ON THE CORRECTNESS OF
ATOMIC MULTI-WRITER
REGISTERS

Russel W. Schaffer
January 2, 1989

Abstract

This paper presents an algorithm to construct a multi-writer multi-reader atomic
register and proves it correct. The algorithm itself is a corrected version of an
incorrect algorithm previously presented by Peterson and Burns. The proof of
correctness given here is thorough enough and detailed enough that the algorithm’s
correctness may be verified by a single, careful reading of the paper.

1 Introduction

The problem of constructing a multi-writer, multi-reader atomic register was first intro-
duced in [P] and [LL). It has, at this point, been addressed by several papers by different
authors [BB],[IL],[LV],[PB],[VA]. As a result of the difficult nature of the the problem,
however, most of these papers are rather hard to understand; it is not generally easy
to grasp the intuition behind some of the algorithms, and the proofs of correctness pro-
vided are sometimes not as rigorous or detailed as one would desire for a problem of this
difficulty. Indeed, in the cases of [PB] and [VA], close examination of the algorithms
uncovered problems with the correctness of the algorithms.

There is, however, one paper on the subject that distinguishes itself as both intu-
itively appealing and completely rigorous; that paper presents a construction for the
specific case of a two-writer, multi-reader atomic register [BB]. It is the purpose of this
paper to to provide both an intuitive feel for and a rigorous proof of correctness of a
modified version of the more general algorithm presented in [PB]; [BB] is used as a
model for this paper. Consequently, many of the facts proved in this paper are the same
as or resemble those proved in [BB] or [PB]. The terminology and notation of these
papers has been largely retained in the interest of consistency.

It was necessary to prove correct a modified version of the algorithm from [PB]
because, in the course of developing this proof, bugs were found in the algorithm from
[PB]. Changes were thus made to the algorithm from [PB], some of them in consultation
with one of the authors of [PB], to correct the problems with the published algorithm.

The modified version of the algorithm from [PB] constructs an m-writer n-reader
atomic register from m 1l-writer m+n-reader atomic registers. The algorithm reqgires
that each of these registers be large enough to contain any of the values that could be
written to the m-writer n-reader atomic register, as well as O(m) storage for control
information that is used by the algorithm. In the worst case, the algorithm requires
O(m?) accesses to 1-writer m+n-reader atomic registers to perform a write to or a read
of the m-writer n-reader atomic register.

The proof of correctness of the algorithm is carried out within the framework of the
I/O automaton model. It is based on arguments about the order of particular actions
in sequences of actions, and proceeds by proving various lemmas and theorems that
capture the essential aspects of the algorithm in a rigorous way. As such, a careful
reading of the proof should convince one of the correctness of the algorithm.

The next section of the paper presents the I/O automaton in the context of which the
proof of correctness will be developed. The following section presents, in formal terms,
the problem that we are trying to solve. The fourth section presents the architecture
that will implement the solution. The fifth section gives an informal description of the
various aspects of the algorithm. The sixth section gives a formal description, in the
form of code, of the algorithm. The seventh section presents the proof of correctnss.
The eighth section presents the conclusions of the paper. The paper body should be
read sequentially.

2 The -Model

This paper presents the algorithm within the framework of the I/0 automaton model.
The-following formal description of a subset of that model is copied, with modifications,
from [Ly]. Further description of this model may be found in [LT1] and [LT2)].

We will assume a universal set of actions. Sequences of actions will be used to
describe the behavior of modules in concurrent systems. Since the same action may
occurseveral times in a sequence, it is convenient to distinguish the different occurrences;
we refer:to a particular occurrence of an action in a sequence as an event.

The actions of each automaton are classified as input, output, or internal. The
distinetions are that input actions are not under the automaton’s control, output actions
are under the automaton’s control and externally observable, and internal actions.are
under the automaton’s control but not externally observable. In order to describe this
classification, each automaton comes equipped with an “action signature”.

An action signature S is an ordered triple consisting of three pairwise-disjoint sets
of actions. We write in(5), out(S) and int(S) for the three components of S, and refer
tothe actions in the three sets as the input actions, oulput actions and internal actions
of §, respectively. We will let acts(S) = in(S)Uout(S)Uint(S) and will refer to acts(S)
as the set of actions of §. We will refer to the actions under the automaton’s control
as: looal(S); local(S) = out(S) U int(S). The actions ext(S) = in(S) U out(S) will be
refered to-as the ezteral actions of the automaton.

Since I/O' automata are intended to model complex systems with any number of
primitive components, each automaton A comes equipped with an abstract notion of
“component”; formally, these components are described by an equivalence relation on
local(sig(A)) where all the actions in one equivalence class are to be thought of as under
the control of the same primitive system component.

We will think of an I/O automaton as consisting of the following components:

1. An action signature sig(A).
A set states(A) of states.

A nonempty set start(A) C states(A) of start states.

L O

A transition relation steps(A) C states(A) x acts(sig(A)) x states(A), with the
property that for every state s’ and input action 7 there is a transition (s'y7,9)
in steps(A).

5. An equivalence relation, as described above, part(4) on local(sig(A)) having at:
most countably many equivalence classes.

We refer: to an element (s/,7, s) of steps(A) as a step of A.

An ezecution of A is a finite or infinite alternating sequence of states and actions
80,71,8172,82,... such that sp € start(A). We denote the set of executions of A by
ezecs(A). Throughout the proof of correctness of the algorithm, we will want to refer
to states within the context of an execution. Thus when we refer to the state s; in the
execution above, we are refering to both its place in the execution and to the global
state of the automaton that it represents. Consequently, it will make sense to say that
81 < 83 or 81 < o in the above execution.

A fair execution of an automaton A is defined to be an execution a of A such that
the following conditions hold for each class C of part(A).

1. If a is finite, then no action of C is enabled in the final state of o.

2. If a is infinite, then either a contains infinitely many events from C, or else
contains infinitely many occurrences of states in which no action of C is enabled.

Thus, a fair execution gives “fair turns” to each class of part(A).

A finite or infinite sequence of actions of A is said to be a schedule of A if it is the
subsequence of some execution e of A consisting of all of the actions in e. We denote
the set of schedules of A by scheds(A). A schedule is said to be a fair schedule if it is
the subsequence of actions of some fair execution.

The remaining definitions relate the method by which a collection of automata is
composed to form a new automaton.

A countable collection § of action signatures is said to be compatible if it satisfies
the following two properties for every §/,5" € S, &' # §":

1. out(S') Nout(S") = 0.

2. int(S') N acts(S”) = 0.
Thus, no action is an output of more than one signature in the collection, and internal
actions of any signature do not appear in any other signature in the collection.

The composition S of a countable collection § of compatible action signatures is
defined to be the action signature with

L. in(S) = Usres in(5") \ Usres out(5").
2. O‘Ut(S) = US'ES 01&3(8’).
3. mt(S) = US'ES int(.S").

Thus, output actions are those that are outputs of any of the component signatures,
and similarly for internal actions. Input actions are any actions that are inputs to any
of the component signatures, but outputs of no component signature.

The composition A of a countable collection A of automata with compatible action
signatures has the following components; let I be an index set for A:

3

g 00 o

5.

sig(A) is the composition of {sig(A")|A" € A}.
states(A) = [[;cs states(A;).
start(A) = [[;er start(A;).
steps(A) is the set of triples
((s:),7,(s})) € states(A) x sig(A) x states(A)

such that for all < € I: if 7 € acts(4;) then (s;,7,s}) € steps(A;) and if 7 ¢
acts(A;) then s; = sl

part(A) = Ugrea part(4).

Each step of the composition automaton thus consists of all the automata that have
a particular action in their signatures performing that action concurrently, while the
automata that do not have that action in their signatures do nothing. In other words,
all component automata in a compesition continue to act autonomously.

3 The Problem

The problem of constructing an m-writer n-reader atomic register will be seen as that
of constructing an 1/0 automaton with the following actions and properties:

3

The 1/O automaton should have the input actions Startw(i,v) and output ac-
tions Finishw (i) for all i, 1 < ¢ < m and all values v the register is capable of

containing. Similarly, it should have input actions Startn(j) and output actions

Finishgr(j,v) for all j,1 < j < n.

In any fair.execution of the automaton, we will assume there is no event Startw (i, ")
interposed between a given event Starty (i,v) and the first event Finishw () to
follow the event Startw (¢,v). Also, there is no event Finishw (i)’ between a given
event Finishy (i) and the first event Startw(i,v) to follow Finishwy (i). Similarly
for the Startgr(j) and Finish(j,v). The behavior of the automaton will remain

undefined for .executions for which this does not hold.

Given a fair schedule g of the automaton, it should be possible to insert an action
Atomicy (i) between any event Startw(i,v) and the following Finishw (%), and an

-event Atomicp(j) between any event Startg(j) and the following Finishp(j, v),
‘to create a new schedule 5’ about which the following is true: given any event

Atomicg(j) in ', if Atomicy (i) is the last event in §' of the form Atomicy (i)

for which Atemicw (i) < Atomicg(7) for any writer 4, then if Startw (i, vw) is the

last event of the form Siartw(i,v) preceding Atomicw (i) and if Finishr(j,vr)
is the'first event of the form Finishp(j,v) following Atomicg(7), then vw = wg;
if there is no such Atomicw () for any writer ¢, then vg = Va1 Where vp is as
defined above and v;pitia) is the initial value of the register in the schedile 4.

4

An m-writer n-reader atomic register is an automaton that satisfies the above require-
ments in such a manner that readers and writers do not wait (a condition we will
elaborate upon later).

Intuitively, the first of the above requirements states that there are m channels along
which writers ¢ may initiate writes of values v to the m-writer n-reader atomic register,
and n channels along which readers j may initiate reads of the value in the register.
Requests to initiate reads and writes of the register are acknowledged when the reads
and writes have completed; acknowledgements of read requests return the value » that
was read by the read.

The second requirement states that no writer or reader should initiate a new write
or read until an acknowledgment of completion is received for the last write or read
initiated. Similarly, it implies that each write or read is acknowledged exactly once.
Note that the requirement that writers and readers wait for acknowledgements is beyond
the control of the register automata; we will expect that writers and readers comply
with this requirement and will not define the behavior of the register if they do not.

The final requirement above states that we should be able to linearly order the reads
and writes in a manner that is consistent both with the order in which the reads and
writes occured and with the behavior we expect of a register. We should thus be able
to think of overlapping writes and reads as having occured in some fixed order such
that each read returns the value written by the last write that preceeded it in the order;
reads that occur before any write has taken place should return the initial value of the
register.

4 The Architecture

We will implement such an m-writer n-reader atomic register as a composition of au-
tomata as shown in figure 1.

In the figure 1, the circles represent distinct I/O automata, and the lines represent
channels between them. The heavy lines represent write channels, while the lighter lines
represent read channels.

Each Writer i denotes an I/O automaton executing the algorithm’s writer’s pro-
tocol. The actions Startw(i,v) and Finishw(i) are input and output actions of the
Writer i automaton. We will think of a particular write W of the value v to the m-writer
n-reader atomic register as the Startw(i,v) event that initiates W, the Finishy (i)
event that acknowledges completion of W, and all actions that the Writer i automa-
ton performs in between. For convenience, we will refer to the particular § tartw (i, v)
event that initiates W as Start(W) and to the Finishy (%) event that terminates W as
Finish(W); the value v written by W will be refered to as Value(W).

Similarly, each Reader j denotes an I/O automaton executing the algorithm’s rea-
der’s protocol. The actions Startg(j) and Finishg(j,v) are input and output actions

5

Figure 1: The composition automaton.

of the Reader j automaton. We will think of a read R of the m-writer n-reader atomic
register in a manner analogous to that in which we think a write W to the register. We
will define Start(R) and Finish(R) analogously to Start(W) and Finish(W) above.
The value v returned by a read R will be refered to as Value(R).

Finally, each Register i represents a 1-writer, m+n-reader atomic register automa-
ton that has the external actions start,(v), finish,, start,(i), and finish,(i,v) which
are defined analogously to the Startw (i,v), Finishw(i), Startr(j), and Finishgr(j,v)
actions of the m-writer n-reader atomic register. We will define reads r, writes w,
start(r), finish(r), start(w), and finish(w) for the 1-writer m+n-reader atomic reg-
isters analogously to the definitions we made above for the m-writer n-reader atomic
register. Also, for each read r and write w of a 1-writer m+n-reader atomic register
we will assume the existence of the actions atomic(r) and atomic(w) at which we can
think of r and w as having taken place.

