
ON THE CORRECTNESS OF
ATOMIC MULTI-WRITER

REGISTERS

Russel W. Schaffer

January 2, 1989

Abstract

This paper presents an algorithm to construct a multi-writer multi-reader atomic
register and proves it correct. The algorithm itself is a corrected version of an
incorrect algorithm previously presented by Peterson and Burns. The proof of
correctness given here is thoroagh enough and detailed enough that the aLgorithms
correctness may be verified by a sing[e, careful reading of the paper.

1 Introduction

The problem of constructing a multi-writer, multi-reader atomic register was first intro
duced in [P] and [LLj. It has, at tins point, been addressed by several papers by different
authors [BB],[tL],[LV],[PB],[VA]. As a result of the difficult nature of the the problem,
however, most of these papers are rather hard to understand: it is not generally easy
to grasp the intuition behind some of the algorithms, and the proofs of correctness pro
vided are sometimes not as rigorous or detailed as one would desire for a problem of this
difficulty. Indeed, in the cases of [PB] and [VA], dose examination of the algorithms
uncovered problems with the correctness of the algorithms.

There is, however, one paper on the subject that distinguishes itself as both intu
itively appealing and completely rigorous; that paper presents a construction for the
specific case of a two-writer, multi-reader atomic register [BB]. It is the purpose of this
paper to to provide both an intuitive feel for and a rigorous proof of correctness of a
modified version of the more general aigorithm presented in [PB]; [BB] is used as a
model for this paper. Consequently, many of the facts proved in this paper are the same
as or resemble those proved in [B13I or [PB]. The terminology and notation of these
papers has been largely retained in the interest of consistency.

It was necessary to prove correct a modified version of the algorithm from [PB]
because, in the course of developing this proof, bugs were found in the algorithm from
[PB]. Changes were thus made to the algorithm from [PB], some of them in consultation
with one of the authors of [PB:, to correct the problems with the published algorithm.

The modified version of the algorithm from [PB constructs an rn-writer n-reader
atomic register from in 1-writer rn-fri-reader atomic registers. The algorithm reqires
that each of these registers be large enough to contaju any of the values that could be
written to the rn-writer n-reader atomic register, as well as 0(m) storage for control
information that is used by the algorithm. In the worst case, the algorithm requires
0(m2)accesses to 1-writer rn-I- n-reader atomic registers to perform a write to or a read
of the rn-writer n-reader atomic register.

The proof of correctness of the algorithm is carried out within the framework of the
I/O automaton model. It is based on arguments about the order of particular actions
in sequences of actions, and proceeds by proving various lemmas and theorems that
capture the essential aspects of the algorithm in a rigorous way. As such, a careful
reading of the proof should convince one of the correctness of the algorithm.

The next section of the paper presents the I/O automaton in the context of which the
proof of correctness will be developed. The following section presents, in formal terms,
the problem that we are trying to solve. The fourth section presents the architecture
that will implement the solution. The fifth section gives an informal description of the
various aspects of the algorithm. The sixth section gives a formal description, in the
form of code, of the algorithm. The seventh section presents the proof of correctnss.
The eighth section presents the coaclusions of the paper. The paper body should be
read sequentially.

1

2 The Model

This paper presents the algorithm within the framework of the I/O automaton model.
TheJollowing formal description of a subset of that model is copied, with modicatioDs,
from [Ly]. Firther description of this model may be found in [LT1] and [LT2].

We will assume a universal set of actions. Sequences of actions will be used to
describe the behavior of modules in concurrent systems. Since the same action may
occur several times in a sequence, it is convenient to distinguish the different occurrences;
we refer to a p&ticular occurrence of an action in a sequence as an event.

The actions of each automaton are classified as input, output, or internaL The
distinctions are that input actions are not under the automaton’s control, output actions
are under the automaton’s control and externally observable, and internal actions are
under the automaton’s control but not externally observable. In order to describe this
classification-, each automaton comes equipped with an “action signature”.

Au action signatnrc S is an ordered triple consisting of three pairwise-disjoint sets
of actions. We write in(S), out(S) and int(S) for the three components of S, and refer
to the actions in the three sets as the input actions, output actions and internal actions
of 5, respectively. We will let acts(S) = in(S)Uout(S)Uint(S) and wiU refer to acts(S)
as the set of actions of S. We will refer to the actions under the automaton’s control
as local(S); local(S) = otit(S) U bit(S). The actions ext(S) = in(s) U out(S) will be
referedto as-the extemi actionof the automaton.

Since i/O automata are intended to model complex systems with any number of
primitive components, each, automaton A comes equipped with an abstract notion of
“component”; formally, these components are described by an equivalence relazion on
locat(sig(A)) where all the actions in one equivalence class are to bethought of as under
the control of the same primitive system component.

We wifi think of an I/O automaton as consisting of the following components:

1. An action signature sig(A).

2. A set states(A) of states.

3. A nonempty set slart(A) C states(A) of start states.

4. A transition relation step4A) C states(A) x acts(sig(A)) x states(A), with the
property that for every states’ and input action lr there is a transition (s’,’r,s)
in sieps(A).

5. An equivalence relation, as described above, part(A) on local(sig(A) having aç
most countably many equivalence classes.

We refer to an element (s’, ‘r, s) of steps(.4) as a step of A.

2

An execution of A is a finite or inlinite alternating sequence of states and actions
so, Xi,81K2,s,... such that so E start(A). We denote the set of executions of A by
ezecs(A). Throughout the proof of correctness of the algorithm, we wiU want to refer
to states within the context of an execution. Thus when we refer to the state si in the
execution above, we are refering to both its place in the execution and to the global
state of the automaton that it represents. Consequently, it will make sense to say that
Si < 2 or 3’ < r2 in the above execution.

A fair execution of an automaton A is defined to be an execution a of A such that
the following conditions hold for each class C of part(A).

1. if a is finite, then no action of C is enabled in the final state of a.

2. If a is infinite, then either a contains infinitely many events from C, or e’se a
contains infinitely many occurrences of states in which no action of C is enabled.

Thus, a fair execution gives ‘fair turns” to each class of part(A).

A finite or infinite sequence of actions of A is said to be a schedule of A if it is the
subsequence of some execution e of A consisting of all of the actions in e. We denote
the set of schedules of A by scheds(A). A schedule is said to be a fair schairile if it is
the subsequence of actions of some fair execution.

The remaining definitions relate the method by which a collection of automata is
composed to form a new automaton.

A countable collection S of action signatures is said to be compatible if it satisfies
the following two properties for every S’,S” ES, 5’ 5”:

1. out(S’) fl ou(S”) = 0.
2. ini(S’) fl ads(S”) = 0.

Thus, no action is an output of more than one signature in the collection, and internal
actions of any signature do not appear in any other signature in the collection.

The composition S of a countable collection S of compatible action signatures is
defined to be the action signature with

1. in(S) = US’ES in(S’) \ US’ES out(S’).

2. out(S) = US’ES otit(S’).

3. int(S) = US’ES tnt(s).

Thus, output actions are those that are outputs of any of the component signatures.
and similarly for internal actions. Input actions are any actions that are inputs to any
of the component siaSures, but outputs of no component signature.

The composition A of a countable collection A of automata with compatible action
sipatures has the following components; let I be an index set for A:

3

1. sig(A) is the compition of {sig(A’)A’ C A}.

2. states(A) = fl1ystates(A).

3. start(A) = fliEI start(Aj).

4. steps(A) is the set of triples

((s1), ,r, (s)) c states(A) x sig(A) x states(A)

such that for all i e I: if r e act4A,) then (s,w,d,) e steps(A1)and if Jr 0
acts(A1) then s =

5. part(A) = IJAsEApart(A’).

Each step of the composition automaton thus consists of all the automata that have
a pasticular action in their signatures performing that action concurrently, while the
automata that do not have that action in their signatures do nothing. In other words,
all component automata in a composition continue to act autonomously.

3 The Problem

The problem of constructing an rn-writer n-reader atomic register will be seen as that
of constructing an I/O automaton with the following actions and properties:

1. The I/O automaton should have the input actions StartwQ, v) and output ac
tions Finishw(i) for all i, 1 I S m and all values v the register is capable of
containing. Similarly, it should have inpnt actions SlartR(j) and output actions
Finish(j, v) for all j, 1 j n.

2. many fair execution of the automaton, we will assume there is no event Startw(i, v’)t
interposed between a given event Startw(i,v) and the fist event Finishw(i) to
follow the event Sartw(i, v). Also, there is no event Finishw(i)’ between a given
event Finishw(i) and the first event Startw(i, v) to follow Finishw(i). Similarly
for the StartR(j) and Finish(j,v). The behavior of the automaton will remain
undefined for executions for which this does not hold.

3. Given a fair schedule fi of the automaton, it should be psib1e to insert an action
Atornicw(i) between any event Startw(i, v) and the following Finishw(i), and an
event ALamicR(j) between any event StarIR(j) and the following Finish(j,v),
to create a new schedule j3’ about which the following is true: given any event
Atomicn(j) in ‘, if Aiomicw(i) is the last event in fi’ of the form AtomicwQ)
for which .4tomiciy(i) < Atomic,(j) for any writer i, then if Startw(i, vw) is the
last event of the form Startw(i,r) preceding AtomicwO) and if FinishRU,vR)
is the first event of the form Finishp(j, v) following Atomicp(j), then vw =
if there is no such Atomicw(i) for any wriler i, then = Vinitial where yR is as
defined above and vj is the initial value of the register in the schedule if.

4

An rn-writer n-reader atomic register is an automaton that satisfies the above require
ments in such a manner that readers and writers do not wait (a condition we will
elaborate upon later).

Intuitively, the first of the above requirements states that there are in channels along
which writers i may initiate writes of values v to the rn-writer n-reader atomic register,
and n channels along which readers j may initiate reads of the value in the register
Requests to initiate reads and WTiteS of the register are acknowledged when the reads
and writes have completed; acknowledgements of read requests return the value v that
was read by the read.

The second requirement states that no writer or reader should initiate a new write
or read until an acknowledgment of completion is received for the last write or reaLl
initiated. Similarly, it implies that each write or read is acknowledged exactly once.
Note that the requirement that writers and readers wait for acknowledgements is beyond
the control of the register automata; we will expect that writers and readers comply
with this requirement and will not define the behavior of the register if they do not.

The final requirement above states that we should be able to linearly order the reads
ajid writes in a maimer that is consistent both with the order in which the reads and
writes occured and with the behavior we expect of a re&ster. We should thus be able
to think of overlapping writes and reads as having occured in some fixed order such
that each read returns the value written by the last write that preceeded it in the order
reads that occur before any write has taken place should return the initial value of the
register.

4 The Architecture

We will implement such an rn-writer n-reader atomic register as a composition of au
tomata as shown in figure 1.

th the figure 1, the circles reprent distinct I/O automata, and the lines represent
channels between them. The heavy lines represent write channels, while the lighter lines
represent reañ channels.

Each Writer i denotes an I/O automaton executing the algorithm’s writer’s pro
tocol. The actions Startw(i,v) and Fimislzw(i) are input and output actions of the
Writer i automaton. We will think of a particular write TV of the value v to the rn-writer
n-reader atomic register as the Startw(i, o) event that initiates W, the Finishw(i)
event that acknowledges completion of W, and all actions that the Writer i automa
ton performs in between. For convenience, we will refer to the particular Startw(i, v)
event that initiates W as Start(W) and to the Finishw(i) event that terminates TV as
Finüh(W); the value v written by TV wili be refered to as Value(W).

Similarly, each &adcr j denotes an I/O automaton executing the algorithm’s rea
der’s protocol. The actions Start(j) and Finish(j,v) are input and output actions

5

Figure 1: The composition automaton.

6

of the Reader j automaton. We will think of a read 1? of the rn-writer n-reader atomic
register in a manner analogous to that in which we think a write W to the register. We
wifl define Start(R) and Finish(R) analogously to Start(W) and Finish@) above.
The value v rehirned by a read I? will be refered to as Value(R).

