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esses �Roberto Segala and Nan
y Lyn
hMIT Laboratory for Computer S
ien
eCambridge, MA 02139Abstra
t. Several probabilisti
 simulation relations for probabilisti
 systems arede�ned and evaluated a

ording to two 
riteria: 
ompositionality and preserva-tion of \interesting" properties. Here, the interesting properties of a system areidenti�ed with those that are expressible in an untimed version of the Timed Prob-abilisti
 
on
urrent Computation Tree Logi
 (TPCTL) of Hansson. The de�nitionsare made, and the evaluations 
arried out, in terms of a general labeled transitionsystem model for 
on
urrent probabilisti
 
omputation. The results 
over weak sim-ulations, whi
h abstra
t from internal 
omputation, as well as strong simulations,whi
h do not. 1. Introdu
tionRandomization has been shown to be a useful tool for the solution of prob-lems in distributed systems [2, 3, 15℄. In order to support reasoning aboutprobabilisti
 distributed systems, many resear
hers have re
ently fo
used onthe study of models and methods for the analysis of su
h systems [4, 6, 8, 26,29, 30℄. The general approa
h that is taken is to extend to the probabilisti
setting those models and methods that have already proved su

essful fornon-probabilisti
 distributed systems.In the non-probabilisti
 setting, labeled transition systems have be
omewell a

epted as a basis for formal spe
i�
ation and veri�
ation of 
on
ur-rent and distributed systems. (See, e.g., [21, 22℄.) A transition system isan abstra
t ma
hine that represents either an implementation (i.e., a phys-i
al devi
e or software system), or a spe
i�
ation (i.e., a des
ription of therequired properties of an implementation). In order to extend labeled tran-sition systems to the probabilisti
 setting, the main addition that is neededis some me
hanism for representing probabilisti
 
hoi
es as well as nonde-terministi
 
hoi
es [8, 26, 30℄.In the non-probabilisti
 setting, there are two prin
ipal methods that areused for analyzing labeled transition systems: temporal logi
 (e.g. [25℄),� Supported by NSF grant CCR-89-15206, and CCR-92-25124, by ARPA 
ontra
tsN00014-89-J-1988 and N00014-92-J-4033, and by ONR 
ontra
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2 SEGALA AND LYNCHwhi
h is used to establish that a system satis�es 
ertain properties, andequivalen
e or preorder relations (e.g., [9, 21, 22, 24℄), whi
h are used to es-tablish that one system \implements" another, a

ording to some notion ofimplementation. Ea
h equivalen
e or preorder preserves some of the proper-ties of a system, and thus the use of a relation as a notion of implementationmeans that we are interested only in the properties that su
h a relation pre-serves.Among the equivalen
es and preorders that have proved most useful arethe 
lass of simulation relations, whi
h establish step-by-step 
orrespon-den
es between two systems. Bisimulation relations are two-dire
tional re-lations that have proved fundamental in the pro
ess algebrai
 setting. Uni-dire
tional simulations, su
h as re�nement mappings and forward simula-tions, have turned out to be quite su

essful in formal veri�
ation of non-probabilisti
 distributed systems [12, 20, 21℄. Thus, it is highly desirable toextend the use of simulations to the probabilisti
 setting.In this paper, we de�ne several extensions of the 
lassi
al bisimulation andsimulation relations (both in their strong and weak versions), to the proba-bilisti
 setting. There are many possible extensions that 
ould be made; it isimportant to evaluate the various possibilities a

ording to obje
tive 
rite-ria. We use two 
riteria: 
ompositionality and preservation of \interesting"properties. The �rst requirement, 
ompositionality, is widely a

epted sin
eit forms the basis of many modular veri�
ation te
hniques.To make sense of the se
ond requirement, it is ne
essary to be spe
i�
about what is meant by an \interesting" property. Here, we identify theinteresting properties of a system with those that are expressible in an un-timed version (PCTL) of the Timed Probabilisti
 
on
urrent ComputationTree Logi
 (TPCTL) of Hansson [8℄; as dis
ussed in [8℄, this logi
 is suf-�
iently powerful to represent most of the properties of pra
ti
al interest.Thus, our se
ond evaluation 
riterion is based on the types of PCTL for-mulas that a relation preserves. For the weak relations, i.e., the ones thatabstra
t from internal 
omputation, we use a new version of PCTL, 
alledWPCTL, whi
h abstra
ts from internal 
omputation as well.We de�ne and evaluate our simulation relations in terms of a new generallabeled transition system model for 
on
urrent probabilisti
 
omputation,whi
h borrows ideas from [8, 30℄. The model distinguishes between prob-abilisti
 and nondeterministi
 
hoi
es but, unlike the Con
urrent MarkovChains of [8, 30℄, does not distinguish between probabilisti
 and nondeter-ministi
 states. A probabilisti
 automaton is a labeled transition systemwhose transition relation is a set of pairs (s;P), where P is a dis
rete prob-ability distribution over (a
tion, state) pairs and a spe
ial symbol Æ, rep-resenting deadlo
k. If the distribution P is only over pairs with the samea
tion, then a transition is 
alled simple and 
an be denoted by s a�! P 0,where P 0 is a dis
rete probability distribution over states. The separationbetween nondeterministi
 and probabilisti
 behavior is a
hieved by meansof adversaries (or s
hedulers), that, similar to [8, 26, 30℄, 
hoose a next tran-sition to s
hedule based on the past history of the automaton. In our 
ase,



PROBABILISTIC SIMULATIONS 3di�erently from [8, 26, 30℄, we allow an adversary to 
hoose the next transi-tion randomly. Indeed, an external environment that provides some inputessentially behaves like a randomized adversary.Our �rst major result is that randomized adversaries do not 
hange thedistinguishing power of PCTL and WPCTL. Intuitively, the main reasonfor this result is that PCTL and WPCTL are 
on
erned with probabilitybounds rather than exa
t probabilities.We then rede�ne the strong bisimulation relation of [16℄ in terms of ourmodel, and also de�ne a strong simulation relation that generalizes the sim-ulation relation of [13℄, strengthening it a bit so that some liveness is pre-served. We show that strong simulation preserves PCTL formulas withoutnegation and existential quanti�
ation. Next, we generalize the strong rela-tions by making them insensitive to probabilisti
 
ombination of transitions,i.e., by allowing probabilisti
 
ombination of several transitions in order tosimulate a single transition. The motivation for this generalization is thatthe 
ombination of transitions 
orresponds to the ability of an adversary to
hoose the next transition probabilisti
ally. Our se
ond main result is thatthe new relations, 
alled strong probabilisti
 bisimulation and strong proba-bilisti
 simulation, are still 
ompositional and preserve PCTL formulas andPCTL formulas without negation and existential quanti�
ation, respe
tively.Similar to the strong 
ase, we de�ne new relations that abstra
t frominternal 
omputation and we show that they preserve WPCTL. However,the straightforward generalization of the strong probabilisti
 relations, al-though 
ompositional, does not guarantee that WPCTL is preserved. Forthis reason we introdu
e two other relations, 
alled bran
hing probabilis-ti
 bisimulation and bran
hing probabilisti
 simulation, whi
h impose newrestri
tions similar to those of bran
hing bisimulation [7℄. Our third main re-sult is that bran
hing probabilisti
 bisimulation and bran
hing probabilisti
simulation are 
ompositional and preserve WPCTL formulas and WPCTLformulas without negation and existential quanti�
ation, respe
tively, up toa 
ondition about divergen
es.The rest of the paper is organized as follows. Se
tion 2 de�nes the standardautomata of non-probabilisti
 systems; Se
tion 3 introdu
es our probabilisti
model; Se
tion 4 introdu
es PCTL, de�nes its semanti
s in terms of ourmodel, and shows that the distinguishing power of PCTL does not 
hange byusing randomized adversaries; Se
tions 5, 6 and 7 study the strong and weakrelations on our probabilisti
 model, and show how they preserve PCTLformulas; Se
tion 8 
ontains some 
on
luding remarks and further work.2. AutomataAn automaton A 
onsists of four 
omponents: a set states(A) of states,a nonempty set start(A) � states(A) of start states, an a
tion signaturesig(A) = (ext(A); int(A)) where ext(A) and int(A) are disjoint sets of ex-



