A Compositional Trace-Based Semantics for
Probabilistic Automata *

Roberto Segala

MIT Laboratory for Computer Science
Cambridge, MA 02139

Abstract. We extend the trace semantics for labeled transition systems to a ran-
domized model of concurrent computation. The main objective is to obtain a com-
positional semantics. The role of a trace in the randomized model is played by a
probability distribution over traces, called a trace distribution. We show that the
preorder based on trace distribution inclusion is not a precongruence, and we build
an elementary context, called the principal context, that is sufficiently powerful to
characterize the coarsest precongruence that is contained in the trace distribution
preorder. Finally, we introduce a notion of a probabilistic forward stmulation and we
prove that it is sound for the trace distribution precongruence. An important char-
acteristic of probabilistic forward simulations is that they relate states to probability
distributions over states.

1 Introduction

The growing interest in randomized algorithms for the solutions of problems in distributed
computation [2,3] has created a need for formal models where randomized distributed sys-
tems can be analyzed. The formal models should be able to deal at least with random-
ization, which 1s used to describe the choices of a system that are due to some random
draws, and nondeterminism, which i1s the basic mathematical tool to express the unpre-
dictable behavior of an external environment and the unpredictable relative speeds of two
or more systems. Several formal models for randomized concurrent systems were studied
in the past [5,7,8,10,13,19-23], and among those, the models of [8,19,20,22] distinguish
between probability and nondeterminism.

Our long term goal is to build a model that extends Labeled Transition Systems [16],
that has a strong mathematical foundation, and that can be used for the actual verification
of systems. The choice of labeled transition systems is due to their successful application to
model concurrency. In [20] we have extended the labeled transition systems model to account
for randomization and we have extended the classical simulation and bisimulation relations
to it; in [14,17] we have shown how the model of [20] can be used for the actual analysis of
randomized distributed systems. The main objects of [20] are called probabilistic automata,
and they differ from ordinary labeled transition systems in that a transition leads to a
probability distribution over states rather than to a single state. Probabilistic automata are
an extension of the probabilistic automata of Rabin [18] where the occurrence of an action
can lead to several probability distributions over states. Choosing a transition represents the
nondeterministic behavior of a probabilistic automaton; choosing a state to reach within a
transition represents the probabilistic behavior of a probabilistic automaton.

* Supported by NSF grant CCR-92-25124, by DARPA contract N00014-92-J-4033, and by AFOSR-
ONR contract F49620-94-1-0199.

In this paper we show how it is possible to define a compositional semantics for proba-
bilistic automata that relies on some form of traces rather than simulation relations; then,
we show how the simulation method of [15] extends to the new framework. The problem
1s not simple since trace-based semantics are known to be linear, i.e., to be independent
of the branching structure of a system, while in the probabilistic framework the branching
structure of a system can be used to create dependencies between events in the context
of a parallel composition. In other words, a trace semantics that is sufficiently expressive
to capture part of the probabilistic behavior of a system must be sensitive to part of the
branching structure of a system in order to be compositional. The problem, then, is to see
how sensitive such a relation should be.

We define a simple and natural trace-based semantics for probabilistic automata, where
the main objects to be observed are probability distributions over traces, called trace dis-
tributions. Then, we define a preorder on probabilistic automata, called trace distribution
preorder, which is based on trace distribution inclusion. Our trace distributions are a conser-
vative extension of the traces of ordinary labeled transition systems (called automata), and
the trace distribution preorder is a conservative extension of the trace inclusion preorder of
ordinary automata. We observe that the trace distribution preorder is not a precongruence,
and thus, following standard arguments, we define the trace distribution precongruence as
the coarsest precongruence that is contained in the trace distribution preorder.

Our first main theorem is that the trace distribution precongruence can be characterized
in an alternative and more intuitive way. Namely, we show that there is a context, which we
call the principal context, that is sufficient to distinguish every pair of probabilistic automata
that are not in the trace distribution precongruence relation. As a consequence, the trace
distribution precongruence can be characterized as inclusion of principal trace distributions,
where a principal trace distribution of a probabilistic automaton is a trace distribution of
the probabilistic automaton in parallel with the principal context.

We extend the simulation method of [15] by studying a new relation for probabilistic
automata in the style of the forward simulations of [15]. The new relation, which is called
probabilistic forward simulation, is coarser than the relations of [20] and relates states to
probability distributions over states. Probabilistic forward simulations allow us to simulate a
probabilistic transition like rolling a dice with eight faces by flipping three fair coins one after
the other; this is not possible with the simulation relations of [20]. Our second main theorem
is that probabilistic forward simulations are sound for the trace distribution precongruence.

We believe that our methodology can be applied to the study of other semantics based on
abstract observations. In particular, in further work we plan to extend the failure semantics
of [4] to the probabilistic framework, and possibly to study a related theory of testing.

The rest of the paper is organized as follows. Section 2 gives some background on mea-
sure theory; Section 3 introduces the probabilistic automata of [19,20]; Section 4 introduces
the trace distributions and the trace distribution precongruence; Section 5 introduces the
principal context and the alternative characterization of the trace distribution precongru-
ence; Section 6 introduces our new simulation relations and shows their soundness for the
trace distribution precongruence; Section 7 gives some concluding remarks.

