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1. INTRODUCTION

The notion of counting is central to a number of basic multiprocessor

coordination problems, such as dynamic load balancing, barrier synchroniza-

tion, and concurrent data structure design. (See Freudenthal and Gottlieb

[1991] for further examples.) For our purposes, a counter is an object that

holds an integer value and provides a fetch-and-increment operation that

increments the counter’s value and returns its previous value. The values

returned may represent addresses in memory, loop or array indices, program

counters, or destinations on an interconnection network.

It is difficult to design software counting techniques that scale well. The

challenge is how to ensure that the counter’s throughput continues to in-

crease as the level of concurrency increases. There are two reasons why it is

difficult for throughput to keep up with concurrency: contention in memory

and interconnect, and unwanted serialization (i.e., absence of parallelism). In

this article, we present the results of an experimental investigation of the

scalability of a variety of software counting techniques. We consider five basic

techniques:

(1) Lock-based counters, encompassing both test-and-test-and-set [Rudolph
and Segall 1984] locks with exponential backoff [Agarwal and Cherian

1989; Aspnes et al. 1991; Graunke and Thakkar 1990], and a version of

the MC’S queue lock that relies only on atomic swaps [Mellor-Crummey

and Scott 1991].

(2) A message-based counter, in which a single processor increments the
counter in response to messages.

(3) A queue-based counter, which is a version of the MCS queue lock

[Mellor-Crummey and Scott 1991] optimized for distributed counting.

(4) Software combining trees [Goodman et al. 1989; Yew et al. 1987].

(5) Counting networks [Aspnes et al. 19911.

For each technique, we ran a series of simple benchmarks on a simulated

64-processor Alewife machine [Agarwal et al. 1995], a cache-coherent dis-

tributed-memory machine currently under development at MIT. Our experi-

ments were done on the ASIM simulator, an accurate cycle-by-cycle simulator

for the Alewife architecture. ASIM is the principal simulator used by the

Alewife research group.

Each of the techniques we consider has been independently proposed as a

way to perform scalable synchronization in highly concurrent systems. Here,

for the first time, they are compared directly on a realistic, large-scale,
shared-memory multiprocessor.

Our results suggest the following:

—For a concurrent counting technique to be scalable, it must have two

distinct properties. First, it must avoid generating high levels of memory or

interconnect contention, and second, it must permit concurrent increment

operations to proceed in parallel.

—For some techniques, such as the lock-based counters, contention causes

performance to degrade substantially at higher levels of concurrency.
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Earlier experimental work on small-scale multiprocessors has shown that

spin locks with exponential backoff and queue locks both perform well for

certain kinds of problems on bus-based architectures [Anderson 1990;

Graunke and Thakkar 1990; MeIlor-Crummey and Scott 1991]. Neverthe-

less, our results indicate that these techniques do not scale well to large-

scale distributed-memory multiprocessors. As concurrency increases, both

spin locks with exponential backoff and queue locks are severely affected

by contention.

—Other techniques, such as the message- and queue-based counters, are

relatively impervious to contention, but nevertheless scale poorly because

the absence of concurrency causes throughput to plateau at a relatively low

level.

—Software combining trees and counting networks are the only techniques

we found to be truly scalable. For both techniques, throughput increases

with concurrency for as far as our experiments were able to measure.

These techniques avoid contention in the same way: by distributing syn-

chronization operations across a data structure. They support concurrency

in different ways: combining trees merge increment requests, while count-

ing networks allow multiple threads to traverse the network at the same

time.

—Although both counting networks and software combining trees have simi-

lar scaling behavior, combining trees are more susceptible to variations in

the interarrival times of increment requests because two requests arriving

at a node must arrive within a small time window for combining to occur.

Additionally, locks that are held for a significant amount of time at the

combining-tree nodes may block progress up the tree.

—Combining trees and counting networks can be implemented either in

distributed shared memory or directly by message passing and interproces-

sor interrupts. For both combining trees and counting networks, message

passing outperforms shared memory substantially.