By the wait-free condition that we require of our m-writer n-reader atomic register
we will mean that for any read R by any reader j in any fair execution of the automaton,
the number of events performed by the Reader j between Start(R) and Finish(R) is
bounded by a fixed constant Cr. Similarly, the number of events performed by any
Writer i automaton as part of any write in any fair execution must be bounded by
some fixed constant Cy.

5 Informal Description of the Algorithm

5.1 The 1-Writer Registers

So far we have established the composition automaton that executes the algorithm. We
will now present a bit of intuition to explain how the algorithm should work. Note
that this is not a proof of correctness. We will first discuss the “version numbers” that
are maintained by the writer automata in their associated 1-writer m+n-reader atomic
registers.

When a reader automaton receives a request to begin a read of the value in the m-
writer n-reader atomic register implemented by the composition automaton described
earlier, it must somehow figure out which writer’s register contains the value that is the
correct one to return. To aid in this process, each writer maintains a set of “version
numbers” which are visible to the readers and on the basis of which a current value may
be selected. The information maintained by each writer ¢ in its register is as follows:

VN [¢, 5] Every time writer i performs a write that does not time out (We will discuss
what that means later.) to the m-writer n-reader atomic register, a new value
of VIN[i, j] is written into writer i’s register for every writer j. As such one may
think of VN as standing for the Version Number of the most recent write. The
rules for choosing the new VIN[i, j] will be discussed later.

PVN [i,3] Even though writer i changes its VN[i,j] every time it performs a write
‘that does not time out, the old value of VN[¢, j] does not immediately disappear;
whenever the value of VIN[i, j] changes, its old value is rewritten by writer i into
its register as the value PVN([i,j]. As such, PVN may be thought to stand for
Previous Version Number.

OVN [i,4] In the process of performing a write W, writer i reads the version numbers
contained in the other writers’ registers and writes them into its own register;
the value read for VN[, i] is written by writer 4 into its register as OVN[i, j]. Tt
is thus natural to think of OVN as standing for Other’s Version Number. Since
they record some global state of the VN’s that occured during the write W, these
values serve as a sort of timestamp to communicate the relative recency of the
value, Valueli] in register i.

Vialue[i] At the same time that it writes the VN[i, 5], PVN[i, j], and OVN i, 7], writer ¢
also writes to its register the value, Value(W), that it is in the process of writing
to the m-writer n-reader atomic register. This value is written by writer i into its
register as Value[i]. '

PreOVN [i,j] This value is used only by writers. It contains either the current value
of OVN([i, j], or a value of OVN[i, 5] that writer i is planning to write but has not
yet written,

It is sometimes difficult to keep all of these different indexed variables straight; a
partial aid to remembering them is provided by noting that the first index of a variable
is always the index of the writer in whose 1-writer m+n-reader register the variable
resides. The VN[i, j] reside in the register of writer ¢ and are thus written exclusively
by writer i; similarly for the other indexed variables.

Another important point to remember is that the first four variables, the VN [,4],
PVN[i, 5], OVN[i,], and Value[i], are written to writer i register at most once during
any write W by writer i. These variables are written all at once in 2 single write
to writer ¢’s atomic register, and performing this write is the last step in the writers’
protocol before the Finish(W) action at the end of the protocol. Consequently, the
values of these variables remain constant between the atomic actions, atomic(w), of
such writes. The values of the PreOVN(i, j] change at other times.

These variables will initially be set to:
VN[i,j] =2
OVN[i,jl = PVN[i,j] = PreOVN[i,j] = 1

for all writers ¢ and j. The initial value that the m-writer n-reader atomic register is
to contain should be placed in Value[m]; the initial values of Value[k] for k # m are of
no importance.

5.2 The Reader’s Protocol

The importance of these variables to reads is that by examining the relative values of the
VN, PVN, and OVN, a reader automaton should be able to determine to a large extent
which writers wrote most recently. Consequently, a reader is capable of determining
which of the Value[i] is the correct one to return. The following facts are useful in this
respect:

1. H at some point OVN[i,j] = VN4,], then at that point, we will consider the most
recent write by writer i to be more recent than the most recent write by writer j.
This is so for the following reason: when writer i was selecting the value of VN[j,1]
to write as OVN[i, j] during its last write, it chose the value VN [j, 1] written by the
most recent write by writer j; this implies that the most recent write by writer ¢
was still deciding what to write after the point where the most recent write by
writer j had already written. Loosely speaking, we say that writer 1 “sees” the
version number VN[j,i] that was written by the most recent write by writer j.
This means that if writer ¢ “sees” writer j’s version number, then the last write
by writer i will be considered to be more recent than that of writer j.

2. If writer i “sees” neither the VN nor the PVN of writer j, that is if OVN[i, j] #
VN[j,i] and OVN[i,j] # PVN[j,i] at some point, then as of that point, the most
recent write by writer i is considerably less recent than that by writer j. This is
so because writer j must have written at least twice since the most recent write by
writer i was selecting the value of VN([j,] it would write as OVN[i, j]. This would
imply that the value contained in Valuel[i] is particularly archaic; in general, a
read should avoid returning such a value.

3. At no point does any writer ever “see” its own version number; that is, at all
points, OVN[i,i] # VN[i,i]. At the same time, however, every writer always
“sees” its own PVN; at all points OVN|[i,i] = PVN[i,1].

Of these three facts, the first is by far the most important. Indeed, it captures the
essence of the purpose of the version numbers. It is on the basis of this fact that we
make the following informal definition. At a given point for a given writer ¢, we will
define VNS(#) to be:

VNS (i) = {jl1 £ j £ m,OVN[i,j] = VN[j,i]}.

It is an important fact about the VNS that for any point and any writers i and j, either
VNS(i) C VNS(j) or VNS(j) C VNS(i) at that point. (By A C B we will mean that
every element of A is also an element of B.) The first fact above implies that if VNS(4)
is a proper subset of VNS(k) for some writer i, that is, if writer ¢ “sees” the version
numbers of fewer writers than does writer k, then Value[k] should be treated as being
more recent than Value[i]. Since set inequality implies set inclusion, we conclude that
| VNS(i)| is a valid measure of the relative recency of the last write of Valuel[z].

9

Unfortunately, | VNS(i)| is not an adequate measure of recency to determine uniquely
which writer wrote most recently and thus which writer’s register contains the “current”
value of the m-writer n-reader register. It is possible to have two separate writers i and
J> ¢ # j, that write at more or less the same time resulting in VNS(i) = VNS(j) and
VNS(k) C VNS(i) for all writers k. Thus an additional measure of the recency of a
write is needed. To this end we will employ the second fact from above and define, for
a given point and a given writer ¢, the value N (i) at that point to be:

(@)= { L iffor all writers j, OV, j] € {VN[j,], PVNLj,il}
)= 0 otherwise.

By the second fact from above, Value[i] for a writer i for which N (i) = 1 should be
considered to be more recent than Value[j] for a writer j for which N(j) = 0. It would
be quite desirable if the two measures of recency that we have just defined, | VNS(¢)| and
N (i), did not contradict each other; that is, if | VNS(3)| > | VNS(j)| then N (i) > N().
We will prove later that this is so. The sum N (i) + | VNS(i)| thus serves as a better
measure of recency than | VNS(¢)| alone.

Unfortunately, | VNS(i)|+ N(3) is still not an adequate measure of recency of Value[]
to uniquely determine the “current” value of the m-writer n-reader atomic register. It is
again possible to have distinct writers ¢ and j such that | VNS(i)| + N(i) = | VNS(5)| +
N(j) and | VNS(k)|+ N (k) < | VNS(i)| + N(i) for all writers k. Fortunately | VNS (i)| +
N(i) is a strong enough measure of recency that we can make the following definition, for
a given point, of F' at that point: if M is the maximum value of | VNS()| + N (i) for any
writer i, then let F be the largest numbered writer for which | VNS(F)| + N(F) = M.
It is clear that at any point, the value of F is unique. Qur proof of correctness will show
that Value[F| may be viewed as the “current” value of the m-writer n-reader atomic
register.

So far we have explained how one determines the “current” value of the m-writer
n-reader register based on the values of the VN, PVN, and OVN. What we have not
done is to state how a reader goes about reading a set of such values. If a reader were
simply to scan the writers’ registers in succession, starting with a read of all the values
in writer 1’s atomic register and finishing with a read of the values in writer m’s atomic
register, then if we were to compute F' on the basis of the values observed, Value[F)
need not be a correct value to return. It is entirely possible that the writers could write
as the scan is taking place; such writes could write values of the VN, PVN , and OVN
that mislead a read into returning a value that is not at all current.

This is clearly undesirable behavior. So we ask if a reader would get a consistent
set of values if it were to scan the values of the writers’ registers twice, starting with a
read of the values in writer 1’s register through a read of writer m’s register followed
by another read of writer 1’s register and so on through a final read of the values in
writer m’s register. If we were to require that the values VN [#,7] observed by the first
scan be identical with the values VN[i, j] observed by the second scan for all writers ¢
and j, would the second scan yield a set of values from which we could determine F such

10

that Value[F] is a valid value to return? This is the approach adopted by the code in
[PB]. This approach does not work. Indeed, even if one were to require that not only the
VN’s but the PVN’s and the OVN’s as well remain constant across the two scans, then
the second scan still does not return a set of values for which Value[F] is necessarily
a correct value to return. The algorithm that we will prove correct incorporates a
suggestion by Burns that a reader require that all of the VN’s, OVN’s, and PVN’'s
remain constant across three consecutive scans of the writers’ registers.

There is still one question about the way the read protocol determines the value of
F that remains unresolved. It is entirely possible that a reader could perform an infinite
sequence of scans and never see three consecutive scans that are identical. To solve this
problem, readers keep track of the writers whose values they have seen change between
scans. If, in the course of a read R, it is observed that a writer ¢ has changed its values
two times, then because writes by a single writer are not permitted to overlap in time,
the write W that caused the second change of value must have started after the end of
the write W; that caused the first change of value. Since changing the values visible to
readers is the last step in the writer’s protocol, we conclude that essentially the entire
write W, was performed after the start of the read R but before the scan that observed
the second change in the values in writer i’s register. This means that to return the
value, V alue[i], written by the write W; is to return a legitimate value for the read R;
the point at which we can think of the write W, as having occured atomically will
necessarily be contained within the bounds of R so if we think of R as having occured
immediately after that point, we see that it is valid if Value(R) = Value(W). If a
reader observes that a writer ¢ has changed its value twice, then it will take this course
of action, returning the value of Value[i] observed after the second change; reads that
return a value determined in such a way are said to have “timed out.”

By the pigeonhole principle, it is necessary that after 2m + 3 consecutive scans of
the registers, either three consecutive scans have returned the same values for all of the
writers, or some writer has been seen to change its values at least twice. Thus, by the
time at most 2m + 3 scans have been completed as part of a read, that read has either
timed out, or has terminated normally having completed three consecutive scans that
return the same values.

In summary, the algorithm’s reader’s protocol operates as follows:

1. A reader performing a read first scans the writers’ registers attempting to make
three consecutive scans that return the same values of VN[i,j] for all writers 1
and j. By the end of at most 2m + 3 scans, either three such scans will have been
observed, or the read will have timed out returning a value written by a writer
whose values have been observed to change twice. If three consecutive scans return
the same values of the VN[¢, j] then the values observed by the third scan are used
in the next step to determine the value to return.

2. On the basis of the values read in the first step, the values of | VNS(3)|, N(¢),
and F are computed. The value of Value[F] seen during the third of the three
consecutive, identical scans from the first step is then returned.

11

This concludes our discussion of how readers choose the values they are to return.

5.3 The Writer’s Protocol

We have discussed a reader’s choice of a value to return based on the existence of several
variables maintained by the writer automata. We have yet to demonstrate how these
variables are maintained. We will do so now.

