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ABSTRACT 

The construction of a multi-writer, multi-reader atomic register 
has been addressed by several pa~ers by different authors. As a 
result of the difficult nature of the problem, it is not easy to 
grasp the intuition behind some of these algorithms, and the 
proofs of correctness provided are sometimes not as rigorous as 
one might desire. There is, however, one paper by Bard Bloom 
that addresses a less general problem and is both intuitively 
a~Dealin8 and comn1ete1y rigorous. It is the purpose of this 
pa~er to urovide both an intuitive feel for and a rigorous proof 
of correctness of the more general algorithm developed by 
Peterson and Burns; Bloom's paper is used as a model for this 
paper. In the process of developing the proof of correctness, 
two problems were found with the algorithm. This paper thus 
presents these counterexamples and a proof of correctness for the 
modified algorithm. 
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Part I 

Introduction and Intuition 

1 Introduction 

The problem of constructing a multi-writer, multi-reader atomic register was first in­
troduced in [LL]. It has, at this point, been addressed by several papers by different 
authors [BB],[IL],[LV],[PB]. As a result of the difficult nature of the the problem, how­
ever, most of these papers are rather hard to understand; it is not generally easy to 
grasp the intuition behind some of the algorithms, and the proofs of correctness pro­
vided are sometimes not as rigorous as one would desire for a problem of this difficulty. 
There is, however, one paper on the subject that distinguishes itself as both intuitively 
appealing and completely rigorous; that paper presents a construction for the specific 
case of a two-writer, multi-reader atomic register [BB]. It is the purpose of this paper 
to attempt to provide both an intuitive feel for and a rigorous proof of correctness of 
the more general algorithm presented in [PB]; [BB] is used as a model for this paper. 
Consequently, many of the facts proved in- this paper are the same as or resemble those 
proved in [BB] or [PB]. The terminology and notation of these papers has been largely 
retained in the interest of consistency. 

In the process of developing a proof of correctness for the algorithm from [PB], sev­
eral problems were found in the code that could cause the algorithm to work improperly. 
Communication with one of the authors of [PB] concerning the first of these problems 
confirmed that the problem did exist and that the counterexample presented to the 
code exploited a case that was inadequately considered in the [PB] proof of correctness. 
Indeed, the immediately obvious fixes to the code proved to be futile, as a final couterex­
ample cOlnmunicated by Burns demonstrates, and a more modest correction had to be 
made to the algorithm for work on the proof of correctness to continue. Another unre­
lated problem arose at a later date. This problem has an obvious solution. This paper 
thus presents both counterexamples to the correctness of the original algorithm and a 
proof of correctness of a modified version of the algorithm. 

2 The Model and the Problem 

This paper presents the algorithm from [PB] within the framework of the I/O automaton 
model developed in [LT]. The following loose and cursory description of that model is 
sufficient for one to comprehend the remainder of the paper. 

An I/O automaton may be thought of as a set of states, a set of actions, and a 
transition function mapping the product of the sets of states and actions to the set of 
states. Thus when the automaton is in one state and a particular action occurs, the 
transition function specifies the new state that the automaton is to enter. 
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An execution of an I/O automaton may be thought of as an alternating sequence of 
states and actions of the automaton; each action marks a transition of the automaton 
from the state th,at preceeds the action in the sequence to the one that follows the action 
in the sequence. 

The actions of an I/O automaton are subdivided into three disjoint sets, the internal 
actions, output actions, and input actions. An automaton controls the states from which 
its internal and output actions may occur, however, it must be capable of accepting an 
input action while in any state. Since automata may be formally composed, we may 
thus think of two automata as communicating along a channel if an output action of one 
automaton corresponds, in a composition, to an input action of the second automaton. 

The problem of constructing an m-writer n-reader atomic register will thus be seen 
as one of constructing an I/O automaton with the following actions and properties: 

1. The automaton should have m channels along which the input actions Start(W), 
for writes W, may be accepted. This implies that the symbol Start(W) subsumes 
m distinct input actions which we will differentiate by explicit reference to their 
respective writers. To each Start(W) action corresponds a unique Finish(W) 
action. 

Each Start(W) action thus represents a request by its particular writer to begin 
the write W to the m-writer n-reader atomic register. When such an action occurs, 
the writer that received it begins execution of its writer's protocol; when execution 
of the protocol terminates, the automaton executes the Finish(W) action that 
corresponds to the Write(W) action that initiated the write. 

2. Similarly, the automaton should have n channels along which the n input actions 
StarteR) may be accepted for reads R. Again, to each of these n distinct actions 
there corresponds an output action Finish(R). As was the case with writers, 
each StarteR) action initiates execution of the reader's protocol by a reader, and 
is followed, after termination of execution of the protocol, by an action Finish(R). 

3. Given any execution e of the I/O automaton, it should be possible, for every read R 
to insert into e an internal action Atomic(R) between StarteR) and Finish(R), 
and for ,every write W to insert into e an internal action Atomic(W) between 
Start(lV) and Finish(W), to yield a new execution e' of the automaton with the 
following property. For every read R in e', if WR is the write whose value was 
returned by R then Atomic(WR) must be the last Atomic action for any write 
before Atomic(R) in e'. 

Note that it is assumed that along any given channel, the initiators of the Start 
actions will wait until a corresponding Finish action has been received along 
that channel before performing another Start action along that channel; if this 
condition is not met, the behavior of the automaton will remain unspecified. 
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3 The Composition Automaton 

Let us begin consideration of the Peterson-Burns algorithm for constructing an m-writer 
n-reader atomic register from 1-writer n+m-reader atomic registers by presenting the 
configuration of automata that would implement the multi-writer multi-reader atomic 
register. With each writer is associated a 1-writer m+n-reader atomic register that may 
be written by that writer alone, b1:lt which may be read by any of the writers or readers. 
This is illustrated by figure 1. 

In the figure 1, the circles represent distinct I/O automata, and the lines represent 
channels between them. The heavy lines represent write channels, while the lighter lines 
represent read channels. 

Each Register i represents a single writer, m+n-reader atomic register automaton 
that has the following actions associated with writes Wand reads R: 

Start(W) This input action serves as a request on the register's write channel to initiate 
the write W of some value to the register. 

Atomic(W) This internal action denotes the point at which the write W may be thought 
to have occured atomically. 

Finish(lV) This output action serves as a signal on the write channel that the write W 
has completed. 

StarteR) This input action serves as a request on some read channel to initiate the 
read R of the current value of the register. 

Atomic(R) This internal action denotes the point at which the read R may bethought 
to have occured atomically. 

Finish(R) This output action serves as a signal, on the read channel along which 
StarteR) originated, that the read R has completed. 

Each Writer i denotes an I/O automaton executing the Peterson-Burns writer's 
protocol. It has the following actions of interest associated with each write W that it 
performs: 

Start(W) This input action serves as a request on the i'th write channel to initiate the 
write W of some value to the m-writer n-reader atomic register. Note that this is 
thus an input action of importance to the composition register as well. 

1S can(lV)j This action is actually an internal action of the m-writer n-reader atomic 
register that corresponds to the Atomic(R) action of a particular read R of 
Register j. More on its significance later. Note that in this case, as with all 
other subscripted actions we define, we are actually defining one such action for 
each j, 1 ~ j ~ m. 
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Figure 1: The composition automaton. 
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PWrite(W)j Like IScan(W)j, this is an internal action of the m-writer n-reader atomic 
register; it corresponds to the Atomic(W') action of a particular write W' to 
Register i. More will be said about it later. 

2Scan(W)j Analogous to lScan(W)j. 

S can(W) An internal action inserted in an execution immediately following the action 
2Scan(W)m. The proof of correctness will show that the values returned by the 
xScan(W)i are identical to those contained in all of the writers' registers at the 
point Scan(W). 

PScan(W)j Analogous in definition, though not in meaning, to lScan(W)j. 

3Scan(W)j Analogous to IScan(W)j. 

W rite(W) This is analogous in definition, but not in meaning, to PW rite(W)j. It is 
at this point that the value, Value(W), being written by the write W is actually 
written to Register i. 

Finish(W) This output action serves as a signal on the i'th write channel that the 
write W has completed. Note that this is thus an output action for the composition 
automaton as well. 

Note that for a write during which all these actions are performed, these actions occur 
in the order in which they are presented above. 

Finally, each Reader i denotes an I/O automaton executing the Peterson-Burns 
reader's protocol. We will refer to the following of its actions associated with a read R 
that it performs: 

StarteR) This input action serves as a request on the i'th read channel to initiate the 
read R by reader i of the value of the m-writer n-reader atomic register. Note 
that this is thus an input action important to the composition register as well. 

IScan(R)j This action is actually an internal action of the m-writer n-reader atomic 
register that corresponds to the Atomic( R') action of a particular read R'· of 
Register j performed during the read R .. More on its significance later. 

2Scan(R)j Analogous to IScan(R)j. 

Finish( R) This output action serves as a signal on the i'th read channel that the 
read R has completed. Note that this is thus an output action for the composition 
automaton as well. 

Note that for a read during which all these actions are performed, these actions occur 
in the order in which they are presented above. 

It is the task of our proof of correctness to associate with each read R and each 
write lil the internal actions Atomic( R) and Atomic(W) respectively. These are analo­
gous to the Atomic( R') and Atomic(lV') actions associated with reads R' and writes W' 
of the I-writer, m+n-reader automata. 
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4 The Version Numbers 

So far we have established the composition automaton that executes the Peterson-Burns 
algorithm. We will now present a bit of intuition to explain how the algorithm should 
work. Note that this is anything but a proof of correctness. 

When a reader automaton receives a request to begin a read of the value in the m­
writer n-reader atomic register implemented by the composition automaton described 
earlier, it must somehow figure out which writer contains a value that is the correct one 
to return. To aid in this process, each writer maintains a set of "version numbers" which 
are visible to the readers and on the basis of which a current value may. be selected. 
The information maintained by each writer i in its register is as follows: 

v N[i,j] Every time writer i performs a write that does not time out (we will discuss 
what that means later) to the m-writer n-reader atomic register, a new value of 
V N[i, j] is written into writer i's register for every writer j. The rules for choosing 
the new V N [ i, j] will be discussed later. 

PV N[i,j] Even though writer i changes its V N[i,j] every time it performs a write 
that does not time out, the old value of V N[i,j] does not immediately disappear; 
whenever the value of V N[i, j] changes, its old value is rewritten by writer i into 
its register as the value PV N[i,j]. 

OV N[i,j] In the process of performing 'a write W, writer i reads the version numbers 
contained in the other writers' registers and writes them into its own register; the 
value read for V N[j, i] is written by writer i into its register as OV N[i,jJ. These 
values essentially record the global state of the V N's at the time of the write W; 
. they thus serve as a sort of timestamp to communicate the relative recency of the 
value, llalue[i]'in register i. 

Value[i] At the same time that it writes the V N[i,j], PV N[i,j], and OV N[i,j], writer i 
also writes to its register the value, Value(W), that it is in the process of writing 
to the m-writer n-reader atomic register. This value is written by writer i into its 
register as Val ue[ i]. 

PreOV N[i, j] This value is used only by writers and is not visible to readers. It contains 
either the current value of OV N[i, j], or a value of OV N[i, j] that writer i is 
planning to write but has not yet written. 

It is sometimes difficult to keep all of these different indexed variables straight; a 
partial aid to remembering them is provided by noting that the first index of a variable 
is always the index of the writer in whose 1-writer m+n-reader register the variable 
resides. The V N[i,j] reside in the register of writer i and are thus written exclusively 
by writer i; similarly for the other indexed variables. 

Another important point to remember is that the first four variables, the V N[i,j], 
PV N[i,j], Oll N[i,j], and Value[i], are written to the register of writer i only once 
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during any write ltV by writer i. Since the atomic action of this write to writer i's 
register corresponds to the action Write(W), we conclude that the values of these 
variables remain constant between such actions. The values of the PreOVN[i,j) change 
at other times. 

5 The Reader's Protocol .. 
The importance of these variables to reads is that by examining the relative values of . 
the V N, PV N, and OV N, a reader should be able to determine to a large extent which 
writers wrote most recently. Consequently, a reader is capable of determining which of 
the Value[i] is most likely to be the correct one to return. The following facts are useful 
in this respect: 

1. If at some point OV N[i,j] = V N[j, i], then as of that point, the most recent write 
by writer i is somewhat more recent than the most recent write by writer j. This 
is so for the following reason: when writer i was selecting the value of V N[j, i] to 
write as OV N[i,j] during its last write, it chose the value V N[j, i] written by the 
most recent write by writer j; this implies that the most recent write by writer i 
was still deciding what to write after the point where the most recent write by 
writer j had already written. Loosely speaking, we say that writer i "sees" the 
version number V N[j, i] that was written by the most recent write by writer j. 
This means that if writer i "sees" writer j's version number, then the last write 
by writer i is relatively more recent than that of writer j. 

Note that this is a "fact" only inasmuch as the correct operation of the algorithm 
depends upon its truth; the second counterexample exploits a breakdown of this 
fact. 

2. If writer i "sees" neither the V N nor the PV N of writer j, thatis if OV N[i,j) f; 
V N[j, i] and OV N[i,j] =I- PV N[j, i] at some point, then as of that point, the 
most recent write by writer i is considerably less recent than that by writer j. 
This is so because writer j must have written at least twice since the most recent 
wri te by wri ter i was selecting the value of V N [j, i] it would write as 0 V N [i, j]. 
This would imply that the value contained in Value[i] is particularly archaic; in 
general, a read should avoid returning such a value. 