2 Preliminaries

A probability space is a triple (£2, F, P) where {2 is a set, F is a collection of subsets of £2
that is closed under complement and countable union and such that {2 € F, and P is a
function from F to [0, 1] such that P[£2] = 1 and such that for any collection {C;}; of at

most countably many pairwise disjoint elements of F, P[U;C;] = >, P[C;]. The set 2 is
called the sample space, F is called the o-field, and P is called the probability measure.

A probability space (£2,F,P) is discrete if F = 2% and for each ¢ C 2, P[C] =
> wec PHz}]. Given aset X, denote by Probs(.X) the set of discrete probability distributions
whose sample space 1s a subset of X and such that the probability of each element is not 0.

The Dirac distribution over an element z, denoted by D(x), is the probability space with
a unique element 2. The uniform distribution over a collection of elements {a1,... o},
denoted by U(z1,...,xy), is the probability space that assign probability 1/n to each ;.

Throughout the paper we denote a probability space (£2,F, P) by P. As a notational
convention, if P is decorated with indices and primes, then the same indices and primes
carry to its elements. Thus, P! denotes (£2/, F!, P!).

The product P; ® Py of two discrete probability spaces Py, Ps is the discrete probability
space (§21 x £29,2%%%2 P) where P[(z1,z2)] = Pi[r1]Pa[x2] for each (z1,x2) € 21 x 25.

A function f : £2 — {2 is said to be a measurable function from (£2,F) to (£2/, F') if for
each set C' of F' the inverse image of C, denoted by f~1(C), is an element of F. Let P be
a probability measure on (£2, F), and let P’ be defined on F’ as follows: for each element C'
of ', P'(C) = P(f~1(C)). Then P’ is a probability measure on (£2’, 7'). The measure P’
is called the measure induced by f, and is denoted by f(P). If P is a discrete probability
space and f is a function defined on {2, then f can be extended to P by defining f(P) to be
the discrete probability space (f(£2),2709) f(P)).

3 Probabilistic Automata

In this section we introduce the probabilistic automata of [19], which appear also in [20]
with a slightly different terminology. We start with an informal overview of the model.

A labeled transition system, also called an eutomaton, is a state machine with labeled
transitions. Each transition leaves from a state and leads to the occurrence of a label, also
called an action, and to a state. A probabilistic automaton is like an ordinary automaton
except that each transition leads to an action and to a probability distribution over states.

Resolving the nondeterminism in an automaton leads to a linear chain of states inter-
leaved with actions, called an ezecution or a computation; resolving the nondeterminism in a
probabilistic automaton leads to a Markov chain structure since each transition leads prob-
abilistically to more than one state. Such a structure is called a probabilistic execution. A
probabilistic execution can be visualized as a probabilistic automaton that enables at most
one transition from each state (a fully probabilistic automaton). Due to the complex struc-
ture of a probabilistic execution, it 1s convenient to view it as a special case of a probabilistic
automaton; in this way the analysis of a probabilistic execution is simplified.

However, nondeterminism could be resolved also using randomization: a scheduler for n
processes running in parallel could choose the next process to schedule by rolling an n-side
dice; similarly, if some actions model the input of an external environment, the environment
could provide the input at random or could provide no input with some non-zero probability.
Thus, in a probabilistic execution the transition that leaves from a state may lead to a
probability distribution over both actions and states and also over deadlock (no input). This
new kind of transition i1s not part of our informal definition of a probabilistic automaton,;
yet, 1t is still convenient to view a probabilistic execution as a probabilistic automaton.

Thus, our definition of a probabilistic automaton allows for a transition to lead to prob-
ability distributions over actions and states and over a symbol é that models deadlock;
however, except for the handling of probabilistic executions, we concentrate on simple prob-
abilistic automata, which allow only probabilistic choices over states within a transition.

3.1 Probabilistic Automata
Definitionl. A probabilistic automaton M consists of four components:

1. aset states(M) of states,

2. a nonempty set start(M) C states(M) of start states,

3. an action signature sig(M) = (ext(M), int(M)) where ext(M) and int(M) are disjoint
sets of external and internal actions, respectively,

4. atransition relation trans(M) C states(M) x Probs((acts(M) x states(M))U{é}), where
acts(M) denotes the set ext(M) U int(M) of actions.

A probabilistic automaton M is simple if for each transition (s,P) of trans(M) there is an
action a such that £2 C {a} x states(M). In such a case a transition can be represented
alternatively as (s, a, P'), where P’ € Probs(states(M)), and is called a simple transition.
A probabilistic automaton is fully probabilistic if it has a unique start state and from
each state there is at most one transition enabled. O

An ordinary automaton is a special case of a probabilistic automaton where each transition
leads to a Dirac distribution; the generative model of probabilistic processes of [7] is a
special case of a fully probabilistic automaton; simple probabilistic automata are partially
captured by the reactive model of [7] in the sense that the reactive model assumes some
form of nondeterminism between different actions. However, the reactive model does not
allow nondeterministic choices between transitions involving the same action. By restricting
simple probabilistic automata to have finitely many states, we obtain objects with a structure
similar to that of the Concurrent Labeled Markov Chains of [8]; however, in our model we
do not need to distinguish between nondeterministic and probabilistic states. In our model
nondeterminism is obtained by means of the structure of the transition relation. This allows
us to retain most of the traditional notation that is used for automata.

3.2 Executions and Probabilistic Executions

We now move to the notion of an execution, which is the result of resolving both the
nondeterministic and the probabilistic choices in a probabilistic automaton; it corresponds
to the notion of an execution for ordinary automata. We introduce also a notion of an
extended execution, which we use later to study the probabilistic behavior of a probabilistic
automaton.

