward implementation uses the following shared data structures.

(See Figure 3.) Each process P, has a single-writer, n-reader atomic register, r,,

that P, writes and all processes read. The register has three fields, r-,.data (of

type Data), r, .seq (of type integer) and r, .~liew (an array of n Data values). The

data field and n entries in the uiew fields are initialized to d,,,,, and the seq

fields are initialized to O.
Each SCUM operation has a local array molled, in which it records, for each

other process, whether that process has been observed to change the memory

during the course of the scan. The collect operation by any process i reads

each register r,, j ● {1, ..., ~z}, in an arbitrary order (or in parallel), returning

an array of records read, indexed by process id.
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3.1. CORRECTNESS PROOF. The proof strategy is to construct an explicit

serialization—to construct, from every run of the unbounded algorithm, a run

of the canonical snapshot automaton that has the same behavior. That is, given

an infinite or finite well-formed run of the unbounded algorithm, calls and

returns from the update, procedures are identified with the U pdateRequest,

and UpdateReturn, actions, and calls and returns from scan, procedures

(unless called from within updates), are identified with the Scan Request, and

ScanReturnl actions. Calls to scan, procedures from within tipdates are

identified with actions ScanRequest:”t and ScanReturn:’” that are internal to

the snapshot implementation automaton, but are otherwise treated identically

to their external counterparts.

The scan and update operations themselves consist of sequences of more

primitive operations that are either manipulations of local data or reads and

writes of atomic registers. The former are trivially atomic, and can be modeled

as single actions. The latter are atomic by assumption—that is, the atomic

registers used by the algorithm are assumed to be implementations of the

canonical read\ write register automaton. Hence, it suffices to consider runs in

which these registers are actually implemented by the specific canonical

automata [24].

Hence, an arbitrary run of the unbounded algorithm can be considered to be

a (possibly infinite) sequence of interface snapshot actions, local data manipu-

lations, and interface or internal actions of the shared registers. (These are

Request actions input to the registers, internal Read and Write actions, and

Return actions output by the registers.) Given this sequence, we explicitly

identify serialization points for the snapshot operations within each operation

interval. That is, we first insert internal Update and Scan actions within the

run of the implementations. This is done so that the resulting sequence of

interface and internal snapshot actions (ignoring the local data and shared

register actions) is a run of the canonical snapshot automaton.

Consider then any sequence a = n-l~~ . . . . where each m-l is either an

interface snapshot action, a local computation event, a Request and Return for

a shared register, an internal action Read[(r, = v) by P, of atomic register r,

returning u, or an internal write Write[( r, = u) by P, of u to r,. Denote by a~

the k-length prefix of a. For any such finite prefix aL of a it is natural to

define the state of the shared memo~ after a~, or state( a~ ), to be the vector

(v,,..., v.), where u, is the value of the last write by process P, in a~, or the

initial value if P, has not yet written. (These are the values of the relevant state

components of the embedded registers, as implemented by the canoni-

cal automata. ) If state( a~ ) = (v,, . . . , u,,), then snapshot( a~) denotes
(VI data, . . . . u~.clata). As indicated, the sequence snapshot( a(,), snapshot( al ),

snapshot( a? ), . . . serves as the basis for the serialization of a.

The update operations are serialized at the same point in the run as their

embedded writes. (That is, U palate actions are inserted into the sequence at

this point. No Update action is inserted for an incomplete update that has not

yet written its register.) A scant operation has a successful double collect when

the test in line 4 is passed. That is, following the two collects a[l . . n] := collect

in line 2 and b[l . “ n] t= collect in line 3, the sequence numbers in a[l . . n]

and .b[1 . . n ] are identical. Those scans with successful double collects are

serialized between the end of the first collect in line 2 and the beginning of the

second collect in line 3. (Specifically, a Scan action is inserted between the last
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Return action from the n shared registers read in the first collect, and the first

Request action to the n shared registers read in the second collect.) Lemma

3.1 proves that the values returned by such a scan constitute a snapshot during

this interval.

LEMMA 3.1. Let a = VITZ . . . be a run of the unbounded algorithm in which

a particular scan, operation has a successfld double collect: a = [1 . . 11] := collect

in line 2 and b[l . . n] ~= collect in line 3. Let T,, and TW be the last Read of the

first collect and the first Read of the second collect, respectilel~l. Then for eLe~

prefix au of a, u < u < w, snapshot( av) = (b[l].data,..., b[n].data).