3. At no point does any writer ever "see" its own version number; that is, at all 
points, OV N[i, i] =I- V N[i, i]. At the same time, however, every writer always 
"sees" its own PV N; at all points OV N[i,i] = PV N[i, i). 

Of these three facts, the first is by far the most important. Indeed, it captures 
the essence of the purpose of the version numbers. It is on the basis of this fact that 
we make the following definition. At a given point for a given writer i, we will define 
V N SCi) to be: 

VNS(i) = {jll ~ j ~ m,OVN[i,j] = VN[j,i]}. 
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It is an important fact about the V N S that, if at any point, V N S( i) f:. V N S(j), then 
either V N S( i) is a proper subset of V N S(j) or V N S(j) is a proper subset of V N S( i) 
at that point. This means that at each point there will be some writer k for which 
V N SCi) C V N S(k) for all writers i. The first fact from above implies that if V N SCi) 
is a proper subset of V N S(k) for some writer i, that is if writer i "sees" the version 
numbers of fewer writers than does writer k, then Valtte[k] should be treated as being 
more recent than Value[i]. Since set inequality implies set inclusion, we conclude that 
IV N S( i)1 is a valid measure of the relative recency of the last write of Value[i]. 

Unfortunately, IV N S( i)1 is not an adequate measure of recency to provide a basis 
for a read to uniquely pick a "correct" value to return. It is possible to have two 
separate writers i and j, i f:. j, that wrote at more or less the same time resulting in 
V N S( i) = V N S(j). Thus an additional measure of the recency of a write is needed. 
To this end we will employ the second fact from above and define, for a given point and 
a given writer i, the value N( i) at that point to be: 

{ 

1 if for all writers j, either . 
N(i) = OVN[i,j] = VN[j,i] or OVN[i,j] = PVN[j,i] 

o otherwise. 

By the second fact from above, Value[i] for a writer i for which N(i) = 1 should be 
co~sidered to be more recent than Value[j] for a writer j for which N(j) = O. It would 
be quite desirable if the two measures of recency that we have just defined, IV N S( i)1 and 
N(i), did not contradict each other; that is, if IVNS(i)1 > IVNS(j)1 then N(i) ~ N(j). 
If these two measures did not contradict each other, then the sum N(i)+IVNS(i)1 would 
serve as a better measure of recency than IV N S( i)1 alone. The problem that leads to 
the second counterexample, however, may be exploited to show that these measures are 
not always consistent with each other. In the modified algorithm, these values do have 
consistent meanings. 

Unfortunately, even when IV N S(i)1 and N(i) are consistent measures of recency, 
I V N S ( i) 1+ N ( i) is still not an adequate measure of recency of Val ue[ i] to provide readers 
with a criterion for picking a unique value, Value[i], to return. It is again possible for 
IV N S( i)1 + N( i) = IV N S(i)1 + N(i) even though i f:. i. Fortunately, IV N S( i)1 + N( i) 
is a strong enough measure of recency that we can make the following definition, for a 
given point, of F at that point: ifM is the maximum value of IV N S(i)1 + N(i) for any 
writer i, then let F be the largest numbered writer for which IV N S(F)I+N(F) = M. It 
is clear that at any point, the value of F is unique. It falls upon our proof of correctness. 
to show that Value[F] is always a legitimate value for a read to return. 

So far we have explained how a reader goes about choosing a correct value to return 
based on observed values of the V N, PV N, and OV N. What we have not done is 
to state how a reader goes about reading a consistent set of such values. If a reader 
were simply to scan the writers' registers in succession, starting with an atomic read of 
all the values in writer 1 's register and finishing with an atomic read of the values in 
writer' m's register, then if we were to compute F on the basis of the values observed, 
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Value[F] need not be a correct value to return. It is entirely possible that the writers 
could write, as the scan is taking place, in such a manner that the values observed by 
the reader's scan are entirely unrealistic causing the reader to return the value of a write 
that is very much out of date. 

This is clearly undesirable behavior. So we ask if a reader would get a consistent 
set of values if it were to scan the values of the writers' registers twice, starting with 
an atomic read of the values in writer l's register through an atomic read of writer m's 
register followed by another atomic read of writer l's register and so on through a final 
atomic read of the values in writer m's register. IT we were to require that the values 
V N[i,j] observed by the first scan be identical·with the values V N[i,j] observed by 
the second scan for all writers i and j, would the second scali yield a set of values from 
which we could determine F such that Value[F] is a valid value to return? This is the 
approach adopted by the code in [PB].This approach does not work as we will see later; 
this is the basis for the first counterexample. Indeed, even if one were to require that 
not only the V N's but the PV N's and the OV N's as well remain constant across the 
two scans, then the second scan still does not return a set of values for which Value[F] 
is necessarily a correct value to return. The modified version of the algorithm that we 
will prove correct incorporates a suggestion by Burns that a reader require that all of 
the V N's, OV N's, and PV N'sremain constant across three consecutive scans of the 
writers' registers. 

Note that if these two consecutive, identical scans are performed as part of a read R, 
then the action lScan(R)i corresponds to the "atomic" action of the read of the values 
in writer i's register performed during the first of the two scans. Similarly for the actions 
2Scan(R)i. 

There is still one question about the way the read protocol determines the value of 
F that remains unresolved. It is entirely possible. that a reader could perform an infinite 
sequence of scans and never see two consecutive scans that are identical. To solve this 
problem, readers keep track of the writers whose values they have seen change between 
scans. If, in the course of a read R, it is observed that a writer i has changed its values 
two times, then because writes by a single writer are not permitted to overlap in time, 
the write "'2 that caused the second change of value must have started after the end of 
the write 11'1 that caused the first change of value. Since changing the values visible to 
readers is the last step in the writer's protocol, we conclude that essentially the entire 
write W2 was performed after the start of the read R but before the scan that observed 
the second change in the values in writer i's register. This means that to return the. 
value, Value[i], written by the write W 2 is to return a legitimate value for the read R; 
the point at which we can think of the write W2 as having occured atomically will 
necessarily be contained within.the bounds of R so if we think of R as having occured 
immediately after that point, we see that it is valid if Value(R) = Value(W2 ). IT a 
reader observes that a writer i has changed its value twice, then it will take this course 
of action, returning the value of Value[i] observed after the second change; reads that 
return a value determined in such a way are said to have "timed out." 
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By the pigeon hole principle, it is necessary that after m + 2 consecutive scans of 
the registers, either two consecutive scans have returned the same values for all of the 
writers, or some writer has been seen to change its values at least twice. Thus, by the 
time at most m + 2 scans have been completed as part of a read, that read has either 
timed out, or terminated normally having completed two consecutive scans that return 
the same values. Similarly, after 2m+3 consecutive scans, either three consecutive scans 
have been observed to be identical or some register has been seen to change value twice. 

In summary, the [PB] reader's protocol operates as follows: 

1. A reader performing a read first scans the writers' registers attempting to make 
two consecutive scans that return the same values of V N[i,j] for all writers i 
and j. By the end of at most m + 2 scans, either two such scans will have been 
observed, or the read will have tImed out returning a value written by a writer 
whose values have been observed to change twice. If two consecutive scans return 
the same values of the V N[ i, j] then the values observed by the second scan are 
used in the next step to determine the value to return. 

2. On the basis of the values read in the first step, the values of IV N S( i)l, of N( i), 
and finally of F are computed. The value of Value[F] seen during the second of 
the two consecutive, identical scans from the first step is then returned. 

Note that the code in [PB] actually returns the value Value[F] seen during the 
first scan; this is in plain contradiction with the correctness arguments given in 
that paper and has been corrected in the code in this paper. 

This concludes our discussion of how readers choose the values they are to return. 

6 The Writer's Protocol 

We have discussed a reader's choice of a value to return based on the existence of several 
variables maintained by the writers. We have yet to demonstrate how these variables 
are maintained. We will do so now. 

Just as a reader must first read the values in all of the writers' registers to determine 
what value to return, so too a writer must first read all of the writers' registers to 
determine what to write. Writers read a consistent set of values in a manner almost 
identical with that by which readers obtain a consistent set of values (although the 
reason why the method works is somewhat different in the two cases). As before, a 
writer obtains a consistent set of values for the V N, PV N, and OV N by making scans 
of the writers' registers. This time, if across three consecutive scans, none of the V N, 
PV N, or OV N are seen to change, then the writer may assume that the values read 
by the last of the three scans repre~ent a consistent state of the world on the basis of 
which the writer may complete its write. Again, if these three scans are performed as 
part of a write W, then the action 1Scan(W)i corresponds to the "atomic" action of 
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the read of the values in writer i's register performed during the first of the three scans; 
similarly for the actions 2Scan(W)i and 3Scan(W)i. It is an important fact that at the 
point where the action Scan(W) was placed, the values in all of the writers' registers 
equal those read by the three scans, thus we may think of the three scans as having 
occured atomically at the point Scan(W). We will consequently refer only to Scan(W), 
the scan point of W, throughout the remainder of this paper, and ignore the separate 
scans where possible. 

The PreOV N are read somewhat differently. The PreOV N are not read as part 
of the scans of the writers' registers. Rather, after three consecutive, identical scans 
of the writers' registers have been performed as above, say as part of a write W by 
writer i, the Preav N[j, i] are read sequentially. Each is read only once. This is 
sUI\Posed to be adequate to obtain a meaningful set of values for the PreOV N[j, i]; it 
turns out, however that it is not. This problem is corrected by performing the reads 
of the PreOV .N[ i, j] between the second and third of the three consecutive identical 
scans. It is to the "atonlic" read action of the read of a PreOV N[j, i) that the action 
PScan(W)j corresponds. 

Assuming that a writer i has succeeded at reading a consistent set of values for the 
V N[j, k], PV N[j, k], av N[j, k], and Preav N[j, k] for all writers j and k, it chooses 
the values it will write for the V N[i,j), PV N[i,j], and av N[i,j), for all writers j as 
follows: 

V N[i,j) Since we want to have av N(j, i) = V N[i,j] only for writers j whose most 
recent writes are more recent than the most recent write by writer i, we must 
choose V N[i,j] f; av N[j, i). Similarly, since Preav N(j, i) is the value that an 
ongoing write by writer j is planning to write for OV N[j, i], we want to choose 
V N[i,j] f; PreOV N[i,j]; otherwise we would imply falsely that the ongoing write 
by writer j had chosen the value it is to write for av N[j, i) on the basis of the 
value of 11 N[i,j] that we are choosing here but have not yet written. Finally, since 
V N[i,j] is to serve as a "version number" for the current write by writer i, it must 
be different from the value previously written for V N[i, j]. We thus choose the 
new value for 11 .N[i,j] to be an arbitrary element of the observed set: 

{I, 2, 3,4} \ {aV N[j, i), PreOV N[j, i], V N[i, jn. 

PV N[i,j]. Since we want PV N[i,j) to be the value that was previously written for 
V N[i,j], we will choose PV N[i,j] to be the observed value for V N[i,j]: 

PV N[i,j] := V N[i,j). 

OV N[i,j] As was mentioned during the discussion of the version numbers, the values 
of the OV N[i, j] are to represent the values of the V N[j, i] observed by writer i. 
Consequently, we assign: 

av N[i,j) := V N[j, i]. 
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After a writer i performing a wri te W has chosen the values it is t<? write for V N [ i, j], 
PV N[i,j], and OVN[i,j], it proceeds to write to its register, in one atomic fell swoop, 
Value[i], and VN[i,j], PVN[i,j], and OVN[i,j] for all writers j. It is to the "atomic" 
action of this write to writer i'sregister that the W rite(W) action corresponds. 

The PreOV N[i, j] are written somewhat differently. This is so for two reasons. 
First,since the PreOV N[i, j] are not visible to the readers, it is not necessary to write 
them with the other values. Second, since it is the purpose of the PreOV N[ i, j] to 
inform other writers of the value of OV N[i, j] that will be written, but has not yet been 
written, it is vital that the PreOV N[i,j] be written as early as possible. Thus the 
PreOV N[i,j] are written following the first scan of the writers' registers and following 
each subsequent scan that returns values different from those returned by the previous 
scan. Thus each time a scan returns a potentially new set of V N[j, i], we write the new 
values: 

PreOV N[i,j] := V N[j, i] 

for all writers j. The "atomic" action of the last write of the value PreOV N[i,j] as 
part of the write W corresponds to the action PW rite(W)j. 

As was the case with the reader's protocol, a writer performing a write could perform 
an infinite sequence of scans and never see three consecutive scans return the same 
values. The solution here is the same as with the reader's protocol. As a writer i 
performs scans of the writers' registers, it keeps track of those writers that have been 
seen to change values between scans. As before, if some writer is seen to have changed 
its values more than once, the last write was performed within the time bounds of 
writer i's current write. The "atomic" action for writer i's current write may thus 
be placed immediately before that of the write that was performed within its Start 
and Finish bounds; writer i simply terminates its write without changing Value[i] , 
V N[i,j], PV.N[i,j], or OV N[i,j]. A writer that terminates in this manner is said to 
have "timed out." Note that since writer i does not change its values while it is scanning 
(the PreOV N[i,j]'s are not compared across scans), and three consecutive, identical 
scans are needed, the pigeon hole principle dictates a ceiling on the number of scans 
that a writer need perform that is somewhat different from the ~orresponding ceiling for 
readers; after at most 2m + 1 scans, a writer has either seen three consecutive, identical 
scans or has timed out. 