Definition2. An ezecution fragment o of a probabilistic automaton M is a (finite or infi-
nite) sequence of alternating states and actions starting with a state and, if the execution
fragment is finite, ending in a state, & = sga;sjasss -, where for each ¢ there exists a
probability space P such that (s;, P) € trans(M) and (a;41, Si+1) € £2. Denote by fstate(«)
the first state of «, and, if « is finite, denote by Istate(«) the last state of o. Denote by
frag®(M) and frag(M) the sets of finite and all execution fragments of M, respectively. An
execution is an execution fragment whose first state is a start state. Denote by exec* (M)
and ezec(M) the sets of finite and all executions of M, respectively.

An extended execution (fragment) of M is either an execution (fragment) of M, or a
sequence o = $ga18] - - - anSpd such that spaysy - - -a, s, is an execution (fragment) of M.

A finite execution fragment oy = spa1sy -+ -a,s, of M and an extended execution frag-
ment as = S, ap415n4+1 - - - of M can be concatenated. In this case the concatenation, written
a1 " ag, 1s the extended execution fragment sqai1s1 - a@nSn@n415n4+1 - - - An extended ex-
ecution fragment ay of M 1s a prefiz of an extended execution fragment ay of M, written
a1 < ag, if either @y = a9 or «y is finite and there exists an extended execution fragment
o of M such that oy = a1 ™ . O

As we said already, an execution is the result of resolving both the nondeterministic and the
probabilistic choices in a probabilistic automaton. The result of the resolution of nondeter-
ministic choices only is a fully probabilistic automaton, called a probabelistic execution, which
is the entity that replaces the executions of ordinary automata. Informally, since in ordinary
automata there is no probability left once the nondeterminism is resolved, the executions
and probabilistic executions of an ordinary automaton describe the same objects. Before
giving the formal definition of a probabilistic execution, we introduce combined transitions,
which allow us to express the ability to resolve the nondeterminism using probability. In-
formally, a combined transition leaving from a state s is obtained by choosing a transition
that leaves from s probabilistically, and then behaving according to the transition chosen.
Among the choices it is possible not to schedule any transition. This possibility is expressed
by the term (1 — ", p;) in the probability of § in the definition below.

Definition3. Given a probabilistic automaton M, a finite or countable set {P;}; of prob-
ability distributions of Probs((acts(M) x states(M)) U {6}), and a weight p; > 0 for each ¢
such that >~ p; <1, the combination), p;P; of the distributions {P;}; is the probability
space P such that

0= U; §2; if Eipi =1
T Ui UéTif Zipi <1
- F=27

for each (a,s) € 2, P[(a,s)] = Ei|(a,s)en,pipi[(a’ $)]
— if 6 € 2, then P[] = (1 =32, pi) + Xi5e0, Pii[0].

A pair (s,P) is a combined transition of M if there exists a finite or countable family of
transitions {(s,P;)}; and a set of positive weights {p;}; with > . p; < 1, such that P =
> Pi’Pi. Denote (s, P) by 3. pi(s, P;). O

We are now ready to define a probabilistic execution. A technical detail is that in order to
name the states of a probabilistic execution, those states are represented by finite execu-
tion fragments of a probabilistic automaton. A probabilistic execution can be seen as the
result of unfolding the transition relation of a probabilistic automaton and then choosing
probabilistically a transition from each state.

Definition4. Let « be a finite execution fragment of a probabilistic automaton A . Define a
function o™ that applied to a pair (a, s) returns (a, cas), and applied to é returns §. Recall
from the last paragraph of Section 2 that the function o™ can be extended to discrete
probability spaces.

A probabilistic execution fragment of a probabilistic automaton M, is a fully probabilistic
automaton, denoted by H, such that

1. states(H) C frag"(M). Let q range over states of probabilistic executions.

2. for each transition tr = (¢,P) of H there is a combined transition tr' = (Istate(q), P’)
of M, called the corresponding combined transition, such that P = ¢~ P’.

3. each state of H is reachable and enables one transition, where a state ¢ of H is reachable
if there is an execution of H whose last state is q.

A probabilistic execution 1s a probabilistic execution fragment whose start state is a start
state of M. Denote by prfrag(M) the set of probabilistic execution fragments of M, and by
prezec(M) the set of probabilistic executions of M. Also, denote by ¢i! the start state of a
generic probabilistic execution fragment ', and for each transition (¢, P) of H, denote the

pair (¢, P) by trf, and denote P by Pf. a

FEzample 1. Two examples of probabilistic executions appear in Figure 1. In particular, the
probabilistic execution denoted by H 1s a probabilistic execution of the probabilistic au-
tomaton denoted by M. For notational convenience, in the representation of a probabilistic
execution H we do not write explicitly the full names of the states of H since the full names
are derivable from the position of each state in the diagram; moreover, whenever a state ¢
enables the transition (¢, D(é)) we do not draw any arc leaving from the state of the diagram
that represents gq. a

There is a strong correspondence between the extended execution fragments of a probabilistic
automaton and the extended executions of one of its probabilistic execution fragments. We
express this correspondence by means of an operator «| that takes an extended execution
of H and gives back the corresponding extended execution fragment of M, and an operator
alqdl that takes an extended execution fragment of M and gives back the corresponding
extended execution of H if it exists.