Finally, each Register i represents a 1-writer, m+n-reader atomic register automa
ton that has the extemai actions siart(v), finish. stafl.(i), and finish7(i,v) which
ale defined analogously to the Startw(i,v), Finishw’(i), StartR(j), and Finish(j,v)
actions of the rn-writer n-reader atomic register. We will defue reads r, writes to,
.start(r), finish(r), start(w), and finish(w) for the 1-writer m+n-reailer atomic reg
isters analogously to the definitions we made above for the rn-writer n-reader atomic
register. Also, for each read r and write to of a 1-writer m+n-reader atomic register
we will assume the existence of the actions atomic(r) and atomic(w) at which we can
think of r and to as having taken place.

By the wait-free condition that we require of our rn-writer n-reader atomic register
we will mean that for any read R by any reader j in any fair execution of the automaton,
the number of events performed by the Reader j between Start(R) and Finish(R) is
bounded by a fixed constant Similarly, the number of events performed by any
Writer i automaton as part of any write in any fair execution must be bounded by
some fixed constant Cw.

S Informal Description of the Algorithm

5.1 The 1-Writer Registers

So far we have established the composition automaton that executes the algorithm. We
will now present a bit of intuition to explain how the algorithm should work. Note
that this is not a proof of correctness. We will first discuss the “version numbers’ that
axe maintained by the writer automata in their associated 1-writer m+n-reader atomic
registers.

When a reader automaton receives a request to begin a read of the value in the in-

writer n-reader atomic register implemented by the composition automaton described
earlier, it must somehow figure out which writer’s register contains the value that is the
correct one to return. To aid in this process, each writer maintains a set of “version
numbers” which are visible to the readers and on the basis of which a current value may
be selected. The information maintained by each writer i in its register is as follows:

VN[i,jj Every tiuae writer i performs a write that does not time out (We will discuss
what that means later.) to the rn-writer n-reader atomic register, a new value
of VN[i,j] is written into writer i’s register for every writer j. As such one may
think of Wi as staiding lOT the Version Number of the most recent write. The
rules for choosing the new VN[i,j) will be discussed later.

7

PVN [i,jJ Even though writer i changes its VN[4,jJ every time it performs a write
that does not time out, the old value of VN[1, jJ does not immediately disappear;

‘whenever the value of VN[i. jl changes, its old value is rewritten by writer i into
its register as the value PVN[i,j]. As such, PVN may be thought to stand for
Previous Version Numb,er.

OVN [i,j] In the process of performing a write W, writer i reads the version numbers
contained in the other writers’ registers and writes them into its own register;
the value read for VN[j,i] is written by writer i into its register as OVN[i,JJ. It
is thus natural to think of OVN as standing for Other’s Version Number. Since
they record some globaJ state of the VN’s that occured during the write W, these
values serve as a sort of timestamp to communicate the relative recency of the
value, Voiue[i} in register i.

Vaiue[i] At the same time that it writes the VN[i,j], PVJV[i,j], and 0VN[i,j], writer i
also writes to its register the value, Value(W), that it is in the process of writing
to the rn-writer n-reader atomic register. This value is written by writer i into its
register as Value[il.

P7eOV1V(i,j] This value is used only by writer& It contains either the current value
of 0 VN{i,jJ, or a value of OVN[i,

j]

that writer i is planning to write but has not
yet written.

It is sometimes difficult to keep all of these different indexed variables straight; a
partial aid to remembering them is provided by noting that the first index of a variable
is always the index of the writer in whose 1-writer rn—n-reader register the variable
resides. The VN[i,j] reside in the register of writer i and are thus written exclusively
by writer i; similarly for the other indexed variables.

Another important point to remember is that the first four variables, the VIV[i,j],
PVN[i,j], 0 VN[i,j], and Vatue[ij, are written to writer i register at most once during
any write W by writer i. These variables are written all at once in a single write
to writer I’s atomic register, and performing this write is the last step in the writers’
protocol before the Finish(W) action at the end of the protocol. Consequently, the
values of these variables remain constant between the atomic actions, atomic(w), of
such writes. The values of the PreOVN’i,j] change at other times.

These variables will initially be set to:

VN[i,j] = 2

OVN[i,j] = PVNi.j) = PreOVsVTi.jJ = 1

for all writers i and j. The initial value that the rn-writer n-reader atomic register is
to contain should be placed in Vatrie[mi; the initial values of Vahtelkl for k in are of
no importance.

8

5.2 The Reader’s Protocol

The importance of these variables to reads is that by examining the relative values of the

VA1, PVN, and OVN, a reader automaton should be able to determine to a large extent

which writers wrote most recently. Consequently, a reader is capable of determining

which of the Vat ue[i] is the correct one to return. The following facts are useful in this

respect;

1. if at some point OVN[i,j] = VN[j,i], then at that point, we will consider the most

recent write by writer i to be more recent than the most recent write by writer j.
This is so for the following reason; when writer i was selecting the value of VN{j, i]

to write as 0 VN[i,jl duriag its last write, it chose the value VN[j, 1] written by the

most recent write by writer j; this implies that the mo€t recent write by writer i

was still deciding what to write alter the point where the most recent write by

writer j had already written. Loosely speaking, we say that writer i “sees” the

version number VN[j,ij that was written by the most recent write by writer j.
This means that if writer i “sees” writer j’s version number, then the last write

by writer i will be considered to be more recent than that of writer j.

2. If writer i “sees” neither the VN nor the PVN of writer j, that is if OVN[i,j]

VN[j,i and OVNfi,j] PVYJ,i] at some point then as of that point, the most

recent write by writer i is considerably less recent than that by writer j. This is

so because writer j must have written at least twice since the most recent write by

writer i was selecting the value of VN[j,i] it would write as OVN[i,j]. This would

imply that the value contained in Vatne{i) is particularly archaic; in general, a

should avoid returning such a value.

3. At no point does any writer ever “see” its own version number; that is, at all

points, OVN[i.i] VN[i.i]. At the same time, however, every writer always

“sees” its own PVN; at all points OVNti,i1 = PVN[i,i].

Of these three facts, the first is by far the most important. Indeed, it captures the

essence of the purpose of the version numbers. It is on the basis of this fact that we

make the following informal definition. At a given point for a given writer i. we will

define VNS(i) to be:

VNSQ) = till Si m,OVNi,j} = VN[j,i}}.

It is an important fact about the VNS that for any point and any writers i and j, either

VNS(€) C VNSU) or VNS(j) C VNS(I) at that point. (By A C B we will mean that

every element of A is also an element of B.) The first fact above implies that if VNS()

is a proper subset of VNS(k) for some writer i, that is, if writer i “sees” the version

numbers of fewer writers than does writer k, then VaIu[kJ should be treated as being

more recent than Vaine[i). Since set inequality implies set inclusion, we conclude that

I VNS(i) is a valid measure of the relative recency of the last write of Vat ii4i].

9

Unfortunately, I VNSO)I is not an adequate measure of recency to determine uniquely
which writer wrote most recently and thus which writer’s register contains the “current”
value of the rn-writer n-reader register. It is possible to have two separate writers i and
j, i 0 j, that write at more or less the same time resulting in VWS(i) = VNS(j) and
VNS(IC) C VNS(1) for all writers k. Thus an additional measure of the recency of a
write is needed. To this end we will employ the second fact from above and define, for
a given point and a given writer i, the value N(i) at that point to be:

N — 3’ 1 if for all writers j, OVN[i,j] E {VN{j, i],PVN[J, ij}
— 0 otherwise.

By the second fact from above, Value[il for a writer i for which N(i) = 1 should be
considered to be more recent than Vol ue[j] for a writer j for which NO) = 0. It would
be quite desirable if the two measures of recency that we have just defined, I VNS(i) and
N(i), thd not contradict each other; that is, if VNS(i)I > I VNS(j) then N(i) NO).
We will prove later that this Is so. The sum N(i) + VNS(i)I thus serves as a better
measure of receucy than VNS(i) alone.

Unfortunately, I VNS(fl+ N(i) is still not an adequate measure of recency of Value[ij
to uniquely determine the “current” value of the rn-writer n-reader atomic register. It is
again po€sible to have distinct writers i and j such that I VNS(i)I + NO) = I VNS(j)I +
MU) and VNS(k)I + N(k) I VMS(i) -4- M(i) for all writers k. Fortunately I VNS(i) +
NO) is a strong enough measure of recency that we can make the following definition, for
a given point, of F at that point: if M is the maximum value of p VNS(i)I + N(i) for any
writer i, then let F be the largest numbered writer for which VNS(F)r + N(F) = M.
It is dear that at any point, the value of F is unique. OuT proof of correctness will show
that Vaiue[F] may be viewed as the “current” value of the rn-writer n-reader atomic
register.

So far we have explained how one determines the “current” value of the rn-writer
n-reader register based on the values of the VN, PVN, and OVN. What we have not
done is to state how a reader goes about reading a set of such values, if a reader were
simply to scan the writers’ registers in succession, starting with a read of all the values
in writer l’s atomic register and finishing with a rea4i of the values in writer m’s atomic
register, then if we were to compute F on the basis of the values observed, Value F]
need not be a correct value to return. It is entirety possible that the writers could write
as the scan is taking place; such writes could write values of the VN, PVN, and OVN
that mislead a read into returning a value that is not at all current.

This is clearly undesirable behavior. So we ask if a reader would get a consistent
set of values if it were to scan the values of the writers’ registers twice, starting with a
read of the values in writer l’s register through a road of writer m’s register followed
by another read of writer l’s register and so on through a final read of the values in
writer m’s register. If we were to require that the Valiles VN[i,ji observed by the first
scan be identical with the values VJV[i,jJ observed by the second scan for all writers i
and j, would the second scan yield a set of values from which we could determine F such

10

that Value[F] is a valid value to return? This is the approach adopted by the code in

[PB]. This approach does not work. Indeed, even if one were to require that not only the

VN’s but the PVN’s and the OVN’s as well remain constant across the two scans, then

the second scan still does not return a set of values for which Value jFJ is necessarily

a correct value to return. The algorithm that we will prove correct incorporates a

suggestion by Burns that a reader require that aM of the 1/N’s, OVN’s, and pTvvs

remain constant across three consecutive scans of the writers’ registers.

There is stili one question about the way the read protocol determines the value of

F that remains unresolved. It is entirely possible that a reader could perform an infinite

sequence of scans and never see three consecutive scans that are identical. To solve this

problem, readers keep track of the writers whose values they have seen change between

scans. If, in the course of a read B., it is observed that a writer i has changed its values

two times, then because writes by a single writer are not permitted to overlap in time,

the write W, that caused the second change of value must have started after the end of

the write W1 that caused the first change of value. Since changing the values visible to

readers is the last step in the writer’s protocol, we condude that essentially the entire

write W2 was performed after the start of the read 1? but before the scan that observed

the second change in the values in writer i’s register. This means that to return the

value, Value[ij, written by the write W2 is to return a Legitimate value for the read B;

the point at which we can think of the write W2 as having occured atomically will

necessarily be contained within the bounds of ft so if we think of B as having occured

immediately alter that point, we see that it is valid if Value(R) = Value(W2). If a

reader observes that a writer i has changed its value twice, then it will tue this couxse

of action retnning the value of Value fiJ observed after the second change; reads that

return a value determined in such a way are said to have “timed out.”

By the pigeoithole principle, it is necessary that after 2m + 3 consecutive scans of
the registers, either three consecutive scans have returned the same values for all of the

writers. or some writer has been seen to change its vaiues as least twice. Thus, by the

time at most 2m + 3 scans have been completed as part of a read, that read has either

timed out, or has terminated normally having completed three consecutive scans that

return the same values.

In summary, the algorithm’s reader’s protocol operates as follows:

1. A reader performing a read first scans the writers’ registers attempting to make

three consecutive scans that return the same values of VN[i.j for all writers i

and j. By the end of at most 2m + 3 scans, either three such scans will have been

observed, or the read will have timed out returning a value written by a writer

whose values have been observed to change twice. If three consecutive scans return

the same values of the VN[i,j] then the values observed by the third scan are used

in the next step to determine the value to return.

2. On the basis of the values read in the first step, the values of VNS(i)[, N(i),

and F are computed. The value of Va(ue[F] seen during the third of the three

consecutive, identical scans from the first step is then returned.

‘I

This concludes our discussion of how readers choose the values they are to return.