4 SEGALA AND LYNCHternal and internal a
tions, respe
tively, and a transition relation trans(A) �states(A)�a
ts(A)�states(A), where a
ts(A) denotes the set ext(A)[int(A)of a
tions. Thus, an automaton is a state ma
hine with labeled transitions.Its a
tion signature des
ribes the interfa
e with the external environmentby spe
ifying whi
h a
tions model events that are visible from the externalenvironment and whi
h ones model internal events.An exe
ution fragment � of an automaton A is a (�nite or in�nite) se-quen
e of alternating states and a
tions starting with a state and, if theexe
ution fragment is �nite, ending in a state, � = s0a1s1a2s2 � � �, whereea
h (si; ai+1; si+1) is a transition of A. Denote by fstate(�) the �rst stateof � and, if � is �nite, denote by lstate(�) the last state of �. Further-more, denote by frag�(A) and frag(A) the sets of �nite and all exe
utionfragments of A, respe
tively. An exe
ution is an exe
ution fragment whose�rst state is a start state. Denote by exe
�(A) and exe
(A) the sets of �niteand all exe
utions of A, respe
tively. A state s of A is rea
hable if thereexists a �nite exe
ution of A that ends in s. A �nite exe
ution fragment�1 = s0a1s1 � � � ansn of A and an exe
ution fragment �2 = snan+1sn+1 � � �of A 
an be 
on
atenated . In this 
ase the 
on
atenation, written �1a�2, isthe exe
ution fragment s0a1s1 � � � ansnan+1sn+1 � � �. An exe
ution fragment�1 of A is a pre�x of an exe
ution fragment �2 of A, written �1 � �2, ifeither �1 = �2 or �1 is �nite and there exists an exe
ution fragment �01 ofA su
h that �2 = �1a�01.3. The Basi
 Probabilisti
 Model3.1 Probability Spa
esMost of our de�nitions rely on the notion of a probability spa
e, whi
h isused to denote whi
h events 
an be observed and what are their probabilities.A probability spa
e is a triplet (
;F ; P ) where 
 is a set, F is a 
olle
tionof subsets of 
 that is 
losed under 
omplement and 
ountable union andsu
h that 
 2 F , and P is a fun
tion from F to [0; 1℄ su
h that P [
℄ = 1and for any 
olle
tion fCigi of at most 
ountably many pairwise disjointelements of F , P [[iCi℄ =Pi P [Ci℄.The set 
 is 
alled the sample spa
e and 
ontains the obje
ts that wewant to analyze. For example 
 = [0; 1℄. The set F is 
alled the �-algebraand 
ontains the subsets of 
 that we 
an measure, also 
alled events. Forexample F 
an be the set of measurable sets of [0; 1℄ a

ording to Lebesgue.Finally, P is 
alled the probability measure and is a fun
tion that asso
iates ameasure with ea
h element of F . For example, P 
an asso
iate ea
h elementof F with its Lebesgue measure.A probability spa
e (
;F ; P ) is dis
rete if F = 2
 and for ea
h C � 
,P [C℄ = Px2C P [fxg℄. It is immediate to verify that for every dis
rete



PROBABILISTIC SIMULATIONS 5probability spa
e there are at most 
ountably many points with a non-zeroprobability measure. Given a set X, we denote by Probs(X) the set ofdis
rete probability spa
es (
;F ; P ) whose sample spa
e 
 is a subset of X.The Dira
 distribution over an element x, denoted by D(x), is the proba-bility spa
e with a unique element x.Throughout the paper we denote a probability spa
e (
;F ; P ) by P. Asa notational 
onvention, if P is de
orated with indi
es and primes, then thesame indi
es and primes 
arry to its elements. Thus, P 0i denotes (
0i;F 0i ; P 0i ).The produ
t of two dis
rete probability spa
es (
1;F1; P1) and (
2;F2; P2),denoted by (
1;F1; P1)
(
2;F2; P2), is the dis
rete probability spa
e (
1�
2; 2
1�
2 ; P ), where P [(x1; x2)℄ = P1[x1℄P2[x2℄ for ea
h (x1; x2) 2 
1�
2.In other words, the produ
t of two dis
rete probability spa
es P1;P2 is anew probability spa
e that des
ribes the operation of pi
king an element atrandom from P1 and P2 independently.3.2 Probabilisti
 AutomataDefinition 1. A probabilisti
 automaton M 
onsists of four 
omponents:a set states(M) of states, a nonempty set start(M) � states(M) of startstates, an a
tion signature sig(M) = (ext(M); int(M)) where ext(M) andint(M) are disjoint sets of external and internal a
tions, respe
tively, and atransition relationtrans(M) � states(M)� Probs((a
ts(M)� states(M)) [ fÆg);where a
ts(M) denotes the set ext(M) [ int(M) of a
tions.A probabilisti
 automaton M is simple if for ea
h transition (s;P) oftrans(M) there is an a
tion a of a
ts(M) su
h that 
 � fag�states(M). Insu
h a 
ase a transition 
an be represented alternatively as (s; a;P 0) whereP 0 2 Probs(states(M)), and it is 
alled a simple transition with a
tion a.A probabilisti
 automaton is fully probabilisti
 if it has a unique start stateand from ea
h state there is at most one transition enabled. 2Thus a probabilisti
 automaton di�ers from an automaton in that the a
tionand the next state of a given transition are 
hosen probabilisti
ally. Thesymbol Æ that 
an appear in the sample spa
e of ea
h transition representsthose situations where a system deadlo
ks. Thus, for example, it is possiblethat from a state s a probabilisti
 automaton performs some a
tion withprobability p and deadlo
ks with probability 1� p.A simple probabilisti
 automaton does not allow any kind of probabilisti

hoi
e on a
tions. On
e a transition is 
hosen, then the next a
tion isdetermined and the next state is given by a random distribution.A fully probabilisti
 automaton is a probabilisti
 automaton without non-determinism; at ea
h point only one transition 
an be 
hosen.