We note that the combining tree can compute a general Fetch-and-@

operation. However, unlike counting networks, it is not lock free: a stalled

process can inhibit other processes from making forward progress. In this

respect, counting networks have a substantial advantage over combining

trees in systems where individual processes might incur arbitrary delays, an

important property for concurrent data structure design.

A preliminary version of some of these results appeared in Herlihy et al.

[1992]. This article extends the earlier paper in the following ways.

—We revise the queue-lock-based counter to use the MCS queue lock instead

of the Anderson queue lock [Anderson 1990].

—We add an analysis of a centralized message-based counter.

—We add message-passing implementations of combining trees and counting
networks, which we have found to be the most scalable of all the tech-

niques considered.
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—We show the importance of parallelism for scalable performance of shared

data structures. We do so by comparing two distributed data structures: a

counting network and a Iinearizable counting network. The latter can

compute a general Fetch-and-m but introduces a sequential waiting chain.

—We present statistics on the combining rates for the software combining

tree.

2. TECHNIQUES FOR CONCURRENT COUNTING

Table I summarizes the five techniques we consider for shared counting. It is

convenient to classify these techniques as either centralized or distributed,

and as either sequential or parallel. A counter is centralized if its value is

kept in a unique memory location, and distributed if it is kept across a

distributed data structure. Access to the counter is sequential if requests

must update the counter in a one-at-a-time order, and parallel if multiple

requests can update the counter simultaneously.

Lock-Based Counter. In this technique, the counter is represented by a

shared memory location protected by a spin lock. To increment the counter, a

processor must acquire the lock, read and increment the memory location,

and release the lock. We consider two spin lock algorithms: test-and-test-and-

set with exponential backoff [Anderson 1990; Graunke and Thakkar 1990],

and a version of the MCS queue lock that relies only on atomic swaps

[Mellor-Crummey and Scott 1991].

Message-Based Counter. In this technique, the shared counter is repre-

sented by a private memory location owned by a unique processor. To

increment the counter, a processor sends a request message to that unique

processor and waits for a reply. The processor receiving the request message

increments the counter and sends a reply message containing the value of the

counter. Request messages are handled atomically with respect to other

request messages.

Queue-Based Counter. This technique is based on the MCS queue lock
algorithm, adapted for counting on a network-based multiprocessor. The MCS

queue lock maintains a pointer to the tail of a software queue of lock waiters.

The lock is free if it points to an empty queue and is busy otherwise. The

process at the head of the queue owns the lock, and each process on the queue

has a pointer to its successor. To acquire a lock, a process appends itself to

the tail of the queue. If the queue was empty, the process owns the lock;
otherwise it waits for a signal from its predecessor. TO release a lock, a

process checks to see if it has a waiting successor. If so, it signals that
successor; otherwise it empties the queue. See Mellor-Crummey and Scott

[1991] for further details.

The queue-based counter improves on a simple lock-based counter in the

following way. Instead of keeping the counter value in a fixed memory

location, it is kept at the processor that currently holds the lock. On releasing

the lock, that processor passes ownership of the lock and the counter value

directly to the next processor in the queue. If there is no next processor, the
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Table I. Techniques for Concurrent Counting

Centralized Sequential

Method or Distributed or Parallel

Lock-Based Counter Centralized Sequential

Message-Based Counter Centralized Sequential

Queue-Based Counter Distributed Sequential

Combining Tree Centralized Parallel

Counting Network Distributed Parallel

current value is stored in the lock. This technique combines synchronization

with data transfer and reduces communication requirements. Figure ‘1 shows

the pseudocode for this counter following the style of Mellor-Crummey and

Scott.

Software Combining Tree. In a combining tree, increment requests enter

at a leaf of the tree. When two requests arrive simultaneously at the same

node, they are combined; one process advances up the tree with the combined

request, while the other waits for the result. The combined requests are

applied to the counter when they reach the root, and the results are sent back

down the tree and distributed to the waiting processes. Hardware combining

trees were first proposed as a feature of the NYU Ultracomputer [Gottlieb et

al. 1984].