3.3 Events

We now define a probability space (£2gr, Frr, Pr) for a probabilistic execution fragment H,
so that it 1s possible to analyze the probabilistic behavior of a probabilistic automaton once
the nondeterminism is resolved. The sample space £2f7 1s the set of extended executions of M
that represent complete extended execution fragments of H, where an extended execution «
of H is complete iff it is either infinite or @ = o’é and 6§ € Qgtate(oz’)' For each finite extended
execution fragment o of M, let Oy, the cone with prefix «, be the set {&/ € 2y | o < &'},
and let Cgx be the class of cones for H. The probability pum(Cy) of the cone Cy is the

product of the probabilities associated with each edge that generates « in H. Formally,

if @ = qifais) - sp_1a,5,, then py(C,) = Pg[(al,ql)]~~~P£_l[(an,qn)], where each
q; is defined to be ¢ ays; - -a;s;, and if o = ¢llaiqr - qu_1a,906, then py(Cy) =
PHl(ay, q1)]- - PE_ l(an, 42)]P[8], where each g; is defined to be ¢ffays; - -a;s;. In [19] it

is shown that there is a unique measure fig that extends pg to the o-field o(Cpr) generated
by Cg, i.e., the smallest o-field that contains Cg. Then, Fp is ¢(Cgr) and Py is fir. With
this definition it is possible to show that any union of cones is measurable.

3.4 Prefix

One of our objectives in the definition of the probabilistic model is that the standard notions
defined on ordinary automata carry over to the probabilistic framework. One of this concepts
is the notion of a prefix for ordinary executions. Here we just claim that it is possible to give
a meaningful definition of a prefix for probabilistic executions.

Definition5. A probabilistic execution fragment H is a prefix of a probabilistic execution
fragment H’, denoted by H < H',iff H and H’ have the same start state, and for each state
q of H, PulCy] < Pu:[Cy]. O

It is easy to verify that this definition of prefix coincides with the definition of prefix for
ordinary executions when probability is absent. The reader is referred to [19] for a complete
justification of Definition 5.

3.5 Parallel Composition

We now turn to the parallel composition operator, which is defined in the CSP style [9], i.e.,
by synchronizing two probabilistic automata on their common actions. As outlined in [8], it

is not clear how to define a parallel composition operator for general probabilistic automata
that extends the CSP synchronization style; thus, we define it only for simple probabilistic
automata, and we concentrate on simple probabilistic automata for the rest of this paper.
We use general probabilistic automata only for the analysis of probabilistic executions. The
reader is referred to [19] for more details.

Definition6. Two simple probabilistic automata M; and Ms are said to be compatible if
int(M1) N oacts(Mz) = 0, and int (M) N acts(M;) = 0.

The parallel composition M;||My of two compatible simple probabilistic automata M;
and M, is the simple probabilistic automaton M such that states(M) = states(Mp) x
states(Maz), start(M) = start(My) x start(Mz), ext(M) = ext(My) U ext(Ms), int(M) =
int(My)Uint(Ms), and the transition relation satisfies the following: ((s1, $2), @, P) € trans(M)
iff P =P; ® P,y, such that

1. if a € acts(My) then (s1,a,P1) € trans(My), else Py = D(s1), and
2. if a € acts(Msz) then (sg,a,Pa) € trans(Msz), else P2 = D(s2). O

Remark. Another point in favor of these definitions is that it is possible to define the pro-
jection H[M;, i = 1,2, of a probabilistic execution H of M;||M> onto one of its components
M;. The definition is non-trivial and the interested reader is referred to [19]. a

3.6 Notation for Transitions

We conclude this section with some notation for transitions. We write s — P whenever
there is a simple transition (s, a,P) in M, and we write s —c P whenever there is a simple
combined transition (s,a,P) in M.

Similar to the non-probabilistic case, we extend the arrow notation to weak arrows (:a>c)
to state that P is reached through a sequence of combined transitions of M, some of which
are internal. The main difference from the non-probabilistic case is that in our framework
the transitions involved form a tree rather that a linear chain. Formally, s ==¢ P, where «a
is either an external action or the empty sequence and P is a probability distribution over
states, iff there 1s a probabilistic execution fragment H such that

1. the start state of H is s;

2. Pyl[{aé | ab € 25} =1, i.e., the probability of termination in H is 1;

3. for each aéd € 2p, trace(er) = a, where trace(«) is the ordered sequence of external
actions that occur in «;

4. P = Istate(6-strip(Pr)), where 8-strip(Pyr) is the probability space P’ such that £2' =
{a| ab € 25}, and for each o € 2] P'[a] = Py [Cas);

FEzample 2. The left side of Figure 1 represents a weak transition with action a that leads to
state s; with probability 5/12 and to state sy with probability 7/12. The action 7 represents
any internal action. From the formal definition of a weak transition, a tree that represents
a weak transition may have an infinite branching structure, i.e., it may have transitions
that lead to countably many states, and may have some infinite paths; however, each tree
representing a weak transition has the property that infinite paths occur with probability 0.

The right side of Figure 1 represents a weak transition of a probabilistic automaton with
cycles in its transition relation. Specifically, H represents the weak transition sg — P,
where Plsg] = 1/8 and P[s1] = 7/8. If we extend H indefinitely on its right, then we obtain
a new probabilistic execution fragment that represents the weak transition s, = D(s1).
Observe that the new probabilistic execution fragment has an infinite path that occurs
with probability 0. Furthermore, observe that there is no other way to reach state s; with
probability 1. a

p 12 M S) 12 S.L
12 T
a SS T % 12
12
12
T Sl a S4 T Sz
13
S TZISSZ =% 32 S H: %\i%\i%\%%
2 > 172 I 12 > 172
: s s s s

Fig.1. Weak transitions (also probabilistic executions).

