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Summary. The Probabilistic I/O Automaton model of [31] 1 Introduction
is used as the basis for a formal presentation and proof of the
randomized consensus algorithm of Aspnes and Herlihy. The i _ ) o _
algorithm guarantees termination within expected polynomialVith the increasing complexity of distributed algorithms there
time. The Aspnes-Herlihy algorithm is a rather complex algo-iS &n increasing need for mathematical tools for analysis. Al-
rithm. Processes move through a succession of asynchronoaough there are several formalisms and tools for the analysis
rounds, attempting to agree at each round. At each round, th@f ordinary distributed algorithms, there are not as many pow-
agreement attempt involves a distributed random walk. The&rful tools for_the analysus of randoml_zatlon Wlthln distributed
algorithm is hard to analyze because of its use of nontriviaSystéms. This paper is part of a project that aims at develop-
results of probability theory (specifically, random walk the- ing the right math tools for proving properties of complicated
ory which is based on infinitely many coin flips rather than randomized distributed algorithms and systems. The tools we
on finitely many coin flips), because of its complex setting,Wa”t to develop should k_)e based on trad_monal probability
including asynchrony and both nondeterministic and probatheory, but at the same time should be tailored to the com-
bilistic choice, and because of the interplay among severaputational setting. Furthermore, the tools should have good
different sub-protocols. We formalize the Aspnes-Herlihy al- facilities for quular reasoning due to the complexity of the
gorithm using probabilistic I/0 automata. In doing so, we de-SYStéms to which they should be applied. The types of mod-
compose it formally into three subprotocols: one to carry outularity we are looking for include parallel composition and
the agreement attempts, one to conduct the random Wa|k§bstract|on mappings, but also anything else that decomposes
and one to implement a shared counter needed by the randoffie Math analysis. _ _
walks. Properties of all three subprotocols are proved sepa- e develop our tools by analyzing complex algorithms
rately, and combined using general results about automatofif independentinterest. In this paper we analyze the random-
composition. It turns out that most of the work involves prov- iZ€d consensus algorithm of Aspnes and Herlihy [5], which
ing non-probabilistic properties (invariants, simulation map-guarantees termination within expected polynomial time. The
pings, non-probabilistic progress properties, etc.). The probAspnes-Herlihy algorithm is a rather complex algorithm. Pro-
abilistic reasoning is isolated to a few small sections of thec€SSes move through a succession of asynchronous rounds, at-
proof. The task of carrying out this proof has led us to de-tempting to agree at_eagh round. Ateach round, the agreement
velop several general proof techniques for probabilistic I/0attempt involves a d|str|but¢d random WaII.<..The algorithm is
automata. These include ways to combine expectations for dift@rd to analyze because of its use of nontrivial results of prob-
ferent complexity measures, to compose expected comple>_@b'“ty theory (speC|f|caIIy,.random walk theory), because of
ity properties, to convert probabilistic claims to determinis- Its c_or_nplex setting, _Incl_udlng_ asynchrony and both n_ondeter-
tic claims, to use abstraction mappings to prove probabilistid“'n'St'C and prob_ablllstlc choice, and because of the interplay
properties, and to apply random walk theory in a distributed@mong several different sub-protocols. _
computational setting. We apply all of these techniques to an- _ We formalize the Aspnes-Herlihy algorithm using proba-
alyze the expected complexity of the algorithm. b|||st|q I/O automata [31]. In doing so, we decompose it for-
mally into three subprotocols: one to carry out the agreement
Key words: Randomized consensus — Probabilistic automatz2ttempts, one to conduct the random walks, and one to imple-
— Verification — Performance analysis ment a shared counter needed by the random walks. Properties
of all three subprotocols are proved separately, and combined
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progress properties, etc.). The probabilistic reasoning is isopected number of rounds; Sect. 12 studies the expected time

lated to a few small sections of the proof. complexity of the algorithm; Sect. 13 gives some concluding
The task of carrying out this proof has led us to develop sevremarks and discusses the kinds of modularization that we use

eral general proof techniques for probabilistic /O automata.in the proof.

These include ways to combine expectations for different com-

plexity measures, to compose expected complexity properties,

to convert probabilistic claims to deterministic claims, to usePart I: The underlying theory

abstraction mappings to prove probabilistic properties, and t

apply random walk theory in a distributed computational set-02 Formal model and tools

ting. We apply all of these techniques to analyze the expectegn this section we introduce the formalism that we use in the

complexity of the algorithm. ; : ;

Previous work on verification of randomized distributed g? ?Zeé \Zl\ée].s:ﬁ:nw\lﬂt/z ani)'c: r%/olll?rc?g;%msatti?: fsgov;mg;?aet:%l;
algorlthms mcludgs [28], where the randomized dining adding the input/output structure to the probabilistic automata
ph|losopher.s'algor|thm of [22] is shown to guarantee progresqy [31]. We describe methods to handle complexity measures
with probability 1, [24,29], where the algorithm of [22] is within probabilistic automata, and we present progress state-

shown to guarantee progress within e>_<p¢cted constant tim‘?’nents as a basic tool for the complexity analysis of a prob-
and [2], where the randomized self-stabilizing minimum SPaN-apilistic system. Finally, we describe verification techniques

ning tree algorithm of [3] is shown to guarantee stabilizationbased on refinements and traces

within an expected time proportional to the diameter of a net- '

work. The analysis of [28] is based on converting a probabilis-

tic property into a property of some of the computations of anz 1 |y0 automata

algorithm (extreme fair computations); the analysis of [24, 29,

2] is based on part of the methodology used in this paper. AnAn I/O automatonA consists of five components:
other verification technique, based on the so called scheduler-; setStates(A) of states.

luck games, is presented in [14]. Other work is based on the , 5 non-empty setStart(A) C States(A) of start states.
extension of model checking techniques to the probabilistic § A action signatureSig(A)_: (in(A), out(A), int(A))
case [32,19,10] and on the extension of predicate transform- wherein(A), out(A) andint (A) aredi7sjointse7tsz‘n(A) is

ers to the probabilistic case [27]. the set of input actionsut(A) is the set of output actions
Prior to the algorithm of Aspnes and Herlihy, the best andint(A) ig the set ofﬂfﬁger%wal actions. P ’

known randomized algorithm for consensus with shared mem- Atransition relatioriZrans (A) C States(A)x Actions(A)

ory was due to Abrahamson [1]. The algorithm has expo- x States(A), whereActions(A) denotes the seh(A) U
nential expected running time. The algorithm of Aspnes and out(A) U m%(A) such that for each stateof States(A)
Herlihy was improved by Attiya, Dolev, and Shavit [7]1 by 5n4'each input action of in(A) there is a state’ such
eliminating the use of unbounded counters needed for the ran- that(s, a, ') is an element offrans(A). The elements of

dom walk. Further improvements were proposed by Aspnes -, A) are calledransitions andA is said to beénput
[4], by Dwork, Herlihy, Plotkin, and Waarts [15], by Bracha egggféd) Hons I ! Pu

9 X
and Rachman [11]@(7; logn) operations), and by Aspnes A task partition Tusks(A), which is an equivalence rela-
and Waarts [6]Q(n log” n) operations per processor). Other tion onint(A) U out(A) that has at most countably many

improvements were proposed by Aumann and Bender [9]  equivalence classes. An equivalence clas&oks(A) is
(O(nlog™ n) operations), by Chandra [12D(log" n) work called ataskof A.

per processor), and by Aumann [&)(logn) work per pro-
cessor) by imposing appropriate restrictions on the power of

the adversary. - . ) ) :
y A transition(s, a, s") in Trans(A); an actiona is said to be

The rest of the paper is organized as follows. Section bledf if there i ’ Nin T A)-
presents the basic theoretical tools for our analysis, inclug€nabledirom s if there is a transitiorts, a, s') in Trans(A);
a taskT of A is said to beenabledfrom s if there is an action

ing probabilistic /0 automata, abstract complexity measures;

progress statements and refinement mappings; Sect. 3 preseﬁt?AT thatis gnatf)led fror@.f i
a coin lemma for random walks and a result about the ex- /N €xecution fragmentt an automator is a sequence

pected complexity of a random walk within a probabilistic © of alternating states and actions 4fstarting with a state,

/0 automaton; Sect. 4 presents the algorithm of Aspnes an nd’f'fo‘ IS f'rr'i'ti' enrt]dmg with astate; = soa;s1a252..., SUCP
Herlihy and describes formally the module that carries outat for eachi > 0 there exists a transitiofs;, a1, si+1) 0
. Denote byfstate(a) the first state ofv and, if « is finite,

the agreement attempts; Sects. 5 and 6 prove that the Aspn "
Herlihy algorithm satisfies the validity and agreement proper.denote bylstate() the last state of. Denote byfrag™(A)
jhe set of finite execution fragments 4f An executioris an

ties; Sect. 7 proves several progress properties of the algorith oon f h f .
that are not based on any probabilistic argument; Sect. 8 proveg(€cution fragment whose first state Is a start state.
An execution fragment is said to bdair iff the following

the probabilistic progress properties of the algorithm by usin "

the Fr)es:ults of SeF():t. ?; SecEt). 9%uilds the modgle that anducgt;gondnmns hold for every task’ of A:

the random walk; Sect. 10 builds the shared counter needed. if « is finite thenT is not enabled irstate(c);

in Sect. 9; Sect. 11 derives the termination properties of the2. if « is infinite, then either actions frofi’ occur infinitely

algorithm, where the complexity is measured in terms of ex- many timesin, ora contains infinitely many occurrences
of states from whicHI" is not enabled.

n the rest of the paper we refer to I/O automata as automata.
A states of A is said toenablea transition if there is
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A states of A isreachabldf there exists a finite execution dff
that ends irs. Denote byrstates(A) the set of reachable states
of A. A property¢ of states is said to stablefor an execution
fragmenta = sgays; - - - if, once ¢ is true,¢ remains true in
all later states. That is, for evety> 0, ¢(s;) = V;>i0(s;).

A finite execution fragmenty; = spais; - - - a,s, of A
and an execution fragment = s,ay,+15n+1 - - - Of A can be
concatenatedThe concatenation, writtemy ~ «», IS the exe-
cution fragmentga;s1 -+ - - G Spln+1Sn+1 - - - AN e€xecution
fragmentn; of A is aprefixof an execution fragmeiat; of A4,
written o < i, iff either a; = ay or o is finite and there
exists an execution fragmet of A such thatv, = a1 ~ .
If « = a1~ ag, thenay is called asuffixof «, and it is denoted
alternatively byara; .

2.2 Probabilistic /0O automata

2.2.1 Preliminaries on probability theory
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We conclude with some notions about random variables
thatare needed in some of the proofs of our result{ R efy )
be a measurable space with the real numbers as sample space.
Given a probability spac®, arandom variableX for P is
a measurable function froif12, ) to (R, Fx). As an exam-
ple, a random variable could be the function that expresses
the complexity of each element 6. It is possible to study
the expected valuef a random variable, that is, the aver-
age complexity of the elements 61, as follows: E[X] =
> e X(z)Plal.

LetP be a probability space and I&tbe arandom variable
for P. For a natural number > 0, let the expressioX > i
denote the evenfr € 2 | X(x) > i}. Then the following
two useful properties are valid.

1. Iftherange o isthe setof natural numbers, thBnX| =

oo PIX > ).
2. B[X] > ¥, PIX > i)

2.2.2 Probabilistic /O automata

In this section we recall some basic definitions and results
from probability theory. The reader interested in more detailsy probabilistic /O automaton// consists of five components:

is referred to any book on probability theory.
A probability spacses a triplet(2, 7, P) where

1. 2 is a set, also called treample space

2. Fis acollection of subsets @¢? that is closed under com-
plement and countable union and such tf?a& F, also
called as-field, and

3. P is a function fromF to [0, 1] such thatP[2] = 1
and such that for any collectiofC; }; of at most count-
ably many pairwise disjoint elements &f, P[U,C;] =

> PlCi].

The pair(£2, F) is called aneasurable spacand the measure
P is called gprobability measure

A probability spacd (2, F, P) is discreteif F = 2 and
foreachC C 12, P[C] = > . P[{z}]. Forany arbitrary set
X, let Probs(X) denote the set of discrete probability distri-
butions whose sample space is a subséf and such that all

o A setStates(M) of states.
e A non-empty selStart(M) C States(M) of start states.
e An action signatureig(M).

e Atransition relationTrans(M) C States(M) x Actions
(M) x Probs(States(M)) such that for each stateof
States(M) and each input actianof in (M) there is a dis-
tributionP such thats, a, P) is an element of rans (M ).
We say thatV/ is input-enabled

e A task partition Tasks(M), which is an equivalence re-
lation onint(M) U out(M) that has at most countably
many equivalence classes.

In the rest of the paper we refer to probabilistic I/O automata
as probabilistic automata. Probabilistic /O automata are sim-
ilar in structure to the probabilistic automata of [30], the con-
current labeled Markov chains of [32], and Markov decision
processes [13]. In this paper probabilistic I/O automata are

the elements of the sample space have a non-zero probabilityjeyed as an extension of /0 automata, and thus the notation

A function f : 2, — (25 is said to bemeasurabldgrom
(21, F1) to (2, F,) if for eachE € F,, f~Y(E) € Fi.
Given a probability spacé?;, 71, P;), a measurable space
(£22, F»), and a measurable functigifrom (£2,, F1) to ({2,
F>), let f(Py), theimage measuref P;, be the measure de-
fined on({2y, F>) as follows: for eactll € F, f(P)(E) =

and the results that we present are chosen along the lines of
[25].

Execution fragments and executions are defined similarly
to the non-probabilistic case. Aexecution fragmenof M
is a sequence of alternating states and actions &f start-
ing with a state, and, if is finite ending with a statey =

Pi(f~'(E)). Standard measure theory arguments show thag ;. s, a,s,..., such that for each> 0 there exists a transition

(122, F2, Py) is a probability space. Iff2, F, P) is discrete,
then we can defing((£2, F, P)) as(f(£2), 27D, f(P)).

(8i,ai41,P) of M such thats; ;1 € £2. All the terminology
thatis used for executions in the non-probabilistic case applies

For notational convenience we denote a probability spaceo the probabilistic case as well.

(2, F,P) by P. We also use primes and indices that carry

over automatically to the components of a probability space.

Thus, for exampleP; denoteg (2, F/, P}).

Given a probability spac® and a seX , we abuse notation
and we writeP[X] even if X contains elements that are not
in 2. By writing P[X] we mean implicitlyP[X N §2]. Also,
given an element, we write P|x] for P[{z}].

Given two discrete probability spac#s andP,, define
the productP; ® P, of P; and P, to be the triplet(£2; x
25,2%%2 P @ P,), where, for eacliz, z0) € 2; x (2,

Py ® Pof(w1,72)] = Pr[w1] Pa[zo].

2.2.3 Probabilistic executions

An execution fragment ol is the result of resolving both

the probabilistic and the nondeterministic choices\éf If

only the nondeterministic choices are resolved, then we ob-
tain a stochastic process, which we calprababilistic exe-
cution fragmentof M. From the point of view of the study

of algorithms, the nondeterminism is resolved byamiver-

sary that chooses a transition to schedule based on the past
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history of the system. A probabilistic execution is the resultcution fragmentH, the sample spac@y; is the limit closure

of the action of some adversary that is allowed to know ev-of States(H ), where the limit is taken under prefix ordering.
erything about the past but nothing about the future. ThusTheo-field Fy is the smallest-field that contains the set of
the adversaries that we model cannot predict the values of fusonesC);, consisting of those executions @f; havingg as a
ture coin flips. These adversaries are called policies within therefix. The probability measuiy; is the unique extension of
theory of Markov Decision Processes. A probabilistic execu-the probability measure defined on cones as folla#s[C,]
tion can be thought of as the result of unfolding the transitionis the product of the probabilities of each transitiortblead-
relation of a probabilistic automaton and then choosing oneng to ¢. It is easy to show that there is a unique probability
transition for each state of the unfolding. We also allow an ad-measure having the property above, and g, F, Px)
versary to use randomization in its choices, that is, a transitioms a well defined probability space.

to be chosen probabilistically. This models the fact that the  An eventE of H is an element ofFy. An eventFE is
environment of a probabilistic automaton may provide inputcalledfinitely satisfiablef it can be expressed as a union of
randomly. We remark that from the point of view of the study cones. A finitely satisfiable event can be represented by a set
of an algorithm (how long it takes for the algorithm to ter- of incomparable states @f, that is, by a se® C States(H)
minate) randomized adversaries are not more powerful thasuch that for eachy, g2 € ©, q1 € g2 andgs £ ¢;. The event
non-randomized adversaries [20,31]. However, randomizedienoted by isU,co C,. We abuse notation by writingx [©)
adversaries are fundamental for the study of compositionafor Py [U,coC,]. We call a set of incomparable statestha

verification technigues as we do in this paper. cutof H, and we say that a c@ isfull if Pz[©] = 1. Denote
Formally, aprobabilistic execution fragmeri of a prob- by cuts(H) the set of cuts off, and denote byull-cuts(H)
abilistic automaton\/ consists of four components. the set of full cuts ofH.

o A set of statesStates(H) C frag*(M); let ¢ range over An important event ofPy is the set of fair executions of
the states ofi - 2. We define a probabilistic execution fragméhto be fair

o A signatureSig(H) = Sig(M); if the set of fair executions has probabilityn Py.
o Asingleton selStart(H) C Stc,ztes(ZW)' We conclude by extending theoperator to probabilistic
e A transition reIationTmn_s(H) - Sta;fes(H) « Probs execution fragments. Given a probabilistic execution fragment

((Actions(H) x States(H))U{5}) suchthatforeachtran- 1 of M and a statg of 11, define g (the fragment offf
sition(g, P) of H there is afamily{ (state(q), a;, P;) }iso given thatq has occurred), to be the probabilistic execution

of transitions ofd and a family{p; }:=o of probabilities fragment of M obtained fromH by removing all the states

satisfying the following properties: that do not have as a prefix, by replacing all other statgs
1Y opi <1 with ¢’>¢, and by definingstate(q) to be the new start state.

2. Pl =1— Zizopia and An important property of{>q is the following.

3. for each actiona and states, P[(a,qas)] = Proposition 2.1 For each stateq’ of Hvq, Pyue[Cy] =
Zimi:apipi[s}- PH[Cqu/]/PH[Cq]. O
Furthermore, each state &f is reachable, where reachabil-
ity is defined analogously to the notion of reachability for .
probabilistic automata after defining an execution of a proba2-3 Parallel composition
bilistic execution fragment in the obvious waypfobabilistic
executionH of a probabilistic automatof/ is a probabilis-  Two probabilistic automata/; and M, are compatibleiff
tic execution fragment of\/ whose start state is a state of nt(Mi) N acts(M2) = 0 and acts(Mi) N int(Mz) = 0.
Start(M). Theparallel compositiorof two compatible probabilistic au-
A probabilistic execution is like a probabilistic automaton, tomataM; andMs, denoted byl/; || Mz, is the probabilistic
except that within a transition it is possible to choose proba-2utomatonV/ such that
bilistic_:ally over_actions as WQII. Furthermore, a transition may 1. States(M) = States(M,) x States(Ms).
contain a special symba| which corresponds to not schedul- 2. Start(M) = Start(My) x Start(Ms).

ing any transition. In particular, it is possible that from a state . Z (i / B
q atransition is scheduled only with some probabifity: 1. 3. Z%(Z\J{[)ﬂ U(ETZL%%;))%%%%) éogigévﬁzS;“t(MQ))’

In such a case the probability 8fis 1 — p. ; -
The reader familiar with stochastic processes or Markov4' ((6(\‘)9 1i’f85>éah€2ifn§%§(f\ﬁe>r:?s?;7§ 1) ip;rzvise(;al)

Decision Processes may be confused by the terminology in- _
) elseP; = U(s1), and

troduced so far since an adversary should be referred to as : .

