
Theoretical
Computer Science

Theoretical Computer Science 138 (1995) 39 l-423

A process algebraic view of input/output automata

Rocco De Nicola”,*, Roberto SegalabV1

a Dipartimento di Scienze dell’lrzformazione, Universitii di Roma “La Sapien--a”, Via Salaria 113.

00198 Roma, Ital>

b Laboratory,fbr Computer Science, Massachusetts Institute of’ Technolog?

Abstract

Input/output automata are a widely used formalism for the specification and verification of
concurrent algorithms. Unfortunately, they lack an algebraic characterization, a formalization
which has been fundamental for the success of theories like CSP, CCS and ACP. We present
a many-sorted algebra for I/O automata that takes into account notions such as interface, input
enabling, and local control. It is sufficiently expressive for representing all finitely branching
transition systems; hence, all I/O automata with a finitely branching transition relation. Our
presentation includes a complete axiomatization of the external trace preorder relation over
recursion-free processes with input and output.

1. Introduction

Input/output automata [14,20,11,12] are a widely used and deeply investigated
formalism for specifying and verifying concurrent systems. Unfortunately, they have
never been equipped with an algebraic characterization, a formalization that has been
fundamental for the success of theories like CSP, CCS and ACP [10,1.5,8,1]. The goal
of this paper is to improve our understanding of the intricacies of I/O automata by
describing them as a process algebraic theory. This will permit algebraic manipulation
and will provide an alternative to the commonly used verification method based on
possibilities mappings.

We start by designing an algebra that incorporates the fundamental features of I/O
automata of Lynch and Tuttle [14] and captures the essential role of concurrent

*Corresponding author. Partially supported by “Progetto Finalizzato Sistemi lnformatici e Calcolo
Parallelo”, contract no.91.00894.69 and by lstituto di Elaborazione dell’tnformazione of CNR at Pisa.

‘Supported by NSF grant CCR-89-15206, by DARPA contra&s NOOO14-89-J-1988 and NOOOl4-92-J-4033,

and by ONR contract N00014-91-J-1046.

0304-3975/95/$09.50 0 1995-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(94)00159-6

392 R. De Nicola, R. Segala 1 Theoretical Computer Science 138 (1995) 391-423

composition, hiding and renaming. Our design aims at maintaining minimality of
operators and universal expressivity. We base our characterization on the following
basic features of I/O automata:

1. explicit interfacing: a transition-invariant interface is associated with each process;
2. input/output distinction: a clear distinction is made between, locally controlled,

output actions and, externally controlled, input actions;
3. input enabling: input actions are enabled in every state;
4. local control: each action is under the control of at most one process.

For the sake of simplicity, in spite of the fact that it is an important issue always
considered within the I/O automata formalism, we decided to ignore fairness in this
paper.

The operators in our calculus associate distinct sets of input and output actions
(interfaces) with each process. This permits capturing a critical aspect of I/O auto-
mata, namely the distinction between input and output actions. To associate an
interface to a process we use many-sorted algebras: each process has a sort which
stands for its interface. This choice permits dealing with partial operators in a clean
way. As an example consider the parallel composition operator. To comply with the
requirement that each action be under the control of at most one process, parallel
composition is permitted only between pairs of processes that do not have common
output actions. Many-sorted algebras allow us to capture this restriction by defining
the parallel operator as a family of sorted operators, one of each pair of compatible
interfaces.

A key issue in defining our I/O calculus is the way input enabling is enforced. We
present our choice with the support of an example. Consider process P = a.e, which is
able to perform an action a and then behave like e. If the system is input enabled, the
above process must be able to perform all input actions, also those different from a.
Indeed, it is for the unspecified input actions that we have to make a definite choice
about how to represent the future behavior. We considered the following two different
possibilities.

1. Angelic: Unexpected inputs are ignored. A system copes with unexpected input
actions by first receiving them and then returning to the state it was in before the input
had taken place (self-loop). For example, system P=a.e, after accepting any input
b different from a, is again ready to accept the a-action.

2. Demonic: Unexpected inputs are considered as catastrophic. A system, after any
unexpected input, moves to a special state 52 from which any behavior is possible.
Thus, P = a.e, after any b-action different from a, moves to 52.

The angelic choice was made by Vaandrager [21]; here, we study the impact of the
demonic approach. In our view, for P=a.e above, the prefixing operator specifies its
behavior only for action a and says nothing about input actions different from it. By
interpreting this in the framework of I/O automata and of the correctness of an
implementation with respect to a given specification, we have that an implementation
of P should be correct independently of the behavior it exhibits when provided with
any input action different from a.

R. De Nicola, R. Segala / Theoretical Computer Srience 138 (1995) 391-423 393

Due to this basic choice, our calculus will be called the demonic calculus of Z/O
automata (DIOA).

The demonic approach has been partially influenced by the receptive process theory
(RPT) of Josephs [13]. However, the semantics of RPT is denotational, and like CSP

[lo], it is described by means of sets of failures, traces and divergences. The handling

of underspecification within RPT is even more demonic than ours; underspecification

is propagated backward. Thus if a process P can perform an output action o and move

to the equivalent of an Q state, then the whole P is equivalent to 52.

The semantics of our many-sorted language is obtained by associating a labeled

transition system with each term by means of a set of interference rules in the usual

SOS style [163. This choice paves the way toward a number of possible semantics for

I/O automata. Indeed, labeled transition systems have been equipped with a number

of behavioral equivalences each aiming at capturing particular aspects (sequences of

interactions with the external world, reactions to external experiments, branching

structures of the sequences of interactions, etc.) that permit relating different descrip-

tions of a given system. For an overview and a discussion on the relationships between

different behavioral relations, the interested reader is referred to [3,7].

We will study a very simple preorder (and the induced equivalence) over the

transition systems associated with the terms representing I/O automata and postpone

investigation of more interesting equivalences to further study. The behavioural

relation we will consider is the external trace preorder; it permits identifying all those

automata that can perform the same sequences of external (input or output) actions by

ignoring possible differences that could be induced by internal actions. This relation

allows us to throw some light on the impact of interfaces, input enabling and local

control of actions in an algebra of I/O automata.

For the external trace preorder, we propose a set of sound algebraic laws that are

also complete with respect to recursion-free DIOA processes. The completeness proof

is achieved via techniques of reduction to normal forms, these are significatively

different from the usual ones employed in standard process algebras. Indeed, they are

special normal forms that contain also restricted occurrences of the operator for

parallel composition. We feel that they should be useful also for behavioral relations

that are more accurate than external trace preorder.

Particularly important for our result is an operator representing internal choice. It

does not fit Vaandrager’s general format [21] and forces us to prove substitutivity of

our preorder explicitly.

In [18] another behavioral relation is studied: the quiescent preorder of [21]. The

main idea behind this relation is that a quiescent trace is a trace which leads to states

from which only input actions are enabled. The quiescent preorder is given by external

and quiescent trace inclusion; it is a restriction to finite traces of the fair preorder of

[14], and it is another stepping stone toward the study of fairness-sensitive semantics. It

is worth remarking that the complete axiomatization for the quiescent preorder of [18]

is similar to that for our external preorder; the main difference arises for the complex

side conditions which are needed for dealing with quiescence of the empty trace.

394 R. De Nicola, R. Segala 1 Theoretical Compurer Science 138 (1995) 391-423

The rest of the paper is organized as follows: Sections 2 and 3 contain an overview
of I/O automata and process algebras. Section 4 contains the operational definition of
a demonic calculus of I/O automata. It also contain hints on how to define an angelic
calculus. Section 5 contains a set of laws which permit sound manipulation of DIOA
terms with respect to the external trace preorder. Section 6 contains the proof that the
laws of the previous section provide a complete axiomatization of recursion-free
DIOA expressions without renaming, hiding and parallel composition. Section 7 ex-
tends the completeness result to the remaining operators. Section 8 contains some
concluding remarks.

2. An overview of I/O automata

In this section we briefly introduce I/O automata and their basic formal definition.
For a complete account, we refer to reader to [14]. We will stick as much as possible
with the original notation, but some notions, such as execution and schedule modules,
will be ignored. Later we will homogenize the notation with that of process algebras;
here, on few occasions, we will recall some obvious correspondences.

One of the basic concepts is the notion of action signature. It represents the
interface of an I/O automaton with the external environment.

Definition 2.1 (Action signature). Given three disjoint sets in, out and int we refer to
the triple (in, out, int) as an action signature S. The sets in, out and int are respectively
denoted by in(S), out(S) and int(S). The entire set of actions in u out u int is denoted
by acts(S). The set of external actions in u out is denoted by ext(S). Finally, the set of
locally controlled actions int u out is denoted by local(S).

An I/O automaton is formally defined as follows.

Definition 2.2 (Input-output automaton). An input-output automaton A is a tuple

(Q, Qo, S, 6 PI where
l Q is a set of states and is referred to as states(A),

l Q. G Q is the set of start states and is referred to as start(A),

l S is an action signature and is referred to as sig(A),

l t GQ x acts(S) x Q with the property that VqEQ, uEin(S) 3q'EQ: (q,u,q’)Et. It is
referred to as steps(A), and

l P is partition of local(S) and is referred to as part(A).