5.3 The Writer’s Protocol

We have discussed a reader’s choice of a value to return based on the existence of several
variables maintained by the writer automata. We have yet to demonstrate how these
variables are maintained. We will do so now.

Just as a reader must first read the values in all of the writers’ registers to determine
what value to return, so too a writer must first read alt of the writers’ registers to
determine what to write. Writers read the VN, PVN, OVN, and FYCOVN in a manner
almost identical with that in which readers read the VN, PVN, and OVN (although
the reason why the method works is somewhat different in the two cases). As before,
a writer obtains values for the VA’, P’/N, OVA’, and FreOVN by making scans of the
writers’ registers. This time, if across three consecutive scans, none of the VA’, PVN,
or OVA’ is seen to change, then the writer may assume that the values read by the last
of the three scans represent a state of the world on the basis of which the writer may
complete its write. It is very important to note that a writer does not require that the
PreQVN remain constant across scans; only the VAT, PVN, and OVN must remaãn
constant acro scans.

Assuming that a writer i baa, as some point, successfully read the values of VN[j, lv],
OVN[j,k], and PreO VN[j,k], for all writers j and k, it chooses the values it will write
for the VN[i,j], PVN[i,jl, and 0 VN[i,j], for all writers j as follows:

l’W(i,jl Since we want to have OVNU,iI = VN[1,jI only for writers j whose most
recent writes are more recent than the most recent write by writer i, we must
choose VN[i,j] OVN[j,I]. Similarly, since PreOVN[j,il is the value that an
ongoing write by writer j is planning to write for OVNU,i, we want to choose
VN[i, j] PreO VN[j, iJ; otherwise we would imply falsely that the ongoing write
by writer j had chosen the value it is to write for OVN[j, I] on the basis of the
value of VN[i,j] that we are choosing here but have not yet written. Finally, since
VN[i,jl is to serve as a “version number” for the current write by writer i, it must
be different from the value previously written for VA’[i,j]. We thus choose the
new value for VN[i,j] to be an arbitrary element of the observed set:

{1,2, 3,4) \ {O VNU, i),PreO VNU, i,VN[1,j)}.

PVN [i,j] Since we want PVN[i,j] to be the value that was previously written for
VN[i,j], we will choose PVN[i,j] to be the observed value for VN[i,j]:

FVNjI,jl := VNi,j,

OVN [i,jj As was mentioned during the discussion of the version numbers! the values
of the OVN[i,jj are to represent the values of the VN(j,il observed by writer i.
Consequently, we assign:

OVN[i,j] := VN[j,ij.

12

After a writer i performing a write W has chosen the values it is to write for VN[i,

j),

PVN[i,j], and 0 VN[i,j], it proceeds to write to its register, ‘none fell swoop, VaIue[iJ,
and VN[i,j], PVN[i,j], and OVN[i,j] for all writers j.

The PreOVN[i,jJ are written somewhat differently. As it is the purpose of the
PreOVN[i,j] to inform other writers of the value of OVN[i,j] that will be written, but
has not yet been written, it is vita’ that the FreO VN[i, j] be written as early as possible.
Thus the PreOVN[i,j] are written following the first scan of the writers’ registers and
following each subsequent scan that returns values different from those returned by the
previous scan. Thus each time a scan returns a potentially new set of VN[J, i], we write
the new values:

Pre0VN[i,j:=VWU.ij

for all writers j.
As was the case with the reader’s protocol, a writer performing a write could perform

an infinite sequence of scans and never see three consecutive scans return the same val

ues. The solution here is the same as with the reader’s protocol. As a writer i performs
scars of the writers’ registers, it keeps track of those writers that have been seen to
change values between scans. As before, if some writer is seen to change its vaues more
than once, the last write was performed within the time bounds of writer i’s current
write. The “atomic’ action for writer i’s current write may thus be placed immediately
before that of the write that is performed within its Start and Finish bounds; writer i
simply terminates its write withoat changing Vatue[ij, VN[i,j], PVN[i,j], or OVN(i,j].
A writer that terminates in this manner is said to have “timed out.” Note that since
writer i does not change its values while it is scanning (The PreOVN[i,j]’s are not
compared across scans.), and three consecutive, identical scans are aeeded, the pigeon
hole principle dictates a ceiling cci the number of scans that a writer need perform that
is somewhat different from the corresponding ceiling for readers; after at most 2m + 1
scans, a writer has either seen three consecutive, identical scans or has timed out.

Thus we can summarize the operation of the writer’s protocol as follows:

1. A writer perfonning a write iirst repeatedly performs scans of the writers’ resters.
After each scan (except the first), the values read for the VN, PVN, and OVN are
compared to those that were read by the previous scan; if any of these variables
is seen to change, note is made of the writer that performed the change.

2, After the first scan and alter each subsequent scan that observes values different
from those of the scan that preceded it. the writer writes out its PrcOVN[i,j]’s.

3. 11 after 2m + 1 scans, no three consecutive scans have been observed to have
the same values, the write times out by exiting without doing anything further.
Otherwise, the values returned by the third scan of a set of three consecutive,
identical scans are taicen to be a consistent state of the VN, P1/N, OVN. and
PreOVN.

13

4. New values are now chosen for the VN[i,j], OVN(i,j], and PVN[1,j] according
to the nies expressed earlier. After these nines have been cho€en, they, along
with the new value for Value[il are written to writer i’s atomic register in a singe
write.

This completes the discussion of the writer’s protocol.

6 Formal Description of the Algorithm

The code for the algorithm we will be proving correct is found in figures 2 and 3. This
is essentially a re-written version of the code given in [PBJ with the following changes of
significance: the number of consecutive, identical scans a reader makes is now three; all
of the VPJ’a, PVN’s, and OVN’s are now compared between scans for both reads and
writes; and writers read the PreQVN’s when they read the other values in the writers’
registers. The first two of these were suggested by Burns. The third is an additional fix
required to achieve a correct algorithm.

Note that the code for the writer’s protocol is specific to writer k; it makes use of
the variable A, in the code so that it knows the register to which it may write. Readers,
on the other band, all execute the same code. Note also that the only variables that are
shared among the protocols are the Value, VN, PVN, OVN, and PreOVN as these
are the only variables stored in the 1-writer m+n-reader atomic registers. All other
variables are local.

An additional note about the code is that all code within a given pair of symbols
is to be performed as a single read or write to a particular atomic register. Thus if a
Jeep is contained within the triangle symbols. the values to be written or read by the
loop are written or read all at once; the loop is only notation to quantify what gets
written or read.

The code for the reader’s protocol works as follows. The first two lines initialize vari
ables that are used for control purposes in the remainder of the code. The Sgrna.Scans
variable records the number of identical scans that have been performed since the ‘ast
observed change between scans. The TirnaiOut variable equals zero until such time
as some writer is observed to have twice changed the values hi its register; it is set to
the number of a writer that performed two observed changes when such changes are
observed. The Changes_Seen array maintains the number of changes that each writer
has been observed to perform.

Following these variable initializations is the code that performs the first scan of the
writer’s registers.

After this first section of code is a segment of code that is repeated at most 2m + 2
times. It performs the following steps:

1. The values read by the previous scan are saved for future reference in the Saoa.Scan
as rays.

14

DErINE
Wr,rcr_Changd_Snce2a.LScanO) 2 (1 <j<m{ScaiI_ViVP)I SaIJCdSCaTtVN(i,jD)

V(V<,,(ScaitflVYji, i] Sav&scan_O VsV [1Jfl)
V(Viq,,(Scrni_FVNtij] Savd.scan_PVNi,jD);

Any_C hangeSln_L niScan Wiiter_ChangedSInce2ngt.Scan(I);

VV5Si,t{) 2 Ill < , rnpican_QVN(.. j[= Scn_VN(j, ill I:

N(i) ifA1<,<,.JOVVi.i E .Vj. PvvJ.
0 otherwise:

M MAX{V.VSSiiC(i) VOlU < i <

F M.4X{1 mIVNSSizc(i) + NW =

BEGIN
SameScari. : 0; Timd_Qut : 0;
FOR I : I TO in DO Changesseen(ij 0; END;
FOR : I TO m DO

FOR J:= t TOrn DO Scan_VN[ijl : VNII,j]; END;
FOR3 : L TOrn DO SaOYNçiji oVyri.jI, °
FOR) fl I TOni DOScn2vNIi PVNI;; END:
Stan_Vauejij := VaLtei; c

END;
Same_S I;
REPEAT

FOR I TO m DO
FOR J= ‘TO vi, DO Saved.SenVN[ijl Scn_I/N(i,fl; END;
FOR j : ITO in DO SaveLScanflVN(i,j] := ScanOVN[i,j1; END:
FOR j : ITO in DO Savedscaii_PVN[i,jj : ScarnPVN(i,jJ; END;

END;
FOR I ITO in DO

FORj : I TOm DO Scan_VN(ij] : VNi,jj; END;
FORj:= LTO mOO ScanJ3VNtijj :=QVY[i,JI; END;
TORi ITO in 2)=PVVTj END:
SC411_V&TSe:iI -= Vainhi1;.

END;
FOR i : I TO in DO

IF WrIIer_Chi,d_Sincaasi_Scca(fl
THEN Ckangc.Scen(il Chsnga.Sen4,I —1;
END;

END;
IF Any_C hange_S ince.Iast$can
ThEN SmeSeans :

FOR I := I TO in DO
IF Changcssan(iJ = 2 TEEN Timed_OuC : I; END;

END;
ELSE Same_Scan. Same_Scan. + I;
END;

UNTIL Same_Sen. = 3 OR Ti,rt&Oid ot
IF TirneLOtd #0
THEN RETURS(ScanVaL.(Timed.fltdI);
ELSE REtURY(ScanV&FD;
ENO:

END;

Figure 2; The reader’s protocol.

15

DErENE
VrrLer.CIrnnge&5inct.L4.I$eth1(i) 5 (Vc,cJScaTVNIi. IJ SntdSCarLVNIi.IJ))

V(11,<.(ScrntOVN(ijJ SnedScaOVN(i,,]))
V(V19._(Scan_PVNti.lj 36 SGIIt&Scd,1_PVN[IJD);

A ny.Cha nqesinee.2 astsca n (V <+,, W itt r_Ch anget5ince..La.t3cn

BEGIN
SameSe4ns =0; Tirnqd_Oui =0;
FOR i : I TO m 00 ChqriqnS,en(i : 0; END;
FOR = I TO rn DO

FOR j := ITO m 00 gCn_VVIi.J = tVj; END:
FORJ : ITO ‘“DO SetOVNi.jJ : UVN’ijF END:
FOR j : [TOm 00 Scar._PVtini,J PVVrj,j!; END;
PScan_PnOVVii. k PrtQVVi. kI.

END;
SomeSe@ns : 1;
REPEAT

FOR i : I TO m DO
FOR j ITO m DO Srnscd.Scan..VN[i,il : SCQTIJ’N[i,jj; END;
FOR .1 1 TO m DO Saved.Scan..OVNII,j] ScanflVN{i,jJ; END;
FORJ I TO mOO Saved ScanPV?1(ij Sean.FVN(i.j; END;

END;
IF SamScana = I
TEEN FOR i ITO mOO P,QVN1ki Scan.YY(tkj; £140: 4
END:
FOR I : I TO in DO

• FOR3 : ITOm cc sesnWN .: := V.V[iJfl END;
FORj ITO in DO 5caitOVNi.f = OVNi.jI; END;
FORJ ITOm DO Scan.PVN j -= PVN[i.f; END;
PSCSIt&cOVY1kI-= PrcOYY:i.kI;
Scan_Vaiue[z) Valu4ij, .

END;
FOR I ; I TO m DO

IF WrIter_Changedsince_Laatscan(fl
THEN Change,.Seen[iJ : Changes3een(i] + 1;
p2ND;

END;
IF An .Changeina_(astscan
THEN Samescan.

FOR : O m DO
IF Change.SeriIiJ = 2 THEN TimeSfltd : I; END:

END;
ELSE Samecan, : Same..Scgn. + I;
END;

UNTIL SameSnj 3 OR TimetO
IF Tuned-Ott
THEN RETURN;
ELSE

• FORI:ITOmPO
VN(k,1) : 4ny({I,2,3,4) \ {SCOILVN[k,il,Scan_OV)V[i,&i,PScan.YrcQVN[i,kfl);
QVN[k, 13= Scan_VN[i, kI;
PVNfk, I] : Scan_VN(k, I;

END;
Vaiu4kJ :t VALLI€;,

RETURN;
END

END;

Figure 3: Writer k’s protocol.