Just as a reader must first read the values in all of the writers’ registers to determine
what value to return, so too a writer must first read all of the writers’ registers to
determine what to write. Writers read the VN, PVN, OVN, and PreOVN in a manner
almost identical with that in which readers read the VN, PVN, and OVN (although
the reason why the method works is somewhat different in the two cases). As before,
a writer obtains values for the VN, PVN, OVN, and PreOVN by making scans of the
writers’ registers. This time, if across three consecutive scans, none of the VAN , PVN,
or OVN is seen to change, then the writer may assume that the values read by the last
of the three scans represent a state of the world on the basis of which the writer may
complete its write. It is very important to note that a writer does not require that the
PreOVN remain constant across scans; only the VN, PVN, and OVN must remain
constant across scans.

Assuming that a writer i has, as some point, successfully read the values of VN [7, &1,
OVN[j, k], and PreOVN][j, k], for all writers j and k, it chooses the values it will write
for the VN[i, j], PVN[i, j], and OVN[i, j], for all writers j as follows:

VN [, j] Since we want to have OVN([j,i] = VN[, j] only for writers j whose most
recent writes are more recent than the most recent write by writer i, we must
choose VN([i,j] # OVN[j,i). Similarly, since PreOVN[j,i] is the value that an
ongoing write by writer j is planning to write for OVN[j,1], we want to choose
VN[, j] # PreOVN(j, i]; otherwise we would imply falsely that the ongoing write
by writer j had chosen the value it is to write for OVN[4,1] on the basis of the
value of VN[, j] that we are choosing here but have not yet written. Finally, since
VN[i, 5] is to serve as a “version number” for the current write by writer 4, it must
be different from the value previously written for VN [¢,7]. We thus choose the
new value for VIN[i, j] to be an arbitrary element of the observed set:

{1,2,3,4} \ {OVN[j, i], PreOVN([j, i], VN[i, 4]}
PVN [i,5] Since we want PVN[i,j] to be the value that was previously written for
VN[i, j], we will choose PVNi, j] to be the observed value for VA ¢, 7]:
PVNT[i, j] := VN[i, j].
OVN [i,j] As was mentioned during the discussion of the version numbers, the values
of the OVN[i, j] are to represent the values of the VN[j,1] observed by writer i.

Consequently, we assign:
OVNli, j] :== VN[j,1].

12

After a writer i performing a write W has chosen the values it is to write for VN3, 5],
PVN[i,j], and OVNTi, j], it proceeds to write to its register, in one fell swoop, V alueli],
and VN[i,j], PVN[i,j], and OVN(i, j] for all writers j.

The PreOVN[i,j] are written somewhat differently. As it is the purpose of the
PreOVN[i, j] to inform other writers of the value of OVN[¢, j] that will be written, but
has not yet been written, it is vital that the PreOVN[i, j] be written as early as possible.
Thus the PreOVN]|i, j] are written following the first scan of the writers’ registers and
following each subsequent scan that returns values different from those returned by the
previous scan. Thus each time a scan returns a potentially new set of VN[j, 1], we write
the new values:

PreOVN[i,j] := VN[34,1]
for all writers j.

As was the case with the reader’s protocol, a writer performing a write could perform
an infinite sequence of scans and never see three consecutive scans return the same val-
ues. The solution here is the same as with the reader’s protocol. As a writer ¢ performs
scans of the writers’ registers, it keeps track of those writers that have been seen to
change values between scans. As before, if some writer is seen to change its values more
than once, the last write was performed within the time bounds of writer i’s current
write. The “atomic” action for writer #’s current write may thus be placed immediately
before that of the write that is performed within its Start and Finish bounds; writer i
simply terminates its write without changing V alue[i], VN3, j], PVN[i, 5], or OVNT3, j].
A writer that terminates in this manner is said to have “timed out.” Note that since
writer ¢ does not change its values while it is scanning (The PreOVN[i,j]’s are not
compared across scans.), and three consecutive, identical scans are needed, the pigeon-
hole principle dictates a ceiling on the number of scans that a writer need perform that
is somewhat different from the corresponding ceiling for readers; after at most 2m + 1
scans, a writer has either seen three consecutive, identical scans or has timed out.

Thus we can summarize the operation of the writer’s protocol as follows:

1. A writer performing a write first repeatedly performs scans of the writers’ registers.
After each scan (except the first), the values read for the VN, PVN, and OVN are
compared to those that were read by the previous scan; if any of these variables
is seen to change, note is made of the writer that performed the change.

2. After the first scan and after each subsequent scan that observes values different
from those of the scan that preceded it, the writer writes out its PreOVN[i, j]’s.

3. If after 2m + 1 scans, no three consecutive scans have been observed to have
the same values, the write times out by exiting without doing anything further.
Otherwise, the values returned by the third scan of a set of three consecutive,
identical scans are taken to be a consistent state of the VN, PVN, OVN, and
PreOVN.

13

4. New values are now chosen for. the VN[i, j], OVN[i, j], and PVN{i,] according
to-the rules expressed earlier. After these values have been chosen, they, along
with the new value for V alue[i] are written to writer i’s atomic register in a single
write.

This completes the discussion of the writer’s protocol.

6-.?-. Formal Description of the Algorithm

The code for the algorithm we will be proving correct is found in figures 2 and 3. This
is essentially a re-written version of the code given in [PB] with the following changes of
significance: the number of consecutive, identical scans a reader makes is now three; all
of the VN’s, PVN’s, and OVN’s are now compared between scans for both reads and
writes; and writers read the PreOVN’s when they read the other values in the writers’
registers. The first two of these were suggested by Burns. The third is an additional fix
required to achieve a correct algorithm.

Note that the code for the writer’s protocol is specific to writer k; it makes use of
the variable k in the code so that it knows the register to which it may write. Readers,
on the other hand, all execute the same code. Note also that the only variables that are
shared among the protocols are the Value, VN, PVN, OVN , and PreOVN as these
are the only variables stored in the 1-writer m+n-reader atomic registers. All other
variables are local.

An additional note about the code is that all code within a given pair of pa symbols
is to be performed as a single read or write to a particular atomic register. Thus if a
loop is contained within the triangle symbols, the values to be written or read by the
loop are written or read all at once; the loop is only notation to quantify what gets
written or read.

The code for the reader’s protocol works as follows. The first two lines initialize vazi-
ables that are used for control purposes in the remainder of the code. The Same_Scans
variable records the number of identical scans that have been performed since the last
observed change between scans. The Timed.Out variable equals zero until such time
as some writer is observed to have twice changed the values in its register; it is set to
the number of a writer that performed two observed changes when such changes are
observed. The Changes_Seen array maintains the number of changes that each writer
has been observed to perform.

Following these variable initializations is the code that performs the first scan of the
writer’s registers.

After this first section of code is a segment of code that is repeated at most 2m + 2
times. It performs the following steps:

1. The values read by the previous scan are saved for future reference in the Save_Scan
arrays.

14

DEFINE
Writer.Changed_Since_Last.Scan(i) = (\/, j<m(Scan V N[i, j] # Saved_Sean_V NT[i, j]))
V(V¢j<m(Scan-OV N[i, j] # Saved_Scan.OV N[i, j]))
V(Vigjgml(Scan-PV N[i, j] # Saved_Scan-PV NIi, j1));

Any_Change_Since.Last_Scan = VlSiSm Writer .Changed_Since.Last_Scan(i);
VNS Size(i) = [{1 £ j < m|Sean-OVN[i, j] = Scan-V N[j, {]};

N@)= Lif Aigyem(OVNE.S) € (VNG il PVNTil})
otherwise;

M = MAX{VNSSize(i) + N(i)|l <i < m};
F= MAX{1 < i < m|VNSSize(i) + N(i) = M};

BEGIN
Same_Scans := 0; Timed-Qut := 0;
FOR i := 1 TO m DO Changes.Seen(i] := 0; END;
FORi:=1TO m DO
® FOR j:=1TO m DO Sean.VN[i, j] := VN[, j]; END;
FOR j :=1TO m DO Sean.OV N[i, j] := OV N[, j]; END;
FOR j := 1 TO m DO Scan-PVN[i, j] := PVNi. j; END:
Secan_Value[i] := Valueli]; «
END;
Same_Scans := |;
REPEAT
FORi:=1TO m DO
FOR j := 1 TO m DO Saved-Scan.VN[i, j] := Secan.V N[i, j|; END;
FOR j := 1 TO m DO Saved.Scan.OV N[:, j] := Scan-OV N[i, j}; END;
FOR j:= 1 TO m DO Saved_Scan_PV N[i, j| := Scan.PV N[i, j|; END;
END;
FORi:=1TO m DO
> FOR j:=1TO m DO Scan.VN[i,j] := VN[, j]; END;
FOR j := 1 TO m DO Scan.OV N[i,j] := OV N[i, j]; END;
FOR j := 1 TO m DO Sean_PVN[i, j] := PV N{i, j]; END:
Scan_Value[i] := Value[i];
END; .
FORi:=1TO m DO
IF Writer_-Changed.Since.Last_Scan(i)
THEN Changes_Seen(i] := Changes_Seen[i] + 1;
END;
END;
IF Any.Change_Since_Last.Scan
THEN Same.Scans := 1;
FOR i:=1TO m DO
IF Changes.Seen[i] = 2 THEN Timed.Out := i; END;
END;
ELSE Same_Scans := Same_Scans + 1;
END;
UNTIL Same_Scans = 3 OR Timed-Out # 0;
IF Timed-Out # 0
THEN RETURN(Scan.V alue[Timed.Out));
ELSE RETURN(Scan.V alue[F]);
END;
END;

Figure 2: The reader’s protocol.

15

DEFINE
Writer_Changed_Since_Last._Sean(i) = (V, < j<m(Sean.V N[i, j] # Saved.Scan VN 5, j}_))
V(Vigj<m(Sean OV NI, j] # Saved_Scan.OV N i, j]))
VIV ¢jem(Sean PV N[i, j] # Saved_Scan_PV N[i, j]));

Any.Change_Since_Last_Scan = (V/, <igm Writer.Changed_Since_Last_Scan(i));

BEGIN
Same Scans := 0: Timed_.Out := 0;
FOR i:= 1 TO'm DO Changes.Seenli] := 0; END;
FORi:=1TO m DO
> FOR j:=1TO m DO Scan-V N[i,j] := VN[i, j]; END:
FOR j := 1 TO m DO Sean.OV N[i, j] := OVNI[i, j]; END;
FOR j :=1TO m DO Secan.PVN[i, j] :== PVNI[i, j]; END;
PScan_PreOV N{i, k] := PreQV N[i, k|;
Scan.Value[i] := Valueli];
END;
Same_Scans := 1;
REPEAT
FORi:=1TO m DO
FOR j:= 1 TO m DO Saved_Scan.VN[i,j] := Sean.V N[i, j]; END;
FOR j := 1 TO'm DO Saved.Scan.OV N[i, j] := Sean.OV N[i, j}; END;
FOR j:=1TO m DO Saved_Scan-PVN[i, j] := Scan.PVN[i, j]; END;
END;
IF Same.Scans =1
THEN & FOR i := 1 TO m DO PreOV N([k,i] := Scan.V N[i, k]; END; «
END;
FORi:=1TO m DO
> FOR j:=1TO m DO Scan.VN[i,j] :== VN[, j]; END;
FOR j := 1 TO m DO Scan.OV N[i,j] := OV N[i, j]; END;
FOR j := 1 TO m DO Scan.PVN[i, j] :== PV N[i. j}: END:
PScan_PreOV N[i, k] := PreOV N[i, k);
Scan.Valueli] := Value[i];
END;
FORi:=1TO mDO
IF Writer.Changed_Since_Last_Scan(i)
THEN Changes_Seen[i] := Changes_Seen[i] + I;
END;
END;
IF Any.Change_Since_Last_Scan
THEN Same_Scans := 1;
FORi:=1TO m DO
IF Changes_Seen(i] = 2 THEN Timed_Out := i; END;
END;
ELSE Same_Scans := Same_Scans + 1;
END;
UNTIL Same_Scans = 3 OR Timed.Qut # 0;
IF Timed.Out #0
THEN RETURN;
ELSE
e FORi:=1TO mDO
VN[k,i] == Any({1,2,3,4} \ {Scan.V N[k,], Scan OV N[i, k], PScan_PreOV N[i, k]});
OV N[k, i) := Scan .V N[i, k];
PV NIk, i] := Scan.V N[k,i];
END;
Valuelk] == VALUE; «
END;
END;

Figure 3: Writer k’s protocol.