PROOF. Suppose a write by PI to r, is serialized between two successive

reads by P, or rj in lines 2 and 3. Since the sequence number in r, is

incremented with each write, the sequence number returned by the second

read will be strictly greater than that returned by the first. It follows that if the

sequence numbers are not observed to change, no write by P, is serialized

between the successive reads. This implies the result. ❑

Alternatively, a scan may return when it observes an updater move twice: it

will be serialized just after the serialization point of the embedded scan. The

next lemma guarantees that the embedded scan is entirely contained in the

interval of the enclosing scan.

LEMMA 3.2. Let a = rlITz . . . be a run of the unbounded algorithm in which

a particular scan, operation obsert~es changes in process <‘s sequence number field

during two different double collects. Then the lzdue of r] read during the last collect

was written by an update] operation that began after the first of these four collects

started.

PROOF. If two successive reads by P, or r, in lines 2 and 3 return different

sequence numbers, then at least one write by P, to r, is serialized between the

two reads. If a second pair of successive reads by P, of rj in lines 2 and 3 return

different sequence numbers, then at least one other write by ~ to r, is

serialized between this pair of reads. Process ~ writes to rj only as the final

step of each update, operation. Hence, one update, operation ended sometime

after the first read by P,, and the write step of another occurs between the last

pair of reads by Pt. Since updatej operations run serially (only one Up-

dateRequestJ is outstanding at a time), the lemma follows. ❑

These two lemmas imply that all scans can be correctly serialized somewhere

in their intervals.

LEMMA 3.3. Let a = Vlwz . . . be a run of the unbounded algorithm in which

a particular scan, operation beginning in el~ent m-Ureturns ( dl, . . . . d,, ) in eLent TW.

Then snapshot( au) = (dl,. . ., d,,) for some v, u s v < w.

PROOF. If the scan, operation has a successful double collect, the result

follows from Lemma 3.1. Assume instead the scan, operation borrows a

snapshot value read in r,. By Lemma 3.2, the snapshot value read in r, was
obtained by the scan] operation, embedded in an updatej operation, which in

turn started after the first read by P, of r, and wrote before the last read by P,

of r~. Hence, the interval of the embedded scan] is contained between the first

and last reads by P, of r,. Either the scan, operation had a successful double

collect, and the result again follows from Lemma 3.1, or there is another
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embedded stank, occurring entirely within the interval of the scan, operation,

from which P, borrowed. This argument can be applied inductively, noting that

there can be at most n concurrent operations in the system. Hence, eventually

the embedded scan must have succeeded via a successful double collect, and

the result follows by Lemma 3.1 and transitivity of containment of the embed-

ded scan intervals. ❑

By Lemma 3.3, during the interval of every complete scan operation there is

at least one state in which the data values returned were simultaneously held in

all the registers. Each completed scan is serialized at this point. (That is, an

internal Scan action is inserted into the sequence after one such state. ) The

update operations were serialized with their embedded writes and all com-

pleted scans have now been serialized. An easy induction suffices to show that

the resulting sequence of interface snapshot actions and internal Update and

Scan actions is a run of the cononical automaton.

This leaves only the wait-free requirement. By the pigeon-hole principle, in

n + 1 double collects one must be successful or some updater must bc

observed moving twice. Hence. scans are wait-free. This in turn implies that

updates are wait-free.

LEMMA 3.4. Elery scan or update operation by process P, returns after 0( H~)

atomic steps of P,, Vi = {1, ..., n}.

This discussion is summarized in the following theorem:

TFIEO~EM 3.5. The unbounded algorithnl implements a wait-free single -~vrlter

snapshot memov.

4. The Bounded Si?@e-Writer Algorithnl

The sequence numbers in the unbounded algorithm enable scan operations to

detect changes to the memory due to concurrent updates. To achieve the same

effect with bounded registers, each scanner/updater pair to processes commu-

nicates via two atomic bits, each written by one and read by the other. Before

performing a double collect, a scan operation sets its bit equal to the value

read in the other bit. If after the double collect, the bits are observed by the

scanner to be not equal, then the updater changed its bit (moved) after the

scanner’s first read of that bit.