4 Trace Distribution Precongruence

The objective of this section is to extend the trace semantics to the probabilistic framework
and to define a corresponding trace-based preorder. The problem is that a trace semantics is
linear, i.e., it does not depend on the branching structure of a system, while in probabilistic
automata the branching structure is important. Thus, the question is the following: under
the condition that we want a trace semantics that describes the probabilistic behavior of a
probabilistic automaton, how much of the branching structure of a probabilistic automaton
do we have to know? We address the question above by defining a reasonable and natural
trace semantics and by characterizing the minimum precongruence contained in it.

Definition7. Let H be a probabilistic execution fragment of a probabilistic automaton M.
For each extended execution fragment o of M, let trace(«) denote the ordered sequence of
external actions of M that appear in «.

Let f be a function from 25 to 2 = ext(M)* U ext(M)¥ that assigns to each execution
of 2 its trace. The trace distribution of H, denoted by tdistr(H), is the probability space
(2, F, P) where F is the o-field generated by the cones Cjg, where 3 is an element of ext(M)*,
and P = f(Pg). The fact that f is measurable follows from standard arguments. Denote a
generic trace distribution by D. A trace distribution of a probabilistic automaton M is the
trace distribution of one of the probabilistic executions of M. a

Given two probabilistic executions Hy and Ha, it is possible to check whether tdistr(H;) =
tdistr(H>) just by verifying that Pigiser(s,)[Cp] = Praiser(m,)[Cp] for each finite sequence of
actions f. This follows from standard measure theory arguments. In [12] Jou and Smolka
study a probabilistic trace semantics for generative processes; our rule above to determine
whether two probabilistic executions have the same trace distribution coincides with the
trace equivalence of [12] (a probabilistic execution is essentially a generative process).

Frample 3. The reader may wonder why we have not defined 2 to be trace(£2g). This is to
avoid to distinguish two trace distribution just because they have different sample spaces.
Figure 2 illustrates the idea. The two probabilistic automata of Figure 2 have the same trace
distributions; however, the left probabilistic automaton has a probabilistic execution where
the trace a® occurs with probability 0, while the right probabilistic automaton does not.
Thus, by defining the sample space of tdistr(H) to be trace(£25r), the two probabilistic au-
tomata of Figure 2 would be distinct. In Section 6 we define several simulation relations for

a T a

" @%?2 S = S =%

Fig. 2. Trace distribution equivalent probabilistic automata.

probabilistic automata and we show that they are sound for the trace distribution precon-
gruence; such results would not be true with the alternative definition of 2. O

It 1s easy to see that trace distributions extend the traces of ordinary automata: the trace
distribution of a linear probabilistic execution fragment is a Dirac distribution. It is easy
as well to see that prefix and action restriction extend to the probabilistic framework, thus
enforcing our definition of a trace distribution. A trace distribution D is a prefiz of a trace
distribution D’, denoted by D < D', iff for each finite trace 3, Pp[Cs] < Pp:[Cp]. Thus, two
trace distributions are equal iff each one is a prefix of the other.

Lemma 8. Let Hy and Hs be two probabilistic execution fragments of a probabilistic au-
tomaton M. If Hy < Hy, then tdistr(Hy) < tdistr(Hs). a

Let 3 be a trace, and let V be a set of actions. Then 3 | V denotes the ordered sequence of
actions from V' that appear in 3. Let D = (§2, F, P) be a trace distribution. The restriction of
D to V, denoted by D | V, is the probability space (£2/, F', P") where ' = {8 [V | B € £2},
F' is the o-field generated by the sets of cones Cg/ such that 8’ < j for some § € ', and
P’ is the inverse image of P under the function that restricts traces to V.

Lemma9. Let D be a trace distribution of My||My. Then, D | ext(M;), i = 1,2, is a trace
distribution of M;. a

Definition10. Let M7, Ms be two probabilistic automata with the same external actions.
The trace distribution preorder is defined as follows.

My CEp My iff tdistrs(My) C tdistrs(Ms). O

The trace distribution preorder is a direct extension of the trace preorder of ordinary au-
tomata; however, it is not a precongruence. Consider the two probabilistic automata M;
and M, of Figure 3. It is easy to see that M; and Ms have the same trace distributions.
Consider now the context C' of Figure 3. Figure 4 shows a probabilistic execution of Ma||C
where there 1s a total correlation between the occurrence of actions d and f and of actions
e and g. Such a correlation cannot be obtained from M;||C, since the choice between f and
g must be resolved before knowing what action among d and e is chosen probabilistically.
Thus, M;||C and Ms||C' do not have the same trace distributions. This leads us to the
following definition.

Definition11. Let M7, Ms be two probabilistic automata with the same external actions.
The trace distribution precongruence, denoted by Cp¢, i1s the coarsest precongruence that
is contained in the trace distribution preorder. a

S S &
S S St G G
(N SN
S, Sy S, Sy G G
(R S B
S S S %
M, M, C
Fig. 3. The trace distribution preorder is not a precongruence.
¢ (31101)%(%@1) d (s;,C3) r (s5.65)
(SO1CO) %(S_LICO) zj
¢ (Slicz)é(smcz) . (s,¢4) 2 (s5,¢4)

Fig. 4. A probabilistic execution of Ms||C.