Thus we can summarize the operation of the writer's protocol as follows: 

1. A writer performing a write first repeatedly performs scans the of the writers' 
registers. After each scan (except the first), the values read for the V N, PV N, and 
OV N are compared to those that were read by the previous scan. If a difference 
is found, the writer writes out its PreOV N[i, j]'s and notes which writers were 
responsible for the difference. After a sequence of exactly two consecutive identical 
scans, the PreOV N are read as this may turn out to be the point between the 
second and third consecutive identical scans. 
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2. If after 2m + 1 scans, no three consecutive scans have been observed to have 
the same values, the write times out by exiting without doing anything further. 
Otherwise, the third scan of a set of three consecutive, identical scans, along with 
the last observed set of PreOV N, is taken to be a consistent state of the V N, 
PVN, OVN, and PreOVN. 

3. New values are now chosen for the V N[i,j], OV N[i,j], and PV N[i,j] according 
to the rules expressed earlier. After these values have been chosen, they, along 
with the new value for Value[i] are written to writer i's register in one atomic 
write. 

This completes the discussion of the writer's protocol. 

Part II 

Code and CounterexaIllples 

7 TheCode 

Figure 2 presents the code for the reader's protocol published in [PB], rewritten with a 
bug fix. Similarly, figure 3 presents the code for the published writer's protocol, again 
rewritten with a bug fix. 

A few comments about the code are in order. First note that the actions to which cer­
tain key portions of the code correspond have been placed at the right. The xScan(W)i 
correspond to the the reads of writer i's register as, part of a scan. The only three such 
scans for which we have explicitly defined actions xScan(W)i are the last three which 
are lScan(W)i, 2Scan(W)i, and 3Scan(W)i respectively; since we do not know at the 
time we perform a scan if it is one of those three scans, we must be content with the 
variable labels xScan(H')i in the margin. Similarly for the xScan(R)i. Note that the 
subscripts that appear in the action labels, such as the i in xScan(W)i' refer to the 
variables in the code. 

Note also that the code for the writer's protocol is specific to writer k; it makes u~e 
of the variable k in the code so that it knows the register to which it may write. Note 
also that the only variables that are shared among the protocols are the V N, PV N , 
Oll N, and PreOll]\T, all other variables are local. 

An additional note about the code is that all code within a given pair of t><I symbols 
is to be performed in one atomic action. Thus if a loop is contained within the triangle 
symbols, the values to be written or read by the loop are written or read all at once; 
the loop is only notation to quantify what gets written or read. 
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BEGIN 
Same-Scan, := OJ Timed.Out := OJ 
FOR i := 1 TO m DO Change • .5ecra[i) := OJ ENDj 
FOR i := 1 TO m DO 

• FORj:= 1 TO m DO Scan.VN[i,Jl:= VN[i,J1j ENDj 
FORj:= 1 TO m DO Scan.oVN[i,j) :=OVN[i,J1j ENDj 
FOR j:= 1 TO m DO Scan..PVN[i,J1:= PVN[i,J1; END; 
Scan.Va/uc[.1 := Valuc[a1; 4 

END; 
Samc--Scan. := 1; 
REPEAT 

FOR i := 1 TO m DO 
FOR j := 1 TO m DO Savcd.5can.V N[i, J1 := Scan.V N[i, ,1; END; 
FOR j:= 1 TO m DO Saved.5can.VN[i,,1:= Scan.VN[i,j); END; 
FOR j:= 1 TO m DO Savcd.5can.VN[i,,1:= Scan.VN[i,,1; END; 

END; 
FOR i := 1 TO m DO 

• FOR j:= 1 TO m DO Scean.VN[i,,1:= VN[i,,1; END; 
FOR j:= 1 TO m DO Secan.DVN[i"l:= OVN[i,,1; END; 
FOR j:= 1 TO m DO Sccan-PVN[i"l:= PVN[i,,1i END; 
Scan.Value[a1 := Vealue[i]; 4 

ENDj 
Any.Change.5ince.La.t.;Scan := F ALSEj 
FOR i := 1 TO m DO 

i.Changed.5ince.La.t-Scan := F ALSEj 
FOR j := 1 TO m DO 

IF Scan.V N[i,,1 ~ Saved-Scan.V N[i"l 
THEN i.Changed.5ince.La,t-Scan := T RU E; 

END; 
IF LChanged-Since.Ltut.5ccan 
TBE~ Changu.5een[.l := Changu.5een[tl + 1; 

AnJl.Change.5ince.Lalt.5can := TRU E; 
ENDj 
IF AnJl.Change.5ince.La.t-Scan 
THEN Same-Scan. := Ii 

FOR i := 1 TO m DO 
IF Changu.5een[ll = 2 THEN Timed.Out := i; 

END' 
ELSE S~me-ScQn. := Same-Scean. + Ij 

UNTIL Same-Scan, = 2 OR Timed.Out f:. OJ 
IF Timed.Out f:. 0 
THEN RETURN(Scan.Value[Timed.Out»; 
ELSE 

FOR i := 1 TO m DO 
N[;]:= 1; 
FOR j := 1 TO m DO 

IF Scan.OVN[i,j] ~ Scan.V N[j, '1 AND Scan.OV N[i, j] ~ Scan-PV N[j,;] 
THEN N[11 := 0; 

END; 
VNS.5ize[a1:= 0; 
FOR j := 1 TO m DO 

IF Scean.OVN[i,i] = Scan.VN[j,ll 
THEN VNS.5ize[i]:= VNS.5ize[11 + 1; 

END; 
ENDj 
F := 0; N ..plu •• V NS.5ize := OJ 
FOR i := 1 TO m DO 

IF N[ll + VNS.5ize[11 ~ N..plu,.VNS.5ize 
THE~ F := ij N ..plu,.V NS.5ize := N[;] + V NS.5ize[i]; 

ENDj 
RETURN(Scan. Value[F]); 

ENDj 

Figure 2: The reader's protocol. 
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BEGIN 
Same_Scan. := 0; Timed_Out := 0; 
FOR i:= 1 TO mOO Chonge.-Seen['1 := OJ ENDj 
FOR i := 1 TO m DO 

I> FOR;:= 1 TO m DO Scan_VN[i,J1:= VN[i,J1j END; 
FOR; := 1 TO m DO Scan-DV N[i,;) := OV N(i, J1; END; 
FOR j := 1 TO m DO Scan..PVN(i,J1:= PVN(i,J1j ENDj 
Scan_Value['1 := Value(.1; <CI 

END; 
Same-Scan.:= 1; 
REPEAT 

FOR i := 1 TO m DO 
FOR;:= 1 TO m DO Satled-Scan_VN[i,J1 :=ScGn_VN(i,J1; END; 
FOR j := 1 TO m DO Saved-Scan_VN[i,j] := Scan_VN[i,J1; END; 
FOR;:= 1 TO m DO Satled-Scan_VN[i,J1 :=Scan_VN[i,J1i ENDj 

END; 
IF Same-Scan' = 1 
THEN 

FOR i := 1 TO m DO 
I> PreOV N[k, 11 := Scan_V N[i, i); 4 

END; 
FOR i := 1 TO m DO 

I> FOR i := 1 TO m DO Scan_V N[i,;] := V N[i, J1; END; 
FOR;:= 1 TO m DO Scan-DVN[i,;):= OVN[i,J1; END; 
FOR j := 1 TO m DO Scan..PV N[i, J1 := PV N[i. j}j END; 
Scan_Va/ue[.1 :::: Va/ue[.1; 4 

END; 
Any_Change-Since_Lalt-Scan := FALSE; 
FOR i := 1 TO m DO 

i-Changed-Since..Lalt-Scan := FALSE; 
FOR j := 1 TO m DO 

IF Scan_VN[i,i);I: Saved-Scan_VN[i,j] 
THEN i_Changed-Since_L(ut-Scan := TRUE; 

END; 
IF i_Changed-Since..Lan-Scan 
THEN Changu-Seen[i) := Change.-Seen[ll + 1; 

Any_Change-Since..Lalt-Scan := TRUE; 
END; 
IF Any_Change-Since_Last-Scan 
THEN Same-Scan. := 1; 

FOR i := 1 TO m DO 
IF Changu-Seen[.1 = 2 THEN Timed_Out := i; 

END; 
ELSE Same-Scan. := Same-Scan. + 1; 

UNTIL Same_Scan. = 3 OR Timed_Out ;I: 0; 
IF Timed_Out ;I: 0 
THEN' RETURN; 
ELSE 

FOR i := 1 TO m DO 
to PScan..PreOV N[i, k] := PreOV N[i, kj; <I 

END; 
to FOR i := I TO m DO 

V N[k,.1 := Any( {I, 2, 3, 4} \ {Scan_V N[k, 11, Scan-DV N[i, kj, PScan..PreOVN[i, k]}; 
OV N[k, i] := Scan_V N[i, k); 
PVN[k,11:= Scan_V N[k, i]j 

ENDj 
\'a/ue[k] := V.4LU Ej <I 

RETURN: 
END: 

Figure 3: \Vriter k's protocol. 
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8 TIle First Counterexample 

Let us first assume that the writer's protocol maintians a consistent state of the world; 
that atolnic write points ll1ay be inserted within the bounds of each write such that the 
value of F is a constant between those points, and at each point p, the value of F at p 
is the writer that perfoflned the write whose atomic point most recently preceeds p. 

Thus if a read R is performed in an interval containing no atomic write points, we 
can place an atomic read point anywhere between Start(R) and Finish(R), and R will 
necessarily return the value written by the write whose atomic write point most recently 
preceedsR~s atomic read point. Similarly, for reads R that time out, we have argued that 
R must return the yalue of a write that was performed completely within the bounds 
of StarteR) and Finish(R); if the atomic read point for R is placed immediately after 
that of the atomic write point of the contained write, then again R necessarily returns 
the value written by the write whose atomic write point most recently preceeds its own 
atomic read point. 

Unfortunately, it is not the case that all reads either are performed in write-free 
intervals or explicitly tinle out, as figure 4 illustrates. Figure 4 shows the actions of 
three writers labeled .X, Y, and Z; we will assume in these figures that the writers 
are presented in increasing order, thus X < Y < Z. In the interval pictured, X and 
Z do not write while Y ,,,,rites four times. The Scan and IVrite actions of the writes 
are indicated by the points labeled by Sand W respectively. Note that under S we 
are lumping together aU three consecutive, identical scans made by a writer, as well as 
the P1Vrite action. Also included in the diagram are two scans of the three writers' 
registers made by a reader as part of a single read R. The * signs denote the atomic read 
points of the reads of the individual writers' registers performed as part of the scans. 
Thus writer Y starts with a complete write A. This is followed by the complete first 
scan of the read R. This is then followed by three more complete writes by writer Y 
and the final scan of R. 

"Trite A sees the current l'l'rs posted by all three writers and records them as its 

16 



w S H W 
X * * ..... 

S A W S B W S C W S D W 
Y * 

$ *-
S E W S F W S G W 

Z . , 

* *-

Figure 5: 

OV1V[i,j]'s when it \vrites, while changing its own set ofVl\"[i,j]'s. At this point, the 
state of the world is seen by the first scan of read R, Write B then writes a new set 
of V N [i, j)'s which by choice must differ from those written by write A, If the second 
scan of R is to read the same 1']{ 's as the first scan we see that writer Y must write 
again (indeed twice since the protocol requires a minimum of three writes for a writer to 
restore its V 1\- for itself) to restore the V N's that had been written as part of write A, 
This having been accOluplished, the second scan of read R is performed and returns the 
same state of the world as was seen by the first scan of R. Thus the reader performing 
read R cannot tell that a write has occured between the two read.scans, although several 
have, and proceeds to return a value based upon the information observed by the two 
scans. 

One may ask if the value returned in the above example will violate the atomicity 
requirements for the three-writer register construction. In this case, the answer is that 
the value returned is legitinlate. The value returned is that written by write D. Since 
write D is cOlupletely contained within the bounds of read R, its atomic action is as 
well, and as in the case of the timed out reads, it is legitimate to place the atomic read 
action of R immediately following the atomic write action of D. In [PB], R is referred 
to as having tinled out without knowing that it did so. That paper then attempts to 
generalize the argurnent, used above to demonstrate the need for C and D if the scans 
of R are to agree, to provide a proof that when a writer times out without knowing it 
has done so, it still returns a correct value. It was the study of that proof that led to 
the developluent of the first counterexample to the correctness of the algorithm, thus it 
is instructh'e to repeat it here. 

Given the last two scans of a read R as shown in figure 5, assume that the values 
of the V N's seen by the two scans are identical. Now divide the writers into two sets, 
the "changing" writers that performed the Write action of some write between the two 
scans of R, and the "unchanging" writers that did not perform the lVrite action of any 
write between the two scans of R. By that definition, writers Y and Z are changing 
writers while writer ~\ is an unchanging writer in figure 5. Now by reasoning presented 
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Figure 6: 

earlier, if the two scans of R are to see the same V N's for all writers, writes C and 
D must occur between HTrite(B) and the second scan of read R; in general, every 
changing writer must perform a complete write between the two scans of R. Thus at 
the second scan of R, all of the changing writers will be observed to have "seen" the 
V]\Tls of the unchanging writers whereas the unchanging writers will be observed not 
to "see" the V!{'s of any of the changing writers. Also, since each changing writer has 
written at least twice between the most recent write by any unchanging writer and the 
second scan of R, we should have N(i) = 0 for all unchanging writers i. Thus it is 
completely impossible for the value of an unchanging writer to be returned if there exist 
any changing writers. If the value returned by R is read from the register of a changing 
writer, then it was written by a write that occured entirely between the two scans of 
R. If the value returned is read fronl the register of an unchanging writer, then there 
are no changing writers, and the last two scans of R occured in an interval in which no 
writing took place. Thus R returns a legitimate value. 

