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Abstract. Several probabilistic simulation relations for probabilistic systems are
defined and evaluated according to two criteria: compositionality and preserva-
tion of “interesting” properties. Here, the interesting properties of a system are
identified with those that are expressible in an untimed version of the Timed Prob-
abilistic concurrent Computation Tree Logic (TPCTL) of Hansson. The definitions
are made, and the evaluations carried out, in terms of a general labeled transition
system model for concurrent probabilistic computation. The results cover weak sim-
ulations, which abstract from internal computation, as well as strong simulations,
which do not.

1. Introduction

Randomization has been shown to be a useful tool for the solution of prob-
lems in distributed systems [2,3,15]. In order to support reasoning about
probabilistic distributed systems, many researchers have recently focused on
the study of models and methods for the analysis of such systems [4, 6, 8, 26,
29,30]. The general approach that is taken is to extend to the probabilistic
setting those models and methods that have already proved successful for
non-probabilistic distributed systems.

In the non-probabilistic setting, labeled transition systems have become
well accepted as a basis for formal specification and verification of concur-
rent and distributed systems. (See, e.g., [21,22].) A transition system is
an abstract machine that represents either an implementation (i.e., a phys-
ical device or software system), or a specification (i.e., a description of the
required properties of an implementation). In order to extend labeled tran-
sition systems to the probabilistic setting, the main addition that is needed
is some mechanism for representing probabilistic choices as well as nonde-
terministic choices [8, 26, 30].

In the non-probabilistic setting, there are two principal methods that are
used for analyzing labeled transition systems: temporal logic (e.g. [25]),
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which is used to establish that a system satisfies certain properties, and
equivalence or preorder relations (e.g., [9, 21, 22,24]), which are used to es-
tablish that one system “implements” another, according to some notion of
implementation. Each equivalence or preorder preserves some of the proper-
ties of a system, and thus the use of a relation as a notion of implementation
means that we are interested only in the properties that such a relation pre-
serves.

Among the equivalences and preorders that have proved most useful are
the class of simulation relations, which establish step-by-step correspon-
dences between two systems. Bisimulation relations are two-directional re-
lations that have proved fundamental in the process algebraic setting. Uni-
directional simulations, such as refinement mappings and forward simula-
tions, have turned out to be quite successful in formal verification of non-
probabilistic distributed systems [12, 20, 21]. Thus, it is highly desirable to
extend the use of simulations to the probabilistic setting.

In this paper, we define several extensions of the classical bisimulation and
simulation relations (both in their strong and weak versions), to the proba-
bilistic setting. There are many possible extensions that could be made; it is
important to evaluate the various possibilities according to objective crite-
ria. We use two criteria: compositionality and preservation of “interesting”
properties. The first requirement, compositionality, is widely accepted since
it forms the basis of many modular verification techniques.

To make sense of the second requirement, it is necessary to be specific
about what is meant by an “interesting” property. Here, we identify the
interesting properties of a system with those that are expressible in an un-
timed version (PCTL) of the Timed Probabilistic concurrent Computation
Tree Logic (TPCTL) of Hansson [8]; as discussed in [8], this logic is suf-
ficiently powerful to represent most of the properties of practical interest.
Thus, our second evaluation criterion is based on the types of PCTL for-
mulas that a relation preserves. For the weak relations, i.e., the ones that
abstract from internal computation, we use a new version of PCTL, called
WPCTL, which abstracts from internal computation as well.

We define and evaluate our simulation relations in terms of a new general
labeled transition system model for concurrent probabilistic computation,
which borrows ideas from [8,30]. The model distinguishes between prob-
abilistic and nondeterministic choices but, unlike the Concurrent Markov
Chains of [8,30], does not distinguish between probabilistic and nondeter-
ministic states. A probabilistic automaton is a labeled transition system
whose transition relation is a set of pairs (s,P), where P is a discrete prob-
ability distribution over (action, state) pairs and a special symbol ¢, rep-
resenting deadlock. If the distribution P is only over pairs with the same
action, then a transition is called simple and can be denoted by s — P/,
where P’ is a discrete probability distribution over states. The separation
between nondeterministic and probabilistic behavior is achieved by means
of adversaries (or schedulers), that, similar to [8, 26, 30], choose a next tran-
sition to schedule based on the past history of the automaton. In our case,
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differently from [8, 26, 30], we allow an adversary to choose the next transi-
tion randomly. Indeed, an external environment that provides some input
essentially behaves like a randomized adversary.

Our first major result is that randomized adversaries do not change the
distinguishing power of PCTL and WPCTL. Intuitively, the main reason
for this result is that PCTL and WPCTL are concerned with probability
bounds rather than exact probabilities.

We then redefine the strong bisimulation relation of [16] in terms of our
model, and also define a strong simulation relation that generalizes the sim-
ulation relation of [13], strengthening it a bit so that some liveness is pre-
served. We show that strong simulation preserves PCTL formulas without
negation and existential quantification. Next, we generalize the strong rela-
tions by making them insensitive to probabilistic combination of transitions,
i.e., by allowing probabilistic combination of several transitions in order to
simulate a single transition. The motivation for this generalization is that
the combination of transitions corresponds to the ability of an adversary to
choose the next transition probabilistically. Our second main result is that
the new relations, called strong probabilistic bisimulation and strong proba-
bilistic simulation, are still compositional and preserve PCTL formulas and
PCTL formulas without negation and existential quantification, respectively.

Similar to the strong case, we define new relations that abstract from
internal computation and we show that they preserve WPCTL. However,
the straightforward generalization of the strong probabilistic relations, al-
though compositional, does not guarantee that WPCTL is preserved. For
this reason we introduce two other relations, called branching probabilis-
tic bistmulation and branching probabilistic simulation, which impose new
restrictions similar to those of branching bisimulation [7]. Our third main re-
sult is that branching probabilistic bisimulation and branching probabilistic
simulation are compositional and preserve WPCTL formulas and WPCTL
formulas without negation and existential quantification, respectively, up to
a condition about divergences.