For our experiments, we implemented the software combining-tree algo-

rithm proposed by Goodman et al. [1989]. This algorithm can compute a

general Fetch-and-@ operation, although we use it for the special case of

Fetch-and-Increment. A drawback of the algorithm (especially with respect to

the counting-network algorithm to be presented below) is that delays in-

curred even by a single process in traversing the tree can inhibit the progress

of all others.

Our code for this algorithm is shown in Figures 2 and 3. Because Alewife

does not have a QOSB primitive, we have omitted all calls to QOSB. We also

mark in comments a change to enhance performance of the algorithm on

Alewife and a fix to a bug in the original code. (The reader is referred to

Goodman et al. [1989] for a more-complete description of the algorithm.) An

earlier software combining-tree algorithm proposed by Yew et al. [1987] is not

suitable for implementing a shared counter because it disallows asyn-

chronous combining of requests.

We investigated two ways to implement combining trees. In a shared-mem-

ory implementation, each tree node is represented as a data structure in

shared memory. Simple test-and-set locks are used for atomically updating

the nodes. In a message-passing implementation, each tree node is private to

an individual processor that provides access to the node via message passing.

A Fetch-and-@ traverses the tree as a series of relayed messages.

Counting Network. A counting network [Aspnes et al. 1991] is a highly

concurrent data structure used to implement a counter, An abstract counting

network, like a sorting network [Cormen et al. 1990], is a directed graph
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type qnode = record
next “qnode
value : Int I m

type counter = record

qnode “ qnode // In[tmly nll
value mt

// parameter 1, below, points to a qnode record allocated
// (m an enclosing scope) In locally accessible shared memory
procedure fetch _and_add(C : ‘ counter, i Aqnode, v : mt) returns Int

value int .= acqulre_value(C, 1)
release _value(C, 1,value + v)
return value

procedure acqulre_value(C Acounter, I : “ qnode) returns Int
I -> next = nil

predecessor Aqnode = fetch_ and_store(&C -> qnode, 1)
If predecessor != nil

I -> value = nil
predecessor -> next = I // queue self and

repeat while I -> value = nll // wait for the value
return I -> value

else
return C -> value

procedure release _value(C “ counter, I “ qnode, value : mt)
If I -> next = nll

C -> value = value
old_tail ‘ qnode = fetch_ and_store(&C -> qnode, nil)
If old_tad = I return

usurper : “ qnode = fetch_ and_store(&C -> qnode, old_tall)

repeat while I -> next = nll

If usurper != ml

usurper -> next = I -> next

else
I -> next -> value = value

else
I -> next -> value = value

Fig. 1. The MCS-queue-based counter.

whose nodes are simple computing elements called balancers and whose

edges are called wires. Each token (input item) enters on one of the network’s

w < n input wires, traverses a sequence of balancers, and leaves on an

output wire. Unlike a sorting network, a w-input counting network can count

any number N >> w of input tokens even if they arrive at arbitrary times, are

distributed unevenly among the input wires, and propagate through the
network asynchronously.

For example, Figure 5 shows a four-input four-output counting network.

Intuitively, a balancer (see Figure 4) is just a toggle mechanism that repeat-

edly forwards tokens to alternating output wires. Figure 5 shows an example

computation in which input tokens traverse the network sequentially, one

after the other. For notational convenience, tokens are labeled in arrival

order, although these numbers are not used by the network. In this network,

the first input (numbered 1) enters on wire 2 and leaves on wire 1; the second

leaves on wire 2, and so on. (The reader is encouraged to try this for
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function fetch_ and_add(counter : tree, mcr mt) returns int

// Part One

last _level, saved_ result : mt

node : tree_ node
level : mt = FiRST_LEVEL

gomg_up boolean = TRUE
repeat

node = get_ node (counter, level, pld)
Iock(node)

If nodestatus = RESULT then

unlock(node)
repeat whale nodestatus = RESULT // change : mimmize Iockmg

else If nodestatus = FREE then

nodestatus = COMBINE

unlock(node)

level = level + 1

else // COMBINE or ROOT node
last_ level = level

go!ng_up = FALSE
while going_up
// Part Two

total : int = mcr
level = FIRST_ LEVEL

repeat
visited : tree_ node = get_ node(counter, leVel, pld)

Iock(vislted)

visited, first_incr = total

if visited.wait_flag then

total = total + vmted.second_mcr
level = level + 1

while level < last_ leveI
Fig, 2. Combining-tree code: Parts one and two.

him/herself.) Thus, if on the ith output wire the network assigns to consecu-

tive output tokens the values z, i + 4, i + 2 .4,..., it is counting the number

of input tokens without ever passing them all through a shared computing

element.