The problenl with this proof is shown in figure 6 which demonstrates the real picture 
of how read scans occur. The notions of "the point at which the first scan of R occured" 
and thus of ';changing'~ and "unchanging" writers, are therefore not well defined. Sup­
pose the following definition of "changing" writer is made to eliminate ambiguity: a 
writer i will be defined to be a changing writer if it completed a write liT between the 
reads of its register in the first and second consecutive, identical scans made by the 
read R; that is, if IScan(R)i < lri'rite(HT) < 2Scan(R)i. Thus in figure 7, writer Z is a 
changing writer while writers X and Yare not. The same reasoning as above then shows 
that SOlne writes C and D must occur between IVrite(B) and the read, 2Scan(R)z, of 
writer Z~s register in the second scan. 

There is a problem with this however, that is del1l0nstrated by figure 8. Assume that 
the scans of the read R see the same V!{'s. \Vriter X is a changing writer while writer Y 
is an unchanging writer. \Yriter Y will be seen to have observed the lIN's written by 
writer X' during the write D. \Vriter X, on the other hand, will be observed to have 
seen the V]\T's written by writer Y prior to the write E. ""Triter Y will consequently be 
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Figure 9: The first counterexample. 

judged, correctly, to be the writer that wrote more recently before the second scan of R, 
and its value, that written by E, will be returned by R. Read R thus returns the value 
written by an unchanging writer despite the existence of a changing writer. Clearly, 
the reasoning sketched above no longer works; one then asks if a conterexample may be 
constructed to the algorithm in a similar manner. 

The answer to this question is that we can. Such a counterexample is listed in 
figure 9. The numbers following the vertical lines are the values of the various variables 
following the actions to which the vertical lines are connected; the numbers below the 
horizontal time-line for writer X refer, in order, to the V N[X, i], PV N[X, i], OV N[X, i], 
and PreOV .1V[X, i); the rows of numbers are presented in the same order as the time­
lines for the different writers. For example, following the first write by writer X, we 
have, 

v )\'"[X, X] = 1 and V N[X, Y) = 4 

PV 2V[.X, X] = 3 and PV lV[X, Y] = 3 

OF )\i[.\,", X] = 3 and OV N[X, Y] = 2 

PreOV ..IV [.X, X] = 3 and PreOV )\T[X, Y] = 2. 

Then what this counterexample has done is to perform, without interruption, the first 
scan of the read R as well as the read of writer X's register for the second scan of R. 
Before the second scan of R gets to read the value in 1" 's register, however, we have 
performed a series of writes that render completely meaningless the first values read. 
In particular, we have written so that the values of l' ]\T[y, X] and V' N[Y, Y) observed 
by the second scan equal the values of these variables observed by the first scan; this 
i~plies that the read R detects no writes occuring between its scans and will select a 
value to return based on the values seen by the second scan. But for the values returned 
by the second scan we have: 

1 = OV N[Y, X] =I V lV[X, YJ = 4 and 1 = OV N[Y, X) f; PV N[X, YJ = 3 
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and 

2 = OVN[Y,Y] # VN[Y,Y] = 3 and 1 = OVN[Y,X] # VN[X,Y] = 4 

implying that N(Y) = 0 and IVN S(Y)I = o. Also, 

3 = OV N[X,X] = PV N[X, X] = 3 and 2 = OVN[X, Y] = PV N[Y, X] = 2 

implying that N(X) = 1 while IV N S(X)I = o. The value of F computed on the basis 
of these values is F = X. Thus the read R will return the value read from the register 
of writer X during its second scan. Since this value was written by the first write shown 
for writer X , and the atomic write action of the first write shown for writer Y must be 
interposed between the atomic write ~ction of the first write shown for writer X and 
the first scan of R, the atomicity condition is violated. 

One will note that the first and second scans did not observe the same values for 
OV N[Y, X]. One might ask then if the algorithm would perform correctly if not only 
the V N's, but the PV N's and OV N's as well were required to be constant across the 
two scans of a read. A counterexample communicated by Burns shows that both scans 
of a read R may see the same values for the V N's, PV N's, and OV N's, and still return 
a value that is no longer valid. 

9 The Second Counterexample 

In our discussion of the previous counterexample, we assumed that the writers write in 
a manner that respects the atomicity condition. This turns out not to be so, the result 
being another counterexample to the correctness of the algorithm. 

Recall that when a writer is reading the values that it needs to determine what to 
write, it reads the OV N's before the PreOV N's. At the same time, however, writers 
write their PreOV N's before they write their OV N's. T~is leads to trouble. 

Figure 10 presents an example of how this fact can result in the improper execution 
of the algorithm. The second write by writer X scans the value OV N[Y, X] before the 
write point of the first write by writer Y. Before the second write by writer X gets 
around to reading PreOV N[Y, X] (at the point marked "PS"), however, writer Y both 
writes and scans; the write by writer Y invalidates the value of OV N[Y, X] seen by 
writer X while the scan invalidates the value of PreOV N[Y, Xl. This means that the 
second write by writer X completely fails to see the value of OV N[Y, Xl written by the 
first write by writer Y. 

Let P be the point immediately preceeding the Write action of the second write by 
writer X. Let Q be the point immediately following the same action. 

We have the following set of equations at P: 

3 = OVN[X,X] = PVN[X, X] = 3 1: VN[X,X] = 4 
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Figure 10: The second counterexample. 

2 = all ..iV[X,Y] = PV N[Y, X] = 2 =F V1V[Y,X] = 3 

3 = OV N[X, Z] = 1IN[Z, X] = 3 

Thus 1V(.\"") = 1 and IV1V' S(_\"")I = 1. 

3 = OV1V[Y,X] = PV N[X, Y] = 3 =F V N[X, Y] = 4 

2 = OV .N[Y, Y] = PV .N[Y, Y] = 2 =F V]\T[Y, Y] = 3 

2 = OF .1V[Y, Z] = PV N[Z, Y] = 2 =F V ]\T[Z, 1'] ~ 3 

Thus .N(X) = 1 and IV lV S(.:\"')I = o. 

3 = all .N[Z,X] = PV N[X, Z] = 3 =F 11 N[X, Z] = 4 

2 = all ]\; [Z, Y] = PV N[Y, Z] = 2 =F v N [Y, Z] = 3 

2 = a v ]\T[ Z, Z] = PV N [Z, Z] = 2 :/; v N [Z, Z] = 3 

Thus N(X) = 1 and IV]\T S(X)I = o. Consequently, F = X at P. 

~.Te have the following set of equations at Q: 

4 = OF ]\T[X, X] = PV N[X,X] = 4 =F V ]\T[X, X] = 1 

2 = OF ]\T[X, Y] = PV ]\T[y, X] = 2 f; V ]\1[1', .\""] = 3 
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3 = OVN[X, Z] = VN[Z,X] = 3 

Thus N(X) = 1 and IV N S(X)I = 1. 

3 = OVN[Y,X] = VN[X,Y] = 3 

2 = OVN[Y,Y] = PVN[Y,y] = 2:F VN[Y,Y] = 3 

2 = OV N[Y, Z] = PVN[Z, Y] = 2:F VN[Z, Y] = 3 

Thus N(X) = 1 and IV N S(X)I = 1. 

3 = OV N[Z, X] :F PV N[X, Z] = 4and3 = OV N[Z, X] :F V N[X, Z] = 1 

2 = OVN[Z, Y] = PVN[Y, Z] = 2:F VN[Y, Z] = 3 

2 = OV N [Z, Z] == PV N [Z, Z] == 2 :F V N[ Z, Z] = 3 

Thus N(X) = 0 and IVNS(X)I = O. Consequently, since Y > X, F = Y at P. 

This is not good because it implies that the most recent atomic write action pre­
ceeding P is not that of the first write by writer Y whereas the most recent atomic 
write action preceeding Q is that of the first write by writer Y. Thus these writes were 
not performed in a simulated atomic manner. 

The obvious fix to this problem is to scan the PreOV N values earlier. The code 
for the writer's protocol that is proved correct in the next part of this paper performs 
the scan of the PreOV N values between the second and third consecutive identical 
scans of the writers' registers instead of after all three consecutive identical scans have 
completed. 

Part III 

Code and Correctness 

10 The Code 

The code for the algorithm we will be proving correct is found in figures 11 and 12. 
Note that the only differences between this code and that which was presented earlier 
are: the number of consecutive, identical scans a reader makes is now three; all of 
the V N's, PV N's, and OV N's are now compared between scans for both reads and 
writes; and writes perform their final reads of the PreOV N's between their second and 
third consecutive, identical scans. The first two of these were suggested by Burns as 
corrections to eliminate the first counterexample. The third is a fix to eliminate the 
conditions that led to the second counterexample. 
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BEGIN 
Same.Scans := 0; Timed.Out := 0; 
FOR i := 1 TO m DO Changu.5een[al := 0; END; 
FOR i := 1 TO m DO 

c. FORi:= 1 TO m DO Scan.VN[i,i]:= VN[i,J1; END: 
FORi:= 1 TO m DO Scan-OVN[i,i] :=OVN[i,J1; END: 
FOR i := 1 TO m DO ScanJ'V N[i, J1 := PV N[i, J1; END; 
Scan.Va/ue[~ := Va/ue[al;.s 

END; 
Same.5can.:= 1; 
REPEAT 

FOR i := 1 TO m DO 
FORi:= 1 TO m DO Satled.5cCln_VN[i,J1 :=Scan_VN[i,J1; END; 
FOR i := 1 TO m DO Saved.5can_V N[i,i]:= Scan.VN[i,i]; END; 
FORi:= 1 TO m DO Savcd..scan_VN[i,i]:= Scan_VN[i,;]; END; 

END; 
FOR i := 1 TO m DO 

co FOR i:= 1 TO mDO Scan_VN[i,i]:= VN[i,J1: END; 
FOR i := 1 TO m DO Scan-C) V N[i,i] := OV N[i,J1; END; 
FOR i:= 1 TO m DO Scan-PVN[i,J1:= PVN[i,J1; END; 
Scan.Va/ue[a1 := Va/ue[a1; <I 

END; 
Any.Change.5ince.La,LScan := FALSE; 
FOR i := 1 TO m DO 

LChanged.5ince.La.t.5can := FALSE; 
FOR i := 1 TO m DO 

IF Scan,:V N[i, i] :;: Saved.5cCln_V N[i,Jl OR 
Scan_OV N[i, i] ~ SalJed.5can_OV N[i, i] OR 
Scan-PV N[i, ij :;: SalJed..5can-PV N[i, i] 

THEN i_Changed.5ince.Lalt..5can := TRUE; 
END: 
IF LChanged.5ince-La.t.5can 
THEN Changu..5een[i] := CJiange • ..5cen[al + 1; 

Any.Change.5ince-La,t.5can := T RU E; 
E~D: 

IF Any.Change..5ince_Lalt..5can 
THE:-.i Same..5can, := 1; 

FOR i := 1 TO m DO 
IF Changu..5een[i] = 2 THEN Timed_Out := i: 

END; 
ELSE Samf..scans := Same.Scarls + 1; 

UNTIL Same..5can, = 3 OR Timed.Out 1: 0: 
IF Timed_Out ~ 0 
THE~ RETURN(Scan.Value[Timed.Outj); 
ELSE 

FOR i := 1 TO m DO 
N[i]:= 1; 
FOR i := 1 TO m DO 

IF Scan_OV N[i,i] ~ Scan.vN[j,al AND Scan_OVN[i,i] ~ Scan.PVN[j, i] 
THEN N[i] := 0; 

END; 
V N S..5ize[i] := 0: 
FOR j := 1 TO m DO 

IF Scan.OV N[i,j] = Scan.V N[j, i] 
THEN V."l S..5ize[i] := l/ N S..5ize[z1 + I: 

END; 
END; 
F := 0: N .plu •• V N S.5ize := 0; 
FOR i:= 1 TO m DO 

IF N[i] + VNS..5i:e[al ~ N.plu,.VNS..5ize 
THEN F:= i: N.plus.VNS-Size:= N[i] + VNS..5ize[i]: 

END; 
RETURN(Scan.Value[F]); 

E~D~ 

Figure 11: The reader '8 protocol. 
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BEGI~ 
Same-Scan, := 0; Timed.Out := OJ 
FOR i := 1 TO m DO Changu-Seen[.1 := OJ END; 
FOR i := 1 TO m DO 

c. FORj:= 1 TO mOO Scan.VN[i,J1:= VN[i,J1; END; 
FOR j := 1 TO m DOScan-DV N[i, J1 := OV N[i, J1; ENDi 
FOR j := 1 TO m DO Scan.PVN[i,J1:= PVN[i,J1i END; 
Scan.Value['1:= Volue[.1; 4 

ENDj 
Some-Scon.:= Ii 
REPEAT 

FOR i := 1 TO m DO 
FOR j := 1 TO m DO SOlled-Scon.V N[i,J1 := Scan..V N[i,,1; END; 
FOR j:= 1 TO m DO SOlled-Scon.V N[i, J1 := Scan.V N[i, J1; END; 
FOR j := 1 TO m DO SOlled-Scon.V N[i,J1:= Scan.VN{i,J1i END; 

END; 
IF Same.$can. = 1 
THEN 

FOR i := 1 TO m DO 
c. PreOV N[l,., := Scan.V N[i, l]j 4 

END; 
ELSIF Same-Scan, = 2 
THEN 

FOR i := 1 TO m DO 
~ PScan.PreOV N[i, k] := PreOV N[i, l]; 4 

END; 
FOR i := 1 TO m DO 

~ FOR j:= 1 TO m DO Scan.VN[i,J1:= VN[i,J1j END; 
FOR j :=1 TO m DO Scon-DVN[i,j]:= OVN[i,J1i END; 
FOR j:= 1 TO m DO Scan-PVN[i,j]:= PVN[i,j]i END; 
Scan.Value[., := Value['1; 4 