6 SEGALA AND LYNCHAn ordinary automaton is a spe
ial 
ase of a probabilisti
 automaton whereea
h transition leads to a Dira
 distribution; the generative model of prob-abilisti
 pro
esses of [6℄ is a spe
ial 
ase of a fully probabilisti
 automaton;simple probabilisti
 automata are partially 
aptured by the rea
tive modelof [6℄ in the sense that the rea
tive model assumes some form of nonde-terminism between di�erent a
tions. However, the rea
tive model does notallow nondeterministi
 
hoi
es between transitions involving the same a
-tion. By restri
ting simple probabilisti
 automata to have �nitely manystates, we obtain obje
ts with a stru
ture similar to that of the Con
urrentLabeled Markov Chains of [8℄; however, in our model we do not need todistinguish between nondeterministi
 and probabilisti
 states. In our modelnondeterminism is obtained by means of the stru
ture of the transition re-lation. This allows us to retain most of the traditional notation that is usedfor automata.Definition 2. An exe
ution fragment � of a probabilisti
 automaton Mis a (�nite or in�nite) sequen
e of alternating states and a
tions startingwith a state and, if the exe
ution fragment is �nite, ending in a state,� = s0a1s1a2s2 � � �, where for ea
h i there exists a probability spa
e Psu
h that (si;P) 2 trans(M) and (ai+1; si+1) 2 
. Denote by frag�(M) andfrag(M) the sets of �nite and all exe
utions fragments of M , respe
tively.An exe
ution is an exe
ution fragment whose �rst state is a start state. De-note by exe
�(M) and exe
(M) the sets of �nite and all exe
utions of M ,respe
tively.An extended exe
ution (fragment) of M is either an exe
ution fragmentof M , or a sequen
e � = s0a1s1 � � � ansnÆ su
h that s0a1s1 � � � ansn is anexe
ution (fragment) of M . 2Even though we have de�ned exe
utions for a probabilisti
 automaton, forthe study of the probabilisti
 behavior of a probabilisti
 automaton, somemore detailed stru
ture is needed. Su
h a stru
ture, whi
h we 
all a proba-bilisti
 exe
ution, is introdu
ed in Se
tion 3.3.The next de�nition shows how it is possible to 
ombine several transi-tions of a probabilisti
 automaton into a new one. Informally, a 
ombinedtransition leaving from a state s is obtained by 
hoosing a transition thatleaves from s probabilisti
ally, and then behaving a

ording to the transition
hosen. Combined transitions play a fundamental role for the de�nition ofprobabilisti
 adversaries and the de�nition of our probabilisti
 simulations.Definition 3. Given a probabilisti
 automaton M , a �nite or 
ountableset fPigi of probability distributions of Probs((a
ts(M)�states(M))[fÆg),and a weight pi > 0 for ea
h i su
h thatPi pi � 1, the 
ombinationPi piPiof the distributions fPigi is the probability spa
e P su
h thatÆ 
 = � [i
i if Pi pi = 1[i
i [ fÆg if Pi pi < 1



PROBABILISTIC SIMULATIONS 7Æ F = 2
Æ for ea
h (a; s) 2 
, P [(a; s)℄ =Pfij(a;s)2
ig piPi[(a; s)℄Æ if Æ 2 
, then P [Æ℄ = (1�Pi pi) +PfijÆ2
ig piPi[Æ℄.A pair (s;P) is a 
ombined transition of M if there exists a �nite or 
ount-able family of transitions f(s;Pi)gi and a set of positive weights fpigi withPi pi � 1, su
h that P =Pi piPi. Denote by 
trans(M) the set of 
ombinedtransitions of M . 2For notational 
onvenien
e we write s a�! P whenever there is a simpletransition (s; a;P) in M , and we write s a�!C P whenever there is a simple
ombined transition (s; a;P) in M . We write s a�! whenever there exists aprobability spa
e P su
h that s a�! P.We now turn to the parallel 
omposition operator, whi
h is de�ned inthe CSP style [11℄, i.e., by syn
hronizing two automata on their 
ommona
tions. As outlined in [8℄, it is not 
lear how to de�ne a parallel 
ompositionoperator for general probabilisti
 automata that extends the CSP operator ofordinary automata; thus, we only de�ne it for simple probabilisti
 automata.Definition 4. Two simple probabilisti
 automata M1 and M2 are 
ompat-ible if(1) int(M1) \ a
ts(M2) = ;, and(2) int(M2) \ a
ts(M1) = ;.The parallel 
omposition M1kM2 of 
ompatible simple probabilisti
 au-tomata M1 and M2 is the simple probabilisti
 automaton M su
h that(1) states(M) = states(M1)� states(M2)(2) start(M) = start(M1)� start(M2)(3) ext(M) = ext(M1) [ ext(M2)(4) int(M) = int(M1) [ int(M2)(5) ((s1; s2); a;P) 2 trans(M) i� P = P1 
P2, su
h that(a) if a 2 a
ts(M1) then (s1; a;P1) 2 trans(M1), else P1 = D(s1),and(b) if a 2 a
ts(M2) then (s2; a;P2) 2 trans(M2), else P2 = D(s2). 2Our analysis in this paper will fo
us on simple probabilisti
 automata, andwe use general probabilisti
 automata only for the analysis of probabilisti
s
hedulers. Several systems 
an be des
ribed as simple probabilisti
 au-tomata. A probabilisti
 Turing Ma
hine where we assume that ea
h 
ellof the random tape is instantiated when it is read for the �rst time is asimple probabilisti
 automaton with a unique a
tion, say � , whose statesare the instantaneous des
riptions of the given ma
hine; an algorithm thatat some point 
an 
ip a 
oin or roll a di
e 
an be represented as a simpleprobabilisti
 automaton where the 
ipping and rolling operations are sim-ple transitions. If the out
ome of a 
oin 
ip or di
e roll a�e
ts the external



8 SEGALA AND LYNCHbehavior of the automaton, then the 
ip and roll a
tions 
an be followedby simple transitions whose a
tions represent the out
ome of the random
hoi
e. We emphasize that if we introdu
e an input/output distin
tion asin [20℄, then it is possible to 
ompose general probabilisti
 automata underthe 
onditions that their input a
tions appear only in simple transitions. Asimilar observation appears in [31℄.3.3 S
hedulers and AdversariesSeveral papers in the literature use s
hedulers, sometimes viewed as ad-versarial entities, to resolve the nondeterminism in probabilisti
 systems[5, 8, 17, 30℄. An adversary (or s
heduler) is an obje
t that s
hedules thenext transition based on the past history of a probabilisti
 automaton. Thenext transition 
an be 
hosen probabilisti
ally.Definition 5. An adversary for a probabilisti
 automaton M is a fun
tionA taking a �nite exe
ution fragment � of M and returning a 
ombinedtransition of M that leaves from lstate(�). Formally, A : frag�(M) !
trans(M) su
h that if A(�) = (s;P), then s = lstate(�). An adversaryis deterministi
 if on input � it returns either transitions of M or the pair(lstate(�);D(Æ)), i.e., the next transition is 
hosen deterministi
ally. Denotethe set of adversaries for a probabilisti
 automaton M by Advs(M). 2Observe that Æ 
an appear in the 
ombined transitions 
hosen by an adver-sary. Su
h an option is useful when the a
tions enabled from some stateare meant to model input from the external environment and the adversaryplays the role of an environment that is not providing any input.Definition 6. An adversary s
hema for a probabilisti
 automaton M , de-noted by Advs , is a subset of Advs(M). If Advs is a proper subset ofAdvs(M) then Advs is a restri
ted adversary s
hema, otherwise Advs isa full adversary s
hema. 2Adversary s
hemas are used to redu
e the power of a 
lass of adversaries.Note, for example, that the set of deterministi
 adversaries is an example ofa restri
ted adversary s
hema whenever M is not fully probabilisti
. Otherexamples of restri
ted adversary s
hemas are sets of adversaries that basetheir 
hoi
es only on partial knowledge of the past history. We refer thereader to [1, 19℄ for examples of analysis of distributed algorithms based onrestri
ted adversary s
hemas.In this paper, in order to guarantee some minimal liveness, we impose adi�erent restri
tion on our adversaries. Spe
i�
ally, we denote by Padvs(M)the adversary s
hema where ea
h adversary 
an 
hoose Æ with a non-zeroprobability on input � i� there is no transition enabled inM from lstate(�),