: I ; - (b) if a € Actions(Ms) then(sa,a, P2) € Trans(Ms),
a policy, a probabilistic execution as a probabilistic tree, and elsePs = U(ss)
an execution as a trace. The naming convention that we have 2 2
chosen originates from the theory of I/O automata, which is inwherel{(s) denotes a probability distribution over a single
contrast with the naming convention of stochastic processestates. Informally, two probabilistic automata synchronize on
We have decided to follow the 1/0O automata convention be-their common actions and evolve independently on the others.
cause we are extending to the probabilistic case technique#’/henever a synchronization occurs, the state that is reached
that are typical of /O automata. is obtained by choosing a state independently for each of the

We now describe the probability space associated withprobabilistic automata involved.

a probabilistic execution fragment, which is a standard con- In a parallel composition the notion pfojectionis one
struction for stochastic processes. Given a probabilistic exeef the main tools to support modular reasoning. A projection
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of an execution fragment onto a component in a parallel Complexity functions on full cuts enjoy several properties that
composition context is the contribution of the component toare typical of random variables [16]. That isdfis a full cut,
obtaina. Formally, letM be || M2, and letvbe anexecution  then H induces a probability distributio®g over the states
fragment of M. The projection ofa. onto M;, denoted by  of ©. In such casep is a random variable anfly o[¢] is the
o[ M;, is the sequence obtained frenby replacing each state  expected value of the random variable.
with itsi*" component and by removing all actions that are not
actions ofM; together with their following state. It is the case
that o[ M; is an execution fragment df/;. The projections 2.4.2 Linear combination of complexity functions
of an executionn represent the contributions of the single
components of a system ta Projections are a fundamental If several complexity measures are related by a linear inequal-
tool for compositional reasoning within I/O automata. ity, then their expected values over a full cut are related by the
The notion of projection can be extended to probabilisticsame linear inequality (cf. Proposition 2.3). This is a trivial
executions (cf. Sect. 4.3 of [31]), although the formal defi- consequence of the analogous result for random variables. We
nition of projection for a probabilistic execution is more in- use this property for the time analysis of the protocol of Asp-
volved than the corresponding definition for an execution. Fomes and Herlihy. That is, we express the time complexity of the
the purpose of this paper it is notimportant to know the detailsprotocol in terms of two other complexity measures (rounds
of such definition; rather, it is important to know some prop- and elementary coin flips), and then we use Proposition 2.3 to
erties of projections. Given a probabilistic execution fragmentderive an upper bound on the expected time for termination
H of M, it is possible to define an objeét[ M;, whichisa  based on upper bounds on the expected values of the other
probabilistic execution fragment af/; that informally repre-  two complexity measures. The analysis of the other two com-
sents the contribution of/; to H. The states ofi[M; are  plexity measures is simpler, and the relationship between time
the projections ontd/; of the states off. Furthermore, the and the other two complexity measures can be studied using
probability space associated witli[ M; is the image space known methods for ordinary nondeterministic systems, with
under projection of the probability space associated Wiith no probability involved.

(see Proposition 2.2 below). This property allows us to prov . _— .
probabilistic properties aff based on probabilistic properties e?roposmon 2.3 Let i be a probabilistic execution fragment
of H[M,. of some probabilistic automatoh/, and let® be a full cut

v - of H. Leto, ¢1, ¢2 be complexity functions, and, c; be two
Eczoegoesclﬂgg r?%faléer:}:gﬁ tbg’tyﬂg[?'e a?‘f'gt}H_lk_’ﬁean r;;obablhs- constants such that, for each € O, ¢(a) < c1¢1(a) +
. t )4 H[M; = . < .
{a[M, | o € ©3}, and for eactd € Fy o, PH[MI[@} — cada(a). ThenEy o[¢] < c1Eu old1] + c2FEn o(h2] U
PH[{QGQH|OJM1‘€9H. O
2.4.3 Computation subdivided into phases
2.4 Complexity measures In this section we study a property of complexity functions
A complexity functioms a function from execution fragments that becomes useful whenever a computation can be divided
of M toRZ. A complexity measuis a complexity functior into phases. Specifically, suppose that in a system there are
such that, for each pair; anda, of execution fragments that several phases, each one with its own complexity, and sup-
can be concatenatedhaz (¢ (1), d(az)) < ¢p(a; ™ az) < pose that the complexity associated with each phase remains
d(aq) + d(az). 0 until the phase starts. Suppose that the expected complex-
Informally, a complexity measure is a function that deter- ity of each phase is bounded by some constatftwe know
mines the complexity of an execution fragment. A complexity that the expected number of phases that start is bounded by
measure satisfies two natural requirements: the complexity ohen the expected complexity of the system is boundegkby
two tasks performed sequentially should not exceed the comThe difficult part of this result is that several phases may run
plexity of performing the two tasks separately and should beconcurrently.
at least as large as the complexity of the more complex task; it  The protocol of Aspnes and Herliny worksiiounds At
should not be possible to accomplish more by working less. Ireach round a speciabin flipping protocol is run, and the
this section we present several results that apply to complexitgoin flipper flips a number of elementary coirdementary
functions; later in the paper we present results that apply onlgoin flipg. The expected number of elementary coin flips is
to complexity measures. bounded by some known valueindependent of the round
number. We also know an upper bouhdn the expected
] number of rounds that are started. If we view each round as a
2.4.1 Expected complexity phase, then Proposition 2.4 below says that the expected num-
ber of elementary coin flips is upper boundeddky We give
a formal proof of Proposition 2.4 to give an idea of how it is
possible to prove non-trivial facts about probabilistic execu-
tions. The reader may skip the proof without compromising
understanding.

Consider a probabilistic execution fragmdiitof M and a
finitely satisfiable even® of Fy. Informally, the elements
of © represent the points where the property denote@ liy
satisfied. Lety be a complexity function. Then, we can define
the expected complexity to reach® in H as follows:

Z #(q)Pu[Cy] if Pyl@]=1 Proposition 2.4 Let M be a probabilistic automaton. Let;
Enold] = qco o9, ¢3, ... be a countable collection of complexity measures

00 otherwise. for M, and let¢’ be a complexity function defined@$«) =



160

A. Pogosyants et al.

> >0 ¢i(a). Letc be a constant, and suppose that for each valid for ¢ as well. In other words, the property that we know

fair probabilistic execution fragmert of M, each full cut®
of H, and each > 0, Ey o¢;] < c.

Let H be a probabilistic fair execution fragment af,
and let¢ be a complexity measure fad. For eachi > 0,
let ©; be the set of minimal statesof H such thatp(q) > i.
Suppose that for eadh € ©;, ¢;(¢q) = 0, and that for each
stateq of H and each > ¢(q), ¢:(¢q) = 0.

Then, for each full cu® of H, Ey o[¢'] < cEn.0(¢].

Proof. From the definition off’,

Enel¢]=>_ Y ¢i(a)PulCy). 1)
ge® i>0

Since for eacly € © and each > ¢(q), ¢:(¢) = 0, Equa-

tion (1) can be rewritten as

Egeld]=> (61(a)+ -+ dlo) (@) PulCql, ()
qed

which can be rearranged into

Euoldl=>_| Y. i(@PulCy|- ©)
>0 \qg€O|d(g)>1

For each > 0, letn; denote the set of minimal state®f H

that are prefixes of some element®dfnd such thab(q) > i.

Then, by breaking the inner summation of Equation (3),

Euele| =Y | D PulCy)

i>0 \qen;

> 4id)PulCyl/PulC| ] @)
q'€O|q<q’
Since for eachy € n;, ¢:(q) = 0 (; € 6;) the inner-

most expression of the right hand side of Equation (4) is
Ervq,0nc,)-ql¢:]- SinceH >qis afair probabilistic execution

fragment ofM as well, Ep.q (onc,)sq[#i] < c. Thus,

Frold] < Z <Z CpH[Q;]) , (%)

. >0 \q€n;
and sincey_ ., Pu[Cq] = Pulnil,
Enel¢'| <Y Pulnile. (6)
i>0
Observe thatPy[n;] is the probability that is at leasti in

©. Recall also thap is a random variable for the probability

space identified by. Thus,) ., Pu[n:i] < Enelé] (see
Sect. 2.2.1), and by substituting in (B0 [¢'] < cEn ol¢).
O

2.4.4 Complexity functions and parallel composition

To verify properties in a modular way it is useful to derive
complexity properties of complex systems based on complex-

aboutM; can be lifted ta)/.

Proposition 2.5 Let M be M, || M,, and leti € {1,2}. Let

¢ be a complexity function fak/, and lety; be a complexity
function for M;. Suppose that for each finite execution frag-
menta of M, ¢(a) = ¢;(a[M;). Letc be a constant. Suppose
that for each probabilistic execution fragme#t of M/; and
each full cut® of H, Ey o[¢;] < c. Then, for each proba-
bilistic execution fragmentl of M and each full cut of H,
EH,@[(M <ec. O

The converse of Proposition 2.5 does not hold in general. In
fact, even though for each probabilistic execution fragnf&nt

of M and each full cub of H, Ey o[¢] < ¢, there could be

a probabilistic execution fragmert’ of M; and a full cut®’

of H' such thatEy o [¢;] > c. As an exampleH’ could be

the projection of no probabilistic execution fragmentiat

If i = 1, thenH’ could be a probabilistic execution fragment
resulting from the interaction with an environment thdg
does not provide.

2.5 Probabilistic complexity statements

A probabilistic complexity statement is a predicate that can
be used to state whether all the fair probabilistic executions of
a probabilistic automaton guarantee some reachability prop-
erty within some time with some minimum probability.
Probabilistic complexity statements essentially express par-
tial progress properties of a probabilistic system. Such partial
progress properties can then be used to derive upper bounds
on the expected complexity for progress.

Probabilistic complexity statements can also be decom-
posed into simpler statements, thus splitting the progress prop-
erties of a randomized system into progress properties that ei-
ther are simpler to analyze or can be derived by analyzing a
smaller subcomponent of the system.

Progress statements are introduced in [24,29,31]. In this
section we specialize the theory of [31] to fair schedulers.

2.5.1 Probabilistic complexity statements

A probabilistic complexity statement is a predicate of the form
U = U’, whereU andU’ are sets of states,is a complexity
mer:sure, and is a nonnegative real number. Informally, the
meaning ofU %Si U’ is that starting from any state @f,

under any fair scheduler, the probability of reaching a state
from U’ within complexityc is at leasip. The complexity of
an execution fragment is measured according.to

ity properties of the single components. Proposition 2.5 helpefinition 2.6 Let M be a probabilistic 1/0 automatoi,
in doing this. Informally, suppose that we have a complexity; States(M), ¢ € R, and¢ be a complexity measure.

function¢ for M = M, || M and a complexity functiog,

for M; such thatp and¢, coincide up to projection. In other
words¢ measures i/ the property ofd/; that is measured

ThenU %ﬁi U’ is a predicate that is true fdv/ iff for each
fair probabilistic execution fragmet{ of M that starts from

by ¢1. Furthermore, suppose that we know an upper bound om state ofU, Py ey: ¢(c)(H)] > p, Whereey: 4. (H) de-
the expected value af; that is independent how the nonde- notes the set of executionsof {25 with a prefixa’ such that
terminism is resolved id{;. Then, the same upper bound is ¢(«’) < c andlistate(a’) € U’. O
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The fair probabilistic execution fragments of a probabilistic
automaton enjoy a property that in [31] is call&dite his-
tory insensitivity Thus, using a result of [31], the following
holds, which permits us to decompose a progress property into
simpler progress properties.

Proposition 2.7 Let M be a probabilistic automaton, and let -
U U, U" C States(M). Let ¢ be a complexity measure. ~ ——— 3 ——— """ "5°-
Then,

L it U 250" andU’ =507, thent “=5 0
p pp

L ¢<e $<c
2. ifU -7 U', thenU UU" - u'uu”. O  Fig. 1. Computation of the expected time frothto U’

2.5.2 From probabilistic complexity statements 2.5.3 How to verify probabilistic complexity statements

to expected complexity
A useful technique to prove the validity of a probabilistic com-

In thi ion we show how r ilisti mplexi .
this section we show how to use probabilistic complexity lexity statement/ = for a probabilistic automaton/
8§ v

statements to derive properties about expected complexities .
Inthe analysis of the protocol of Aspnes and Herlihy we use thds the following.

result of this section to study the expected number of rounds1 Choose a set of random draws that may occur within a

that the protocol needs to terminate. it :
o robabilistic execution af/, and choose some of the pos-
Let M be a probabilistic automaton, and Iet, U’ C gible outcomes: P
! H )

itat?S(M)'fW]\efdf??Ote byU' = Uq.mlef‘%U the pfe?'ﬁ?te 2. Show that, no matter how the nondeterminism is resolved,
thatis true /or l or ever)// execution fragmerias’ 0 : the chosen random draws give the chosen outcomes with
seU-U=seUUU. |nf0rma”y, U = UunlessU some minimum prObabllltyo

means that, once a state frahis reachedM remainsinU' 3 ghoy that whenever the chosen random draws give the

.
unl?:ssU |srr]eachbed5.|_ . ion f ofit of M. | chosen outcome, a state frdifi is reached withire units
or each probabilistic execution fragmefit o , let of complexity.

Oy (H) denote the set of minimal states Bfwhere a state . _ _
from U’ is reached. That i) ;7 (H) represents the event that This technique corresponds to the informal arguments of cor-
contains all those executions 8f; where a state froni/’ is rectness that appear in the literature. Usually the intuition be-
reached. The following theorem, which is an instantiation of ahind an algorithm is exactly that success is guaranteed when-

more general result of [31], provides a way of computing theever some specific random draws give some specific results.
expected complexity for satisfyingy (H). The first two steps can be carried out using the so-called

Theorem 2.8 ([31])Let M be a probabilistic automaton and coin lemmag31], which .pr_ovide rulgs to map a stochastic
¢ be a complexity measure fdi. Let » be a real number process onto a probabilistic execution and lower bounds on

such that for each execution fragmentidfof the formsas’, the probability of the mapped events based on the properties
#(sas’) < r, that is, each transition o/ can increase the of the given StOCha$t'C process; the th.'rd step concerns non-
complexi_tyqs by at most-. Let U and U’ be sets of states of probabilistic properties and can be carried out by means of any
M. Let H be a probabilistic execution fragment 6f that known technlque for non-prol_aablllstlc systems. Coin Iemma_s
starts from a state o/, and suppose that for each statef are essentially away qf reducing Fhe analysis ofa prppab|l|st|c
H such thatistate(q) € U some transition is scheduled with property to the analysis of an ordinary nondeterministic prop-

probability1 (i.e., the probability of in the transition enabled erty. The importance of coin lemmas |s.also in the fac.t that a
fromq in H is 0). Furthermore, suppose that common source of errors in the analysis of a randomized al-

gorithm is to map a probabilistic process onto a probabilistic

1. U %ﬁi U’ and execution in the wrong way, or, in other words, to believe that

2 U= UunlessU'. a prob§p|ll_st|c automaton always.be.haves like some defined

Then.E < probabilistic process while the claim is not true. In Sect. 3 we
enEre, mldl < (c+7)/p. present in full detail a coin lemma that deals with random

Proof idea.We start at the beginning from a statdbndwe  walks. For a general introduction to coin lemmas the reader is
observe the system after complexity- ». With probability referred to [31].

at leastp a state fronlJ’ is reached, and with probability at

most(1 — p) we are still inU. If we are still inU we start

again and we observe the system after other- complexity 2.6 Refinement mappings and traces

units. Again with probability a state fronU” is reached (cf.

Fig. 1). In practice we are repeating a binary experiment untilA common verification technique consists of specifying a sys-

it is successful. Each time we repeat the experiment we payem as an I/O automaton or a probabilistic I/O automaton and

¢+ r complexity units. We know from probability theory that then building animplementatiorof the specification. Typi-

on average the experiment is repeated at mgstimes, and  cally the notion of implementation is identified by some form

thus the expected complexity to redc¢his at most{c+r)/p. of language inclusion. The important fact is that the interest-
O ing properties of a specification are preserved by the notion
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of implementation, that is, whenever a property is true for theThat is, A, can simulate all the transitions af; via the re-
specification, such property is true for the implementation afinement functiorh. An important property of a refinement is
well. In this section we provide the pieces of the techniquethe following.

that we use for the analysis of the algorithm of Aspnes ands,qnosition 2.9 (1267)Subpose that there exists a refinement
Herlihy. More details can be found in [25, 26, 31]. frorr?All tlo Ag: ([26])Supp X I

Thentraces(A;) C traces(As). O

A refinement can be defined also for probabilistic automata as
follows. Let My, M5 be two probabilistic automata with the

S _ same external actions. A probabilistefinemenfrom A/, to
Trace and trace distributions are abstractions of the behavpy, is a functionh : States(M;) — States(M,) such that

ior of automata and probabilistic automata, respectively, thathe following conditions hold.

are based only on the sequences of external actions that thf For eachs € Start(My), h(s) € Start(Ms,)
automata can provide. Several times, as is the case for thé" 1 2/
algorithm of Aspnes and Herlihy, the interesting properties 2. For eachs — P, h(s) h(P).

of a system can be expressed in terms of trace and trace difn particular, a refinement is a special case of a probabilistic
tributions. In such cases it is possible to use traces and traggfinement. The following property is valid as well.
distributions for the analysis and in particular to use the relate
proof techniques.