END; 
Anll.Change-Since..Lalt-Scan := FALSE; 
FOR i := 1 TO m DO 

LChanged-Since..La,t-Scan := FALSE; 
FOR j := 1 TO m DO 

IF Scan.V N[i, j] ¢ Satled.5can.V N[i, J1 OR 
Scan.OV N[i, j] ¢ Satled-Scan.OV N[i, j] OR 
Scan-PVN[i,j] ¢ Satled-Scan-PVN[i,j] 

THEN i.Changed-Since.Lalt-Scan := TRUE; 
END; 
IF LChanged-Since..La,t-Scan 
THEN Changu.5een[i] := Changu.5een[., + Ii 

Anll.Change-Since.La.t-Scon := T RU E; 
END: 
IF Anll.Change.5ince.La,t.5can 
THEN Sarrae.5can. := 1; 

FOR i := 1 TO m DO 
IF Changu.5een[,1 = 2 THEN Timed.Out := i; 

ENDj 
ELSE Same.5can. := Same.Scan, + Ij 

UNTIL Same.Scan. = 3 OR Timed.Out ¢ 0; 
IF Timed.Out ¢ 0 
THEN RETURN; 
ELSE, 

~ FOR i := 1 TO m DO 
V N[l,.1:= AnJl({I, 2,3,4} \ {Scan.V N[l,.1,Scan-DVN[i,l1,PScan-PreOVN(i,k]}j 
OV N[l,.1 := Scan.V N[i, k); 
PVN[t,.1:= Scan.VN[k,.1; 

END; 
Value[kl := V ALU E; 4 

RETt:RN; 
E~D; 

Figure 12: \Vriter k's protocol. 
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Note that up to this point we have ignored the question of initial values. We will 
start the composition automaton in a state in which no readers or writers are reading 
or writing and for which: 

for all i > 1, and for which 

VN[i,j] = 2 

PV N[i,j] = 1 

PreOV N[i,j] = OV N[i,j] = 1 

VN[1,j] = 3 

PVN[1,j] = 2 

PreOV N[1, j] = OV N[1, j] = 2. 

We will also assume that this configuration was reached by performing a number of 
writes, at least one per writer, building on a previous set of values. As such the most 
recent write W by writer i for which Write(W) < s is well defined for all states s and 
all writers i. 

11 Definitions 

Let us begin our proof of correctness by recapitulating the definitions of the preceeding 
sections. 

DEFINITION: Let W be any write of a value to the composition automaton and R 
be any read of the value in the composition automaton. Then Value(W) and Value(R) 
refer to the values written by Wand read by R respectively. 

DEFINITION: Let W be any write by writer i. Then the following actions are 
associated with W: 

Start(lV) The request to writer i to begin the write W. This is the first action in the 
write W. 

Finish(lV) Acknowledgement that the write W has just completed. This is the last 
action in the write W. 

DEFINITION: Let W be any write by writer i such that W did not timeout. 
Then in addition to the above actions, the following actions are associated with W: 

IS can(W)j The atomic action associated with the read of writer j's register during the 
first of the last three scans performed by writer i as part of W. Note that we are 
actually defining the m separate actions: 

IScan(Wh < IScan(Wh < ... < IScan(W)m. 
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PWrite(W)j The atomic action associated with the last write of PreOV N[i,j] by 
writer i as part of W. Note again that we are defining m separate actions. It 
is not necessary, however, to perform the writes of the PreOV N[i,j] separately; 
since the values are all being written to the same register, it would be quite 
legitimate to write them all at once. The algorithm just happens to write them 
separately. 

2Scan(W)j The atomic action associated with the read of writer j's register during the 
second of the last three scans performed by writer i as part of W. Note again that 
we are defining m separate actions. 

Scan(W) An action inserted immediately following 2Scan(W)m. The significance of 
this action will be defined later. 

PScan(lV)j The atomic action associated with the last read of PreOV N[j, i] from 
writer j's register performed by writer i as part of W. Note again that we are 
defining m separate actions. 

3Scan(W)j The atomic action associated with the read of writer j's register during the 
last scan performed by writer i as part of W . Note again that we are definingm 
separate actions. 

Write(W) The atomic action associated with the write of Value(W) and new VN's, 
OV N's, and PV N's to writer i's register as part of the write W. 

Note then that for a write W by writer i that does not time out, the actions of W 
defined above occur in the following order: 

Start(W) < IS can(Wh < ... < IS can(W)m < 
PWrite(Wh < ... < PWrite(W)m < 
2Scan(Wh < ... < 2Scan(W)m < 
Scan(W) < 
PScan(Wh < ... < PScan(W)m < 
3S can(Wh < ... < 3S can(lV)m < 
W rite(W) < Finish(W) 

DEFINITION: Let R be any read by reader i. Then the following actions are 
associated with R: 

StarteR) The request to reader i to begin the read R. This is the first action in the 
read R. 

Finish( R) / Acknowledgem~nt that the read R has just completed. This is the last 
action in the read R. 
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DEFINITION: Let R be any read by reader i such that R did not time out. Then 
in addition to the 'above actions, the following actions are associated with R: 

lScan(R)j The atomic action associated with the read of writer j's register during the 
first of the last three scans performed by reader i as part of R. Note that we are 
actually defining the m separate actions: 

lScan(Rh < lScan(Rh < ... < lScan(R)m. 

2Scan(R)j The atomic action associated with the read of writer j's register during the 
second of the last three scans performed by reader i as part of R. Note again that 
we are defining m separate actions. 

3Scan(R)j The atomic action associated with the read of writer j's register during the 
last scan performed by reader i as part of R. Note again that we are defining m 
separate actions. 

Note that for a read R by reader i that does not time out, the actions defined above 
occur in the following order: 

StarteR) < lScan(R)l < ... < lScan(R)m < 
2Scan(Rh < ... < 2Scan(R)m < 
3Scan(Rh < ... < 3Scan(R)m < Finish(R) 

DEFINITION: Let s be any state in an execution of the composition automaton. 
Let j and k be any writers. 

v N[j, k]s Is the value of V N[j, k] at state s. It is important to note that this value 
is stored in writer j's register and that it remains constant between consecutive 
lVrite(lVj) actions of writes Wj by writer j. 

OV N[j, k]s Is the value of OV N[j, k] at state s. Again, it is important to note that 
this value is stored in writer j's register and that it remains constant between 
consecutive Write(Wj) actions of writes Wj by writer j. 

PV N[j, k]s Is the value of PV N[j, k] atstate s. Again, it is important to note that 
. this value is stored in writer j's register and that it remains constant between 

consecutive Write(Wj) actions of writes Wj by writer j. 

Value[j]s If Wj is the last write by writer j for which Write(Wj) < s then we define 
Value[j]s to be Value(Wj). Again, this value is stored in writer j's register and 
changes only at the points W rite(W) for writes W by writer j. 

PreOV N[j, kls Is the value of PreOV N[j, k] at state s. It is important to note that 
this value is stored in writer j's register, that it is visible only to the writers and 
not to the readers, and that it changes between some scans of a write Wj by 
writer j. It remains constant, however, for all states between PW rite(Wj)k and 
Finish(Wj) for all writers k and all writes Wj by writer j. 
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DEFINITION: Let W be a write by writer i that does not time out. Let j and k be 
writers. Define V N[j, k]w, OV N[j, k]w, and PV N[j, k]w to be the values of V N[j, k], 
ov N[j, k], and PV N[j, k] respectively, observed by the last three scans ofW. Thus if s, 
t, and u are the states following lScan(W)j, 2Scan(W)j, and 3Scan(W)j respectively, 
then we have: 

V N[j, k]w = V N[j, k]. = V N[j, k]t = V N[j, k]u 

OV N[j, k]w = OV N[j, k]. = OV N[j, klt = OV N[j, k]u 

PV N[j, k]w = PV N[j, k]. = PV N[j, k]t = PV N[j, k]u 

Define PreOV N[j, k]w to be the value of PreOV N[j, k] observed by the write W. Thus 
if v is the state following PScan(W)j then we have PreOV N[j, k]w = PreOV N[j, k]v. 

DEFINITION: Let Rbe a read by reader i that does not time out. Let j and k be 
writers. Define V N[j, k]R, OV N[j, k]R, and PV N[j, k]R to be the values of V N[j, k], 
ov N[j, k], and PV N[j, k] respectively, observed by the last three scans of R. Thus if 
s, t, and u are the states following lScan(R)j, 2Scan(R)j, and 3Scan(R)j respectively, 
then we have: 

V N[j, k]R = V N[j, k]s = V N[j, k]t = V N[j, k]u 

OV N[j, k]R = OV N[j, k]s = OV N[j, klt = OV N[j, k]u 

PV N[j, k]R = PV N[j, k]s = PV N[j, klt = PV N[j, k]u 

The following lemma embodies the rules by which the V N[i,j], OV N[i,j], PV N[i,j], 
and PreOV N[i,j] are picked each time a writer writes. 

Lemma 1 Let W be a write that does not time out and let i be the writer that performed 
the write W. Letj be any writer. Let s, t, u, and v be the states following PScan(W)j, 
3S can(lV)j, 3S can(lV)i' and Write(W) respectively. Then the following hold: 

VN[i,j]v· ~ V N[i,j]u . 

V N[i,j]v ~ OVN[j,i]t 

VN[i,j]v ~ PreOV N[j, i]s 

OVN[i,j]v = V N[j, i]t 

PVN[i,j]v = V N[i,j]u. 

Also, let x be the state following PWrite(W)j. Then 

PreOV lV[i,j]x = V N[j, i]w = V N[j, i]t = OV N[i,j]v. 

Proof of Lemma 1: This follows directly from the definitions of the P Scan, 3S can, 
and Write actions and from trivial examination of the code. 0 

Note that VN[i,j]v ~ VN[i,j]u implies that a writer changes all of its VN's every 
time that it performs a write that does not time out. 
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DEFINITION: Let i be a writer and let s be a state in an execution of the 
composition automaton. Then we will define: 

VNS(i)s = {ill ~ i ~ m,OVN[i,j]s = VN[j,i]s}' 

Let i be a writer and let R be any read that did not time out. We will define: 

VNS(i)R = {ill ~ i ~ m,OVN[i,j]R = VN[j,i]R}. 

DEFINITION: Let i be a writer and let s be a state in an execution of the 
composition automaton. Then we will define: 

{

I if for all writers j, either 
N(i)s = OVN[i,i]s = VN[j,i]s or OVN[i,j]s = PVN[j,i]. 

o otherwise. 

Let i be a writer and let R be any read that did not time out. We will define: 

. { 1 if for all writers j, either 
N(i)R = OV N[i,j]R = V N[j, i]R or OV N[i,j]R = PV N[j, i]R 

o otherwise. 

DEFINITION: Let s be a state in an execution of the composition automaton. 
Then we will define: 

F(s) = MAX{ill ~ i ~ m,IVNS(i).1 + N(i). = MAX1~i~m(IVNS(j).1 + N(j).)}. 

Let R be any read that did not time out. We will define: 

F(R) = }'1 AX {ill ~ i ~ m, IV N S(i)RI + N(i)R = M AX1~i~m(IV N S(j)RI + N(j)R)}' 

Recall that the value of F( s) may be thought of as the writer whose 1-writer n + m­
reader register contains the current value for the m-writer n-reader register. 

12 Basic Facts 

Most of the following theorems, lemmas, corollaries, and such are useful in understand­
ing how writers, writing according to the writer's protocol, are able to write in such a 
way that F( s) may always be taken to be the "current" value of the m-writer n-reader 
atomic register. 

The following lemma establishes a little fact that will be used throughout the re­
mainder of this paper. 

Lelnma 2 For all writers i and all states s in an execution of the composition automa­
ton, i ¢ V N S(i)s. 
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Proof of Lemma 2: Let i be any writer and s be any state in an execution of the 
composition automaton. Let Wi be the last write by writer i such that W rite(Wi) < s. 
Let t and u be the states following 3Scan(Wi)i and Write(Wi) respectively. Then by 
Lemma 1 we have V N[i, i]u =F V N[i, i]t = OV N[i, i]u. By choice of Wi, the values of 
V N[i, i] and OV N[i, i] in writer i's register remain constant between u and 8 and thus 
V N[i, i]s = V N[i, i]u and OV N[i, i], = OV N[i, i]u. Thus V N[i, i], :F OV N[i, i], and 
by definition of V N S( i), we have i ¢ V N S( i), as desired. 0 

All of the actions we have just described refer to particular, meaningful operations 
performed during an execution of the read or write protocols, with on~ exception. In 
particular, Scan(W) for a write Wthat did not time out was defined to be an action 
inserted immediately after 2S can(W)m but it has had no meaning assigned to it. We will 
give it meaning by showing that the values of the V N's, OV N's, and PV N's observed 
by the last three scans of Ware identical to those in the writers' registers in the state 
following S can(W); if u is the state following S can(W) then V N[j, k]u = V N[j, k]w, 
OV N[j, k]u = OV N[j, k]w, and PV N[j, k]u = PV N[j, k]w for all writers j and k . 

. Thus the values seen by the last three scans made during the write W may be thought 
to have been read by an atomic scan at the point Scan(W). This is demonstrated by 
the following Lemmas and Corollary. 

Lemma 3 Let i and j be any writers. Let sand t be any two states, s < t, in an 
execution of the composition automaton. If V N[i,j], = V N[i,jlt and there exists some 
write IV by writer i such that s < W rite(W) < t then there exists at least one write Wt 
by writer i such that . 

s < Scan(Wt ) < Write(Wt ) < t. 