16

2. Another scan is performed.

3. The values read by the scan from the last step are compared with those read by
the previous scan; any registers that are observed to have changed their values are
recored in the Changes_Seen array.

4. If any changes at all were observed between the last two scans, then a check is
made to see if any writer has now been observed to change its values twice, setting
Timed_Out appropriately if so. If, however, no changes were observed between
the last two scans, that fact is recorded by incrementing the running number of
consecutive, identical scans that is stored in Same-Scans.

This sequence of steps is repeated until either three consecutive, identical scans are
observed to occur or some writer is observed to change twice.

The code for the reader’s protocol concludes by returning the appropriate value
depending upon whether it is to time out or terminate normally.

The code for the writer’s protocol begins very similarly to that for the reader’s
protocol. It initializes the control variables and performs a first scan of the writers’
registers in the same manner as the reader’s protcol. It then enters a section of repeated
code that is similar to the repeated section of code with the following differences:

1. Prior to performing a new scan, a check is made to see if the last scan performed
was the first scan or if it observed a change, that is, a check is made to see if
Same_Scans = 1. If so the values of the VN[, k] are written out as the new
PreOVN [k, 1]; otherwise no action is taken.

2. Each segment of code that performs a scan includes a line to read the PreOVN[i, k].

This section of code repeats at most 2m times, terminating when either three consec-
utive, identical scans have been observed, or when some writer has been observed to
change its values twice.

If, during the repeated segment of code, some writer was observed to change twice,
the writer’s protocol now times out without doing anything further. Otherwise, the
appropriate new values are written to writer k’s register.

7 Proof of Correctness

7.1 Definitions

To make future reference more convenient, we will begin our proof of correctness with
a formal restatement of all of the definitions made in previous sections.

17

DEFINITION: Let W be any write of a value to the composition automaton and R
be any read of the value in the composition automaton. Then Value(W) and V alue(R)
refer to the values written by W and read by R respectively.

DEFINITION: Let W be any write by writer i. Then the following actions are
associated with W:

Start(W) The request to writer ¢ to begin the write W. This is the first action in the
write W.

Finish(W) Acknowledgement that the write W has just completed. This is the last
action in the write W.

DEFINITION: Let W be any write by writer ¢ that does not time out. Then in
addition to the above actions, the following actions are associated with W:

1§can(W); The atomic action associated with the read of writer ;s register during the
first of the last three scans performed by writer i as part of W. Note that we are
actually defining the m separate actions:

1Sean(W)1 < 1Scan(W); < ... < 1Scan(W),.

PWrite(W) The atomic action associated with the last write of the PreOVN([i, j] by
writer ¢ as part of W. Here we are defining only one action.

25can(W); The atomic action associated with the read of writer j’s register during the
second of the last three scans performed by writer i as part of W. Note again that
we are defining m separate actions.

Scan(W) A synonym for 25can(W),,. The significance of this action will be explained
later.

35can(W); The atomic action associated with the read of writer j’s register during the
last scan performed by writer i as part of W. Note again that we are defining m
separate actions.

PScan(W); The atomic action associated with the last read of PreOVN[j,i] from
writer j’s register performed by writer ¢ as part of W. This is thus synonymous
with 3Scan(W);.

Write(W) The atomic action associated with the write of Value(W) and new VN’s,
OVN’s, and PVN’s to writer i’s register as part of the write W.

Note then that for a write W by writer i that does not time out, the actions defined
above are synonymous with atomic actions of reads and writes performed by the anal-
ogously labeled lines of code in Figure 3. Consequently the actions of W defined above

18

occur in the following order:

Start(W) < 1Secan(W)i < ... < 1Scan(W), <
PWrite(W) <
28can(W); < ... < 25can(W)y, = Sean(W) <
3Scan(W), = PScan(W); < ... < 3Scan(W),, = PScan(W),, <
Write(W) < Finish(W)

DEFINITION: Let R be any read by reader i. Then the following actions are
associated with R:

Start(R) The request to reader ¢ to begin the read R. This is the first action in the
read R.

Finish(R) Acknowledgement that the read R has just completed. This is the last
action in the read R.

DEFINITION: Let R be any read by reader 7 that does not time out. Then in
addition to the above actions, the following actions are associated with R:

1Scan(R); The atomic action associated with the read of writer j’s register during the
first of the last three scans performed by reader i as part of R. Note that we are
actually defining the m separate actions:

15can(R); < 1Scan(R)z < ... < 1Scan(R)y.

2S8can(R); The atomic action associated with the read of writer j’s register during the
second of the last three scans performed by reader i as part of R. Note again that
we are defining m separate actions.

3Scan(R); The atomic action associated with the read of writer j’s register during the
last scan performed by reader i as part of R. Note again that we are defining m
separate actions. '

Note that for a read R by reader ¢ that does not time out, the actions defined above
occur in the following order:

Start(R) < 1Scan(R); < ...< 1Scan(R), <
2Scan(R); < ... < 25can(R)n, <
3Scan(R); < ... < 3Scan(R)n, < Finish(R)

DEFINITION: Let s be any state in an execution of the composition automaton.
Let j and k be any writers. Then we will define VN[j, k], to be the value of VN[j, k] at

19

state s. Similarly, PVN[j,k],, OVN[j,k]s, PreOVN[j,k]s, and Value[j], we define to
‘be the values of PVN([j, k], OVN([j, k], PreOVN[j, k], and Value[j] respectively at the
state s.

DEFINITION: Let W be a write by writer i that does not time out. Let j and k
be writers. Define VN[j, klw, OVN([j, klw, and PVN([j, k]w to be the values of VN[j, k],
OVN[j, k], and PVN{j, k] respectively, observed by the last three scans of W. Thus if s,
t, and u are the states following 1Scan(W);, 2Scan(W);, and 3Scan(W); respectively,

then we have:
VN[j,klw = VN[j, k], = VN[j,k]; = VN[j,kls

OVN[j,klw = OVN[j,k], = OVN[j, kl: = OVNI[j, k.
PVN[j,klw = PVN[j, k], = PVN[j, k] = PVN[j, k]

Define PreOVN([j, k]w to be the value of PreOVN([j, k] observed by the write W. Thus
since u'is the state following PScan(W);, we have

PreOVN[j,klw = PreOVN([j,k]..

DEFINITION: Let R be a read by reader i that does not time out. Let jand k
be writers. Define VN[j, k]lr, OVN([j, k]r, and PVN[j,k]R to be the values of VN[j, k],
OVN[j,k], and PVN[j, k] respectively, observed by the last three scans of R. Thus if
8, t,and u are the states following 1Scan(R);, 25can(R);, and 3Scan(R); respectively,
then we have:
VN[j! klp = VNU: k]s = VN[js k]t = VN[J! k.
OVN(j,klr = OVN[j, k], = OVN[j, k]; = OVN[j, k],

PVN[j,klr = PVN[j, k], = PVN[j,k]; = PVN[j, k],

The following lemma embodies the rules by which the VN[¢,], OVN[i, j], PVN 2, 7],
and PreOVN[i, j] are picked each time a writer writes.

Lemma 1 Let W be a write that does not time out and let i be the writer that performed
the write W. Let j be any writer. Let s, t, u, and v be the states following PScan(W);,
3Scan(W);, 3Scan(W);, and Write(W) respectively (note s = t). Then the following
hold:

VN[, jlu & {VNIi, 5]u, OVN[j,i]s, PreOVN|j,i],}

OVN[i, jl, = VN[j, il
PVN[i, jl, = VN[i, jlu.
Also, let x be the state following PWrite(W). Then

PreOVN[i,jl. = VN[j,ilw = VN[j,ils.

20

Proof of Lemma 1: This follows directly from the definitions of the P Scan, 3Scan,
and Write actions and from trivial examination of the code. O

Note that VN[i, j], # VN[i,j]. implies that a writer changes all of its VN'’s every
time that it performs a write that does not time out.

DEFINITION: Let i be a writer and let s be a state in an execution of the
composition automaton. Then we will define:

VNS(i), = {j|1 £ j < m,OVN[i,j], = VN[j,i],}.
Let i be a writer and let R be any read that does not time out. We will define:
VNS(i)r = {j|1 < j < m,OVN[i,jlr = VN[j,]r}.
DEFINITION: Let i be a writer and let s be a state in an execution of the
composition automaton. Then we will define:

N, < { 1 if for all writers j, OVNE il € (VAL ik, PVNLs i)
* 7)1 0 otherwise.

Let i be a writer and let R be any read that does not time out. We will define:
; 1 if for all writers j, OVN[i,jlr € {VN[4,i]r, PVN[j,i]r}
N(@i)r = ;
0 otherwise.
DEFINITION: Let s be a state in an execution of the composition automaton.
Then we will define:
F(s) = MAX{i|1 < i < m,|VNS(i)s| + N(i)s = MAX1j<m(| VNS(5)s| + N(5)s)}-

Let R be any read that does not time out. We will define:

F(R) = MAX{i|ll < i < m,|VNS(i)r| + N(i)r = MAX1<;<m(|VNS(j)r| + N(i)r)}-

Recall that the value of F(s) may be thought of as the writer whose 1-writer n+ m-
reader register contains the current value for the m-writer n-reader register.

7.2 Basic Facts

Most of the following theorems, lemmas, corollaries, and such are useful in understand-
ing how writers, writing according to the writer’s protocol, are able to write in such a
way that F(s) may always be taken to be the “current” value of the m-writer n-reader
atomic register.

The following lemma establishes a little fact that will be used throughout the re-
mainder of this paper.

21

Lemma 2 For all writers i and all states s in an ezecution of the composition automa-
ton, i € VNS(i),.

Proof of Lemma 2: Let i be any writer and s be any state in an execution of the
composition automaton. If there is no write W; by writer i for which Write(W;) < s
then initial conditions imply VN([i,i], = 2 # 1 = OVN[i,], and we’re done. Otherwise
let W; be the last write by writer ¢ such that Write(W;) < s. Let ¢ and u be the
states following 3Scan(W;); and Write(W;) respectively. Then by Lemma 1 we have
VN[i,i], # VN[i,i]; = OVNJi,i],. By choice of W;, the values of VN[i,i] and OVN[i,i]
in writer ¢’s register remain constant between u and s and thus VN[i,i], = VN[,],
and OVN([i,i], = OVN[i,i]y. Thus VN[i,i], # OVN[i,i], and by definition of VNS(i),
we have ¢ g VNS(i), as desired. O

Corollary 3 Let R be any read that does not time out, performed by any reader, and
let i be any writer. Then i ¢ VNS(i)g.

Proof of Corollary 3: Let s be the state following 2Scan(R);. Then by Lemma 2,
i VNS(i),. By choice of s, this implies that OVN[i,i]g = OVN[i,i], # VN[i,i], =
OVN[i,i]r proving the corollary. O

All of the actions we have just described refer to particular, meaningful operations
performed during an execution of the read or write protocols, with one exception. In
particular, Scan(W) for a write W that does not time out was defined to be synonymous
with 25can(W), but it has had no meaning assigned to it. We will give it meaning by
showing that the values of the VN’s, OVN’s, and PVN’s observed by the last three scans
of W are identical with those in the writers’ registers in the state following Scan(W); if u
is the state following Scan(W) then VN[j, k], = VN[j, klw, OVN[j, k], = OVN[j, klw,
and PVN[j, k] = PVN[j,klw for all writers j and k. Thus the values seen by the
last three scans made during the write W may be thought to have been read by a scan
performed atomically at the point Scan(W). This is demonstrated by the following
Lemmas and Corollary.

Lemma 4 Let ¢ and j be any writers. Let s and t be any two states, s < t, in an
ezecution of the composition automaton. If VN([i,j]s = VN[i,j); and there ezists some
write W by writer i such that s < Write(W) < t then there ezists at least one write W;
by writer i such that

8 < Scan(Wy) < Write(W;) < t.