The trace distribution precongruence preserves properties that resemble the safety properties
of ordinary automata [1]. One example of such a property is the following.

“After some finite trace 0 has occurred, the probability that some action a occurs s
not greater than p.”

The property above means that in every trace distribution of a probabilistic automaton M
the probability of the traces where action a occurs after 3, conditional on the occurrence
[, is not greater than p. Suppose that M; Cpec M2, and suppose by contradiction that Ms
satisfies the property above, while M; does not. Then there i1s a trace distribution of M;
where the probability of a after 5 conditional to 3 is greater than p. Since M} Cpe Mo,
there is a trace distribution of M5 where the probability of a after § conditional to 3 1s
greater than p. This contradicts the hypothesis that M, satisfies the property above.

5 The Principal Context

In this section we give an alternative characterization of the trace distribution precongruence
that is easier to manipulate and that gives us an idea of the role of the branching structure
of a probabilistic automaton. We define the principal context, denoted by Cp, and we show
that there exists a context C that can distinguish two probabilistic automata M; and M»
iff the principal context distinguishes M; and M.

The principal context is a probabilistic automaton with a unique state and three self-loop
transitions labeled with actions that do not appear in any other probabilistic automaton.
Two self-loop transitions are deterministic (Dirac) and are labeled with action left and
right, respectively; the third self-loop transition is probabilistic, where one edge leads to the
occurrence of action pleft with probability 1/2 and the other edge leads to the occurrence

left right

pleft pright

Fig. 5. The principal context.

of action pright with probability 1/2 (see Figure 5). The principal context is not a simple
probabilistic automaton; however, since it does not have any action in common with any
other probabilistic automaton, the parallel composition operator can be extended trivially:
no synchronization is allowed. The main theorem is the following.

Theorem 12. M| Cpe M, ZﬁM1||CP Cp M2||CP. O

As a corollary we obtain an alternative characterization of the trace distribution precongru-
ence. Let a principal trace distribution of a probabilistic automaton M be a trace distribution
of M||Cp, and denote by ptdistrs(M) the set tdistrs(M||Cp).

Corollary 13. My Cpc Ms iff ext(My) = ext(Ms) and ptdistrs(My) C ptdistrs(Ms). O

We give a high level sketch of the proof of Theorem 12, which appears in [19]. The proof
is structured in several steps where a generic distinguishing context C'is transformed into
a simpler distinguishing context C’ till the point where the principal context is obtained.
This shows the “if” part of the theorem. To show the “only if” part the principal context
is transformed into a simple probabilistic automaton. The transformation steps are the
following.

Ensure that ' does not have any action in common with M; and Ms;

Ensure that ' does not have any cycles in its transition relation;

Ensure that the branching structure of C'is at most countable;

Ensure that the branching structure of C'is at most binary;

Ensure that the probabilistic transitions of C' lead to binary and uniform distributions;

Ensure that each action of (' is external and appears exactly in one edge of the transition

relation of

7. Ensure that each state of C' enables two deterministic transitions and one probabilistic
transition with a uniform binary distribution;

8. Rename all the actions of the context of 7 according to the action names of the principal

context and then collapse all the states of the new context into a unique state, leading

to the principal context.

O O W N =

We give an example of the first transformation. Let C' be a distinguishing context for M
and Ms. Build C’ as follows: for each each action @ in common with M; and M,, replace a
with two new actions aj, as, and replace each transition (¢, a,P) of C' with two transitions
(¢,a1,¢") and (¢/,as, P), where ¢’ denotes a new state that is used only for the transition
(¢,a,P). Denote ¢’ by ¢ a p).-

Let D be a trace distribution of M |[|C that is not a trace distribution of Ma||C'. Consider
a probabilistic execution Hy of M1||C such that tdistr(H,) = D, and consider the scheduler

that leads to Hy. Apply to M;||C” the same scheduler with the following modification: when-
ever a transition ((s1,¢),a, P1 ® P) is scheduled in My ||C, schedule ((s1,¢), a1, D((s1, ")),
where ¢’ is ¢(c q,p), followed by ((s1,¢),a,P1 @ D(¢')), and, for each s} € 21, followed by
((s],¢),a2,D(s])@P). Denote the resulting probabilistic execution by H{ and the resulting
trace distribution by D’. Then, we prove that D' | acts(M,||C) = D.

Suppose by contradiction that it is possible to obtain D’ from M;||C’, and let HY be a
probabilistic execution of Ms||C” such that tdistr(H%) = D’. Then, we show that it is possible
to build a probabilistic execution Ha of Ms||C such that tdistr(H2) = D. The construction
of Hy is not simple since we need to handle all the internal actions of M, that occur in H)
between each pair of actions of the form aq, as.

6 Probabilistic Forward Simulations

The second main result of this paper is that the simulation method of [15] extends to the
probabilistic framework. Thus, the trace distribution precongruence relation can be verified
by defining a relation between the states of two probabilistic automata and checking some
simple local conditions. This is one of the major verification methods for ordinary automata.

We start with the coarsest simulation relation of [20], and we show that it distinguishes
too much. Then, we introduce our probabilistic forward simulation relations and we show
their soundness for the trace distribution precongruence.