If i = j then there exist at least two writes Wt and W2 by writer i such that 

Proof of Lelnlna 3: Let Wo be the first write by writer i such that s < Write(Wo) < 
t. Let u be the state following Write(Wo). Then by the way the V N's and PV N's are 
chosen (ie. Lemma 1), we have 

v N[i,j]u =F PV N[i,j]u = V N[i,j],. 

Now since V N[i,j]t = V N[i,j]s there must be another write by writer i between u and 
t to bring the value of V N[i,j] back to what it was at s. Let WI be the first such write. 
Since WI must start after Wo finished, we have s < u < Scan(Wt ) < Write(Wt ) < t 
and WI is as desired. 

In the event that i = j, we have additionally, by Lemma 1, that OVN[i,i]u = 
V N[i, i],. Thus if v is the state following Write(Wt}, by the way V N's are chosen we 
have: 

V N[i, i]v =I OV N[i, i]u = V N[i, i],. 
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Again, since V N[i, ih = V N[i, i]s, there must be yet another write by writer i between 
v and t to bring the value of V N[i, i] back to what it was at s. Let W 2 be the first 
such write. Again, since W2 must start after WI finished, we have s < Scan(W1 ) < 
Write(W1 ) < v < Scan(W2) < Write(W2 ) < t, and WI andW2 are as desired. 0 

Lemma 4 Let W be any write by a writer i such that W did not time out. Then 
there does not exist a writer j and a write Wj by writer j such that 2S can(W)j < 
W rite(Wj) < 3S can(W)j. 

Proof of Lemma 4: Assume otherwise and let j be a writer for which there exists 
a write Wj such that 2Scan(W)j < Write(Wj) < 3Scan(W)j. Let s and t be the states 
following 2Scan(W)j and 3Scan(W)j respectively. Then since the last three scans of 
W saw the same values in the registers, we have V N[j, k]w = V N[j, k]. = V N[j, k]t 
for all writers k implying that V N[j, i]. = V N[j, i]t. Now we have assumed that there 
is a write Wj by writer j for which s < Write(Wj) < t, so by Lemma 3, there exists 
some write WJ by writer j such that s < Scan(WJ) < Write(WJ) < t; let WJ be the 
last such write. If v is the statefollowing Write(WJ), then by choice of WJ, V N[j, i] 
remains constant between v and t implying V N[j, i]v = V N[j, i]t. Let x be the state 
following P S can(lVJ)i and note that 

PHlrite(W)j < 2Scan(W)j < Scan(Wj) < x < Write(Wj) < 3Scan(W)j. 

Then since PreOV N[i,j] remains constant between PWrite(W)j and 3Scan(W)j, by 
Lemma 1 we have PreOVN[i,j]x = VN[j,i]w = VN[j,i]t. Also, by Lemma 1 we have 
V N[j, i]v #- PreOV N[i,j]x. But this implies V N[j, i]v #- PreOV N[i,.j]x = V N[j, ilt 
contradicting the V N[j, i]v = V N[j, i]t we saw above. Thus our assumption is incorrect 
and the Lemma is proved. 0 

Corollary 5 Let lV be any write by writer j such that W did not time out. Let u be the 
state following Scan(W). Then V N[j, k]u = V N[j, k]w, OV N[j, k]u = OV N[j, k]w, 
and PV N[j, k]u = PV N[j, k]w for all writers j and k. 

Proof of Corollary 5: By Lemma 4, there are no writes to writer j's register that 
could change the values of V N[j, k], OV N[j, k], and PV N[j, k] between 2Scan(W)j and 
3Scan(lV)j for any writer k. Thus if sand t are the states following 2Scan(W)j and 
3Scan( w)j respectively, we have s < u < t implying: 

V N[j, k]s = V N[j, k]u = V N[j, k]t = V N[j, k]w 

OV N[j, k]s = OV N[j, k]u = OV N[j, kh = OV N[j, k]w 

PV N[j, k]s = PV N[j, k]u = PV N[j, k]t = PV N[j, k]w 

for all writers k as desired. 0 
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This result permits us to thjnk of the values of the V N's, OV N's, and PV ~'s 
observed by a write W, those values on the basis of which W chooses the V N's, OV N's, 
and PV N's that it writes, to have been read by an atomic scan of all the writers' registers 
acting at the point Scan(W). This meaning of the Scan(W) action is fundamental to 
the remainder of the proof. 

N ow that we have established the meaning of the· S can(W) action, we will present 
two theorems that capture the essence of the relative meanings of the V N's, OV N's, 
and PV N's; The first of these theorems states that for given writers i and j, if writer i 
"sees" writer j's version number at a given point, if OV N[i, j] = V N[j, i] at that point, 
then writer i has both scanned and written since the last write by writer j. The second 
theorem states that for given writers i and j, if writer i ~ees neither writer j's V N nor 
writer j's PV N at a given point, if OV N[i, j] :F V N[j, i) and OV N[i, j] :F PV N[j, i) at 
that point, then writer j completed two writes between the scan arid write actions of 
the most recent write completed by writer i. Let us first prove a little lemma. 

Lemma 6 Let s be any state in an execution of the composition automaton. Let i be 
any writer and let Wi be the last write by writer i for which Write(Wi) < s. Let j be 
any writer for which there exists a write Wj such that Scan(Wi) < Write(Wj) < 8. Let 
t be the state following Write(Wj). Then OV N[i,j]" :F V N[j, i]t. 

Proof of Lemma 6: Let j, Wj, and t be as in the lemma statement. Let u and 
v be the states following Scan(Wj) and PScan(Wj)i respectively. Then there are four 
cases we must consider: 

Case 1: v < Scan(Wi). Then since we have u < PScan(Wj)i < v, u < Scan(Wi) < 
lVrite(lVj). Since writer j is in the process of performing the write Wj between 
u and lVrite(lVj), ie. since Start(Wj) < u < Write(Wj) < Finish(Wj), there 
are no other writes 111J by writer j for which u < Write(WJ) < Write(Wj) and 
consequently V N[j, i]s' is constant for all 8', u ~ 8' < Write(Wj). In particular, 
if x is the state following Scan(Wi) then: 

V N[j, i]x = V N[j, i]u. 

Let y be the state following Write(Wi)' Then by Lemma 1 we have: 

OV N[i,j]y = V N[j, i]x 

and 
V N[j, i]t :F V N[j, i]u. 

By choice of Wi and hence of y, OV N[i,j] remains constant between y and 8. 

Consequently: 
OV N[i,j]s = OV N[i,j]y. 

Putting the above equations together yields: 

OV N[i,j]s = OV N[i,j]y = V N[j, i]x = V N[j, i]u :F V N[j, i]t 

as desired. 

33 



Case 2: Scan(Wi) < v < Write(Wi). Now PreOV N[i,j] remains constant between 
PWrite(Wi)j and Write(Wi) and by Lemma 1 equals OV N[i,j]lI if 'II is the state 
following Write(Wi). Since PWrite(Wi)j < Scan(Wi) < v < Write(Wi) we thus 
have: 

PreOV N[i,j]v = OV N[i,j]lI. 

By Lemma 1, we have: 

V N[j, i]t :f:. PreOV N[i, j]v. 

By choice of Wi and thus of'll, OV N[i,j] remains constant between'll and 8. Thus: 

OVN[i,j]. = OVN[i,j]y. 

Putting the above equations together yields: 

OVN[i,j]s = OVN[i,j]y = PreOVN[i,j]v:f:. VN[j,i]t 

as desired. 

Case 3: Write(Wi) < v but u < Write(Wi). This implies 2Scan(Wj)i < u < 
Write(Wi) < V< 3Scan(Wj)i. By Lemma 4 this is impossible. 

Case 4: Write(Wi) < v and Write(Wi) < u. Note that u < v < Write(Wj) < 8. Now 
by choice of lVi, OV N[i,j] equals the constant OV N[i,j]s between Write(Wi) 
and s. In particular: 

OV N[i, j]u = OV N[i, j]s. 

Now by Lemma 1: 
V N[j, i]t :f:. OV N[i,j]u. 

Putting these equations together yields: 

OV N[i,j]s = OV N(i,j]u -:j; V N[j, iJt 

as desired. 

This completes proof of Lemma 6. 0 

Theorem 7 Let i and j be writes, i -:j; j. Let 8 be any state in an execution of the 
composition automaton. Let Wi and Wj be the most recent writes by writers i and j for 
which Write(Wi) < sand Write(Wj) < s. Then OV N[i,j]s = V N[j, i]s if and only if 
Write(Wj) < Scan(Wi). 

Proof of Theorem 7: Let us first show that: 

OV N[i,j]s = V N[j, iJs =? Write(Wj) < Scan(Wi). 
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Assume otherwise, that OVN[i,j]s = VN[j,i]s but that Scan(Wi) < Write(Wi)' Let 
v be the state following Write(Wj). Then by choice of Wi we have Scan(Wi) < 
W rite(Wj) < s implying by Lemma 6 that: 

OV N[i,j}s # V N[j, i]v. 

Since by choice, Wj is the last write by writer j such that W rite(Wj) < s, the value of 
V N[j, i] remains constant between v and s implying that: 

V N[j, i]v = V N[j, i] •. 

Putting these together yields 

OV N[j, i]. :F V N[j, i]v = V N[j, i]. 

which contradicts our initial assumption that OV N[i,j]s = V N[j, i]s. Thus the first 
direction of the theorem is proved. 

Now, let us show that: 

Write(Wj) < Scan(Wi) ==> OV N[i,j)s = V N[j, i) •. 

Assume lVrite(Wj) < Scan(lVi). Since Wj is the last write by writer j such that 
Write(lVj) < s, V N[j, i]Sl = V N[j, i]s for all states s' such that Write(Wj) < s' < s. In 
particular, if t is the state following Scan(Wi), then 'since by-assumption Write(Wi) < 
Scan(Wi) < s, we have Write(Wj) < t < s implying VN[j,i]t = VN[j,i] •. By 
Lemma 1, OV N[i,j). = V N[j, i)t and thus OV N[i,j]. = V N[j, i]. as desired. This 
concludes the proof of Theorem 7. 0 

Theorem 8 Let i be any writer and s be any state in an execution of the composition 
automaton. Let Wi be the last write by writer i such that Write(Wi ) < s. Then 
N ( i). = 0 if and only if there is a writer j # i that made writes Wi and Wi, Wi :F W; 
such that 

Scan(lVi) < lVrite(Wj) < Write(Wi) < s. 

Proof of Theorem 8: Assume there exist two writes Wi and Wj by writer j such 
that Scan(Wi) < Write(lVJ) < lVrite(lVj) < S; let Wi and Wj be the last such writes. 
Let t and u be the states following W rite(WJ) and W rite(Wj) respectively. Then by 
Lemma 6 we have: 

OV N[i, j). # V N[j, i]t 

and 
OV N[i,j]. # V N[j, i]u. 

By choice, Wi is the last write by writer j such that W rite(W;) < W rite(Wi), thus if 
v is the state following S can(Wj), we have V N[j, i]v = V N[j, i]t. By Lemma 1 we have 
PV N[j, i]u = V N[j, i]v, thus: 

PV N[j, i]u = V N[j, i]t. 
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Now by choice, Wj' is the last write by writer j such that Write(Wj) < s, thus: 

V N[j, i]. = V N[j, i]u 

and 
PV N[j, i]. = PV N[j, i]u. 

Putting the above equations together we get:. 

ov N[i,j]. :f; V N[j, i]u = V N[j, i]. 

and 
OV N[i,j]s # V N[j, i]t = PV N[j, i]u = PV N[j, i]s. 

Consequently, N(i)s = O. Thus if j, Wi, and Wj exist as in the theorem statement, 
then fl(i)s = O. 

Now for the other direction. Assume N(i). = O. This means PV N[j, i]. :f; ov N[i,j]. 
and V N[j, i]s ¥ ov N[i,j]. for some writer j. We have three cases: 

1. There are no writes Wj by writer j for which Scan(Wi) < W rite(Wj) < s. Let t 
be the state following Scan(Wi). Then V N[j, i] remains constant between t and 
s implying V N[j, i]s = V N[j, i]t. By Lemma 1, V N[j, i]t = OV N[i,j]. and we 
have: 

V N[j, i]s = V N[j, i]t = OV N[i,j] •. 

Thus this case is not possible. 

2. There is exactly one write Wj by writer j for which Scan(Wi) < Write(Wj) < s. 
Let t and x be the states following Scan(Wi) and Write(Wj) respectively. Then 

PV N[j, i]s = PV N[j, i],x = V N[j, i]t = OV N[i,j] •. 

Thus this case is not possible. 

3. There are at least two writes Wj by writer j for which Scan(H'i) < Write(Wj) < s. 
This implies the existence of Wj and Wi as required by the theorem statement. 

Thus N(i) = 0 implies there exists a writer j and writes 11'j and Wi by writer j 
such that Scan(Wi) < Write(Wi) < Write(Wj) < s. This completes the proof of the 
theorem. 0 

We will now apply the two theorems that we have just proved to prove several useful 
and interesting facts about some of the various constructs, such as V N S( i)., N( i)., and 
F( s ), that we defined earlier. The first of these facts, expressed in the following Lemma, 
shows that for any state s and any writers i and j, if V N S( i)s :f; V N S(j). then one of 
V N S( i)s and V N S(j)s is a proper subset of the other. 
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Lemma 9 Let i and j be writers and s be a state in an execution of the composition 
automaton. If V N S( i)s \ V N S(j)s ~ 0 then V N S(j)s is a proper subset of V N S( i)s. 

