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Abstract 

Input/output automata are a widely used formalism for the specification and verification of 
concurrent algorithms. Unfortunately, they lack an algebraic characterization, a formalization 
which has been fundamental for the success of theories like CSP, CCS and ACP. We present 
a many-sorted algebra for I/O automata that takes into account notions such as interface, input 
enabling, and local control. It is sufficiently expressive for representing all finitely branching 
transition systems; hence, all I/O automata with a finitely branching transition relation. Our 
presentation includes a complete axiomatization of the external trace preorder relation over 
recursion-free processes with input and output. 

1. Introduction 

Input/output automata [14,20,11,12] are a widely used and deeply investigated 
formalism for specifying and verifying concurrent systems. Unfortunately, they have 
never been equipped with an algebraic characterization, a formalization that has been 
fundamental for the success of theories like CSP, CCS and ACP [ 10,1.5,8,1]. The goal 
of this paper is to improve our understanding of the intricacies of I/O automata by 
describing them as a process algebraic theory. This will permit algebraic manipulation 
and will provide an alternative to the commonly used verification method based on 
possibilities mappings. 

We start by designing an algebra that incorporates the fundamental features of I/O 
automata of Lynch and Tuttle [14] and captures the essential role of concurrent 
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composition, hiding and renaming. Our design aims at maintaining minimality of 
operators and universal expressivity. We base our characterization on the following 
basic features of I/O automata: 

1. explicit interfacing: a transition-invariant interface is associated with each process; 
2. input/output distinction: a clear distinction is made between, locally controlled, 

output actions and, externally controlled, input actions; 
3. input enabling: input actions are enabled in every state; 
4. local control: each action is under the control of at most one process. 

For the sake of simplicity, in spite of the fact that it is an important issue always 
considered within the I/O automata formalism, we decided to ignore fairness in this 
paper. 

The operators in our calculus associate distinct sets of input and output actions 
(interfaces) with each process. This permits capturing a critical aspect of I/O auto- 
mata, namely the distinction between input and output actions. To associate an 
interface to a process we use many-sorted algebras: each process has a sort which 
stands for its interface. This choice permits dealing with partial operators in a clean 
way. As an example consider the parallel composition operator. To comply with the 
requirement that each action be under the control of at most one process, parallel 
composition is permitted only between pairs of processes that do not have common 
output actions. Many-sorted algebras allow us to capture this restriction by defining 
the parallel operator as a family of sorted operators, one of each pair of compatible 
interfaces. 

A key issue in defining our I/O calculus is the way input enabling is enforced. We 
present our choice with the support of an example. Consider process P = a.e, which is 
able to perform an action a and then behave like e. If the system is input enabled, the 
above process must be able to perform all input actions, also those different from a. 
Indeed, it is for the unspecified input actions that we have to make a definite choice 
about how to represent the future behavior. We considered the following two different 
possibilities. 

1. Angelic: Unexpected inputs are ignored. A system copes with unexpected input 
actions by first receiving them and then returning to the state it was in before the input 
had taken place (self-loop). For example, system P=a.e, after accepting any input 
b different from a, is again ready to accept the a-action. 

2. Demonic: Unexpected inputs are considered as catastrophic. A system, after any 
unexpected input, moves to a special state 52 from which any behavior is possible. 
Thus, P = a.e, after any b-action different from a, moves to 52. 

The angelic choice was made by Vaandrager [21]; here, we study the impact of the 
demonic approach. In our view, for P=a.e above, the prefixing operator specifies its 
behavior only for action a and says nothing about input actions different from it. By 
interpreting this in the framework of I/O automata and of the correctness of an 
implementation with respect to a given specification, we have that an implementation 
of P should be correct independently of the behavior it exhibits when provided with 
any input action different from a. 
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Due to this basic choice, our calculus will be called the demonic calculus of Z/O 
automata (DIOA). 

The demonic approach has been partially influenced by the receptive process theory 
(RPT) of Josephs [13]. However, the semantics of RPT is denotational, and like CSP 

[lo], it is described by means of sets of failures, traces and divergences. The handling 

of underspecification within RPT is even more demonic than ours; underspecification 

is propagated backward. Thus if a process P can perform an output action o and move 

to the equivalent of an Q state, then the whole P is equivalent to 52. 

The semantics of our many-sorted language is obtained by associating a labeled 

transition system with each term by means of a set of interference rules in the usual 

SOS style [ 163. This choice paves the way toward a number of possible semantics for 

I/O automata. Indeed, labeled transition systems have been equipped with a number 

of behavioral equivalences each aiming at capturing particular aspects (sequences of 

interactions with the external world, reactions to external experiments, branching 

structures of the sequences of interactions, etc.) that permit relating different descrip- 

tions of a given system. For an overview and a discussion on the relationships between 

different behavioral relations, the interested reader is referred to [3,7]. 

We will study a very simple preorder (and the induced equivalence) over the 

transition systems associated with the terms representing I/O automata and postpone 

investigation of more interesting equivalences to further study. The behavioural 

relation we will consider is the external trace preorder; it permits identifying all those 

automata that can perform the same sequences of external (input or output) actions by 

ignoring possible differences that could be induced by internal actions. This relation 

allows us to throw some light on the impact of interfaces, input enabling and local 

control of actions in an algebra of I/O automata. 

For the external trace preorder, we propose a set of sound algebraic laws that are 

also complete with respect to recursion-free DIOA processes. The completeness proof 

is achieved via techniques of reduction to normal forms, these are significatively 

different from the usual ones employed in standard process algebras. Indeed, they are 

special normal forms that contain also restricted occurrences of the operator for 

parallel composition. We feel that they should be useful also for behavioral relations 

that are more accurate than external trace preorder. 

Particularly important for our result is an operator representing internal choice. It 

does not fit Vaandrager’s general format [21] and forces us to prove substitutivity of 

our preorder explicitly. 

In [18] another behavioral relation is studied: the quiescent preorder of [21]. The 

main idea behind this relation is that a quiescent trace is a trace which leads to states 

from which only input actions are enabled. The quiescent preorder is given by external 

and quiescent trace inclusion; it is a restriction to finite traces of the fair preorder of 

[14], and it is another stepping stone toward the study of fairness-sensitive semantics. It 

is worth remarking that the complete axiomatization for the quiescent preorder of [18] 

is similar to that for our external preorder; the main difference arises for the complex 

side conditions which are needed for dealing with quiescence of the empty trace. 
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The rest of the paper is organized as follows: Sections 2 and 3 contain an overview 
of I/O automata and process algebras. Section 4 contains the operational definition of 
a demonic calculus of I/O automata. It also contain hints on how to define an angelic 
calculus. Section 5 contains a set of laws which permit sound manipulation of DIOA 
terms with respect to the external trace preorder. Section 6 contains the proof that the 
laws of the previous section provide a complete axiomatization of recursion-free 
DIOA expressions without renaming, hiding and parallel composition. Section 7 ex- 
tends the completeness result to the remaining operators. Section 8 contains some 
concluding remarks. 

2. An overview of I/O automata 

In this section we briefly introduce I/O automata and their basic formal definition. 
For a complete account, we refer to reader to [14]. We will stick as much as possible 
with the original notation, but some notions, such as execution and schedule modules, 
will be ignored. Later we will homogenize the notation with that of process algebras; 
here, on few occasions, we will recall some obvious correspondences. 

One of the basic concepts is the notion of action signature. It represents the 
interface of an I/O automaton with the external environment. 

Definition 2.1 (Action signature). Given three disjoint sets in, out and int we refer to 
the triple (in, out, int) as an action signature S. The sets in, out and int are respectively 
denoted by in(S), out(S) and int(S). The entire set of actions in u out u int is denoted 
by acts(S). The set of external actions in u out is denoted by ext(S). Finally, the set of 
locally controlled actions int u out is denoted by local(S). 

An I/O automaton is formally defined as follows. 

Definition 2.2 (Input-output automaton). An input-output automaton A is a tuple 

(Q, Qo, S, 6 PI where 
l Q is a set of states and is referred to as states(A), 

l Q. G Q is the set of start states and is referred to as start(A), 

l S is an action signature and is referred to as sig(A), 

l t GQ x acts(S) x Q with the property that VqEQ, uEin(S) 3q'EQ: (q,u,q’)Et. It is 
referred to as steps(A), and 

l P is partition of local(S) and is referred to as part(A). 

A step (q, a, q’)Esteps(A) is conventionally denoted by q -5 q’. 