A step (q, a, q’)Esteps(A) is conventionally denoted by q -5 q’.

The difference between classical automata and I/O automata arises for the pre-
sence of

1. the action signature that permits introducing different types of actions;
2. the constraint that input actions be always possible and that their transition

relation be always defined;

R. De Nicola, R. Segala 1 Theoretical Computer Science 138 11995) 39I-423 395

3. the presence of the partition P of the locally controlled actions.
The role of P will be more clear when the notion of fair execution is introduced. The
basic idea behind the partitioning of the set of local actions is that a system can be seen
as a set of subcomponents and that all actions of a partition are under the control of
a single subcomponent. Fairness will then be defined to guarantee that infinitely often
all subcomponent take the chance of executing at least one of the actions in the
different partitions.

We now introduce executions and schedules, i.e., sequences of labeled transitions
and sequences of labels that in process algebra are known as runs and traces.

Definition 2.3 (Executions and schedules). Given an I/O automaton A, an execution
fragment is a finite sequence qOaoql ... akqk of infinite sequence qOaoqlaIq, ... of
alternating states and actions such that (qi, ai, qi + ,)~steps(A) for every i. An execution
is an execution fragment beginning with a start state (i.e., qoEstart(A)). The schedule of
an execution x is the subsequence of actions appearing in x. It is denoted by sched(x).
Executions and schedules of an I/O automaton A are denoted, respectively by
execs(A) and scheds(A).

Very often, the main concern is with the visible behavior of a system and thus with
sequences of external actions. These are obtained from schedules by dropping the
elements of int.

Definition 2.4 (External action signature and schedule). An external action signature is
an action signature consisting only of external actions. The external action signature
of a signature S is (in(S), out(S),@), i.e., S without internal actions.

Given a sequence y of actions and set of actions X we denote by yrX the maximal
subsequence of y consisting only of actions of X. The set of external schedules of an
I/O automaton A, denoted by escheds(A), is given by (yrext(A): yEscheds(A)).

A first notion of observational equivalence for I/O automata is then the following,
which identifies all those I/O automata which can perform the same sequences of
external actions. It is called unfair equivalence because in [14] it is presented in
preparation of a different equivalence relation, namely the fair equivalence.

Definition 2.5 (Unfair equivalence). Two I/O automata A and B are said to be unfairly
equivalent, A =” B, iff A and B have the same external action signature and es-
cheds(A) = escheds(B).

It can be easily shown that the above relation is indeed an equivalence relation, We
proceed now to introducing three basic operations over I/O automata: hiding,
renaming and parallel composition. In passing, we note that the above relation is also
a congruence for these operators.

396 R. De Nicola, R. Segala 1 Theoretical Computer Science 138 (1995) 391-423

Definition 2.6 (Hiding). Given an I/O automaton A =(Q, Q,,, S, t, P) and a set of
actions I such that Inin(A we define the I/O automaton Hide,(A) to be the I/O
automaton (Q, Qe, S’, t, P) where S’ differs from S in that
l out(Hide,(A))=out(A)\Z, and
0 int(Hide,(A))= int(A)u(acts(A)nZ).

The hiding operator transforms external actions into internal ones, i.e., it hides
some locally controlled actions to the external environments. The only difference
between the original and the resulting I/O automaton is in the signature. Executions
and schedules are exactly the same. It is worth noting that the definition of hiding in
[14] does not contain the restriction that Znin(A)=& it is however immediate to
observe that the operator would not be closed for I/O automata if we permit hiding of
input actions: part(A) would not be a partition of local(A) any more.

Definition 2.7 (Renaming). An injective mappingfis applicable to an I/O automaton
A if acts(A) ~dom(f). Given an I/O automaton A =(Q, Qo, S, t, P) and a mapping
fapplicable to it, we definef(A) to be (Q, Qe, S’, t’, P’) where S’, t’ and P’ are defined as
follows:
0 in(S’) =f(in(A)), out(S)=f(out)A)), int(S)=f(int(A)),

l t’= {(U”(u), 4’): (4, u, q’)Esteps(A)}, and
0 P’= {(f(u),f(u’)): (a, u’)Epart(A)).

Thus, the renaming operator simply renames actions of its operand. We introduce
now parallel composition of I/O automata, it is of fundamental importance because it
exactly characterizes the way I/O automata communicate and/or synchronize.

An important property of I/O automata for defining parallel composition is
their compatibility. The compatibility condition requires that internal actions be not
used to communicate and that every action be under the control of at most one
process.

Definition 2.8 (Compatibility of Z/O automatu). (1) A set of action signatures {Si: igl}
are compatible iff for all i, jeZ,
(a) cUt(Si)ncut(Sj) = 8, and
(b) int(Si)nacts(Sj)=@.

(2) A set of I/O automata {Ai: ill} are compatible iff their action signatures are
compatible.

Definition 2.9 (Composition of Z/O automata). The composition A =nie, Ai of
compabtile I/O automata {Ai: kl} is defined to be the I/O automaton with

1. StUtf?S(A)=~ie, .YtUtf?S(Ai),

2. .StUtT(A)=niE, StUrt(Ai),

R. De Nicola, R. Segala / Theoretical Computer Science 138 (1995) 391-423 391

3. sig(A)=ni,, sig(Cli),
where compositions S=nia, Si of compatible action signatures {Si: iel) is
defined by

(a) in(S)=Ui,, ifl(&)--_UioI out(Si),

(b) ~~t(‘)=Uie, ottt(Si)y

(‘) int(s)= uis, int(Si)y

4. Part(A)= Uis, PUrt(Ai),

5. stePs(A)={ ((4i)is17a3(4:)ieI: ViEZ aEUCtS(Ai) implies (qi, U, qj)EstepS(rli),
U$ LlCtS(Ai) implies qi = 41)

The step function above states that all processes must synchronize on common
actions. However due to the input enabling and to the local control conditions, the
synchronization condition does not mean that communication is synchronous; only
one process “can decide” when a communication should occur.

A side effect of input enabling is that it may prevent a system from performing
locally controlled actions by means of an infinite sequence of input actions. This is
avoided by restricting observations to fair executions. In the following definition we
make use of the partitions of the locally controlled actions for the first time.

Definition 2.10 (Fair executions). A fair execution of an I/O automaton A is an
execution x such that for all XEpart(A),
l If .x is finite then no action of X is enabled from the final state of x,
l If x is infinite then either actions from X appear infinitely often in x or states from

which no action of X is enabled appear infinitely often in x.
A finite fair execution is also said to be quiescent.

A fair schedule is the schedule of a fair execution. We denote the set of fair schedules
of an I/O automaton A withficheds(A)).

The notion of fairness defined above reminds weak fairness of [6], but the two
concepts are somewhat different. First in [6] fairness is considered relatively to all
actions, while in I/O automata only locally controlled actions are taken into account.
Second, and more important, within I/O automata theory, fairness is defined by reason-
ing about sets of actions rather than about single actions. The idea behind the partition
of locally controlled actions is that every element of the partition represents the set of
actions under the control of a particular component of the global system. In this way,
a notion of fair turn can be expressed, ensuring that each component that is con-
tinuously willing to perform some of its local actions will eventually perform one of
them.

We can now define a new equivalence relation. Like the unfair equivalence intro-
duced above, the new equivalence is substitutive for the I/O automata operators
whenever these operators are defined, i.e. it is a weak congruence for I/O automata.

Definition 2.11 (Fair equivalence). Two I/O automata, A, B arefair equivalent (A EBB)
iff A and B have the same external action signature and fscheds(A)=ficheds(B).

398 R. De Nida, R. Segala / Theoreiical Computer Science 138 (1995) 391-423

Based on the notion of fair trace, it is possible to introduce a notion of implementa-
tion. An I/O automaton A1 implements an I/O automaton AZ if they have the same
external action signature andfscheds(rll)cfscheds(ilz). Trivial implementations are
avoided by input enabling and fairness. These two concepts, in fact, state that
a process must accept all stimuli from the external environment and must perform its
output actions whenever it has the possibility to do so, i.e., it must give an answer
when requested.

Beside the fair preorder, that is the basic relation for comparing and contrasting I/O
automata [141, other relations have been considered. These relations ignore fairness
issues, but are closer to the classical relations defined for process algebras:
l unfair preorder is based on (finite and infinite) schedules inclusion, while
l quiescent preorder is based on both finite schedules inclusion and quiescent sched-

ules inclusion.
The quiescent preorder is a close attempt to capture the fair preorder using only fmite
schedules. It was used by Vaandrager [Zl] and is reminiscent of the maximal trace
congruence used in [2]. In this paper, mainly, for the sake of simplicity, we concen-
trate on the unfair preorder; it corresponds essentially to the language equivalence of
classical automata and has been used also for comparing concurrent system [9]. We
see our work on this simple preorder as a stepping stone toward modeling the more
elaborate ones. Indeed, as we mentioned in the Introduction, similar result to those
obtained for the unfair preorder have been obtained also for the quiescent one [18].

3. Process algebras overview

The basic idea of process algebras [15, 10, l] is the use of a few elementary processes
and of some basic operators corresponding to primitive operations such as sequential-
ization, parallelism, nondeterminism and synchronization to describe concurrent
processes. A process is represented as an expression which is built inductively from the
elementary processes and the operators.