Specifically, the bounded single-writer algorithm of Figure 4 replaces the

unbounded sequence numbers with two handshake bits per pair of processes

[22, 2S]. That is, for each process pair (P,, ~) the register r, contains the bit

field p,,, and additional atomic single-writer single-reader one-bit registers q,,
are written by PI and read by P,. The p,, bits are written when P, updates (to

the negations of the values read from the q,, bits), and the q,, bits are written

when P, scans (to the values read from the p,,, bits). An additional toggle bit,

r, toggle, k change during every update, to ensure that each write operation

changes the register value.

4.1. CORRECTNESS PROOF. For thk algorithm, a successjd double collect is

a pair a[l . . n] := collect; b[l . . n ] := collect; with all handshake bits p,,{ = q,,,

and corresponding toggle bits in a[l . . n] and b[l “ “ n] identical. The following
lemma proves that the handshake and toggle bits guarantee that a successful

double collect produces a snapshot.
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procedure sca~

begin

O: for j = 1 to n do rnoved[j] := O od;

1: while true do

1.5: for ] = 1 to n do q,,] := rl.pl , Od; /* Handshake. */

~: a[l.. n] := collect; I* (data, bit vector, toggle, vzew) tuples. */

3: b[l..n] := collecfi /+ (data, btt vector, toggle, wew) tuples. ‘/

4: if (Vj c {l,...,rt}),(a[J].Pji = b[~].P~~ = qw

and a[j].toggle = b[j].toggle) then /“ Nobody moved. “/

5: return (b[l].data, . . . . b[n]. data);

6: else for j = 1 to n do

7: if a[j].p,,, # q,, or b[jl.p~., + qliJ 1’ PJ moved. ‘/

or a[j].toggle # b[j].toggle then

8: if moved[j] = 1 then /“ P, moved once before! “/

9: return (b[j]. view);

10: else rnoued[j] := rnoued[j] + 1 ;
od;

od;
end sca~;

procedure update, ( data)

begin

O: forj=lto ndojj:=~qj, od;

1:s[l..n] := scam;

/* Collect handshake values. */

/“ Embedded scan. “/

2: r, := (data, ,f[l..n], ~r,.toggle, s[l..n]) ;

end update,;

FIG. 4. The bounded single-writer algorithm.

LEMMA 4.1. Let a = m-lm-z “s” be a run of the bounded algorithm in which a

particular scan, operation has a suecessfil doubie collect; a[~ . . n] := collect in

line 2 and b[l . “ n] := collect in line 3, Let T,, and T,,, be the last read in line 2

and the first read of line 3, respectil>ely. Then, for eLery prejix CYUof a, u < v < w,
snapshot( av) = (b[l]. data, . . . . b[n]. data).

PROOF. We argue below that if two successive collects by P, show no

change in the handshake bit p],,, than at most one write to r, can be serialized

between the two reads of r] by P,. However, if such a write occurs, it will be

observed to have changed the bit read in r, toggle. The result follows.

Suppose then that the two successive reads by P, of r, both return the value

c for YJ.pJ,,, that c is the value most recently written to q,,j, and that these same
reads return the values t~ and t2 in r, toggle, respectively. Further assume that

an update to word j, and hence a write to rj by P,, is serialized between the two

atomic reads of r~ in lines 2 and 3. Consider the last such write operation:

Being last, it must write the handshake value c and toggle value t2 to rj .p,,l and

r] toggle read by the second read of r] by P,. Since during an update P] assigns
to p,,, the negation of the value read in q, ~, that read(q(,J ) must have preceded

P,’s most recent write to ql,~ of c. This impllies two things, first that the

read(q,,, ) operation by P, is part of the same, final update operation considered
above, and secondly that any earlier update by PI must have been finished

before the write, (q,,j = c). The partial order of events in this discussion is: (The
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two initial events by P, and ~ may occur in either order, and are shown on the

same line. )

P,(scan) ~ ( l~pd(i’te)

readl(p,,l = c) read, (q,,, = 1 c) /“ Handshake read. ‘/
w~itel(q,,j = c) /‘ Handshake. ‘/

read, (r).p,,, = c, rl. toggle = t]) /’ First collect. ‘/

write, (r] .pJ1 = c, rl. toggle = t?) /+ Write. ‘/
read, (rl.pi,, = c, rl. toggle = t~) /’ Second collect. ‘/

It follows that no other write operation by P, can be serialized between P,’s

final two reads of r,. Then, these two reads by P, of r, return values written by

two successive writes by P,, so the toggle bit values returned must be different,

tl + t2.(The first of these writes by P, does not appear in the sequence above:

It is ~’s most recent previous write, and must precede the first operation by ~,

the read, (ql,, = 1 c).) ❑

The serialization, remaining lemmas, and theorem from the unbounded

algorithm translate directly to the bounded algorithm. (It is important that

each update operation changes the data, handshake, and toggle fields in a

single atomic write operation.)