The difference between classical automata and I/O automata arises for the pre- 
sence of 

1. the action signature that permits introducing different types of actions; 
2. the constraint that input actions be always possible and that their transition 

relation be always defined; 
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3. the presence of the partition P of the locally controlled actions. 
The role of P will be more clear when the notion of fair execution is introduced. The 
basic idea behind the partitioning of the set of local actions is that a system can be seen 
as a set of subcomponents and that all actions of a partition are under the control of 
a single subcomponent. Fairness will then be defined to guarantee that infinitely often 
all subcomponent take the chance of executing at least one of the actions in the 
different partitions. 

We now introduce executions and schedules, i.e., sequences of labeled transitions 
and sequences of labels that in process algebra are known as runs and traces. 

Definition 2.3 (Executions and schedules). Given an I/O automaton A, an execution 
fragment is a finite sequence qOaoql ... akqk of infinite sequence qOaoqlaIq, ... of 
alternating states and actions such that (qi, ai, qi + ,)~steps(A) for every i. An execution 
is an execution fragment beginning with a start state (i.e., qoEstart(A)). The schedule of 
an execution x is the subsequence of actions appearing in x. It is denoted by sched(x). 
Executions and schedules of an I/O automaton A are denoted, respectively by 
execs(A) and scheds(A). 

Very often, the main concern is with the visible behavior of a system and thus with 
sequences of external actions. These are obtained from schedules by dropping the 
elements of int. 

Definition 2.4 (External action signature and schedule). An external action signature is 
an action signature consisting only of external actions. The external action signature 
of a signature S is (in(S), out(S),@), i.e., S without internal actions. 

Given a sequence y of actions and set of actions X we denote by yrX the maximal 
subsequence of y consisting only of actions of X. The set of external schedules of an 
I/O automaton A, denoted by escheds(A), is given by (yrext(A): yEscheds(A)). 

A first notion of observational equivalence for I/O automata is then the following, 
which identifies all those I/O automata which can perform the same sequences of 
external actions. It is called unfair equivalence because in [14] it is presented in 
preparation of a different equivalence relation, namely the fair equivalence. 

Definition 2.5 (Unfair equivalence). Two I/O automata A and B are said to be unfairly 
equivalent, A =” B, iff A and B have the same external action signature and es- 
cheds(A) = escheds(B). 

It can be easily shown that the above relation is indeed an equivalence relation, We 
proceed now to introducing three basic operations over I/O automata: hiding, 
renaming and parallel composition. In passing, we note that the above relation is also 
a congruence for these operators. 
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Definition 2.6 (Hiding). Given an I/O automaton A =(Q, Q,,, S, t, P) and a set of 
actions I such that Inin(A we define the I/O automaton Hide,(A) to be the I/O 
automaton (Q, Qe, S’, t, P) where S’ differs from S in that 
l out(Hide,(A))=out(A)\Z, and 
0 int(Hide,(A))= int(A)u(acts(A)nZ). 

The hiding operator transforms external actions into internal ones, i.e., it hides 
some locally controlled actions to the external environments. The only difference 
between the original and the resulting I/O automaton is in the signature. Executions 
and schedules are exactly the same. It is worth noting that the definition of hiding in 
[14] does not contain the restriction that Znin(A)=& it is however immediate to 
observe that the operator would not be closed for I/O automata if we permit hiding of 
input actions: part(A) would not be a partition of local(A) any more. 

Definition 2.7 (Renaming). An injective mappingfis applicable to an I/O automaton 
A if acts(A) ~dom(f). Given an I/O automaton A =( Q, Qo, S, t, P) and a mapping 
fapplicable to it, we definef(A) to be (Q, Qe, S’, t’, P’) where S’, t’ and P’ are defined as 
follows: 
0 in(S’) =f(in(A)), out(S)=f(out)A)), int(S)=f(int(A)), 

l t’= {(U”(u), 4’): (4, u, q’)Esteps(A)}, and 
0 P’= {(f(u),f(u’)): (a, u’)Epart(A)). 

Thus, the renaming operator simply renames actions of its operand. We introduce 
now parallel composition of I/O automata, it is of fundamental importance because it 
exactly characterizes the way I/O automata communicate and/or synchronize. 

An important property of I/O automata for defining parallel composition is 
their compatibility. The compatibility condition requires that internal actions be not 
used to communicate and that every action be under the control of at most one 
process. 

Definition 2.8 (Compatibility of Z/O automatu). (1) A set of action signatures {Si: igl} 
are compatible iff for all i, jeZ, 
(a) cUt(Si)ncut(Sj) = 8, and 
(b) int(Si)nacts(Sj)=@. 

(2) A set of I/O automata {Ai: ill} are compatible iff their action signatures are 
compatible. 

Definition 2.9 (Composition of Z/O automata). The composition A =nie, Ai of 
compabtile I/O automata {Ai: kl} is defined to be the I/O automaton with 

1. StUtf?S(A)=~ie, .YtUtf?S(Ai), 

2. .StUtT(A)=niE, StUrt(Ai), 
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3. sig(A)=ni,, sig(Cli), 
where compositions S=nia, Si of compatible action signatures {Si: iel) is 
defined by 

(a) in(S)=Ui,, ifl(&)--_UioI out(Si), 

(b) ~~t(‘)=Uie, ottt(Si)y 

(‘) int(s)= uis, int(Si)y 

4. Part(A)= Uis, PUrt(Ai), 

5. stePs(A)={ ((4i)is17a3(4:)ieI: ViEZ aEUCtS(Ai) implies (qi, U, qj)EstepS(rli), 
U$ LlCtS(Ai) implies qi = 41) 

The step function above states that all processes must synchronize on common 
actions. However due to the input enabling and to the local control conditions, the 
synchronization condition does not mean that communication is synchronous; only 
one process “can decide” when a communication should occur. 

A side effect of input enabling is that it may prevent a system from performing 
locally controlled actions by means of an infinite sequence of input actions. This is 
avoided by restricting observations to fair executions. In the following definition we 
make use of the partitions of the locally controlled actions for the first time. 

Definition 2.10 (Fair executions). A fair execution of an I/O automaton A is an 
execution x such that for all XEpart(A), 
l If .x is finite then no action of X is enabled from the final state of x, 
l If x is infinite then either actions from X appear infinitely often in x or states from 

which no action of X is enabled appear infinitely often in x. 
A finite fair execution is also said to be quiescent. 

A fair schedule is the schedule of a fair execution. We denote the set of fair schedules 
of an I/O automaton A withficheds(A)). 

The notion of fairness defined above reminds weak fairness of [6], but the two 
concepts are somewhat different. First in [6] fairness is considered relatively to all 
actions, while in I/O automata only locally controlled actions are taken into account. 
Second, and more important, within I/O automata theory, fairness is defined by reason- 
ing about sets of actions rather than about single actions. The idea behind the partition 
of locally controlled actions is that every element of the partition represents the set of 
actions under the control of a particular component of the global system. In this way, 
a notion of fair turn can be expressed, ensuring that each component that is con- 
tinuously willing to perform some of its local actions will eventually perform one of 
them. 

We can now define a new equivalence relation. Like the unfair equivalence intro- 
duced above, the new equivalence is substitutive for the I/O automata operators 
whenever these operators are defined, i.e. it is a weak congruence for I/O automata. 

Definition 2.11 (Fair equivalence). Two I/O automata, A, B arefair equivalent (A EBB) 
iff A and B have the same external action signature and fscheds(A)=ficheds(B). 
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Based on the notion of fair trace, it is possible to introduce a notion of implementa- 
tion. An I/O automaton A1 implements an I/O automaton AZ if they have the same 
external action signature andfscheds(rll)cfscheds(ilz). Trivial implementations are 
avoided by input enabling and fairness. These two concepts, in fact, state that 
a process must accept all stimuli from the external environment and must perform its 
output actions whenever it has the possibility to do so, i.e., it must give an answer 
when requested. 

Beside the fair preorder, that is the basic relation for comparing and contrasting I/O 
automata [ 141, other relations have been considered. These relations ignore fairness 
issues, but are closer to the classical relations defined for process algebras: 
l unfair preorder is based on (finite and infinite) schedules inclusion, while 
l quiescent preorder is based on both finite schedules inclusion and quiescent sched- 

ules inclusion. 
The quiescent preorder is a close attempt to capture the fair preorder using only fmite 
schedules. It was used by Vaandrager [Zl] and is reminiscent of the maximal trace 
congruence used in [2]. In this paper, mainly, for the sake of simplicity, we concen- 
trate on the unfair preorder; it corresponds essentially to the language equivalence of 
classical automata and has been used also for comparing concurrent system [9]. We 
see our work on this simple preorder as a stepping stone toward modeling the more 
elaborate ones. Indeed, as we mentioned in the Introduction, similar result to those 
obtained for the unfair preorder have been obtained also for the quiescent one [18]. 