2.6.1 Traces and trace distributions

a]—em:t(>M2)

ciDroposition 2.10 ([31]) Suppose that there exists a proba-

Let o be an execution of an automatdn Thetraceof ¢, bilistic r_eflnement frorer to M.
denoted bytrace(«), is the ordered sequence of the external Thentdistrs(My) C tdistrs(Mz). 0
actions that appear in. Denote a generic trace Ity Atrace  Finally, the existence of refinements is preserved by parallel
isfair if itis the trace of a fair execution. Denote byices(A) ~ composition, thus enabling modular verification.

the set of traces afl and byftraces(A) the set of fair traces Proposition 2.11 ([31]) Suppose that there exists a proba-
of A. I i bilistic refinement between two probabilistic automaith
Let H1 be a probabilistic execution fragment of & prob- 4nq z,. Then, for each probabilistic automatdd compat-

abilistic automaton}/. Let 2 = ext(M)* U ext(M)” be  iple with M, and M,, there exists a probabilistic refinement
the set of finite and infinite sequences of external actions o},5y, My || M to Mo || M. O

M. Thetrace distributionof H, denoted bytdistr(H), is the

probability spac€ (2, F, P) whereF is the minimumg-field

that contains the set of con€s;, whereg is an element of  2.6.3 The execution correspondence theorem

ext(M)*, and P = trace(Py), that is, for eachE € F, ) _

P[E] = Py[{a € g | trace(a) € E}]. The fact that Refinements can be used also to show some liveness proper-
tdistr(H) is well defined follows from standard measure the- ties. Specifically, it is possible to use refinements to derive fair
ory arguments. In simple words, a trace distribution is just atrace inclusion and fair trace distribution inclusion. Our main
probability distribution over traces induced by a probabilis- technique is based on tlexecution correspondence theorem
tic execution. Denote a generic trace distribution Dy A [18], which allows us to establish close relationships between

trace distribution of a probabilistic automatdf is the trace ~ the executions of two automata. _
distribution of one of the probabilistic executions bf. A We use refinements in the analysis of the shared counter in
trace distribution idair if it is the trace distribution of a fair ~ the algorithm of Aspnes and Herlihy. Our analysis is carried
probabilistic execution. Denote biistrs(M) the set of trace  Out mainly on an abstract specification of the counters. This

distributions of M and by ftdistrs(M) the set of fair trace allows us to avoid dealing with unimportant details.
distributions of}M/. Let A; and A, be I/O automata with the same external

actions and lek be a refinement froml; to A,. For an ex-
ecution fragmenty, let |«| denote the number of actions that
occur ina. If « is an infinite execution fragment, thea|
isoco. Leta = S0a151G2892 * -+ ando’ = ugbrurbousg - - - be

N “ o executions ofd; and A, respectively. We say that and o’
Denote a transitior(s, a, s’) by s — s'. For a finite se-  arep-related written (a, o’) € h, if there exists a total, non-

2.6.2 Refinements

quencer; - - - a, lets ““=3" ' if there is a collection of states  decreasing mapping: : {0,1,...,|a|} — {0,1,...,]¢/|}
$1,...,Sn_1 such thats = s 225 ... i LS such that

For any external action, let s == ¢’ if there are two finite 1. m(0) =0,
sequences, y of internal actions and two states, s; such 2. h(s;) = um) forall0 <i <laf,

thats - s; —% so -2 o, Lets = ¢ ifthereis a finite 3 trace(by(i—1)41 -+ bm(p)) = trace(a;) forall 0 < i <

sequence: of internal actions such that— s’ |laf, and _

LetA;, A, be two automata with the same external actions. 4- forallj, 0 <j < |a’|, there exists an 0 < i < |a], such
A refinementfrom A, to A, is a functionh : States(A;) — thatm(i) > j.
States(A2) such that the following conditions hold. Theorem 2.12 ([18])Let 4; and A, be automata with the

same external actions, and lgtbe a refinement from; to
1. Foreachs € Start(As), h(s) € Sm”(‘%&;ﬁ ) As,. Then, for each executiom of A, there is an execution
2. For each transition —— s’ of Ay, h(s) ot h(s"). v Of Ay such that(ay, o) € h. O
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The execution correspondence theorem can be used to shdwrthermore, denote a finitely satisfiable event by azsef

fair trace inclusion as follows: givefw,, az) € h, show that  incomparable finite sequences oyer1, 1}.

ag is fair whenevery, is fair. In this case we also say that Consider a particle in the real line, initially at position

h preserves the fair executions of;. By using some other and letX describe a move of the particle:l corresponds to

results from [31] we can also show the following result that decreasing by the position of the particle, aridcorresponds

deals with probabilistic executions. to increasing byl the position of the particle. An element of
. 2rw describes an infinite sequence of moves of the particle.

Proposition 2.13 LetA,, A; be two I/O automata, and 184 The probability space?W describes aandom walkof the

be a probabilistic /0 automaton compatible with and As. particle.

Let h be a refinement fromi; to A, that preserves the fair An important random walk is a random walk withsorb-
executions ofl,. Thenfidisirs(Ay || M) C fidistrs(A2 || M).  ing barriers that is, a random walk that is considered to be
= successful or failed whenever the particle reaches some spec-

ified positions (absorbing barriers) of the real line. Consider

) o two barriersB, T such thatB < z < T'. Then the following
3 Symmetric random walks for probabilistic automata events are studied:

. the particle reaches before reaching3;
. the particle reacheB before reaching’;
3. the particle reaches either absorbing barrier.

The correctness of the protocol of Aspnes and Herlihy is base
on the theory of random walks [16]. That is, some parts of
the protocol behave like a probabilistic process known in the
literature as a random walk. The main problem is to makeFormally, given a starting point and a finite sequence =
sure that the protocol indeed behaves as a random walk, of;z5 - - - z,, € {—1,1}" letz, = z+ )., =; be the position
better, to make sure that the protocol has the same probabilistigf the particle after:. Then, the events 1, 2, and 3 above are
properties as a random walk. This is a point where intuitionfinitely satisfiable and can be denoted by the following sets of
often fails, and therefore we need a proof technique that iginite sequences, respectively:

sufficiently rigorous and simple to avoid mistakes.

In this section we present a coin lemma for random walks. 1.
Thatis, we show that if we choose events within a probabilistic
execution fragment according to some specific rules, then the
chosen events are guaranteed to have properties similar to the
properties of random walks. Then, by verifying that each one

the setToppgy [B,T, 7] of minimal sequences ¢
{—1,1}* such thatz, = T and for no prefixz’ of z,
Byl = B,

the setBotgw[B,T,z] of minimal sequences €
{-1,1}* such thatz, = B and for no prefixz’ of z,

e , =T
of the chosen events guarantees progress, a non-probabilistic “= '
property, we can derive probabilistic progress properties of the™" [tge ;eﬁ]htherRW [B, T, 2|=Top gy B, T, 2]UBot rw
I AN

protocol.
This section is divided into three parts. In the first part we The following results are known from random walk theory

give an introduction to the elements of random walk theory[16].

that are relevant for our paper; in the second part we present

coin lemma for random walks; in the third part we instantiate-?heorem 3.1letp=gq=1/2.Then

the coin lemma to the cases that are useful for the analysis of.. P[Topgy,[B,T,z]] = (T — 2)/(T — B);

the algorithm of Aspnes and Herlihy. We prove formally all 2. P[Botgrw[B,T,z]] = ( — B)/(T — B);

the non-trivial results since similar coin lemmas do notappear3. P[Eitherzw [B,T,z]] = 1. 0

in [31].
in (31 For a finitely satisfiable ever@® that has probabilityi it is

possible to study the average number of moves that are needed
to satisfy© as follows:

Lrw[O] = Z length(x) Prw [Cy].

€O
From random walk theory [16] we know the following result.

3.1 Random walks

Let X be a probability space with sample det1,1} that

assigns probability to 1 and probabilityg = (1 — p) to

—1.Let RW = (£2rw, Frw, Prw) be the probability space Theorem 3.2Letp = ¢ = 1/2. Then L [Eitherzwy

built as follows. The sample s€lz is the sef{ —1,1}« of [B,T,z]] = —2*>+ (B +T)z — BT. O

infinite sequences of numbers frofa-1,1}. For each finite

sequence: € {—1,1}", letC,, thecylinder with basez, be

the set of elements from¥zy, with common prefixe, and 3.2 A coin lemma for random walks

let Pri [C.] = p*q"~*, wherek is the number ofi’s in .

Then Frw is the minimumo-field that contains the set of As we said earlier a coin lemmas provides us with rule to map

cylinders, andPgyy is the unique extension t& ry, of the a stochastic process onto a probabilistic execution and with

measure defined on the cylinders. The construction is justifieé lower bound on the probability of the mapped events. In

by standard measure theory arguments. In other wa@ttlé,  our case the rule should map an evenfaf to an eventd

is a probability space on infinite sequences of independentf a probabilistic executioif, while the lower bound should

experiments performed accordingXa be Prw [©)]. In this section we present both the rule and the
Similarly to our probabilistic executions, define an eventlower bound. Furthermore we introduce a result for the study

of Frw to befinitely satisfiablaf it is a union of cylinders.  of expectations.
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3.2.1 Terminology walk theory, but rather we are proving that a result of random
walk theory continues to hold in a restrictd form no matter

We use the actions of a probabilistic automaton to identifyhow an andversarial scheduler tries to violate it. The reader

the single experiment of drawing a number, and we partitionnot interested in the proofs may simply read the statement of

the target states of each transition to identify the outcomegheorem 3.4 and move to Sect. 3.2.4.

—1 and 1. We use a terminology that resembles coin flip- -

ping; thus, the number1 is replaced byt (tail), the num- ~Lemma 3.3 Suppose that for each transitid, fiip,, P) of

ber 1 is replaced by: (head),p is replaced by, andgis M, P[U}"] = p, and P[U}] = p;. If there is a finite upper

replaced byp,. Let M be a probabilistic automaton and let boundk onthe length of the elements®fthenry; [W(H, ©)]

Acts = {flip,,...,flip,} be a subset ofictions(M). Let = Prw[0].

_ h t h t h t H
S = {(U1", Up), (U3, Uz),.... (Uy), Uy)} be a set of pairs Proof. For notational convenience, for each statef H let

where for each,1 < i < n, U, U} are disjoint subsets o : ; ;
== ’ " ) P.* denote the probability space associated with the unique
_ a == .
of States(M), and such that for every transitids, flip,, P) transition that leaves fromin H.

with an actionflip, the following hold: —
QCUMu U, and ) We prove thatPy [W(H, 0)] <1 — Prw|[O).

For each statg of H, eachi € {1,...,n}, and each
P[U!" = pn andP[U}] = p. @ i€ { n}

; ; / H
The actions fromActs represent coin flips, and the sets of 7 © {h,t}, denote by(2(q, U/) the set{(flip;, ¢') € £2;" |
statesU* and U} represent the two possible outcomes of a lstate(q’) € U} of pairs whereflip; occurs and leads to a
coin flip labeled withflip;. Since the setsicts andS are  state ofU/, and for each action let a denote also the set of
usually clear from the context, we omit them from our notation. pairs whose first element ig that is, the event that actian
We write Acts andS explicitly only the first time each new occurs. For each e {1,...,n}, let®; be the set of stateg
notation is introduced. of H such that no actioffiip;, 1 < j < n, occurs ing, and

such thatP"[flip,] > 0.

The proof is by induction oriength(©), the maximum

3.2.2 The rule length of the elements a®. If length(©) = 0, then either

. . © = () or © = {e}, wheree denotes the empty sequence.
Given an executionv of H, let x 4.5 s(«) be the ordered . —_—
sequence of results of the coin flips that occusjme.g., if the Iln th; flrst@ca_sél/}/_(H,h@) = Q),dand QJUS;H@[W—(HfZQ)] :d
ith occurrence of an action fromcts in a is an occurrence L — Prw[6] = 1; in the second case/(H, 0) = 2u, an

of flip, that leads to a state froii/, then thei*® elementof ~ thusPu[W(I,0)] = 1 — Pry[6] = 0. For the inductive

2(a) is h, and if theit™ occurrence of an action fromets in ~ STEP: SUPPOSE thétngth(6) = k + 1. Then,

« is an occurrence ofip; that leads to a state frorﬁjt, then Py[W(H,0)]

thei*" element of:(«) ist. Observe that(«) is finite if in « = Y > PulC)
there are finitely many occurrences of actions frdnts. i€{1,...,n} ¢€6;

Let© be afinitely satisfiable event &IV, and letH be a
probabilistic execution fragment 8f . LetW .5 s (H, ©) be
the set of executions of 2y such that eithet(«) has a prefix Z Z ‘
in ©, or z(«) is a prefix of some element @. Informally, Jethit} (fip,,q')€02(q, U})
W(H, ©) contains all those executions 6fy where either
the coin flips describe a random walk contained in the event Hiogen f W Hod Q1)
denoted by, or it is possible to extend the sequence of flipped < By (lips, ) Prog DYUHES, O0)] ) - (9)
coins to a new sequence contained in the event denotéq by
i.e., thereis away to fix the values of the unflipped coins so thaﬁ'1
a random walk of the event denoted®yis obtained. In other
words, if we view the scheduler that leads{cas a malicious
adversary that tries to resolve the nondeterminism so that th
probability ofW(H, ©) is minimized, the scheduler does not
gain anything by not scheduling coin flipping operations. It is
easy to show thatV(H, ©) is measurable iPy;.

here©r; is the even® after performingj, that is, the set of
e tails of the sequences@fwhose head ig. Informally, to
violateW (04, H>q') with a non-emptyo, it is necessary to
flip at least once and then violate the restbfObserve that
fength(6>j) < k. Thus, by induction, for each € {h,t}
and each stat¢ of H,

Prpy [W(Hrq', 05)] <1 — Pry [O>]]. (10)
Using (10) in (9), and factoring — Pry [©>j] out of the
innermost summation, we obtain

3.2.3 The lower bound Py[W(H,O)]

< Py |C
We now prove that, no matter how the nondeterminism is re- - '6{12/ ) ;_ i(Cal
solved, the probabilityPy of the eventW(H, ©) is lower- AR
bounded by the probability’zy of the eventd. That is, the

probability of the mapping of the evest onto H is at least < | > P0R(q, U - Prw(Or]) | - (10)
as large as the probability é. We first prove our result for je{h,t}
a special class of eventsin Lemma 3.3. Then, we prove the Leti € {1,...,n}, andj € {h,t}, and consider a staig

full result in Theorem 3.4. Note that in the rest of this sec-of H. From the definition of the transition relation of a prob-
tion we are not simply proving a standard result of randomabilistic execution fragment, there is a collection of transi-



Verification of the randomized consensus algorithm of Aspnes and Herlihy: a case study

tions (Istate(q), flip;, Px) and a collection of probabilities
pr, such thaty”, p, = PF[flip;] and P [02(q, U})]
31 e Pi[ U7]. From hypothesis, for eadh P, [U/] = p,.
Thus,Pf[2(q, U{)] = P [flip;]p;. By substituting in (11),
> > PulC P/ [flip]

i€{1,....,n} €O,

X(E:U—HW@WMJ
je{h,t}

Observe that)>, ., .\ > . co, PulCqlP; [flip;] is the
probability that some actiofiip, occurs from ind, and hence
its value is at most. Furthermore, observe that ., ;, p;
Prw [QDJ} = Prw [@] ,thatis, since;,+p: = 1, Zje{h,t} D
(1 = Prw[Orj]) =1 — Prw|[O)]. Thus, from (12),
PyW(H,6)] < 1 — Pry[6)].

This completes the proof.

PyW(H,0)] <

(12)

(13)
O

Theorem 3.4 Suppose that for each transitids, flip,, P) of
M, P[U! = p, and P[U}] = p;. Then,Py[W(H,O)] >
Prw[O].

Proof. For eachk > 0, let ©; be the set of elements &

whose length is at mogt Then,© = U,~(60;, and from the
definition of W, W(H, ©) = Ux~oW(H, O}). Furthermore,
foreachk > 0,0y C O11,andW(H,0r) C W(H, Ok11).

From simple arguments of measure theoBgy [O]
hmk—H—oo Prw [@k], and Py [W(H, @)] = 1imk—>+oo Py
[W(H,Oy)]. From Lemma 3.3, for eactt > 0, Py
[W(H, 9k>] > PRW[@I@]- Thus,limk*)+oo PH[W(H, @}g)]
> limg 400 PRW[@k]: that is,Py [W(H, @)] > P[@] |

3.2.4 Expected complexity of the random walk

E
The next theorem states that the average length of a random’ €~

walk is preserved by the mappiy, that is, for fixedH and

O such thatPy [©] = 1, the expected number of coin flips that
may occur inH without reaching is bounded above by the
expected number of coin flips necessary to re@cim RW .
First we need a definition.

Definition 3.5 Let © be an event inRW, and letM be a
probabilistic automaton. For each finite execution fragment
of M, definep(«) to be the number of actions froAxts that
occur ina if z(«) does not have any prefix &, and to be the
number of actions from cts that occur in the minimum prefix
o/ of a such thatz (o) € ©, otherwise. O

Informally, ¢(«) is the number of moves of the random walk
that occur ina before satisfying the event denoted ®y In
particular, if© is not satisfied yet withiry, ¢(«) is the total
number of moves of the random walk that occusirObserve
that¢ is a complexity function but not a complexity measure.

Theorem 3.6 Suppose that for each transitigs, flip,, P) of
H, P[U}" = pandP|U}] = q. Also, suppose thdzy [0] =
1. Let®’ be a full cut ofH. ThenEy o/ [¢] < Lrw [O)].

Proof. By definition, Ex,e[¢] = 3 cor #(0) Pu[Cyl-
From the definition ofp, if ¢ < ¢ andz(¢’) € ©, then
#(¢') = #(q). Thus, we can build a new full c@” obtained

from @’ by replacing each € ©’ such that(¢q) has a prefix
in © with the minimum prefix’ of ¢ such thatr(¢’) € © and
obtainEy e/ [¢] = > con ¢(q)Pr[Cyl. In particular, for no
elementy of ©” does the sequenagq) have a proper prefix
in 6.

Partition©” into the set®, of statesy such thate(q) is
a prefix of some element @, and the se®!’ of statesq
such thatz(q) is not a prefix of any element @. From the
definition of ©”, for no elemenyy of ©!/ z(q) has a prefix
in ©. Thus,W(H,©) N (UgeorC,) = 0. Since from The-
orem 3.1 Py[W(H,O)] 1, we derive thatPy[O©!]
0, which means tha®, is a full cut of H. Furthermore,
since®; C 0", Ene[d] < ). ycon ¢(q)PulCy], that s,

Eyel¢] < Eneyld)-

For eachk > 0, let@ ., be the set of elements 6fwhose
length is less thak, and let©x, be the set of elements 6f
whose length is at leagt Similarly, let©”, be the set of
elements; of ©; such thatength(z(q)) < k, and let©%, be
the set of elementgof ©]] such thatength(z(q)) > k.

Fix k > 0, and leta € W(H, O<x) N (Ugeoy Cy). Since
a € W(H,Oy), from the definition ofp for each finite pre-
fix o’ of a, #(a’) < k. From the definition 06, o« € C, for
someq € O, with length(z(q)) < k. Thus, W(H,O) N
(queng) - qu@/équ, which impliesPH [W(H, @<k) N
(UgeoyCq)l < PulOZ,]. Since Py[O)] = 1, then
Py[W(H, 61)] = PyW(H,0<1,) N (Ugeoy C,)]. This
implies thatPy [W(H, O«1)] < Pu[OZ,].

From Theorem 3.4PH[W(H,9<<k)] > Prw[O<k],
which, combined with the previous result, giveg [0” ] >
Prw[0©<k]. From this we derive thatEy er[¢]
Zi>0 PH[ng] < Zi>0 PRW[QZIC] = Lpw [@], where the
first and third steps follow from the properties seen in
Sect. 2.2.1. Since, we have shown already gt [¢] <

+[¢], we conclude thaEy o/ [¢] < Lrw[6O)]. O

3.3 Instantiation of the coin lemma

In this section we instantiate Theorem 3.4 and Theorem 3.6

with the events presented in Sect. 3.1. In addition, we introduce

a notation that is more suitable for the analysis of an algorithm.
Given a finite execution fragment of M, let

Heads aqts,s (o) denote the number of actions of the form

flip, in  whose post state is in the correspondinglgét and

let Tails ac15,s(cv) denote the number of actions of the form

flip; in « whose post state is in the correspondingigétLet

Diff ge1s () denoteHeads aces,s (o) — Tails aces, s ().

Definition 3.7 For each probabilistic execution fragmeht
of M, let Top[Acts, S, B, T, z](H) be the set of executions
« of 25 such that either

hd Ha’ga((z‘i’Diﬁ(a/): T)/\vo/’ga/(B < Z+Diﬁ(0&”))),
or

o Vo<a(B < z+ Diff (@) < T) and actions fromActs
occur finitely many times in.

The eventTop[Acts, S, B, T, z](H) captures the situations
where either + Diff (') reaches the top barrigtbefore the
bottom barrierB, or the total number of “flips” is finite and
z + Diff (/) reaches neither barrier.
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Definition 3.8 For each probabilistic execution fragmenht
of M, letBot[Acts, S, B, T, z](H) be the set of executions
of 2 such that either

° E'O{/Sa((z —+ DZﬁ(O/) = B) A Va//ga/(z —+ Diﬁ(a”) <
T)), or

o Vo<o(B < z+ Diff (¢) < T) and actions fromActs
occur finitely many times in.