The rest of the paper is organized as follows. Section 2 defines the standard
automata of non-probabilistic systems; Section 3 introduces our probabilistic
model; Section 4 introduces PCTL, defines its semantics in terms of our
model, and shows that the distinguishing power of PCTL does not change by
using randomized adversaries; Sections 5, 6 and 7 study the strong and weak
relations on our probabilistic model, and show how they preserve PCTL
formulas; Section 8 contains some concluding remarks and further work.

2. Automata

An automaton A consists of four components: a set states(A) of states,
a nonempty set start(A) C states(A) of start states, an action signature
sig(A) = (ext(A),int(A)) where ext(A) and int(A) are disjoint sets of ex-
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ternal and internal actions, respectively, and a transition relation trans(A) C
states(A) x acts(A) x states(A), where acts(A) denotes the set ext(A)Uint(A)
of actions. Thus, an automaton is a state machine with labeled transitions.
Its action signature describes the interface with the external environment
by specifying which actions model events that are visible from the external
environment and which ones model internal events.

An ezecution fragment « of an automaton A is a (finite or infinite) se-
quence of alternating states and actions starting with a state and, if the
execution fragment is finite, ending in a state, a = sga1s1a292 -+, where
each (sj,ai41,8i+1) is a transition of A. Denote by fstate(a) the first state
of a and, if « is finite, denote by Istate(a) the last state of a. Further-
more, denote by frag*(A) and frag(A) the sets of finite and all execution
fragments of A, respectively. An execution is an execution fragment whose
first state is a start state. Denote by ezec*(A) and ezec(A) the sets of finite
and all executions of A, respectively. A state s of A is reachable if there
exists a finite execution of A that ends in s. A finite execution fragment
Q1 = 500151 - apSy Of A and an execution fragment as = spGp415p+1 -
of A can be concatenated. In this case the concatenation, written o ~ayg, is
the execution fragment spa1s; - - - ApSpGn415n+1 - -+ An execution fragment
a1 of A is a prefiz of an execution fragment ao of A, written a1 < ag, if
either a; = ay or « is finite and there exists an execution fragment «} of
A such that as = a1 ~af.

3. The Basic Probabilistic Model

3.1 Probability Spaces

Most of our definitions rely on the notion of a probability space, which is
used to denote which events can be observed and what are their probabilities.

A probability space is a triplet (2, F, P) where Q is a set, F is a collection
of subsets of Q that is closed under complement and countable union and
such that Q@ € F, and P is a function from F to [0,1] such that P[] =1
and for any collection {C;}; of at most countably many pairwise disjoint
elements of F, P[U;C;] = ), P[Cj].

The set  is called the sample space and contains the objects that we
want to analyze. For example Q = [0, 1]. The set F is called the o-algebra
and contains the subsets of {2 that we can measure, also called events. For
example F can be the set of measurable sets of [0, 1] according to Lebesgue.
Finally, P is called the probability measure and is a function that associates a
measure with each element of F. For example, P can associate each element
of F with its Lebesgue measure.

A probability space (Q,F, P) is discrete if F = 22 and for each C C ,
PC] = > ,cc P{z}]. It is immediate to verify that for every discrete
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probability space there are at most countably many points with a non-zero
probability measure. Given a set X, we denote by Probs(X) the set of
discrete probability spaces (€2, F, P) whose sample space €2 is a subset of X.

The Dirac distribution over an element x, denoted by D(z), is the proba-
bility space with a unique element z.

Throughout the paper we denote a probability space (2, F, P) by P. As
a notational convention, if P is decorated with indices and primes, then the
same indices and primes carry to its elements. Thus, P, denotes (2, F/, P/).

The product of two discrete probability spaces (21, F1, Py) and (Q9, Fa, P2),
denoted by (1, F1, P1)®(Q2, Fa, P»), is the discrete probability space (21 X
Qo, 2QIXQ2,P), where P[(LCl, LCQ)] =P [ZEl]PQ[LCQ] for each (.’El, .’Eg) € O x Q.
In other words, the product of two discrete probability spaces P, P2 is a
new probability space that describes the operation of picking an element at
random from P; and P, independently.

3.2 Probabilistic Automata

DEFINITION 1. A probabilistic automaton M consists of four components:
a set states(M) of states, a nonempty set start(M) C states(M) of start
states, an action signature sig(M) = (ext(M), int(M)) where ext(M) and
int(M) are disjoint sets of external and internal actions, respectively, and a
transition relation

trans (M) C states(M) x Probs((acts(M) x states(M)) U {d}),

where acts(M) denotes the set ext(M) U int(M) of actions.

A probabilistic automaton M is simple if for each transition (s, P) of
trans(M) there is an action a of acts(M) such that 2 C {a} x states(M). In
such a case a transition can be represented alternatively as (s, a,P’) where
P’ € Probs(states(M)), and it is called a simple transition with action a.

A probabilistic automaton is fully probabilistic if it has a unique start state
and from each state there is at most one transition enabled. O

Thus a probabilistic automaton differs from an automaton in that the action
and the next state of a given transition are chosen probabilistically. The
symbol § that can appear in the sample space of each transition represents
those situations where a system deadlocks. Thus, for example, it is possible
that from a state s a probabilistic automaton performs some action with
probability p and deadlocks with probability 1 — p.

A simple probabilistic automaton does not allow any kind of probabilistic
choice on actions. Once a transition is chosen, then the next action is
determined and the next state is given by a random distribution.

A fully probabilistic automaton is a probabilistic automaton without non-
determinism; at each point only one transition can be chosen.
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An ordinary automaton is a special case of a probabilistic automaton where
each transition leads to a Dirac distribution; the generative model of prob-
abilistic processes of [6] is a special case of a fully probabilistic automaton;
simple probabilistic automata are partially captured by the reactive model
of [6] in the sense that the reactive model assumes some form of nonde-
terminism between different actions. However, the reactive model does not
allow nondeterministic choices between transitions involving the same ac-
tion. By restricting simple probabilistic automata to have finitely many
states, we obtain objects with a structure similar to that of the Concurrent
Labeled Markov Chains of [8]; however, in our model we do not need to
distinguish between nondeterministic and probabilistic states. In our model
nondeterminism is obtained by means of the structure of the transition re-
lation. This allows us to retain most of the traditional notation that is used
for automata.