3. Process algebras overview 

The basic idea of process algebras [ 15, 10, l] is the use of a few elementary processes 
and of some basic operators corresponding to primitive operations such as sequential- 
ization, parallelism, nondeterminism and synchronization to describe concurrent 
processes. A process is represented as an expression which is built inductively from the 
elementary processes and the operators. 

Process algebras are generally recognized as a good formalism for describing and 
studying properties of distributed concurrent systems. Very often, a process algebra is 
defined by specifying its syntax and the transitional semantics of its terms by means of 
structured operational semantics (SOS) Cl61 which associate a labeled transition 
system (essentially a transition labeled classical automaton) with each term. Although 
SOS has become a standard tool for specifying basic semantics of process algebras, it 
was early recognized that it does not yield extensional description of processes. Thus, 
techniques have been developed to abstract from unwanted details in systems descrip- 
tions. Many of these techniques are based on behavioral equivalences or preorders; 
two terms are identified whenever no observer can notice any difference between their 
external behaviors. 

For many of these equivalences complete axiomatizations exist; these are important 
because the algebraic laws allow one to manipulate process expressions by applying 
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simple axioms and inference rules. Indeed, they constitute the theoretical basis for 
a class of verification tools which permit establishing the relationship between 
expressions by means of pure algebraic analysis. 

In this paper we concentrate on the SOS approach, but rather than labeled 
transition systems, we use I/O automata as underlying model and we analyze 
particular relations which are connected to the unfair preorder of I/O automata. 

Below, the basic notions needed for defining a process algebra based on the LTS 
approach are introduced. We start with the notion of signature, which is now needed 
due to the different type of actions we want to consider. A signature represents the 
basic processes (constants) and the primitive operators: (A s1 s2 ... sn,s) is an operator 
taking n processes, respectively, of sort sl, ... s, as arguments and giving back a pro- 
cess of sort s. Well-known calculi like CCS are one-sorted; the more general notion of 
many-sorted signature will be useful to model naturally association of interfaces with 
processes. 

Definition 3.1 (Signatures and terms). Let Sp be a set of sorts ranged over by s, sl, s2, . . . 

1. A signature element is a triple (f, si, s2 . . . snr s) consisting of a function symbolf, 
a sequence of sorts s1 ... s,: SiEY, i= , . . . , n, and a single sort SEY. s is called the sort of 
the signature element and n is its arity. In a signature element (c, il, s), c is often referred 
to as a constant symbol of sort s. 

2. A signature is a pair C =(9’, 0) consisting of a set of sorts Y and a set of signature 
elements 0. We denote sort and function symbols of a signature C by sorts(C) and 

OPV). 
3. The set of terms over C, is devoted by T(C). The set of terms of a particular sort 

SEEP is denoted by T(C),. 

The following definition introduces the notions of substitutive relation. 

Definition 3.2 (Substitutiuity). Let C be a signature and 9 a relation over 
T(C) x T(C). W is substitutiue iff for each signature element (A sls2 . . . sn,s) of C and 
each fit t: of sort si, 

tl Bti, . . . ,t.WtA * f(tl,... ,t,)Bf(ti,...,tA). 

We proceed by formally defining how a set of transitions can be associated with terms 
of a given signature. For this purpose induction rules will be used. The interpretation 
of a rule is that, whenever the transitions of the premises are possible, the transition of 
the conclusion is possible. 

Definition 3.3 (Transition rules and calculi). Let A be a given set of labels and let C be 
a signature. 
l A transition rule has the form 

tl !!!j ti, . . . , t, 2 t.; 

t $t’ 
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where ti, tie T(C), t, t’ET(C), UiEA and EA. The elements ti 2 tf are called the 
premises and ti 2, t’ is called the conclusion. 

l A calculus, is a triple P = (C, A, R) where C is a signature, A is a set of labels and R is 
a set of transition rules. 

Transitions, which are labeled by a single action, can be extended to sequences of 
actions in the obvious way: 

tXt’ iff 3tl,...,t,_1: t2tl-b...+t,_l~tt. 

Unfair and quiescent preorders of I/O automata can be naturally expressed within 
the process algebraic framework. The notion of schedule is now replaced with the 
equivalent notion of trace. The unfair preorder is, for the moment, expressed only 
through finite traces. Throughout the rest of the paper we identify sorts with action 
signatures. 

Definition 3.4 (Quiescence and traces). Given a many-sorted calculus with 
input and output actions, the set of enabled actions from an expression e is 
defined as 

(a13e’:e 5 e’}. 

An expression e is quiescent if it only enables input actions. 
The set of (finite) external traces of an expression e of sort S is defined as 

etraces(e)= {hrext(S) 13 e’: e 5 e’}, 

where h denotes a sequence of actions and hrA is the projection of n on A 
The set of quiescent traces of an expression e of sort S is defined as 

qtraces(e)= {hrext(S) 13 e’: e f+ e’, quiescent(e’)}. 

Definition 3.5 (Preorder relations). Let P = (C, A, R) be a many-sorted calculus with 
input and output actions, and el, e2 be two terms of T(C). 
l The external trace preorder E ET is defined as follows: ei c nr e2 iff e, and e, have 

the same external action signature and etraces(e,) c etraces(e2). 
l The quiescent preorder CI, is defined as follows: 

er _coe, iff el &nTe2 and qtraces(e1)Eqtraces(e2). 

Definition 3.6 (Equivalences). The kernels of E ET and &a are, respectively, called 
external trace equivalence and quiescent equivalence. 



R. De Nicola, R. Segala 1 Theorelical Computer Science 138 (1995) 391-423 401 

4. A calculus of demonic I/O automata 

This section introduces a calculus for I/O automata following the demonic ap- 

proach, i.e., the approach that considers the presence of an unexpected input as 

catastrophic. The calculus is many sorted and each sort represents an action signature 

consisting of input and output actions and of a single internal action z. Generally, due 

to additional flexibility in expressing fairness with respect to different internal tasks, 

I/O automata signatures have more than one internal action. In this paper, however, 

we do not address fairness issues and thus we restrict attention to a calculus with 

a single internal action. At the end of the section we will discuss possible extensions to 

handle multiple internal actions. 

We proceed now by defining the operational semantics of a pair of basic operators 

(constants) and a set of primitive operators which permit building new I/O automata 

from existing ones. This set of operators include the operators, renaming, hiding and 

parallel composition, of [14] described in the previous section and other operators 

which are directly inspired by those used in process algebras. For the basic operators 

we will directly associate an I/O automaton; for the others, we will show by structural 

induction how a new I/O automaton is obtained from the ones corresponding to the 

operands. Each formal description below will be preceded or followed by some 

comments on the intuition behind the operators. In the rest of this paper, when 

describing expressions and I/O automata, we will omit sort indexes whenever they are 

not relevant or they are evident from the context. 

Quiescent Z/O automaton: The quiescent I/O automaton nil, is an I/O automaton not 

enabling any locally controlled action and not expecting any input. Due to the input 

enabling condition, the quiescent I/O automaton moves to the unspecified I/O 

automaton for each input action of its action signature. The move to the unspecified 

I/O automaton (described below) is the interpretation of the fact that the effect of 

unexpected inputs is catastrophic. Formally, for each sort S we define an operator nils 

taking no arguments. There is only one transition rule for nil,: 

nil nils $ Qs VaEin(S) 

Unspecijied I/O automaton: The unspecified I/O automaton represents an I/O 

automaton for which any other I/O automaton has to be an implementation. Since 

our semantic models deal with external and quiescent trace inclusion, the unspecified 

I/O automaton has to exhibit all possible external and quiescent traces. Formally, for 

each sort S, we define an operator C& taking no arguments. The relative transition 

rules are the following: 

omel Sz,: sZS aEext(S) omez QS -5 nils 

Rule omel makes every string of ext(S)* an external trace of C&. Rule omez makes any 

trace a quiescent trace of !&. Note that the use of rule omez is the only way to move 

52 to a quiescent state. 
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Prejixing operator: A classical method for specifying how a system should respond 
to a particular stimulus, or what action should be performed next, consists of using the 
prefixing operator. For each sort S and for each action aeext(S) an operator a.s is 
defined that takes an argument of sort S and yields an expression of sort S. Its 
transition rules are the following: 

prel a.,e$e 

prez a.se5QS2, Vb&n(S)\{a} 

Here, rule prel specifies the intuitive meaning of an I/O automaton a. e, i.e., a. e can 
perform action a and then behave like e. Rule prez deals with the input actions 
different from a. According to the demonic approach, a. e specifies the behavior of 
a system only in the presence of action a; for all other inputs the behavior of the system 
is not specified; hence, they give rise to a transition to Q. 