PROBABILISTIC SIMULATIONS 9and we denote byDadvs(M) the set of deterministi
 adversaries of Padvs(M).In other words, our adversaries must s
hedule something whenever some-thing 
an be s
heduled.We next de�ne what it means for a probabilisti
 automaton to run underthe 
ontrol of an adversary. Namely, suppose that M has already performedsome �nite exe
ution fragment � and that an adversary A starts resolvingthe nondeterminism at that point. The result of the intera
tion betweenM and A is a fully probabilisti
 automaton, 
alled a probabilisti
 exe
ution,where at ea
h point the only transition enabled is the transition due to the
hoi
e of A. A similar 
onstru
tion appears in [30℄. Unfortunately, thede�nition of a probabilisti
 exe
ution is not simple sin
e ea
h state 
ontainsthe past history of M .Definition 7. A probabilisti
 exe
ution fragment H of a probabilisti
 au-tomaton M is a fully probabilisti
 automaton su
h that(1) states(H) � frag�(M).(2) for ea
h transition (�;P) of H there exists a 
ombined transition(lstate(�);P 0) of M , 
alled the 
orresponding 
ombined transition,su
h that
0 = f(a; s)j(a; �as) 2 
g [ (fÆg \ 
); andP 0[(a; s)℄ = P [(a; �as)℄for ea
h (a; s) 2 
0. If q = lstate(�), then denote P by PHq and denote(�;P) by trHq .(3) ea
h state of H is rea
hable and enables one transition.A probabilisti
 exe
ution of M is a probabilisti
 exe
ution fragment of Mwhose start state is a start state of M . 2Condition (1) says that the states of a probabilisti
 exe
ution H 
ontainthe past history of M ; Condition (2) ensures that the transitions of H arederived from transitions of M by in
luding the history in the new statesthat are rea
hed; Condition (3) is just te
hni
al to eliminate useless statesand to handle Æ uniformly. Observe that a state q may enable a transition(q;D(Æ)).Now we 
an de�ne formally what it means for a probabilisti
 automatonM to run under the 
ontrol of an adversary A.Definition 8. Given a probabilisti
 automaton M , an adversary A for M ,and a �nite exe
ution fragment � of M , the exe
ution H(M;A; �) of Munder adversary A with starting fragment � is the unique probabilisti
 exe-
ution fragment of M whose start state is � and su
h that for ea
h state q,if (q;P) 2 trans(H(M;A; �)), then the 
orresponding 
ombined transitionof (q;P) is A(q). 2



10 SEGALA AND LYNCH3.4 EventsWe de�ne a probability spa
e (
H ;FH ; PH) for ea
h probabilisti
 exe
utionfragment H, so that it is possible to analyze the probabilisti
 behavior ofa probabilisti
 automaton on
e the nondeterminism is removed. This 
on-stru
tion is slightly di�erent from the 
onstru
tion presented in [28℄.First of all, we observe that there is a strong 
orresponden
e between theextended exe
ution fragments of a probabilisti
 automaton and the extendedexe
utions of one of its probabilisti
 exe
ution fragments. We express this
orresponden
e by means of an operator �"qH0 that takes an extended exe-
ution fragment of M and gives ba
k the 
orresponding extended exe
utionof H, and �# that takes an extended exe
ution of H and gives ba
k the
orresponding extended exe
ution fragment of M .Then, the sample spa
e 
H 
an be de�ned as the set of extended exe-
utions of M that 
orrespond to 
omplete extended exe
ution fragmentsof H, where an extended exe
ution � of H is 
omplete i� it is either in-�nite or � = �0Æ and Æ 2 
Hlstate(�0). For ea
h �nite extended exe
u-tion fragment � of M , let C�, the 
one with pre�x �, be the set f�0 2
H j � � �0g, and let CH be the 
lass of 
ones for H. The probability�H(C�) of the 
one C� is the produ
t of the probabilities asso
iated withea
h edge that generates � in H. Formally, let q0 be the start state of H,and let s0 be lstate(q0). If � = q0as0a1s1 � � � sn�1ansn, then �H(C�) 4=PHq0 [(a1; q1)℄ � � �PHqn�1 [(an; qn)℄, where ea
h qi is q0as0a1s1 � � � aisi, and if � =q0as0a1q1 � � � qn�1anqnÆ, then �H(C�) 4= PHq0 [(a1; q1)℄ � � �PHqn�1 [(an; qn)℄PHqn [Æ℄,where ea
h qi is de�ned as before. In [27℄ it is shown that there is a uniquemeasure ��H that extends �H to the �-�eld �(CH) generated by CH , i.e.,the smallest �-�eld that 
ontains CH . FH is then obtained from �(CH)by extending ea
h event with any set of extended exe
utions taken from 0-probability 
ones, and PH is obtained by extending ��H to FH in the obviousway. With this de�nition it is possible to show that any union of 
ones (evenun
ountable) is measurable. In fa
t, at most 
ountably many 
ones have anon-zero measure.Examples of events are the o

urren
e of a spe
i�
 �nite exe
ution �, whi
his C�, and the o

urren
e of a spe
i�
 a
tion a, whi
h 
an be representedas the union of 
ones C� su
h that a
tion a o

urs in �.In our analysis of probabilisti
 automata we are not interested in events forspe
i�
 probabilisti
 exe
utions. Whenever we want to express a property,we want to express it relative to any probabilisti
 exe
ution. This is thepurpose of event s
hemas.Definition 9. An event s
hema e for a probabilisti
 automaton M is afun
tion that asso
iates an event of FH with ea
h probabilisti
 exe
utionfragment H of M . 2An example of an event s
hema is the fun
tion that asso
iates with ea
h