Just as for combining trees, we investigated two ways to implement

counting networks in software.

(1) Shared memory. Each balancer is implemented as a binary variable in
shared memory. The value of the variable indicates the output wire on

which the next token will exit. The network wiring is kept in tables local

to each process. Each process “shepherds” a token through the network

by traversing balancers, one after the other, applying an atomic comple-

ment operation to determine which balancer to visit next. The atomic

complement is implemented in software using simple test-and-set locks
as in the combining-tree implementation. An atomic bit-complement oper-

ation would allow a lock-free implementation. The code for traversing a

network is shown in Figure 6.
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// Part Three
if node status = COMBINE then

node second _lncr = total

node walt_flag = TRUE

repeat
unlock(node)

repeat while node status = COMBINE // change mlnlmlze Iock]ng

lock (node)

while node status = COMBINE

node walt_flag = FALSE

node status = FREE
saved _ result = node result

else
saved _result = node result
node result = node result + total

unlock(node)

II Part Four
level = last_ level -1

repeat
vlslted tree_ node = get_node(counter, level, pld)

If wsrted walt_flag then

wslted status = RESULT
vwted result = saved_ result + wsked flrst_lrrcr

else
vmted status = FREE

unlock(vlslted) // bug fix. need an unlock here
level = level -1

while level > = FIRST_ LEVEL

return saved_ result

Flg 3 Combmmg-tree code. Parts three and four

lnpLlt
. .

(2)

Fig. 4 A balancer

output

1357

246

Message passing. Each balancer is implemented by variables private to a

particular processor. Balancers are assigned to processors at random with

a uniform distribution. 1 For balancers internal to the network two vari-
ables name the processors representing the destination balancers of the

output wires, and the third, binary variable indicates on which of the two

output wires the next token will exit. For output balancers, the two

variables hold counter values, and the third, binary variable indicates

which counter will be advanced by the next arriving token. A token is a

message that carries the identity of the requesting processor. A process

-—
1Comnmmcatlon delays m Alewlfe are such that It is not worthwhde trying to place nearby

balancers on nearby processors m a 64-processor configuration
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inputs

431

5

762

~14 ~15 –15

3 –-26 26

_26 3 _37

57 47 4

outputs

15

26

37

4

Fig. 5. A sequential execution of an input sequence to a bltomc network.

type balancer = record
type [INTERNAL
up : “ balancer
down Abalancer
state boolean
count lnt
lock Alock

I OUTPUT]

// mltlally O

// parameter B, below, points to an Input balancer
// of a counting network
procedure traverse_ cnet(B Abalancer)

next ‘ balancer = B
repeat

Iock(next -> lock)

next -> state = 1 - next ->

unlock(next -> lock)
If state = O

next = next -> up
else

next = next -> down
while next -> type I = OUTPUT
Iock(next -> lock)

count mt = next -> count

state

next -> count = count + WIDTH

unlock(next -> lock)
return count

Fig. 6, Code for traversing a counting network using shared-memory operations

sends a token message to an input balancer, which complements its

binary variable and forwards the token. When the token reaches an

output balancer, the processor implementing the balancer complements

its binary variable, advances the appropriate counter, and sends the

result to the original requester.

Counting networks achieve a high level of throughput by decomposing

interactions among processors into pieces that can be performed in parallel,

ACM TransactIons on Computer Systems. VCI1 13, No 4, NOTember 1995
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effectively reducing memory contention. Aspnes et al. [1991] give two

O(log2 n)-depth counting networks. In this article, we use their Bitonic

counting network, whose layout is isomorphic to the Bitonic sorting network

of Batcher [1968], Henceforth, we use “counting network” to mean “Bitonic

counting network.”