If i = j then there ezist at least two writes Wy and W, by writer i such that
8 < Scan(W1) < Write(W,) < Scan(Ws) < Write(Ws) < t.
Proofof Lemma 4: Let Wy be the first write by writer 4 such that s < Write(Wyp) <

t. Let u be the state following Write(Wp). Then by the way the VN’s and PVN’s are
chosen (ie. Lemma 1), we have

VN[isj]u ?é PVN[i}j]u = VN[ésj}s»

22

Now since VN[i, jl: = VN[i, j]s there must be another write by writer i between u and
t to bring the value of VN[, j] back to what it was at s. Let W be the first such write.
Since W; must start after W, finished, we have s < u < Sean(W;) < Write(W;) < 1
and W, is as desired.

In the event that i = j, we have additionally, by Lemma 1, that OVN[i, flg =
VN[i,4]s. Thus if v is the state following Write(W;), by the way VN’s are chosen we

have:
VN[i, il # OVN([i,i], = VN3, i],.

Again, since VN[i,i]; = VN[i,1],, there must be yet another write by writer ¢ between
v and ¢ to bring the value of VN[i,3] back to what it was at s. Let W be the first
such write. Again, since W, must start after W finished, we have s < Scan(W;) <
Write(W;) < v < Scan(Ws) < Write(Ws) < t, and Wy and W, are as desired. O

Lemma 5 Let W be any write by a writer i such that W does not time out. Then
there does not exist a writer j and a write W; by writer j such that 25can(W); <
Write(W;) < 3Scan(W);.

Proof of Lemma 5: Assume otherwise and let j be a writer for which there exists
a write W; such that 2Scan(W); < Write(W;) < 35can(W);. Let s and t be the states
following 2Scan(W); and 3Scan(W); respectively. Then since the last three scans of
W saw the same values in the registers, we have VN[j, klw = VN[, k]s = VN[j, k] for
all writers k implying that VN[j,i]s = VN[j,i]s. Now we have assumed that there is a
write W; by writer j for which s < Write(W;) < t, so by Lemma 4, there exists some
write W/ by writer j such that s < Scan(W}) < Write(W]) < t; let W; be the last
such write. If v is the state following Write(W}), then by choice of W}, VN [4,7] remains
constant between v and t implying VN[j,i], = VN[j,i}:. Let z be the state following
PScan(W]); and note that

PWrite(W) < 2Scan(W); < Scan(W}) < ¢ < Write(W;) < 3§can(W));.

Then since PreOVN[i,j] remains constant between PWrite(W) and 3Scan(W);, by
Lemma 1 we have PreOVN[i,jl. = VN[j,ilw = VN[j,i];. Also, by Lemma 1 we have
VN[j,il, # PreOVN[i,j];. But this implies VN[j,i], # PreOVN[i,jl. = VN[j, i
contradicting the VN[j,i], = VN[j,i]; we saw above. Thus our assumption is incorrect
and the Lemma is proved. O

Corollary 6 Let W be any write by writer j such that W does not time out. Let u be
the state following Scan(W). Then VN|[j, k], = VN[j,klw, OVN[j, kl. = OVN[j, klw,
and PVN[j,kl. = PVN[j,klw for all writers j and k.

Proof of Corollary 6: By Lemma 5, there are no writes to writer j’s register that
could change the values of VN[4, k], OVN([j, k], and PVN[j, k] between 25 can(W); and

23

3Scan(W); for any writer k. Thus if s and ¢ are the states following 2Scan(W); and
3Scan(w); respectively, we have.s < u < t implying:

VN[j, k], = VN[j,kl. = VN[j, k]s = VN[j, klw

OVN{j, k], = OVN[j,kl. = OVN[j, k], = OVN[j, klw
PVN[j,Kls = PVN[j, K. = PVN[j,kl: = PVN[j, klw
for all writers k as desired. O

This result permits us to think of the values of the VN’s, OVN’s, and PVN’s ob-
served by a write W, those values on the basis of which W chooses the VN’s, OVN’s,
and PVN'’s that it writes, to have been read by an atomic scan of all the writers’ regis-
ters acting at the point Scan(W). This meaning of the Scan(W) action is fundamental
to the remainder of the proof and will be assumed without reference to Corollary 6.

Now that we have established the meaning of the Scan(W) action, we will present
two theorems that capture the essence of the relative meanings of the VN’s, OVN’s,
and PVN’s. The first of these theorems states that for given writers i and j, if writer i
“sees” writer j’s version number at a given point, that is, if OVN[i, j] = VN[j,] at that
point, then writer ¢ has both scanned and written since the last write by writer j. The
second theorem states that for given writers ¢ and j, if writer i sees neither writer j’s VN
nor writer j’s PVN at a given point, if OVN[i, j] # VN[j,i] and OVN[i, 5] # PVN[j,1]
at that point, then writer j completed two writes between the scan and write actions
of the most recent write completed by writer i. Let us first prove a little lemma.

Lemma 7 Let s be any state in an ezecution of the composition automaton. Let i
be any writer and let = be the first state for which there does not ezist a write W; by
writer i such that x < Scan(W;) < Write(W;) < s. Let j be any writer for which there
exists a write W;, z < Write(W;) < s. Let t be the state following Write(W;). Then
OVNIi,jl, # VN[,

Proof of Lemma 7: Let j, W}, and ¢ be as in the lemma statement.

If there does not exist a write W; by writer ¢ such that z < Write(W;) < s then
@ must be the first state in the execution; otherwise, if z’ were the state preceeding z,
we would not have z’ < Scan(W;) < Write(W;) < s for any write W; by writer i
contradicting our choice of z. This implies OVN([i, j] remains constant for all states
up to and including s. In particular, if v is the state following Secan(W;) we have
OVN[i,jls = OVN[i,jl.. By Lemma 1 we have OVN[i, j], # VN([4,4];. Thus we have
OVN[i, jls = OVNJi, jlu # VN[j,i}; and we’re done.

For the remainder of the proof, then, we will assume that there exists a write W;
by writer ¢ such that z < Write(W;) < s. It follows that Scan(W;) is the last action
preceeding z. Let v be the state following PScan(W;);. There are four cases we must
consider:

24

Case 1: v < Scan(W;). Then since we have u < PScan(W;)i < v, u < Scan(W;) <
Write(W;). Since writer j is in the process of performing the write Wj between
u and Write(W;), ie. since Start(W;) < u < Write(W;) < F:msh(W) there
are no other writes W, by writer j for which u < Wrzte(W’) < Write(W;) and
consequently VN7, z],r is constant for all &', u < &' < Wmte(W). In particular,
since z is the state following Scan(W;) we ha.ve

VN[j,ile = VN[j,]u-
Let y be the state following Write(W;). Then by Lemma 1 we have:
OVI\T[i,‘;F]yr = VN[j,i]z

and
VN[, ile # VN[, ilu-
By choice of W; and hence of y, OVN[i,j] remains constant between y and s.

Consequently:
OVN[i,j], = OVN[%J]T

Putting the above equations together yields:
OVN[i,j), = OVN[i,jly = VN[j,i]- = VN[j,1]u # VN[j,l;
as desired.

Case 2: Scan(W;) < v < Write(W;). Now PreOVN][i, j| remains constant between
PWrite(W;) and Write(W;) and by Lemma 1 equals OVN[i, j], if y is the state
following Write(W;). Since PWrite(W;) < Scan(W;) < v < Write(W;) we thus
have:

PreOVN[i, j}y, = OVNI[i, j,.

By Lemrﬁa 1, we have:
VN[j,i]¢ # PreOVN[i,j]..

By choice of W; and thus of y, OVN[i, j] remains constant between y and s. Thus:
OVN[i,j]s = OVN[i, jly-

Putting the above equations together yields:

OVN[i,jls = OVN[i, jly = PreOVN[i, jl, # VN[j, il
as desired.
Case 3: Write(W;) < v but u < Write(W;). This implies
2Scan(W;); < u < Write(W;) < PScan(W;); = 3Scan(W;);.

By Lemma 5 this is impossible.

25

Case:4: Write(W;) < v and Write(W;) < u. Note that u < v < Write(W;) < s. Now.
by choice of W;, OVN[i, j] equals the constant OVN[i, j], between Write(W;) and
s.. In particular:
OVN[*}J]& = OVN[%',_',;]‘,.
Now by Lemma. 1:

Putting these equations together yields:
OVNi,jls = OVN[i, jlu # VN[j,i);

as desired.

This completes proof of Lemma 7. O

Theorem 8 Let i and j be writers, i # j. Let s be any state in an ezxecution of the
composition automaton. Let z be the first state in the ezecution for which there does
not ezist a write W; by writer j such that = < Write(W;) < s. Then OVN[i,j], =
VN{j,ils if and only if there ezists some write W; by writer i for which z < Scan(W;) <
Write(W;) < s.

Proof of Theorem 8: First assume that there exists a write W; by writer ¢ for
which < Scan(W;) < Write(W;) < s and let W; be the last such write. Now by
choice of &, there are no writes W; by writer j for which z < Write(W;) < s. Thus if u
and v are the states following Scan(W;) and Write(W;) respectively, we have

VN[j,i], = VN[j,]s.
By Lemma 1 we have
OVN[i, jl, = VN[j,i)s.

By choice of W;,
QVN[i, j], = OVN[i, j],.

Putting the above together, we get the desired result:
OVN[i, j], = OVN[i,jl, = VN[j,i], = VN[, 1]s.

Now assume OVN[i, j], = VN[j,i],. Let y be the first state for which there does
not exist any write Wy by writer i such that y < Scan(W/) < Write(W!) < s. We have
three cases:

Case 1: If y < 2 then by choice of z, the last action prior to state z is Write(W;)
for some write W; by writer j. By Lemma 7 this implies OVN[i, j], # VN[j, ;.
Since VN[j,1] remains constant between z and s, we have VN[j, iz = VN[j, 4],
and thus OVN[i,j]; # VN[j,i], contradicting our original assumption and this
case is impossible.

26

Case 2: If y = z then by choice of z and y, z must be the first state in the execution;
otherwise the action preceeding « would be both Write(W;) for some write by
writer j and Scan(W;) for some write by writer i. This implies that neither ¢ nor
j writes between z and s and thus OVN([i,j], = 1 # 2 = VN[j, 4], contradicting
our original assumption and this case is impossible.

Case 3: If z < y then our choice of y implies that if y’ is the state preceeding y, we
have z < ¥’ < Scan(W;) < Write(W;) < s. This implies the desired

z < Scan(W;) < Write(W;) < s.

This concludes the proof of Theorem 8. O

The following corollary to Theorem 8 relates the results of Theorem 8 to writers
that do not write in a given interval and will be cited when determining the placement
of atomic actions for reads later in the proof of correctness.

Corollary 9 Let s and t be any two states in an ezecution of the composition automa-
ton, and let i be any writer for which there is no write W; such that s < Write(W;) < t.
Then if OVN[i,jl; = VN[j,i); for any writer j, there does not ezist any write W; by
writer j such that s < Write(W;) < t. This implies that OVN[i, jlu = VN[j, i]u for all
states u, s <u<t.

Proof of Corollary 9: Let z be the first state such that there does not exist a
write W; by writer j for which z < Write(W;) < t. By Theorem 8, OVN[i,j] =
VN{j, z]; implies there exists some write W; by writer ¢ such that z < Scan(W;) <
Write(W;) < t. By the hypothesis of the corollary, Write(W;) < s. Thus z < s and
there is no write W; by writer j for which s < Write(W;) < t and the corollary is
proved. O

Theorem 10 Let s be any state in an ezecution of the composition automaton. Let
i be any writer. Let = be the first state such that there does not ezist a write W; by
writer i such that z < Scan(W;) < Write(W;) < s. If there is a writer writer j # i that
performed writes W; and W], W; # W; such that z < Write(W]) < Write(W;) < s
then N(i), = 0. If thene ea:zsts a write W by writer i for which Wmte(W) < 8 then the
converse holds as well.