External choice operator: Often it is useful to build a system that offers a nondeter- 
ministic choice between two different actions and then behaves accordingly. In case 
the choice is between performing an output action oi and then behaving like e, or 
performing an output action o2 and then behaving like e2, an external choice operator 
like that of [lo, S] would suffice. However, this leads to problems when dealing with 
input actions. We can write 

a.e,+b.e,. 

In the presence of input a (resp. b) the above expression should move to el (resp. ez); in 
the presence of any other input action the above expression should move to CL 
However, due to the input enabling condition, we would have 

a.e, : s1 and b.e2 $CJ; 

hence, the above expression would not respect our intuition about external choice. 
A possibility for avoiding the above problem is parametrizing the choice operator 

with two sets of input actions I and J which contain those input actions, of the left and 
right operand respectively, which are meant to lead to a specified (different from 52) 
behavior. For each sort S and each pair of sets I, J E in(S) an operator , +J” is defined 
which takes two arguments of sort S and yields an expression of sort A. This operator 
is essentially the sorted version of Vaandrager’s choice operator [21]. The transition 
rules for the new operators are the following: 

el G e; 
ech, 

eII+,Se23e\ 
VafzZuout(S) 

e2 -f+ e; 
e& 

ell+JSez $ei 
Va~Juout(S) 

cch, el !+:ez 3 OS VaEin(S)\(ZuJ) 
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Rules ech,,, make explicit the fact that an argument can perform an input action only 
if it is in the corresponding parameter; rule ech3 expresses the fact that each input 
action not in 1uJ is unspecified within a r+J context. Rules ech4,5 state that an 
external choice context is not resolved with internal transitions. 

Clearly, dealing with parametrized operators adds significantly to the complexity of 
our I/O calculus. It would be nice to have an unparametrized external choice 
operator. However, our attempts have failed; for all candidates we failed to achieve 
substitutivity for the external trace and quiescent preorders. Below, we give a counter- 
example for the intuitive external choice operator (+) described at the beginning of 
this discussion. It is easy to verify that nil = o a. 0 when a is an input action. However, 
a. nil+ nil qkQ a. nil + a. Cl since, if b is an output action of the signature of both 
processes above, ab is an external and quiescent trace of the right process but not an 
external, neither a quiescent, trace of the left one. The left process, in fact, according to 
its intuitive semantics, can only move to nil with the input action a, while the right one 
could also move to Sz. 

The two basic operators 62, and nils defined above together with prefixing and 
internal choice and with recursive definition that we will introduce later, are sufficient 
for specifying all finitely branching input enabled transition systems. However, as 
a useful specification tool and as a useful auxiliary operator for our axiomatization, 
we introduce an additional internal choice operator again based on [lo, 81. We will 
then describe the original combinators of [14]. 

Internal choice operator: For each sort S we define an operator OS that takes two 
expressions of sort S and yields an expression of sort S. A process e 0 f nondeter- 
ministically evolves according to e orf: Thus, its external and quiescent traces are the 
union of the external and quiescent traces of e and f: The transition rules are the 
following: 

ich, e, OS e2 A e, ich2 el OS e2 A e2 

ichJ 
e, 5ee; 

Vu&(S) ich, 
e2 5 e; 

et &e2 5,; e, 0se2-f:e; 

Vaein(S) 

Rules ich,, 2 express the fact that e @ fnondeterministically behaves like e or x rules 
ich3,4 are necessary for ensuring input enabling. Notice that, even if we generalize 
rules ichj,4 to all the external actions from S, rules ichl,2 cannot be eliminated when 
dealing with quiescent traces. Their elimination would raise the problem that the empty 
trace be a quiescent trace of one argument but not a quiescent trace of the other. 
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Hiding operator: The hiding operator is similar to the corresponding operator 
defined on I/O automata. The main difference is given by the fact that all internal 
actions are converted into a single action, namely z. For each sort S and each set 
I lout we define an operator rf taking an expression of sort S and yielding 
an expression of sort (in(S), out(S)\I, CT}). The transition rules for hiding are the 
following: 

e 5ee’ e5ee’ 
tau3 41 tau, ael 

r;(e) kf(e’) T:(e) kf(e’) 

Renaming operator: The renaming operator simply renames the actions of its 
argument. For each sort S and each injective mapping p with p(r)=r, we define an 
operator ps taking an expression of sort S and yielding an expression of sort @(in(S)), 
p(out(S)), {t)). The transition rule for renaming is the following: 

e 3 e’ 
rho 

PS (e) - ‘(‘) ps(e’) 

Parallel operator: Also the parallel operator is defined according to the original 
definition of [14]. In particular, we comply with the restrictions on the sorts of its 
operands aiming at guaranteeing that each action be under the control of at most one 
process. Moreover, the transition rules agree with the specification given in Definition 
2.9. Please notice that we do not have any condition on the internal actions of the 
arguments. This is because we are not dealing with multiple internal actions, but have 
a single invisible action. Thus, compatibility of sorts reduces to: Two sorts Si, Sz are 
compatible if out(S1 )nout(S,) = 8. 

For each pair of processes with compatible sorts we define an operator s, 1) s2 taking 
an expression of sort Si and one of sort Sz and yielding an expression of sort S3 where 
out(S,)=out(S,)uout(S,) and in(S3)=(in(S1)uin(S2))\out(S,). The transition rules 
for parallel composition are the following: 

e, 3 e; e, 3 e; 
par1 

el sI II s1 e2 5 4 s1 II sz e2 

aEacts(S,)\ext(S,) 

par3 

e2 5 e; 

el s, II s2 e2 $4 s1 II S* 4 

aEacts(S2)\ext(SI) 

Recursion: Recursion within DIOA can be obtained in a De Simone style [4,5]. 
Existence is assumed of a countable set xs of process variables for each sort S and of 
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a declaration mapping E associating a guarded expression of sort S with each process 
variable of xS. An expression e is guarded if each process variable occurs within the 
scope of a prefixing operator. Thus, a.X and T:~; (a.X ) are guarded expressions. The 
reason we want guarded expressions in the declaration mapping is to avoid definitions 
of the form E(X)=X which, according to the transition rule we are introducing, 
would not be input enabled. The transition rule for process variables is the following: 

e Se’ 
ret - if X kf e 

X5ee’ 

where the notation X 2’ e means E(e)=e. 

To offer a global view of our DIOA calculus, all the operators defined above, their 
signatures and their operational semantics are grouped in Tables 1 and 2. 

Below, we formalize a couple of basic properties of DIOA, which will be used to 
prove that the semantics we offer of our calculus provides an adequate interpretation 
of I/O automata. Indeed, Proposition 4.3 and 4.4 vindicate our choices. 

Definition 4.1 (Sort consistency). A many-sorted calculus is sort consistent if the sort 
of every expression is invariant under transition. 

Definition 4.2 (Input enabledness). An expression e is input enabled if for each e’ such 

that e 5 e’ for some trace h, in(e’)c:enabled(e’). A many-sorted calculus with inter- 

faces associated with expressions is input enabled if each expression is input enabled. 

Proposition 4.3. DIOA is sort consistent. 

Proof. Simple induction argument on the depth of the proof tree of a transition. The 
base case is by cases analysis by considering rules nil, omel, 2 and prel, 2; the induction 
step is also by cases analysis by considering all the other transition rules. 0 

Table 1 
The signature of DIOA 

Name OP. Domain Range Restrictions 

Quiescent 
Omega 
Prefixing 
lchoice 
Echoice 
Parallel 

Hiding 
Renaming 

Process 

). 
A 
s 
S, S 
‘XS 
&.S2 

S 
S 

i. 

s 
S 
S 
S 
S 

s3 

S’ 
S’ 

S 

aEext(S) 

I,JEiB(S) 
out(S,)nout(S+Qt 

ouc(S,)=out(S,)uout(S,) 

in(S,)=(in(S,)uin(S,))\our(s,) 
IEout(S),S’=(in(S),out(S)\I) 
for each injective p: acts(S)-ucrs(S’) 
S’=(p(in(S)), p(our(S)) 
X6X, 
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Table 2 
The translation rules for DIOA 

el G ei 
ii& 

el @se25 4 
Va&2(S) 

e, -5 ei 
par2 

els,ils,e2~e;s,lls,ei 

pret a .,e$f& Vb&(S)\jaj 

e2 5 e; 
ich4 

el Qse25 ei 
Va&(S) 

afacts(S,)\ext(S;,) 
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Proposition 4.4. DIOA is input enabled. 