3. EXPERIMENTAL. METHODOLOGY

The MIT Alewife multiprocessor [Agarwal et al. 1995] is a cache-coherent,

distributed-memory multiprocessor that supports the shared-memory pro-

gramming abstraction. Figure 7 illustrates the high-level organization of an

Alewife node. Each node consists of a Sparcle processor [Agarwal et al. 1993],

an FPU, 64KB of cache memory, a 4MB portion of globally addressable

memory, the Caltech MRC network router, and the Alewife Communications

and Memory Management Unit (CMMU) [Kubiatowicz et al. 1994].

The CMMU implements a cache-coherent, globally shared address space

with the LimitLESS cache coherence protocol [Chaiken et al. 1991]. The

LimitLESS cache coherence protocol maintains a small, fixed number of

directory pointers in hardware and relies on software trap handlers to handle

cache coherence actions when the number of read copies of a cache block

exceeds the limited number of hardware directory pointers. The current

implementation of the Alewife CMMU has five hardware directory pointers

per cache line.

The CMMU also interfaces the Sparcle processor to the interconnection

network, allowing the use of an efficient message-passing interface for com-

munication [Kubiatowicz and Agarwal 1993]. The LimitLESS protocol relies

on this interface to handle coherence operations in software. The message

interface also allows us to use message-passing operations to implement the

synchronization operations. An incoming message traps the processor and

invokes a user-defined message handler. The message handler can be atomic

with respect to other message handlers in the style of Active Messages [von

Eicken et al. 1992].

Our experiments were done on the ASIM simulator, an accurate cycle-by-

cycle simulator for the Alewife architecture. This is the principal simulator

used by the Alewife research group. In this section, we describe the three

synthetic benchmarks we use to compare counting techniques.

31 Counting Benchmark

In this benchmark (Figure 8), each processor executes a loop that increments

a counter as fast as it can. We measure the number of satisfied increment

requests during the interval when all threads are actively issuing requests,

and we divide that by the length of the interval. From these measurements

we arrive at the average throughput of increment requests. This is the

simplest possible benchmark, producing the highest levels of concurrency and

contention.
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. A,ewife Machine

Alewife Node

Fig. 7’. An Alewife node.

procedure do_countmg(C : “ counter, Iters : int)
iint. =o

repeat

fetch _and_increment(counter)
I =1+1

while (i < iters)

Fig. 8. Counting benchmark.

3.2 Index Distribution Benchmark

Index distribution is a load-balancing technique in which processes dynami-

cally choose independent loop iterations to execute in parallel. (As a simple

example of index distribution, consider the problem of rendering the Mandel-

brot Set. Each loop iteration covers a rectangle in the screen. Because

rectangles are independent of one another, they can be rendered in parallel;

however, because some rectangles take unpredictably longer than others,

dynamic load balancing is important for performance.) A similar application

is a software instruction counter [Mellor-Crummey and LeBlanc 1989].
In this benchmark (Figure 9), n processes execute 2048 increments, where

n ranges from 1 to 64. Each process executes on one processor. Between each

increment, each process pauses for a duration randomly chosen from a

uniform distribution between O and w, where w is 100, 1000, and 5000. The

increment models a process taking an index, and the random pause repre-

sents the execution of the loop iteration for that index. This benchmark is

similar to Bershad’s benchmark for lock-free synchronization [Bershad 1991].

3.3 Job Queue Benchmark

A job queue is a load-balancing technique in which processes dynamically
insert and remove jobs from a shared queue. Each process alternates dequeu-

ing a job, working on the job for some duration, and enqueuing a job. The

ACM Transactions on Computer Systems, Vol 13, No, 4, November 1995.