16

2. Another scan is performed.

3. The values read by the scan from the last step are compared with those read by
the previous scan; any registers that are observed to have changed their values are
recored in the Changes_Seen array.

4. If any changes at all were observed between the last two scans, then a check is
made to see if any writer has now been observed to change its values twice, setting
Timed..Out appropriately if so. If, however, no changes were observed between
the last two scans, that fact is recorded by incrementing the running number of
consecutive, identical scans that is stored in Same_Scans.

This sequence of steps is repeated until either three consecutive, identical scans are
observed to occur or some writer is observed to change twice.

The code for the reader’s protocol concludes by returning the appropriate value
depending upon whether it is to time out or terminate normally.

The code for the writer’s protocol begins very similarly to that for the reader’s
protocol. It initializes the control variables and performs a first scan of the writers’
registers in the same manner as the reader’s protcol. It then enters a section of repeated
code that is similar to the repeated section of code with the following differences:

1. Prior to performing anew scan, a check is made to see if the last scan performed
was the first scan or if it observed a change, that is, a check is made to see if
Same_Scans = 1. If so the values of the VN[i, k] are written out as the new
PreOVN[k,i]; otherwise no action is taken.

2. Each segment of code that performs a scan includes a line to read the PreO VN[i, kj.

This section of code repeats at most 2m times, terminating when either three consec
utive, identical scans have been observed, or when some writer has been observed to
change its values twice.

If, during the repeated segment of code, some writer was observed to change twice,
the writer’s protocol now times out without doing anything further. Otherwise, the
appropriate new values are written to writer k’s register.

7 Proof of Correctness

7.1 Definitions

To make future reference more convenient, we will begin our proof of correctness with
a formal restatement of all of the definitions made in previous sections.

17

DEFINITION: Let W be any write of a value to the composition automaton and B
be any read of the value in the composition automaton. Then Value(W) and Value(R)
refer to the values written by W and read by 1? respectively.

DEFINITION: Let W be any write by writer i. Then the following actions axe
associated with W:

Sart(W) The request to writer ito begin the write W. This is the first action in the
write W.

Finish(W) Acknowledgement that the write K’ has just complet€d. This is the last
action in the write W.

DEFINITION: Let W be any write by writer i that does not time out. Then in
addition to the above actions, the following actions are associated with W:

1Scan(W) The atomic action associated with the read of writer j’s register during the
first of the last three scans performed by writer i as part of W. Note that we are
actuaily defining the m separate actions:

1Scan1 < lscan(W)3< ... < lScan(W),,..

PWrite(W) The atomic action associated with the last write of the PreOVN[i,j] by
writer i as part of W. Here we are defining only one action.

2Scan(W)3 The atomic action associated with the read of writer j’s register during the
second of the last three scans performed by writer i as part of W. Note again that
we are defining in separate actions.

Scan(W) A synonym for 2Scan(W). The significance of this action will be explained
later.

3Sran(W)3 The atomic action associated with the read of writer j’s register during the
last scan performed by writer i as part of W. Note again that we are defining m
separate actions.

PScan(W) The atomic action associated with the last read of PteOVN{j, i] from
writer j’s register performed by writer i as part of W. This is thus synonymous
with 3Scan(W).

Writc(H) The atomic action associated with the write of Vu? ue(W) and new V]V’s.
OIR’s, and FVN’s to writer i’s register as part of the write W.

Note then that for a write W by writer i that does not time out, the actions defined
above are syionymous with atomic actions of reads and writes performed by the anal
ogously labeled lines of code in Figure 3. Consequently the actions of W defined above

18

occur in the following order:

Start(W) < 1ScanW)1 <...< l5cszn(W),n <
Pl47rite(W) <

2Scan(W)i < <2scnn(W),.,. = Scan(W) <

3Scan(W)i = PScan(W)i < < 3Scan(W)m PSean.(W)..,, <

Write(W) < Finish(W)

DEFINITION: Let 1? be any read by reader i. Then the following actions are
associated with R:

Start(R) The request to reader ito begin the read 8. This is the first action in the
read IL

Finish(R) Acknowledgement that the read N has just completed. This is the last
action in the read 1?.

DEFINITION: Let R be any read by reader i that does not time out. Then in
addition to the above actions, the following actions are associated with 1?,

l5can(fl)3 The atomic action associated with the read of writer j’s register during the
first of the last three scans performed by reader i as part of I?. Note that we are
actually defining the m separate actions: -

lscan(ft), < lScan(R)2 < ... < 1Scan(Rb,.

2Scan(R)1 The atomic action associated with the read of writer j’s register during the
second of the last three scans performed by reader i as part of IL Note again that
we are defiMng rn separate actions.

aScan(R)3 The atomic action associated with the read of writer j’s register during the
last scan performed by reader i as part of 8. Note again that we are defining in

separate actions.

Note that for a read 1? by reader i that does not time out, the actions defined above
occur in the following order:

Start(R) < lScan(R)i < ... < lScan(R),,, <

2scan(R), < <2Scan(R),. <

3scan(R)i < < 3Scan(R),, < Finish(R)

DEFINITION: Lets be any state in an execution of the composition automaton.
Let jand /c be any writers. Then we will define VNU,k. to be the value of VNLj,k! at

19

states. Similarly, PVN[j,kJS, OVNfj,k},, PreOVN[j,k],, and Valne[jj, we deflne to
be the values of PVN[j.kj, OVN[j, k], PreO VN[j, k], and Value[jj respectively at the
states.

DEFINiTION: Let W be a write by writer i that does not time out. Let j and k
be writers. Define VN[j, k]w, OVN[j, k]w, and PVN[J, k]w to be the vaiues of VN[j,k],
OVN[j, kJ, and PVN[j, k] respectively, observed by the last three scans of W. Thus ifs,
t, and u are the states following 1Scan(W), 2Scan(W), and 3Scan(W)1 respectively,
then we have:

VN[j,k]w = VN[j,kj9 = VNLj,kjt = VN[j,k1

OVN[j,kw = OVN[j,k]3= OVN(j,k]t = OVN[j,k]

PVN[j,kjw = PVN[j,k] = PVN[j,k] = PVN[j,kJ

Define PreO VN[j, k]w to be the value of PreO VN[j, k] observed by the write W. Thus
since ii is the state following Pscan(W). we have

PreOVNj,kJw = PreOVN(j,kj.

DEFINITION: Let 1? be a read by readeT i that does not time out. Let j and k
be writers. Define VN[j,k]s, OVN[j,k]R, and PVN[j,kJR to be the values of VN[j,k],
OVN[j,k], and PVN[j,k] respectively, observed by the last three scans of R. Thus if
s, t, axtd u are the states following lScan(R);, 2Sca,z(R), and 3Scan(R) respectively,
then we have:

VN[j,k]R = VN[j,k}. = VNj,k} = VN{j,kJ

OVN[j,k]R = OVN[j,k], = OVN(j,k]t = OVN[j,k]

PVNfj,k]p = PVN[j,kJ3 = PVN[jkjt = PVN[j,kIU

The following lemma embodies the rules by which the VN [i,j1. 0 VN[i.j], PVN[i.j].
and PreOViV[i,j] are picked each time a writer writes.

Lemma 1 Let W be a write that does not time out and let i be the writer that performed
the write W. Let jEt any writer. Lets, t, it, and v & the states following PScan(Wij,
3Scan(fl), 3Scan(W)1,and T4’rite(W) respectively (note = t). Then the following
hold:

VN[i,jj,, {VN[i,j],OVN[j, ij,FreO VN[j, iJ,}

OVN[i,j] = VN[j,ijj

PVN[i,j]V = VN[i,JJU.

Also, let x be the state following PWrite(W). Then

PreOVNji,j]r = VNjJ,i]w = VN1j,il.

20

Proof of Lemma 1: This follows directly from the definitions of the PScan, 35can,

and Write actions and from trivial examination of the code. U

Note that VN[i,j], VN[i,j] implies that a writer chaaiges all of its VN’s every

time that it performs a write that does not time out.

DEFINITION: Let i be a writer and let a be a state in an execution of the

composition automaton. Then we will define:

VNS(i), = {jIl j < rrg,QVN[i,j]. = V.V[j,i].}.

Let i be a writer and let .1? be any read that does not time out. We will define:

VNS(1)R = {ji is 7n,OTiN[i,j] = VN[j,i]R}.

DEFINITJON: Let i be a writer and let 8 be a state in an execution of the

composition automaton. Then we will define:

N - — J 1 if for all writers j, OVN[i,j] e {VN[j, i],, PVN[j,i]8}
—

0 otherwise.

Let i be a writer and let R be any reasl that does not time out. We will define:

N — J’ 1 if for all writers j. 0 VN[i,jLq E {VN[j,i]R,PVN[j,CR}
).n

— 0 otherwise.

DEFINITION: Let be a state in an execution of the composition automaton.
Then we will define

F(s) = MAX{iIl i in, VNS(i)S + N(i), = MAX1<j<m(I VNS(j)31+ N(j),)}.

Let It be any read that does not time out. We will define:

F(R) = MAX{iIl i in,] VNS(i)p + N(i)R = MAX1<,<m(I VIVS(j)nI + N(j)n)}.

Recall that the value of F(s) may be thought of as the writer whose 1-writer n + ‘“

reader register contains the current value for the rn-writer n-reader register.

7.2 Basic Facts

Most of the following theorems, lemmas, corollaries, and such are useflil in understand

ing how writers, writing according to the writer’s protocol, are able to write in such a
way that F(s) may always be taken to be the “current” value of the rn-writer n-reader

atomic register.

The following lemma establlshes a little fact that will be used throughout the re

mainder of this paper.

21

Lemma 2 For all writers i and all states s in an execution of the composition automa
ton, i VNS(i),.

Proof of Lemma 2: Let i be any writer and s be any state in an execution of the
composition automaton, If there is no write W1 by writer i for which Write(Wi) < s
then initial conditions imply VN[i,fl, = 2 1 = OVNII,z], and we’re done. Otherwise
let W1 be the last write by writer i such that Write(W1)< a Let t and u be the
states following 3Scan(WJ and Write(W1)respectively. Then by Lemma 1 we have

0 VN[i,i] = QVN[i,i]. By choice of W, the values of VN[i,i] and OVNIi,i1
in writer i’s register remain constant between it and s and thus VN[i, i = VN[i, i1
and OVN(iJ}. = OVN’i.i]0.Thus I’W[i,i], 0 OVN [i,ij and by definition of VWS(i)3
we have i 0 VNS(i), as desired. C

Corollary 3 Let R be any read that does not time out, performed by any reader, and
let i & any writer. Then i VNS(OR.

Proof of Corollary 3: Let s be the state following 2scan(R)€. Then by Lemma 2,
g VNS(i)A. By choice of s, this implies that OVNi,i’jR = OVNji,i. 0 =

OVNi, i]R proving the corollary. C

AM of the actions we have just described refer to particular, meaningful operations
performed during an execution of the read or write protocols, with one exception. In
particular, Scan(W) for a write W that does not time out was defined to be synonymous
with 2sean(W)m but it has had no meaning assigned to it. We will give it meaning by
showing that the values of the VN’s, OVN’s, and PVN’s observed by the last three scans
of 14’ are identical with those in the writers’ registers in the state following Scan(ji’); if it
is the state following Sean(W) then VN[j,k]. = VN[j,k]w, OVN’Lj,ku = OVN[j,kjw,
and PvN[j,k] = PVN[j,k]w for all writers j and Ic. Thus the values seen by the
last three scans made during the write W may be thought to have been read by a scan
performed atomicaiiy at the point Scan(W). This is demonstrated by the following
Lemmas and Corollary.

Lemma 4 Let i and j & any writers. Let s and t be any two states, s < t, in an
execution of the composition automaton. If VNI,JJS = VN[i,j), and there exists some
write 14 by writer i such that s < TVrite(W) < t then there exists at least one write It1
by writer i stick that

s< Scan(W,) < Write(Wi) < t.
If i = j then there exist at least two writes W1 and W2 by writer i such that

s< Scan(Wi) < Write(Wj) < Scan(W2)< Write(W2)< t.