LEMMA 4.2. Let a = rlrz “”” be a run of the bounded algorithm in which a

particular scan, operation obsen,es changes in process PI’s handshake or toggle bits

during two different double collects. Then the l’alue of r, read during the last collect

was written by an update] operation that began after the first of these four collects

started.

LEMMA 4.3. Let a = mlrrz ““. be a ran of the bounded algorithm in which a

particular scan, operation beginning in el’ent n,, returns(dl, . . . . d,, ) in el)ent Ww.

Then snapshot( a.) = (dl,. . ., d,, ) for some u, u s v s w.

LEMMA 4.4. E1’e~ scatl or update operation by process P, returns after O(n”)

atomic steps of P,, Vi G {1, ..., n}.

LEMMA 4.5. The bounded algorithm inlplements a wait-free single-writer sltap-

shot memo~.

5. The Bounded Multi-Writer Algorithm

Because processes may now write to any memo~ location. the handshake bits

and ~’iew fields are uncoupled from the data fields. The latter are stored in

multi-writer, multi-reader registers r~, where now the index k is a memory

address not related to process indices. To ensure that each successive write to

these registers has an observable effect, an id field and toggle bit field are also

included: Successive update operations by P, to word k write i in the rk .id field

and alternate values in the toggle field. (The id field also allows a scan

operation to attribute an observed change to a specific process. )

Because the handshake bits are not written atomically with the rk registers, a

scan may observe changes by the same update operation twice: once changing

the handshake bits, and once changing the value of a memory words. Hence, a
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procedure scaq

begin

O: for j = 1 to n do mcwed[j] := O od;

1: while true do

1.5: for ~ = I to n do q,~ := p],, Od; /“ Handshake. */
2: a[l. m] := collect(r~ : k & {1, ,m}) ;

3:
/* (data, td, toggle) triples. */

b[l..rn] := collect(r~ : k ~ {l,... ,m}) ; /w (data, zd, toggle) triples. ‘/
3.5: h[l..n] := collect(pj,, : j 6 {1, . . . ,n}) ; /“ Handshake bits. ‘/
4: if (V.IE {1,.. . ,n}) (9t,J = h[.7])

and (Vk E {1, . . . ,wL}) (a[k].d = b[k].td) /“ Nobody moved. “/

and (V.k 6 {1, ,wL}) (a[k].toggle = b[k].toggle) then

5: return (b[l]. data, ,.., b[m].data);

6: else for j = 1 to n do

7: if ( (q,,j# h[j]) or ( (Sk, b[k].ld= ~) j’ PI moved. “j

(a[k].zd # b[ls].id or a[k].toggle # b[,k].toggle) )) then

8: if moued[j] = 2 then /“ P, moved twice before! “/

9: return (weto, );

10: eke ?notied[j] := moved[j] + 1;
od;

od;

end sca~;

procedure update, (k, data) /’ Process P, writes data to memory word k. “/
begin

O: for j = 1 to n do P,,j := =q~,, od; /* Handshake. “/
1: uLew, := scan~; /* Embedded scan: view, is a single-writer register. */

1.5: tog[k] := ltog[k]; /’ Local variable tog[l..n] saved between calls, */
2: r~ = (data, L,tog[k]) ; /= r~ is a multi-writer register. */

end update,;

FIG. 5. The bounded multi-writer algorithm.

scan operation must observe process P, move three times before the value in
J

~)iew, canbe borrowed. -

Hence, the algorithm of Figure 5 requires a multi-writer multi-reader regis-

ter r~ for every memory address k G {1,..., m}, holding fields r~ data, r~ .id

and r~ toggle of type Data, {1, . . . . n}, and Boolean. In addition, for every

process P,, there are 2n single-writer multi-reader Boolean registers p,,,. and

q,,,, Vj ● {l,..., n], and a single-writer multi-reader register ~’iewl, holding a

vector of m Data values. The scan and update operations of a process i are

described in Figure 5.