Process algebras are generally recognized as a good formalism for describing and
studying properties of distributed concurrent systems. Very often, a process algebra is
defined by specifying its syntax and the transitional semantics of its terms by means of
structured operational semantics (SOS) Cl61 which associate a labeled transition
system (essentially a transition labeled classical automaton) with each term. Although
SOS has become a standard tool for specifying basic semantics of process algebras, it
was early recognized that it does not yield extensional description of processes. Thus,
techniques have been developed to abstract from unwanted details in systems descrip-
tions. Many of these techniques are based on behavioral equivalences or preorders;
two terms are identified whenever no observer can notice any difference between their
external behaviors.

For many of these equivalences complete axiomatizations exist; these are important
because the algebraic laws allow one to manipulate process expressions by applying

R. De Nicola. R. Segala / Theoretical Computer Science 138 (1995) 391-423 399

simple axioms and inference rules. Indeed, they constitute the theoretical basis for
a class of verification tools which permit establishing the relationship between
expressions by means of pure algebraic analysis.

In this paper we concentrate on the SOS approach, but rather than labeled
transition systems, we use I/O automata as underlying model and we analyze
particular relations which are connected to the unfair preorder of I/O automata.

Below, the basic notions needed for defining a process algebra based on the LTS
approach are introduced. We start with the notion of signature, which is now needed
due to the different type of actions we want to consider. A signature represents the
basic processes (constants) and the primitive operators: (A s1 s2 ... sn,s) is an operator
taking n processes, respectively, of sort sl, ... s, as arguments and giving back a pro-
cess of sort s. Well-known calculi like CCS are one-sorted; the more general notion of
many-sorted signature will be useful to model naturally association of interfaces with
processes.

Definition 3.1 (Signatures and terms). Let Sp be a set of sorts ranged over by s, sl, s2, . . .

1. A signature element is a triple (f, si, s2 . . . snr s) consisting of a function symbolf,
a sequence of sorts s1 ... s,: SiEY, i= , . . . , n, and a single sort SEY. s is called the sort of
the signature element and n is its arity. In a signature element (c, il, s), c is often referred
to as a constant symbol of sort s.

2. A signature is a pair C =(9’, 0) consisting of a set of sorts Y and a set of signature
elements 0. We denote sort and function symbols of a signature C by sorts(C) and

OPV).
3. The set of terms over C, is devoted by T(C). The set of terms of a particular sort

SEEP is denoted by T(C),.

The following definition introduces the notions of substitutive relation.

Definition 3.2 (Substitutiuity). Let C be a signature and 9 a relation over
T(C) x T(C). W is substitutiue iff for each signature element (A sls2 . . . sn,s) of C and
each fit t: of sort si,

tl Bti, . . . ,t.WtA * f(tl,... ,t,)Bf(ti,...,tA).

We proceed by formally defining how a set of transitions can be associated with terms
of a given signature. For this purpose induction rules will be used. The interpretation
of a rule is that, whenever the transitions of the premises are possible, the transition of
the conclusion is possible.

Definition 3.3 (Transition rules and calculi). Let A be a given set of labels and let C be
a signature.
l A transition rule has the form

tl !!!j ti, . . . , t, 2 t.;

t $t’

4ocl R. De Nicola, R. Segala 1 Theoretical Computer Science I38 (1995) 391-423

where ti, tie T(C), t, t’ET(C), UiEA and EA. The elements ti 2 tf are called the
premises and ti 2, t’ is called the conclusion.

l A calculus, is a triple P = (C, A, R) where C is a signature, A is a set of labels and R is
a set of transition rules.

Transitions, which are labeled by a single action, can be extended to sequences of
actions in the obvious way:

tXt’ iff 3tl,...,t,_1: t2tl-b...+t,_l~tt.

Unfair and quiescent preorders of I/O automata can be naturally expressed within
the process algebraic framework. The notion of schedule is now replaced with the
equivalent notion of trace. The unfair preorder is, for the moment, expressed only
through finite traces. Throughout the rest of the paper we identify sorts with action
signatures.

Definition 3.4 (Quiescence and traces). Given a many-sorted calculus with
input and output actions, the set of enabled actions from an expression e is
defined as

(a13e’:e 5 e’}.

An expression e is quiescent if it only enables input actions.
The set of (finite) external traces of an expression e of sort S is defined as

etraces(e)= {hrext(S) 13 e’: e 5 e’},

where h denotes a sequence of actions and hrA is the projection of n on A
The set of quiescent traces of an expression e of sort S is defined as

qtraces(e)= {hrext(S) 13 e’: e f+ e’, quiescent(e’)}.

Definition 3.5 (Preorder relations). Let P = (C, A, R) be a many-sorted calculus with
input and output actions, and el, e2 be two terms of T(C).
l The external trace preorder E ET is defined as follows: ei c nr e2 iff e, and e, have

the same external action signature and etraces(e,) c etraces(e2).
l The quiescent preorder CI, is defined as follows:

er _coe, iff el &nTe2 and qtraces(e1)Eqtraces(e2).

Definition 3.6 (Equivalences). The kernels of E ET and &a are, respectively, called
external trace equivalence and quiescent equivalence.

R. De Nicola, R. Segala 1 Theorelical Computer Science 138 (1995) 391-423 401

4. A calculus of demonic I/O automata

This section introduces a calculus for I/O automata following the demonic ap-

proach, i.e., the approach that considers the presence of an unexpected input as

catastrophic. The calculus is many sorted and each sort represents an action signature

consisting of input and output actions and of a single internal action z. Generally, due

to additional flexibility in expressing fairness with respect to different internal tasks,

I/O automata signatures have more than one internal action. In this paper, however,

we do not address fairness issues and thus we restrict attention to a calculus with

a single internal action. At the end of the section we will discuss possible extensions to

handle multiple internal actions.

We proceed now by defining the operational semantics of a pair of basic operators

(constants) and a set of primitive operators which permit building new I/O automata

from existing ones. This set of operators include the operators, renaming, hiding and

parallel composition, of [14] described in the previous section and other operators

which are directly inspired by those used in process algebras. For the basic operators

we will directly associate an I/O automaton; for the others, we will show by structural

induction how a new I/O automaton is obtained from the ones corresponding to the

operands. Each formal description below will be preceded or followed by some

comments on the intuition behind the operators. In the rest of this paper, when

describing expressions and I/O automata, we will omit sort indexes whenever they are

not relevant or they are evident from the context.

Quiescent Z/O automaton: The quiescent I/O automaton nil, is an I/O automaton not

enabling any locally controlled action and not expecting any input. Due to the input

enabling condition, the quiescent I/O automaton moves to the unspecified I/O

automaton for each input action of its action signature. The move to the unspecified

I/O automaton (described below) is the interpretation of the fact that the effect of

unexpected inputs is catastrophic. Formally, for each sort S we define an operator nils

taking no arguments. There is only one transition rule for nil,:

nil nils $ Qs VaEin(S)

Unspecijied I/O automaton: The unspecified I/O automaton represents an I/O

automaton for which any other I/O automaton has to be an implementation. Since

our semantic models deal with external and quiescent trace inclusion, the unspecified

I/O automaton has to exhibit all possible external and quiescent traces. Formally, for

each sort S, we define an operator C& taking no arguments. The relative transition

rules are the following:

omel Sz,: sZS aEext(S) omez QS -5 nils

Rule omel makes every string of ext(S)* an external trace of C&. Rule omez makes any

trace a quiescent trace of !&. Note that the use of rule omez is the only way to move

52 to a quiescent state.

402 R. De Nicola, R. Segala / Theoretical Computer Science 138 (1995) 391-423

Prejixing operator: A classical method for specifying how a system should respond
to a particular stimulus, or what action should be performed next, consists of using the
prefixing operator. For each sort S and for each action aeext(S) an operator a.s is
defined that takes an argument of sort S and yields an expression of sort S. Its
transition rules are the following:

prel a.,e$e

prez a.se5QS2, Vb&n(S)\{a}

Here, rule prel specifies the intuitive meaning of an I/O automaton a. e, i.e., a. e can
perform action a and then behave like e. Rule prez deals with the input actions
different from a. According to the demonic approach, a. e specifies the behavior of
a system only in the presence of action a; for all other inputs the behavior of the system
is not specified; hence, they give rise to a transition to Q.

External choice operator: Often it is useful to build a system that offers a nondeter-
ministic choice between two different actions and then behaves accordingly. In case
the choice is between performing an output action oi and then behaving like e, or
performing an output action o2 and then behaving like e2, an external choice operator
like that of [lo, S] would suffice. However, this leads to problems when dealing with
input actions. We can write

a.e,+b.e,.