Proofof Lemma 4: Let W0 be the first write by writer i such that s < Write(Wo) <
t. Let u be the state following Writt(Wo). Then by the way the I”N’s and PVNs are
chosen (le. Lemma 1), we have

VN[i,j] 0 PVN{i,j] = VN[i,j]3.

22

Now since VN[i,j]1 = VN[i,j] there must be another write by writer i between ii and

(to bring the value of VN[i,jJ back to what it was at s. Let W1 be the first such write.

Since W1 mast start after W0 finished, we have s < it < Scan(Wi) < Wril(Wi) <

and W1 is as desired.

In the event that i = we have additionally, by Lemma 1, that OVN[i, i]

VN[i.ij. Thus if vis the state following Write(Wi), by the way VN’s are chosen we

have:
VN[i,iJ,. ovs:i,i. = VN[i,IJ,.

Again, since VN[i,i] = VN[i,i]3,there must be yet another write by writer i between

v and t to bring the value of VN[i, 1] back to what it was at s. Let W2 be the first

such write. Again, since W2 must start alter W1 finished, we have < Scan(Wi) <

Write(1471)< v < Scan(W2)< Write(W2)< t, and W-j and W2 are as desired. U

Lemma 5 Let W 6€ any write by a writer i such that W does not time out. Then

there does not ezist a writer j and a write % by writer j such that 2Scan(W)3 <

Write(W) < 3Scan(W).

Proof of Lemma 5: Assume otherwise and let j be a writer for which there exists

a write l$’ such that 2Scan(W) < Wriie(W,) < 3scan(W),. Lets and t be the states

following 2scan(W)1 and 3Scan(W) respectively. Then siace the last three scans of

W saw the same values in the registers, we have VN[j,klw = VIV[j,kj3 = VN[j,k]t for

all writers k implying that VN[j,i], = VN[j,i]t. Now we have assumed that there is a

write 11’J by writer j for which < I4’rite(Wj) < t, so by Lemma 4, there exists some

write W by writer j such that s < Scan(W) < Write(Wj) < t; let Wj be the last

such write. ift is the state following Write(W9, then by choice of 1V, VXU,ij remains

constant between v and t implying VN[j,i]0 = VN[j,i]. Let x be the state following

Pscan(WJ)1and note that

PWrite(W) < 2scan(W), < Scan(W) < z < lVrite(141) < 3Scan(IV)1.

Then since PreOVN[i,j] remains constant between PWrite(W) and 3Scan(W), by

Lemma 1 we have PreO VN[i,j] = VN[j,i]w = VN[j,ilt. Also, by Lemma 1 we have

VN[j,i] $ PreOVN[i,j]. But this implies VN[I,iIV 0 PreOVN[i,j] = VN[j,ijt

contradicting the VN[j,i], = VN[j,i]t we saw above. Thus our assumption is incorrect

and the Lemma is proved. D

Corollary 6 Let 14’ be aqy write by writer j such that W does not time out Let u be

the state following Scan(W). Then VN[J, ki, = VNU, k]w, OVN[j, k] = OVN[j, k]w,

and PVN[j,kj = PVNU,k]w for all writers j and k.

Proof of Corollary 6: By Lemma 5, there are no writes to writer j’s register that

could change the values of VN[j,k], OVN3k], and PVN[j,Ic between 2Scan(W) and

23

3Scan(W)2 for any writer k. Thus if s and t are the states following 2Scan(W) and
3Scan(w) respectively, we have s < it < t i1nplyin;

= VNU,k,. = = VN[j,k]w

OVN[i,kJ, = OVIv[j,k] = OVJv[j,k] = OVN[j,k]w

PVN[)Sk]3= PVN[j,k] = PVN[j,k)t = PVNLJ,Ic]w

for all writers k as desired. CD

This result permits us to think of the values of the VN’s, OVN’s, and PVN’s ob
served by a write W, those values on the basis of which W chooses the VN’s, OVN’s,
and PVN’s that it writes, to have been read by an atomic scan of all the writers’ regis-
ten acting at the point Scan(W). This meaning of the Scan(W) action is fundamental
to the remainder of the proof and will be assumed without reference to Corollary 6.

Now that we have established the meaning of the Scan(T) action, we will present
two theorems that capture the essence of the relative meanings of the VN’s, OVN’s,
and PVN’s. The first of these theorems states that for given writers i and J,I1 writer i
“Sees” writerj’s versioll number at a given point, that is, ifOVN[ij] = VN[j,i] at that
point, then writer i has both scaaned and written since the last write by writer j. The
second theorem states that for given writers i and j, if writer i sees neither writer js VN
nor writerj’s PVN at a given point, if OVN[i,jj VN[j,i] and OVN[i,j] PVN[j,iJ
at that point, then writer j completed two writes between the scan and write actions
of the most recent write completed by writer i. Let us first prove a little lemma.

Lemma 7 Let s be any state in an execution of the composition automaton. Let i
be any writer and let x be the first state for which tlwre does not exist a write W by
writer i such that x < Scan(W1)< Write(W1)< s. Let j be anj writer for which there
en&ts a write TV, x < Write(Wj) < s. Let t bt the state following Write(W,). Then
OVN[i,j], VNfJ,i].

Proof of Lemma 7: Let j, W, and t be as in the lemma statement.

if there does not exist a write W1 by writer i such that r < Write(W) < s then
x must be the first state th the execution; otherwise, if x’ were the state preceeding x,
we would not bave x’ < Scan(W) < Write(W1) c s for any write W by writer i
contradicting our choice of x. This implies OVN[i,j] remains constant for all states
up to and including s. In particular, if is the state following Scan(W) we have
OVN{i,j], = OVN[i,j]. By Lemma 1 we have OVN[i,jj VN[j,i]. Thus we have
OVN[i,j}, = OVN[i,j] VN[j,ij2 and we’re done.

For the remainder of the proof, then, we will assume that there exists a write W1
by writer i such that x < Write(W) < s. It follows that &an(H’1)is the last action
preceeding x. Let v be the state following Pscan(W,)1.There are four cases we must
consider:

24

Case 1: v < Scan(W1). Then since we have u < PScan(1V) < v, u < Scan(14’.) <

Write(Wj). Since writer j is in the process of performing the write Wj between

u and Write(Wj, le. since Start(W) < u < ¶Vrite(W3)< Finish(l4’), there

are no other writes ll by writer .j for which it < Write(W,) < Write(Wj) and

consequently VNj, i]9 is constant for all 3’, U s’ < Write(Wj). In particular,

since x is the state following Scan(W1)we have:

VNJ,1]r = VN[j,i].

Let y be the state following Writc(W). Then by Lemma 1 we have:

OVN[1,J] = VN[j.i1

and
VN[j,i] 0 VN[j,a1.

By choice of W1 and hence of y, OVN[i,j] remains constant between y and s.

Consequently:
OVIV[i,j]3= OVN[i,jJ.

Putting the above equations together yields:

OVN[i,j}, = OVN1ij} = VN’J.IIS = VN[J,1} VN[/,i1

as desired.

Case 2; Scan(W) < v < Write(W1). Now PreOVN[i,j] remains constant between
PWrit€(W) and Write(W) and by Lemma 1 equals 0 VNI,j].1 if y is the state
following Write(WJ. Since P[Vrite(W) < Scan(1t) < v < 14’rite(W1)we thus
have:

PreOVN[i,j], = OVN[i,jj.

By Lemma 1, we have:

VR[j,i] PreOVR[i,j].

By choice of W and thus of y, OVN[i,j] remains constant between y and s. Thus:

OVN[i,j], = OvN(i,j].

Putting the above equations together yields:

OVN[i,jj, = OVN[i,j] = PreO VN[i,j], 0 VN[j,]

as desired.

Case 3: Write(W) < v but u < Write(W). This implies

2Scan(W5)1< ,z < Wriie(W1)< PScan(J4’) = 3Scan(UVj)1.

By Lemma 5 this is impible.

25

Case-4: Write(W1)< v and Write(W) < u. Note that u < v < Write(W1)<s. Now
by choice of W, OVN[i,jj equals the constant OVN[1,J]J between Write(W1)and

th particular
OVN[i,jl,J = OVN[i,ji,.

Now by Lemma 1:
VNEJ,ijt OVNIi,j).

Putting these equations together yields:

OVN[i,j], = OVN{ij}I. VN[j,i]

as desired.

This completes proof of Lemma 7. 0

Theorem S Let i and j be writers, i j. Let s be any state in an execution of the
composition automaton. Let x be the first state in the execution for which there does
not exist a write Wj by. writer j such that x < Write(14’j) < s. Then OVN[i,j1 =
1/N j, I], if and only if there ezifls some write WI by writer I for which x < Scau(W1) <
Write(W1)<s.

Proof of Theorem 8: First assume that there exists a write W, by writer i for
which x < Scan(W,) < Write(W1)< $ and let W be the last such write. Now by
choice of x there are no writes Wj by writer j for which x < Write(Wj) < a. Thus if u
and v are the states following Scan(W1)and Write(W) respectively, we have

VNU,]I. = VN[j,i],.

By Lemma 1 we have
OVN[i,j, = VN[j,i].

By choice of W1,
OVN[i,j], = OVN[i,j].

Putting the above together, we get the desired result:

OVN[i,j], = OVN [i,j, = VN[j,i = vN[j

Now assume OVN[i,j], = VN[j,iJS. Let !I be the first state for which there does
not exist any write J4’ by writer i such that y < Scan(fl7) < Write(W%) < s. We have
three cases:

Case 1: If y < z then by choice of x. the last action prior to state x is Write(W,)
for some write Wj by writer j. By Lemma 7 this implies OVN[i,j]. & VN[j,i].
Since VN[j,i remains constant between x and s, we have KV[j,i] = VNU,ih
and thus OVJV!i,jJ. 0 VN[j,i, contradicting our original assunptiori and this
case is impossible.

26

Case 2: If y = x then by choice of x and y, x must be the first state in the execution;

otherwise the action preceeding x would be both Write(Wj) for some write by

writer j and Sean(W) for some write by writer i. This implies that neither i nor

j writes between, and and thus OVN[i,j] = 1 2 = VN[J,i]S contradicting

our original assumption and this case is impossible.

Case 3: If x < y then our choice of y implies that if y’ is the state preceeding y, we

have x y’ < Scan(lVj) < Write(VV) < s. This implies the desired

x < Sean(W) < Write(Wj) <s.

This concludes the proof of Theorem 8. 0

The following corollary to Theorem 8 relates the results of Theorem S to writers

that do not write in a given interval and will be cited when determining the placement

of atomic actions for reads later in the proof of correctness.

Corollary 9 Let s and t be any two states in an execution of the composition automa

ton, and let i be any writer for which there is no write 1t such that s < Write(FV1)< t.

Then if OVN[i,j) = VN[j, ut for any writer j, there does not exist any write Wj by

writerj suth that s < Write(W1)< t. This implies that OVN[i,j) = VN[J,IJU for all

states u, S U t.

Proof of Corollary 9: Let x be the first state such that there does not exist a

write W1 by writer j for which x < Write(W) < 1. By Theorem 8, O1’W[i,j’ =

VNU, i} implies there exists some write W, by writer i such that r < Scan(I1) <

Write(W1)< t. By the hypothesis of the corollary, Write(W) < s. Thus x < s and

there is no write W1 by writer j for which a < Write(Wj) < t and the corollary is

proved. C

Theorem 10 Let s be any state in an execution of the composition automaton. Let

i be any writer. Let , 6€ the first state such that there does not exist a write W1 by

writer i such that, < ScanGi’.) < Write(W) <8. If there isa writer writerj i that

ptrfarmed writes 14’, and IVJ, W, / 1V such that z < Wrlte(IV) < Write(Wj) <

then NO). = 0. If there exists a write Ii7 by writer i for which Write(Wj) <s then the

converse holds as well.

Proof of Theorem 10: Assume there exist two writes and Wj by some writer j
SllCh that x < Write(WJ) < Write(l4) < s; let and Wj be the last such writes.