5.1. CORRECTNESS PROOF. The serialization is defined as in the previous

algorithms, with updates serialized with the (atomic) writes to the data regis-

ters. For this algorithm, a successful double collect occurs when the test in line

4 is passed. This test depends on steps 1.5 through 3.5, recording the hand-

shake bits and the shared registers r~ twice: Step 1.5 implicitly collects the

values of each pJ,,, by storing p,,, in q,,,. The next three lines explicitly record
the values of the r~ registers and the handshake bits in a[l . . m], b[l 00 m], and

h[l “ “ n], respectively. The test is passed if the handshake bits and id, toggle

fields of the registers contain identical values in each pair of respective reads.

Again, the main issue that has to be argued is that a successful double collect

produces a snapshot.
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LEMMA 5.1. Let a= Tlrrz ““. beatli~z oft~lebollnded t?tlllti-iiritera lgorit}~m

in ~vhich a particular scan, operation has a successjld double collect, including

a[l “ “ m] := collectitl line 2 andb[l “ . m] := collect in line 3. Let m-,, and r,, be

the last read of line 2 and the first read of line 3, respectil’ely. Then, for euely

prefti au of CY,LL < v < w, snapshot( a,,) = (b[ll.data,. . . . b[ml.data).

PROOF. As in the proof of Lemma 4.1, we argue below that if two succes-

sive collects by P, return a[k]. id = b[k]. id = j and show no change in the

handshake bit p],,, then at most one write to r~, by <, can be serialized

between the two reads of r~ by P,. However, if such a write occurs, it will be

observed to have changed the bit read in r~ toggle. The result follows.

Suppose then that the two successive reads by P, of rk return the values t,

and t2 in r~ toggle, respectively, and the two associated reads of p,,, return the

same value, c. Further assume that an update to work k, and hence a write to

r~, is serialized between the two atomic reads of r~ in lines 2 and 3. Consider

the last such write operation: Being last, it must be a write by P, writing the id

value j, and toggle bit t2 read by the second read of rk by P,. The final read by

P, of p],, returns c, the result of an earlier write by P] during an update. Since
during an update < assigns to p], the negation of the value read in q,,,, that

read( q,,]) must have read 1 c, and so must have proceeded P,’s most recent

write to q,,J of c. This implies two things, first that the read( q,, ) operation by

~ is part of the same, final update operation considered above, and secondly

that any earlier update by PJ must have been finished before the write,( q,,J = c).

The partial order of events in this discussion is:

P,(scan) PJ( updute)

reud, ( p],, = c) readj(q,,j = = c) /+ Handshake reads. ‘/

u’rite, (q,,, =C) writeJ ( p] , = c) /“ Handshake writes. “/

readl(rL .id = j, rL toggle = t,) /’ First collect of rk in line .2. ‘/

write, ( r,. .ld = j, rk toggle = tz ) /’ Write. ‘/

readl(rk. id = j, r~ toggle = t?) /* Second collect of rk in line 3. ‘/

readl( P],, = c) /“ Second handshake collect. “/

It follows that no other write operation by P, can be serialized between Pi’s

final two reads of rL. Then these two reads by P, of r~ return values written by

two successive writes by P,, so the toggle bit values returned must be different,

t,# t2.(The first of these writes by P, does not appear in the sequence above:

It is P,’s most recent previous write, and must precede the first operation by ~,

the read, (q,,, = 7 c).) ❑

The previous lemma says that the scans with successful double collects can

be serialized correctly. It remains to argue that the seems that return borrowed

values use values from scans that run entirely within their interval. As

discussed, the crucial embedded sea;? lemma must make concession to the

nonatomicity of writes to the handshake and data registers.

LEMMA 5.2. Lcta= W(TZ . . . be a run of the bounded multi-writer algorithnl
i~l which a particular scatl, operation detects changes in process P]’s hatldshake bit

or writes by PI to data registers during three diflerent double collects. Then, the

l’alue of liet$; read after the last collect was written b?l a~l llpdatel opera tiotl that

began after the first of these six collect~ started.
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PROOF. The proof of this lemma rests on the sequence of relevant atomic

write steps that PI makes in successive updates;

write to p,,,

write to ~iew,

write to rA

write to p,,i

write to view;

write to r~,

Observing any three changes, in the p~,, or data registers, means that an

intervening scan must have taken place and have been recorded in Liew,,

Either this scan or a more recent scan by ~ will be read by P,. ❑

These two lemmas imply:

LEMMA 5.3. Let a = Vlnz . . . be a run of the bounded multi-writer algorithm

in which a particular scan, operation beginning in euent n-,, returns ( dl, . . . . d,,, ) in

el’ent TW. Then snapshot{ a,,) = (dl, . . . . d~ ) for some u, u < v < w.