DEFINITION 2. An ezxecution fragment a of a probabilistic automaton M
is a (finite or infinite) sequence of alternating states and actions starting
with a state and, if the execution fragment is finite, ending in a state,
a = Spa1S1a282---, where for each ¢ there exists a probability space P
such that (s;, P) € trans(M) and (a;4+1, si+1) € Q. Denote by frag*(M) and
frag(M) the sets of finite and all executions fragments of M, respectively.
An execution is an execution fragment whose first state is a start state. De-
note by ezec* (M) and exec(M) the sets of finite and all executions of M,
respectively.

An extended execution (fragment) of M is either an execution fragment
of M, or a sequence a = Spai81---a,Syd such that spaisi---ays, is an
execution (fragment) of M. O

Even though we have defined executions for a probabilistic automaton, for
the study of the probabilistic behavior of a probabilistic automaton, some
more detailed structure is needed. Such a structure, which we call a proba-
bilistic execution, is introduced in Section 3.3.

The next definition shows how it is possible to combine several transi-
tions of a probabilistic automaton into a new one. Informally, a combined
transition leaving from a state s is obtained by choosing a transition that
leaves from s probabilistically, and then behaving according to the transition
chosen. Combined transitions play a fundamental role for the definition of
probabilistic adversaries and the definition of our probabilistic simulations.

DEFINITION 3. Given a probabilistic automaton M, a finite or countable
set {P;}; of probability distributions of Probs((acts(M) x states(M))U{d}),
and a weight p; > 0 for each ¢ such that ), p; < 1, the combination ), p;P;
of the distributions {P;}; is the probability space P such that
oQ:{UiQi ifzipi=1
U 2; U {5} if Eipi <1
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o F=2%

o for each (a,s) € Q, Pl(a,s)] = > yij(a,5)e0,} Pilil(a; 8)]

o if § € Q, then P[] = (1 =32, pi) + X gij5c0,) Pilil0]-
A pair (s,P) is a combined transition of M if there exists a finite or count-
able family of transitions {(s,P;)}; and a set of positive weights {p;}; with

> i pi < 1,such that P =), p;P;. Denote by ctrans (M) the set of combined
transitions of M. O

For notational convenience we write s —— P whenever there is a simple
transition (s, a,P) in M, and we write s —s¢ P whenever there is a simple
combined transition (s,a,P) in M. We write s — whenever there exists a
probability space P such that s — P.

We now turn to the parallel composition operator, which is defined in
the CSP style [11], i.e., by synchronizing two automata on their common
actions. As outlined in [8], it is not clear how to define a parallel composition
operator for general probabilistic automata that extends the CSP operator of
ordinary automata; thus, we only define it for simple probabilistic automata.

DEFINITION 4. Two simple probabilistic automata M; and M, are compat-
ible if
(1) int(My) N acts(M3) = 0, and
(2) int(Ms2) N acts(My) = 0.
The parallel composition M||Ms of compatible simple probabilistic au-
tomata M; and M, is the simple probabilistic automaton M such that
(1) states(M) = states(My) x states(Ms)
start (M) = start(My) x start(Ms)
ext(M) = ext(My) U ext(My)
int(M) = int(My) U int(Ma2)
((s1,82),a,P) € trans(M) iff P = P; ® Po, such that

(a) if a € acts(M;) then (s1,a,P1) € trans(My), else Py = D(s1),
and
(b) if a € acts(My) then (s2,a,Ps) € trans(Ms), else Py = D(s2). O

Our analysis in this paper will focus on simple probabilistic automata, and
we use general probabilistic automata only for the analysis of probabilistic
schedulers. Several systems can be described as simple probabilistic au-
tomata. A probabilistic Turing Machine where we assume that each cell
of the random tape is instantiated when it is read for the first time is a
simple probabilistic automaton with a unique action, say 7, whose states
are the instantaneous descriptions of the given machine; an algorithm that
at some point can flip a coin or roll a dice can be represented as a simple
probabilistic automaton where the flipping and rolling operations are sim-
ple transitions. If the outcome of a coin flip or dice roll affects the external
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behavior of the automaton, then the flip and roll actions can be followed
by simple transitions whose actions represent the outcome of the random
choice. We emphasize that if we introduce an input/output distinction as
in [20], then it is possible to compose general probabilistic automata under
the conditions that their input actions appear only in simple transitions. A
similar observation appears in [31].

3.3 Schedulers and Adversaries

Several papers in the literature use schedulers, sometimes viewed as ad-
versarial entities, to resolve the nondeterminism in probabilistic systems
[5,8,17,30]. An adversary (or scheduler) is an object that schedules the
next transition based on the past history of a probabilistic automaton. The
next transition can be chosen probabilistically.

DEFINITION 5. An adversary for a probabilistic automaton M is a function
A taking a finite execution fragment « of M and returning a combined
transition of M that leaves from Istate(«). Formally, A : frag*(M) —
ctrans(M) such that if A(«a) = (s,P), then s = Istate(a). An adversary
is deterministic if on input « it returns either transitions of M or the pair
(Istate(c), D(0)), i.e., the next transition is chosen deterministically. Denote
the set of adversaries for a probabilistic automaton M by Advs(M). O

Observe that d can appear in the combined transitions chosen by an adver-
sary. Such an option is useful when the actions enabled from some state
are meant to model input from the external environment and the adversary
plays the role of an environment that is not providing any input.

DEFINITION 6. An adversary schema for a probabilistic automaton M, de-
noted by Advs, is a subset of Advs(M). If Advs is a proper subset of
Advs(M) then Advs is a restricted adversary schema, otherwise Advs is
a full adversary schema. O

Adversary schemas are used to reduce the power of a class of adversaries.
Note, for example, that the set of deterministic adversaries is an example of
a restricted adversary schema whenever M is not fully probabilistic. Other
examples of restricted adversary schemas are sets of adversaries that base
their choices only on partial knowledge of the past history. We refer the
reader to [1,19] for examples of analysis of distributed algorithms based on
restricted adversary schemas.