Let and u be the states following Write(WJ) and Write(W3)respectively. Then by

Lemma 7 we have:
OVN[i,JJ. VN[j,i]

and
OV1V[i,j}. VN[j,i].

27

By choice, WJ is the last write by writer j such that Write(Wj) < Write(W,), thus if
v is the state following Scan(Wj), we have VN[j,i]0 = VN[j,i]j. By Lemma 1 we have
PVNjj,i] = VN[j,i], thus:

PVNIJ,Z]I. = VN[j,ilg.

Now by choice. Wj is the last write by writer j such that Write(W1)< s, thus;

VNj,i]1 = VNLj,i]U

aad
PVN[j,i]. = PVN[j.i]U.

Putting the above equations together we get:

OVN[i,j], =

and
OVN[i,J]S $ VN[j,i] = PVN[j.i] = PVN[j,i]5.

Consequently, N(i). = 0. Thus if j, WI, and W3 exist as in the theorem statement,
then N(i). = 0.

Now for the other direction. Assume that there exists some write W by writer i
for which Write(W) < s and let ITj be the last such write. Noet Scan(W) is the
last action before x, Assume also N(i), = 0. This means PVN[j,IJS OVN[i,j], and
VN[J,IJS 9E OVN[i,j], for some writer j. We have three cases:

Case 1: There are no writes Vi, by writer j for which x < Write(W) < s; then
VN[j,ij9 = VNj,i]. By Lemma 1, VN{j,i] = OVN{i,JJ3 and we have:

VN[j,i], = VNLj,i]X = OVN[i,JjS.

Thus this case is not possible.

Case 2: There is exactly one write W by writer j for which x < Write(W1)< s. Let
be the state following and Write(Wj). Then as above,

PVN[ji]. = PVN[j,i]j = VN[j,i) = OVNIi,j}3.

Thus this case is not possible.

Case 3: There are at least two writes 14’, by writer j for which r < Writt(Wj) < s.
This implies the existence of Vi, and as required by the theorem statement.

Thus N(i), = 0 and the existence of 1V1, Writ€(W) < s impUes there exists a
writer j and writes TV, and WI by writer j such thati < Write(WJ) < Write(W,) <s.
This completes the proof of the theorem. C

28

We will now apply the two theorems that we have just proved to prove several useful

and nterestingfatts about some of the various constn,cts, such as VwS(i), N(i),, and

F(s), that we defined earlier. The first of these faets, expressed in the following Lemma,

shows that for any state s and any writers i and j, if VN5(i) VNS(j)3 then one of

VNS(i) and VNS(j)8 is a proper subset of the other.

Lemma 11 Let i and j be writers and s be a state in an execution of the composition

automaton. If VNS(i), VNSU), then VP/SW. C VNS(i),.

Proof of Lemma 11: Given VNS(i), VVS(j)3,let Ic be such that Ice VNS(i)S

VNSO)S. Let x be the first state such that which there does not exist a write Wj.

by writer Ic for which x < Write(Wk) < s. Since lv c VNSO)S we have VN[k,i], =

OVN[i, k], which by Theorem S implies there exists a write W by writer i such that

z < Scan(W1) < Write(W) < s. Also, since lv % VNS(j), we have V/V [lvi],

QVN[j, k], implying by Theorem 8 that there does not exist a write 117, by writer j
such that x < Scan(W;) < Write(W3)< s. By symmetry of this argument, VNS(j),

VNS(i), would imply that there exists some state y and write WI by writer j such that

ii < Scan(WJ) < Writ€(Wj) < (and thus implying y < x) but that there does not

exist any write W7 by writer i such that y < Scan(1 [) < Write(W1Q < s (and thus

implying x < y). Thus it is impossible for VNS(J), VNS(i), and the lemma is proved.

a

Corollary 12 Let i and j be writers and s be a state in an execution of the composition

automaton. Then:

1. VNS(j), is a proper subset of VNS(i), if and only if VNSO),I < I VNS(i)5.

2. VNS(j), = VNS(i)S if and only if I VNS(j),j = I VNS(i).

Proof of Corollary 12 This follows directly from Lemma 11 and elementary set

theory. C

Corollary 13 Let s be any state in an execution of the composition automaton, and

i, j, and Ic be writers. If OVN[i,j]3 = VN[j,i, and OVN(j,k, = VN[k,j1 then

OVN[i,k]. = VN[k,i]3.

Proof of Corollary 13: By definition, 0 VN[i,j], = VN[j, i], implies j C VNS(i)S.

By Lemma 2. j $ VNS(j),. Thus we have j C VJVSO). \ VNS(j), which, by Lemma II,

implies VP/SO). C VNS(i). Now OVN[j,k], = VN[k,J.S implies k E VNS(j),, and thus

we have Icc VNS(j), C VNS(i)S which implies 0 ViV[i,k], = VN[k,i). as desired. C

The following lemma presents another important fact. It is important because it and

the corollary that follows it relate the two principal values that are used for determining

the value of F(s) at a state s, namely the VNS(i)S and the NO)3.

29

Lemma 14 Let i and j he any writers, i j4 j, and lets be any 8tate in an execution of

the composition automaton. Then:

I VNS(i)S > I VNS(J)S No), No),.

Proof of Lemma 14: Assume otherwise, that VNS(i)I > I VNS(J),) but NO). <
NO),. By Coroliary 12, VNSU), is a proper subset of VNS(i), implying that them is
some k E VNS(i), \ VNSO)S. By definition of the VNS this means that VN[k,i]S =

OVN[i,k], but iW’k.j], OVN[jk]. Let x be the first state such that which there
does not exist a write W by writer i for which z < Write(Wj) < s, let y be the first state
such that whith there does not exist a write W1 by writer j for which y < Write(W,) <
a and let z be the first state such that which there does not exist a write W by
writer k for which z < Write(Wk) < 6. Then by Theorem 8, VN[k,i], = OVN[i,kj.
implies there exists some write V?, by writer i for which z < Scan(W) < Write(W) < s
while VN[k,j], 0 VN[j,k± implies there does not exist any write W by writer j for
which z < Scan(W1)< Write(W,) < s. Thus we have y z < x <s

Now N(i). < NO). impH N(i) = 0 and NW, = 1. By Theorem 10, N(i) = 0
and the existence of 14’, imply that there exists some writer 1 and two writes W1 and
W such that:

z < Write(W/) < Write(14’j) <s.

But y < x implies that:

y < Write(W/) < Write(Wj) < s.

By Theorem 10 again, we have N(j), = 0 contradicting the above. Thus our assumption
is incorrect and the lemma is proved. C

Corollary 15 Let i ondj be any writers i j, and lets 6€ any state in an ezecution
of the composition atdomaton. Then:

1. VNS(I)SJ > I VNS(j),l I VNS(i) + N(i), > VNSU),l + NO).

2. VNSO),I + NO), > I VNSO)SI + N(j),
_ I VNS(i), I VNS(j),J

3. I VNS(i) + N(i), > I VNSO)SI + No), •‘ N(i), N(j)

4 I VNS(i)4 + N(i), = VNSO)SI + NO), VNS(i)3I = I VNS(j)S

5. I VNS(i), + No). = I VNS(j)SJ + NO), ,‘ N(i) =

Proof of Corollary 15: All parts follow directly from Lemma 14. 0

Corollary 16 Let s be any state in an erecition of the composition automaton. Then:

VNS(i) C VNS(F(s)),

for all writers i.

30

Proof of Corollary 16; Assume otherwise. Then for some i F(s),

VNS(i)S \ VNS(F(sfl3 0.

Then by Lemma 11, VNS(F(s)), is a proper subset of VWS(i)3. Then

I VNS(F(sfl3 < I VNS(i)S

inplying by Corollary 15 that

I VNS(F(s))3+ N(F(s)), < I VNS(i), +

contradicting the definition of F(s). Thus our assumption is incorrect and the corollary

holds. C

The following lemma and corollary demonstrate that at each step s, the function N

takes on a non-zero value for at least one writer, and in particubr, IV(FQs)), = 1.

Lemma 17 Let s be any state in an execution of the composition rgisIer. Then Ihere

exists some writer i for which N(i), = 1.

Proof of Lemma 17: If there is no write W by any writer for which Write(W) < s

then for afl wrfters i and j initiai conditions imply 0 VN[i,jl, PVN[j, i], = 1 therefore

= 1 and we are done. Otherwise, of all the writes W, by any writer, for which

Write(W) < s, let W1 be the one for which Scun(W1)most recently preceds s. Let i

be the writer that performed the write W. Assume N(i), = 0. Then by Theorem 10

there exists a writer j and writes W and 14 by writer j for which

Scan(W) < Write(Wj) < Write(W) <S.

But Wj must have begun after finished implying

Write(4’j) < Scun(lVj) < Write(W)

Consequently,
Scan(W) < Scan(Wj) < Write(W3)<s

contradicting our choice of W1. Thus our assumption is incorrect and N(i), = I proving

the lemma. D

Corollary 18 Let s be any state in an execution of the composition register. Then we

have N(F(s)). = 1.

Proof of Corollary 18; Let i be some writer such that N(i), = 1 such a writer

exists by Lemma 17. If i = F(s) then we’re done. Otherwise we have three cases:

31

1. VN5(F(s))I + N(F(s)), > I VNS(i), + N(i).. By Corollary 15, N(F(sfl3
= I and we’re doue.

2. I VNS(F()),I + N(F(s)), = I VNS(1)S + No). By Corollary 15, N(F(s)). =

N(i)3 = 1 and we’re done.

3. 1 VNS(F(s))3+N(F(s)), < VNS(i),I+N(i),. This case cannot occur as it would
contradict the definition of F(s).

This completes the proof of the corollary. C

7.3 Placement of Writes

We will now use the facts we have established to prove two theorems that are the basis
for the placement of atomic write points in an execution of the composition automaton.
First, however, we will need the following definition.

DEFINITION: Let W be a write by writer i that does not time out. Let s be the
state following Write(W). We will call the write 14’ potent if F(s) = i. We will call the
write 14’ impotent if F(s) i.

The first of the two theorems we will now prove states that if W is an impotent
write, then F has the same values for the states immediately preceding and following
Write(W). Intuitively, this is very desirable behavior, if a writer writes a new value
V to its register, one would expect that in doing so, it would either change the value
of the composition register to V, or it would leave the value in the composition regis
ter unchanged. It would be highly undesirable if writes could cause a value that had
previously been current, but had since been overwritten, to become current again.

The second of the two theorems that we are about to prove states that if W is any
impotent write then there is some potent write W’ such that W’ wrote its value and
new VN, OVN, and PVN numbers between the scan and write actions of W. This,
again, is what one would expect. A writer performing its scan and write operations
during an interval in which no other writes are occuring should change the value of the
composition register to that of its own register when it completes its write. These two
theorems provide us with points at which to insert “atomic” actions for both potent
and impotent writes.

Using these two theorems, we can then proceed to insert the Atomic(W) actions for
writes H’ as foliows:

1. If W is potent then insert Atoraic(W) immediately preceding Writc(W).

2. if W is impotent then insert Atornic(W) immediately preceding Atomic(W’) for
the last potent write W’ such that Scan(W) < Atomic(W’) < Write(W).

32

3. if 1i times out then insert Atomie(W) immediately preceding Atornic(Ti”) for

some write TV” such that W” is performed entirely- within the intervai during

which W is performed.

We will show later why these insertions satisfy the conditions we desire of them.

Theorem 19 Let W be an impotent write written by writer i. &t s’ and s be the states

preceding and following Write(W) respectively. Then F(s’) = F(s).

Proof of Theorem 19: We will first prove a few propositions that will he useful

in the proof of the theorem. In all of these propositions, we will assume W, i, s’, and

are as above. Note that i F(s) since W is impotent.

Proposition 19.1 i C VVS(F(s))’

Proof of Proposition 19.1: Assume otherwise. Let x be the first state such

that there does not exist a write 14 by writer i such that z < Write(l1’j) < s’.

Let y be the first state such that there does not exist a write WF(S) by writer F(s)

such that y < Scan(WF(S)) < Write(WF()) < s’. Then by assumption we have

OVN[F(s),i18 VN[i,F(s)]g implying by Theorem 8 that there does not exist a

write Wp(.; by writer F(s) such that z < Scan(Wp{.)) < WFitC(WF(S)) < ? and thus

that y S x. Now we have two cases:

Case 1: y < £ Then there exists a write W1 by writer i such that y < Write(Ulj) < s’.