As before, the pigeon-hole principle implies that in 2n + 1 double collects

one must be successful or some updater must be observed moving three times.

Hence, scans are wait-free. This in turn implies that Llpdates are wait-free.

THEOREM 5.4. The bounded multi-writer algorithm implements a wait-$-ee

multi-writer snapshot mento~.

6. Discussion and Directions for Further Research

The distributed snapshot of Chandy and Lamport [13] provides a simple solution

to the similar problem for message-passing system. The distributed snapshot

algorithm has proven a useful tool in solving other distributed problems (see,

e.g., [12] and [16]), and it is likely snapshot memories will play a similar role in

concurrent programming.

Interestingly, distributed snapshots are not true images of the global state:

Instead, a distributed snapshot returns one of a set of global states, each of

which occurs in a system execution that is indistinguishable to the processes

from the actual execution. This means that concurrent distributed snapshots

may return conflicting images—two or more snapshots may not both be

consistent with the process’s other observations. Scans of snapshot memories

are, by definition, simultaneously serializable with the update operations. By

applying the emulators of [9] to the constructions presented in this paper,

implementations of atomic snapshot memory are obtained in message-passing

systems. Snapshots obtained this way are true images of the global state. In

addition, these implementations are resilient to process and link failures, as

long as a majority of the system remains connected.
Anderson [2, 4] has obtained, independently, bounded implementations of

single-writer atomic snapshots. Memory operations in Anderson’s implementa-

tion of the single-writer snapshot memory perform 6)(2”) reads and writes to

atomic single-writer multi-reader registers, in the worst case.

Anderson originally posed the multi-writer snapshot problem, and uses

single-writer atomic snapshots to construct multi-writer atomic snapshots [3, 4].



888 Y. AFEK ET AL.

Together with the bounded single-writer algorithm of this paper, this provided

the first polynomial construction of a shared memory object that can be

instantaneously checkpointed. The multi-writer algorithm of this paper gives an

alternative implementation, building instead on multi-writer atomic registers.

The efficiency of these constructions may be compared by considering two

compound constructions, tracing back to operations on single-writer atomic

registers. Anderson’s multi-writer algorithm, based on the bounded single-writer

algorithm of this paper, requires @( nz ) single-writer operations per update or

scan operation in the worst case. Our multi-writer algorithm, based on multi-

writer register, in turn implemented from single-writer registers, requires

Wn3) single-writer operations per update or scan operation in the worst case

(using the most efficient known construction of multiwriter registers from
single-writer, due to Li et al. [23]). It is interesting to speculate whether other,

more efficient solutions can be found. 1

Indeed, an interesting open question is the inherent complexity of imple-

menting atomic snapshots, in terms of both time and space. In all known

bounded algorithms, the scanners write to the updaters—is this necessary? The

scans do a large number of reads—is this also necessary?

Another question is to find other applications for atomic snapshots, in

addition to the ones already known.

The most challenging avenue of research seems to be the relation between

the power of unbounded and bounded wait-free algorithms. Can any primitive

that is not syntactically unbounded be implemented using bounded shared

memory? Specifically is there a uniform transformation of any unbounded

wait-free solution for some problem into a bounded wait-free solution? Even a

precise definition of this class of problem is not obvious.

Finally, snapshot memories, though seemingly more powerful than registers,

nevertheless have bounded wait-free implementations from those simple primi-

tives. In a paper that constructed a computability hierarchy of atomic primi-

tives, Herlihy showed that many interesting primitives do not have wait-free

implementations from registers [17]. Is it possible to “close the gap” further,

and construct yet more powerful primitives from registers? More ambitiously,

is it possible to construct a complexity hierarchy of objects implementable from

atomic registers, with natural notions of reduction and robust cost measures?

Such a theory might provide a theoretical basis for the intuition that snapshot

memories are more powerful than single-writer registers,
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