In this paper, in order to guarantee some minimal liveness, we impose a
different restriction on our adversaries. Specifically, we denote by Padvs(M)
the adversary schema where each adversary can choose J with a non-zero
probability on input « iff there is no transition enabled in M from Istate(c),
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and we denote by Dadvs(M ) the set of deterministic adversaries of Padvs(M).
In other words, our adversaries must schedule something whenever some-
thing can be scheduled.

We next define what it means for a probabilistic automaton to run under
the control of an adversary. Namely, suppose that M has already performed
some finite execution fragment « and that an adversary A starts resolving
the nondeterminism at that point. The result of the interaction between
M and A is a fully probabilistic automaton, called a probabilistic execution,
where at each point the only transition enabled is the transition due to the
choice of \A. A similar construction appears in [30]. Unfortunately, the
definition of a probabilistic execution is not simple since each state contains
the past history of M.

DEFINITION 7. A probabilistic execution fragment H of a probabilistic au-
tomaton M is a fully probabilistic automaton such that
(1) states(H) C frag™(M).
(2) for each transition (a,P) of H there exists a combined transition
(Istate(c), P") of M, called the corresponding combined transition,
such that

Q' = {(a,s)|(a,xas) € Q} U ({6} N Q), and
P'[(a, s)] = Pl(a, aas)]
for each (a,s) € Q. If ¢ = Istate(a), then denote P by P;I and denote
(a,P) by trl.
(3) each state of H is reachable and enables one transition.

A probabilistic execution of M is a probabilistic execution fragment of M
whose start state is a start state of M. O

Condition (1) says that the states of a probabilistic execution H contain
the past history of M; Condition (2) ensures that the transitions of H are
derived from transitions of M by including the history in the new states
that are reached; Condition (3) is just technical to eliminate useless states
and to handle ¢ uniformly. Observe that a state ¢ may enable a transition
(4, D(5)).

Now we can define formally what it means for a probabilistic automaton
M to run under the control of an adversary A.

DEFINITION 8. Given a probabilistic automaton M, an adversary A for M,
and a finite execution fragment « of M, the execution H(M, A, «a) of M
under adversary A with starting fragment « is the unique probabilistic exe-
cution fragment of M whose start state is a and such that for each state ¢,
if (¢,P) € trans(H(M, A, a)), then the corresponding combined transition
of (¢q,P) is A(q). O



10 SEGALA AND LYNCH

3.4 FEvents

We define a probability space (2, Fr, Py ) for each probabilistic execution
fragment H, so that it is possible to analyze the probabilistic behavior of
a probabilistic automaton once the nondeterminism is removed. This con-
struction is slightly different from the construction presented in [28].

First of all, we observe that there is a strong correspondence between the
extended execution fragments of a probabilistic automaton and the extended
executions of one of its probabilistic execution fragments. We express this
correspondence by means of an operator aTqéq that takes an extended exe-
cution fragment of M and gives back the corresponding extended execution
of H, and «l that takes an extended execution of H and gives back the
corresponding extended execution fragment of M.

Then, the sample space 2y can be defined as the set of extended exe-
cutions of M that correspond to complete extended execution fragments
of H, where an extended execution « of H is complete iff it is either in-

finite or @« = &/d and § € Qfslmte(a,). For each finite extended execu-

tion fragment « of M, let C,, the cone with prefix «, be the set {a' €
Qp | @« < '}, and let Cy be the class of cones for H. The probability
pp (Cy) of the cone C, is the product of the probabilities associated with

each edge that generates « in H. Formally, let gy be the start state of H,

and let so be Istate(qp). If @ = qo~Spa151 -+ Sp—1apSy, then py(Cy) 2

qu;[[(al, q)] - qu,{,l [(@n, qn)], where each g; is gg~spa1 sy - - - aisi, and if @ =

Q0~50a1q1 ** * Gn—1anqnd, then ppr (Cy) = Pill(a1,q)] - Pyl [(an, gu)1P,110],
where each ¢; is defined as before. In [27] it is shown that there is a unique
measure iy that extends py to the o-field o(Cy) generated by Cy, i.e.,
the smallest o-field that contains Cp. Fp is then obtained from o(Cp)
by extending each event with any set of extended executions taken from 0-
probability cones, and Py is obtained by extending iy to Fp in the obvious
way. With this definition it is possible to show that any union of cones (even
uncountable) is measurable. In fact, at most countably many cones have a
non-zero measure.

Examples of events are the occurrence of a specific finite execution «, which
is Cg, and the occurrence of a specific action a, which can be represented
as the union of cones C,, such that action a occurs in .

In our analysis of probabilistic automata we are not interested in events for
specific probabilistic executions. Whenever we want to express a property,
we want to express it relative to any probabilistic execution. This is the
purpose of event schemas.

DEFINITION 9. An event schema e for a probabilistic automaton M is a
function that associates an event of Fy with each probabilistic execution
fragment H of M. O

An example of an event schema is the function that associates with each
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probabilistic execution fragment H the event of performing a specific action
a.

4. Probabilistic Computation Tree Logic

In this section we present the logic that is used for our analysis, and we
give it a semantics based on our model. It is a simplification of the Tumed
Probabilistic concurrent Computation Tree Logic (TPCTL) of [8], where,
unlike in [8], we do not consider time issues. Then, we show that randomized
adversaries do not change the distinguishing power of the logic.

Counsider a set of actions ranged over by a. The syntax of PCTL formulas
is defined as follows:

fou=a|=flinfe| TASf
fir EUsp fo | [1 AUsp fo | f1 EUsp fo| fr AUy fo

Informally, the atomic formula ¢ means that action ¢ is the only one that
can occur during the first transition of a probabilistic automaton and that
action ¢ must indeed occur; the formula JAf means that f is valid for a
probabilistic automaton M after making the first transition invisible; the
formula f; EU>, f means that there exists an adversary such that the
probability of f2 eventually holding and f; holding till fo holds is at least
p; the formula fi AU, f2 means that the same property as above is valid
for each adversary. For example, the property that under any scheduling
policy action a occurs eventually with probability at least 1/2 is expressed
by the formula {rue AU, 9 a, where true can be expressed by the formula
—(aA—a). For the formal semantics of PCTL we need two auxiliary operators
on probabilistic automata.