354 . Maurice Herlihy et al,

procedure do_lndex(C ‘ counter, Iters : int, w : Int)

repeat
I = fetch_ and_mcrement(counter)
delay (randomo mod w)

while (I < Iters)
Fig, 9. Index distribution benchmark.

type q_elem = record
value mt
not_empty boolean // mltlally 0

Job_ array distributed array[O P-1] of q_elem
procedure do_job_queue(enq “ counter, deq “ counter, njobs mt)

enq_lndex, deq_mdex : Int
repeat

enq_mdex = fetch_ and_lncrement(enq _counter)

enq_job(enq_index mod P, generate_ jobo)
deq_mdex = fetch_ and_mcrement(deq _counter)

job = deq_Job(deq_mdex mod P)

delay (randomo mod w)
while (deq_mdex < njobs)

procedure enq_job(mdex mt, the_job job)
repeat while (job_ array [index] .not_emptY)

job_array[lndex] .value = the_ Job

job_array[mdexl .not_empty = true
procedure deq_job(lndex Int) returns lob

repeat until (job _array[lndex] .not_emPtY)

the_job : job = ]ob_array[mdex] .value

Job_ array [index] .not_empty == false
return job

Fig. 10. Job queue benchmark.

queue itself consists of an array with a flag on each element that signifies if

the element is present or not. We use full/empty bits [Smith 1981] on Alewife

to implement this flag. A head counter indicates the first full element, and a

tail counter indicating the first empty element. The elements of the array are

distributed across the machine.

A process dequeues an item by incrementing the head counter and remov-

ing one job atomically from the corresponding array position. Enqueues are

performed analogously. Note that multiple enqueue and dequeue operations

can proceed concurrently, since enqueues synchronize by incrementing the

head counter and since dequeues synchronize by incrementing the tail counter.

This benchmark (Figure 10) is structured as follows. We vary the number

of processes, P from 1 to 64. Each process, executing on one processor,
repeatedly

(1) obtains an index, m, from the head counter,

(2) dequeues a job from location m modulo P of an array of size P,

(3) pauses for a duration randomly chosen from a uniform distribution
between O and w, where w is 100, 1000, and 5000, and then

(4) obtains an index, n, from the tail counter and

(5) enqueues a new job at location n modulo P of the array of size P.
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The benchmark halts when a total of 2048 jobs have been dequeued and

executed by all the processes.

4. EXPERIMENTAL RESULTS

In this section, we present the results of running the benchmarks on various

implementations of shared counters on the Alewife simulator. All timings

assume a 33 MHz processor clock. In all experiments, we use a radix-2

combining tree with 64 leaves and a counting network of width 16, unless

otherwise stated. We first present the results for the counting benchmark.

This benchmark gives a sense of the scalability and the peak throughput of

each of the counters at different levels of concurrency. We then present the

throughput results for the index distribution and job queue benchmarks,

which illustrate how the counters would perform under more-realistic work-

loads.

4.1 Counting Benchmark

Figure 11 presents the throughput attained by each of the counting algo-

rithms. We measure the throughput during the interval when all processors

are actively incrementing the counter, thereby ignoring startup and wind-

down effects.

The results show that when concurrency is low, the spin-lock-based counter

gives the highest throughput due to the simplicity of the spin lock algorithm.

Nevertheless, when concurrency increases, throughput drops off dramati-

cally, even for locking with exponential backoff. The MCS lock counter, the

queue lock counter, and the message-based counter maintain essentially

constant throughput as concurrency increases. This scalability can be at-

tributed to queuing. In both the MCS-lock-based counter and the queue-based

counter, queuing is explicitly performed in software. In the message-based

counter, queuing occurs automatically in the processors’ input message

queues.

Because the queue-based counter combines transfer of the counter with

transfer of the lock, it produces less network traffic and outperforms the

original MCS lock counter by a factor of more than 2.5.

Finally, we observe that throughput increases with concurrency only for

combining trees and for counting networks. This increase can be attributed to

two factors: both techniques reduce contention, and both techniques permit

parallel increments.