Proof of Theorem 10: Assume there exist two writes W] and W; by some writer j
such that z < Write(W}) < Write(W;) < s; let W; and W be the last such writes.
Let t and u be the states following Wrzte(W") and Wmte(W) respectively. Then by
Lemma 7 we have:

OVN[iyj]a '7'6 VNU} i]t

and
OVN[i, jls # VN[j,1lu-

27

By choice, W/ is the last write by writer j such that Write(W) < Write(W;), thus if
v is the state following Scan(W;), we have VN[j,i], = VN[j,];. By Lemma 1 we have
PVN{j, i}y = VN[j, i],, thus:

PVN[j, il = VN[j,1]:.
Now by choice, W; is the last write by writer j such that Write(W;) < s, thus:
VN[j,i]s = VN[4,]

and
PVN[j,il, = PVN[j,ilu.

Putting the above equations together we get:
OVN[i:j]s _-,é VNU: t']1.-'. = VN[js i]s

and
OVNIi, jl, # VNIjyile = PVN[j,il = PVN[j,ils.

Consequently, N(i), = 0. Thus if j, W/, and W; exist as in the theorem statement,
then N (i), = 0.

Now for the other direction. Assume that there exists some write W; by writer ¢
for which Write(W;) < s and let W; be the last such write. Noet Scan(W;) is the
last action before . Assume also N(i); = 0. This means PVN[j,1], # OVN[i, j]s and
VN{j,i]s # OVNIi, j], for some writer j. We have three cases:

Case 1: There are no writes W; by writer j for which z < Write(W;) < s; then
VN{[j,i]s = VN[4,i];. By Lemma 1, VN[j,i], = OVN]i, j]; and we have:

VN[4,i], = VN[j,1]. = OVN[i, j],.
Thus this case is not possible.

Case 2: There is exactly one write W; by writer j for which z < Write(W;) < s. Let
t be the state following and Write(W;). Then as above,

PVN[j,i], = PVN[j,i]; = VN[j,i], = OVNIi, j]s.
Thus this case is not possible.

Case 3: There are at least two writes W; by writer j for which ¢ < Write(W;) < s.
This implies the existence of W; and W/ as required by the theorem statement.

Thus N(i), = 0 and the existence of W;, Write(W;) < s implies there exists a

writer j and writes W; and W] by writer j such that z < Write(W) < Write(W;) < s.
This completes the proof of the theorem. O

28

We will now apply the two theorems that we have just proved to prove several useful
and interesting facts about some of the various constructs, such as VNS(i)s, N(i)s, and
F(s), that we defined earlier. The first of these facts, expressed in the following Lemma,
shows that for any state s and any writers i and j, if VNS(¢); # VNS(j)s then one of
VNS(i), and VNS(j), is a proper subset of the other.

Lemma 11 Let i and j be writers and s be a state in an ezecution of the composition
automaton. If VNS(i), ¢ VNS(j)s then VNS(j)s C VNS(i)s.

Proof of Lemma 11: Given VNS(i), ¢ VNS(j)s, let k be such that k € VNS(3)s \
VNS(j)s- Let z be the first state such that which there does not exist a write Wi
by writer k for which z < Write(W;) < s. Since k € VNS(i), we have VN[k, 1], =
OVN[i, k], which by Theorem 8 implies there exists a write W; by writer ¢ such that
z < Scan(W;) < Write(W;) < s. Also, since k ¢ VNS(j), we have VN[k,jl, #
OVN|j,k], implying by Theorem 8 that there does not exist a write W; by writer j
such that z < Scan(W;) < Write(W;) < s. By symmetry of this argument, VNS(j): ¢
VNS(i)s would imply that there exists some state y and write W_,;' by writer j such that
y < Scan(W}) < Write(W]) < s (and thus implying y < z) but that there does not
exist any write W/ by writer i such that y < Scan(W}) < Write(W]) < s (and thus
implying z < y). Thus it is impossible for VNS(j), ¢ VNS(i), and the lemma is proved.
O

Corollary 12 Let i and j be writers and s be a state in an ezecution of the composition
automaton. Then:

1. VNS(j), is a proper subset of VNS(i), if and only if | VNS(j)s| < | VNS(4)s]-
2. VNS(j)s = VNS(3), if and only if | VNS(5)s| = | VNS(4)s].

Proof of Corollary 12: This follows directly from Lemma 11 and elementary set
theory. O

Corollary 13 Let s be any state in an ezecution of the composition automaton, and
i, j, and k be writers. If OVN[i,jl, = VN[j,i], and OVN[j,k]s = VN|[k,j]s then
OVN]i, k], = VN[k,i],.

Proof of Corollary 13: By definition, OVN[i, j], = VN[j,], implies j € VNS ()s.
By Lemma 2, j & VNS(j),. Thus we have j € VNS(i), \ VNS(j)s which, by Lemma 11,
implies VNS(j)s C VNS(3). Now OVN[j, k], = VN[k, j] implies k € VNS(j)s, and thus
we have k € VNS(j), C VNS(i), which implies OVN[i,k]s = VN[k, 1] as desired. O

The following lemma presents another important fact. It is important because it and
the corollary that follows it relate the two principal values that are used for determining
the value of F(s) at a state s, namely the | VNS(i),| and the N(i),.

29

Lemma 14 Let i and j be any writers, i # j, and let s be any state in an ezecution of
the composition automaton. Then:

| VNS(i)s| > | VNS(5)s| = N(3)s 2 N(3)s-

Proof of Lemma 14: Assume otherwise, that | VNS(3),| > | VNS(j)s| but N(4), <.
N(j)s. By Corollary 12, VNS(j), is a proper subset of VNS(i), implying that there is
some k'€ VNS(i), \ VNS(j);. By definition of the VNS this means that VN[k,i], =
OVN[i, k], but VN[k,j]s # OVN[j,k];. Let = be the first state such that which there
does not exist a write W; by writer ¢ for which z < Write(W;) < s, let y be the first state
such that which there does not exist a write W; by writer j for which y < Write(W;) <
s, and let z be the first state such that which there does not exist a write Wy by
writer k for which z < Write(Wy) < s. Then by Theorem 8, VN[k,i], = OVN[i, k],
implies there exists some write W; by writer ¢ for which 2 < Scan(W;) < Write(W;) < s
while VIN'[k, j]s # OVN|j, k], implies there does not exist any write W; by writer j for
which z < Scan(W;) < Write(W;) < s. Thus wehave y < 2 < z < 8

Now N(i)s < N(j)s implies N(i), = 0 and N(j), = 1. By Theorem 10, N(); = 0
and the existence of W; imply that there exists some writer | and two writes W) and
W/ such that:

z < Write(W]) < Write(W)) < s.

But y < z implies that:
y < Write(W]) < Write(W;) < s.

By Theorem 10 again, we have N(j), = 0 contradicting the above. Thus our assumption
is incorrect' and the lemma is proved. O

Corollary 15 Let i and j be any writers ¢ # j, and let s be any state in an ezecution
of the composition automaton. Then:

1. |VNS(i)s| > |VNS(5)s| => | VNS(i)s| + N(i)s > | VNS(4)s| + N(4)s
2. |VNS(i)s| + N(é)s > | VNS(4)s| + N(3)s => | VNS(3)s| > | VNS(5)s]
3. |VNS(2)s| + N(i)s > | VNS(5)s| + N(5)s => N(4)s > N(5)s
4. |VNS(i)s| + N(1)s = | VNS(§)s| + N(3)s = | VNS(i)s| = | VNS(4)s|
5. | VNS(i)s| + N(i)s = | VNS(5)s| + N(4)s = N(i)s = N(4)s
Proof of Corollary 15: All parts follow directly from Lemma 14. O

Corollary 18 Let s be any state in an ezecution of the composition automaton. Then:
VNS(i)s C VNS(F(s)),

for all writers 1.

30

Proof of Corollary 18: Assume otherwise. Then for some i # F(s),
VNS(i)s \ VNS(F(s))s # 0.
Then by Lemma 11, VNS(F(s)), is a proper subset of VNS(i)s. Then
| VNS(F(s))s] < | VNS(4)s]
implying by Corollary 15 that
| VNS(F(5))s| + N(F(8))s < | VNS(i)s| + N(2)s

contradicting the definition of F(s). Thus our assumption is incorrect and the corollary
holds. O

The following lemma and corollary demonstrate that at each step s, the function N
takes on a non-zero value for at least one writer, and in particular, N (F(s))s = 1.

Lemma 17 Let s be any state in an ezecution of the composition register. Then there
exists some writer i for which N(i)s = 1.

Proof of Lemma 17: If there is no write W by any writer for which Write(W) < s
then for all writers i and j initial conditions imply OVN[i,jls = PVN [4,1]s = 1, therefore
N(i); = 1 and we are done. Otherwise, of all the writes W, by any writer, for which
Write(W) < s, let W; be the one for which Scan(W;) most recently preceds s. Let ¢
be the writer that performed the write W;. Assume N (i)s = 0. Then by Theorem 10
there exists a writer j and writes W; and W; by writer j for which

Scan(W;) < Write(W)) < Write(W;) < s.
But W; must have begun after W; finished implying
Write(W)) < Scan(W;) < Write(W;).

Consequently,
Scan(W;) < Scan(W;) < Write(W;) < s

contradicting our choice of W;. Thus our assumption is incorrect and N(i), = 1 proving
the lemma. O

Corollary 18 Let s be any state in an ezecution of the composition register. Then we
have N(F(s)), = 1.

Proof of Corollary 18: Let i be some writer such that N(i), = 1; such a writer
exists by Lemma 17. If i = F(s) then we’re done. Otherwise we have three cases:

31

1. |VNS(F(s))s| + N(F(s))s > | VNS(i)s| + N(i)s. By Corollary 15, N(F(s))s
N(i)s = 1 and we’re done.

2. |VNS(F(s))s| + N(F(s))s = | VNS(i)s| + N(i)s. By Corollary 15, N(F(s)), =
N(%), = 1 and we're done.

v

3. |VNS(F(8))s|+ N(F(s))s < |VNS(i)s|+N(i)s- This case cannot occur as it would
contradict the definition of F(s).

This completes the proof of the corollary. O

7.3 Placement of Writes

We will now use the facts we have established to prove two theorems that are the basis
for the placement of atomic write points in an execution of the composition automaton.
First, however, we will need the following definition.

DEFINITION: Let W be a write by writer ¢ that does not time out. Let s be the
state following Write(W). We will call the write W potent if F(s) = i. We will call the
write W impotent if F(s) # 1.

The first of the two theorems we will now prove states that if W is an impotent
write, then F' has the same values for the states immediately preceding and following
Write(W). Intuitively, this is very desirable behavior. If a writer writes a new value
V to its register, one would expect that in doing so, it would either change the value
of the composition register to V, or it would leave the value in the composition regis-
ter unchanged. It would be highly undesirable if writes could cause a value that had
previously been current, but had since been overwritten, to become current again.

The second of the two theorems that we are about to prove states that if W is any
impotent write, then there is some potent write W’ such that W’ wrote its value and
new VN, OVN, and PVN numbers between the scan and write actions of W. This,
again, is what one would expect. A writer performing its scan and write operations
during an interval in which no other writes are occuring should change the value of the
composition register to that of its own register when it completes its write. These two
theorems provide us with points at which to insert “atomic” actions for both potent
and impotent writes.

Using these two theorems, we can then proceed to insert the Atomic(W) actions for
writes W as follows:

1. If W is potent then insert Atomic(W) immediately preceding Write(W).

2. If W is impotent then insert Atomic(W) immediately preceding Atomic(W’) for
the last potent write W’ such that Scan(W) < Atomic(W') < Write(W).

32

3. If W times out then insert Atomic(W) immediately preceding Atomic(W") for
some write W” such that W” is performed entirely within the interval during
which W is performed.

We will show later why these insertions satisfy the conditions we desire of them.

Theorem 19 Let W be an impotent write written by writer i. Let s' and s be the states
preceding and following Write(W) respectively. Then F(s') = F(s).

Proof of Theorem 19: We will first prove a few propositions that will be useful
in the proof of the theorem. In all of these propositions, we will assume W, 1, &', and s
are as above. Note that ¢ # F(s) since W is impotent.