Proof. It is sufficient to show by structural induction that each DIOA expression 

e satisfies in(e)senabled(e). The fact that recursion is given through guarded expres- 

sions is crucial. q 

Theorem 4.5 (Substitutivity). External trace preorder and quiescent preorder are sub- 
stitutive for DIOA. 

Proof. Since the internal choice operator does not fit Vaandrager’s general format of 

[21], the proof of substitutivity must be given explicitly by considering each DIOA 

operator. We show as an example the case of the external choice operator for the 

external trace preorder. Let el E sr e2 and fr E nTfi and let t be an external trace of 

ei , + J fi . If t is the empty trace then t is trivially an external trace of e2 , + J fi since 

the empty trace is an external trace of any expression. Let t = at’. If a is an input action 

not in ZuJ then rule ech, applies to e 2 , + J fi and t is trivially an external trace of 

e2 , + J f2. Suppose now, without loss of generality, that aEluout(e,) and rules ech,, 3 

are not used for the first a-transition of t. Then e, , + J fi -% e; I + J f[ 3 e; for some 

n > 0 where t’ is an external trace of e;. t is then an external trace of er; hence, by 

hypothesis, t is an external trace of e2. In particular, e2 s e; 5 e; for some m 20 

where t’ is an external trace of e;‘. t is then an external trace of e2 I +J f2 since 
i3 

e2r+Jf2-‘-I;e~I+Jf2-+e~. Note that, alternatively, we could have converted 

DIOA into an equivalent calculus fitting Vaandrager’s format by adding the necessary 

internal clearing rules to the internal choice operator. Its semantics in terms of 

external and quiescent traces, in fact, does not change. 0 

We conclude this section with a few remarks on alternative approaches we could 

have taken for defining calculi of I/O automata and proving their properties. 

Given the calculus of DIOA, it is not difficult to convert it into an angelic calculus. 

The main changes consist in converting into self-loops all transitions to Sz which were 

used to capture our intuition about capturing underspecification. The rules to be 

replaced by self-loops are nil, pre2 and ech,. When this new approach is followed, the 

expression Q can be eliminated from the calculus; it can be defined in terms of the 

other operators and recursion. 

Another issue we just want to mention is that of multiple internal actions; indeed, 

DIOA does not completely take into account the I/O automata requirement about 

this point. Our calculus allows only signatures with a single internal action. This 

restriction is not a serious one because in this paper we do not consider the problem of 

fair specifications. It would not be difficult to expand DIOA to permit multiple 

internal actions; however, two main problems would have to be faced. 

1. the preorder relations have to be defined over expressions with different sorts (all 

those sorts with the same external action signature), 
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2. substitutivity is no longer valid (if P=Q it might happen that there exists 
a process C such that P 11 C is legal while Q 11 C is not legal). 
This would imply that a weaker variant of substitutivity has to be introduced that 
asks for preservation of equivalence within only those contexts in which both equiva- 
lent processes can be inserted. 

The problem of defining a calculus with multiple internal actions is completely 
addressed in [17] where Vaandrager’s [21] work is extended to the many-sorted 
setting. In [17] also the full details of the extended version of an angelic calculus of I/O 
automata (called IOA) are completely worked out. 

5. A set of laws for the external trace preorder 

In this section we study a set of laws for the external trace preorder over DIOA 
expressions containing only nil, 52, prefixing, external choice and internal choice. The 
first three operators together with nil, and sZs form the basic input/output calculus; 
indeed, as we will see later, the other operators, renaming, hiding and parallel 
composition of Section 4, can be all described in terms of the basic ones. 

We first introduce some simple laws, that are listed in Table 3, describing the main 
properties of $2. Note that we do not give the soundness proofs of our laws since they 
are standard and in many cases follow directly from the definition of external trace. 

Proposition 5.1. The laws of Table 3 are sound for the external trace preorder. 

Table 3 

Omega laws for DIOA 

Table 4 

Internal choice laws for DIOA 

ICI eQ.l‘-ETfQe 
Ic, (eQf)Q9=ETeQ(fQY) 
IQ ecxETe Qe 

1% a.(eQf)2ETa.e@a.f 

Ic, (e~f)l+,sleT(eI+,9)8(1‘1+59) 
k6 rr(e Q f) =ETrr(e) Q 7A.f’) 

k7 (eQf)lls =ETkllg)Q(.fllg) 
1% e5ET~Q.f 
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The internal choice operator has simple and useful properties (see Table 4). It is 
commutative, associative, idempotent (Ic,-IQ); moreover, every other DIOA oper- 
ator distributes over it (Ic,-Ic,). The meaning of Ic, is immediate given the intuitive 
meaning of 0. 

Proposition 5.2. The laws of Table 4 are sound for the external trace preorder. 

The last operator we need to axiomatize for providing a complete axiomatization of 
basic I/O automata is the external choice operator. For actually introducing its laws, 
we need two auxiliary functions which permit testing the behavior of I/O automata. 
They are defined as follows: 

Si(e)= (agin 13 tEext(e)*: at$qtraces(e)}, 

Quiet(e) = true iff enabled(e) c in(e). 

Function Si (specijed input actions) yields the set of input actions that an expression 
e can perform after any, possibly empty, sequence of invisible actions and such that 
the future behavior is not completely undefined. Intuitively, an expression e is 
specifying a future behavior after an input action a only when not all possible 
implementations in response to a are correct implementations of the specification e. 

Function Quiet is much simpler since it simply checks whether a given expression 
does not enable locally controlled actions. 

Evidence of the need of function Si for axiomatizing , + J is given by the idem- 
potence law for this operator. Indeed, according to our semantics it is in general not 
true that e = nr e, + Je since, for example, if a is an input action we have that a. nil + ET 
a. nil O + O a. nil. The needed side condition for the idempotence law is Si(e) G IuJ. 

Proposition 5.3. The laws of Table 5 are sound for the external trace preorder. 

Table 5 

External choice laws for DIOA 

Eel e,M=ETfJ+,e 
EC, (eI+Jf)r,J-kg -ETeI~,K(f’,+,d 
EC, e = ET e , +J nil if Si(e) E I and Si(e)nJ = 0 
EC, el+~f-ET(e,+,e),+,,~ifI~HuK 

Ecs e,+,g~,,(e.+,f),+,gifKnSi(l)nlcH 

Ec, (eH+xf) ~+~g<a~e ,+Jg if Quiet(f), Si(e)nlcH and KnSi(e)nl=$ 
EC, a.e 13 a. f zET a.(e @ f) if aEout(e)u(lnJ) 
ECF, e Ij fsET e@fif Si(e)nSi(f)cluJ 
h e,+,f-..eQfif Si(e)uSi(j)rlnJ 

&I (a.e,+,f)8g2.eT(a.e,+,.~)Q(a.e,+,g)ifSi(g)~K, and (a}nlr{a}nK 
EC,, e,+Jf=ETe, ;.;+, I.; f’if aEl\Si(e). 
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6. Completeness proofs for the external trace preorder 

In order to use the laws of the previous section, we need to determine whether side 
conditions of the form Si(e)nJ c I and Quiet(e) do hold. Thus, to claim completeness 
of our set of laws we need also a complete set of rules for establishing truth of these 
two conditions. The proof system for function Quiet is very simple as established by 
Lemma 6.1 below and the associated Table 6. For the auxiliary function S(e), we have 
not been able to find a simple proof system. We can, however, axiomatize a variant of 
Si, that we call si; this, thanks to a lemma which establishes that Si(e)Gsi(e), provides 
a sound proof system for establishing whether the side conditions involving S(e) do 
hold. 

Lemma 6.1. The rule of Table 6 are sound and complete for function Quiet. 

Table 7 contains the definition of the auxiliary function si; it is given in terms of the 
syntactic structure of an expression e. The intuitive idea behind its definition is that for 
all the input actions of e not belonging to si(e) there is a visible transition to 52; 
therefore Si(e) c si(e). 

Lemma 6.2. For each DIOA expression e without renaming, hiding and parallel com- 
position, S(e) E si(e). 

Proof. The lemma is a direct consequence of the assertion 

if aein(e) and a+(e) then e s fi. 

Table 6 

Axioms for Quiet 

Quiet (nil) 

aein(e) implies Quiet(a.e) 

Quiet(e) and Quiet(f) implies Quiet(e , +_, f) and Quiet(e Of’) 

Quiet(E(X)) implies Quiet(X) 

Table 7 

Definition of si for DIOA 

si(nil) = 0 

si(f2)=0 

si(a.e)={a}nin(e) 

si(e, @e,)=si(e,)n~i(e~) 

si(e, I3 e,) =(lnsi(e,))u( Jnsi(e,)) 

si(X)=si(E(X)) 
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This assertion can be proved by induction on the complexity of guarded expressions e. 