In the presence of input a (resp. b) the above expression should move to el (resp. ez); in
the presence of any other input action the above expression should move to CL
However, due to the input enabling condition, we would have

a.e, : s1 and b.e2 $CJ;

hence, the above expression would not respect our intuition about external choice.
A possibility for avoiding the above problem is parametrizing the choice operator

with two sets of input actions I and J which contain those input actions, of the left and
right operand respectively, which are meant to lead to a specified (different from 52)
behavior. For each sort S and each pair of sets I, J E in(S) an operator , +J” is defined
which takes two arguments of sort S and yields an expression of sort A. This operator
is essentially the sorted version of Vaandrager’s choice operator [21]. The transition
rules for the new operators are the following:

el G e;
ech,

eII+,Se23e\
VafzZuout(S)

e2 -f+ e;
e&

ell+JSez $ei
Va~Juout(S)

cch, el !+:ez 3 OS VaEin(S)\(ZuJ)

R. De Nicola, R. Segala 1 Theoretical Compuier Science 138 (199.5) 391-423 403

Rules ech,,, make explicit the fact that an argument can perform an input action only
if it is in the corresponding parameter; rule ech3 expresses the fact that each input
action not in 1uJ is unspecified within a r+J context. Rules ech4,5 state that an
external choice context is not resolved with internal transitions.

Clearly, dealing with parametrized operators adds significantly to the complexity of
our I/O calculus. It would be nice to have an unparametrized external choice
operator. However, our attempts have failed; for all candidates we failed to achieve
substitutivity for the external trace and quiescent preorders. Below, we give a counter-
example for the intuitive external choice operator (+) described at the beginning of
this discussion. It is easy to verify that nil = o a. 0 when a is an input action. However,
a. nil+ nil qkQ a. nil + a. Cl since, if b is an output action of the signature of both
processes above, ab is an external and quiescent trace of the right process but not an
external, neither a quiescent, trace of the left one. The left process, in fact, according to
its intuitive semantics, can only move to nil with the input action a, while the right one
could also move to Sz.

The two basic operators 62, and nils defined above together with prefixing and
internal choice and with recursive definition that we will introduce later, are sufficient
for specifying all finitely branching input enabled transition systems. However, as
a useful specification tool and as a useful auxiliary operator for our axiomatization,
we introduce an additional internal choice operator again based on [lo, 81. We will
then describe the original combinators of [14].

Internal choice operator: For each sort S we define an operator OS that takes two
expressions of sort S and yields an expression of sort S. A process e 0 f nondeter-
ministically evolves according to e orf: Thus, its external and quiescent traces are the
union of the external and quiescent traces of e and f: The transition rules are the
following:

ich, e, OS e2 A e, ich2 el OS e2 A e2

ichJ
e, 5ee;

Vu&(S) ich,
e2 5 e;

et &e2 5,; e, 0se2-f:e;

Vaein(S)

Rules ich,, 2 express the fact that e @ fnondeterministically behaves like e or x rules
ich3,4 are necessary for ensuring input enabling. Notice that, even if we generalize
rules ichj,4 to all the external actions from S, rules ichl,2 cannot be eliminated when
dealing with quiescent traces. Their elimination would raise the problem that the empty
trace be a quiescent trace of one argument but not a quiescent trace of the other.

404 R. De Nicola, R. Segala 1 Theoretical Computer Science 138 (1995) 391-423

Hiding operator: The hiding operator is similar to the corresponding operator
defined on I/O automata. The main difference is given by the fact that all internal
actions are converted into a single action, namely z. For each sort S and each set
I lout we define an operator rf taking an expression of sort S and yielding
an expression of sort (in(S), out(S)\I, CT}). The transition rules for hiding are the
following:

e 5ee’ e5ee’
tau3 41 tau, ael

r;(e) kf(e’) T:(e) kf(e’)

Renaming operator: The renaming operator simply renames the actions of its
argument. For each sort S and each injective mapping p with p(r)=r, we define an
operator ps taking an expression of sort S and yielding an expression of sort @(in(S)),
p(out(S)), {t)). The transition rule for renaming is the following:

e 3 e’
rho

PS (e) - ‘(‘) ps(e’)

Parallel operator: Also the parallel operator is defined according to the original
definition of [14]. In particular, we comply with the restrictions on the sorts of its
operands aiming at guaranteeing that each action be under the control of at most one
process. Moreover, the transition rules agree with the specification given in Definition
2.9. Please notice that we do not have any condition on the internal actions of the
arguments. This is because we are not dealing with multiple internal actions, but have
a single invisible action. Thus, compatibility of sorts reduces to: Two sorts Si, Sz are
compatible if out(S1)nout(S,) = 8.

For each pair of processes with compatible sorts we define an operator s, 1) s2 taking
an expression of sort Si and one of sort Sz and yielding an expression of sort S3 where
out(S,)=out(S,)uout(S,) and in(S3)=(in(S1)uin(S2))\out(S,). The transition rules
for parallel composition are the following:

e, 3 e; e, 3 e;
par1

el sI II s1 e2 5 4 s1 II sz e2

aEacts(S,)\ext(S,)

par3

e2 5 e;

el s, II s2 e2 $4 s1 II S* 4

aEacts(S2)\ext(SI)

Recursion: Recursion within DIOA can be obtained in a De Simone style [4,5].
Existence is assumed of a countable set xs of process variables for each sort S and of

R. De Nicoia, R. Segala J Theoretical Computer Science 138 (1995) 391-423 405

a declaration mapping E associating a guarded expression of sort S with each process
variable of xS. An expression e is guarded if each process variable occurs within the
scope of a prefixing operator. Thus, a.X and T:~; (a.X) are guarded expressions. The
reason we want guarded expressions in the declaration mapping is to avoid definitions
of the form E(X)=X which, according to the transition rule we are introducing,
would not be input enabled. The transition rule for process variables is the following:

e Se’
ret - if X kf e

X5ee’

where the notation X 2’ e means E(e)=e.

To offer a global view of our DIOA calculus, all the operators defined above, their
signatures and their operational semantics are grouped in Tables 1 and 2.

Below, we formalize a couple of basic properties of DIOA, which will be used to
prove that the semantics we offer of our calculus provides an adequate interpretation
of I/O automata. Indeed, Proposition 4.3 and 4.4 vindicate our choices.

Definition 4.1 (Sort consistency). A many-sorted calculus is sort consistent if the sort
of every expression is invariant under transition.

Definition 4.2 (Input enabledness). An expression e is input enabled if for each e’ such

that e 5 e’ for some trace h, in(e’)c:enabled(e’). A many-sorted calculus with inter-

faces associated with expressions is input enabled if each expression is input enabled.

Proposition 4.3. DIOA is sort consistent.

Proof. Simple induction argument on the depth of the proof tree of a transition. The
base case is by cases analysis by considering rules nil, omel, 2 and prel, 2; the induction
step is also by cases analysis by considering all the other transition rules. 0

Table 1
The signature of DIOA

Name OP. Domain Range Restrictions

Quiescent
Omega
Prefixing
lchoice
Echoice
Parallel

Hiding
Renaming

Process

).
A
s
S, S
‘XS
&.S2

S
S

i.

s
S
S
S
S

s3

S’
S’

S

aEext(S)

I,JEiB(S)
out(S,)nout(S+Qt

ouc(S,)=out(S,)uout(S,)

in(S,)=(in(S,)uin(S,))\our(s,)
IEout(S),S’=(in(S),out(S)\I)
for each injective p: acts(S)-ucrs(S’)
S’=(p(in(S)), p(our(S))
X6X,

406 R. De Nicola. R. Segala J Theoretical Computer Science 138 {1995/ 391-423

Table 2
The translation rules for DIOA

el G ei
ii&

el @se25 4
Va&2(S)

e, -5 ei
par2

els,ils,e2~e;s,lls,ei

pret a .,e$f& Vb&(S)\jaj

e2 5 e;
ich4

el Qse25 ei
Va&(S)

afacts(S,)\ext(S;,)

R. De Nicola. R. Segala / Theoretical Computer Science 138 (1995) 391-423 407

Proposition 4.4. DIOA is input enabled.

Proof. It is sufficient to show by structural induction that each DIOA expression

e satisfies in(e)senabled(e). The fact that recursion is given through guarded expres-

sions is crucial. q

Theorem 4.5 (Substitutivity). External trace preorder and quiescent preorder are sub-
stitutive for DIOA.

Proof. Since the internal choice operator does not fit Vaandrager’s general format of

[21], the proof of substitutivity must be given explicitly by considering each DIOA

operator. We show as an example the case of the external choice operator for the

external trace preorder. Let el E sr e2 and fr E nTfi and let t be an external trace of

ei , + J fi . If t is the empty trace then t is trivially an external trace of e2 , + J fi since

the empty trace is an external trace of any expression. Let t = at’. If a is an input action

not in ZuJ then rule ech, applies to e 2 , + J fi and t is trivially an external trace of

e2 , + J f2. Suppose now, without loss of generality, that aEluout(e,) and rules ech,, 3

are not used for the first a-transition of t. Then e, , + J fi -% e; I + J f[3 e; for some

n > 0 where t’ is an external trace of e;. t is then an external trace of er; hence, by

hypothesis, t is an external trace of e2. In particular, e2 s e; 5 e; for some m 20

where t’ is an external trace of e;‘. t is then an external trace of e2 I +J f2 since
i3

e2r+Jf2-‘-I;e~I+Jf2-+e~. Note that, alternatively, we could have converted

DIOA into an equivalent calculus fitting Vaandrager’s format by adding the necessary

internal clearing rules to the internal choice operator. Its semantics in terms of

external and quiescent traces, in fact, does not change. 0

We conclude this section with a few remarks on alternative approaches we could

have taken for defining calculi of I/O automata and proving their properties.