Optimizing Combining Trees and Counting Networks. We implement the

combining-tree and counting-network counters using both shared-memory

operations and message passing. Figure 12 contrasts their performance,

showing that the message-passing implementations have roughly twice the

throughput.
There are two reasons for this performance difference. First, the message-

passing implementation requires less communication because each balancer
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Fig, 11. Comparing the throughput of the counting techniques

is always local to the processor that accesses it and because traversing a data

structure with messages is more efficient. Second, in the message-passing

implementation, message receipt causes an interrupt whose handler is itself

uninterruptible by other messages, and therefore the interrupt handler does

not require locks to ensure atomicity.

Saturation of Counting Networks. Figure 11 shows that the throughput of

the 16-wide counting network dips at 64 processors. To determine whether

this dip indicates that the counting network is saturating, we extended the

simulation to 80 processors and tested counting networks with widths of 4, 8,

and 16. Figure 13 shows that the 16-wide counting network does not saturate

at 64 processors. We think the dip at 64 processors occurs because the

16-wide counting network contains 80 nodes, requiring more than one net-
work node to be mapped onto a processor on a 64-processor machine. Figure
13 also shows the concurrency levels at which the smaller counting networks

saturate.

4.2 Index Distribution Benchmark

We now look at the throughput of the shared counters when applied to index

distribution. Compared to the counting benchmark, this benchmark provides

a more-varied load on the counters since each thread performs some compu-
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Fig. 12. Comparing the throughput of combining trees and counting networks implemented

with shared-memory and message-passing operations.

tation in between increment requests. The amount of computation is varied

by the parameter w: a higher w results in more computation. The effect of

increasing w is to reduce concurrency (and contention) at the counter.

Figure 14 presents the results for a spin-lock-based counter, a message-

based counter, a combining tree, and a counting network for various values of

w. The elapsed times are plotted in a log-log graph so that linear speedups

will show up as a straight line. Since the queue-based and MCS-lock-based

counters have the same scaling behavior as the message-based counter, we

omit them here.

For the spin-lock-based counter, performance degrades beyond a small

number of processors. This degradation is worst when w is small. For the

message-based counter, performance peaks and then degrades slightly be-

yond 16 processors when w = 100 and 48 processors when w = 1000. In

contrast, both the combining tree and counting network sustain speedups on

the benchmark all the way up to 64 processors.

Performance degrades drastically with the spin-lock-based counter because

of contention, as can be expected from the throughput results presented

earlier. While queuing reduces contention and prevents a major degradation

of performance, sequential access to the message-based counter limits speedup
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when w, and thus computation grain size, is small. The only way to sustain

speedups as more processors are added is to allow counting to occur in

parallel, as in the combining tree and counting network.

4,3 Job Queue Benchmark

We now look at the performance of the shared counters when applied to a

parallel job queue. Like the index distribution benchmark, this benchmark

provides a varied load on the counters since each thread performs some

computation in between accesses to the job queue. However, there are now

two counters, one for enqueuing and one for dequeuing, and the operation

includes an access to a shared data structure representing the job queue.

Thus, this benchmark places less contention on the counters compared to the
index distribution benchmark.

Figure 15 presents the results for a spin-lock-based counter, a message-

based counter, a combining tree, and a counting network for various values of

w. As before, the elapsed times are plotted in a log-log graph. Again, perfor-

mance degrades drastically with the spin-lock-based counter and is limited

with the message-based counter, reaffirming the observation that it is neces-

sary both to avoid contention and to permit parallelism to sustain speedups

as more processors are added.
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Fig. 14. Elapsed-time measurements of the index distribution benchmark.

4.4 Combining Rates

When we compare the performance of the combining tree and the counting

network in the index distribution and job queue benchmarks, we find that the

counting network performs much better than can be expected from the

throughput measurements in Figure 11. To investigate this phenomenon, we

instrumented the simulation to monitor combining at the nodes of the

combining tree. For the counting benchmark, we measured combining rates

of close to 10070 for 64 processors. Tables II and III summarize the results by
presenting the percentage of arrivals at combining-tree nodes that combine

with some other arrival in the index distribution and job queue benchmarks.
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Table 11. Combmmg Rate (Percentage) at Combmmg-Tree