For unguarded expressions it is sufficient to substitute E(X) for each unguarded 

occurrence of a process variable X. 

The base cases, nil and Sz, are trivial since, for any input action, they both have only 

transitions to G?. For the other operators we have the following cases. 

Case 1: Prejixing. Let e=a.e’ and suppose b$si(e) where bein( By definition of si, 

b #a; hence the result is trivial since a.e 5 Q for any input action b different from a. 

Case 2: Internal choice. Let e=e, @ e2 and suppose a$si(e) where aEin(e). By 

definition of si either a$si(eI) or a$si(ez). Suppose, without loss of generality, that 

a$si(eI). By induction e, 5 fi. By first using rule ich, we have e, 0 e, b e, G s2. 

Case 3: External choice. Let e=e, ,+J ez and suppose a#si(e) where aEin(e). We 

distinguish the following cases. 

1. a#luJ. This case is trivial since ei , + J e2 5 s2. 

2. aEl. By definition of si, a$si(el); therefore, we apply the induction hypothesis to 

e, and, since ael, we use rules ichl,4 to derive ei , +J e2 s s2. 

3. a.$1 and aEJ. Similar to the previous case. 0 

Function si has two main advantages; it relies on the syntactic structure of 

its arguments and can replace Si in all the laws of Section 5 without affecting 

soundness. 

Theorem 6.3. Let e be a DIOA expression without renaming, hiding and parallel 
composition, and let A, B be two sets of actions. Then 

Ansi(e)~ B implies AnSi(e)z B. 

This theorem amounts to saying that the laws of Tables 3-5 together with 

Table 6 for Quiet and Table 7 for si, provide a sound set of rules for establishing 

whether two I/O automata are external trace equivalent. Clearly, the reader can 

develop his own sound rules to be used instead of those for si. We would like, however, 

to remark that function si as presented by Table 7 is sufficient,to achieve complete- 

ness. In particular, function si gives us the possibility of defining an unparametrized 

choice operator as 

which is commutative, associative and idempotent. This new operator +, although 

not substitutive, is useful for simplifying DIOA expressions and obtaining terms 

which do not contain the parameters of the external choice operator. These are the 

source of many difficulties in the use of the algebraic laws for DIOA. 

The simplified form to which each expression is reducible is called internal prefix 

form. It is defined below. 
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Definition 6.4 (Normal forms). A DIOA expression e is in prejix normal form if one of 
the following conditions holds. 

1. e=Q or e-nil (atomic expressions), 
2. e E a.e’ where e’ is in prefix normal form, 
3. e = e, + e, where e, and e, are in prefix normal form but not atomic. 

We denote an expression in prefix normal form different from Q with 1 ie, ai.ei If i = 0 
then the denoted expression is nil. 

A DIOA expression e is in internal preJxform if e z e, @ ..+ Q e, where each ei is in 
prefix normal form. We abbreviate e, @ ... @ e, with ?$ ei. 

The following lemmas show that, up to external trace equivalence, the internal 
normal form is closed under prefixing, internal choice and external choice. A conse- 
quence is that each DIOA expression not containing recursion, hiding, renaming and 
parallel composition is provably equivalent to an expression in internal prefix form. 
Thus, the completeness proof reduces to proving completeness only for expressions in 
internal prefix form. 

Lemma 6.5. If e is in internal prejix form then, for each aEext(e), there is an expression 
e’ in internal prefix form such that a.e =ET e’. 

Proof. Let e=Ei,, ei. By repeatedly applying Ic, we obtain a. (&, ei) NET Eiel a.ei. 

Since each ei is in prefix normal form, then each a. ei is in prefix normal form; hence, 
Eic, U.ei is in internal prefix form. 0 

Lemma 6.6. If e and f are in internal prejix form then e Of is in internal prefix form. 

Proof. Immediate consequence of the definition of internal prefix form. 0 

In order to prove easily the next closure property, we introduce some derived laws. 

Proposition 6.7. Let e, f and g be DIOA expressions. The following laws can be derived: 

Ec~z e&T e,+J f ifJnSi(f)cI, 

J%3 e,+J f&Te ifQuiet( Si(e)Gi and Si(e)nJ=& 

ECU e = ET e , + 8 f if Quiet(f) and Si(e) C 1, 

ECI~ eI+_,g=ET(eI+Kf)I+Jg ifQuiet and KnI=@, 

ECI~ eNET e r+J a.S2 ifSi(e)EZ, Si(e)nJ=0 and aEin(e). 

Proof. The laws Ec12, 13 are a consequence of EC3 and EcSp6. The laws Jk14, 15 follow 
from the combination of Ec~,~ with Ec12, 13. The law Jki6 follows directly from EC3 
andO,. q 

Lemma 6.8. Let e=Cie, ai.ei. Then si(e)={ai: iEI}nin(e). 
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Proof. Direct application of the definition of si. 0 

Lemma 6.9. If e and f are in prefix normal form then eI + J f is provably equivalent to an 
expression e’ in prefix normal form. 

Proof. Without loss of generality, we can assume that e and f are different 
from 52 since, in such cases, O3 can be applied. Let e = xi ai. ei and let f= Cj bj .fj . 

From repeated applications of EelI there are two sets I ’ E si(e) and J ’ csi( f) such 
that 

eJ+Jf =ETe,,+J,f: 

We distinguish the following cases. 
(1) 31 aiEl’uout(e) and 3, bj~J’uout(f ): Due to commutativity and associativity, 

the expressions e and f can be written as e’ I, +si(e)\ ,, e” and f’ Js +si(s)\J, f “, where 

e’=Cji~a.E1’vour(ejl ai.ei, e”=Cji_ite,\lTl ai.%, f ‘=C(j:b,EJ’vout(j); bj.f; and 

f n=C[j:~,esi(f)\J’; I’ J’ 
’ b. f. Note that e’ and f “are in prefix normal form, si(e’)=Z’, and 

si( f ‘)-J’. By repeatedly applying Ec15 (together with Ecz) we obtain 

e”)f’+J’(f;‘+sicr,\J’f”) -ETe;,+J,(f;,+,icr,\J,f”) 

NET e;,+,,f’. 

2. 3, aieZ’uout(e) and ,Sj bjEJ’uoUt(f): In this case J’=@ (in fact JclJj {ai}) and 
Quiet (f ). From Eq 5, e, I + J I f ‘v ET etI, + J, f for some e’ in prefix normal form with 

si(e’)=l’. From Eci4 e’l,+J, fEET e’. 

3. jIi aieZ’uout(e) and 3, bj~J’u out(f): This case is similar to the previous one. 
4. ~iai~l’uout(e) and Jj bjEJ’uout(f): In this case Z’=J’=O, Quiet(e) and 

Quiet(f ). From J%, 14, 15, 

This concludes the proof. 0 

Lemma 6.10. Zf e and f are in internal prefix from then e I + J f is provably equivalent to 
an expression e’ in internal prejix form. 

Proof. Let e=Jj heH eh and f=EkeRfk . By a repeated application of Its and Eq we 
obtain 
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From Lemma 6.9, for each h, k there is an expression eh,k in prefix normal form such 

that ehI+J fk=Ereh,kl hence 

The above expression is in internal prefix form. 0 

We now need to prove the completeness result for expressions in internal prefix 
form. Lemma 6.12 introduces a rule which is derivable from the laws and completely 
characterizes the external trace preorder over expressions in internal prefix form. First 
we state a simple lemma. 

Lemma 6.11. Let e=T&, ei. Then etraces(e)= Uisl etraces(ei). 

Proof. Simple consequence of the transition rules for 8. Cl 

Proposition 6.12 (A rule for inductive reasoning). Let e=Ci ai.ei and f=Ejfj where 

fj=xi bjk.fjk. For each a, j let 

1 $$ fjk if (kIbjk=a)Z& 

g;= 
bj*-Q 

I otherwise. 

Then e jET f ifl the following two conditions hold: 

(1) vi (ei SET E$ gpi#L gyi and 3j: gy’$ I) or (aLEin and 3j: gy=_L)), 

(2) Va~fI(si(_G))\si@) QI~rEjgj". 

Proof. If: Suppose conditions (1) and (2) to be valid. We perform the following 
external trace equivalence preserving transfo~ations on e and j! 

1. Using Eq6 add a.Q to each expression jj such that a&si(jj) and aE si(e)usi( f ). 
Do the same on e. 

2. Using Eclo replicate on all thefjs each summand a._&’ of each fk. For example, if 
f=(a.f~++f;‘) Ofi @ e-1 0 fn then it becomes (a.f;+f;‘) 0 (a.f[ +f2) @...@(a.f{ +f,). 