PROBABILISTIC SIMULATIONS 11probabilisti
 exe
ution fragment H the event of performing a spe
i�
 a
tiona. 4. Probabilisti
 Computation Tree Logi
In this se
tion we present the logi
 that is used for our analysis, and wegive it a semanti
s based on our model. It is a simpli�
ation of the TimedProbabilisti
 
on
urrent Computation Tree Logi
 (TPCTL) of [8℄, where,unlike in [8℄, we do not 
onsider time issues. Then, we show that randomizedadversaries do not 
hange the distinguishing power of the logi
.Consider a set of a
tions ranged over by a. The syntax of PCTL formulasis de�ned as follows:f ::= a j :f j f1 ^ f2 j JAff1 EU�p f2 j f1 AU�p f2 j f1 EU>p f2 j f1 AU>p f2Informally, the atomi
 formula a means that a
tion a is the only one that
an o

ur during the �rst transition of a probabilisti
 automaton and thata
tion a must indeed o

ur; the formula JAf means that f is valid for aprobabilisti
 automaton M after making the �rst transition invisible; theformula f1 EU�p f2 means that there exists an adversary su
h that theprobability of f2 eventually holding and f1 holding till f2 holds is at leastp; the formula f1 AU�p f2 means that the same property as above is validfor ea
h adversary. For example, the property that under any s
hedulingpoli
y a
tion a o

urs eventually with probability at least 1=2 is expressedby the formula true AU�1=2 a, where true 
an be expressed by the formula:(a^:a). For the formal semanti
s of PCTL we need two auxiliary operatorson probabilisti
 automata.Let M be a probabilisti
 automaton, a an a
tion of M , and s a state ofM . ThenM [(a; s)℄ is a probabilisti
 automaton obtained fromM by addinga new state s0, adding a new transition (s0; a;D(s)), and making s0 into theunique start state. In other words M [(a; s)℄ for
es M to start with a
tion aand then rea
h state s.Let M be a probabilisti
 automaton. Then !M is obtained from M byadding a dupli
ate of ea
h start state, by making the dupli
ate states intothe new start states, and, for ea
h transition s a�! P ofM where s is a startstate, by adding a transition s0 ��! P from the dupli
ate s0 of s, where � isan internal a
tion that 
annot o

ur in any PCTL formula. In other words!M makes sure that the �rst transition of M is invisible.Let M be a probabilisti
 automaton, and let � be an extended exe
utionof M . Let w denote either � or >. Let an exe
ution � of M be 
ompletei� either it is in�nite or it is �nite and no transition is enabled in M fromlstate(�). Then we de�ne the satisfa
tion relations M j= f and � j=M g asfollows



12 SEGALA AND LYNCHM j= a i� ea
h 
omplete exe
ution of Mstarts with a
tion a,M j= :f i� not M j= f ,M j= f1 ^ f2 i� M j= f1 and M j= f2,� j=M f1 U f2 i� there is n > 0 su
h that � = s0a1s1 � � � ansna�0,for ea
h i; 1 � i < n, M [(ai; si)℄ j= f1,and M [(an; sn)℄ j= f2,M j= JAf i� !M j= f ,M j= f1 EUwp f2 i� there exists an adversary A and a start state s0su
h that PH [ef1Uf2(H)℄ w p,where H = H(M;A; s0), and ef1Uf2(H) is the set ofelements �0 of 
H su
h that �0 j=M f1 U f2,M j= f1 AUwp f2 i� for ea
h adversary A and ea
h start state s0,PH [ef1Uf2(H)℄ w p,where H = H(M;A; s0), and ef1Uf2(H) is the set ofelements �0 of 
H su
h that �0 j=M f1 U f2.Note that for ea
h probabilisti
 exe
ution H the set ef1Uf2(H) 
an be ex-pressed as a union of 
ones, and thus it is an element of FH . This guaranteesthat the semanti
s of PCTL is well de�ned.In the de�nition above we did not mention expli
itly what kind of ad-versaries to 
onsider for the validity of a formula. In [8℄ the adversariesare assumed to be deterministi
. However, the semanti
s does not 
hangeby adding randomization to the adversaries. The intuitive justi�
ation ofthis 
laim is that if we are just interested in upper and lower bounds tothe probability of some event, then any probabilisti
 
ombination of eventsstays within the bounds. Moreover, deterministi
 adversaries are suÆ
ientto observe the bounds.Theorem 1. For ea
h probabilisti
 automaton M and ea
h PCTL formulaf , M j= f relative to Dadvs(M) i� M j= f relative to Padvs(M).Proof sket
h. The proof is by indu
tion on the stru
ture of the formulaf , and most of it is simple routine 
he
king. Two 
riti
al points are thefollowing: if M j= f1 EUwp f2 relative to randomized adversaries, thenwe need to make sure that there exists at least a deterministi
 adversarythat 
an be used to satisfy f1 EUwp f2; if M j= f1 AUwp f2 relative todeterministi
 adversaries, then we need to make sure that no probabilisti
adversary would lead to a violation of f1 AUwp f2. In both 
ases the ideais to 
onvert a probabilisti
 adversary A for a probabilisti
 automaton Minto a deterministi
 one su
h that the probability of ef1Uf2 is in
reased (�rst
ase) or de
reased (se
ond 
ase). The 
onversion is shown in [27℄. 2We now show how to 
hange the syntax and semanti
s of PCTL to ab-stra
t from internal 
omputation. The new logi
 is denoted by WPCTL.



PROBABILISTIC SIMULATIONS 13The syntax of WPCTL is the same as that of PCTL with the additional re-quirement that no internal a
tion 
an o

ur in a formula. For the semanti
sof WPCTL, there are three main 
hanges.M j= a i� ea
h 
omplete extended exe
ution of M has at leastone external a
tion, and its �rst external a
tion is a,� j=M f1 U f2 i� there exists n > 0 su
h that � = s0a1s1 � � � ansna�0,an is external, M [(an; sn)℄ j= f2, and forea
h i; 1 � i < n, if ai is external, then M [(ai; si)℄ j= f1,M j= JAf i� )M j= f ,where )M hides the �rst external transitions of M , i.e., it is obtained fromM by dupli
ating all its states (and then removing the non-rea
hable onesat the end), by making the dupli
ates of the old start states into the newstart states, by reprodu
ing all the internal transitions in the dupli
atedstates, and, for ea
h external transition (s; a;P) ofM , by adding an internaltransition (s0; �;P) from the dupli
ate s0 of s, where � is a new internala
tion. Note that the satisfa
tion relation for an exe
ution is de�ned solelyin terms of its external transitions.Theorem 2. For ea
h probabilisti
 automaton M and ea
h WPCTL for-mula f , M j= f relative to Dadvs(M) i� M j= f relative to Padvs(M).5. Strong RelationsIn this se
tion we analyze relations that are sensitive to internal 
ompu-tation. We formalize in our model the bisimulations of [16℄ (strong bisim-ulation) following the lines of [8℄, and the simulations of [13, 16℄ (strongsimulation); then, we show that strong bisimulation preserves PCTL andthat strong simulation preserves PCTL formulas that do not 
ontain nega-tion and EUwp. We then introdu
e two other 
oarser relations that allowprobabilisti
 
ombination of transitions and 
ontinue to preserve PCTL for-mulas and PCTL formulas without negation and EUwp, respe
tively. For
onvenien
e, throughout the rest of this paper we assume that no pair ofprobabilisti
 automata has any state in 
ommon.Definition 10. Let R be an equivalen
e relation over a set X. Two prob-ability spa
es (
1;F1; P1) and (
2;F2; P2) of Probs(X) are R-equivalent,written (
1;F1; P1) �R (
2;F2; P2), i� for every 
lass C of X= R,Xx2
1\C P1[x℄ = Xx2
2\C P2[x℄:In other words (
1;F1; P1) and (
2;F2; P2) are R-equivalent if they assignthe same probability measure to ea
h equivalen
e 
lass of R. 2