The eventBot[Acts, S, B, T, z](H) captures the situations
where either + Diff (/) reaches the bottom barrigrbefore
the top barriefT’, or the total number of “flips” is finite and
z + Diff (/) reaches neither barrier.

Definition 3.9 For each probabilistic execution fragmeht
of M, let

Either|[Acts, S, B, T, z](H) = Topl|Acts,S,B,T,z|(H)
UBot[Acts, S, B, T, z|(H).

The eventEither[Acts, S, B, T, z](H) excludes those exe-
cutions of M where infinitely many “flips” occur and +
Diff (o) reaches neither barrier.

Proposition 3.10 Let H be a probabilistic execution fragment
of M. Then

1. Py[Top[B,T,z|(H)] > (z — B)/(T — B).
2. Pu[Bot|B, T, 2J(H)] = (T — 2)/(T - B).
3. Py[Either[B,T,z|(H)] = 1.

Proof.

1. From the definitions, the eventBop[B, T, z](H) and
W(H, Toprw[B,T,z]) are the same. From Theorems
3.1and 3.4Py[Top[B, T, z|(H)] > (2 — B)/(T — B).

2. From the definitions, the evenBot[B, T, z](H) and
W(H,Botrw|[B,T, z]) are the same. From Theorems
3.1and 3.4Py[Bot[B, T, z|(H)] > (T — z)/(T — B).

3. From the definitions, the everlBither[B, T, z|(H) and
W(H, Eitherw [B, T, z|) are the same. From Theorems
3.1and 3.4Py[Either[B, T, z](H)| = 1.

We conclude with an instantiation of the result about ex-
pected complexities. Lep 4.;s be the complexity measure
such thatp 4.5 («) is the number of actions fromcts that
occur in «. Define ¢ 4.5, 5,1,.() to be the truncation of
dacts at the point where one of the absorbing barriers is
reached. That is, if there is no prefiX of o such thatz +
Diff (/) € {B, T}, theng acis 51,2 (0) = P aces(c); other-
Wise, ¢ acts, BT, () = Pacis(a’), whereo’ is the minimum
prefix of o such that: + Diff (¢’) € {B,T}. Observe that
¢ Acts, B,T,~ IS NOt a complexity measure, but rather a complex-
ity function:

Example 3.1If T = —B = 10, z = 0, o contains 5 flip
actions, all giving tail, andv, contains 15 flip actions, all
giVing head, thenZSActs,B,T,z(al) =5, ¢Acts,B,T,z(a2) =
10, while ¢ acts .7, (1 ™ a2) = 20, which is greater than
10 + 5. a

Proposition 3.11 Let H be a probabilistic execution fragment
of M, and let®’ be a full cut ofH . Letz be chosen so tha <
z<T.ThenEy, . ,..[HO|<—2*+(B+T)z— BT.

A. Pogosyants et al.

Proof. For each state of H observe that acis, .1,- () =
o(x(a)), where ¢ is the function defined in Definition 3.5
using the se® of minimal sequences df—1, 1}* such that
either B or T' is reached starting from. From Theorem 3.6,
Eg o 5. [H,0'] < Egy[O]. From Theorem 3.25 gy (O]

< —2?4+(B+T)z— BT, and thereford,,, , , .. .[H,0'] <
—22+ (B+T)z — BT. O

Part Il: The case study
4 The algorithm of Aspnes and Herlihy
4.1 The consensus problem

The consensus problem consists of makingsynchronous
processes decide on the same value (eiltoerl) in the pres-
ence of stopping faults, given that each process starts with its
own initial value. The initial value is provided by the environ-
ment during initialization. We say that an algorithm solves the
consensus problem if it satisfies the following properties.

Validity. If a process decides on a value within an execution
of the algorithm, then this value is the initial value of some
process.

AgreementAny two processes that decide within an execution
of the algorithm decide on the same value.

Wait-free terminationAll initialized and non-failed processes
eventually decide.

Itis known from [17] that there is no deterministic algorithm

for asynchronous processes that solves consensus and guar-
antees termination even in the presence of at most one single
faulty process. However, the problem becomes solvable using
randomization if we relax the termination condition and we
replace it with the following condition.

Probabilistic wait-free termination.With probability 1, all
initialized and non-failed processes eventually decide.

The algorithm that we analyze in this paper is due to Aspnes
and Herlihy [5] and relies on the theory of random walks. It
terminates within expected polynomial time. We have chosen
this algorithm because itis frequently cited in the literature and
because it is among the most complicated randomized algo
rithms so far proposed. The complex structure of the algorithm
allows us to show how modular verification techniques can be
applied within a randomized framework.

4.2 Description of the algorithm

The algorithm of Aspnes and Herlihy proceeds in rounds. Ev-
ery process maintains a variable with two fields/ue and
round, that contain the process’ current preferred valud (

or 1) and current round (a non-negative integer), respectively.
We say that a process is at round its round field is equal

to r. Note that, due to asynchrony, different processes could
be at different rounds at some point of an execution. The vari-
ables(value, round) are multiple-reader single-writer. Each
process starts with it®und field initialized to0 and itsvalue

field initialized to L.
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W CF, dition is omitted, then it is taken to be true. Table 2 is based
~_ [N start-flip(r), on the following predicates and functionsis-maz-round is

decide; | . ____ AN the maximum round observed by proceéssbs-leader(j) is

N return-flip(r) true if i observes thaj is a leaderpbs-agree(r,v) is true if
% PE——— the observations of all the processes whose round is at least

ar - —/W r agree on; obs-leader-agree(v) is true if, according to the

- n . . .

deciden | ._ ___ = return-flip(r), observations of, the leaders agree an obs-leader-value is

AP the value of one of the leaders observed byormally,
A .

Fig. 2. Interaction diagram of the algorithm of Aspnes and Herlihy obs-maz-round = max;eops(rounds|j])

1>

obs-leader(j) J € obs A roundslj]

obs-maz-round

> 1l

After receiving the initial value to agree on, each process obs-agree(r, v)
i executes the following loop. It first reads thelue, round)
variables of all other processes in its local memory. We say that
process is aleaderif according to its readings its own round obs-leader-agree(v)

Vjicobs rounds[j] > r = values[j]
v

(> 1l

obs-agree(obs-maz-round, v)

is greater than or equal to the rounds of all other processes. v

We also say that a processbservedhat another process if obs-leader-agree(v)

is a leader if according tés readings the round gfis greater obs-leader-value = _

than or equal to the rounds of all other processes. If pracess undefined

at roundr discovers that it is a leader, and that according to its it B, obs-leader-agree(v)

readings all processes that are at roundadr — 1 have the It is simple to check thabbs-leader-value is a well defined
same value a5 theni breaks out of the loop and decides on its function since it is never the case thalis-leader-agree(0)
value. Otherwise, if all processes thabserved to be leaders andobs-leader-agree(1) are satisfied simultaneously.
have the same value, theni sets its value t@, increments We associate all the locally controlled actions of a process
its round and proceeds to the next iteration of the loop. Ini With a single task. Thus, an execution fragmerdf AP is
the remaining case (leaders thatbserved do not agree), fairifallprocesses thatare continuously enabled are scheduled
sets its value ta_ and scans the other processes again. If onc&ventually ina.
again the leaders observedidno not agree, theidetermines
its new preferred value for the next round by invoking a coin . ,
flipping protocol. There is a separate coin flipping protocol for 4-3 Informal analysis of the algorithm
each round. Figure 2 gives a high level view of the algorithm.
The left box is the main algorithm which is subdivided into
processes; the right boxes are the coin flipping protocols whic
interact with the main algorithm through some invocation and™". )
response messages. will ever propose a value different from _ o

We represent the main part of the algorithm as an automa- It is more d'ﬁ'.CU|t. to show that the _algprlthm satisfies
ton AP (Agreement Protocol), and the coin flipping protocols agreement. The first important observation is that agreement
as probabilistic automat&F, (Coin Flipper), one for each does not rely on probqblllty, but rather on the fact that the
roundr. With this decomposition we can prove several impor- processes at the two .h|ghest .rpunds all agree yvhen a process
tant properties of the algorithm as propertiesidt using ordi- decides. The very strict (_:ond|t|on on the decision action en-
nary techniques for non-probabilistic systems. Indeed, in thigures that no process will ever be able to compromise a de-
section we deal with P only, and we leave the coin flippers cision that was taken already. If a process decidasround
unspecified. Table 1 describes the state variables/dfThe " then all processes at roumdagre_e orv and no process at
shared state of procesgonsists of a single-writer multiple- roundr — 1 can observe leaders with values d|ﬁgrgnt from
reader shared variable with two fieldg/ue(i) andround (i), More precisely, suppose for the sake of contradiction that the
that contain procegss current preferred value and round. The decision is taken by procegsand that there is a procegs

local state of a proceggonsists of a program countgt, two atroundr — 1 that is up to propoging a value different from
arrays,values androunds that store thévalue, round) vari- v for roundr or up to flipping a coin for the value to propose

ables of other processes afteeads them, a variablés that atroundr. LetQ be the first such process. This.mea}ns that all
records the processes already observed] hyvariablestart processes at roundor higher agree on. We distinguish two

that records the initial preferred value ©fand two boolean exhaustive cases.
flags,decided andstopped, that reflect whetherhas decided 1. Process) observed that the leaders agree on a value dif-

Itis easy to show that the algorithm satisfies validity since if all
fprocesses start all with the same vaiyiéhen no process will
ever observe disagreement among the leaders and no process

or failed. The variabletopped is not relevant for the actual ferent fromw.

code for process it is used only in the analysis of the algo- Inthis case, since all processes at roupdeferv, process

rithm to identify those points where procedsas failed. @ observed that the leaders are at roundl. Thus, since
Table 2 describes the actions and the transition relation @ is atround- — 1, @ itself prefers a value different from

of AP. The transitions associated with each acticere de- v at roundr — 1. Consider the last observation that

scribed by giving the conditions that a statghould satisfy to made of@. If P observed) at roundr — 1, then the value

enables (Pre:), and the transformations that are performed on  preferred by at roundr — 1 must bev, a contradiction
s to obtain the post-state of the transition (Eff:). If the precon- (it is possible to show that a process cannot switch its
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Table 1. The state variables of a process AP

Name Values Initially
Local state

pC {nil, init, readl, read2, checkl, check2, flip, wait, decide}  init
values array[l...n]of {0,1, L} array of L
rounds array[l...n] of int array of0
obs setof{1,...,n} 0

start {0,1, L} 1
decided Bool false
stopped Bool false
Single-writer multiple-reader shared variables

(value(i), round(i))  {0,1, L} x int (L,0)

Table 2. The actions and transition relation afP

Actions and transitions of process

input ingt(v);
Eff. start < v

output start(v);
Pre: pc = init A start =v # L
Eff: value(i) < v
round (i) « 1
obs < 0
pc <+ readl

output read1(k);
Pre: pc = readl
k ¢ obs
Eff: wvalues[k] < value(k)
rounds[k] < round(k)
obs + obs U {k}
if obs = {1,...,n} thenpc < checkl

output check1;
Pre: pc = checkl
Eff: if obs-leader(i)A
Jyeqo,1} 0bs-agree(rounds[i] — 1,v) then
pc < decide
elseifd, ¢ 0,1} obs-leader-agree(v) then
value(i) < obs-leader-value
round (i) < rounds[i] + 1
obs
pc <+ readl
else
value(i) < L
obs «
pc < read?2

output decide(v);
Pre: pc = decide A values[i] = v
Eff: decided < true
pc <+ nil

output read2(k);
Pre: pc = read2
k ¢ obs
Eff: values[k] + value(k)
rounds[k] < round (k)
obs + obs U {k}
if obs = {1,...,n} thenpc < check2

output check?2;

Pre: pc = check2

Eff: if 3,cq0,1) 0bs-leader-agree(v) then
value (i) < obs-leader-value
round (i) < rounds[i] + 1
obs + ()
pc < readl

else

pc « flip

output start-flip(r);
Pre: pc = flip
round(i) =r
Eff: pc + wait

input return-flip(v,r);
Eff: if pc = wait andround(i) = r then
value(i) < v
round (i) < rounds[i] + 1
obs + 0
pc < readl

input stop,
Eff: stopped < true
pc <+ nil

Tasks: The locally controlled actions of procesform a single task.

A. Pogosyants et al.
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preferred value within a round); iP did not observe) cess ever flips a coin or choogess its preferred value for the
at roundr — 1, then P was already at round when @ next round. a
moved to round- — 1, which means thaf) observed at
least one process at rouncduring its last scan, again a
contradiction.

2. Process) observed that the leaders do not agree.on 1. s.round(i) = 0 = s.value(i) = L, and
Since during the second scan of proc@sthe value pro- 2. s.roundsli]; = 0 = s.values[i]; = L.
posed by is L, processP observed) either at a round
lower thanr — 1 or while process) was scanning the
other processes for the first time. In both cases during the o )
second scan of round— 1 proces@ sees that proceﬁ Theorem 5.3 (Valldlty property) Let o be an execution of

is at roundr, and thus that all leaders agreewoThisisa AP where no action of the fornmit(v); occurs. Then i no
contradiction. action of the formdecide(v); occurs.

Invariant 5.2 For each reachable state ¢f P, and each pair
of processes, 7,

Proof. Straightforward inductive argument. a

The agreement property is quite intricate to analyze, and th&roof. Suppose by contradiction that there is an occurrence
analysis above may look incomplete since each statement r&f actiondecide(v); in «, and lets be the state immediately
lies on the understanding of several subtle interactions bebefore actioniecide(v);. From the transition relation of P,
tween processes. However, assuming that all the statementsvalues|i]; = v, and by Invariant 5.25.rounds[i]; > 0. This

are correct, the informal analysis above provides the mairfontradicts Invariant 5.1. O
ideas behind the correctness of the algorithm of Aspnes and

Herlihy. In the formal proof all the informal analysis above is )

embedded in Invariant 6.3. We encourage the reader to obsenfeProving agreement

carefully Invariant 6.3 and check how the informal analysis

above is embedded. In this section we prove the agreement property &1, that is,

The termination property (eventually some process will that any two processes that decide within an execution decide
decide) relies strongly on the properties of the coin flippingthe same value (cf. Theorem 6.2). We give the high level proof
protocol. If at a certain round the coin flip protocol behavesin Sect. 6.1 and we prove the main invariant in Sect. 6.2.
like a global coin flig i.e., like the flip of a unique coin the
result of which is returned to each process, then termination
occurs within a few rounds. Informally, all the processes that6.1 High level proof
do not flip coins to select the value for the next round will
select the same value, and all the processes that flip obtain thhe key idea of the agreement proof is that if a procebst
same value. The key problem is how to define a coin flipperiS at round- is “about to decide” on some valugthen every
that behaves like a global coin flipper with high probability. Process that is at roundor higher has its value equaltoWe
We postpone the discussion to Sect. 9. formalize this statement in Invariant 6.1.

In the next three sections we prove validity, agreement,
and those parts of termination (progress) that do not depen
on the low level details of the coin flippers.

variant 6.1 Let: be a process. Given a reachable state of
P, letv = value(i) andr = round(i). Then
(obs-agree(r — 1,v); A obs-leader(i); A obs;

={1,...,n}) = agree(r,v).

5 Proving validity Invariant 6.1 states that if procesbas observed all the other
processes and has determined that it is a leader and that all the

The proof of validity is very simple and is based on an invari- processes at round at least 1 agree on a value, then all the

ant property (cf. Invariant 5.2). In this section and in the restprocesses at round at leasigree on a value. Before giving

of this paper we use the word “invariant” both for automatathe proof of Invariant 6.1, we use Invariant 6.1 to prove the

and for execution fragments. An invariant of an automaton isagreement property. Essentially the idea is that the premise

a property that is valid in all the reachable states of the auof Invariant 6.1 is stable, that is, it is always satisfied in the

tomaton; an invariant of an execution fragment is a propertyfuture once it is satisfied: if processatisfies the premise of

that is valid in all the states of the execution fragment. Forlnvariant 6.1, then processlecides on value, and thus the

notational convenience, givenc {0, 1}, we denote bythe  local state of procesisdoes not change any more.

value(v + 1) mod 2. We also define a new predicate: Theorem 6.2 (Agreement property)For every tracey of

A . .
agree(r,v) = V;(round(j) = r = value(j) = v). AP the following is true: ifdecide(v); and decide(v'); both
occur in~y thenv = v'.
That is, predicateigree(r, v) is true if all the processes at

round at least agree on value. Proof. Let v be a trace ofAP such thatdecide(v); and

decide(v"); both occur iny. Let be an execution ofl P that
Invariant 5.1 Let« be an execution ofl P where no action  has tracey. Assume without loss of generality thédcide(v);
of the forminit(v); occurs. Then each state of satisfies  occurs first iny. Let s; ands; be the states before actions
agree(1,v) and obs-agree(1,v). decide(v); anddecide(v") ; occur, respectively. From the tran-
Proof. Straightforward inductive argument. Informally, each sition relation of AP, process satisfies the premise of In-
process observes that the leaders agreg and thus no pro- variant 6.1 in states;, and procesg satisfies the premise
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of Invariant 6.1 in state,. Thus,s;.agree(round(s),v) and C. YVjcobs; ((round(j) = r — 1 A value(j) # v)
sj.agree(round(j),v"). Furthermore, it is a simple inductive = fill-maz-round; > r).
argument to show that the premise of Invariant 6.1 is stable,

that is, once it is satlsﬂ_ed it continues to be satisfied. Thuslnformally, Invariant 6.3 states that if nothing is preventing
sj-agree(round(i), v). Since ins; there is at least one pro-  some process from deciding on a value at roundr, then
cess at rounchaz (s;.round(i), s;.round(j)), we derive that  none of the processes observedibiy in a position to cause
v=0. O other processes notto agreeuat round-. Thus, the premises
state that according to the observations of proéepsocess
i is a leader at round and observes that the other processes
6.2 Proof of Invariant 6.1 that are at round at least- 1 agree onv; furthermore all the
non-observed processes do hot compromise the leadership of
The problem with Invariant 6.1 is that it is not strong enough process: and agree ow if they are at round at least This
to hold inductively. Therefore, we provide a stronger invariantmeans that it is possible fotto decide orv after completing
that implies Invariant 6.1 and holds inductively. Invariant 6.1 its scan: the non-observed processes that are at round
guarantees that some properties hold for those states whereaad do not agree ommay reach round with valuev before
process has observed all other processes; for the inductivebeing observed by. Conditiona states that all processes ob-
argument we need to guarantee some properties also for thoserve agreement anfrom roundr, Conditionb states that all
states where processhas not observed all other processesprocesses at round at leastlo agree orn, and Conditiornc
yet. Furthermore, we need to ensure more properties than justates that none of the processes that have been observed al-
the fact that all processes at round at lealstive valuev. In ready by processis in a condition to reach roundwith a
particular, we need to make sure that all processes at roundhlue different fromu.
r — 1 cannot reach roundwith a value different from. At this point we can understand better the useloin
Givenv € {0, 1}, denote by the valugv+1) mod2. De-  AP. When a process is about to decide om at roundr,
fine new predicates and functiofi§-maz-round,, fill-leader it could be the case that another procgsat roundr — 1
(1), fill-agree(r, v);, andfill-leader-agree(v); to be the same is about to flip a coin for the value to be used in round
as the corresponding predicates and functiens-maz- Processj could have observed some old values of the other
round;, obs-leader(j);, obs-agree(r,v);, and obs-leader- processes. However, in such a case the value of prgcess
agree (v);, with the following exception: the rounds and pre- would be_L. Then, Condition ¢ ensure that procgsshserves
ferred values used in the definitions are the values observesome process at round at leasaind thus, from Condition a,
by i for the processes thahas already observed, and the ac- procesg observes that the leaders agreesoHence, process
tual values of the shared variables for the processes tie  j cannot flip. In other words, a procegsnight not discover
not yet observed. In other words, an incomplete observatiorthat another procegss about to decide onat roundr during
is “completed instantly” with the actual values of the unob- its first scan; however, procegsvould certainly discover the

served processes. Formally, for each pro¢dssfill-rounds; intent of process during its second scan.
andfill-values,; be two vectors defined as follows: Observe that Invariant 6.3 implies Invariant 6.1 directly;

o o [ rounds[j]; if j € obs;, thus, proving Invariant 6.3 is sufficient to prove Invariant 6.1.
fill-rounds|j]; = round(5) if j ¢ obs;, To prove Invariant 6.3 we need several auxiliary invariants that

; 10 e ob illustrate some of the key ideas behind the algorithm. Several
fill-values[j]; £ {”alues[? Ji !f JE< Obsi’ invariants have straightforward inductive proofs, which we
value(j) if j ¢ obs;. omit. The first invariant, Invariant 6.4, states that a process

The vectorsfill-rounds and fill-values are called theilled ~ thathas notstarted yetis at round

vectors of rounds amivalues. Then, Invariant 6.4 Leti be a process. Then, for each reachable
fill-maz-round; = max;(fill-rounds[j];), state ofA P,

fill-leader(j); = fill-rounds[j); = fill-maz-round,, (pe; = nit) = (round(i) = 0).
fill-rounds, [J]

O

>

fill-agree(r, v); Invariant 6.5 states that a process has observed all other pro-

> r = fill-values[jl; = v, cesses whenever either it has decided, or it is checking the local
fill-leader-agree(v); S fill-agree(fill-maz-round,, v);. variables, or it is interacting with the coin flipping protocol.
The actual invariant that we prove is the following. Invariant 6.5 Leti be a process. Then, for each reachable
Invariant 6.3 Leti be a process. Given a reachable state of State ofAP, , , ,
AP, letv = value(i), r = round(i). If the following holds pe; € {checkl, check2, decide, flip, wait} = obs;

={1,...,n}. O

1. obs-agree(r — 1,v);,
2. fill-agree(r,v);, Invariant 6.6 states that the preferred value of a process is
3. fill-maz-round; = r, during the second scan of the shared variables and during the

interaction with the coin flipping protocol.
then pping p

Invariant 6.6 Let: be a process. Then, for each reachable
a. V;obs-agree(r,v);, state of AP,

b. agree(r, v), pe,; € {read2, check2, flip, wait} = value(i) = L. 0
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Invariant 6.7 states that if a process is interacting with a coinProof. Fix a process. For notational convenience I&s)
flipping protocol, then that process observes that the leaderdenote the invariant above. We pralfg) by induction on the

do not agree.