Given the calculus of DIOA, it is not difficult to convert it into an angelic calculus.

The main changes consist in converting into self-loops all transitions to Sz which were

used to capture our intuition about capturing underspecification. The rules to be

replaced by self-loops are nil, pre2 and ech,. When this new approach is followed, the

expression Q can be eliminated from the calculus; it can be defined in terms of the

other operators and recursion.

Another issue we just want to mention is that of multiple internal actions; indeed,

DIOA does not completely take into account the I/O automata requirement about

this point. Our calculus allows only signatures with a single internal action. This

restriction is not a serious one because in this paper we do not consider the problem of

fair specifications. It would not be difficult to expand DIOA to permit multiple

internal actions; however, two main problems would have to be faced.

1. the preorder relations have to be defined over expressions with different sorts (all

those sorts with the same external action signature),

408 R. De Nicola. R. Segala / Theoretical Computer Science 138 (1995) 391-423

2. substitutivity is no longer valid (if P=Q it might happen that there exists
a process C such that P 11 C is legal while Q 11 C is not legal).
This would imply that a weaker variant of substitutivity has to be introduced that
asks for preservation of equivalence within only those contexts in which both equiva-
lent processes can be inserted.

The problem of defining a calculus with multiple internal actions is completely
addressed in [17] where Vaandrager’s [21] work is extended to the many-sorted
setting. In [17] also the full details of the extended version of an angelic calculus of I/O
automata (called IOA) are completely worked out.

5. A set of laws for the external trace preorder

In this section we study a set of laws for the external trace preorder over DIOA
expressions containing only nil, 52, prefixing, external choice and internal choice. The
first three operators together with nil, and sZs form the basic input/output calculus;
indeed, as we will see later, the other operators, renaming, hiding and parallel
composition of Section 4, can be all described in terms of the basic ones.

We first introduce some simple laws, that are listed in Table 3, describing the main
properties of $2. Note that we do not give the soundness proofs of our laws since they
are standard and in many cases follow directly from the definition of external trace.

Proposition 5.1. The laws of Table 3 are sound for the external trace preorder.

Table 3

Omega laws for DIOA

Table 4

Internal choice laws for DIOA

ICI eQ.l‘-ETfQe
Ic, (eQf)Q9=ETeQ(fQY)
IQ ecxETe Qe

1% a.(eQf)2ETa.e@a.f

Ic, (e~f)l+,sleT(eI+,9)8(1‘1+59)
k6 rr(e Q f) =ETrr(e) Q 7A.f’)

k7 (eQf)lls =ETkllg)Q(.fllg)
1% e5ET~Q.f

R. De Nicola, R. Segala / Theorerical Computer Science 138 (1995) 391-423 409

The internal choice operator has simple and useful properties (see Table 4). It is
commutative, associative, idempotent (Ic,-IQ); moreover, every other DIOA oper-
ator distributes over it (Ic,-Ic,). The meaning of Ic, is immediate given the intuitive
meaning of 0.

Proposition 5.2. The laws of Table 4 are sound for the external trace preorder.

The last operator we need to axiomatize for providing a complete axiomatization of
basic I/O automata is the external choice operator. For actually introducing its laws,
we need two auxiliary functions which permit testing the behavior of I/O automata.
They are defined as follows:

Si(e)= (agin 13 tEext(e)*: at$qtraces(e)},

Quiet(e) = true iff enabled(e) c in(e).

Function Si (specijed input actions) yields the set of input actions that an expression
e can perform after any, possibly empty, sequence of invisible actions and such that
the future behavior is not completely undefined. Intuitively, an expression e is
specifying a future behavior after an input action a only when not all possible
implementations in response to a are correct implementations of the specification e.

Function Quiet is much simpler since it simply checks whether a given expression
does not enable locally controlled actions.

Evidence of the need of function Si for axiomatizing , + J is given by the idem-
potence law for this operator. Indeed, according to our semantics it is in general not
true that e = nr e, + Je since, for example, if a is an input action we have that a. nil + ET
a. nil O + O a. nil. The needed side condition for the idempotence law is Si(e) G IuJ.

Proposition 5.3. The laws of Table 5 are sound for the external trace preorder.

Table 5

External choice laws for DIOA

Eel e,M=ETfJ+,e
EC, (eI+Jf)r,J-kg -ETeI~,K(f’,+,d
EC, e = ET e , +J nil if Si(e) E I and Si(e)nJ = 0
EC, el+~f-ET(e,+,e),+,,~ifI~HuK

Ecs e,+,g~,,(e.+,f),+,gifKnSi(l)nlcH

Ec, (eH+xf) ~+~g<a~e ,+Jg if Quiet(f), Si(e)nlcH and KnSi(e)nl=$
EC, a.e 13 a. f zET a.(e @ f) if aEout(e)u(lnJ)
ECF, e Ij fsET e@fif Si(e)nSi(f)cluJ
h e,+,f-..eQfif Si(e)uSi(j)rlnJ

&I (a.e,+,f)8g2.eT(a.e,+,.~)Q(a.e,+,g)ifSi(g)~K, and (a}nlr{a}nK
EC,, e,+Jf=ETe, ;.;+, I.; f’if aEl\Si(e).

410 R. De Nicola, R. Segala / Theoretical Computer Science 138 (1995) 391-423

6. Completeness proofs for the external trace preorder

In order to use the laws of the previous section, we need to determine whether side
conditions of the form Si(e)nJ c I and Quiet(e) do hold. Thus, to claim completeness
of our set of laws we need also a complete set of rules for establishing truth of these
two conditions. The proof system for function Quiet is very simple as established by
Lemma 6.1 below and the associated Table 6. For the auxiliary function S(e), we have
not been able to find a simple proof system. We can, however, axiomatize a variant of
Si, that we call si; this, thanks to a lemma which establishes that Si(e)Gsi(e), provides
a sound proof system for establishing whether the side conditions involving S(e) do
hold.

Lemma 6.1. The rule of Table 6 are sound and complete for function Quiet.

Table 7 contains the definition of the auxiliary function si; it is given in terms of the
syntactic structure of an expression e. The intuitive idea behind its definition is that for
all the input actions of e not belonging to si(e) there is a visible transition to 52;
therefore Si(e) c si(e).

Lemma 6.2. For each DIOA expression e without renaming, hiding and parallel com-
position, S(e) E si(e).

Proof. The lemma is a direct consequence of the assertion

if aein(e) and a+(e) then e s fi.

Table 6

Axioms for Quiet

Quiet (nil)

aein(e) implies Quiet(a.e)

Quiet(e) and Quiet(f) implies Quiet(e , +_, f) and Quiet(e Of’)

Quiet(E(X)) implies Quiet(X)

Table 7

Definition of si for DIOA

si(nil) = 0

si(f2)=0

si(a.e)={a}nin(e)

si(e, @e,)=si(e,)n~i(e~)

si(e, I3 e,) =(lnsi(e,))u(Jnsi(e,))

si(X)=si(E(X))

R. De Nicola, R. Segala / Theoretical Computer Science 138 (1995) 391-423 411

This assertion can be proved by induction on the complexity of guarded expressions e.

For unguarded expressions it is sufficient to substitute E(X) for each unguarded

occurrence of a process variable X.

The base cases, nil and Sz, are trivial since, for any input action, they both have only

transitions to G?. For the other operators we have the following cases.

Case 1: Prejixing. Let e=a.e’ and suppose b$si(e) where bein(By definition of si,

b #a; hence the result is trivial since a.e 5 Q for any input action b different from a.

Case 2: Internal choice. Let e=e, @ e2 and suppose a$si(e) where aEin(e). By

definition of si either a$si(eI) or a$si(ez). Suppose, without loss of generality, that

a$si(eI). By induction e, 5 fi. By first using rule ich, we have e, 0 e, b e, G s2.

Case 3: External choice. Let e=e, ,+J ez and suppose a#si(e) where aEin(e). We

distinguish the following cases.

1. a#luJ. This case is trivial since ei , + J e2 5 s2.

2. aEl. By definition of si, a$si(el); therefore, we apply the induction hypothesis to

e, and, since ael, we use rules ichl,4 to derive ei , +J e2 s s2.

3. a.$1 and aEJ. Similar to the previous case. 0

Function si has two main advantages; it relies on the syntactic structure of

its arguments and can replace Si in all the laws of Section 5 without affecting

soundness.

Theorem 6.3. Let e be a DIOA expression without renaming, hiding and parallel
composition, and let A, B be two sets of actions. Then

Ansi(e)~ B implies AnSi(e)z B.

This theorem amounts to saying that the laws of Tables 3-5 together with

Table 6 for Quiet and Table 7 for si, provide a sound set of rules for establishing

whether two I/O automata are external trace equivalent. Clearly, the reader can

develop his own sound rules to be used instead of those for si. We would like, however,

to remark that function si as presented by Table 7 is sufficient,to achieve complete-

ness. In particular, function si gives us the possibility of defining an unparametrized

choice operator as

which is commutative, associative and idempotent. This new operator +, although

not substitutive, is useful for simplifying DIOA expressions and obtaining terms

which do not contain the parameters of the external choice operator. These are the

source of many difficulties in the use of the algebraic laws for DIOA.