3. Using J.k7 group all expressions with a common prefix in each expressionfj of 
the newf: 

4. Reduce each summand of the form a.(Q 0 -,-) of each fj to a.C?. This step is 
possible since it is immediate to prove Q “~rre 0 Q by using O1 and Icg. 

The above manipulations lead to two expressions e’, f’ with e’ E ET e and f’ -ET f 

where 

e’Ge+ C a.SZ and f’=cf,’ 
aEsi(/)\si(ef j 
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for some expressionsfj’. Consider now 

f”E 
( 

1 a&” ) 

oesi(e)usi(f)uA ) 

where A = {aeout(e) 1 3j,k a= bjk) and eachf,’ is 

if aGout or (ucin(e) and ,Zljl &z I), 

if u~in(e) and 3jlgg~I). 

Consider a generic6 off’. Due to the construction of the latter, each summand of 

fj’ is a summand off” and vice versa. As a consequence the external choice laws prove 

f” N eTfj and, by repeatedly using IcJ, f zETf”. 
We now show that, for each summand a.e” of e’, e” ~srf.)‘. The law EC3 and 

substitutivity are then sufficient to conclude e’ G srf”. If 3 j 1 g4 = I then fO” = Q and 

Oi is sufficient to conclude; otherwise,f,’ GE eg +I g; . If u.e” is a summand of e then 

the conclusion follows from item 1 of the hypothesis, otherwise, the conclusion follows 

from item 2 of the hypothesis after observing that e”=Q and that UE~ (si(f;))\si(e). 
Only if: Let e c sr f: We show that conditions (1) and (2) are satisfied. 

1. Suppose condition (1) to be false and let i be one of the indexes for which the 

condition is false. We distinguish the following cases: 

(a) Ui is an output action. In this case the left side of condition (2) must be false. If Vj: 

g4’ = I, then no external trace with ai as first action is an external trace forf, while ai is 

an external trace of e. This gives a contradiction, hence 3j: g;’ + 1. Since condition (1) 

is false, it must be ei gET (8 s,“‘+l ggi). Let t’ be an external trace of ei but not of 

Eea,+_L gy’. Clearly, t = i a t’ is an external trace of e. We show that t is not an external 

trace offobtaining a contradiction. Supposefjf’ where t’ is an external trace off’. 

From the transition rules, 3j, k :f’ E fjk and Ujk = Ui. By definition,fjk is a summand of 

g;‘; hence t’ is an external trace of E ee,+l ~7’. This gives a contradiction. 

(b) ai is an input action. Since the right part of condition (1) must be false, then Vj: 

ygl$ I. It is then enough to repeat the argument of the previous case to conclude. 

2. Suppose condition (2) to be false. Then luEn(si(fi))\si(e): f2 $ZET (E j gy). Let 

t’ be an external trace of Q but not of Ej g;, and consider t=ut’. Since from the 

transition rules and Lemma 6.8 e 5 52, t is an external trace of e. By using the same 

argument as in case (b) of the proof for condition (1) we obtain that t is an external 

trace of E j gy This gives a contradiction. 0 

Lemma 6.13. 

Proof. Direct consequence of Lemma 6.11. 0 

Proposition 6.14 (Completeness for expressions in internal prejix form). Let e and f be 
expressions in internal prejx form. If e zET f then e z&T jY 



416 R. De Nicola. R. Segala 1 Theoretical Computer Science 138 (1995) 391-423 

Proof. From Lemma 6.13 and IQ it is sufficient to analyze the case in which e is in 
prefix normal form. We show the result by induction on the maximal complexity II of 
e and f; where the complexity of an expression is the maximal number of nested 
prefixing operators. If n = 0 then e and the summands offare atomic expressions. By 
applying IQ we can supposefto be nil or Q or Q @ nil. Iffis nil then either e is nil or 
out(e)=@ In the second case O3 applies. Iff is !Z! then Oi applies. Iffis nil 0 52 then 
1~ applies. 

For the induction step suppose n > 0. We can assume, without loss of generality, 
that e and any summands off are different from Q since O3 can be applied in such 
cases. By applying the rule of Proposition 6.12 to e and f we have that, for each 
condition involving the comparison of some expressions, one level of prefixing is 
eliminated; hence the complexity of the expressions to prove in relation is less than IZ. 
By applying the induction hypothesis and successively the rule of Proposition 6.12, we 
conclude that e -&r f: 0 

The main theorem is then the following. 

Theorem 6.15 (Completeness for DIOA). Let e and f be two recursion-free DIOA 
expressions without renaming, hiding and parallel composition operators. If e E ET f then 

e&T& 

Proof. By means of Lemmas 6.5, 6.6, 6.10 and a simple induction argument the 
problem is reduced to the case in which e and f are in internal prefix form. The 
completeness result is then stated by Proposition 6.14. 0 

7. Axiomatizing renaming, hiding and parallel composition 

In this section we consider the remaining three operators of DIOA and provide 
complete axiomatization for them all. 

7.1. Laws for renaming 

Axiomatizing the renaming operator is relatively easy; we can put forward laws 
that permit removing the renaming operator from any expression (see Table 8). 
Indeed, its laws show that the renaming operator distributes over every other 
operator and thus it can be eliminated from any expression. It is worth remarking that 
not all the laws are necessary for proving completeness: some like Rg, 6, 7 are reported 
only for continuity of presentation and for giving a fuller algebraic account of all 
operators. 

Proposition 7.1. The laws of Table 8 are sound for the external trace preorder. 
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7.2. Laws for hiding 

In order to extend the completeness result to the hiding operator we need five 
additional laws. In this section we introduce 11 laws in order to show some interesting 
properties of the hiding operator independently of our final purpose. The laws that are 
used for the completeness proof are 11,2,3,4,11. 

The law I4 uses an auxiliary function 

So(e)= {aEout(e) 1 aEetraces(e)} 

giving the set of specijied output actions of e, i.e., the set of output actions of e that 
could become enabled after some internal transitions. Note that it is not true in 
general that rl(eH +Kf)=ET rl(e) H+ K rr(f) since performing an action from 
I resolves the choice context in the left I/O automaton but does not resolve it in the 
right one. 

Proposition 7.2. The laws of Table 9 are sound for the external trace preorder. 

Similarly as for function Si, function So can be provided with a sound proof system. 
In this paper we only give a rule for expressions in prefix normal form. The interested 
reader is referred to [18] for other rules. 

Table 8 
Renaming laws for DIOA 

R1 p(ni/) =aT nil 

RZ Aa.e) =ET p(a).p(e) 

R3 ~(e@S)=~~de)@df) 

R4 ~(e,+,f) =ETP(~),v~+,IJ~P(./“) 

Rs k(de)) =ETPl”h(e) 

Rs drh)) =ETv&‘(e)(e)) if P’ extends P 

R7 P(ellf) -ETde)Ildf) 

& P(Q) =ETQ 

Table 9 
Hiding laws for DIOA 

I1 s,(d) %ET nil 

Iz r,(a) =ETQ 
I3 s,(a.e) zETa.r,(e) if a+!1 

14 f,(eH+f) =eTTr(e)H+KTl(f) ifSo(e)nf=So(,f)d=@ 

15 TdQ(e)) =ET Tde) 

I6 rr(e)IIr,(f) -ET5,uJ(eII.f) if lnacfs(f)=Jnacts(e)=0 

I7 r,(e) Epr,(f) implies r,(a.e) 5ETrr(a.l) 
Is T,(e) +Q(9) imPlies ~r(~H+~f)~T~~(g~+~f) 
I9 Tr(e)%ETTI(i.eHhf) 

I 10 r,(i.e) zETTl(e) if Si(e)=0 

ISI rr(eH+Bi.f) ZETtr(e@ f) if Si(e)EH 
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Lemma 7.3. SO (Cior ai.ei)= {Ui (ill and ai is an output CK~~OH}. 

Lemma 7.4. If e is in prejix normal form then z,(e) is provably equivalent to an 
expression e’ in internal prefix form. 

Proof. We prove the proposition by induction on the complexity of an expression e. If 
e has complexity 0 then I1,2 are sufficient to conclude. Suppose now that e has 
complexity at most n + 1, i.e., e = CkeK ak.ek where the complexity of each ek is at most 
n. Let Ki={keKl&1} and K2=K\K,. Then 

=nT by the external choice laws 

~~(k~,ak.ek)+(k~~ak.ek)) =ET bYI11 andI% 

" k:, ( ) 

ak-ek @ E ek =ET by 13.4 
kcK2 

r,(k~,a.~,(ek))~k~~ek. 
By induction each rl(ek) has a provably equivalent expression e; in internal prefix 
form; hence, 

T,(e)l,T(k~,ak-e;)~k~*e~, 

From Lemmas 6.5, 6.6 and 6.10, the above expression has a provably equivalent one 
in internal prefix form. 0 

Proposition 1.5. Zf e is in internal preJix form then rI(e) is provably equivalent to an 
expression e’ in internal prejix form. 