Proof of Lemma 9: Given V N S( i)s \ V N S(j)s ~ 0, let k E V N S( i)s \ V N S(j) •. 
Let Wi, Wj and Wk be the last writes by writers i, j, and k respectively for which 
Write(Wi) < s, Write(Wj) < s, and Write(Wk) < 8. Since k E VNS(i)., VN[IC,i]. = 
OV N[i, k]s which by Theorem 7 implies Write(Wk) < Scan(W.). Also, since k ¢ 
V J:l S(j)s, V N[k,j]s ~ OV N[j, k]" implying by Theorem 7 that Scan(Wj) < Write(Wk). 
This implies Scan(Wj) < Scan(W.). Now by symmetry, VNS(j). \ VNS(i).1: 0 would 
imply Scan(Wi) < Scan(Wj), thus we know V N S(j). \ V N SCi). = 0. This implies 
V N S(j)s C V N S( i)s. Since k E V N S( i)" \ V N S(j)", the inclusion is proper and the 
lemma is proved. 0 

Corollary 10 Let i and j be writers and s be a state in an execution of the composition 
automaton. Then: 

1. V N S(j)sis a proper subset of V N S( i)" if and only if IV N S(j).1 < IV N S(i).I. 

2. V N S(j)s = V N S( i)s if and only if IV N S(j)sl = IV N S( i)"I. 

Proof of Corollary 10: This follows directly from Lemma 9 and elementary set 
theory. 0 

The following lemma presents another important fact. It is important because it and 
the corollary that follows it relate the two principal values that are used for determining 
the value of F(s) at a state s, namely the IVNS(i).\ and the N(i)s. 

Lemma 11 Let i and j be any writers, i t= j, and let 8 be any state in an execution of 
the composition automaton. Then: 

IV N S(i)sl > IV N S(j)sl ==> N(i)s ~ N(j) •. 

Proof of Lemma 11: Assume otherwise, that IV N S( i)sl > IV N S(j),,1 but N( i). < 
l\T(j)S. By Corollary 10, V N S(j)s is a proper subset of V N S(i)s implying that there is 
some k E V N S( i)s \ V N S(j)s. By definition of the V N S this means that V N[k, i]s = 
OV N[i, k]s but VN[k,j]s:l OVN[j, k]s. Let Wi, Wj, and Wk be the last writes by writ­
ers i, j, and k respectively for which Write(Wd < s, Write(Wj) < s, and Write(Wk) < 
s. Then by Theorem 7 we have Scan(Wj) < Write(Wk) but Write(Wk) < Scan(Wi) 
and thus Scan(Wj) < Scan(Wi). Now N(i)s < N(j)s implies N(i)s = 0 and N(j). = 1. 
By Theorem 8, N(i)s = 0 implies that there exists some writer I and two writes WI and 
W! such that: 

Scan(Wd < Write(W{) < Write(Wz} < s. 

But Scan(lVj) < Scan(Wi) implies that: 

S can(lVj) < W rite(W{) < W rite(Wl) < s. 

By Theorem 8 again, we have N (j)s = 0 contradicting the above. Thus our assumption 
is incorrect and the lemma is proved. 0 
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Corollary 12 Let i and j be any writers i 1= j, and let s be any state in an execution 
of the composition automaton. Then: 

1. IV N S(i)sl > IV N S(j)sl ==? IV N S(i)sl + N(i)s > IV N S(j)sl + N(j)s 

2. IV N S(i)sl + N(i)s > IV N S(j)sl+ N(j)s ==? IV N S(i)sl 2: IV N S(j)sl 

3. IV N S(i)sl + N(i)s > IV N 5(j)sl + N(j)a ==? N(i)s 2: N(j)s 

4. IVNS(i)sl + N(i)s = IVN5(j)sl + N(j)s ==? IVNS(i)sl = IVNS(j)sl 

5. IV N S(i)sl + N(i)s = IVN 5(j)sl + N(j)s ==? N(i)s = N(j)s 

Proof of Corollary 12: All parts follow directly from Lemma 11. 0 

Corollary 13 Let s be any state in an execution of the composition automaton. Then: 

V N S(i)s C V N S(F(s))s 

for all writers i. 

Proof of Corollary 13: Assume otherwise. Then for some i 1= F(s), 

VNS(i)s \ VNS(F(s)s 1= 0. 

Then by Lemma 9, V N S(F(s»)s is a proper subset of V N S(i)s. Then 

IV N S(F( s ))sl < IV N S( i)sl 

implying by Corollary 12 that 

IV N S(F(s»)sl + N(F(s»)s < IV N S(i)sl + N(i)s 

contradicting the definition of F( s). Thus our assumption is incorrect and the corollary 
holds. 0 

The following lemma and corollary demonstrate that at· each step s, the function N 
takes on a non-zero value for at least one writer, and in particular, N(F(s))s = 1. 

Lelnma 14 Let s be any state in an execution of the composition register. Then there 
exists some writer i for which N (i)s = 1. 

Proof of Lemma 14: Of all the writes W, by any writer, for which Write(W) < s, 
let Wi be the one for which Scan(Wi) most recently preceeds s. Let i be the writer that 
performed the write Wi. Assume N(i)s = O. Then by Theorem 8 there exists a writer j 
and writes li1j and ltVJ by writer j for which 

Scan(Wi) < Write(WJ) < Write(Wj) < s. 
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But Wj must have begun after WJ finished implying 

Write(WJ) < Scan(Wj) < Write(Wj). 

Consequently, 
Scan(Wi) < Scan(Wj) < Write(Wj) < s 

contradicting our choice of Wi. Thus our assumption is incorrect and N(i). = 1 proving 
the lemma. 0 

Corollary 15 Let s be any state in an execution of the composition register. Then we 
have N(F(s))s = 1. 

Proof of Corollary 15: Let i be some writer such that N(i). = 1; such a writer 
exists by Lemma 14. If i = F( s) then we're done. Otherwise we have three. cases: 

1. IV N S(F(s)).1 + N(F(s))s > IV N S(i).1 + N(i) •. By Corollary 12, N(F(s)). ~ 
N(i)s = 1 and we're done. 

2. 11'1VS(F(s))sl + N(F(s))s = \VNS(i)s\ + N(i)s. By Corollary 12, N(F(s))s = 
N (i)s = 1 and we're done. 

3. \VNS(F(s))sl + N(F(s))s < \VNS(i)s\ + N(i)s. This case cannot occur as it 
would contradict the definition of F(s). 

This completes the proof of the corollary. 0 

13 Placement of Writes 

"Te will now use the facts we have established to prove two theorems that are the basis 
for the placement of atomic write points in an execution of the composition automaton. 
First, however, we willlleed the following definition. 

DEFINITION: Let tV be a write by writer i that does not time out. Let s be the 
state following W rite(lV). vVe will call the write W potent if F( s) = i. We will call the 
write W impotent if F( s) 'f; i. 

The first of the two theorems we will now prove states that if W is an impotent 
write, then F has the same values for the states immediately preceeding and following 
W rite(W). Intuitively, this is very desirable behavior. If a writer writes a new value 
V to its register, one would expect that in doing so, it would either change the value 
of the composition register to V, or it would leave the value in th~ composition regis­
ter unchanged. It would be highly undesirable if writes could cause a value that had 
previously been current, but had since been overwritten, to become current again. 
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The second of the two theorems that we are about to prove states that if W is any 
impotent write, then there is some potent write W' such that W' wrote its value and 
new V N, OV N, and PV N numbers between the scan and write actions of W. This, 
again, is what one would expect. A w·riter performing its scan and write opera.tions 
during an interval in which no other writes are occuring should change the value of the 
composition register to that of its own register when it completes its write. These two 
theorems provide us with points at which to insert an "atomic" action for both potent 
and impotent writes, as we will see later. 

Theorem 16 Let W be an impotent write written by writer i. Let s' and s be the states 
preceeding and following Write(W) respectively. Then F(s') = F(s). 

Proof of Theorem 16: We will first prove a few propositions that will be useful 
in the proof of the theorem. In all of these propositions, we will assume W, i, s', and s 

. are as above. Note that i i= F(s) since W is impotent. 

Proposition 16.1 i E V N S(F(s))sl. 

Proof of Proposition 16.1: Assume otherwise. Then 

OVN[F(s),i]sl i= VN[i,F(s)]sl 

implying by Theorem 7 that if WF(s) is the last write by writer F(s) for which we have 
'Jtf1rite(lVF(s») < s' then there is some write W' by writer i such that 

Scan(WF(s») < Write(W') < s'. 

Then since WF(s) is also the last write by writer F(s) for which Write(WF(s») < s a.nd 

Scan(H1F(s») < Write(W') < s' < Write(W) < s 

Theorem 8 tells us that N (F( s))s = 0 contradicting Corollary 15. Thus the proposition 
holds. 0 

Proposition 16.2 F(s') i= i. 

Proof of Proposition 16.2: By Corollary 13 we know that V N S(F(s))sl C 
V N S(F(s'))sl and by the above, i E V N S(F(s))sl thus i E V N S(F(s'))sl. Now by 
Lelnma 2 we know i f/. V N S( i)SI. We conclude F( s') i= i. 0 

Proposition 16.3 For all writers j, j # i, V N S(j)s = V N S(j)sl \ {i}. 
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Proof of Proposition 16.3: Let j be a writer, j =1= i. Since there are no writes 
Wk by any writer k =1= i such that s' < Write(Wk) < s, we know that V N[k,j]. = 
OV N[j, k]. if and only if V N[k,j]., = OV NU, k]., for all writers k, k =1= i. Thus we 
have k E V NS(j). if and only if k E V N S(j)., for k =1= i. 

If we had i E VN S(j). then by Theorem 7 we would have s' < W rite(W) < 
S can(Wj) < s where Wj is the last write by writer j for which W rite(Wj) < Sj this 
would clearly contradict our choice of s' and s which are chosen such that W rite(W) is 
the only action between them. Therefore, i ¢ V N S(j) •. 

Thus we have k E V N S(j). if and only if k E V N S(j)., for k =1= i, and i ¢ V N S(j) •. 
By elementary set theory, we conclude VNS(j). = VNS(j)s' \ {i}. Since j is an 
arbitrary writer, our proof of the Proposition 16.3 is complete. 0 

Proposition 16.4 

IVNS(F(s'».1 = IVNS(F(s'»sl-l and IVNS(F(s»sl = IVNS(F(s)).I-l. 

Proof of Proposition 16.4: As was noted in the proof of Proposition 16.2, i E 
V N S(F(s))s' and i E V N S(F(s')).,. By Proposition 16.2, F(s') =1= i, and F(s) =1= 

i because W is impotent: The proposition thus follows from Proposition 16.3 and 
elementary set theory. 0 

Proposition 16.5 Let j be any writer for which i E V N S(j).,. Then N(j). = N(;).,. 

Proof of Proposition 16.5: By definition, i E V N S(j)., implies V N[i,;]., = 
OV N[j, i]s'. By Lemma 1 we have PV N[i,j]. = V N[i,j]., and thus PV N[i,j]. = 
V N[i,;]., = av N[i,j]s' = all N[j, i) •. Thus PV N[i,;]. = av N[j, i] •. By definition, 
N(j). = 0 if and only if there exists some writer k such that V N[k,;]. =1= OV NU, k]. 
and PV N[k,j]. =1= all N[j, k] •. Since PV N[i,;]. = av N[j, i]., there exists such a k 
if and only if there exists such a k, k 1= i. Since; 1= i, OV NU, I]., = OV NU, I]. for 
alII, I =1= i; also, V N[l,j]s' = V N[l,j]. and PV N[l,;]., = PV N[l,;]. for alII, I =1= i. 
This implies that there exists such a k =1= i if and only if V N[k,j]., =1= OV NU, k]., and 
PV N[k,j]s' 1= all N[j, k]s,. But by definition, N(j)., = 0 if and only if either such 
a k =1= i exists or if V N[i, j]., =1= av N[j, i]., and PV N[i,j]., 1= OV N[;, i].,. We have 
seen that V N[i,j]., = av N[j, i]., and we thus conclude that N(j). = 0 if and only if 
N (j)., = o. Since N takes on only the values 1 and 0, our proof is complete. 0 

Proposition 16.6 N(F(s». = N(F(s».,andN(F(s'». = N(F(s'».,. 

Proof of Proposition 16.6: As was noted in the proof of Proposition 16.2, 
i E V N S (F( s ».' and i E V N S (F( s') ).'. The proposition follows immediately from 
Proposition 16.5. 0 

We now proceed with the proof of Theorem 16. Assume that F(s') 1= F(s)j we will 
derive a contradiction. Now by definition of F(s'), one of two cases must occur: 
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1. IV N S(F(s'))sll + N(F(s'))s' > IV N S(F(s))$11 + N(F(s))sl. Then by Proposi­
tions 16.4 and 16.6, 

IV N S(F(s'))sl + N(F(s'))1J = IV N S(F(s'))$/1 + N(F(s'))1J1 - 1 

> IVNS(F(s))IJ'1 + N(F(s))1J1 -1 = 
IV N S(F(s))1J1 + N(F(s))1J 

Thus IVNS(F(s'))sl + N(F(s'))s > IVNS(F(s))$1 + N(F(s))s contradicting the 
definition of F(s). 