A weak probabilistic simulation between two simple probabilistic automata M; and M,
is a relation RC states(My) x states(Ms) such that

1. each start state of M7 is related to at least one start state of Ms;

2. for each pair of states s; R so and each transition s =Py of My, there exists a weak
alext(Ms)

combined transition s —¢ ~ Ps of M5 such that Py Cr Po,
where Cg is the lifting of R to probability spaces [10,20]. That is, Py Cr Po iff there exists
a function w : £2; x 29 — [0, 1] such that

1. for each s € §2y, 252602 w(sy1, s2) = Pi[s1],
2. for each s5 € £2, Zsleﬂl w(s1, s2) = Pa[sa],
3. for each (s1,s2) € £21 x §29, if w(sy, s2) > 0 then 51 R s3.

The idea behind the definition of Cx is that each state of {2y must be represented by some
states of {25, and similarly, each state of {2 must represent one or more states of £2;.

FEzample 4. Weak probabilistic simulations are sound for the trace distribution precongru-
ence (cf. Theorem 16); however, they are too strong.

Consider the two probabilistic automata of Figure 6. The probabilistic automaton M,
which chooses internally one element out of four with probability 1/4 each, is implemented
by the probabilistic automaton M;, which flips two fair coins to make the same choice
(by “implement” we mean Cp). However, the first transition of M; cannot be simulated
by M since the probabilistic choice of M5 is not resolved completely yet in M;. This
situation suggests a new preorder relation where a state of M7 can be related to a probability
distribution over states of M. The informal idea behind a relation s; R Ps 1s that s
represents an intermediate stage of M7 in reaching the distribution Ps. For example, in
Figure 6 state s; would be related to a uniform distribution P over states s§ and s (P =
U(s5,s4)), meaning that s; is an intermediate stage of M; in reaching the distribution P.

It is also possible to create examples where the relationship between s and P does not
mean simply that s is an intermediate stage of M7 in reaching the distribution P, but rather

S3—2—=35;
1/2

S1
12
T T b
172 S4———=Sg
So
NI . S5 s
112
$,<0)

1/2

Se —————= S0

M,

C
T | T —FF—=S
102 S, 75 v
i1 p
T

So
T S —_—
N2 Ss o1 S19
m 1/2 f
12 =g, T -3
52) 1/2 . s
m
Se 1721 =Sx
1/2 h
T Syy——=S,,
M 1 M 2

Fig.7. A more sophisticated implementation.

that s 1s an intermediate stage in reaching a probability distribution that can be reached
from P. Consider the two probabilistic automata of Figure 7. Although not evident at the
moment, M; and My are in the trace distribution precongruence relation, 1.e., My Cpe Mo.
Following the same idea as for the example of Figure 6, state s; is related to U(sh, s}).
However, s; is not an intermediate stage of My in reaching U(s§, s4), since s; enables a
transition labeled with an external action [/, while in M, no external action occurs before
reaching U(s5, s},). Rather, from s§ and s}, there are two transitions labeled with [, and thus

the only way to simulate the transition s; £ U(s3,54) from U(sh, s}) is to perform the two
transitions labeled with [, which lead to the distribution U(s%, sg, s§, s15). Now the question
is the following: in what sense does U (s%, s§, s, so) represent U (ss3, s4)? The first observation
is that s3 can be seen as an intermediate stage in reaching U(s%, sg), and that s4 can be
seen as an intermediate stage in reaching U (sf, s,). Thus, s3 is related to U(s%, s§) and s4
is related to U(sg, siy). The second observation is that U(s%, sg, s, s7g) can be expressed
as 1/2U(s%, s§) + 1/2U(sh, shy). Thus, U(sk, s, s§, 1) can be seen as a combination of two
probability spaces, each one representing an element of U(ss, s4). This recalls the lifting of
a relation that we introduced at the beginning of this section. O

Definition14. A probabilistic forward simulation between two simple probabilistic au-
tomata M; and My is a relation RC states(M;) x Probs(states(Msz)) such that

1. each start state of M, is related to at least one Dirac distribution over a start state of
Ma;

2. for each s R P/, if s — Py, then
alext(Ms)

(a) for each s’ € (2’ there exists a probability space Py such that s —¢™ Py, and
(b) there exists a probability space P} of Probs(Probs(states(Mz))) satisfying P; Cr P,
such that o/ P[Py = ZPeQ; PYPIP.

We write My Cpg My whenever ext(My) = ext(Ms) and there is a forward simulation from
M1 to Mz. O

Ezample 5. The probabilistic forward simulation for the probabilistic automata M; and M,
of Figure 7 is the following: sg is related to U(s)); each state s;, ¢ > 7, is related to D(s});
each state s;, 1 < i < 6, is related to U(sh; 1, 85;,5). It is an easy exercise to check that
this relation is a probabilistic forward simulation. Observe also that there is no probabilistic
forward simulation from Ms to M;j. Informally, s5 cannot be simulated by M, since the
only candidate state to be related to s is s1, and s; does not contain all the information
contained in sj. The formal way to see that there is no probabilistic forward simulation from
Ms to Mj is to observe that Ms and M; are not in the trace distribution precongruence
relation and then use the fact that probabilistic forward simulations are sound for the trace
distribution precongruence relation (cf. Theorem 16). In M,||Cp it is possible force action
left to be scheduled exactly when Ms is in s4, and thus it is possible to create a correlation
between action left and actions a and b; in M ||Cp such a correlation cannot be created
since action left must be scheduled before action [. a

Propositionl5. Cpg is a preorder and is preserved by parallel composition. a

The proof that Cpg 1s preserved by the parallel composition operator 1s standard. The proof
that Cpg is transitive is much more complicated and is based on a probabilistic version of
the execution correspondence lemma of [6]. The complete proofs can be found in [19].