The simplified form to which each expression is reducible is called internal prefix

form. It is defined below.

412 R. De Nicola, R. Segala / Theoretical Computer Science 138 (1995) 391-423

Definition 6.4 (Normal forms). A DIOA expression e is in prejix normal form if one of
the following conditions holds.

1. e=Q or e-nil (atomic expressions),
2. e E a.e’ where e’ is in prefix normal form,
3. e = e, + e, where e, and e, are in prefix normal form but not atomic.

We denote an expression in prefix normal form different from Q with 1 ie, ai.ei If i = 0
then the denoted expression is nil.

A DIOA expression e is in internal preJxform if e z e, @ ..+ Q e, where each ei is in
prefix normal form. We abbreviate e, @ ... @ e, with ?$ ei.

The following lemmas show that, up to external trace equivalence, the internal
normal form is closed under prefixing, internal choice and external choice. A conse-
quence is that each DIOA expression not containing recursion, hiding, renaming and
parallel composition is provably equivalent to an expression in internal prefix form.
Thus, the completeness proof reduces to proving completeness only for expressions in
internal prefix form.

Lemma 6.5. If e is in internal prejix form then, for each aEext(e), there is an expression
e’ in internal prefix form such that a.e =ET e’.

Proof. Let e=Ei,, ei. By repeatedly applying Ic, we obtain a. (&, ei) NET Eiel a.ei.

Since each ei is in prefix normal form, then each a. ei is in prefix normal form; hence,
Eic, U.ei is in internal prefix form. 0

Lemma 6.6. If e and f are in internal prejix form then e Of is in internal prefix form.

Proof. Immediate consequence of the definition of internal prefix form. 0

In order to prove easily the next closure property, we introduce some derived laws.

Proposition 6.7. Let e, f and g be DIOA expressions. The following laws can be derived:

Ec~z e&T e,+J f ifJnSi(f)cI,

J%3 e,+J f&Te ifQuiet(Si(e)Gi and Si(e)nJ=&

ECU e = ET e , + 8 f if Quiet(f) and Si(e) C 1,

ECI~ eI+_,g=ET(eI+Kf)I+Jg ifQuiet and KnI=@,

ECI~ eNET e r+J a.S2 ifSi(e)EZ, Si(e)nJ=0 and aEin(e).

Proof. The laws Ec12, 13 are a consequence of EC3 and EcSp6. The laws Jk14, 15 follow
from the combination of Ec~,~ with Ec12, 13. The law Jki6 follows directly from EC3
andO,. q

Lemma 6.8. Let e=Cie, ai.ei. Then si(e)={ai: iEI}nin(e).

R. De Nicola, R. Segala / Theoretical Computer Science 138 (1995) 391-423 413

Proof. Direct application of the definition of si. 0

Lemma 6.9. If e and f are in prefix normal form then eI + J f is provably equivalent to an
expression e’ in prefix normal form.

Proof. Without loss of generality, we can assume that e and f are different
from 52 since, in such cases, O3 can be applied. Let e = xi ai. ei and let f= Cj bj .fj .

From repeated applications of EelI there are two sets I ’ E si(e) and J ’ csi(f) such
that

eJ+Jf =ETe,,+J,f:

We distinguish the following cases.
(1) 31 aiEl’uout(e) and 3, bj~J’uout(f): Due to commutativity and associativity,

the expressions e and f can be written as e’ I, +si(e)\ ,, e” and f’ Js +si(s)\J, f “, where

e’=Cji~a.E1’vour(ejl ai.ei, e”=Cji_ite,\lTl ai.%, f ‘=C(j:b,EJ’vout(j); bj.f; and

f n=C[j:~,esi(f)\J’; I’ J’
’ b. f. Note that e’ and f “are in prefix normal form, si(e’)=Z’, and

si(f ‘)-J’. By repeatedly applying Ec15 (together with Ecz) we obtain

e”)f’+J’(f;‘+sicr,\J’f”) -ETe;,+J,(f;,+,icr,\J,f”)

NET e;,+,,f’.

2. 3, aieZ’uout(e) and ,Sj bjEJ’uoUt(f): In this case J’=@ (in fact JclJj {ai}) and
Quiet (f). From Eq 5, e, I + J I f ‘v ET etI, + J, f for some e’ in prefix normal form with

si(e’)=l’. From Eci4 e’l,+J, fEET e’.

3. jIi aieZ’uout(e) and 3, bj~J’u out(f): This case is similar to the previous one.
4. ~iai~l’uout(e) and Jj bjEJ’uout(f): In this case Z’=J’=O, Quiet(e) and

Quiet(f). From J%, 14, 15,

This concludes the proof. 0

Lemma 6.10. Zf e and f are in internal prefix from then e I + J f is provably equivalent to
an expression e’ in internal prejix form.

Proof. Let e=Jj heH eh and f=EkeRfk . By a repeated application of Its and Eq we
obtain

414 R. De Nicoia, R. Segala / Theoretical Computer Science 138 (1995) 391-423

From Lemma 6.9, for each h, k there is an expression eh,k in prefix normal form such

that ehI+J fk=Ereh,kl hence

The above expression is in internal prefix form. 0

We now need to prove the completeness result for expressions in internal prefix
form. Lemma 6.12 introduces a rule which is derivable from the laws and completely
characterizes the external trace preorder over expressions in internal prefix form. First
we state a simple lemma.

Lemma 6.11. Let e=T&, ei. Then etraces(e)= Uisl etraces(ei).

Proof. Simple consequence of the transition rules for 8. Cl

Proposition 6.12 (A rule for inductive reasoning). Let e=Ci ai.ei and f=Ejfj where

fj=xi bjk.fjk. For each a, j let

1 $$ fjk if (kIbjk=a)Z&

g;=
bj*-Q

I otherwise.

Then e jET f ifl the following two conditions hold:

(1) vi (ei SET E$ gpi#L gyi and 3j: gy’$ I) or (aLEin and 3j: gy=_L)),

(2) Va~fI(si(_G))\si@) QI~rEjgj".

Proof. If: Suppose conditions (1) and (2) to be valid. We perform the following
external trace equivalence preserving transfo~ations on e and j!

1. Using Eq6 add a.Q to each expression jj such that a&si(jj) and aE si(e)usi(f).
Do the same on e.

2. Using Eclo replicate on all thefjs each summand a._&’ of each fk. For example, if
f=(a.f~++f;‘) Ofi @ e-1 0 fn then it becomes (a.f;+f;‘) 0 (a.f[+f2) @...@(a.f{ +f,).

3. Using J.k7 group all expressions with a common prefix in each expressionfj of
the newf:

4. Reduce each summand of the form a.(Q 0 -,-) of each fj to a.C?. This step is
possible since it is immediate to prove Q “~rre 0 Q by using O1 and Icg.

The above manipulations lead to two expressions e’, f’ with e’ E ET e and f’ -ET f

where

e’Ge+ C a.SZ and f’=cf,’
aEsi(/)\si(ef j

R. De Nicola, R. Segala / Theoretical Computer Science 138 (1995) 391-423 415

for some expressionsfj’. Consider now

f”E
(

1 a&”)

oesi(e)usi(f)uA)

where A = {aeout(e) 1 3j,k a= bjk) and eachf,’ is

if aGout or (ucin(e) and ,Zljl &z I),

if u~in(e) and 3jlgg~I).

Consider a generic6 off’. Due to the construction of the latter, each summand of

fj’ is a summand off” and vice versa. As a consequence the external choice laws prove

f” N eTfj and, by repeatedly using IcJ, f zETf”.
We now show that, for each summand a.e” of e’, e” ~srf.)‘. The law EC3 and

substitutivity are then sufficient to conclude e’ G srf”. If 3 j 1 g4 = I then fO” = Q and

Oi is sufficient to conclude; otherwise,f,’ GE eg +I g; . If u.e” is a summand of e then

the conclusion follows from item 1 of the hypothesis, otherwise, the conclusion follows

from item 2 of the hypothesis after observing that e”=Q and that UE~ (si(f;))\si(e).
Only if: Let e c sr f: We show that conditions (1) and (2) are satisfied.

1. Suppose condition (1) to be false and let i be one of the indexes for which the

condition is false. We distinguish the following cases:

(a) Ui is an output action. In this case the left side of condition (2) must be false. If Vj:

g4’ = I, then no external trace with ai as first action is an external trace forf, while ai is

an external trace of e. This gives a contradiction, hence 3j: g;’ + 1. Since condition (1)

is false, it must be ei gET (8 s,“‘+l ggi). Let t’ be an external trace of ei but not of

Eea,+_L gy’. Clearly, t = i a t’ is an external trace of e. We show that t is not an external

trace offobtaining a contradiction. Supposefjf’ where t’ is an external trace off’.

From the transition rules, 3j, k :f’ E fjk and Ujk = Ui. By definition,fjk is a summand of

g;‘; hence t’ is an external trace of E ee,+l ~7’. This gives a contradiction.

(b) ai is an input action. Since the right part of condition (1) must be false, then Vj:

ygl$ I. It is then enough to repeat the argument of the previous case to conclude.