Let M be a probabilistic automaton, a an action of M, and s a state of
M. Then M|(a, s)] is a probabilistic automaton obtained from M by adding
a new state s’, adding a new transition (s', a, D(s)), and making s’ into the
unique start state. In other words M|(a, s)] forces M to start with action a
and then reach state s. .

Let M be a probabilistic automaton. Then M is obtained from M by
adding a duplicate of each start state, by making the duplicate states into
the new start states, and, for each transition s — P of M where s is a start
state, by adding a transition s’ — P from the duplicate s’ of s, where 7 is
an internal action that cannot occur in any PCTL formula. In other words

j\} makes sure that the first transition of M is invisible.

Let M be a probabilistic automaton, and let o be an extended execution
of M. Let J denote either > or >. Let an execution « of M be complete
iff either it is infinite or it is finite and no transition is enabled in M from
Istate(a). Then we define the satisfaction relations M = f and « |=ps g as
follows
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ME=a iff each complete execution of M
starts with action a,
M = —f iff not M |= f,
M|:f1/\f2 iffM|:f1andM):f2,
abE=y LU fo iff there is n > 0 such that « = spaisy - - aps,~,

for each i,1 <i < n, M|(ai,s;)] = fi,
and_}M[(an,sn)] = fo,

M= JAf iff M= f,

M = fi EUSp fo  iff there exists an adversary A and a start state sg
such that PH[eflUfz (H)] I p,
where H = H(M, A, so), and e, 7, (H) is the set of
elements o of Qp such that o |=p f1 U fo,

M |= f1 AU, fo  iff for each adversary A and each start state s,
PH[eflUfz (H)] 3 p,
where H = H(M, A, s0), and ey, s, (H) is the set of
elements o of Qy such that o' =y f1 U fo.

Note that for each probabilistic execution H the set ey s, (H) can be ex-
pressed as a union of cones, and thus it is an element of F. This guarantees
that the semantics of PCTL is well defined.

In the definition above we did not mention explicitly what kind of ad-
versaries to consider for the validity of a formula. In [8] the adversaries
are assumed to be deterministic. However, the semantics does not change
by adding randomization to the adversaries. The intuitive justification of
this claim is that if we are just interested in upper and lower bounds to
the probability of some event, then any probabilistic combination of events
stays within the bounds. Moreover, deterministic adversaries are sufficient
to observe the bounds.

THEOREM 1. For each probabilistic automaton M and each PCTL formula
f, M = f relative to Dadvs(M) iff M |= f relative to Padvs(M).

Proof sketch. The proof is by induction on the structure of the formula
f, and most of it is simple routine checking. Two critical points are the
following: if M |= fi EU5, fo relative to randomized adversaries, then
we need to make sure that there exists at least a deterministic adversary
that can be used to satisfy fi EUg, fo; if M = fi AUy fo relative to
deterministic adversaries, then we need to make sure that no probabilistic
adversary would lead to a violation of f; AUz, f2. In both cases the idea
is to convert a probabilistic adversary A for a probabilistic automaton M
into a deterministic one such that the probability of ef, ¢, is increased (first
case) or decreased (second case). The conversion is shown in [27]. O

We now show how to change the syntax and semantics of PCTL to ab-
stract from internal computation. The new logic is denoted by WPCTL.
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The syntax of WPCTL is the same as that of PCTL with the additional re-
quirement that no internal action can occur in a formula. For the semantics
of WPCTL, there are three main changes.

MEa iff each complete extended execution of M has at least
one external action, and its first external action is a,

a by f1U fo o iff there exists n > 0 such that « = spaisy -+ - ap s~/
ap is external, M[(an, sp)] = f2, and for
each i,1 <1i < n, if a; is external, then M{(a;, s;)] = f1,

MEJAf it Mk f,

where ]\7 hides the first external transitions of M, i.e., it is obtained from
M by duplicating all its states (and then removing the non-reachable ones
at the end), by making the duplicates of the old start states into the new
start states, by reproducing all the internal transitions in the duplicated
states, and, for each external transition (s, a,P) of M, by adding an internal
transition (s’,7,P) from the duplicate s’ of s, where 7 is a new internal
action. Note that the satisfaction relation for an execution is defined solely
in terms of its external transitions.

THEOREM 2. For each probabilistic automaton M and each WPCTL for-
mula f, M = f relative to Dadvs(M) iff M |= f relative to Padvs(M).

5. Strong Relations

In this section we analyze relations that are sensitive to internal compu-
tation. We formalize in our model the bisimulations of [16] (strong bisim-
ulation) following the lines of [8], and the simulations of [13,16] (strong
simulation); then, we show that strong bisimulation preserves PCTL and
that strong simulation preserves PCTL formulas that do not contain nega-
tion and EUo,. We then introduce two other coarser relations that allow
probabilistic combination of transitions and continue to preserve PCTL for-
mulas and PCTL formulas without negation and EU 5, respectively. For
convenience, throughout the rest of this paper we assume that no pair of
probabilistic automata has any state in common.

DEFINITION 10. Let R be an equivalence relation over a set X. Two prob-
ability spaces (1, F1, P1) and (Qg2,F2, P2) of Probs(X) are R-equivalent,
written (Q1, F1, P1) =g (Q2, Fa, P»), iff for every class C of X/ R,

> Plzl= > Pz
zeQ NC zeQNC

In other words (€21, F1, P1) and (Qq9, Fo, P») are R-equivalent if they assign
the same probability measure to each equivalence class of R. O
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DEFINITION 11. A strong bisimulation between two simple probabilistic au-
tomata My and Ms is an equivalence relation R over states(Mi)U states(Ms)
such that

(1) each start state of M, is related to at least one start state of Ms, and
vice versa;

(2) for each s; R sy and each transition s; -5 P, of either My, My, there
exists a transition sy — Py of either My, My such that P; =r Ps.