Proposition 19.1 i € VNS(F(s))s-

Proof of Proposition 19.1: Assume otherwise. Let z be the first state such
that there does not exist a write W; by writer i such that z < Write(W;) < s\
Let y be the first state such that there does not exist a write Wg(,) by writer F(s)
such that y < Scan(Wr()) < Write(Wp(,)) < ¢'. Then by assumption we have
OVNI[F(s),ily # VNI[i,F(s)]y implying by Theorem 8 that there does not exist a
write Wpy,) by writer F(s) such that = < Scan(Wg(s)) < Write(Wr(s)) < s’ and thus
that y < . Now we have two cases:

Case 1: y < = Then there exists a write W; by writer i such that y < Write(W;) < s'.
Thus we have z < Write(W;) < s’ < Write(W) < s. Theorem 10 tells us that
N(F(s))s = 0 contradicting Corollary 18.

Case 2: y = z Then y = z must be the first state in the execution; otherwise, the action
preceeding z would be both Write(W;) and Scan(Wp(,)) for writes W; and W,
by writers i and F(s). This then implies that there is no write W(,) by writer F(s)
for which z < Write(Wp(,)) < s'. Thus if ¢ is the state following Scan(W), by
Lemma 1 initial conditions apply and we have VN[i, F(s)], # OVN[F(s),i]s =
OVN[F(s),i], and PVN[i, F(s)]s = VN[i, F(s)}: = 2 # 1 = OVN[F(s),],. Again
we have N(F(s))s = 0 contradicting Corollary 18.

Thus our assumption is incorrect and the proposition holds. O
Proposition 19.2 F(s') # i.

Proof of Proposition 19.2: By Corollary 16 we know that VNS(F(s))y C
VNS(F(s'))s and by the above, i € VNS(F(s))y thus i € VNS(F(s))s. Now by
Lemma 2 we know i & VNS(i),. We conclude F(s') # i. O

33

Proposition 19.3 For all writers j, j # i, VNS(5)s = VNS(5)« \ {i}.

Proof of Proposition 19.3: Let j be a writer, j # i. Since there are no writes Wj,
by any writer k # i such that s’ < Write(Wy) < s, we know that VN[k, j], = OVN[j, k],
if and only if VN [k, jl,» = OVN([j, k], for all writers k, k # i. Thus we have k € VNS(j),
if and only if k € VNS(j)y for k # 1.

If we had i € VNS(j), then since s is the first state z for which there does not exist
a write W; by writer ¢ such that z < Write(W;) < s, by Theorem 8 there would exist
some write W; by writer j such that s < Scan(W;) < Write(W;) < s which is clearly
absurd. Therefore, ¢ ¢ VNS(5)s.

Thus we have k € VNS(j), if and only if k € VNS(j)y for k # i, and i € VNS(j),.
By elementary set theory, we conclude VNS(j)s = VNS(5), \{i}. Since j is an arbitrary
writer, our proof of the Proposition 19.3 is complete. O

Proposition 19.4
|VNS(F(s'))s| = | VNS(F(s))y| =1 and |VNS(F(s)),| = |VNS(F(s))s| - 1.

Proof of Proposition 19.4: As was noted in the proof of Proposition 19.2,
i € VNS(F(s))s and i € VNS(F(s'))y. By Proposition 19.2, F(s') # 4, and F(s) # i
because W is impotent. The proposition thus follows from Proposition 19.3 and ele-
mentary set theory. O

Proposition 19.5 Let j be any writer for which i € VNS(j),. Then N(j), = N(j)s-

Proof of Proposition 19.5: By definition, i € VNS(j), implies VN[i,j]y =
OVN[j,ils. By Lemma 1 we have PVN[i,j], = VN[i,j]s and thus PVN[i,j], =
VN[i,jl¢ = OVN[i,jly = OVN[j,ils, so PVN[i,jl, = OVN[j,i],. Now if k is any
writer, k& # 4, k # j, there are no writes W; or Wy by writers j or k such that
s’ < Write(W;) < s or ' < Write(Wy) < s, and we have:

OVN[j,kl, = OVN[j,kly

VN[ksj]a - VN[ksj]a’
PVNIk,jls = PVN[ksj]s'-
Thus we have OVN[j,k]s # VN[k,j], if and only if OVN[j, k]y # VN[k,j],, and
OVN[j,k]s # PVNIk,j], if and only if OVN[j, k], # PVN[k,jly. Since OVN[j,i]y =

VN[i,jly and OVN[j,i]s = PVN[i,j]s, we have N(j)s = 0 if and only if N(j), = 0.
Since N takes on only the values 1 and 0, our proof is complete. O

Proposition 19.6 N(F(s)), = N(F(s)), and N(F(s'))s = N(F(s')),.

34

Proof of Proposition 19.6: As was noted in the proof of Proposition 19.2,
i € VNS(F(8))y and ¢ € VNS(F(s'))y. The proposition follows immediately from
Proposition 19.5. O

We now proceed with the proof of Theorem 19. Assume that F(s') # F(s); we will
derive a contradiction. Now by definition of F(s’), one of two cases must occur:

Case 1: |VNS(F(s'))st| + N(F(s'))s > | VNS(F(8))s'| + N(F(8))s'. Then by Proposi-
tions 19.4 and 19.6,
|VNS(F(s")s| + N(F(s"))s = |VNS(F(s"))s|+ N(F(s'))y —1
> |VNS(F(s))y| + N(F(s))s = 1=
| VNS(F(s))s| + N(F(s))s
Thus |VNS(F(s"))s| + N(F(s'))s > | VNS(F(s))s| + N(F(s))s contradicting the
definition of F(s).

Case 2: | VNS(F(s")y'| + N(F(s'))s = |VNS(F(8))s| + N(F(s))s and F(s') > F(s).
Then by Propositions 19.4 and 19.6,

|VNS(F(s"))s| + N(F(s'))s | VNS(F(s"))s| + N(F(s')sr — 1
|[VNS(F())w| + N(F(s))sr — 1

| VNS(F(s))s| + N(F(3))s

Thus | VNS(F(s'))s| + N(F(s"))s = | VNS(F(s))s| + N(F(s))s and F(s") > F(s)
contradicting the definition of F(s).

Thus our assumption is incorrect and F(s") = F(s) as desired. This completes the proof
of Theorem 19. O

Corollary 20 F remains constant between consecutive Write(W) actions for poteni
writes W.

Proof of Corollary 20: We noted earlier that the only points at which the values of
VN[i, j], OVN[i, j], and PVN][i, j] may change are at the Write(W) actions for writes W
by writer i. Formally, if A is an action in an execution of the composition automaton
and if A is not equal to Write(W) for any write W, and if s’ and s are the states
preceding and following A respectively, then:

VN[i,jle = VNI[i,jls
PVN[I',}'],: v PVN[‘}J]s
OVN[i}an' = OVN{‘:J]&
for all writers ¢ and j. Consequently, F(s') = F(s). Theorem 19 implies that F(s") =
F(s) even if A = Write(W) for an impotent write W. Since Write(W) actions are

associated only with potent and impotent writes W, the correctness of the corollary
follows. O

35

Theorem 21 Let i be any writer and W; be any impotent write by writer i. Then
there ezists some writer j, j # i and some potent write W; by writer j such that
Scan(W;) < Write(W;) < Write(W;).

Proof of Theorem 21: Let s be the state immediately following Write(W;). Let
j = F(s). Note j # i because W; is impotent. Let z be the first state for which there
does not exist a potent write W such that z < Write(W) < s. Then by Corollary 20
we have j = F(z). Because F equals j between z and s, we know by definition of
an impotent write that there can be no impotent writes W; by writer j for which
z < Write(W;) < s. By choice of z, there are no potent writes W; by writer j for
which z < Write(W;) < s. Thus z is the first state for which there does not exist a
write W; by writer j such that 2 < Write(W;) < s.

Assume now that there is no potent write W for which Scan(W;) < Write(W) <
Write(W;). Then, in particular, z < Scan(W;). By Theorem 8 this implies that
OVNIi, jls = VN[j,i]s. Thus j € VNS(i), \ VNS(j), and thus by Lemma 11, VNS(j), is
a proper subset of VNS(i),. By Corollary 15 we have | VNS(i),| + N(i)s > | VNS(5)s| +
N(7)s- This implies, by definition of F(s), that F(s) could not possibly equal j. Thus
our assumption is incorrect and there is a writer j, j # ¢, and a potent write W; by
writer j for which Scan(W;) < Write(W;) < Write(W;). This completes the proof of
Theorem 21. O

We are now ready to show how to insert the Atomic(W) action for each write W
into a schedule of the m-writer n-reader atomic register.

1. For each potent write W, we will insert the action Atomic(W) immediately pre-
ceding Write(W). Clearly, Start(W) < Atomic(W) < Finish(W).

2. For each impotent write W, we know by Theorem 21 that there exists some potent
write W’ such that Scan(W) < Write(W’) < Write(W); let W’ be the last such
potent write. Insert an action Atomic(W) immediately preceding Write(W’).
Again, since we are inserting Atomic(W) between Scan(W) and Write(W), it is
clear that Start(W) < Atomic(W) < Finish(W).

Note that we may have to insert several Atomic actions for impotent writes im-
meditately preceding a single potent write W’. This is not a problem; since we
have only m writers, there are at most m — 1 writers that could be performing
impotent writes at the point Write(W’). We are thus inserting a finite number
of actions before any Write(W").

3. For each write W that times out, we know from the fact that it timed out that,
for some writer i, W saw the contents of writer i’s register change twice. Since
“the values in writer ¢’s register that are compared between scans (the VN[i, il
OVN[i,j], PVN[i,j], and Value[i]) change only at the points Write(W’) for
writes W' by writer ¢ that do not time out, the two observed changes must
have been caused by separate writes by writer i. The second of these writes,

36

call it W’, must have begun after the first finished. Thus we have Start(W) <
Scan(W') < Write(W') < Finish(W). Whether W’ is potent or impotent,
we have Scan(W') < Atomic(W') < Write(W'), thus if we insert Atomic(W)
immediately preceding Atomic(W’), we will have Start(W) < Atomic(W) <
Finish(W).

Here, as was the case with impotent writes, we may have to insert several Atomic
actions immediately before a given Write action; here, as before, this causes no
problem.

Before we continue, there are a few things that we should note about our placement
of the Atomic actions for writes. First, for every write W that does not time out,
we have Scan(W) < Atomic(W) < Write(W). Second, if § is an schedule of the
composition automaton in which no Atomic actions have been inserted and £ is a state
in 9, then once the Atomic actions for writes have been inserted into S to yield $’, the
most Tecent Atomic write action preceding ¢ in S is that of a potent write. Third, from
Corollary 20 we see that the value of F' remains constant between consecutive Atomic
actions of writes.

7.4 Placement of Reads

Now that all of the writes have been placed, we need to show that reads will behave in
the desired manner. Let us begin by making the following definition.

DEFINITION: Let R be any read that does not time out. Define CWS(R) to
be the set of all writers i for which there exists a write W; such that 15can(R): <
Write(W;) < 3Scan(R);.

By Lemma 4, we know that if writer i is in this “changing writer set” CWS(R) for
a read R, then writer i must have performed a complete write W such that Start(R) <
Scan(W) < Write(W) < Finish(R). Thus if a read R returns the value in the register
of some writer in CWS(R), then we know that the value returned was written by a
write W whose Atomic(W) point is contained within the bounds of R. Thus we will
place the Atomic(R) actions for reads R as follows:

1. If R times out or if F(R) € CWS(R) then R contains the action Atomic(W)
for the write W whose value it returns; in this case Atomic(R) will be placed
immediately following Atomic(W).

2. If R does not time out and F(R) ¢ CWS(R), then Atomic(R) will be placed
immediately following 2Scan(R)p(r)-

The following lemmas will prove that this placement is legitimate.
Lemma 22 Let R be any read that does not time out performed by any reader. Let i

be any writer, i @ CWS(R). Let j be any writer, j # i. Then i € VNS(j)r implies
VNS(i)r C VNS(j)R-

37

Proof of Lemma 22: Assume i € VNS(j)r and let s be the state after 25can(R);.
If j > 14, let v and v be the states following 1Scan(R); and 2Scan(R); respectively,
otherwise let them be the states following 2Scan(R); and 3Scan(R); respectively. Note

that
1Scan(R); < u < 8 < v < 35can(R);,

and thus by choice of ¢, there is no write W; by writer i such that u < Write(W;) < v.