Nodes in the Index Dustributlon Benchmark

Concurrency w = 100 LO= 1000 w = 5000

1 0.0 0.0 0,0
2 10,3 2,0 03
4 26,1 8.5 2,2
8 40.3 199 4.8

16 504 317 10.6
32 55.3 39.1 185
48 54.2 400 156
64 565 39.8 187
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Table III. Combming Rate at Combining-Tree Nodes

in the Job Queue Benchmark

Concurrency [u = 100 u) = 1000 Z.(J= 5000

1
2

4

8
16

32
48
64

0.0
0.3

7.2
21.1
33.2
40.9

37.4
39.8

0.0
1.4

5.5

12.8

230

30.5

27.7

30.6

0.0
0.3
1.7
4.6

9.2
16.3
14.2
16.6

From the data, we can see that as the rate of arrivals of increment requests

is reduced, so does the rate of combining. In the combining-tree algorithm,

when a node misses a chance for combining, a request arriving later at that

node must wait for the earlier request to ascend the tree and return before it

can progress. We speculate that this sensitivity of combining trees to the

arrival rate of increment requests degrades performance relative to counting

networks.

4.5 Importance of Parallelism

Recall that counting networks and combining trees scale for two reasons: (1)

distributing memory accesses reduces contention and (2) parallelism in-

creases throughput. To illustrate the relative importance of these two proper-

ties, we now investigate a counter implementation that has low contention

but does not attain a high degree of parallelism.

A counter is linearizable [Herlihy et al. 1991] if the values it returns are

consistent with the real-time order of the matching requests. For example,

linearizability ensures that if process p takes a value before process q

requests a value, then p’s value will be less than q ‘s. The bitonic counting

network is not linearizable, but it can be made linearizable by adding a

simple linearizing filter to the network’s output wires. The idea is simple:

any token leaving the network waits until the token taking the next lower

value exits. Although the solution introduces a sequential waiting chain, each

processor will wait on a separate location, thus avoiding memory contention.

(The linearizing filter can also be used to implement a general Fetch-and-@
operation as in the combining tree.)

We construct the Iinearizable counting network for P processors from two

component structures. One is the bitonic counting network described above,

and the other is a linearizing filter of width P. A linearizing filter is a

P-element array of boolean values, called phase bits that are initially O.

Define the function phase(u) to be 1( v/P)] mod 2. We construct the lineariz-

able network by having tokens first traverse the counting network and then

access the waiting filter. When a token exits the counting network with value

u, it awaits its predecessor by waiting until location ( u – 1) mod P in the
filter is set to phase( rJ – 1). When this event occurs, it notifies its successor

by setting location u to phase(u). It then returns its value.
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Figure 16 demonstrates the importance of having both low contention and

parallelization. It clearly shows that the throughput of the linearized count-

ing network saturates beyond 16 processors even though contention in the

linearized network is avoided. This emphasizes the importance of avoiding

serialization in the design of shared data structures.

5. CONCLUSIONS

We have analyzed the throughput of five distinct counting techniques, each

based on a technique proposed in the literature. We found that scalability for

concurrent counting requires two logically distinct properties: avoidance of

memory or interconnect contention and allowing true concurrency among

increment operations. The observed behaviors fell into three categories: (1)

techniques whose throughput degraded as concurrency increased, (2) tech-
niques whose throughput did not degrade but leveled out starting at a low

level of concurrency, and (3) techniques where throughput continued to

increase with concurrency. The first category encompasses the lock-based

counters, which suffer from contention as concurrency increases. The second

category encompasses the message-based and queue-based counters, which

do not suffer from contention but do not allow concurrent access. The last

category encompasses software combining trees and counting networks, which

are the only techniques we observed to be truly scalable since they avoid
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contention and permit concurrent access. Software combining trees were

observed to be more sensitive to fluctuations in the arrival rates of requests.

Both software combining trees and counting networks are significantly more

efficient when implemented using message passing instead of shared

memory.

Our results suggest that distributed data structures designed to alleviate

contention and enhance parallelism are the most-promising approach toward

scalable synchronization. It would be interesting to see similar experiments

for other problems, other benchmarks, and other architectures.
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