We write My ~ My whenever acts(My1) = acts(Ms) and there is a strong
bisimulation between M7 and Ms. O

Condition 2 of Definition 11 is stated in [16] in a different but equivalent
way, i.e., for each equivalence class [z] of R, the probabilities of reaching
[z] from s; and sy are the same. Strong bisimulation coincides with the
strong bisimulation of [22, 24] whenever the involved probabilistic automata
represent ordinary automata.

The next definition is used to introduce strong simulations. A similar
definition appears in [13]. Informally, (2,71, P1) Cr (2, F2, P,) means
that there is a way to split the probabilities of the states of {21 between the
states of Q9 and vice versa, expressed by a function w, so that the relation
R is preserved. In other words the left probability space can be embedded
into the right one up to R.

DEFINITION 12. Let RC X X Y be a relation between two set X,Y, and
let (21, F1, P1) and (Q9, F2, P2) be two probability spaces of Probs(X) and
Probs(Y'), respectively. Then (Qq,F;, Py) and (Q9, Fy, P2) are in relation
Cr, written (Q,F1,P1) Cr (Qo, Fa, P»), iff there exists a function w :
X xY — [0,1] such that

(1) foreach z € X, 3° oy w(z,y) = Pi[z],
(2) for each Y€ Y7 erXUJ(.’L‘,y) = PZ[y]a
(3) for each (z,y) € X x Y, if w(z,y) > 0 then x R y.

The function w is called a weight function. O

DEFINITION 13. A strong simulation between two simple probabilistic au-
tomata My and M, is a relation RC states(My) X states(Mz) such that

(1) each start state of M is related to at least one start state of Moy;

(2) for each s; R s2 and each transition s; %5 Py of My, there exists a
transition sy — Py of My such that P Er Po.

(3) for each s1 R sg, if s9 5, then s; —.
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We write My Cgs My whenever acts(My) = acts(Mz) and there is a strong
simulation between M7 and M. The kernel of strong simulation is denoted
by =gg. O

If we do not include Condition 3 in the definition of a strong simulation,
then we obtain a relation that extends the strong simulation relation of
ordinary automata. Here we add Condition 3 to guarantee some minimum
liveness requirements, thus extending the 2/3-bisimulation relation of [16].
Condition 3 is fundamental for the preservation of PCTL formulas; however
it can be relaxed by requiring s; to enable some transition whenever s
enables some transition.

PROPOSITION 1. ~ and Cgs are compositional. That s, for each My and
My such that acts(My) = acts(Mz), and for each Ms compatible with both
My and My, if My ~ My, then M| M3 ~ Ms||Ms, and if My Css Mo, then
M| M3 Ess Mz||M3. O

LEMMA 1. Let X,Y be two disjoint sets, R be an equivalence relation on
X UY, and let Py and P2 be probability spaces of Probs(X) and Probs(Y),
respectively, such that Py =g Po. Then Py Cgre Po, where R'=RNX xY.

Lemma 1 can be used to prove directly that bisimulation is finer than simu-
lation. The same observation applies to all the other pairs of relations that
we define in this paper.

THEOREM 3. Let M and My be two simple probabilistic automata, and let
f be a PCTL formula.

(1) IfMl >~ MQ, then M1 |: f ZﬁMg |: f

(2) If My Css My and f does not contain any occurrence of - and EU 5y,
then My |= f implies My = f.

Proof sketch. The proofs are by induction on the structure of f, where
the nontrivial step is the analysis of fi AU, f2 and fi EUS, fo. In the
first case it is enough to show that for each probabilistic execution H; of
M, obtainable from some adversary there exists a probabilistic execution
Hy of My, obtainable from some adversary, such that Pg,ef v, (H2)] <
Py, lef vy, (Hy)]. Inthe second case we need to make sure that Py, (e, vy, (H2)] =
P, lequp(H)

The probabilistic execution Hs is built by reproducing the structure of H;
via R. We also need to ensure that Hy is obtainable from some adversary,
and for this part we need Condition 3 of Definition 13. Indeed, if § occurs
in a transition enabled from a state g of Hs, then there is some state ¢’ of
H; that corresponds to g via R and that contains ¢ in the transition that it
enables. Then, Istate(q') does not enable any transition in My, which, using
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Fig. 2: Probabilistic combination of transitions is useful.

Condition 3, means that [state(q) does not enable any transition in My. We
do not need to show that Hs can be generated by a deterministic adversary
(indeed this is false in general) because of Theorem 1. The correspondence
between H| and H, is called an execution correspondence structure and it is
shown to exist in [27]. Once an execution correspondence structure is built,
it is easy to show that Pg,[ef, v, (H2)] < Pm,lenuy, (Hi)] if R is a strong
simulation, and that Ppy,lef,vs,(H2)] = Pu,lefus,(Hi)] if R is a strong
bisimulation. O

ExAMPLE 1. PCTL formulas with occurrences of EU—, are not preserved
in general by =gg. Counsider the two simple probabilistic automata of Fig-
ure 1. The two probabilistic automata are strong simulation equivalent by
matching each s; with s and by matching so, sg, $7, S10 to s}, sh, sh, s, re-
spectively. However, the right probabilistic automaton satisfies true AU >y
(aA(true EU>y /9 c)), whereas the left probabilistic automaton does not. O

ExampLE 2. Consider the two probabilistic automata of Figure 2, where
S0, s are the start states, sj,s] enable some transition with action b, and
$2, 8, enable some transition with action ¢. The difference between the left
and right probabilistic automata is that the right probabilistic automaton
enables an additional transition which is obtained by combining the two
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transitions of the left probabilistic automaton. Thus, the two probabilistic
automata satisfy the same PCTL formulas; however, there is no simula-
tion from the right probabilistic automaton to the left one since the middle
transition cannot be reproduced. O

Example 2 suggests two coarser relations where it is possible to combine
several transitions into a unique one. Note that the only difference between
the new preorders and the old ones is the use of —“+¢ (combined transitions)

instead of — (regular transitions) in Condition 2.