Now by choice of u, for any writer k,
OVN[j,k]lr = OVN[j, k]y-

Also by choice of u, OVN[j,i]y = OVN[j,i]g. By assumption, OVN[j,i]gr = VN[i,j]g.
By choice of s, VN[i, j]lr = VN[i, j],. Since VN[i, j] remains constant between s and u,
we know VN[i, j], = VN[i, j]u. Putting the above together yields:

OVN[j, i]u = VN[‘&-, j]u-

~ Let k be any writer, k € VNS(i)r and let ¢ be the state following 2S5can(R)y if k > i
and let it be the state following 3Scan(R); if k < i (by Corollary 3, k #). Then by
choice of s and t, OVN[i,k], = OVN[i,k]p = VN[k,i]p = VN[k,i]; and u. < s < ¢ <
3Scan(R);. Since there is no write W; by writer i such that u. < Write(W;) < t, we
have OVN([i, k]s = OVN[i, k], = VN[k,i]; and thus we may apply Corollary 9 to obtain:

OVN[i, k], = VN[E,i].

and that there is no write Wy by writer k such that u < Write(Wy) < t. Applying
Corollary 13 yields:
OVN[j, k], = VN[k, jlu.

Since, as noted above, k does not write between u and ¢, we have:
VN[k,jlu = VN[, jl;.
By choice of ¢, then, we have:
VN[k,jle = VNI[k, j]r.
Putting the above together yields:
OVN|j,klr = OVN[j,klu = VN[k,jlu = VN[k,j}; = VN[E, j]r.

Thus k£ € VNS(j)r. Since k € VNS(i)r was arbitrary, we have VNS(i)r C VNS(j)r.
This completes the proof of the lemma. O

Lemma 23 Let R be any read that does not time out, performed by any reader. Let i be
any writer, i ¢ CWS(R) such that N(i)r = 1. Then if j # i is any writer, j < i implies
there are no writes W; by writer j such that 2Scan(R); < Write(W;) < 3Scan(R);, and
Jj > i implies there are no writes W by writer j such that 1Scan(R); < Write(W;) <
2Scan(R);.

38

Lemma 24 Let R be any read that does not time out, performed by any reader. Let i
be any writer, i ¢ CWS(R). Let j be any writer j # i for which i § VNS(j)r. Then
j < i implies there are no writes W; by writer j such that 2Scan(R); < Write(W;) <
3Scan(R);, and j > i implies there are no writes W; by writer j such that 15can(R); <
Write(W;) < 2Scan(R);.

Proof of Lemmas 23 and 24: Let i be any writer, 1 ¢ CWS(R) and j be
any writer, j # i. If j < i, let s = 2Scan(R); and t = 3Scan(R);, otherwise let
s = 1Scan(R); and t = 2S5can(R);. Assume that there exists some write W by writer j
such that s < Write(W) < t. Then since VN[,], = VN[j, jl:, Lemma 4 implies the
existence of at least two writes W, and W; such that s < Scan(WJ) < Write(Wj) <
Scan(W;) < Write(W;) < t; let W} and W; be the last two such writes.

Let u, v, z, and y be the states following Scan(WY), Write(WY), Scan(W;), and
Write(W;) respectively. Then by Lemma 1, choice of W] and Wj, and the fact that
VN([i, j] remains constant between s and t, we have the following facts:

VN[ja t.].R = VN[j: ﬂt = VN[js i]y 7"' OVN[‘)J]::: = OVN[%J]R
PVN[j,i]R = PVNU, ik = PVNU,?:]”
= VNI[i,jle = VN[i,jlo # OVN[i,jlu = OVN[i,j]lr

and

OVN[j,i]r = OVN[j,i}s = OVN[j,i], = VN[i,jl: = VN[i, j]r.

The first set of facts implies N(i)g = 0 proving Lemma 23 by contraposition. The
second set of facts implies i € VNS(j)gr proving Lemma 24 by contraposition. O

We may now show formally how to insert the actions Atomic(R) for each read R
into a schedule of the m-writer n-reader atomic register. We have three cases:

1. If R times out then we know from the fact that it times out that for some
writer i, it saw the contents of writer #’s register change twice. Since the val-
ues VN[i,j], OVN[i,j], and PVN[i,j] change only at the points Write(W) for
writes W by writer ¢ that do not time out, the two observed changes must have
been caused by separate writes by writer i. The write that caused the second
of these observed changes, call it W, must have begun after the first finished.
Thus we have Start(R) < Scan(W) < Write(W) < Finish(R). Whether W is
potent or impotent, we have Scan(W) < Atomic(W) < Write(W), thus if we
insert Atomic(R) immediately following Atomic(W) it is clear that we will have
Start(R) < Atomic(R) < Finish(R). Also, since the algorithm returns the last
observed value of Valueli], it is clear that Value(R) = Value(W). Thus R returns
the value written by the last write W for which Atomic(W) < Atomic(R).

2. If R does not time out and F(R) € CWS(R) then because there exists some
write Wg(g) for which 1Scan(R)pr) < Write(Wr(r)) < Scan(R)r(r) and be-
cause the values of VN[F(R), F(R)] at 15can(R)p(r) and 3Scan(R)Fp(r) are equal,

39

Lemma 4 implies that there exists some write W by writer F(R) such that
15can(R)p(r) < Scan(W) < Write(W) < 3Scan(R)p(r). Let W be the last such
write. Again, whether W is potent or not, we have Scan(W) < Atomic(W) <
Write(W), thus if we insert Atomic(R) immediately following Atomic(W) it is
clear that we will have Start(R) < Atomic(R) < Finish(R). Also, since the
algorithm returns the value of Value[i] observed by 3Scan(R), it is clear that
Value(R) = Value(W). Thus R returns the value written by the last write W for
which Atomic(W) < Atomic(R).

3. If R does not time out and F(R) ¢ CWS(R) then we have two cases:

(a) N(F(R))r = 1.

(b) N(F(R))r = 0. In this case, by definition of F(R), we have | VNS(F(R))r| =
| VNS(F(R))r| + N(F(R))r > | VNS(i)r| + N(i)g for all writers i # F(R).
Thus there does not exist a writer ¢ for which F(R) € VNS(i)g as this would
imply by Lemma 22 and Corollary 3 that |VNS(F(R))r| < |VNS(i)r \
{F(R)} = |VNS(i)r| — 1 contradicting the above.

In the former case, we apply Lemma 23, and in the latter case, we apply Lemma 24
to yield that if j is any writer, j # F(R), j < F(R) implies there are no
writes W; by writer j for which 2Scan(R); < Write(W;) < 3Scan(R);, and
j > F(R) implies there are no writes W, by writer j for which 1Sean(R); <
Write(W;) < 2Scan(R);. Let s be the state following 25can(R)p(r). Because
the values in a writer’s register remain constant between Write actions, and be-
cause 25can(R); < s < 3Scan(R); for j < i and 1Scan(R); < s < 2Scan(R);
for j > 4, the values in the register for ¢ remain constant between 2Scan(R),
and s for all writers 7. Thus VN[i,j], = VN[i,j]r, PVN[i, 5], = PVN[i,j]r, and
OVN[i,j], = OVN[i, j]r for all writers i and j; this implies F(R) = F(s). So
by returning the value of Value[F(R)] observed at 3Scan(R) F(r) (which equals
Value[F(R)], since F(R) ¢ CWS(R)), we are returning the value written by the
last potent write W for which Write(W) < s (or the initial value if no such potent
write exists). Thus if we insert Atomic(R) after s, by the way the Atomic(W)
actions were placed for writes W, R returns the value written by the last write W
for which Atomic(W) < Atomic(R) or the initial value if no such write exists.
Also, Start(R) < s < Finish(R) implies Start(R) < Atomic(R) < Finish(R).

Here, as was the case when we placed the Atomic(W) actions for impotent writes and
writes that timed out, we may have to insert several Atomic(R) actions following a
given Atomic(W) action; again, this causes no problem.

Thus for every read R and every write W we have placed internal actions Atomic(R)
and Atomic(W) such that:

1. Start(W) < Atomic(W) < Finish(W).
2. Start(R) < Atomic(R) < Finish(R).

40

3. If Wg is the last write for which Atomic(Wg) < Atomic(R) then Value(R) =
Value(WR). If no such write Wg exists, then Value(R) is the initial value of the
register.

This completes the proof of correctness.

8 Conclusions

Having thus completed our proof of correctness it is appropriate to reflect on the purpose
of this paper, to provide intuitive explanation and rigorous proof of the correctness of a
modified version of the multi-writer, multi-reader atomic register algorithm presented in
[PB]. We have gone about this in several ways. First, the algorithm is presented, at an
intuitive level, before the proof of correctness. This should hopefully arm readers of the
proof with an understanding of what needs to be proved and why. Second, the approach
to the problem is that taken in [BB]. An attempt is made to understand what different
reads and writes do so that their Atomic actions may be placed in an appropriate and
intuitively reasonable manner. Third, the proof has examined the algorithm at a finer
level of detail than that presented in [PB]. Arguments are presented at the level of the
individual reads of writers’ registers and not at the level of scans as a whole. The result
of this detailed proof was to find two problems with the original algorithm. The detailed
approach to proof is not, however, without its faults; it is possible to be so attentive to
detail that the proof becomes little more than an exercise in symbol manipulation to
those not already intimiately familiar with the algorithm. Thus while care was taken to
present detail where necessary, as was the case with arguments about individual reads
in scans, some arguments, particularly those dealing with the choice of VIN’s and PVN’s
by successive writes by a single writer, are obvious enough that excessive detail has been
omitted. It is hoped then that one will find in this paper a clear survey of the algorithm
in question in addition to a rigorous, but not overburdened, proof of correctness.

There are still a few agspects of the problem of constructing a multi-writer, multi-
reader atomic register that could use futher work. Chief among them is that of efficiency.
This algorithm performs O(m) scans of m registers to do a single read or write operation;
that is a considerable amount of work.

9 Acknowledgements

The author would like to thank the following people who have aided work on this paper.
Nancy Lynch suggested both the problem of giving a rigorous correctness proof for the
algorithm from [PB] and the direction such a proof should take; she also provided many
comments on early versions of the paper. Bard Bloom too provided editorial comments
which have been incorporated in the current paper. James Burns confirmed the existence
of the first counterexample to the correctness of [PB] and suggested a solution. This

41

work was supported in part by grants N00014-83-K-0125 from the Defense Advanced
Research Projects Agency, CCR-8611442 from the National Science Foundation, and
N00014-85-K-0168 from the Office of Naval Research.

10 References

[BB] Bloom, Bard, “Constructing Two-Writer Atomic Registers,” Proceedings of the
Symposium on Principles of Distributed Computing, pp. 249-259, August 1987.

[IL] Israeli, A. and Ming Li, manuscript.

[LL] Lamport, Leslie, “On Interprocess Communication,” Digital Systems Research
Center Report 8.

[LT1] Lynch, Nancy A. and Mark R. Tuttle, “Hierarchical Correctness Proofs for Dis-
tributed Algorithms,” Proceedings of the Symposium on Principles of Distributed
Computing, pp. 137-151, August 1987.

[LT2] Lynch, Nancy A. and Mark R. Tuttle, “Hierarchical Correctness Proofs for Dis-
tributed Algorithms,” Master’s Thesis, Massachusetts Institute of Technology,
April, 1987. MIT/LCS/TR-387, April, 1987.

[LV] Li, Ming, and Paul Vitanyi, manuscript.
[Ly] Lynch, Nancy A., “I/O Automata: A Model for Discrete Event Systems.”

[P] Peterson, Gary L., "Time-Space Trade-Offs for Asynchronous Parallel Models: Re-
ducibilities and Equivalences,” Proceedings of the Eleventh Anual ACM Sympo-
sium on Theory of Computing, Atlanta, 1979, pp. 224-230.

[PB] Peterson, Gary L. and James E. Burns, “Concurrent Reading While Writing
II: The Multi-writer Case,” Proceedings of the Symposium on Foundations of
Computer Science, pp. 383-392, October 1987.

[VA] Vitanyi, Paul and Baruch Awerbuch, “Atomic Shared Register Access by Asyn-
chronous Hardware,” Proceedings of the Symposium on Foundations of Computer
Science, pp. 233-243, October 1986.

42