Invariant 6.7 Leti be a process. Then, for each reachable
state ofA P,

pe; € {flip, wait} = Ay, obs-leader-agree(v);. 0

length of an execution ofl P leading tos. If s is a start state,
then!(s) is satisfied trivially since.obs; = (). For the induc-
tive step it is enough to show that for every transitjer, s)

of AP, I(s) impliesI(s"). We distinguish the following cases
based on.

Invariant 6.8 states that the round numbers observed by each ) )
process are never larger than the actual round numbers of thé- a = read1(i); or a = read2(i);.

processes.

Invariant 6.8 Leti, j be two processes. Then, for each reach-
able state ofd P,
rounds[jl; < round(j).
Invariant 6.9 is a consequence of the fact that a process cann
prefer two different values during the same round. That is, if
procesg observes the current round of procéasd process
does not prefet_, then then the value of proceissbserved by
procesg coincides with the actual preferred value of process
i. In other words, if procesg observes that at some point
processi is at roundr and prefers value, then the actual
preferred value of procegawhile its round isr is eitherv or

1.

O

Invariant 6.9 Leti, j be two processes. Then, for each reach-
able state ofd P,
(rounds(i]; = round(i) A value(i) € {0,1})

= (values[i]; = value(i)).

Proof. For notational convenience, 1&¢s) denote the invari-
ant above. We prové(s) by induction on the length of an
execution ofA P leading tos. If s is a start state, thef(s) is
satisfied trivially since.value(i) = L for all . For the induc-
tive step it is enough to show that for every transitier, s)

of AP, I(s) impliesI(s’). We distinguish the following cases
based om.

1. a = read1(i); or a = read2(i),.

The transition forread(i); ensures that’.rounds[i]; =
s.round(i) and thats’.values[i]; = s.value(i). Since
round (i) andvalue(i) do not change froms to s’, I(s’)
is true.

a = checkl; or a = check2; or a = init(v);, ora =
return-flip(v,r);, v € {0,1}, r > 0.

If s'.pc, € {decide, flip}, then none of the relevant vari-
ables forI(s’) has changed fromto s, andI(s’) is true.
If s".pc; ¢ {decide, flip}, thens'.obs = 0, falsifying
i € s.obs;. Therefore[(s') is satisfied trivially.

None of the cases above hold.

I(s)impliesI(s’)trivially, since allthe relevant conditions
stay unchanged. a

2.
ot

3.

Invariant 6.11 states that whenever the maximum round is at
mostr and all processes agree on a valdfeom roundr, then

all processes observe that there is agreementfoym round

r.

Invariant 6.11 Letr be anon-negative integerand: {0, 1}.
Then, for each reachable state 4P,
(maz-round < r A agree(r,v)) = ¥, obs-agree(r,v);.

Proof. Suppose that the premises of the invariant above are
satisfied, and let, j be two processes such thatnds[i]; =
r. By Invariant 6.8 and fromnaz-round < r, round(i) =
r. Thus, fromagree(r,v), value(i) = v. By Invariant 6.9,
values[i]; = v. O

The following lemma is more technical and is used to shorten
the inductive argument in the proof of Invariant 6.3. It states
that, under certain conditions, if the premises of Invariant 6.3

The transition relation ofl P ensures that'.values|i]

s’ .walue(i). Thus,I(s’) is true.

. a = checkl; or a = check2; ora = start(v);, Ora
return-flip(v,r);, v € {0,1}, 7 > 0.
If $'.pc; = decide, then none of the relevant variables
for I(s’) has changed, and thugs’) is true; if s'.pc, #
decide, then eithers’.round (i) s.round(i) + 1 or
s’ .walue(i) = L (cf. Ivariants 6.4 and 6.6). In the first
case, since procegdoes not change state, and since by
Invariant 6.8s.round(i) > s.rounds[i];, we derive that
s'.round(i) > s'.rounds[i];. Thus, in both cases one of
the premises of (s’) is not satisfied, which means that
I(s")is true.

. None of the previous cases hold.
I(s) impliesI(s') trivially, since all the relevant compo-
nents stay unchanged. O

are satisfied in the post-state of a transition, then the premises
of Invariant 6.3 are satisfied in the pre-state of the transition
as well.

Lemma 6.12 Let (s, a, s’) be a transition ofAP, wherea
is eitherreadl(k); or read2(k); or checkl; or check2; or
return-flip(v’,r');, v' € {0,1}, v' > 0. Leti be a process
such thati # j if a checkl; or a check2; or a
return-flip(v’, ') ;. If, forv € {0, 1} andr > 0, the following
conditions hold ins’:

1. obs-agree(r — 1,v);,

2. fill-agree(r,v);,

3. fill-maz-round; = r,

4. value(i) = v andround(i) = r,

Invariant 6.10 states that whenever a process has observg&en the same conditions hold sras well.
itself, the observed round and value coincide with the actuaProof. We distinguish two cases basedan

round and value.

Invariant 6.10 Leti be a process. Then, for each reachable
state ofAP,
i € obs; = (rounds[i]; =round(i) A values|i]; = value(i)).

1. a = readl(k); ora = read2(k);.

Observe that for each procdss.value(l) = s'.value(l)
ands.round(l) = s'.round(l). This implies Conditiort
in s. It is left to show Conditionsl, 2, and 3 fors. If
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1 # j thens.values; = s'.values; and s.rounds; =
s'.rounds;. Thus, Conditiond, 2, and 3 are satisfied triv-
ially in s. If ¢+ = j, then for every processsuch that
I # k, s.values[l]; = s'.values[l]; and s.rounds|l]; =
s'.roundsll];. Sincek ¢ s.obs; (i is reading fromk), and
since Conditionl holds ins’, Condition 1 also holds ia.
Condition 2 follows directly from Condition 2 fos’ and
the factthas’.values[k]; = s.value(k) ands’.rounds[k];
= s.round(k); Condition 3 follows from Condition 3 in
s" and froms’.rounds|k]; = s.round (k).

. a = checklj ora = check2; or a = return-flip(v', ") ;.
Observe that, by Invariants 6.5 and 6.%00und(j) =
s.rounds|j],;. Conditions3 and4 are trivial, since the state
of process is the same i ands’ (i # j7), s.round(j) <
s'.round(j), ands.round (i) = r. Similarly, Conditionl
holds ins. It is left to show that Condition 2 holds in

Sincej is the only process that changes state, and since

Condition 2 is affected only if & s’.0bs;, which is equiv-

alent toj ¢ s.obs;, itis sufficient to verifys.round(j) =

r = s.value(j) = vunderthe assumptionthatZ s.obs;.

We distinguish two cases.

(@) s".pc; € {decide, flip}.
No other state variable has changed in the transition.
Thus, Conditior2 holds ins.

(b) s'.pc; = read.

From Condition 3 ins’ we haves’.round(j) < r.

If s’.value(j) = L, then Conditior2 for s’ implies
s'.round(j) < r, and therefores.round(j) < r,
which implies Conditior2 for s. If s’.value(j) # L,
then the transition relation of P implies s.round(j)

< §'.round(j), and therefore, since from Condition 3
s'.round(j) < r, s.round(j) < r. This implies Con-
dition 2 for s. O

A. Pogosyants et al.

components foC'1 (s, i) and C2(s, ) do not change,
we derive C1 (s,i) A C2(s,4). If C3(s,4) is true as
well, then Ca(s,i) A Cb(s,i) A Cc(s,i) is true, and
Ca(s',i) N Cb(s',i) N Cc(s,4) follow directly. If
C3 (s,i) is false, thers.obs; = (), otherwiseC1 (s, %)
would be false, and thuysis the only process ig’ that
isatround-. ThisimpliesCb(s’, i) A Cc(s',4) directly.
By Invariant 6.8,Ca(s, i) is true, and thus, since none
of the relevant state components change(s’, i) is
true as well.

(c) i # jandr = 2.
Observe thatC1(s,i) A C2(s,i) A C3(s,1i) is true,
since procesg does not affect their validity. Thus,
Ca(s, i)\ Cb(s,i)ACe(s,i)istrue. ThenCa(s',i) A
Cb(s',1) since procesg does not affect their valid-
ity. Sinces’.obs; = 0, from C3(s’,i) and by Invari-
ant 6.8 we derive that procegsatisfies the condition
for Ce(s',4). Thus,Ce(s', %) follows from Ce(s, ).

(d) i # jandr > 2.

I(s") follows trivially from I(s) since procesg does
not affect any of the relevant conditions.

. a = read1(k); or a = read2(k); for somej andk.

Consider a processeésuch thatC'1 (s,i) A C2(s',4) A
C3(s',4). Letr = s'.round(i), v = s'.round(i). By
Lemma 6.12,s.value(i) = v, s.round(i) = r, and
C1(s,i) A C2(s,i) A C3(s,i). Sincel(s) is true, we
also haveCa(s,i) A Cb(s,i) A Ce(s,1). We need to show
Ca(s',i) N Cb(s',i) A\ Ce(s', 7).

To showCa(sQ i) itis enough to show that .rounds[k];
>r = s .values[k]; = v. From the transition relation
of AP, s'.rounds[k]; = s.round(k) ands’.values[k]; =
s.value(k). Thus,Cb(s, i) suffices.

Cb(s', 1) follows trivially from Cb(s, ) since none of the

relevant state components change.

ForCc(s,1), supposethat € s'.0bs;, s’ .round(j) = r—
1,5 .value(j) # v. Observethat+# j sinces.round (i) =

Proof of Invariant 6.3. For notational convenience, for each
states and process let I(s) denote the whole invariant,
C1(s,i), C2(s,1),andC3(s, ) denote Conditions 1,2, and 3,

respectively, and’a(s, i), Cb(s, ), andCc(s, i) denote Con-
ditionsa, b, andc, respectively.

We prove!(s) by induction on the length of an execution

of AP leading tos. If s is a start state, thef(s) is satisfied
trivially since s.value(j) = L for all j ands.obs; = 0, and

thusC2(s, i) is not satisfied. For the inductive step itis enough 3

to show that for every transitiafs, a, s’) of AP, I(s) implies
I(s"). We distinguish the following cases basedwon

1. a = start(v"); for somev’ andj.
Consider a processésuch thatC (s,
C8(s',4). Letr = s'.round(i), v =
distinguish the following cases.

@ i=j.
In this caser = 1 andv’ = v. Sinces’.obs; = 0,
Ce(s',4) is trivially true, andCb(s’, i) follows from
C2(s',4). Furthermore, fronC'3(s', i), s’.maz-round

) A C2(s,i) A
.round (). We

= 1, and thus the premises of Invariant 6.11 are satis-

fied, giving Ca(s', 7).

(b) i # jandr = 1.
FromC1(s',i),j ¢ s'.obs;, otherwise processvould
have observed. at roundr — 1. Thus, fromC2(s’, i),
v’ = wv. Since, except for procegs all the relevant

r and thuss’.round(i) # r — 1. The termss. fill-maz-
round; ands’.fill-maz-round; differ only in the use of
round (k) androunds[k];. The transition relation ofl P
ensuresthe equality of the two terms above. Tilas’, )
follows from Cc(s, 7).

. Forsomegj, a = checkl; ora = check2; ora = return-

flip(v',1");, v € {0,1}, 7 > 0.

Consider a processeésuch thatC1(s’,i) A C2(s',4) A
C3(s',1). Letr = s'.round(i),v = s'.round(i). Observe
that, by Invariants 6.5 and 6.18,round(j) = s.rounds
[71;. Furthermore, observe that for all proceskes

s .rounds; = s.rounds; A s'.values;
= s.values; A s'.obs; C s.obs;. (14)

If s".pc; € {decide, flip},thenl (s’) follows trivially from

I(s) since none of the relevant state components change.

Thus, we consider only the case wheferc; # decide.
In particular,s’.obs; = 0.

If i = j (ands’.pc; ¢ {decide, flip}), thenfroms’.obs; =
() we getCe(s’, ). Furthermores’.obs; = f andC2(s’, i)
imply s’.agree(r,v), and thusCb(s',i) is true. From
s'.obs; = 0 and C3(s', 1), we derives’.maz-round < r.
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This means that the conditions of Invariant 6.11 are satis-on any probabilistic assumption. In this section we study such
fied, and thua(s’, ) is true.

If ¢ # j (ands’.pc; ¢ {decide, flip}), then Lemma 6.12
implies thats.value(i) = v and s.round(i) = r and
C1(s,i)ANC2(s,i) N C3(s,1). Sincel(s) is true, we have
Ca(s,i) A Cb(s,i) A Cc(s, ). Equation (14) and’a(s, 7)
imply Ca(s’,4). Sinces’.round(i) = r, froms’.obs; = ()
we derives’.ﬁll—maa:—roundj > r, and thusCc(s’, 1) fol-
lows from Cc(s, ). To showCb(s’, i) we distinguish the
following cases.

(8) s.round(j) > r.

(b)

(©

(d)

By Invariant 6.5s.0bs; = {1,...,n},andthus, by In-
variant 6.10, s.rounds[j], s.round(j). From
Ca (s,i), since s.obs; = {1,...,n}, and since
s.round(j) > r, we derives.obs-leader-agree(v);.
By Invariant6.75.pc; # wait,andthus, fromthe tran-
sitionrelation ofA P, s’.value(j) = vands’.round(j)
> r. Therefore,Cb(s',¢) follows from Cb(s, 7).
s.round(j) = r — 1 ands.value(j) = L.

By Invariant 6.5,5.0bs; = {1,...,n}.If j € s".obs;,
then Ca(s,i) A Cc(s, i) implies s.obs-leader-agree
(v);. By Invariant 6.7 and from the transition relation
of AP, s'.value(j) = v ands’.round(j) = r. There-
fore Cb(s’,4) follows from Cb(s,i). If j ¢ s".0bs;,
then fromC2(s', i), s’ .value(j) = v. Thus,Cb(s’, 1)
follows from Cb(s, ).

s.round(j) = r — 1 ands.value(j) # L.

By Invariant 6.5,5.0bs; = {1,...,n}, and by Invari-
ant6.6,a = checkl.If j ¢ s'.obs;, thenC2(s’, %) im-
plies —s.obs-leader-agree(v);, since otherwise
s’ pre-fer(j) would bev;if j € s'.obs; ands.value(j)
= v, then Ca(s,4) and Invariant 6.10 imply-s.obs-
leader-agree(v);; if j € s'.0bs; ands.value(j) = v,
then fromCc(s, i) we derives. fill-maz-round; > r,
and thus, fromCa(s, 1), s.obs-leader-agree(v);.

Thus, in every case we have. obs-leader-agree(v) ;.

If s.0bs-leader-agree(v);, then from the transition re-
lation of A P we haves’.value(j) = vands’.round(j)

= r. Therefore,Cb(s', i) follows from Cb(s,1). If
—s.0bs-leader-agree(v) ;, then from the transition re-
lation of A P we haves’.value(j) = L ands’.round(j)
=r — 1. Again, Cb(s', i) follows from Cb(s, 7).
s.round(j) <r —1.

Sinces’.round(j) < r —1, Cb(s', ) follows trivially
from Cb(s, ).

4. None of the previous cases hold.
I(s) implies I(s") since all the relevant componentsof

ands’ stay unchanged.

a

Proof of Invariant 6.1.Follows directly from Invariant 6.31

7 Non-probabilistic progress properties

properties. The advantage of this approach is that we can use
existing techniques for ordinary nondeterministic systems and
confine the probabilistic arguments to a very limited section of
the analysis. In this way we can also point out very precisely
what is the essential role of probability within the protocol
we analyze. The results of this section are integrated with
probabilistic arguments in Sect. 8.

For each round, let CF',. be a coin flipping protocol, that
is, a probabilistic automaton with the interface of a coin flipper
of Fig. 2. Defined H (Aspnes-Herlihy)tobel P||(||,>1 CF ).

For each finite execution fragmemtof A H, define

O MazRound (@) 2 Istate (a).maz-round

—fstate(a).maz-round,
wheremaz-round is a function that gives the maximum round
number among all the processes. Since the round number of
each process is hondecreasing, it is immediate to verify that
b MazRound 1S @ complexity measure. Define the following sets
of states.

R the set of reachable states dfff such that3;pc, ¢
{init, nil};

D the set of reachable states dff such that¥,(pc, €
{init, nil}).

We call the states dR active since they represent situations
where some process is participating actively in the consensus
protocol. We want to show that, under some special conditions
on the coin flipping protocols, starting from any stateff

a state fromD is reached within some bounded number of
rounds. It turns out that it is easier to split the problem in two
parts: firstwe show a simple property that, unless the algorithm
terminates, the system reaches a point where one process has
justmoved to a new maximum roun@l{ and*; below, where

the subscript corresponds to the value preferred by the process
at the maximum round); then, we show that from such an
intermediate point, under some special conditions on the coin
flipping protocols, the algorithm terminates. Formally, define
the following sets of states.