DEFINITION 14. A strong probabilistic bisimulation between two simple prob-
abilistic automata M; and My is an equivalence relation R over states(M;)U
states(Ms) such that

(1) each start state of M; is related to at least one start state of My, and
vice versa;
(2) for each s; R sy and each transition s; 5 P, of either My, My, there
exists a combined transition sy —¢ Ps of either My, M5 such that
P =r Ps.
We write My ~p My whenever acts(M;) = acts(Ms) and there is a strong
probabilistic bisimulation between M; and Ms. O

DEFINITION 15. A strong probabilistic simulation between two simple prob-
abilistic automata M; and My is a relation RC states(My) x states(Ms) such
that

(1) each start state of M is related to at least one start state of My;

(2) for each s; R so and each transition s; —— (Q, Fi, P) of M, there
exists a combined transition sy ——c (Qg2,Fa, P2) of My such that

(1, F1, P1) Cr (2, F2, ).
(3) for each s1 R sg, if s9 5 then s; —.

We write My Cgps My whenever acts(M;) = acts(My) and there is a strong
probabilistic simulation between M; and Ms,. The kernel of strong proba-
bilistic simulation is denoted by =gps. O

PROPOSITION 2. ~p and Cgpg are compositional. O

THEOREM 4. Let M and My be two simple probabilistic automata, and let
f be a PCTL formula.

(1) IfMl ~p Mg, then Ml )Zf ’LﬁMg )Zf
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(2) If My Csps My and f does not contain any occurrence of ~ and EU -y,
then My [= f implies M, = f. O

Even strong probabilistic bisimulations and strong probabilistic simulations
are a generalization of the strong bisimulation and simulation relations of
ordinary automata. In fact, if a transition of M; leading to a Dirac dis-
tribution can be simulated by a combined transition of Ms, then the same
transition of M; can be simulated by a non-combined transition of Ms, which
leads to a Dirac distribution if we are dealing with ordinary automata.

REMARK 1. Strong probabilistic simulations provide us with a simple way
to represent the closed interval specification systems of [13]. A probabilistic
specification system of [13] is a state machine where each state is associ-
ated with a set of probability distributions over the next state. The set of
probability distributions for a state s is specified by associating each state
s' with a set of probabilities that can be used from s. In our framework a
specification structure can be represented as a probabilistic automaton that,
from each state, enables one transition for each one of the probability distri-
butions over the next states that are allowed. A probabilistic process system
is a “fully probabilistic” (in our terms) probabilistic specification system. A
probabilistic process system P is said to satisfy a probabilistic specification
system S if there exists a strong simulation from P to S.

A closed interval specification system is a specification system whose set
of probability distributions is described by means of a lower bound and an
upper bound, for each pair (s,s’), on the probability of reaching s’ from s.
Thus, the set of probability distributions that are allowed from any state
form a polytope. By using our strong probabilistic simulation as satisfaction
relation, it is possible to represent each polytope by means of its corners only.
Any point within the polytope is given by a combination of the corners. O

6. Weak Transitions

The relations of Section 5 do not abstract from internal computation, while
in practice a notion of implementation should ignore the internal transitions
of a system as much as possible. In order to do so, we extend our arrow
notation in a way similar to the non-probabilistic case [22]. We define the
weak arrows == and == to state that a probability distribution over
states P is reached through a sequence of transitions of M, some of which
are internal. The main difference from the non-probabilistic case is that in
our framework the transitions involved form a tree rather than a linear chain.
Formally, s == P, where a is either an external action or the empty sequence
and P is a probability distribution over states, iff there is a probabilistic
execution fragment H such that
(1) the start state of H is s;
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Fig. 3: A representation of a weak transition with action a.

(2) Pg[{ad | ad € Qu}] =1, i.e., the probability of termination in H is 1;

(3) for each ad € Qp, trace(a) = q;

(4) Q@ = {lstate(a) | @d € Qp}, and for each element s’ of 2, P[s'] =
> ascu listate(a)=s' PH[Casl;

(5) for each state g of H, either trf is the pair (Istate(q),D(d)), or the
transition that corresponds to tTf is a transition of M.

A weak combined transition, s == P, is defined as a weak transition by
dropping Condition 5.

EXAMPLE 3. The diagram of Figure 3 represents graphically a weak transi-
tion with action a that leads to state s; with probability 5/12 and to state
s9 with probability 7/12. We do not represent the states as finite execu-
tion fragments since their position in the diagram gives enough information.
Similarly, we do not represent § explicitly. The action 7 represents any in-
ternal action. From the formal definition of a weak transition, a tree that
represents a weak transition may have an infinite branching structure, i.e.,
it may have transitions that lead to countably many states, and may have
some infinite paths; however, each tree representing a weak transition has
the property that infinite paths occur with probability 0. This definition of
a weak transition is more general than the definition given in [28], where it
is required that no infinite path appear in a weak transition.

Figure 4 represents a weak transition of a probabilistic automaton with cy-
cles in its transition relation. Specifically, H represents the weak transition
sg = P, where P[so] = 1/8 and P[s;] = 7/8. If we extend H indefinitely
on its right, then we obtain a new probabilistic execution fragment that
represents the weak transition sy == D(s1). Observe that the new proba-
bilistic execution fragment has an infinite path that occurs with probability
0. Furthermore, observe that there is no other way to reach state s; with
probability 1. O
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Fig. 4: A weak transition of a probabilistic automaton with cycles.

7. Weak Relations

In this section we study the weak versions of the relations of Section 5, and
we show how they relate to WPCTL. We introduce only the probabilistic
version of each relation, since the others can be derived subsequently in a
straightforward way. We start by presenting the natural extension of the
probabilistic relations of Section 5; then, in order to preserve WPCTL, we
introduce a branching version of the new relations using the basic idea of
branching bisimulation [7].

Weak probabilistic bisimulations and weak probabilistic simulations can
be defined in a straightforward manner by changing Condition 2 of Defi-

nitions 14 and 15 so that each transition s; — P of a probabilistic au-

. . .. £ (M.
tomaton can be simulated by a weak combined transition s a(gcﬁ Py of

the other probabilistic automaton, and by using weak transitions in Condi-
tion 3. Even in this case, with the opportune arguments about Condition 3,
the weak probabilistic relations are an extension of the corresponding rela-
tions for ordinary automata. However, although the two weak relations are
compositional, WPCTL formulas are not preserved by weak bisimulations
and weak simulations. The key problem is that weakly bisimilar executions
do not satisfy the same formulas. Consider the diagram below.