2. Suppose condition (2) to be false. Then luEn(si(fi))\si(e): f2 $ZET (E j gy). Let

t’ be an external trace of Q but not of Ej g;, and consider t=ut’. Since from the

transition rules and Lemma 6.8 e 5 52, t is an external trace of e. By using the same

argument as in case (b) of the proof for condition (1) we obtain that t is an external

trace of E j gy This gives a contradiction. 0

Lemma 6.13.

Proof. Direct consequence of Lemma 6.11. 0

Proposition 6.14 (Completeness for expressions in internal prejix form). Let e and f be
expressions in internal prejx form. If e zET f then e z&T jY

416 R. De Nicola. R. Segala 1 Theoretical Computer Science 138 (1995) 391-423

Proof. From Lemma 6.13 and IQ it is sufficient to analyze the case in which e is in
prefix normal form. We show the result by induction on the maximal complexity II of
e and f; where the complexity of an expression is the maximal number of nested
prefixing operators. If n = 0 then e and the summands offare atomic expressions. By
applying IQ we can supposefto be nil or Q or Q @ nil. Iffis nil then either e is nil or
out(e)=@ In the second case O3 applies. Iff is !Z! then Oi applies. Iffis nil 0 52 then
1~ applies.

For the induction step suppose n > 0. We can assume, without loss of generality,
that e and any summands off are different from Q since O3 can be applied in such
cases. By applying the rule of Proposition 6.12 to e and f we have that, for each
condition involving the comparison of some expressions, one level of prefixing is
eliminated; hence the complexity of the expressions to prove in relation is less than IZ.
By applying the induction hypothesis and successively the rule of Proposition 6.12, we
conclude that e -&r f: 0

The main theorem is then the following.

Theorem 6.15 (Completeness for DIOA). Let e and f be two recursion-free DIOA
expressions without renaming, hiding and parallel composition operators. If e E ET f then

e&T&

Proof. By means of Lemmas 6.5, 6.6, 6.10 and a simple induction argument the
problem is reduced to the case in which e and f are in internal prefix form. The
completeness result is then stated by Proposition 6.14. 0

7. Axiomatizing renaming, hiding and parallel composition

In this section we consider the remaining three operators of DIOA and provide
complete axiomatization for them all.

7.1. Laws for renaming

Axiomatizing the renaming operator is relatively easy; we can put forward laws
that permit removing the renaming operator from any expression (see Table 8).
Indeed, its laws show that the renaming operator distributes over every other
operator and thus it can be eliminated from any expression. It is worth remarking that
not all the laws are necessary for proving completeness: some like Rg, 6, 7 are reported
only for continuity of presentation and for giving a fuller algebraic account of all
operators.

Proposition 7.1. The laws of Table 8 are sound for the external trace preorder.

R. De Nicola. R. Segala / Theoretical Computer Science 138 (199.5) 391-423 417

7.2. Laws for hiding

In order to extend the completeness result to the hiding operator we need five
additional laws. In this section we introduce 11 laws in order to show some interesting
properties of the hiding operator independently of our final purpose. The laws that are
used for the completeness proof are 11,2,3,4,11.

The law I4 uses an auxiliary function

So(e)= {aEout(e) 1 aEetraces(e)}

giving the set of specijied output actions of e, i.e., the set of output actions of e that
could become enabled after some internal transitions. Note that it is not true in
general that rl(eH +Kf)=ET rl(e) H+ K rr(f) since performing an action from
I resolves the choice context in the left I/O automaton but does not resolve it in the
right one.

Proposition 7.2. The laws of Table 9 are sound for the external trace preorder.

Similarly as for function Si, function So can be provided with a sound proof system.
In this paper we only give a rule for expressions in prefix normal form. The interested
reader is referred to [18] for other rules.

Table 8
Renaming laws for DIOA

R1 p(ni/) =aT nil

RZ Aa.e) =ET p(a).p(e)

R3 ~(e@S)=~~de)@df)

R4 ~(e,+,f) =ETP(~),v~+,IJ~P(./“)

Rs k(de)) =ETPl”h(e)

Rs drh)) =ETv&‘(e)(e)) if P’ extends P

R7 P(ellf) -ETde)Ildf)

& P(Q) =ETQ

Table 9
Hiding laws for DIOA

I1 s,(d) %ET nil

Iz r,(a) =ETQ
I3 s,(a.e) zETa.r,(e) if a+!1

14 f,(eH+f) =eTTr(e)H+KTl(f) ifSo(e)nf=So(,f)d=@

15 TdQ(e)) =ET Tde)

I6 rr(e)IIr,(f) -ET5,uJ(eII.f) if lnacfs(f)=Jnacts(e)=0

I7 r,(e) Epr,(f) implies r,(a.e) 5ETrr(a.l)
Is T,(e) +Q(9) imPlies ~r(~H+~f)~T~~(g~+~f)
I9 Tr(e)%ETTI(i.eHhf)

I 10 r,(i.e) zETTl(e) if Si(e)=0

ISI rr(eH+Bi.f) ZETtr(e@ f) if Si(e)EH

418 R. De Nicola, R. Segala / Theoretical Computer Science 138 (1995) 391-423

Lemma 7.3. SO (Cior ai.ei)= {Ui (ill and ai is an output CK~~OH}.

Lemma 7.4. If e is in prejix normal form then z,(e) is provably equivalent to an
expression e’ in internal prefix form.

Proof. We prove the proposition by induction on the complexity of an expression e. If
e has complexity 0 then I1,2 are sufficient to conclude. Suppose now that e has
complexity at most n + 1, i.e., e = CkeK ak.ek where the complexity of each ek is at most
n. Let Ki={keKl&1} and K2=K\K,. Then

=nT by the external choice laws

~~(k~,ak.ek)+(k~~ak.ek)) =ET bYI11 andI%

" k:, ()

ak-ek @ E ek =ET by 13.4
kcK2

r,(k~,a.~,(ek))~k~~ek.
By induction each rl(ek) has a provably equivalent expression e; in internal prefix
form; hence,

T,(e)l,T(k~,ak-e;)~k~*e~,

From Lemmas 6.5, 6.6 and 6.10, the above expression has a provably equivalent one
in internal prefix form. 0

Proposition 1.5. Zf e is in internal preJix form then rI(e) is provably equivalent to an
expression e’ in internal prejix form.

Proof. Let e=E keX ek where each ek is in prefix normal form. BY Ie6 r,(e) NET EksK
rl(ek). By Lemma 7.4 each ej has a provably equivalent expression e; in internal prefix
form; hence e car E keK e;, which is in internal prefix form. 0

7.3. Laws for Parallel composition

Some simple laws for the parallel operator in addition to those presented in the
previous sections are listed in Table 10.

Proposition 7.6. The laws of Table 10 are sound for the external trace preorder.

Unfortunately, when using the parallel operator, the notion of prefix normal form
we used in the previous sections is no longer sufficient. Expressions of the form

R. De Nieola, R. Segala 1 Theoretical Computer Science 138 (1995) 391-423 419

Table 10

Parallel laws for DIOA

s2 (1 nil 11 ...)I nil cannot be reduced to normal form in general. For the above reason it is
necessary to change the notion of atomic expression in the definition of the prefix
normal form by saying that an atomic expression has the form R II nil Ij ... II nil.

The laws O2,3 are not sufficient for the new notion of atomic expression. The
following two laws introduce a construction which is typical of interleaving semantic
models. The law El is the needed extension of 02, 3.

Proposition 7.7 (Expansion laws). The following laws are sound for the external trace
preorder.
El Let e=&, II nils, II ... Ij nils, be of sort S. For each aGom(&) let e, be the

unique state that e reaches with action a. Then e =ET (CoEOUf(SO)uinCS) a.e,).
Ez Let es el II e2 11 ... I/ e, where each et is of the form C j aij.eij. For each action

aEext(e), let

F_= {f?ijIaij=a} if aEaCtS(ei),

i ’ {ei> otherwise.

Let out(a) be the index j such that a is an output action of j (0 otherwise) and let

Ea=
0 if out(a)#O and E,O”““‘=@

{ fi I/ -a+ I[f.: &Ed v (EL=@ A f;=CI)} otherwise.

The proof of Proposition 6.14 is basically unchanged in its induction step. The main
difference is that, instead of using 0s to eliminate subexpressions of complexity
0 containing s2, El is used. The proof for the base of the induction, instead, needs one
additional sound and complete rule.

Proposition 7.8 (Parallel law). The following law is sound and complete for the external
trace preorder:
P4 Let et, 0 d i < n be atomic expressions and, for each action a, letfi” be the expression

that et reaches with action a (I if no expression exists). Then e, -& E 1 GiCn ei ifs,
for each action a, either
1. flzei, O,<i<n or
2. f{m_L or

3. ft <ET El; +~fl.

420 R. De Nicoia, R. Segala / Theoreiieal Computer Science f3S (1995) 391-423

Proof. Only if Suppose, for each action a, one of the conditions 1,2 or 3 to be valid.
Let t be an external trace of e,,. The case for t = A is trivial since /1 is an external trace of

any expression. Let t = tt fz where t1 is the longest prefix of t such that each ei %ei by

means of self-loop transitions (due to the D parts). If tz = R then trivially t is an external

trace of (E lQiCn ei). Suppose tz =at, for some action a and let e, sf$. t3 is then an

external trace ofjz and, by hypothesis and the definition of tZ, t3 is an external trace of
(HfS +lfi”) and (fi” E# _L } #$I (in fact conditions 1 a;d 2 are false). This implies that 3j:

t3 is an external trace offi”. Moreover, (E 1 sig:n et) =>ej %Cj sfj”; hence, t is an external

trace of (B 1 <i$n ei).