Proof. Let e=E keX ek where each ek is in prefix normal form. BY Ie6 r,(e) NET EksK 
rl(ek). By Lemma 7.4 each ej has a provably equivalent expression e; in internal prefix 
form; hence e car E keK e;, which is in internal prefix form. 0 

7.3. Laws for Parallel composition 

Some simple laws for the parallel operator in addition to those presented in the 
previous sections are listed in Table 10. 

Proposition 7.6. The laws of Table 10 are sound for the external trace preorder. 

Unfortunately, when using the parallel operator, the notion of prefix normal form 
we used in the previous sections is no longer sufficient. Expressions of the form 
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Table 10 

Parallel laws for DIOA 

s2 (1 nil 11 ... )I nil cannot be reduced to normal form in general. For the above reason it is 
necessary to change the notion of atomic expression in the definition of the prefix 
normal form by saying that an atomic expression has the form R II nil Ij ... II nil. 

The laws O2,3 are not sufficient for the new notion of atomic expression. The 
following two laws introduce a construction which is typical of interleaving semantic 
models. The law El is the needed extension of 02, 3. 

Proposition 7.7 (Expansion laws). The following laws are sound for the external trace 
preorder. 
El Let e=&, II nils, II ... Ij nils, be of sort S. For each aGom(&) let e, be the 

unique state that e reaches with action a. Then e =ET (CoEOUf(SO)uinCS) a.e,). 
Ez Let es el II e2 11 ... I/ e, where each et is of the form C j aij.eij. For each action 

aEext(e), let 

F_= {f?ijIaij=a} if aEaCtS(ei), 

i ’ {ei> otherwise. 

Let out(a) be the index j such that a is an output action of j (0 otherwise) and let 

Ea= 
0 if out(a)#O and E,O”““‘=@ 

{ fi I/ -a+ I[ f.: &Ed v (EL=@ A f;=CI)} otherwise. 

The proof of Proposition 6.14 is basically unchanged in its induction step. The main 
difference is that, instead of using 0s to eliminate subexpressions of complexity 
0 containing s2, El is used. The proof for the base of the induction, instead, needs one 
additional sound and complete rule. 

Proposition 7.8 (Parallel law). The following law is sound and complete for the external 
trace preorder: 
P4 Let et, 0 d i < n be atomic expressions and, for each action a, letfi” be the expression 

that et reaches with action a (I if no expression exists). Then e, -& E 1 GiCn ei ifs, 
for each action a, either 
1. flzei, O,<i<n or 
2. f{m_L or 

3. ft <ET El; +~fl. 
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Proof. Only if Suppose, for each action a, one of the conditions 1,2 or 3 to be valid. 
Let t be an external trace of e,,. The case for t = A is trivial since /1 is an external trace of 

any expression. Let t = tt fz where t1 is the longest prefix of t such that each ei %ei by 

means of self-loop transitions (due to the D parts). If tz = R then trivially t is an external 

trace of (E lQiCn ei). Suppose tz =at, for some action a and let e, sf$. t3 is then an 

external trace ofjz and, by hypothesis and the definition of tZ, t3 is an external trace of 
( HfS +lfi”) and (fi” E# _L } #$I (in fact conditions 1 a;d 2 are false). This implies that 3j: 

t3 is an external trace offi”. Moreover, (E 1 sig:n et) =>ej %Cj sfj”; hence, t is an external 

trace of (B 1 <i$n ei). 

If: Let e0 --CET(@+~~~~~ t e.) and suppose conditions 1,2 and 3 to be false for some 

action a. Since, by condition 2&g E# I, we have that e. $$:. Since condition 3 is false, 

theneither {fit’+ _Lf=glorf; gET(E Jp ,,fi”). The first case cannot hold, otherwise 
a is an external trace of e, but not an external trace of (E 1 4isn ei). Let 2 =at’ where t’ 

is an external trace off,” but not an external trace of ( J$fa ,,fi”). By definition, t is an 
external trace of eo. We show that t is not an external trade of (E 1 Gisn ei). Suppose the 
contrary. By Lemma 6.11, t is an external trace of ei for some i>O. In particular 

ei -%fi, hence t’ is an external trace offl, i.e., t’ is an external trace of &; +lfj”, 

absurdum. q 

The basic case of Proposition 6.14 is then proved by induction on the number of nil 
subexpression appearing in the expressions to be compared. Note in fact that the 
number of nil subexpressions in the preconditions of P4 is strictly decreasing. 

To deal with the hiding operator, 11,2 have to be extended to the new atomic 

expressions. The two new laws are the following. 

Pro~sition 7.9 (Hiding laws). Let e,J g be DIOA expressions. jrhe f~llo~ving laws are 

sound for the external trace preorder. 

II2 ~,((%,ll&b 11 “’ iih,)i~e) %ET zl&ile) 

ifVl<j<:n (out(So)nin(Sj)rrZ)\irt(e)#0, 

I13 ~I&%, II nils, II - II &,) =ETGW II nki, /I _- II %\~I 

ifVIGisn UU~(So)~~n(Si)n~=0, III 

Finally, we have to state the closure property of the new internal prefix form under 
parallel composition. The closure property can be easily proven by induction on the 
complexity of the arguments of the parallel operator by noting that E2 reduces their 
complexity. 

The laws for the quiescent preorder are essentially the same as for the external trace 
preorder. The main problem in the formulation of the new laws is given by the 
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possible quiescence of the empty trace. For the above reasons some of the laws must 
be restricted through some additional side conditions. 

The external choice laws Ec~,~,~, 1o need restrictions. The law It 1 is no longer valid 

in general. As a consequence I,, B are used in the completeness proof. The law El has 
to be changed in order to allow the empty trace to be a quiescent trace of the expanded 
expression. Its new form is 

e NET 

( oeour(So)uin(S) 

Finally, the completeness rule needs an additional condition as follows: 

The complete axiomatization of the quiescent preorder is given in [ 181. This section 
just gives an idea of how the axioms should be structured. The interested reader is 
referred to the cited bibliography. 

We have presented a process algebra, called DIOA for demonic I/O automata, with 
the following main features: explicit interfaces are associated with each expression, 
a clear distinction is enforced between locally and globally controlled actions, input 
actions are always enabled, and actions are always under the control of at most one 
process. Our process algebra is directly related to I/O automata of Lynch and Tuttle 
[14], a model of distributed systems which has been successfully used for the specifica- 
tion and the verification of algorithms for distributed environments. 

We have presented a set of algebraic laws which are sound with respect to the 
external trace preorder, which permits ignoring invisible actions and identifying those 
automata which can perform the same sequences of visible actions. These laws over 
DIOA have also been proved to be complete for recursion-free processes. We have 
also discussed possible extensions of the axiomatization to the quiescent preorder, 
a strengthened version of the external trace preorder that is sensitive to deadlock. 

Indeed: further work has to be dedicated to investigating extensions of the com- 
pleteness results to recursively defined expressions and to other preorder relations 
which are used in the operational framework of I/O automata. We are confident that 
the normal forms we have devised and the reduction techniques we have developed for 
proving completeness are a significative starting point and that they can naturally be 
extended to other behavioral relations. 

Another interesting topic is that of fairness and of its relationship with quiescence; 
we will investigate when and how quiescence is sufficient for capturing fairness 
properties. We would also like to see how the quiescent and fair preorders relate to 
other well-studied relations in non-input-enabled algebras, i.e., we would like to see 



422 R. De Nicola, R. Segala / Theoretical Cornpurer Science 138 (1995) 391-423 

how it is possible to embed notions such as input enabling, quiescence and fairness in 
non-input-enabled algebras. 

Finally, we would like to see how a preorder relation can be thought of as an 
implementation relation. The fair preorder of I/O automata, in fact, is used as an 
implementation relation. However, we have not found any formal justification of its 
use. Many times ad hoc proof techniques are developed to deal with different 
verification tasks, and each time arguments have to be provided to convince the 
reader that the chosen technique corresponds to a correct notion of implementation. 
A formal understanding of the notion of implementation would avoid the above 
problem. 

Some of the topics mentioned above are addressed in [ 18,191 and will be the subject 
of a forthcoming paper; others are just proposals needing further investigations. 
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