S0 — >8] —2 > 59— > 53— >S4

f1

s e s
0 > 1

Since s| and sy are not necessarily related, it is not possible to deduce
M((a,s}))] = fi from M[(a,s2)] = fi. To solve the problem we need to
make sure that s} and sy are related, and thus we introduce the branching
versions of our weak relations.

DEFINITION 16. A branching probabilistic bisimulation between two sim-
ple probabilistic automata M; and M, is an equivalence relation R over
states(My) U states(Mz) such that
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(1) each start state of M; is related to at least one start state of My, and
vice versa;

(2) for each s; R s9 and each transition s; —5 P, of either My, My, there

. . ... (M- .
exists a weak combined transition sg a{gcz) Py of either My, M,

such that P; = P> and s9 a(g%h) Po satisfies the branching condi-

tion, i.e., there is a probabilistic execution fragment H that represents

t( M .
89 a(gcﬂ P> such that for each extended execution «d of 1y and

each occurrence of a state s in «, either

(a) s1 R s, a € ext(Ms) implies that a has not occurred yet, and
each state s’ preceding s in « satisfies s; R s, or

(b) a € ext(Msz) implies that a has occurred, and for each s} €
such that s| R Istate(), s} R s.

We write My ~p Ms whenever ext(M;) = ext(M,) and there is a branching
probabilistic bisimulation between M; and M,. O

Another way to state the branching condition is the following: there is

o . t(M.
a probabilistic execution fragment H that represents sg a(gcz) Po such

that, viewing H as a tree, all the the states of the tree that occur before
action a are related to s;, and whenever a state s/, of Qy is related to some
state s| of ©p, then all the states in the path from s to s, that occur after
action a are related to s} as well. In other words, each complete path in the
tree satisfies the branching condition of [7].

DEFINITION 17. A branching probabilistic simulation between two simple
probabilistic automata M; and My is a relation RC states(M;) x states(Ma)
such that

(1) each start state of M is related to at least one start state of My;

(2) for each s; R s2 and each transition s; LN (Qq, F1, Py) of My, there

. . .. t(DM:
exists a weak combined transition s a(gcz) (Qg, Fa, Py) of My such

that (Ql,fl,Pl) ER (QQ,?Q,PQ), and S9 a[i—li(}]\(?) (QQ,?Q,PQ) satisﬁes

the branching condition.
(3) for each s1 R s9, if s9 =% then s, =
We write M1 Cgps My whenever ext(M;) = ext(Ms) and there is a branch-

ing probabilistic simulation between M; and M,. The kernel of branching
probabilistic simulation is denoted by =gpsg. O

PROPOSITION 3. ~p and Cgps are compositional. O

To show that WPCTL formulas are preserved by the different simulation
relations, we need to guarantee that a probabilistic automaton is free from



22 SEGALA AND LYNCH

divergences with probability 1. The definition below allows for a probabilis-
tic automaton to exhibit infinite internal computation, but it requires that
such a behavior can happen only with probability 0.

DEFINITION 18. A probabilistic automaton M is probabilistically conver-
gent if for each probabilistic execution H of M and each state ¢ of H, the
probability of diverging (performing infinitely many internal actions and no
external actions) from ¢ is 0, i.e., Py[0,] = 0, where O, is the set of infi-
nite executions of H that pass through state ¢ and that do not contain any
external action after passing through state g. Note that ©, is measurable
since it is the complement of a union of cones. O

THEOREM 5. Let My and My be two probabilistically convergent, simple
probabilistic automata, and f be a WPCTL formula.

(1) IfMl ~p Mg, then M1 )Zf ZﬁMQ )Zf

(2) If My Cgps Mo and f does not contain any occurrence of = and EU oy,
then My |= f implies M |= f.

Proof sketch. Similar to the proof of Proposition 3. Here the construction
of Hy is much more complicated than in the proof of Proposition 3 due to
the fact that we need to combine several weak transitions. Moreover, we
need to show that the branching requirement guarantees the preservation of
properties between bisimilar executions. O

8. Concluding Remarks

We have extended some of the classical simulation relations to a new prob-
abilistic model that distinguishes naturally between probabilistic and non-
deterministic choice and that allows us to represent naturally randomized
and/or restricted forms of scheduling policies. Our method of analysis is
based on compositionality issues and preservation of PCTL and WPCTL
formulas. Throughout the presentation we have shown how our relations
are a conservative extension of the corresponding relations defined on ordi-
nary automata. We have observed that the distinguishing power of PCTL
does not change if we allow randomization in the schedulers. Based on that,
we have introduced a new collection of relations whose main idea is that a
probabilistic automaton may combine some of its transitions probabilisti-
cally in order to simulate another probabilistic automaton.

In [27] this work is pursued further by extending the trace semantics of
ordinary automata to the probabilistic framework. The key issue is compo-
sitionality, which is not trivial to achieve. We show that all the simulation
relations of this paper are sound for the trace semantics, and we introduce
other coarser simulation relations that capture the trace semantics better.
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A problem that is still open is to derive adequacy results for PCTL and
WPCTL. We do not know whether PCTL and WPCTL are adequate for
our probabilistic simulation relations. In the non-probabilistic framework
adequate logics for strong bisimulation are studied in [10], and adequate
logics for branching bisimulation are studied in [23]. An adequate logic for
strong bisimulation in the probabilistic framework is studied in [16]; however,
no nondeterminism is present in the formalism of [16].

If PCTL and WPCTL are not adequate, then further research should
focus either on finding adequate logics (what other operators do we need?)
or finding more appropriate simulation relations. An important question
is to determine whether WPCTL is sufficiently powerful to express all the
properties of practical interest.

Acknowledgments. Thanks to the anonymous referees for their valuable
suggestions on a draft version of this paper. In particular, one of the referees
pointed out an error in Theorems 19, 23 and 28 of [28], which we have
corrected here.
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