Theorem 16. Let M1 Crpg Ms. Then My Cpe Ms. ad

The proof of Theorem 16, which appears in [19], is carried out in two steps. Let R be a
probabilistic forward simulation from M7 to Ms. Given a probabilistic execution H; of My,
we build a probabilistic execution Hy of My that represents Hy via R. The structure that
describes how Hs represents H; is called an execution correspondence structure. Then, we
show that if H, represents Hi, then H; and Hs have the same trace distribution. Thus,
My Crps Mo implies M7 Cp M. Since from Proposition 15 Cpg is a precongruence, the
proof of Theorem 16 is completed.

7 Concluding Remarks

We have defined a trace-based semantics for probabilistic automata that i1s preserved by
the parallel composition operator, and we have extended the simulation method of [15]
to the new framework. The main object of observation is a trace distribution, which is a
probability distribution over traces. The compositionality result is obtained by studying the
trace distributions of a system composed in parallel with an elementary context called the
principal context. The new simulation relations have the interesting property that states are
related to probability distributions over states.

In further work we plan to investigate on completeness results concerning probabilistic
forward simulations and the trace distribution precongruence. We also plan to to apply the
same methodology outlined in this paper to define a failure-based semantics for probabilistic

automata. Finally, it is desirable to study further what can be done with general probabilistic
automata and how to extend the work of this paper to models that include real-time or hybrid
behavior. A trace-based semantics for probabilistic timed automata is studied in [19].

Acknowledgments. I would like to thank Nancy Lynch for useful discussion that lead to
the definition of probabilistic forward simulations.

References

1. B. Alpern and F.B. Schneider. Defining liveness. Information Processing Letters, 21(4), 1985.

2. J. Aspnes and M.P. Herlihy. Fast randomized consensus using shared memory. Journal of
Algorithms, 15(1):441-460, September 1990.

3. M. Ben-Or. Another advantage of free choice: completely asynchronous agreement protocols.
In Proceedings of the 2% Annual ACM PODC, 1983.

4. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential pro-
cesses. Journal of the ACM, 31(3):560-599, 1984.

5. I. Christoff. Testing Equivalences for Probabilistic Processes. PhD thesis, Department of Com-
puter Science, Uppsala University, 1990.

6. R. Gawlick, R. Segala, J.F. Sggaard-Andersen, and N.A. Lynch. Liveness in timed and untimed
systems. In Proceedings 21" ICALP, Jerusalem, LNCS 820, 1994. A full version appears as
MIT Technical Report number MIT/LCS/TR-587.

7. R.J. van Glabbeek, S.A. Smolka, B. Steffen, and C.M.N. Tofts. Reactive, generative, and strat-
ified models of probabilistic processes. In Proceedings 5% Annual Symposium on Logic in
Computer Science, Philadelphia, USA | pages 130-141. IEEE Computer Society Press, 1990.

8. H. Hansson. Time and Probability in Formal Design of Distributed Systems, volume 1 of Real-
Teme Safety Critical Systems. Elsevier, 1994.

9. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.

10. B. Jonsson and K.G. Larsen. Specification and refinement of probabilistic processes. In Pro-
ceedings of the 6th IEFE Symposium on Logic in Computer Science, pages 266-277, July 1991.

11. B. Jonsson and J. Parrow, editors. Proceedings of CONCUR 94, LNCS 836, 1994.

12. C.C. Jou and S.A. Smolka. Equivalences, congruences, and complete axiomatizations for prob-
abilistic processes. In Proceedings of CONCUR 90, LNCS 458, pages 367—-383, 1990.

13. K.G. Larsen and A. Skou. Compositional verification of probabilistic processes. In Proceedings
of CONCUR 92 LNCS 630, pages 456-471, 1992.

14. N.A. Lynch, 1. Saias, and R. Segala. Proving time bounds for randomized distributed algo-
rithms. In Proceedings of the 13" Annual ACM PODC, pages 314-323, 1994.

15. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations for timing-based systems.
In J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors, Proceedings of the
REX Workshop “Real-Time: Theory in Practice”, LNCS 600, pages 397446, 1991.

16. G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,
Computer science Department, Aarhus University, 1981.

17. A. Pogosyants and R. Segala. Formal verification of timed properties of randomized distributed
algorithms. In Proceedings of the 14" Annual ACM PODC, 1995.

18. M.O. Rabin. Probabilistic automata. Information and Control, 6:230-245, 1963.

19. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, MIT, Dept. of Electrical Engineering and Computer Science, 1995.

20. R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. In Jonsson
and Parrow [11], pages 481-496.

21. K. Seidel. Probabilistic communicating processes. Technical Report PRG-102; Ph.D. Thesis,
Programming Research Group, Oxford University Computing Laboratory, 1992.

22. M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Pro-
ceedings of 26th IEFE Symposium on Foundations of Computer Science, pages 327-338, 1985.

23. S.H. Wu, S. Smolka, and E.W. Stark. Composition and behaviors of probabilistic I/O automata.

In Jonsson and Parrow [11].