Fo the set of states dR where there exists a roundand a
process such thatound(l) = r, value(l) = 0, obs; = 0,
and for all processegs# [, round(j) < r;

F1 the set of states dR where there exists a roundand a
process such thatound(l) = r, value(l) = 1, obs; = 0,
and for all processegs# [, round(j) < r.

We show two properties, the first of which is almost trivial:

1. (Proposition 7.3) IfAH is in a states of R and all in-
vocations to the coin flippers on non-failing ports get a
response, then a state frafg U F; U D is reached within
one round.

2. (Proposition 7.8) IA H is in a states of F,,, allinvocations
to the coin flippers on non-failing ports get a response, and
all invocations toC'F ;. ,naz-round g€t ONly response, then
a state fron®D is reached within two rounds.

Our next objective is to show that in the algorithm of AspnesTo state formally the two properties above we need to define
and Herlihy some decision is reached within some expectethe meaning of the sentences “all invocations to the coin flip-
number of rounds. This property depends on the probabilistipers on non-failing ports get responses”, and “all invocations
properties of the coin flipping protocols. However, there areto CF',. get only response”, which we identify with the con-
several progress properties of the algorithm that do not depencepts ofresponsivenesand (v, r)-globality, respectively.
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Definition 7.1 Aportiis non-failing in an execution fragment Invariant 7.5 Let « be an execution fragment ofH, and

a of AH or of CF,. if action stop, does not occur if.

An invocation toCF',. from processis pendingn a reach-
able states of CF',. if there is an execution of CF,., ending
in states, such that inx port: is non-failing, there is at least
one occurrence of actiostart-flip(r);, and the last occur-
rence ofstart-flip(r); is not followed by any action of the

let sy = fstate(a) be reachable inAH. Let! be a process,
r = sg.round(l), andv = sg.value(l). If v # L, then for
each state of,

round(l) > r A (round(l) = r = value(l) # v).

Proof. Straightforward inductive argument. a

form return-flip(v, r);.

An execution fragmenty of CF,. is responsiveif, for
each decomposition; ™ as of « the following holds: if in
fstate(az) there is a pending request of procéssCF',., then
in oz either actionstop, occurs, or actiorreturn-flip(v, r);
occurs for some € {0, 1}. An execution fragment of AH
is responsivef, for eachr > 0, o[ CF,. is responsive.

An execution fragment of CF',. is v-globaliff for each
action of the formveturn-flip(v’, r); that occurs iny, v' = v.
An execution fragment of AH is (v, r)-globaliff o[ CF,. is
v-global. O

Remark 7.1 The definition of pending request may appear
rather cumbersome, since we could state it just in terms of thel. V;(round(j) = r = —fill-leader-agree(v);)
components of a state 6fF,.. The problemis tha€F, isnot 2. V;fill-agree(r + 1,v);.

specified yet, and thus we cannot refer to its state components3- agree(r + 1,v).

we can refer only to the interactions th&#',. has with its
external environment. O

Statement 1 is almost trivial and states that within one
round some process moves first to a new round or all process
terminate. Statement 2 is the key result of this section. It state
that if the maximum round is and the process at roundhas
valuew, then the system quiesces within two roundg§’ff .
behaves like global coinflipper. We start with Statement 1,
which requires a trivial preliminary lemma.

Lemma 7.2 Let « be a fair execution fragment of H that
starts from a state ok, and assume that is responsive. Then
in « either a state fronD is reached, ormaz-round grows
unboundedly.

Proof. Follows directly from the fact that all processes perform
finitely many operations in every round. O

Proposition 7.3 Let sy be a state ofkR, and leta be a fair

execution fragment of H that starts from state,. Suppose
that « is responsive. Then in a state of 7y U F; U D is

reached within one round. That is, = «; ~ a9 such that
lstate(ozl) € FUFLUD andqu,mRmmd(al) <1.

Proof. If D is not reached, then, by Lemma 712qx-round 2
grows unboundedly. Thus, some process will be the first pro-
cess to reach roung.maz-round + 1. At that point a state
from Fy U F; is reached. m|

This proves Statement 1. For Statement 2 we need to prove
some preliminary invariants. The first invariant is an immedi-
ate consequence of the fact that a process has a correct view
of itself whenever it has observed itself.

Invariant 7.4 Letd be a process. Then, for each reachable 3.

The third invariant is more technical. The important part is
the second condition, which states that all processes observe
agreement on valuefrom roundr + 1 provided that the coin
flipper for roundr always returns, that at the beginning there

is exactly one process at roundand that the process at round

r prefers valuev. The other two conditions are necessary to
carry out the inductive proof.

Invariant 7.6 Let«a be an execution fragment dff whose
first statesq is a state ofF,. Letr = sg.maz-round, and
let [ be the (unique) process that satisfigsround(l) = r.
Suppose that is (v, r)-global. Then, for each state of

Proof. For notational convenience |é{s) denote the whole
invariant. States, satisfies Conditions 2 and 3 trivially since
.maz-round < r + 1. For Condition 1, since procegss
e only process at roung and sincesg.value(l) = v and

50.0bs; = (), itcannotbe the case that fill-leader-agree(v);.
For the inductive step we consider a subsequensé of «
and we distinguish cases basedawon
1. a = indt(v'); for somei.
If » > 1, then none of the conditions éfs) are affected.
If » = 1, then Conditions 2 and 3 are not affected as
well. Consider a generic procegsuchthat’.round(j) =
r. If j = i, then sinces’.obs; = (), Invariant 7.5 and
Condition 3 fors’ ensure thatfill-leader-agree(v),. If
j # i, then, since Condition 1 holds i) there is some
process # ithatis aleader with value different fromin
the filled vector of process We know that £ ¢ because,
by Invariant 7.4s. fill-maz-round; > r, and thus process

i could not affect Condition 1 in. The k' entry of the
filled vector of; is not affected during the transition from
s to s’, and thus Condition 1 is preserved.

. a = readl(k); or a = read2(k); for somei andk.

In this case Condition 3 is not affected. Thus, we need
to deal only with Conditions 1 and 2, which are affected
only for process. In particular, Conditions 1 and 2 dif-
fer in s and s’ for the use of(round(k), value(k)) and
(rounds[k];, values|k];), respectively. The transition re-
lation of AP ensures the equality of the terms above, and
thus the preservation of Conditions 1 and 2.

a = checkl; ora = check2; or a = return-flip(v',r');

for somei.

state ofAH,
fill-maz-round; > round (7). We consider only the case wheré = round(i), since
Proof. Straightforward inductive argument. 0 otherwise nothing changes during the transition froto

s’. We distinguish the following cases.
The second invariant states that the round of each process is (a) s.round(i) < r — 1.

monotonically increasing and that a process cannot prefer both Inthis casd (s) follows trivially from I(s) since none
valuesp and1 in the same round. of the conditions are affected.
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(b) s.round(i) =r — 1.
Conditions 2 and 3 are not affectedslfround(i) =

r — 1, then Condition 1 is not affected as well. Oth-

erwise,s’.obs; = (). Observe also that # [. Thus,
Condition 1 follows from Condition 1 fog and by
Invariant 7.5.

s.round (i) = 7.

(©

If s’.round(i) = r, then Conditions 2 and 3 are not

affected. For Condition 1, i#'.pc; = decide, then
Condition 1 is not affected; otherwis€, value()
1 ands’.obs; = (. Thus, Condition 1 follows from
Condition 1 fors and from Condition 3.

If s’.round (i) = r+1, then Condition 1 and the transi-
tion relation of AP (v, r) ensure that’.value(i) = v.
Thus, Conditions 1, 2 and 3 are all preserved.
s.round (i) > r.

From Condition 2 ors, either process decides on,
or a new round is reached with preferencdn both
cases Conditions 1, 2 and 3 are preserved.

4. None of the previous cases hold.

I(s") follows trivially from I(s) since none of the relevant
state components change. O

(d)

Finally, we can show that frorft, the maximum round of the
processes does not grow by more tBamovided that the coin
flipper at the maximum round always retumns

Invariant 7.7 Leta be an execution fragment dfHf whose
first states, is a state ofF,,. Letr = sg.maz-round. Suppose
thata is (v, r)-global. Then, for each state of and for each
processj, round(j) < r + 2.

Proof. First observe that satisfies the conditions of Invari-

ant 7.6, which means that Invariant 7.6 is satisfied by all theg #¥esrowd <35

states otv.

All the cases for the proof are straightforward except for

the case where a transitiofs, checkl;,s") occurs and
s.round(j) = r+ 2. In such case, from Condition 2 of Invari-
ant 7.6,s.fill-agree(r + 1,v),. Sinces.obs; = {1,...,n},
we derive that.obs-agree(r + 1,v), and thus procesgsets
pc; to decide without reaching round + 3. Observe that
check2; cannot occur whemound(j) = r + 2 since in such
casevalue(j) = L and Invariant 7.6 would be violated. O

Proposition 7.8 Let « be a fair execution fragment of H
whose first state, is a state ofF,,. Letr = sq.maz-round.
Suppose that is responsive andv, r)-global. Then ina a
state fronD is reached within two rounds. Thatis,= a1~ s
wherelstate(a1) € D and ¢ ararround(@1) < 2.

Proof. Suppose thatD is not reached ina. Then, by
Lemma 7.2, some process eventually reaches round3,
contradicting Invariant 7.7. Therefore, in a state fromD
is reached. Furthermore, by Invariant 7.7, a state ff@rns
reached within two rounds. O

8 Probabilistic progress properties

Suppose that each coin flipping protoa@F,. satisfies the
following properties.
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C1 For each fair probabilistic execution fragment@F',. that
starts with a reachable state@F',., the probability of the
execution fragments that are responsive.is

C2 For each fair probabilistic execution @fF',., and each
valuev € {0, 1}, the probability of the executions that
are responsive angtglobal is at leasp, wherep is a real
number such that < p < 1.

In this section we show that under Conditidd$ andC2 for
everyCF,., AH guarantees progress within expected /p)
rounds. That is, we prove the following proposition.

Proposition 8.1 If each coin flipping protocolCF,. satisfies
propertiesC1 and C2, then in AH, starting from any state
of R and under any fair scheduler, a state frdmis reached
within at mostO(1/p) expected rounds.

Thus, we need to show only that it is possible to build dis-
tributed implementations of the coin flippers that sati€fly
andC2 with a suitable value fop. We build the implementa-
tions in Sects. 9 and 10.

Remark 8.10bserve that propert@€1 refers to probabilistic
execution fragments, while Prope@ refers to probabilistic
executions. This distinction is important. Prope@¥ states
that a coin flipper gives responses with probabilifyom any
arbitrary point in its computation; Prope/®2 guarantees that
with probabilityp a specific value is always returned, but only

if we observe the coin flipper from the beginnir@? is not

true for an arbitrary probabilistic execution fragment: if we
consider a fragment that begins in a state where two processes
are about to return two different values, then all processes
return the same value with probability a

We now turn to the proof of Proposition 8.1. The main
statement that we use is
; (15)
To prove Statement (15) we prove two intermediate state-
ments:

R ¢Maa.‘fi%sbd§1f0 U ]:1 U 'D7 (16)
and for eachy € {0, 1},
fv ¢MawRo_uSul§2D. (17)

p
The proofs of Statements (16) and (17) rely on Propositions 7.3
and 7.8 and on the probabilistic properties of the coin flipping
protocols. In particular, the first statement relies on the fact
that the coin flippers respond, which occurs with probability 1
(C1), and the second statement relies on the fact that some
specific coin flipper always returns a specific valyavhich
is the case with probability at legs{C?2).

Proposition 8.2 Assuming thatthe coin flippersihH satisfy
C1,

¢1\/[(1,T,Rou,g
R 1

a<1

FLUFUD. (18)

Proof. Let H be a probabilistic execution fragment dff

that starts from a state &. Let © be the set of executions of
2 where each invocation to any coin flipper on a non-failing
port gets a response. By Proposition 7.3, in each execution
of © a state fromF; U Fy U D is reached within one round.
Thus, it is sufficient to show tha®y [©] = 1. Let, for each

1 > 1, ©, be the set of executions d?y where each in-
vocation toCF; on a non-failing port gets a response. Then
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© = N;>10;. Observe that, by definitior®; is the inverse
image under projection of the set of executions(afcr,

where each invocation on a non-failing port gets a response.” - "; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
From C1, for eachi, Py(cr,[0;[CF;] = 1, and thus, by | | start-read

Proposition 2.2Py[6;] = 1. Therefore,Py[0] = 1 since
any countable intersection of probabilityevents has proba-
bility 1. O

Proposition 8.3 Assuming thatthe coinflippersihH satisfy
ClandC2,

T, ¢’M“”%9d§27>. (19)
Proof. Let H be a probabilistic execution fragment dfff
that starts from a state, of 7, and letr = sq.maz-round.
Let © be the set of executions &ty where each invocation
to any coin flipper on a non-failing port gets a response an
where each response 6%, has valuev. By Proposition 7.8,
in each execution o a state fronD is reached within two
rounds. Thus, it is sufficient to show th& [©] > p. Let,
for each: > 1, ©; be the set of executions dPy where
each invocation t@'F'; on a non-failing port gets a response.
Furthermore, le®.. be the set of executions 6f;; where no
response of'F, hasvalue. Then® = (N;>10;)NO... From
C1, for eachi, Py(cr,[0:[ CF;] = 1, and thus, by Proposi-
tion 2.2,Py[©;] = 1. Sincesy € F, andr = so.maz-round,
H[CF, is a probabilistic execution of'F,. (the start state
of H[ CF', is a start state of 'F',.), and thus propert€2 can
be applied. FronC2, Pycr, [0, CF,] > p, and thus, by
Proposition 2.2 Py [O.] > p. Therefore,Py[©] > p since
any countable intersection of probabilityevents has proba-
bility 1 and the intersection of a probabilityevent with an
event with probabilityp has probability at leagt O

Proof of Proposition 8.1By Proposition 2.7, Statements (16)
and (17) can be combined to lead to Statement (15).

Since inAH R is not left unless a state frof is reached,
since each transition oA H increase® ysazround DY at most
1, and since from fairness a@l some transition is scheduled
with probability 1 from each state oR, by Theorem 2.8 we
derive that within at most expectedp rounds a state fror®®
is reached under any fair scheduler. O

9 The coin flipping protocol

We are left to show that it is possible to build a distributed
coin flipping protocol with the properties1 andC2 stated in

Sect. 8, where by a distributed protocol we mean a protoco
where processes interact through single-writer multiple-readeg3

shared variables only.
In this section we build an almost distributed version of

the coin flipping protocol where processes interact througr],n
a multiple-writer multiple-reader shared register; in Sect. 10

we refine the protocol of this section to yield a distributed

protocol. The protocol is based on random walks and satisfie

propertiesC1 and C2 with a sufficiently high probabilityp
that is independent of.

9.1 The code for the protocol

A. Pogosyants et al.

|
[

/\
end-dec;

end-inc;

@ end-readi CT
/ —————————————— i :
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|
|
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|
|
|

(J:ig. 3. The structure of the coin flipping protocol

CT, (CounTer), thatisC'F,. = Hide;(DCN..|| CT,), where
I is the set of actions used for the interaction betwBeéhV ,.
andCT,., andHide; is an operator that transforms the actions
of I from external to internal. Figure 3 shows the structure of
the coin flipping protocol. In this sectioMCN .. is distributed
while C'T,. is composed of. processes that receive requests
from DCN,. and read/update a single shared variable: the de-
tails of the distributed implementation of a shared counter are
not necessary for any properties of the coin flipping protocol.
The distributed version of the shared counter is presented in
Sect. 10.

Since the protocols fobCN,. and CT',. are the same for
any roundr, we drop the subscript from our notation. Ta-
ble 3 gives the state variables 6fCN; Table 4 gives the
transition relation ofDCN. Each process flips a fair coin to
decide whether to increment or decrement the shared counter.
Then the process reads the current value of the shared counter,
and if the value read is beyond the barri¢t& n, whereK is a
fixed constant, then the process returns, otherwise, it flips the
fair coin again. The protocol described in Table 4 is slightly
different from the protocol described in [5]: once a coin flip is
requested, our protocol checksunter before flipping a coin,
while the protocol of [5] starts immediately by flipping a coin.
Our protocol improves the protocol of [5] in that properti&s
andC2 are satisfied even in the presence of multiple requests
on the same port. This improvement is not essential for the
correctness of the protocol of [5], since the protocol guaran-
tees that there is at most one request at each port; however,
ur improvement simplifies the proof slightly in that we do
ot have to prove explicitly that there is at most one request at
ach port.

Table 5 gives the state variables of the shared cowritér
Table 6 gives the actions and transition relatior0df. Infor-
ally, each process af'T receives requests that are handled
by referring to a multiple-writer multiple-reader shared vari-
able counter. Increment and decrement operations are per-
formed by updatingounter directly; read operations are im-
plemented by first copying the value @funter to a multiple-
writer single-reader variablgreread and then, in a separate
step, returning the value @feread to the environment. How-
ever, an update tawunter may invalidate the value that aread
operation is ready to return. This fact is expressed by the non-

We representthe coin flipping protocol by letting an automatondeterministic choice to reset any setkread variables to

DCN . (Distributed CoiN) interact with a centralized counter

1 whenever a process updates:nter. Due to the way the
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Table 3. The state variables of a process DCN.

Name Values Initially

Local state

foc {nil, flip, inc, wait-inc, dec, wait-dec, read-counter, wait-counter,  nil
compare, return-flip,, return-flip, }

stopped Bool false

local-counter  int

0

Table 4. The actions and transition relation BICN

Actions and transitions of process
input start-flip(r);
Eff: if fpc = nil A —stopped then
fpc < read-counter
output start-read;
Pre: fpc = read-counter
Eff: fpc «+ wait-counter
input end-read(c);
Eff: if fpc = wait-counter then
local-counter < c
fpc < compare
internal compare,
Pre: fpc = compare
Eff: if local-counter > Kn then
fpc < return-flip,
elseiflocal-counter < —Kn then
foc < return-flip,
else
fpe < flip
output return-flip(v,r);
Pre: fpc = return-flip,,
Eff: fpc, < nil

internal flip(r);
Pre: fpc = flip
Eff: Prlfpc < inc] = 1/2A
Pr{fpc < dec] =1/2
output start-inc;
Pre: fpc = inc
Eff: fpc < wait-inc
input end-inc;
Eff. if fpc = wait-inc then
fpc < read-counter
output start-dec;
Pre: fpc = dec
Eff: fpc < wait-dec
input end-dec;
Eff: if fpc = wait-dec then
fpc + read-counter
input stop,
Eff: stopped < true
foc < nil

Tasks: The locally controlled actions of procesform a single task.

Table 5. The state variables of a procass CT

Name Values Initially
Local state

cpe {nil, wait, inc, end-inc, dec, end-dec, read-counter}  wait
stopped Bool false
Multiple-writer multiple-reader shared variables

counter int 0
Multiple-writer single-reader shared variables (process reads)

preread (i) intU{L} L

preread variables are handled, the specificationdf' states

is splitinto two parts: the first part deals with non-probabilistic
that an increment or decrement operation always completegroperties, while the second part deals with probability.

unless the corresponding process fails, while a read operation
is guaranteed to complete only if increments and decrements

eventually cease. Essentially, our use ofth@cad variables

9.2 Informal analysis

is an abstraction of what the implementation of Sect. 10 actu-

ally does.