14 SEGALA AND LYNCHDefinition 11. A strong bisimulation between two simple probabilisti
 au-tomataM1 andM2 is an equivalen
e relationR over states(M1)[states(M2)su
h that(1) ea
h start state of M1 is related to at least one start state of M2, andvi
e versa;(2) for ea
h s1 R s2 and ea
h transition s1 a�! P1 of either M1, M2, thereexists a transition s2 a�! P2 of either M1, M2 su
h that P1 �R P2.We write M1 ' M2 whenever a
ts(M1) = a
ts(M2) and there is a strongbisimulation between M1 and M2. 2Condition 2 of De�nition 11 is stated in [16℄ in a di�erent but equivalentway, i.e., for ea
h equivalen
e 
lass [x℄ of R, the probabilities of rea
hing[x℄ from s1 and s2 are the same. Strong bisimulation 
oin
ides with thestrong bisimulation of [22, 24℄ whenever the involved probabilisti
 automatarepresent ordinary automata.The next de�nition is used to introdu
e strong simulations. A similarde�nition appears in [13℄. Informally, (
1;F1; P1) vR (
2;F2; P2) meansthat there is a way to split the probabilities of the states of 
1 between thestates of 
2 and vi
e versa, expressed by a fun
tion w, so that the relationR is preserved. In other words the left probability spa
e 
an be embeddedinto the right one up to R.Definition 12. Let R� X � Y be a relation between two set X;Y , andlet (
1;F1; P1) and (
2;F2; P2) be two probability spa
es of Probs(X) andProbs(Y ), respe
tively. Then (
1;F1; P1) and (
2;F2; P2) are in relationvR, written (
1;F1; P1) vR (
2;F2; P2), i� there exists a fun
tion w :X � Y ! [0; 1℄ su
h that(1) for ea
h x 2 X, Py2Y w(x; y) = P1[x℄,(2) for ea
h y 2 Y , Px2X w(x; y) = P2[y℄,(3) for ea
h (x; y) 2 X � Y , if w(x; y) > 0 then x R y.The fun
tion w is 
alled a weight fun
tion. 2Definition 13. A strong simulation between two simple probabilisti
 au-tomata M1 and M2 is a relation R� states(M1)� states(M2) su
h that(1) ea
h start state of M1 is related to at least one start state of M2;(2) for ea
h s1 R s2 and ea
h transition s1 a�! P1 of M1, there exists atransition s2 a�! P2 of M2 su
h that P1 vR P2.(3) for ea
h s1 R s2, if s2 a�!, then s1 a�!.



PROBABILISTIC SIMULATIONS 15We write M1 vSS M2 whenever a
ts(M1) = a
ts(M2) and there is a strongsimulation between M1 and M2. The kernel of strong simulation is denotedby �SS. 2If we do not in
lude Condition 3 in the de�nition of a strong simulation,then we obtain a relation that extends the strong simulation relation ofordinary automata. Here we add Condition 3 to guarantee some minimumliveness requirements, thus extending the 2/3-bisimulation relation of [16℄.Condition 3 is fundamental for the preservation of PCTL formulas; howeverit 
an be relaxed by requiring s1 to enable some transition whenever s2enables some transition.Proposition 1. ' and vSS are 
ompositional. That is, for ea
h M1 andM2 su
h that a
ts(M1) = a
ts(M2), and for ea
h M3 
ompatible with bothM1 and M2, if M1 'M2, then M1kM3 'M2kM3, and if M1 vSS M2, thenM1kM3 vSS M2kM3. 2Lemma 1. Let X;Y be two disjoint sets, R be an equivalen
e relation onX [ Y , and let P1 and P2 be probability spa
es of Probs(X) and Probs(Y ),respe
tively, su
h that P1 �R P2. Then P1 vR0 P2, where R0=R \X � Y .Lemma 1 
an be used to prove dire
tly that bisimulation is �ner than simu-lation. The same observation applies to all the other pairs of relations thatwe de�ne in this paper.Theorem 3. Let M1 and M2 be two simple probabilisti
 automata, and letf be a PCTL formula.(1) If M1 'M2, then M1 j= f i� M2 j= f .(2) If M1 vSS M2 and f does not 
ontain any o

urren
e of : and EUwp,then M2 j= f implies M1 j= f .Proof sket
h. The proofs are by indu
tion on the stru
ture of f , wherethe nontrivial step is the analysis of f1 AUwp f2 and f1 EUwp f2. In the�rst 
ase it is enough to show that for ea
h probabilisti
 exe
ution H1 ofM1 obtainable from some adversary there exists a probabilisti
 exe
utionH2 of M2, obtainable from some adversary, su
h that PH2 [ef1Uf2(H2)℄ �PH1 [ef1Uf2(H1)℄. In the se
ond 
ase we need to make sure that PH2 [ef1Uf2(H2)℄ =PH1 [ef1Uf2(H1)℄.The probabilisti
 exe
ution H2 is built by reprodu
ing the stru
ture of H1via R. We also need to ensure that H2 is obtainable from some adversary,and for this part we need Condition 3 of De�nition 13. Indeed, if Æ o

ursin a transition enabled from a state q of H2, then there is some state q0 ofH1 that 
orresponds to q via R and that 
ontains Æ in the transition that itenables. Then, lstate(q0) does not enable any transition in M2, whi
h, using
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Fig. 1: Strong simulations do not preserve EUwp.
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ombination of transitions is useful.Condition 3, means that lstate(q) does not enable any transition in M2. Wedo not need to show that H2 
an be generated by a deterministi
 adversary(indeed this is false in general) be
ause of Theorem 1. The 
orresponden
ebetween H1 and H2 is 
alled an exe
ution 
orresponden
e stru
ture and it isshown to exist in [27℄. On
e an exe
ution 
orresponden
e stru
ture is built,it is easy to show that PH2 [ef1Uf2(H2)℄ � PH1 [ef1Uf2(H1)℄ if R is a strongsimulation, and that PH2 [ef1Uf2(H2)℄ = PH1 [ef1Uf2(H1)℄ if R is a strongbisimulation. 2Example 1. PCTL formulas with o

urren
es of EUwp are not preservedin general by �SS. Consider the two simple probabilisti
 automata of Fig-ure 1. The two probabilisti
 automata are strong simulation equivalent bymat
hing ea
h si with s0i and by mat
hing s2; s6; s7; s10 to s01; s03; s04; s08, re-spe
tively. However, the right probabilisti
 automaton satis�es true AU�1(a^ (true EU�1=2 
)), whereas the left probabilisti
 automaton does not. 2Example 2. Consider the two probabilisti
 automata of Figure 2, wheres0; s00 are the start states, s1; s01 enable some transition with a
tion b, ands2; s02 enable some transition with a
tion 
. The di�eren
e between the leftand right probabilisti
 automata is that the right probabilisti
 automatonenables an additional transition whi
h is obtained by 
ombining the two