‘ Thus we have x < Write(W) < s’ < Write (TV) < s. Theorem 10 tells us that

= 0 contradicting Corollary 18.

Case 2: y = x Then y = x must be the first state in the execution; otherwise the action

preceeding x would be both Write(1 ,) and Scan(TVF(3))for writes W and WF(S)

by writers i and F(s). This then implies that there is no write WF(3) by writer F(s)

for which x < Write(Wp(,)) < s’. Thus if t is the state foUowing Scan(W), by

Lemma 1 initial conditions apply and we have VNji,F(s)j, QVsV[F(s).f =

OVY[F(s), ij. and FVN(i, F(s)j3 = V4V[i, F(s)t = 2 1 = OVNF(s), iJ. Again

we have N(F(s)), = 0 contradicting Corollary 18.

Thus our assumption is incorrect and the proposition holds. C

Proposition 19.2 F(s’) 0 i.

Proof of Proposition 19.2: By Corollary 16 we know that VNS(F(s)),’ C

VNS(F(s’))’ and by the above, i C VNS(F(sfl8 thus i C VNS(F(s’))’. Now by

Lemma 2 we know i 0 VNS(i),’. We condude F(s’) i.

33

Proposition 19.3 For all writers j, j i, VNS(j), = VNS(j)s \ {i}.

Proof of Proposition 19.3, Let j be a writer, j i. Since there are no writes Wk
by any writer Ic i such that s’ < Write(Wk) < s, we know that VN[k,j], = 0)/N , kj,
if and only if VN[k,j},i = OVPI([j, k]8 for all writers k, k i. Thus we have Ic e VNSU)S
if and only if Ic c VNS(j)5’for k 0 i.

if we had i c VNSO), then since s is the first state z for which there does not exist
a write W1 by writer i such that z < Writc(W1)< s, by Theorem 8 there would exist
some write 14’, by writer j such that s < Scan(W3)< Write(TVj) < s which is clearly
absurd. Therefore, i g VNS(j),.

Thus we have k C VNS(j). if and only jfk € VNS(j)3 for k $ i, and i 0 VNS(j),.
By elementary set theory, we conclude VNSO), = VNS(j)g \{i}. Sincej is an arbitrary
writer, our proof of the Proposition 19.3 is complete. C

Proposition 19.4

VNS(F(s’)),F = VNS(F(s’)),’I — 1 and I VNS(F(8)),I = I VNS(F(s))3— 1.

Proof of Proposition IO.4 As was noted in the proof of Proposition 19.2,
I c VNS(F(s1.and i £ VNS(F(s”)),. By Proposition 19.2, F(s’) i, and F(s) i
because TV is impotent. The proposition thus follows from Proposition 19.3 and ele
mentary set theory. D

Proposition 19.5 Let j &t any writer for which i E VNS(j),. Then N(j). = NO),.

Proof of Proposition 19.5: By definition, I £ VNS(j), implies VN[i,j], =

OVN[j,i]8’. By Lemma 1 we have PVN[i,j], = VN[i,jj3 and thus PVN[i,j]S =

VN[i,j)3’ = OVN[i,j]3s = OVN{j,i],, so PVN[i,j], = OVN[j,i],. Now jfk is any
writer, k i, Ic j, there are no writes W1 or Wk by writers j or Ic such that
I < Write(V) < s or s’< Write(Wk) <s, and we have:

OVNLSkS = oVNU,k]
VN[k,j]. = VNk,jJ,

PVN[k,j3 = PVN[k,jjg.

Thus we have OVN[j,k], VN[k,jj, if and only if OVPJ[j,k]. 0 VN[k,j],. and
OVJY[j,k], E PVN[k,jj. if and only if OVJV[j,kJ. FVN[k,j],’. Since OVNCj,iJs =

VN[i,jJ and 0 VN{j, ij = PVN[i,JJS, we have No), = 0 if and only if N(j)g = 0.
Since N takes on only the values 1 and 0, our proof is complete. 9

Proposition 19.6 N(F(s)), = N(F(s)) and N(F(sQ), = N(F(sQ)21.

34

Proof of Proposition 19.6: As was noted in the proof of Proposition 19.2,
I € VNS(F(s)),s and i e VMS(F(9’)),s. The proposition follows immediately from
Proposition 19.5. D

We now proceed with the proof of Theorem 19, Assume that F(s’) F(s); we will
derive a contradiction. Now by definition of F(s’), one of two cases mast occur:

Case 1: VNS(F(s’))5I+ N(F(s’))3 > I VNS(F(s)),’I + N(F(s))’. Then by Proposi
tions 19.4 and 19.6,

I VNS(F(s’)), + N(F(s’)), = I VNS(F(s’))8 I + N(F(s’)),’ — 1

> I VNS(F(s)),I + N(F(s)), — 1 =

I VNS(F(sfl,I ÷ N(F(a))

Thus I VNS(F(s’)),I + N(F(s’)), > I VNS(F(s)).(+ N(F(s)), contradicting the
definition of F(s).

Case 2: VNS(F(s’)L’I + N(F(s’fl,i = I VNS(P(s))’ + N(F(s)).s and F(s’) > F(s).
Then by Propositions 19.4 and 196.

I VNS(F(s’fl3+ N(F(s’fl, = I VNS(F(s’)),s + N(F(s’)) — 1

= I VNS(F(sfl3 + N(F(s)), — 1

= I VNS(F(s)) + N(F(s))

Thus VNS(F(s’5I+ N(F(s’)), = I VNS(F(s))8+ N(F(s)) and F(s’) > F(s)
contradicting the definition of F(s).

Thus our assumption is incorrect and F(s’) = F(s) as desired. This completes the proof
of Theorem 19. D

Corollary 20 F remains constant &twecn consecutive Writc(W) actions for potent
writes TV.

Proof of Corollary 20, We noted earlier that the only points at which the values of
Tcv[i.j], 0 VN[i,J], and PVN[i,j] may change are at the Write(W) actions for writes TV
by writer i. Formally, if A is an action in an execution of the composition automaton
and if A is not equal to Write(W) for any write W, and if s’ and s are the states
preceding and following A respectively, then:

VN[i,j],s = VN[i,j],

PVN[i,j]s = PVN[ij]S

OVIV[i,j]’ = OVN[i,j],

for au writers i and j. Consequently, F(s’) = F(s). Theorem 19 implies that F(s’) =

F(s) even if A = Write(W) for an impotent write W. Since Write(W) actions are
associated only with potent and impotent writes W, the conectness of the corollary

follows. D

35

Theorem 21 Let i be any writer and W1 be any impotent write by writer i. Then
there exists some writer j, j i and some potent write W by writer j such that
Scan(W1)< Write(Wj) < Tvrite(14ç)

Proof of Theorem 21: Let s be the state immediately following Write(W1). Let
j = F(s). Note j 0 i becau5e W, is impotent. Let x be the first state for which there
does not exist a potent write W such that x < Write(W) < a. Then by Corollary 20
we have j = F(x). Because F equals j between x and s, we know by definition of
an impotent write that there can be no impotent writes W, by writer j for which
x < Write(W5)< a By choice of x, there are no potent writes W by writer j for
which x < Write(Wj) < a Thus x is the first state for which there does not exist a
write I’V3 by writer j such that x < Write(Wj) <s.

Assume 110W that there is no potent write W for which Scan(W) < Write(W) <
Write(W). Then, in particular, x < Scan(W). By Theorem 8 this implies that
OVN[i,j], = VN[j,i],. Thus j E VNS(i)S \ VNS(j). and thus by Lemma 11, VNS(j), is
a proper subset of VNS(OS. By CoroUary 15 we have VNSO)S I 4- N(i). > I VNS(j)S[+
NO),. This implies, by definition of F(s). that F(s) could not possibly equal j. Thus
out assumption is incorrect and there is a writer j. j i, and a potent write W by
writer j for which Scan(fl) < Write(Wj) < 1Vrite(fl’). This completes the proof of
Theorem 21. C]

We are now ready to show how to insert the Atomic(W) action for each write W
into a schedule of the rn-writer n-reader atomic register.

1. For each potent write W, we will insert the action Atomic(W) immediately pre
ceding Write(W). Clearly, SI.art(W) < Atomic(W) < Finish(W).

2. For each impotent write W, we know by Theorem 21 that there exists some potent
write W’ such that Scan(W) < Wriie(W’) < Write(W); let W’ be the last such
potent write. Insert an action Atomic(W) immediately preceding Write(W’).
Again, since we are inserting Atomic(W) between Scan(W) and Write(W), it is
clear that Start(W) < Atomic(W) < Finish(W).

Note that we may have to insert several Atomic actions for impotent writes im
meditately preceding a singe potent write W’. This is not a problem; since we
have wily m writers, there are at most m — 1 writers that could be performing
impotent writes at the point Write(W’). We are thus inserting a finite number
of actions before any Write(W’).

3. For each write W that times out, we know from the fact that it timed out that,
for some writer i, 14’ saw the contents of writer i’s register change twice. Since
the values in writer i’s register that are compared between scans (the VN[ijj,
OVN[i,jj, PVN[i,j]. and Value[il) change only at the points 1Vrite(W’) for
writes W’ by writer i that do not time out, the two observed changes must
have been caused by separate writes by writer i. The second of these writes,

36

call it W’, must have begun after the first finished. Thus we have Start(W) <

Scan(’i”) < IVrite(W’) < Finish(W). Whether H” is potent or impotent,

we have Scan(W’) < Atomic(W’) < Write(W’), thus if we insert Atomic(W)

immediately preceding Atomic(W’), we will have Start(W) < Atomic(W) <

Finish(W).

Here, as was the case with impotent writes, we may have to insert several Atomic

actions immediately before a given Write action; here, as before, this causes no

problem.

Before we continue, there ase a few things that we should note about our placement

of the Atomic actions for writes. First, for every write 14’ that does not time out,

we have Scan(W) < Atomic(W) < Write(W). Second, if S is an schedule of the

composition automaton in which no Atomic actions have been inserted and t is a state

in S, then once the Atomic actions for writes have been inserted into S to yield S’, tile

most recent Atomic write action preceding tin S’ is that of a potent write. Third, from

Corollary 20 we see that the value of F remains constant between consecutive Atomic

actions of writes.

7.4 Placement of Reads

Now that all of the writes have been placed, we need to show that reads will behave in

the desired manner. Let us begin by making the following definition.

DEFJNJTION: Let ft be any read that does not time out. Define C14’S(R) to

be the set of all writers i for which there exists a write W such that 1Scan(R) <

Write(W,) < 3Scan(R).

By Lemma 4, we know that if writer i is in this “changing writer set” CWS(ft) for

a read 1?, then writer i must have performed a complete write W such that Start(R) <

Scan(W) < Write(W) < Finish(k). Thus if a read 1? returns the value in the register

of some writer in CWS(R), then we know that the value returned was written by a

write TV whose Atomic(W) point is contained within the bounds of 1?. Thus we will

place the Atamic(R) actions for reads 1? as follows:

1. if 1? times out or if F(R) E CWS(R) then ft contains the action Atomic(14’)

for the write W whose value it returns; in this case Atomic(ft) will be placed

immediately following Atomic(W).

2. 11 ft does not time out and F(R) 0 CWS(R), then Atomic(R) will be placed

immediately following 2Scan(R)F(R).

The following lemmas will prove that this placement is legitimate.

lemma 22 Let R be any ,tad that does not time out performed by any rtader. Let i

6€ any writer, i CWS(R). Let j be any writer, j i. Then i € VNS(j)R implies

VNS(i)R C VNS(j)p.

37

Proof of Lemma 22: Assume IC VNS(j))q and lets be the state after 28can(R).
If j > i, let u and v be the states following lScan(R)1 and 2Scan(R), respectively,
otherwise let them be the states following 2Scan(R) and 3Scan(R)3 respectively. Note
that

lscan(R)1< U <5< V < 3Sean(R)1,

and thus by choice of i, there is no write 14’, by writer i such that a < Write(W1)< v.

Now by choice of a, for any writer k,

OVN[j,k]R = OVN[j,k].