We now proceed with the analysis6f'. In particular, we
show that with probabilityl, all the invocations taC'F' on a
non-failing port get an answer, and, foe {0, 1}, with prob-
ability at least{ X' — 1) /2K all the answers are The analysis

The idea behind the coin flipping protocol is very simple: the
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difference between the heads and tails obtained in the elemen-
tary coin flips form a random walk. The value of the shared
counter and the actual difference between heads and tails may
differ by at most: since in the worst case each process may be
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Table 6. The actions and transition relation 6T

Actions and transitions of process

input start-inc;
Eff: if cpc = wait then
cpe — inc
internal inc;
Pre: cpc = inc
Eff: counter < counter + 1
Vjpreread(j) < choose(preread(j), L)
cpe + end-inc
output end-inc;
Pre: cpc = end-inc
Eff: cpc + wait
input start-dec;
Eff: if cpc = wait then
cpe < dec
internal dec;
Pre: cpc = dec
Eff: counter < counter — 1
Vjpreread(j) < choose(preread(j), L)

output end-dec;
Pre: c¢cpc = end-dec
Eff: cpe + wait
input start-read;
Eff: if cpc = wait then
cpe <+ read-counter
internal read;
Pre: cpc = read-counter
preread (i) = L
Eff: preread(i) < counter
output end-read(c);
Pre: c¢pc = read-counter
preread(i) = c # L
Eff: cpc + wait
preread(i) + L
input stop,
Eff: stopped < true
cpe < nil

cpe + end-dec
Tasks: The locally controlled actions of procesform a single task.

trying to update the counter. Finally, if the difference betweenof processes i whose program counter of eithé&rCN or
heads and tails is greater than or equalko+ 1)n, thenno  CTisinc, andlefs| .. be the number of processesiwhose
process will ever observe a value beléim. This lastproperty  program counter of eitheDCN or CT is dec. Formally, let
requires a careful analysis, but the idea is that the processes;,,. = {j | s.fpc; = incV s.cpc; = inc}, the processes that
that have to update the counter will not flip any more and theare about to increment, and I6t.. = {j | s.fpc; = dec v

other processes will flip at most once. _ s.cpc; = dec}, the processes that are about to decrement. Let
Based on the properties above, if the difference betweens|, “— |5, | and|s|sec = |Sqec|. The following lemma

heads and tails ends abov& + 1)n before ending below  states howounter and the actual number of coin flips giving
—(K — 1)n, then all processes will return head: no process;,, . anddec are related.

will ever observe a value below Kn since the value of the

counter and the difference between heads and tails differ byemma 9.1 Let « be a finite execution of' F, and lets =
at mostn; furthermore, after hittind X' + 1)n all processes Istate(a). Then,

will observe a value abovEn. A symmetric argument holds

for tail. From random walk theory, the barriék + 1)nis  @inc(@) — aec(@) = s.counter + [s]inc — [s]dec-

reached before- (K — 1)n with probability (K — 1) /2K.

Most of the properties described in this informal analysis
do not rely on any probabilistic assumption. For this reason inGiven a states, 16t Syeiow (Sapove) b€ the set of processes
the formal analysis we separate the arguments that need profi s that have a pending request and either are up to flipping
ability from those that are independent of any probabilistican elementary coin or are up to detecting thatnter is be-
assumption. low (above) the barrieKn (—Kn). Let |s|peiow aNd|s|apove

denote the cardinality dy.;0, and.S 500, respectively. For-
mally, Syei0. 1S the set of processésuch that either

Proof. Straightforward induction on the length af ad

9.3 Non-probabilistic analysis )

s.fpc; = flip, or

s.fpc; = read-counter ands.counter < Kn, or

s.fpc; = compare ands.local-counter; < Kn, or
s.cpc; = read-counter and eithers.preread, < Kn or
s.counter < Kn.

Let Acts be {flipy,...,flip,}, and letS be {(U}, U?),
(U3, Ush), ..., (UL, UH}Y, where U/ is the set of states of
CF where procesg has just flippedinc (fpc; = inc), and
Uf is the set of states af'F' where process has just flipped
dec (fpc; = dec). Similarly, S.p00e can be defined by replacing Kn with
Given a finite execution fragmentof CF, let ¢;,,.(«) be > — Kn. The following two lemmas state a key property for
the number of coin flips inv that giveinc, and letg .. («) the analysis of the coin flipping protocol. We describe only
be the number of coin flips ia that givedec. Functiong;,,.. Lemma 9.2 since Lemma 9.3 is symmetric. Suppose that a
andg 4. correspondto function8eads 4.+s,s andTails acts,s state is reached where the valuecofinter minus the num-
in Sect. 3.3; the differencg;,,.(«) — d4..() corresponds to  ber of processes that either are up to decrementingter
Diff pcts (). Given a state of CF, let|s|;,. be the number or are up to detecting thabunter is below Kn is at least

PwONPE
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Kn.Then Lemma 9.2 states that this property continues to reProof. If « contains finitely many flip actions, then even-

main valid in the future. Roughly speaking, each process th
readscounter terminates (does not flip nor updateunter
any more) because it observes a value that is at I€ast

Lemma 9.2 The following property is stable faf'F’, that is,
it continues to be satisfied once it is satisfied.

s.counter — |$|dgec — |8|betow = Kn. (20)
Proof. Straightforward inductive argument. ad
Lemma 9.3 The following property is stable faf'F'.

s.counter + |8|ine + 18| above < —Kn. (21)
Proof. Straightforward inductive argument. O

Asimple consequence of Lemmas 9.2 and 9.3 isthatwhe
ever the difference between the coin flips that giveand the
coin flips that givedec is beyond the barriers (K + 1)n, the
value of counter is always beyond- Kn.

Lemma9.4 Leta = a1 ~ ag be an execution o€'F such
that ;e (1) — Paec (1) = (K + 1)n. Then each state of;
satisfiescounter > Kn.

Proof. By Lemma 9.1¢;nc(1) — @dec(a1) = s.counter +
[$]ine — |$|dec Wheres = Istate(a;) = fstate(az), and thus
s.counter+|s|ine —|s|dec = (K +1)n. By asimple algebraic
manipulation,s.counter — |s|gec — |8|petow = S.counter +
|3|inc - ‘S‘dec - (|5|inc + |S|below)- Observe that, by defini-
tion, Sine N Speiow = 0, and thereforés|i,. + || petow < n-
This means that.counter — |$|dgec — |S|petow > Kn. By
Lemma 9.2, each statéof a. satisfiess’. counter — || gec —
|s'|peiow > Kn. Thus, each state af, satisfiescounter >
Kn. O

Lemma 9.5 Leta = a1 ~ ay be an execution o€'F such
that dine (1) — Pgec(a1) = —(K + 1)n. Then each state of
i satisfiescounter < —Kn.

Proof. Symmetric to the proof of Lemma 9.4. O

Lemma 9.6 Let o be an execution o€F', such thata €
Top[—(K —1)n, (K +1)n,0](H) for some probabilistic ex-
ecutionH of CF. Thena is 1-global.

Proof. Sincea € Top[—(K — 1)n, (K + 1)n,0](H), ei-
ther each prefixy’ of a satisfies— (K — 1)n < ¢ine(a’) —
Daec(@) < (K 4+ D)n,0ora = a1 ~ ay whereg;,.(a1) —
@dec(a1) = (K+1)nandno prefixy) of a; satisfiesh;n. ()
_d)dec(all) < _(K - 1)”

In the first case, by Lemma 9.1, no statecokatisfies

atually all the increment and decrement operations deriving
from the flipping operations are completed or interrupted (the
correspondingnd-inc or end-dec actions occur or the corre-
sponding processes fail). Thus, there is a point after which no
moreinc anddec operations are performed. Let be a suffix
of a where no more flip, increment or decrement operations
are performed. Then in’ none of thepreread, variables is set
to L while actionend-read(c); is enabled, and thus all read
operations on non-failing ports terminate eventually. At that
point, since no more flips are performeddh each process
that completes a read operation returns a value.
If « contains infinitely many flip actions, then, sineec
Either[— (K + 1)n, (K + 1)n,0](H), @ = a3 ~ as such
nt_hat¢>i,w(a1) — @gec(a1) = £(K + 1)n. Here we consider
the case where,,.(a1) — dgec(1) = (K + 1)n; the other
case is symmetric. By Lemma 9.4, each statepBatisfies
counter > Kn.Thus, each non-failing processreturns avalue
once it readsounter (performing the read operation i)
since the value read is at ledst. O

Lemma 9.9 Let « be a fair execution o'F, such thatn €
Top[— (K —1)n, (K +1)n,0](H) for some probabilistic ex-
ecutionH of CF. Thena is responsive and-global.

Proof. By Lemma 9.8, each invocation on a non-failing port

gets aresponse. By Lemma 9.6 no invocation gets resjjonse

Hence, each invocation on a non-failing port gets respanse
O

Lemma 9.10 Let« be a fair execution o’F, such thaix €
Bottom|[— (K —1)n, (K+1)n, 0](H) for some probabilistic
executiond of CF. Thena is responsive and-global.

Proof. Symmetric to the proof of Lemma 9.9. a

9.4 Probabilistic analysis

In this short subsection we prove the probabilistic properties
of the coin flipping protocol, that is, it guarantees properties
C1 (Proposition 9.11) an@2 (Proposition 9.12). The proofs

rely on the non-probabilistic properties proved in Sect. 9.3 and
on the coin lemmas for symmetric random walks of Sect. 3.3.

Proposition 9.11 The coin flipperCF satisfiesC1. That is,
for each fair probabilistic execution fragment@f' that starts
with a reachable state af'F', the probability of the executions
that are responsive is.

Proof. Let H be a fair probabilistic execution fragment of
CF that starts with a reachable stateof CF', and let«

counter < —Kn. Inthe second case, by Lemma 9.1, no statepe a finite execution of’F such thatlstate(a) = s. Let

of o, satisfiesounter < —Kn. Furthermore, by Lemma 9.4,
each state ofv, satisfiescounter > Kn. Therefore, no state
of « satisfiescounter < —Kn. This means that in both cases
no process returns valwen a. ad

Lemma 9.7 Let o be an execution o€F', such thata €
Bottom[— (K —1)n, (K+1)n,0](H) for some probabilistic
executiond of CF'. Thena is 0-global.

Proof. Symmetric to the proof of Lemma 9.6. O

Lemma 9.8 Let « be a fair execution o’F', such thatn €
Either[—(K + 1)n, (K + 1)n, 0](H) for some probabilistic
executiond of CF. Thena is responsive.

z = Qinc(a) — daec(). If o is an execution of the event
Either[—(K + 1)n, (K + 1)n, z](H), thena ™ o' is an ex-
ecution ofEither[— (K — 1)n, (K + 1)n,0](H’) for some
fair probabilistic executiod!’ of CF', and by Lemma 9.8, ev-
ery invocation toCF in a ™ o’ gets a response. From Defini-
tion 7.1, every invocation t6'F in o/ gets aresponse. By The-
orem 3.10,Py[Either[— (K + 1)n, (K + 1)n, z](H)] = 1.
This completes the proof. a

Proposition 9.12 The coin flipperCF satisfiesC2 with p =
(K +1)/2K. That is, fixedv € {0, 1}, for each fair proba-
bilistic execution oflC'F, the probability of the executions that
are responsive and-global is at least{ K — 1)/2K.
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Table 7. The state variables of a process DCT

Name Values Initially
Local state

cpe {nil, wait, inc, end-inc, dec, end-dec, scan, read-counter}  wasit

prescan array[l...n] of int x int array of(0, 0)
first array(l...n] of int x int array of(0, 0)
obs setof{1,...,n} 0

stopped Bool false

Single-writer multiple-reader shared variables
(num(i), val(?)) int X int (0,0)

Proof. Assumethat = 1;the casefov = Oissymmetric.Let DCT to CT and show thak preserves the fair executions of

H be afair probabilistic execution @f'F. If « is an execution  DC'T. Note thath is not probabilistic sinc&CT andCT are

of Top[—(K — 1)n, (K + 1)n,0](H), then, by Lemma 9.9, not probabilistic. That is, the properties that we need to show

every invocation toCF in « gets responsé. Furthermore, do not involve probability.

by Theorem 3.10Py [ Top[— (K — 1)n, (K + 1)n,0](H)] >

(K —1)/2K. This completes the proof. U Proposition 10.1 There is a refinement froMC7T to CT that
preserves the fair executions BICT.

10 Implementation of the shared counter Proof. The refinement keeps theeread variables different

from _L whenever the first scan has occurred and no increment

Inthis section we build animplementation@f" and we show o1 gecrement operations have done anything that would make
that it can replace the abstract automafdfi in CF without the first and second scans differ. Formallys) = s’ where,

compromising Propositions 9.11 and 9.12, that is, propertie$or each process
ClandC2withp = (K —1)/2K. In this way, using the coin ,
flipping protocol with the new counter, we obtain a protocol for §.cpc; = {
consensus that uses only single-writer multiple-reader shared
variables. s'.counter = Z val(j)

The implementation o7, which we denote byDCT j
(Distributed CounTer), is an adaptation of an algorithm pro- s’.preread; =
posed by Lamport [21] for read/write registers. The state vari- . s —s.first; ande = 3" s.prescanlj];
ablecounter of CT isrepresented bysingle-writer multiple- ! J
reader registers, one for each process, with two fieldsira s , a9 a9
field, which is incremented whenever the value of the register :23:7 gj. < Obs? - presam[].]? — sean i)
) \ ; " i(j ¢ obs; = prescan[j]; =
is changed, andeul field representing the contribution of the (val(j), num(5)))
corresponding process to the valueainter. The operations :
inc anddec on a process are implemented by incrementing

or decrementing theal register and incrementing theumn Consider now a fair execution; of DCT. From the ex-

register of process. The operationvead-counter is imple- o0 o correspondence theorem there is an executiosf
mented by scanning the shared registers until two consecutivevp o\ oh thatas, as) € h. Suppose by contradiction thas
scans give the same value. Table 7 gives the state variables (f, ; fair. Then ir, there is a processvhose corresponding
DCT; Table 8 gives the transition relation 6IC'T. task is eventually continuously enabled but never performed.

. We now verify that it. i_s possible to repla@@C’T for CT Observe that.~! preserves the enabledness of each task of
in CF without compromising properti€sl andC2. Let DCF CT, and that inDCT it is not possible that for some task

(Distributed Coin Flipper) be defined #de;(DCN || DCT), there is an execution fragment with infinitely many internal
wherel is the set of actions used for the interaction betweenactions fromT and no external action fror’. Thus. since

DCN andDCT. (a1,2) € h, eventually ina; the task of processis con-

Observe that propertieS1 andC2 are properties of the | | t " Thi :
fair trace distributions o€F and DCF . Specifically, observe r:g??;rs éigi?r:gig}lor? ever performed. This meansdha;;

that responsiveness anejjlobality can be stated in terms of

traces. Then, properi@l can be stated as “in each fair trace o o )
distribution, the probability of the set of traces that are re-Theorem 10.2 The coin flipperDCF satisfies propertie€1
sponsive is 17, and propertg2 can be stated as: “in each andC2withp = (K —1)/2K.

fair trace distribution, the probability of the set of traces that

are responsive angglobal is at least p”. Thus, to show that Proof. By Proposition 10.1, there is a refinement fréh@'T"
DCF satisfies propertieS1 andC2itis sufficientto showthat to C'T that preserves the fair executions/o€ 7. By Propo-
ftdistrs(DCF) C ftdistrs(CF'). For this purpose, by using sition 2.13,ftdistrs(DCF) C ftdistrs(CF). This completes
Proposition 2.13, it is sufficient to build a refineméntrom the proof. O

read-counter if s.cpc; = scan
s.cpe; otherwise,

ands.cpc; € {scan, read-counter}

1 otherwise.
It is straightforward to check thétis a refinement mapping.
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Table 8. The actions and transition relation BfCT
Actions and transitions of process
input start-inc; input start-read;
Eff: if cpc = wait then Eff: if cpc = wait then
cpe — inc cpe — scan
internal inc; obs + 0
Pre: cpc = inc internal scan(k);
Eff: val(i) < val(i) + 1 Pre: cpc = scan
num(i) < num(i) + 1 k ¢ obs
cpc < end-inc Eff: scanlk] < (counter(k), num(k))
output end-inc; obs < obs U {k}
Pre: ¢pc = end-inc if obs = {1,...,n}then
Eff: cpe + wait if =first A (prescan = scan) then
input start-dec; first < true
Eff: if cpc = wait then counter <— 7", scan;[j].val
cpe +— dec cpc — read-counter
internal dec; else
Pre: c¢pc = dec prescan <— scan
Eff: val(i) < val(i) — 1 first < false
num(i) < num(i) + 1 output end-read(c);
cpe < end-dec Pre: cpc = read-counter
output end-dec; c =37, scan[jl.val
Pre: c¢pc = end-dec Eff: cpc + wait
Eff: cpe — wait input st()pi
Eff: stopped < true
cpe < nil
Tasks: The locally controlled actions of procesform a single task.
11 Summing up 2. If in s there is at least one initialized and non-failed pro-
cess, and if no new processes failiin then a decision is
In this section we paste together the results of the previous reached within a constant expected number of rounds.
sections to derive an upper bound on the expected humber of
rounds for termination. Proof. To reachD all initialized processes must either fail
) o or decide. In the first case, sing€eis reached, all non-failed
Theorem 11.1 Using the coin flippers of Sects. 9 and W/ rocesses have decided. In the second case, since there is at
guarantees wait-free termination within a constant expectedeast a non-failed initialized process, and since such process
number of rounds, that is, from each reachable statd &f, does not fail, such process decides. 0

under any fair scheduler, a state @f is reached within a
constant expected number of rounds.

Proof. The coin flippersDCF of Sects. 9 and 10 satisfy prop- 12 Timing analysis of the algorithm

ertiesClandC2withp = (K—1)/2K, whereK is a constant

(cf. Theorem 10.2 and Propositions 9.11 and 9.12). By Propotn this section we prove an upper bound on the expected time it
sition 8.1,4 I guarantees wait-free termination within at most takes for all processes to terminate, starting from an arbitrary
O(2K /(K — 1)) expected rounds, that is, within a constant reachable state, once all processes have some minimum speed.
expected number of rounds. O For this purpose we augment the 1/0 automata of the previous
sections so that time can be observed. Our augmentation re-
sembles the patient construction of [18] and produces another
probabilistic I/0O automaton. Note that we cannot regard the
augmentation we present in this paper as the definition of a
general timed probabilistic model. Our augmentation is the
minimum machinery that is necessary for the time analysis of
an asynchronous algorithm.

We analyze some implications of Theorem 11.1. In par-
ticular, the definition o> may appear rather counterintuitive,
since reaching® does not necessarily mean deciding: it is
possible to react® by letting processes fail. However, Theo-
rem 11.1 gives enough information to derive several differen
termination properties as the following corollary shows.

Corollary 11.2 Let H be a fair probabilistic execution frag-
ment ofA H, and suppose thdf starts from a reachable state
s of AH. Then the following properties are satisfied By 12.1 Modeling time

1. If in s all processes are initialized already, then within a
constant expected number of rounds all non-failing pro-In order to model time we add a special componenty to
cesses decide. the states of all our probabilistic I/O automata, and we add the
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set of positive real numbers to the input actions of all our prob-Lemma 12.1 For each execution fragmentof DAH ,
abilistic 1/0 automata. We call the new actiaimme-passage 1. dia(a) = iar(a), and

actions The.now component is a nonnegative real number 2' f"d Er 70>0 _““ S DCF

and describes the current time of an automaton. At the begin< 0" €acv > U, Pidr() = iar(al DCFy). =
ning (i.e., in the start states) the current timé,iand thus the
.now component i®). The occurrence of an actiehwhered

is a positive real number, increments thew component byl
and leaves the rest of the state unchanged. Thus, the occurre
of an actiond models the fact thaf time units are elapsing.