PROBABILISTIC SIMULATIONS 17transitions of the left probabilisti
 automaton. Thus, the two probabilisti
automata satisfy the same PCTL formulas; however, there is no simula-tion from the right probabilisti
 automaton to the left one sin
e the middletransition 
annot be reprodu
ed. 2Example 2 suggests two 
oarser relations where it is possible to 
ombineseveral transitions into a unique one. Note that the only di�eren
e betweenthe new preorders and the old ones is the use of a�!C (
ombined transitions)instead of a�! (regular transitions) in Condition 2.Definition 14. A strong probabilisti
 bisimulation between two simple prob-abilisti
 automataM1 andM2 is an equivalen
e relationR over states(M1)[states(M2) su
h that(1) ea
h start state of M1 is related to at least one start state of M2, andvi
e versa;(2) for ea
h s1 R s2 and ea
h transition s1 a�! P1 of eitherM1, M2, thereexists a 
ombined transition s2 a�!C P2 of either M1, M2 su
h thatP1 �R P2.We write M1 'P M2 whenever a
ts(M1) = a
ts(M2) and there is a strongprobabilisti
 bisimulation between M1 and M2. 2Definition 15. A strong probabilisti
 simulation between two simple prob-abilisti
 automataM1 andM2 is a relationR� states(M1)�states(M2) su
hthat(1) ea
h start state of M1 is related to at least one start state of M2;(2) for ea
h s1 R s2 and ea
h transition s1 a�! (
1;F1; P1) of M1, thereexists a 
ombined transition s2 a�!C (
2;F2; P2) of M2 su
h that(
1;F1; P1) vR (
2;F2; P2).(3) for ea
h s1 R s2, if s2 a�!, then s1 a�!.We write M1 vSPS M2 whenever a
ts(M1) = a
ts(M2) and there is a strongprobabilisti
 simulation between M1 and M2. The kernel of strong proba-bilisti
 simulation is denoted by �SPS. 2Proposition 2. 'P and vSPS are 
ompositional. 2Theorem 4. Let M1 and M2 be two simple probabilisti
 automata, and letf be a PCTL formula.(1) If M1 'P M2, then M1 j= f i� M2 j= f .



18 SEGALA AND LYNCH(2) If M1 vSPS M2 and f does not 
ontain any o

urren
e of : and EUwp,then M2 j= f implies M1 j= f . 2Even strong probabilisti
 bisimulations and strong probabilisti
 simulationsare a generalization of the strong bisimulation and simulation relations ofordinary automata. In fa
t, if a transition of M1 leading to a Dira
 dis-tribution 
an be simulated by a 
ombined transition of M2, then the sametransition ofM1 
an be simulated by a non-
ombined transition ofM2, whi
hleads to a Dira
 distribution if we are dealing with ordinary automata.Remark 1. Strong probabilisti
 simulations provide us with a simple wayto represent the 
losed interval spe
i�
ation systems of [13℄. A probabilisti
spe
i�
ation system of [13℄ is a state ma
hine where ea
h state is asso
i-ated with a set of probability distributions over the next state. The set ofprobability distributions for a state s is spe
i�ed by asso
iating ea
h states0 with a set of probabilities that 
an be used from s. In our framework aspe
i�
ation stru
ture 
an be represented as a probabilisti
 automaton that,from ea
h state, enables one transition for ea
h one of the probability distri-butions over the next states that are allowed. A probabilisti
 pro
ess systemis a \fully probabilisti
" (in our terms) probabilisti
 spe
i�
ation system. Aprobabilisti
 pro
ess system P is said to satisfy a probabilisti
 spe
i�
ationsystem S if there exists a strong simulation from P to S.A 
losed interval spe
i�
ation system is a spe
i�
ation system whose setof probability distributions is des
ribed by means of a lower bound and anupper bound, for ea
h pair (s; s0), on the probability of rea
hing s0 from s.Thus, the set of probability distributions that are allowed from any stateform a polytope. By using our strong probabilisti
 simulation as satisfa
tionrelation, it is possible to represent ea
h polytope by means of its 
orners only.Any point within the polytope is given by a 
ombination of the 
orners. 26. Weak TransitionsThe relations of Se
tion 5 do not abstra
t from internal 
omputation, whilein pra
ti
e a notion of implementation should ignore the internal transitionsof a system as mu
h as possible. In order to do so, we extend our arrownotation in a way similar to the non-probabilisti
 
ase [22℄. We de�ne theweak arrows a=) and a=)C to state that a probability distribution overstates P is rea
hed through a sequen
e of transitions of M , some of whi
hare internal. The main di�eren
e from the non-probabilisti
 
ase is that inour framework the transitions involved form a tree rather than a linear 
hain.Formally, s a=) P, where a is either an external a
tion or the empty sequen
eand P is a probability distribution over states, i� there is a probabilisti
exe
ution fragment H su
h that(1) the start state of H is s;
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1/2Fig. 3: A representation of a weak transition with a
tion a.(2) PH [f�Æ j �Æ 2 
Hg℄ = 1, i.e., the probability of termination in H is 1;(3) for ea
h �Æ 2 
H , tra
e(�) = a;(4) 
 = flstate(�) j �Æ 2 
Hg, and for ea
h element s0 of 
, P [s0℄ =P�Æ2
H jlstate(�)=s0 PH [C�Æ ℄;(5) for ea
h state q of H, either trHq is the pair (lstate(q);D(Æ)), or thetransition that 
orresponds to trHq is a transition of M .A weak 
ombined transition, s a=)C P, is de�ned as a weak transition bydropping Condition 5.Example 3. The diagram of Figure 3 represents graphi
ally a weak transi-tion with a
tion a that leads to state s1 with probability 5=12 and to states2 with probability 7=12. We do not represent the states as �nite exe
u-tion fragments sin
e their position in the diagram gives enough information.Similarly, we do not represent Æ expli
itly. The a
tion � represents any in-ternal a
tion. From the formal de�nition of a weak transition, a tree thatrepresents a weak transition may have an in�nite bran
hing stru
ture, i.e.,it may have transitions that lead to 
ountably many states, and may havesome in�nite paths; however, ea
h tree representing a weak transition hasthe property that in�nite paths o

ur with probability 0. This de�nition ofa weak transition is more general than the de�nition given in [28℄, where itis required that no in�nite path appear in a weak transition.Figure 4 represents a weak transition of a probabilisti
 automaton with 
y-
les in its transition relation. Spe
i�
ally, H represents the weak transitions0 =) P, where P [s0℄ = 1=8 and P [s1℄ = 7=8. If we extend H inde�nitelyon its right, then we obtain a new probabilisti
 exe
ution fragment thatrepresents the weak transition s0 =) D(s1). Observe that the new proba-bilisti
 exe
ution fragment has an in�nite path that o

urs with probability0. Furthermore, observe that there is no other way to rea
h state s1 withprobability 1. 2
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y
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7. Weak RelationsIn this se
tion we study the weak versions of the relations of Se
tion 5, andwe show how they relate to WPCTL. We introdu
e only the probabilisti
version of ea
h relation, sin
e the others 
an be derived subsequently in astraightforward way. We start by presenting the natural extension of theprobabilisti
 relations of Se
tion 5; then, in order to preserve WPCTL, weintrodu
e a bran
hing version of the new relations using the basi
 idea ofbran
hing bisimulation [7℄.Weak probabilisti
 bisimulations and weak probabilisti
 simulations 
anbe de�ned in a straightforward manner by 
hanging Condition 2 of De�-nitions 14 and 15 so that ea
h transition s1 a�! P1 of a probabilisti
 au-tomaton 
an be simulated by a weak 
ombined transition s2 adext(M2)=)C P2 ofthe other probabilisti
 automaton, and by using weak transitions in Condi-tion 3. Even in this 
ase, with the opportune arguments about Condition 3,the weak probabilisti
 relations are an extension of the 
orresponding rela-tions for ordinary automata. However, although the two weak relations are
ompositional, WPCTL formulas are not preserved by weak bisimulationsand weak simulations. The key problem is that weakly bisimilar exe
utionsdo not satisfy the same formulas. Consider the diagram below.s0 R�
// s1 af1 // s2 �

// s3 �
// s4Rs00 a? // s01Sin
e s01 and s2 are not ne
essarily related, it is not possible to dedu
eM [(a; s01)℄ j= f1 from M [(a; s2)℄ j= f1. To solve the problem we need tomake sure that s01 and s2 are related, and thus we introdu
e the bran
hingversions of our weak relations.Definition 16. A bran
hing probabilisti
 bisimulation between two sim-ple probabilisti
 automata M1 and M2 is an equivalen
e relation R overstates(M1) [ states(M2) su
h that
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h start state of M1 is related to at least one start state of M2, andvi
e versa;(2) for ea
h s1 R s2 and ea
h transition s1 a�! P1 of eitherM1, M2, thereexists a weak 
ombined transition s2 adext(M2)=)C P2 of either M1, M2su
h that P1 �R P2 and s2 adext(M2)=)C P2 satis�es the bran
hing 
ondi-tion, i.e., there is a probabilisti
 exe
ution fragment H that representss2 adext(M2)=)C P2 su
h that for ea
h extended exe
ution �Æ of 
H andea
h o

urren
e of a state s in �, either(a) s1 R s, a 2 ext(M2) implies that a has not o

urred yet, andea
h state s0 pre
eding s in � satis�es s1 R s0, or(b) a 2 ext(M2) implies that a has o

urred, and for ea
h s01 2 
1su
h that s01 R lstate(�), s01 R s.We write M1 'P M2 whenever ext(M1) = ext(M2) and there is a bran
hingprobabilisti
 bisimulation between M1 and M2. 2Another way to state the bran
hing 
ondition is the following: there isa probabilisti
 exe
ution fragment H that represents s2 adext(M2)=)C P2 su
hthat, viewing H as a tree, all the the states of the tree that o

ur beforea
tion a are related to s1, and whenever a state s02 of 
2 is related to somestate s01 of 
1, then all the states in the path from s2 to s02 that o

ur aftera
tion a are related to s01 as well. In other words, ea
h 
omplete path in thetree satis�es the bran
hing 
ondition of [7℄.Definition 17. A bran
hing probabilisti
 simulation between two simpleprobabilisti
 automata M1 andM2 is a relationR� states(M1)�states(M2)su
h that(1) ea
h start state of M1 is related to at least one start state of M2;(2) for ea
h s1 R s2 and ea
h transition s1 a�! (
1;F1; P1) of M1, thereexists a weak 
ombined transition s2 adext(M2)=)C (
2;F2; P2) of M2 su
hthat (
1;F1; P1) vR (
2;F2; P2), and s2 adext(M2)=)C (
2;F2; P2) satis�esthe bran
hing 
ondition.(3) for ea
h s1 R s2, if s2 a=), then s1 a=).We write M1 vBPS M2 whenever ext(M1) = ext(M2) and there is a bran
h-ing probabilisti
 simulation between M1 and M2. The kernel of bran
hingprobabilisti
 simulation is denoted by �BPS. 2Proposition 3. 'P and vBPS are 
ompositional. 2To show that WPCTL formulas are preserved by the di�erent simulationrelations, we need to guarantee that a probabilisti
 automaton is free from
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es with probability 1. The de�nition below allows for a probabilis-ti
 automaton to exhibit in�nite internal 
omputation, but it requires thatsu
h a behavior 
an happen only with probability 0.Definition 18. A probabilisti
 automaton M is probabilisti
ally 
onver-gent if for ea
h probabilisti
 exe
ution H of M and ea
h state q of H, theprobability of diverging (performing in�nitely many internal a
tions and noexternal a
tions) from q is 0, i.e., PH [�q℄ = 0, where �q is the set of in�-nite exe
utions of H that pass through state q and that do not 
ontain anyexternal a
tion after passing through state q. Note that �q is measurablesin
e it is the 
omplement of a union of 
ones. 2Theorem 5. Let M1 and M2 be two probabilisti
ally 
onvergent, simpleprobabilisti
 automata, and f be a WPCTL formula.(1) If M1 'P M2, then M1 j= f i� M2 j= f .(2) If M1 vBPS M2 and f does not 
ontain any o

urren
e of : and EUwp,then M2 j= f implies M1 j= f .Proof sket
h. Similar to the proof of Proposition 3. Here the 
onstru
tionof H2 is mu
h more 
ompli
ated than in the proof of Proposition 3 due tothe fa
t that we need to 
ombine several weak transitions. Moreover, weneed to show that the bran
hing requirement guarantees the preservation ofproperties between bisimilar exe
utions. 28. Con
luding RemarksWe have extended some of the 
lassi
al simulation relations to a new prob-abilisti
 model that distinguishes naturally between probabilisti
 and non-deterministi
 
hoi
e and that allows us to represent naturally randomizedand/or restri
ted forms of s
heduling poli
ies. Our method of analysis isbased on 
ompositionality issues and preservation of PCTL and WPCTLformulas. Throughout the presentation we have shown how our relationsare a 
onservative extension of the 
orresponding relations de�ned on ordi-nary automata. We have observed that the distinguishing power of PCTLdoes not 
hange if we allow randomization in the s
hedulers. Based on that,we have introdu
ed a new 
olle
tion of relations whose main idea is that aprobabilisti
 automaton may 
ombine some of its transitions probabilisti-
ally in order to simulate another probabilisti
 automaton.In [27℄ this work is pursued further by extending the tra
e semanti
s ofordinary automata to the probabilisti
 framework. The key issue is 
ompo-sitionality, whi
h is not trivial to a
hieve. We show that all the simulationrelations of this paper are sound for the tra
e semanti
s, and we introdu
eother 
oarser simulation relations that 
apture the tra
e semanti
s better.



PROBABILISTIC SIMULATIONS 23A problem that is still open is to derive adequa
y results for PCTL andWPCTL. We do not know whether PCTL and WPCTL are adequate forour probabilisti
 simulation relations. In the non-probabilisti
 frameworkadequate logi
s for strong bisimulation are studied in [10℄, and adequatelogi
s for bran
hing bisimulation are studied in [23℄. An adequate logi
 forstrong bisimulation in the probabilisti
 framework is studied in [16℄; however,no nondeterminism is present in the formalism of [16℄.If PCTL and WPCTL are not adequate, then further resear
h shouldfo
us either on �nding adequate logi
s (what other operators do we need?)or �nding more appropriate simulation relations. An important questionis to determine whether WPCTL is suÆ
iently powerful to express all theproperties of pra
ti
al interest.A
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