Also by choice of u, OVN(j,i1, = OVN[j,iln. By assumption, OVN[j,iR = VNi,j1R.
By choice of s, VPi[i,JIR = VN[i,j]5. Since VN[i,j} remains constant between sand a,
we know VN[i,j], = VN[i,j]. Putting the above together yields:

OVN[j,i]I. = VN[i,j].

Let k be any writer, k C VNS(i)R and let t be the state following 2San(R)k if Iv > I
and let it be the staSe following 3Scan(R)k if k < i (by Coroflary 3, k 0. Then by
choice of sand t, OVN[i,kl, = OVNi,kjR = VN[k,iJ = VN[k,i]g and u < s < t <
3Scan(R). Since there is no write W1 by writer i such that it < Write(W1)< I, we
have 0 VN[i.k] = OVN[i,k]. = VN[k.i’ and thus we may apply Corollary 9 to obtain:

OVNIi, k],. = VJVIk, i]

and that there is no write Wk by writer k such that a < Write(Wk) < t. Applying
Corollary 13 yields:

OVN[j,k]U = VN[k,JJU.

Since, as noted above, k does not write between it and t, we have:

VN[k,jJ,. = vNik,j:t.

By choice oft, then. we have:

VN[k.j] = VN[k,j).

Putting the above together yields:

OVN{j,kJp = OVN[j,kj = VN[k,jj, = VN[k,jjt = VN[k,j]ji.

Thus k C VNS(j)ft. Since k C VNS(i) was arbitrary, we have VNS(i)p C VNS(j).
This completes the proof of the lemma.

Lemma 23 Let R be any read that does not time out, performed by any reader. Let i be
any writer, i CWS(R) such that N(i)p = 1. Then if j $ i is any writer, j < i implies
there ar no writes Wj by writerj such that 2Scan(R) < tVrit.e(W) < 35can(R)5,and
j > I implies there air no writes I’Vj by writerj such that lscan(R)1 < Write(W,) <
2Scan(R).

38

Lemma 24 Let ii be any read that dots not time out, performed by any reader. Let i
be any writer, i CWS(R). Let j be any writer j i for which i 0 VNS(j). Then

j < i .mphe there ait no writes W, by writer j such that 2Scan(R) < Write(Wj) <

3Scan(R), andj > I implies there ar no writes W3 by writerj such that lscan(ft)3 <

Write(¾’) < 2Scan(I?)3.

Proof of Lemmas 23 and 24: Let i be any writer, i 0 CWS(R) and j be
any writer, j 1. 11 j < I. let s = 25can(R) and t = 3Scan(R)y, otherwise let

s = 1Scan(R) and t = 2scan(R)3.Assume that there exists some write W by writer j
such that 8 < Write(IV) < t. Then since VN[j,j], = VN[j,j]t, Lemma 4 implies the
existence of at least two writes 147 and Wj such that s < Scan(fVj) < Write(Wj) <

Scan(W) < WrIte(Wj) < t; let W,’ and ¾’j be the last two such writes.

Let u, v, x, and y be the states following Scan(147), Write(Wj), Scan(Wj), and

Write(W) respectively. Then by Lemma 1, choice of w and W, and the fact that

VN[i,j] remains constant between s and t, we have the following facts:

VN[j,i]ft = VN[j,:9 = VN[j,i] 0 OVN[i,jj = OVN[i,j]ft

PVN[j,i]R = PVNj,i] = PVN[j,i]

= VN[i,jJZ VN[i.jJ. 0 OVN[ij]W = OVJV[:.j)R

and
OVN[j,ilR = OVN[j,i], OVN[j,i] = ViV1i,j = VNII,jR.

The first set of facts implies N(i)R = 1) proving Lemma 23 by contraposition. The
secoad set of facts implies 1€ VNS(J)R provIng Lemma 24 by contraposition. U

We may now show formally how to insert the actions Atamic(R) for each read R

into a schedule of the rn-writer n-reader atomic register. We have three cases:

1. if fr times out then we know from the fact that it times out that for some

writer i, it saw the contents of writer i’s register change twice. Since the val

ues VN[i,j], OVN[i,jj, and PVN[i,J] change only at the points Write(W) for
writes 14’ by writer i that do not time out, the two observed changes must have

been caused by separate writes by writer I. The write that caused the second

of these observed changes, call it W. must have begun after the first finished.

Thus we have Start(R) < Scan(W) < Write(W) < Finish(R). Whether H’ is

potent or impotent, we have Scan(W) < Aomic(W) < Wrile(1). thus if we

insert Atomic(R) immediately following Atorni4W) it is clear that we will have

Start(R) < Atornic(R) < Finüh(R). Also, since the algorithm returns the last

observed value of Value[i], it is dear that Vatue(ft) = Value(W). Thus 1? returns

the value written by the last write W for which Atomic(W) < Atomic(R).

2. If 1? does not time out and F(R) e CWS(R) then because there exists some

write for which lScan(R)F(R) < Write(1 F(rn) < Scan(R)F(p) and be

cause the values of V,V[F(R), F(R.)j at lSean(R)F(n) and SScan(R)F(n) are equal,

39

Lemma 4 implies that there exists some write W by writer F(R) such that
lScan(R)F(R) < Scan(W) < Write(W) < 3Scan(R)p(n). Let W be the last such
write. Again, whether W is potent or not, we have Scan(W) < Atomic(W) <
Write(W), thus if we insert Atomic(R) immediately foUowing Atomic(W) it is
clear that we will have Start(II) < Atomic(R) < Finish(k). Also, since the
aigoritbm returns the value of Value[i] observed by 3Scan(R), it is clear that
Vatue(R) = Value(W). Thus li returns the value written by the last write W for
which Atomic(1) <Atomic(R).

3. 111? does not time out and F(R) 0 CWS(ft) then we have two cases:

(a) N(F(R))R =1.

(b) N(F(R))R = 0. In this case, by definition of F(R), we have] VNS(F(RDRI =

I VNS(F(Rflnl + N(F(Rflp I VNS(i) + N(i)R for all writers i F(ft).
Thus there does not exist a writer i for which F(R) C VNS(i)R as this wou)d
imply by Lemma 22 and Corollary 3 that I VNS(F(RflRI I VNS(i)
{F(R)}I = I VNS(i) — 1 contradicting the above.

In the former case, we apply Lemma 23, and in the latter case, we app’y Lemma 24
to yield that if j is any writer, j F(R), j < F(R) implies there are no
writes Wj by writer j for which 2scan(R)j < Write(W) < 3scan(R)3,and
j > F(R) implies there are no writes Wj by writer j for which 1Scan(R) <
Write(Wj) < 2Scan(R). Let s be the state following QScan(R)F@). Because
the values in a writer’s register remain constant between Write actions, and be
cause 2Scan(R), < s < 35can(R) for j < i and lscan(R)1 < s < 2Scan(J1),
for j > i, the values in the register for i remain constant between2Scan(R)
and s for all writers i. Thus VN[i,j], = VN!i,j]a. P VN[i,j], = PVN[i,j]R, and
OVN[i,jl. = 0 VN[i,j for all writers i and j; this hnplies F(R) = F(s). So
by returning the value of Value [F(R)} observed at SScnn(R)F(R) (which equals
Vatue[F(R)19 since F(R) CWS(R)), we are returning the value written by the
last potent write W for which 14’rite(W) < s (or the initial value if no such potent
write exists). Thus if we insert Atomic(R) after s, by the way the Atomic(W)
actions were placed for writes W, I? returns the value written by the last write W
for which Atomic(W) < Atomic(R) or the initial vaiue if no such write exists.
Also, Start(R) < s < Finish(R) implies Start(R) < Atomic(R) <Finish(R).

Here, as was the case when we placed the Atomic(W) actions for impotent writes and
writes that timed out, we may have to insert several Atomic(R) actions following a
given Atomic(W) action; again, this causes no problem.

Thus for every real F and every write W we have placed internal actions Atomic(R)
and Atomic(W) such that,

1. Start(W) < Atornic(W) < Finish(W).

2. Start(R) < Atamic(R) < Finish(R).

40

3. If WR is the last write for which Atomic(WR) < Atomic(R) then Value(R) =

Value(WR). If no such write WR exists, then Value(R) is the initial value of the
register.

This completes the proof of correctness.

8 Conclusions

Having thus completed our proof of correctness it is appropriate to reflect on the purpose
of this paper, to provide intuitive explanation and rigorous proof of the correctness of a
modified version of the multi-writer, multi-reader atomic register algorithm presented in
[P31. We have gone about this in several ways. First, the algorithm is presented, at an
intuitive level, before the proof of correctness. This should hopefully arm readers of the
proof with an understanding of what needs to be proved and why. Second, the approach
to the problem is that taken in [BB]. An attempt is made to understand what different
reads and writes do so that their Atomic actions may be placed in an appropriate and
intuitively reasonable manner. Third, the proof has examined the algorithm at a finer
level of detail than that presented in [PB]. Arguments are presented at the level of the
individual reads of writers’ registers and not at the level of scans as a whole. The result
of this detailed proof was to find two problems with the original algorithm. The detailed
approach to proof is not, however, without its faults; it is possible to be so attentive to
detail that the proof becomes little more than an exercise in symbol manipulation to
those not already intimiately familiar with the algorithm. Thus while care was taken to
present detail where necessary, as was the case with arguments about individual reads
in scans, some arguments, particularly those dealing with the choice of VN’s and PVN’s
by successive writes by a singe writer, are obvious enough that excessive detail has been
omitted. It is hoped then that one will find in this paper a clear survey of the algorithm
in question in addition to a rigorous, but not overburdened, proof of correctness.

There are still a few aqspects of the problem of constructing a multi-writer, multi-
reader atomic register that could use futher work. Chief among them is that of efficiency.
This algorithm performs 0(m) scans of m registers to do a single read or write operation;
that is a considerable amount of work.

9 Acknowledgements

The author would like to thank the following people who have aided work on this paper.
Nancy Lynch suggested both the problem of giving a rigorous correctness proof for the
algorithm from [PB] and the direction such a proof should take; she also provided many
comments on early versions of the paper. Bard Bloom too provided editorial comments
which have been incorporated in the current paper. James Burns confirmed the existence
of the first counterexample to the correctness of [PB] and suggested a solution. This

41

work was supported in part by grants N00014-83-K-0125 from the Defense Advanced
Research Projects Agency, CCR-8611442 from the National Science Foundation, and
N00014-85-K-0168 from the Office of Naval Research.

10 References

[RB] Bloom, Bard, “Constructing Two-Writer Atomic Registers,” Proceedings of the
Symposium on PrincipWs of Distributed Computing, pp. 249-259, August 1987.

fIL] Israeli, A. and Ming Li, manuscript.

[LL] Lamport. Leslie. “On Interprocess Communication,” Digital Systems Reaearch
Center Report 8.

fLT1J Lynch, Najicy A. and Mark R. Tuttle, “Hierarchical Correctness Proofs for Dis
tributed Algorithms,” Proceedings of the Symposium on Principles of Distributed
Computing, pp. 137-1.51, August 1987.

[LT2] Lynch, Nancy A. and Mark ft. Tuttle, “Hierarchical Correctness Proofs for Dis
tributed Algorithms,” Master’s Thesis. Massachusetts Institute of Technology.
April, 1987. MITJLCS/TR-387, April, 1987.

[Lv] Li, Ming, and Paul Vitanyi, manuscript.

[Ly] Lynch, Nancy A., “I/O Automata: A Model for Discrete Event Systems.”

[P] Peterson, Gary L., “Time-Space Trade-Offs for Asynchronous Parallel Models; Re
ducibilities and Equivalences,” Proceedings of the Eleventh Anual ACM Sympo
5mm on Theory of Computing, Atlanta., 1979, pp. 224-230.

[PB] Peterson, Gary L. and James E. Burns, “Concurrent Reading While Writing
II: The MultL-writer Case,” Proceedings of the Symposium on Foundations of
Computer Science, pp. 383-392, October 1987.

(VA] Vitanyi, Paul and Baruch Awerbuch, “Atomic Shared Register Access by Asyn
chronous Hardware.” Proceedings of the Symposium on Foundations of Computer
Science, pp. 233-243, October 19S6.

42