If: Let e0 --CET(@+~~~~~ t e.) and suppose conditions 1,2 and 3 to be false for some

action a. Since, by condition 2&g E# I, we have that e. $$:. Since condition 3 is false,

theneither {fit’+ _Lf=glorf; gET(E Jp ,,fi”). The first case cannot hold, otherwise
a is an external trace of e, but not an external trace of (E 1 4isn ei). Let 2 =at’ where t’

is an external trace off,” but not an external trace of (J$fa ,,fi”). By definition, t is an
external trace of eo. We show that t is not an external trade of (E 1 Gisn ei). Suppose the
contrary. By Lemma 6.11, t is an external trace of ei for some i>O. In particular

ei -%fi, hence t’ is an external trace offl, i.e., t’ is an external trace of &; +lfj”,

absurdum. q

The basic case of Proposition 6.14 is then proved by induction on the number of nil
subexpression appearing in the expressions to be compared. Note in fact that the
number of nil subexpressions in the preconditions of P4 is strictly decreasing.

To deal with the hiding operator, 11,2 have to be extended to the new atomic

expressions. The two new laws are the following.

Pro~sition 7.9 (Hiding laws). Let e,J g be DIOA expressions. jrhe f~llo~ving laws are

sound for the external trace preorder.

II2 ~,((%,ll&b 11 “’ iih,)i~e) %ET zl&ile)

ifVl<j<:n (out(So)nin(Sj)rrZ)\irt(e)#0,

I13 ~I&%, II nils, II - II &,) =ETGW II nki, /I _- II %\~I

ifVIGisn UU~(So)~~n(Si)n~=0, III

Finally, we have to state the closure property of the new internal prefix form under
parallel composition. The closure property can be easily proven by induction on the
complexity of the arguments of the parallel operator by noting that E2 reduces their
complexity.

The laws for the quiescent preorder are essentially the same as for the external trace
preorder. The main problem in the formulation of the new laws is given by the

R. De Nicola, R. Segala / T~e~retirff~ Computer Science 138 (1995) 391-423 421

possible quiescence of the empty trace. For the above reasons some of the laws must
be restricted through some additional side conditions.

The external choice laws Ec~,~,~, 1o need restrictions. The law It 1 is no longer valid

in general. As a consequence I,, B are used in the completeness proof. The law El has
to be changed in order to allow the empty trace to be a quiescent trace of the expanded
expression. Its new form is

e NET

(oeour(So)uin(S)

Finally, the completeness rule needs an additional condition as follows:

The complete axiomatization of the quiescent preorder is given in [181. This section
just gives an idea of how the axioms should be structured. The interested reader is
referred to the cited bibliography.

We have presented a process algebra, called DIOA for demonic I/O automata, with
the following main features: explicit interfaces are associated with each expression,
a clear distinction is enforced between locally and globally controlled actions, input
actions are always enabled, and actions are always under the control of at most one
process. Our process algebra is directly related to I/O automata of Lynch and Tuttle
[14], a model of distributed systems which has been successfully used for the specifica-
tion and the verification of algorithms for distributed environments.

We have presented a set of algebraic laws which are sound with respect to the
external trace preorder, which permits ignoring invisible actions and identifying those
automata which can perform the same sequences of visible actions. These laws over
DIOA have also been proved to be complete for recursion-free processes. We have
also discussed possible extensions of the axiomatization to the quiescent preorder,
a strengthened version of the external trace preorder that is sensitive to deadlock.

Indeed: further work has to be dedicated to investigating extensions of the com-
pleteness results to recursively defined expressions and to other preorder relations
which are used in the operational framework of I/O automata. We are confident that
the normal forms we have devised and the reduction techniques we have developed for
proving completeness are a significative starting point and that they can naturally be
extended to other behavioral relations.

Another interesting topic is that of fairness and of its relationship with quiescence;
we will investigate when and how quiescence is sufficient for capturing fairness
properties. We would also like to see how the quiescent and fair preorders relate to
other well-studied relations in non-input-enabled algebras, i.e., we would like to see

422 R. De Nicola, R. Segala / Theoretical Cornpurer Science 138 (1995) 391-423

how it is possible to embed notions such as input enabling, quiescence and fairness in
non-input-enabled algebras.

Finally, we would like to see how a preorder relation can be thought of as an
implementation relation. The fair preorder of I/O automata, in fact, is used as an
implementation relation. However, we have not found any formal justification of its
use. Many times ad hoc proof techniques are developed to deal with different
verification tasks, and each time arguments have to be provided to convince the
reader that the chosen technique corresponds to a correct notion of implementation.
A formal understanding of the notion of implementation would avoid the above
problem.

Some of the topics mentioned above are addressed in [18,191 and will be the subject
of a forthcoming paper; others are just proposals needing further investigations.

Acknowledgements

The paper started as [17] and is a simplification of Chaps. 3 and 4 of [18]; it owes
its existence to [21]. Many thanks to Frits Vaandrager for suggesting the pursued
lines of investigation. We would also like to thank Nancy Lynch and Albert Meyer for
helpful comments and criticisms on draft copies.

References

[I] J.C.M. Baeten and W.P. Weijland, Process Algebra, Cambridge Tracts in Theoretical Computer

Science, Vol. 18 (Cambridge Univ. Press, Cambridge, 1990).

[2] B. Bloom, S. lstrail and A.R. Meyer, Bisimulation can’t be traced, in: Conf: Record qf‘the 15th ACM

Symp. on Principles of Programming Languages, San Diego, CA (1988) 229-239. Full version appeared

as Tech. Report TR 90-l 150, Cornell University, Ithaca, 1990.

[3] R. De Nicola, Extensional equivalences for transition systems, Arta I~@m. 24 (1987) 21 l-237.

[4] R. De Simone, Calculabilitt et expressivite dans I’algebra de processus paraltles MEIJE, These de 3’

cycle, Univ. Paris 7, 1984.

[S] R. De Simone, Higher-level synchronising devices in MEIJE-SCCS, Theoret. Comput. Sci. 37 (1985)

245-267.

[6] N. Francez, Fairness (Springer, Berlin, 1986).

[7] R.J. van Glabbeek, The linear time - branching time spectrum, in: J.C.M. Baeten and J.W. Klop, eds.,

Proc. CONCUR ‘90, Amsterdam, Lecture Notes in Computer Science, Vol. 458 (Springer, Berlin,

1990) 278-297.

[S] M. Hennessy, Algebraic Theory of Processes (MIT Press, Cambridge, MA 1988).

[9] C.A.R. Hoare, A model of communicating systems, Tech. Report, Oxford University, 1981.

[lo] C.A.R. Hoare, Communicating Sequential Processes (Prentice-Hall, Englewood Cliffs, NJ, 1985).

[I I] B. Jonsson, A model and proof system for asynchronous networks, in: Proc. 4th Ann. ACM Symp. on

Principles of Distributed Computing, Minaki, Ontario, Canada (1985) 49-58.

[121 B. Jonsson, Compositional verification of distributed systems. Ph.D. Thesis, Department of Computer

Systems, Uppsala University, DoCS 87/09, 1987.

[I31 M.B. Josephs, Receiptive process theory, Acra Ir@rm. 29 (1992) 17-31.

[14] N.A. Lynch and M.R. Tuttle, Hierarchical correctness proofs for distributed algorithms, in: Proc. 6th

Ann. ACM Symp. on Principles of Distributed Computing, Vancouver, Canada (1987) 137-I 51. A full

version is available as MIT Technical Report MIT/LCS/TR-387.

R. De Nicoia, R. Segala i Theoretical Computer Science 138 II99.5’) 391-423 423

[151 R. Milner, Communicution and Concurrency (Prentice-Hall, Englewood Cliffs, NJ, 1989).

[16] G.D. Plotkin, A structural approach to operational semantics, Tech. Report DAIMI FN-19, Com-

puter Science Department, Aarhus University, 1981.

[17] R. Segala, Algebre di processi come automi con input e output, Tesi di lauera, Universiti di Pisa, Italy,

1991.
[18] R. Segaia, A process algebraic view of I/O automata, Technical Memo ~lT/LCS/TR-5S7, Laborat-

ory for Computer Science, MIT, Cambridge, MA 02139, 1992.

[I91 R. Segala, Quiescence, fairness, testing and the notion of implementation, in: E. Best, ed., Proc.

CONCUR ‘93, Hildesheim, Germany, Lecture Notes in Computer Science, Vol. 715 (Springer, Berlin,

1993).

[203 E.W. Stark, Foundations of a theory of specification for distributed systems, Ph.D. Thesis, Depart-

ment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1984.

Available as Technical Report MIT/LCS/TR-342.

[Zl] F.W. Vaandrager, On the relationship between process algebra and input/output automata, in: Proc.

6th Ann. Symp. on Logic in Computer Seiertce, 1991.