The amount of time elapsed since the beginning of an exec he first significant result of this section, Lemma 12.4, pro-

tion is recorded in thenow component. Since time-passage . . S
actions must synchronize in a parallel composition context,v |dens a Ili\r;eﬁrnu;?ﬁsrrbc;urnd r?c? thﬁdt':neﬂi't tak?VSanb‘:lHn:Ob r of
parallel composition ensures that thew components of the span a given humber of rounds and fo Tlip a given humber o

components are always equal. Thus, we can abuse notatidff'"> under the assumption of well-timedness. - ,
and talk about thenow component of the composition of We first prove a pre"”?'”afy 'emm?‘= Wh'Ch prowde_:s a "T"
two automata while we refer to theow component of one  €aF UPPer bound on the time a coin flipping protocol is active
of the components. Observe that our augmented probabilistil“r'r':holﬂt I?rg?/nmrc’ Idiﬁ’m Teﬁ“?r'fthpr 0\5 séofp racnoinn ?Ifcuirr:mg;
I/O automata are still probabilistic I/O automata. ¢ elp ef L ary 612 2a S dstrﬁ) ove odafco PP ﬂg pro-

For any probabilistic /O automaton augmented with time 1€0! (¢f. Lemma 12.2), and then proved for a coin flipping
we define a new complexity measuggas follows: protocol within DAH.

¢t (ar) = Istate(a).now — fstate(cr).now. . Lemma 12.2 Leta be a fair, well-timed execution fragment
Itis straightforward to check thaf, is a complexity measure. of DCF,, » > 0. Suppose that iffstate(«) there is at least
Informally, ¢, measures the time that elapses during an exepne non-failed process with a pendisgrt-flip(r) request.

cution. We say that an execution fragmertf a probabilistic  Then in« there is an occurrence of an action frofinc, dec,
automatonV/ is well-timedif there is no taskl" of M and no  yetyrn-flip, stop} within timeO(n).

decompositiony; ~ as ~ as of @ such thatp:(az) > 1, all

12.3 Non-probabilistic properties of the complexity measures

%ethis section we study the relationship between the complex-
ity measuresp:, ¢;q, fip, did,r» and¢aqy, » defined above.

the states ofi» enableT’, and no action fronf’ occurs ina,.  Proof. Let X be {inc, dec, return-flip, stop}. Let i be a
That is,« is well-timed if each task does not remain enablednon-failed process with a pendingart-flip(r) request in
for more than one time unit without being performed. fstate(a), and suppose for the sake of contradiction that in

All the properties that we have studied in the previousthere is no occurrence of actions frasnwithin time 3n + d,
sections are still valid for our augmented automata, since theythered is a sufficiently large constant. From the code of
are not affected by the presence of thew componentand DCF, process runs through a cycle where a read request is
of the new input actions. It is simple to observe that if we performed and an action frotninc, dec, return-flip} occurs
remove the time-passage transitions from a fair execution ofinless processfails (actionstop) occurs. Thus, one action
an augmented automaton we obtain a fair execution of thérom X occurs before completing a cycle. The maximum time
non-augmented automaton. necessary to complete a cycle is given by the time to complete

In the rest of this section we strengthen the properties oft read request plus the time to check the result and perform the
the previous sections by showing that, under the assumptioforresponding operations. The constaatcounts for the time
of well-timedness, the algorithm of Aspnes and Herlihy ter- necessary to complete all the operations except for the read
minates within an expected polynomial time. That is, if from request. Since no action froii occurs within time3n + d, a
a certain point each processor has some minimum speed, théfad request completes within time at mdst in fact, within

the algorithm of Aspnes and Herlihy guarantees terminatior3 Scans of procesthere are two consecutive scans that give
within an expected p0|yn0mia| time. the same result. ThUS, within tinse. +d process’ Completes

a cycle, which means that an action frotmoccurs, a contra-
diction. 0O

12.2 Preliminary definitions Lemma 12.3 Leta be afair, well-timed execution fragment of

. DAH, and letr > 0. Suppose that iffistate(a) [ DCF', there

Before presenting the timing analysis we give some prelimi-ig o+ |east one non-failed g ; .

o - process with a pending-t-flip(r)
hary definitions. Recall that, for eaeh> 0, DCF’“ denotes request. Then imv there is an occurrence of an action from
Hide;(DCN,. || DCT.,.), wherel is the set of actions used for {ine, dec, return-flip, stop} within timeO(n).

the interaction betweeRCN,. andDCT,.. Thatis,DCF, is
the result of substituting@CT',. for CT',. in CF',.. Let DAH Proof. Let X be{inc,dec,return-flip, stop}. By Lemma 12.2
(Distributed Aspnes-Herlihy) denot€P || (||,>1DCF,). For  in«a[DCF, thereis an occurrence of an action frafmwithin
an execution fragment of DCF',. or of DAH, let ¢ p;p () time c¢in + co for appropriate constants andcs. That is,
be the number ofiip events of DCF,. that occur ina, and  a[DCF, = a; ™ as such thatp;(a;) < e;n + ¢ and an
let ¢;q4.,(c) be the number ofnc and dec events of DCF, action fromX occurs ina; . Let o) be a prefix ofx such that
that occur ina. For each execution fragmeatof DAH let a1 = o[ DCF,.. Then, from the definition of projection, an
¢:a(«) denote the number afic anddec events that occur in  action fromX occurs ina/, and from the definition ofnow

a. Itis straightforward to check thatg;, -, ¢4 - andg,q are  within parallel compositiong;(a}) = ¢i(a1) < e1n + ca.
complexity measures. Observe that the following trivial resultThis means that imx an action fromX occurs within time
holds. cin + ca. O



Verification of the randomized consensus algorithm of Aspnes and

Lemma 12.4 Let o be a well-timed execution fragment of
DAH, and letR = fstate().maz-round. Suppose that all
the states af, with the possible exception Bfate(«) are ac-
tive, that is, are states ®. Then,¢;(a) < d112(P MmazRound
() + R) + dangiqa(a) + dzn? for some constantg; , d, and
ds.
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12.4 Expected bound on increment and decrement events

In this section we show an upper bound on the expected num-
ber of increment and decrement events that occur within a
probabilistic execution oDA H . First, based on our results on
random walks (cf. Proposition 3.11), we show in Lemma 12.7
an upper bound on the expected number of coin flips per-

Proof. At each round each process performs a linear numformed by a coin flipper. Then, in Lemma 12.8 we use this

ber of transitions outside the coin flipping protocol using time
at mostc;n for some constant;. Divide « into two kinds
of execution fragments: those where some active process

result together with our results about linear combinations of
complexity measures (cf. Proposition 2.3) to derive an upper
tsound on the expected number of increment and decrement

outside the coin flipping protocols, and those where no activeevents performed by a coin flipper. Then, in Lemma 12.9 we

process is outside the coin flipping protocols. The total time
complexity of the first kind of execution fragments is upper
bounded by:1 12 (¢ asazrouna (@) + R), corresponding to the

use our compositionality results about complexity measures
(cf. Proposition 2.5) to show that the bound of Lemma 12.8 is
preserved by parallel composition. Finally, in Lemma 12.10

case where at each time there is exactly one process outsigée use our result about phases of computations (cf. Propo-

the coin flipping protocols. Consider now the second kind
of execution fragments. Since each process returns at mo

sition 2.4) to combine the result about the expected number
8f increment and decrement events of a coin flipper with our

once in each round and fails at most once overall, there are &nowledge of the maximum expected number of coin flip-

mostd.q(a) + n(Prazround (@) + R) + n eventsine, dec,
return-flip and stop in . By Lemma 12.3, whenever some
process is flipping, the maximum distance between two event
of the kind inc, dec, return-flip, and stop is linear. Thus,
the maximum time where some process is flippingvifthe
time complexity of the second kind of execution fragments)
is at most) 72 (¢ arazround (@) + R) + candiq(a) + czn? for
some constants, ¢z, andes. Combining the two results, the
time that elapses ia is at mostd; n? (¢ rraeround () + R) +
d2n¢id(a)+d3n2, whered; = ¢; +C/1, dy = ¢, andds = cs.

O

The next two lemmas state basic properties of the coi
flipping protocols. Lemma 12.5 derives from the fact that all
the processes within a coin flipping protocol terminate onc
the shared counter reaches an absorbing barkief 1)n or
—(K + 1)n. Essentially, once an absorbing barrier is reached
there are at most other flip events, one for each process.
Lemma 12.6 derives from the fact that eaeh or dec event
must be preceded byfép event. If we start from an arbitrary
reachable state, there could be soimeand dec events that
occur without any precedinfiip event. However, the number
of anomalousnc anddec events is at most, that is, one for
each process.

Lemma 12.5 Leta = a1 ™ a9 be afinite execution dCF,.,
and suppose thatnc(a1) — daec(ar)| > (K + 1)n. Then
(bﬂip,r(aZ) S n.

Proof. We consider the case whefg,.(a1) — dgec(a1) >
(K + 1)n. The other case is symmetric. By Lemma 9.4, each
state ofo, satisfiescounter > Kn, and thus each non-failing

process returns once it reads:ounter (performing the read

n

e

pers that may be invoked. This allows us to derive an upper
bound on the expected total number of increment and decre-
ment events during the consensus protocol.

Lemma 12.7 Let H be a probabilistic execution fragment of
DCF, that starts from a reachable state BiCF,., and let®
be a full cut ofH. ThenEy o [daip.r] < (K +1)2n? + n.

Proof. Let s be the start state df, and letw be a finite execu-
tionof DCF,. with s = Istate(a).Letz = ¢ine() — D gec ().

If |2| > (K + 1)n, then, by Lemma 12.5, for eache O,
bpip.r(q) < n,andthusiy o [ppip ] < n.If [2] < (K+1)n,
then, by Proposition 3.1y o[¢ acts,— (K +1)n,(K+1)n,z] <
24 (K +1)%n? < (K + 1)%n?, that is, the event denoted
y © is satisfied within expecteds +1)%n? flip events, trun-
cating the count whenever an absorbing battiéK + 1)n is
reached. Once an absorbing barrier is reached, by Lemma 12.5
there are at most other flip events. Thus, for each statef
H, ¢ﬂ1pr(Q) < ¢Acts,—(K+1)n,(K+1)n,z(q) +n. By PrOpOSi'
tion 2-3aEH,(~)[¢ﬂip,r] < (K + 1)2n2 + n. O

—Z

b

Lemma 12.8 Let H be a probabilistic execution fragment of
DCF, that starts from a reachable state BfCF,., and let©
be a full cut ofH. ThenEy o [¢ia.r] < (K + 1)*n? + 2n.

Proof. By Lemma 12.6, for each execution fragmentuobf
CF ., ¢idar(a) < ¢pipr(a) + n. Then, by Proposition 2.3,
Eneldiar] < FEneldaps] + n. By Lemma 127,
EH,@[Qbﬂip,r} < (K + 1)2TL2 + n. Thus, EH,@[¢id,r] <
(K +1)%n? + 2n. O

Lemma 12.9 Let H be a probabilistic execution fragment of
DAH that starts from a reachable state 8f4 H, and let®
be a full cut ofH. ThenEy o [dia.r] < (K + 1)*n? + 2n.

operation i) and checks its value. Each process can flip atProof. Since H[DCF, is a probabilistic execution fragment

most once iy, before starting a new read operation. Thus,
the number ofip events that occur ins is bound byn. O

Lemma 12.6 Let « be a finite execution fragment &fCF',.
that starts from a reachable state. Theh, (o) < daip,r
(o) +n.

Proof. In fstate(«) there are at mostincrement or decrement
events that can be performed without first flipping a coin.

of DCF, that starts from a reachable state BCF',., by
Lemma 12.8,Ey pcr, o [¢iar] < (K + 1)?n% + 2n for
each full cut®’ of H[DCF,.. By Proposition 2.5, since by
Lemma 12.1 for each execution fragmertdf AH, ¢;4 ()

biar(a[DCF,), Eg.olpidr] < (K +1)%n2 + 2n.

Lemma 12.10 Let H be a probabilistic fair execution frag-
ment of DA H with start states, and letR = s.maz-round.
Suppose that is reachable. Le® denote the set of minimal

O
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will not fail, then some process decides within expected time
O(Rn?). The third item is an instantiation of the first item
saying thatall non-failing processes decide within cubic time if
atthe beginning all processes are initialized and the maximum
round number ig.

states off where a state fror is reached. TheB'y o [¢4]
O(Rn?).

Proof. If R = 0, then® = {s}, and thusEy o[¢:d]
0 = O(Rn?). For the rest of the proof assume that> 0.
Given a state of H, we know that,4(q¢) = ¢ia1(q) +- -+
bia,r(q) +¢'(q), whered'(q) = 3, - bia.r+r(q). For each

r > 0, let @, be the set of minimal statesof H such that

@ Mazround(q) = 7. Then, for eacly € O, ¢;4,+r(q) =0,
and for each statg of H and eachr > ®raeround(q),
¢idar+r(q) = 0 (CF ;g does not start until some process
reaches round + R). Furthermore, by Lemma 12.9, there is
a constant = (K + 1)?n? + 2n such that for each proba- 2
bilistic execution fragmen#l’ of M, each full cut®’ of H’,

Corollary 12.12 Let H be a fair, well-timed probabilistic ex-
ecution fragment oDA H that starts from a reachable state
of DAH. The following properties are satisfied B¥.

1. If in s all processes are initialized already arfél is the
maximum round of the processes, then within expected
time O(Rn?) all non-failing processes decide.

. Ifin s there is at least one initialized and non-failed pro-
cess, the maximum round numbeRisand no new process

and each > 0, Ey o/[¢ia:] < c. Therefore, we are in the

conditions to apply our result about phases of computation
(cf. Proposition 2.4): each round is a phase, and the number
of inc and dec events that occur within each round are the
complexity measures for their corresponding round. Function

fails, then within expected tin@(Rn*) some process de-
cides.

3. Ifinsall processes are initialized and the maximum round

is 1, then within expected tim@(n?) all non-failing pro-
cesses decide.

O MazRound 1S the measure of how many phases are started. By

Proposition 2.4F 0[¢'] < cEn.0(¢MazRound)- By Theo-  Proof. Item 1 follows from Theorem 12.11 and from the fact
rem 11.1Ex o[émazround] IS bOUNd by a constant (indepen- thatat to react each process must either fail or decide; Item 2
dent ofn). Therefore, By o[¢'] = O(n?). Finally, since for  follows from the fact that to reacP all active processes must
eachi, H, and®, Ey o[dia,i] = O(n?), by Proposition 2.3,  decide; Item 3 is an instantiation of Item 1. O
Enelpi) = O(Rn?) + O(n?) = O(Rn?). 0

13 Concluding remarks

12.5 Expected bound on time

We have studied the expected complexity of the randomized
We are now ready to prove our main result, which is just aconsensus algorithm of Aspnes and Herlihy, a nontrivial ran-
pasting together of the results obtained so far. Specifically, wélomized distributed algorithm, and we have developed a col-
show that starting from any reachable stat®dfH, assuming  lection of mathematical tools that can be used for the analysis
well-timedness, a state frofis reached within expected time  Of other algorithms as well. Our analysis of the algorithm was
O(Rn?), whereR is the maximum round of the processes at driven by two main ideas: decompose the algorithm into sim-
the starting state. Our result about reachingnplies directly ~ Pler parts and separate probability from nondeterminism. The
several results about the termination properties of the conserollection of modularization tools that we have developed and

sus protocol of Aspnes and Herlihy (cf. Corollary 12.12).  their successful application show that the rigorous analysis
of randomized distributed algorithms is indeed feasible and

not too difficult. Most of our analysis is essentially the same
as the analysis of an ordinary distributed, non-randomized,
algorithm.

Itis useful to observe the kinds of modularization that we
have used and where we have used them. For each kind of
modularization we provide a breif description and references
to the places in the paper where the modularization results are
stated and used, respectively.

Theorem 12.11 Let H be a probabilistic fair, well-timed ex-
ecution fragment ofDAH with start states, and letR =
s.max-round. Suppose that is reachable. Le® denote the
set of minimal states off where a state fronD is reached.
ThenEy o[¢:] = O(Rn?).

Proof. If R = 0, then® = {s}, and thusEy o[¢:] = 0 =

O(Rn?).If R > 0, then, by Lemma 12.4, for each well-timed

execution fragment of DAH,

(bt (04) S dln2 (QbMamRound (04) + R) + d2n¢id (OZ) + d3n2-

By Proposition 2.3,

EH,@[¢t] S d1n2EH,9[¢MthRound] + dlan
+danEy,e|pia] + dsn®.

Thus, by Theorem 11.1 and Lemma 12.10y o[¢:]

O(Rn3).

e Decomposition of a partial progress statement into more
statements: progressis achieved through several small easy
steps (Proposition 2.7 used in Proposition 8.1).

e Derivation of expected complexity bounds from partial
progress statements: an infinitary property is analyzed by
means of some finite form of progress (Theorem 2.8 used
in Proposition 8.1).

O

Theorem 12.11 gives enough information to derive some e
time bounds folDA H. Here we give some examples. The first
item says that whenever all processes are initialized already
allnon-failing processes decide within expected tién?), .
whereR is the number of rounds that are started already. That
is, the algorithm has to work for an expected cubic time for
each one ofthe rounds that are started already. The second iter
saysthatif we know that at least one of the initialized processes

Modularity of probability spaces with respect to paral-
lel composition (Proposition 2.2 used in Propositions 8.2
and 8.3).

Coin lemmas and related results to reduce probability to
nondeterminism (Theorems 3.4 and 3.6 used in Proposi-
tions 9.11 and 9.12 and in Lemma 12.7).

Transformation of relations between complexity measures
into relations between expected complexities. We analyze
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the complexity of an ordinary execution and we study the 8.

relationship between different complexity measures at the
level of executions. Then, we lift the results to probabilistic
executions and expected values. (Proposition 2.3 used in

Lemmas 12.8 and 12.10 and in Theorem 12.11). 9.

e Analysis of computations divided into phases (Proposi-
tion 2.4 used in Lemma 12.10).

e Preservation of expected complexity bounds under parallel
composition (Proposition 2.5 used in Lemma 12.9).

o Refinement mappings and related compositionality results10-

(Propositions 2.9, 2.10, and 2.13 used in Theorem 10.2).

If we compare the length of our analysis with the length of
the original paper of Aspnes and Herlihy, we observe that the

two lengths are similar. The length of our analysis is double the1l.

length of the analysis in [5]; however, our analysis includes
a timing analysis of the protocol, which was not present in

[5], and it includes all the details, many of which were not 12.

considered in the analysis of [5]. Also, our proof would be
considerably shorter if we had not included the detailed invari-

ants and their proofs. These details are usually not included int3-

algorithm papers.
Although we think it is acceptable that low-level details

of a proof be omitted in an algorithm paper, we believe that a
high level proof should be rigorous enough to avoid the sub-
tleties of randomization, which are due mainly to the interplay
between probability and nondeterminism. Intuition often fails
when dealing with randomization in a distributed setting. The
results that we have presented in this paper provide criteria
that allow us to avoid becoming confused by the subtleties
of randomization. We have analyzed a complicated algorithm
in order to ensure that our results are applicable to realistic
randomized distributed protocols (not just toy examples), and
in order to increase the chance that our results will apply to a
wide range of protocols.
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