2. IV N S(F(s'))sll + N(F(s'))$I = IV N S(F(s))1J11 + N(F(s))1J1 and F(s') > F(s). 
Then by Propositions 16.4 and 16.6, 

IV N S(F(s'))sl + N(F(s'))$ = IV N S(F(s'))s,1 + N(F(s'))IJI - 1 

= IV N S(F(s))s,1 + N(F(s))s' - 1 

= IVN S(F(s))sl + N(F(s))s 

Thus IV N S(F(s'))sl + N(F(s'))s = IV N S(F(s))sl + N(F(s))s and F(s') > F(s) 
contradicting the definition of F( s). 

Thus our assumption is incorrect and F( s') = F( s) as desired. This completes the proof 
of Theorem 16. 0 

Corollary 1 7 F remains. constant between consecutive W rite(W) actions for potent 
writes lV. 

Proof of Corollary 17: We noted earlier that the only points at which the values 
of V N[i,j], OV N[i,j], and PV N[i,j] may change are at the Write(W) actions for 
writes W by writer i. Formally, if A is an action in an execution of the composition 
automaton and if A is not equal to Write(W) for any write W, and if s' and s are the 
states preceeding and following A respectively, then: 

v N[i,j]s' = V N[i,j]1J 

PV N[i,j]sl = PV N[i,j]s 

OV N[i,j]IJ' = OV N[i,j]1J 

for all writers i and j. Consequently, F(s') = F(s). Theorem 16 implies that F(s') = 
F( s) even if A = W rite(W) for an impotent write W. Since W rite(W) actions are 
associated only with potent and impotent writes W, the correctness of the corollary 
follows. 0 

Theorem 18 Let i be any writer and Wi be any impotent write by writer i. Then 
there exists some writer j, j =I i and some write Wj by writer j such that S can(Wi) < 
Write(lVj) < lVrite(lVi). 
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Proof of Theorem 18: Let s be the state immediately following Write(Wi). Then 
Wi is the last write by writer i for which Write(Wi) < s. Let j = F(s). Note j ~ i 
because lVi is impotent. Since, by Corollary 17, the value of F remains constant between 
potent writes, we have j = F(s') where s' is the state following the last potent write Wi 
for which Write(Wj) < s. Now Wj is clearly written by writer j as F(s') = j and Wi is 
potent. Because F equals j between s' and s, we know by definition of an impotent write 
that there can be no impotent writes Wj by writer j for which s' < Write(WJ) < s. 
Also, because Wj is the most recent potent write before s, we know that there can be 
no potent writes W} by writer j for which s' < Write(W}) < s. Therefore Wi is the 
last write by writer j for which W rite(Wj) < s. 

Assume now that there is no potent write W for which Scan(Wi) < Write(W) < 
Write(Wi). Then, in particular, Write(Wj) < Scan(Wi). By Theorem 7 this implies 
that OVN[i,j]s = VN[j,i]s' Thus j E VNS(i). \ VNS(j). and thus by Lemma 9, 
V N S(j)s is a proper subset of V N S( i)s. By Corollary 12 we have IV N S( i).1 + N( i). > 
IVNS(j).1 + N(j) •. This implies, by definition of F(s) that F(s) could not possibly 
equal j. Thus our assumption is incorrect and there is a writer j, j ~ i, and a potent 
write Wj by writer j for which Scan(Wi) < Write(Wj) < Write(Wi). This completes 
the proof of Theorem 18. 0 

We are now ready to place Atomic(W) action for.each write W. 

1. For each potent write W, define the internal action Atomic(W) to equal Write(W). 
Clearly, Start(W) < Atomic(W) < Finish(W). 

2 .. For each impotent write W, we know by Theorem 18 that there exists some potent 
write W' such that Scan(W) < Write(W') < Write(W); let W' be the last such 
potent write. Insert an action Atomic(W) immediately preceeding Write(W'). 
Again, since we are inserting Atomic(W) between Scan(W) and Write(W), it is 
clear that Start(W) < Atomic(W) < Finish(W). 

Note that we may have to insert several Atomic actions for impotent writes im­
meditately preceeding a single potent write W'. This is not a problem; since we 
have only m writers, there are at most m - 1 writers that could be performing 
impotent writes at the point W rite(W'). We are thus inserting a finite number 
of actions before any W rite(W'). 

3. For each write W that times out, we know from the fact that it timed out that, 
for some writer i, W saw the contents of writer i's register change twice. Since 
the values in writer i's register that are compared between scans (the V N[i,j], 
OV N[i,j], PV N[i,j], and Value[i]) change only at the points Write(W') for 
writes W' by writer i that do not time out, the two observed changes must have 
been caused by separate writes by writer i. The second of these writes, call 
it W', must have begun after the first finished. Thus we have Start(W) < 
S can(W') < W rite(W') < Finish(W). Whether W' is potent or impotent, 
we have Scan(W') < Atomic(W') ::; Write(W'), thus if we insert Atomic(W) 
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immediately preceeding W rite(W') it is clear that we will have Start(W) < 
Atomic(W) < Finish(W). 

Here, as was the case with impotent writes, we may have to insert several Atomic 
actions immediately before a given Write action; here, as before, this causes no 
problem. 

Before we continue, there are a few things that we should note about our placement 
of the Atomic actions for writes. First, for every w~ite W that does not time out, 
we have Scan(W) < Atomic(W) ~ Write(W). Second, if e is an execution of the 
composition automaton in which no Atomic actions have been inserted and s is a state 
in e, then once the Atomic actions for writes have been inserted into e to yield e', the 
most recent Atomic write action preceeding s in e' is that of a potent write. Third, from 
Corollary 17 we see that the value of F remains constant between consecutive Atomic 
actions of writes. 

14 Placement of Reads 

Now that all of the writes have been placed, we need to show that reads will behave 
in the desired manner. This is demonstrated by the following theorem that, although 
it is not constructive and does not tell us exactly where to place the "atomic" action 
associated with a read, tells us that all reads that do not time out do indeed return 
legitimate values. 

Theorem 19 Let R be any read that did not time out. Let i be the number of the 
writer whose value was chosen to be returned by R; i = F(R). Let W be the last write 
by writer i for which Write(W) <3Scan(R)i. Then the following hold. 

1. Value(R) = Value(W). 

2. Atomic(W) < Finish(R). 

3. There does not exist a write W' for which Atomic(W) < Atomic(W') < StarteR). 

Proof of Theoreln 19: We will prove the parts separately. Assume R, W, and i 
are as defined above. 

1. Since lV is the last write by writer i for which Write(W) < 3Scan(R)i' and R 
returns the value read by 3Scan(R)i from writer i's register, R returns the value 
written by lV. 

2. Note that by the way we placed Atomic(W') actions for writes W', Atomic(W') ::; 
Write(lV') for all writes W'. By choice of W, Write(W) < 3Scan(R)i. By defi­
nition, of Finish(R), 3Scan(R)i ::; Finish(R). We conclude that Atomic(W} < 
Finish(R). 
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3. This is the hard part. We will derive a contradiction after demonstrating the 
following sequence of propositions. Thus the first step of our proof is to assume 
the negation of what we are trying to prove. Namely, assume that there exists 
some write W' such that Atomic(W) < Atomic(W') < StarteR). Note that all 
of the following propositions are dependent upon the existence of W' and that all 
assume R, W, and i to be defined as above. 

Proposition 19.1 There is no write W" by writer i for which 

Consequently, 

lScan(R)i < Write(W") < 3Scan(R)i. 

V N[i,j]" = V N[i,i]R 
ov N[i,j]s = OV N[i,i]R 
PV N[i,j]" = PV N[i,j]R 

for all states s, lScan(R)i < 5 < 3Scan(R)i and all writersj. Also, W is the 
last write by writer i for which Write(W) < s for all states 5, lScan(R). < s < 
3Scan(R)i. 

Proof of Proposition 19.1: Let t and u be the states following lScan(R)i and 
3Scan(R)i respectively. Since the last three scans made by R see the same values, 
we have V N[i, i]t = V.N[i, i]u. Assume there exists some write W" by writer i 
such that lScan(R)i < Write(W") < 3Scan(R)i. Then by Lemma 3 there exists 
some write Will by writer i for which t < Scan(W"') < Write(W"') < U; let WIll 
be the last such write. Then by the way we placed the Atomic actions for writes, 
we have Scan(W"') < Atomic(WIII

) < Write(W"'). Since we have just chosen 
WIll to be the last write by writer i for which Write(W"') < u, WIll must also be 
the last write by writer i for which Write(W"') < 3Scan(R)i. Then by choice of 
lV, we have ltV = 11''''. But we have assumed 

Atomic(W) < StarteR) 

while 
StarteR) < lScan(R) < t < Scan(W"') < Atomic(WIII

). 

This contradiction implies that our assumption is incorrect and the proposition is 
proved. 0 

Proposition 19.2 Scan(W) < StarteR). 

Proof of Proposition 19.2: By assumption, there exists some write W' for 
which Atomic(W) < Atomic(W') < StarteR), thus Atomic(W) < StarteR). 
N ow by the way we placed the Atomic actions for writes, S can(W) < Atomic(W) ~ 
l:Vrite(lV). Thus we have Scan(W) < Atomic(lV) < StarteR) as desired. 0 
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Proposition 19.3 i Ft V N S( i)R. 

Proof of Proposition 19.3: Let s be the state following lScan(R)i. Then 
OV N[i, i]s = OV N[i, i]Rand V N[i, i]s = V N[i, i)R. Thus, since Lemma 2 implies 
OV N[i, i]s ~ V N[i, i]s, we have OV N[i, i)R ~ V N[i, i)R. Hence i Ft V N S(i)R as 
desired. 0 

Proposition 19.1 sho.wed that writer i is incapable of performing the Write actions 
of any writes between lScan(R)i and 3Scan(R)i. Since the principal values in 
writer i's register (the VN[i,j), OVN[i,j), and PVN[i,j)) thus remain constant 
between lScan(R)i and 3Scan(R)i, the interval from lScan(R)i to 3Scan(R), 
forms a sort of "magic interval" in which we can infer many things about the 
behavior of other writers. The following inequalities are particularly important in 
this respect: 

lScan(R)i < 2Scan(R)j < 3Scan(R)j < 3Scan(R)i 

for all writers j, j < i, and 

lScan(R)i < lScan(R)j < 2Scan(R)j < 3Scan(R)i 

for all writers j, j > i. These inequalities are fundamental because they define 
intervals, defined in terms of reads of writer j's register, that are contained within 
the interval from lScan(R)i to 3Scan(R)i. Since these inequalities are fundamen­
tal to the proof of the remaining propositions, they will have the undesirable effect 
of introducing a division into the cases of j < i and j > i in all of the following 
proposi tions. 

Proposition 19.4 (a) Let j be the number of any writer j < i. If j E V N S(i)R 
then there is no write Wj by writer j such that S can(W) < W rite(Wi) < 
3Scan(R)j. 

(b) Let j be the number of any writer i < j. If j E V N S(i)R then there is no 
write lVj by writer j such that Scan(W) < Write(Wj) < 2Scan(R)j. 

Proof of Proposition 19.4: 

(a) Assume otherwise, that there is some writer j, j < i, j E V N S(i)R that 
performed a write Wi such that: 

Scan(W) < Write{Wj) < 3Scan(R)j 

and let Wj be the last such write. Let sand t be the states following 
3Scan(R)j and Write{Wi) respectively. By Proposition 19.1, W is the last 
write by writer i such that W rite(W) < s. Then by Lemma 6 we have: 

OV N[i,j]s ~ V N[j, i]t. 
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Since Wj is the last write by writer j such that Write(Wj) < 3Bcan(R)j, 
V N[j, i] remains constant between Write(Wj) and 3Scan(R)j; in particular, 

V N(j, ilt = V N(j,'i]R. 

By Proposition 19.1, since. 1Scan(R)i < s < 3Scan(R)i, we have: 

OVN[i,j]R = OVN[i,j]". 

Putting these equations together yields: 

OV N[i,j]R = OV N[i,j]" :F V N[j, i]t = V N[j, i]R 

contradicting our assumption that j E V N S( i)R. Thus our assumption is 
incorrect and the first half of the proposition is proved. 

(b) The second part of the proof of the proposition follows exactly like the first; 
1Scan(R)j replaces 2Scan(R)j, and 2Scan(R)j replaces 3Scan(R)j. 

This completes the proof of Proposition 19.4. 0 

Proposition 19.5 Let j be any writer. If i E V N S(j)R then V N S(i)R is a 
proper subset of V N S(j)R. 

Proof of Proposition 19.5: 

(a) Case 1:- j < i. Since i E V N S(j)R we have OV N[j, i]R = V N[i,j]R. Let Wj 
be the last write by writer j for which Write(Wj) < 2Scan(R)j. Let s be 
the state'following 2Scan(R)j. By Proposition 19.1, V N[i,j]" = V N[i,j]R. 
By choice of s, OV N[j, i]" = OV N[j, i]R and thus OV N(j, i]. = V N[i,j] •. 
By Proposition 19.1 and choice of W, W is the last write by writer i for 
which Write(W) < s. By choice of Wj, Wj is the last write by writer j for 
which Write(HTj ) < s. Then by Theorem 7, Write(W) < Scan(Wj). This, 
of course, implies S can(lV) < S can(Wj). 

Let k be any writer for which k E V N S( i)r. Note then that by Proposi­
tion 19.3, k :F i. Let Wk be the last write by writer k for which Write(Wk) < 
S can(W). Then by Proposition 19.4, Wk is also the last write by writer k for 
whieh Write(Wk) < 2Scan(R)j since 2Scan(R)j < 2Scan(R)k for k > i > j, 
and 2Scan(R)j < 3Scan(R)k if k < i. Thus Wk is the last write by writer.k 
for which Write(Wk) < s. By choice of Wj, Wj is the last write by writer j 
for which Write(Wj) < s. Since Write(Wk) < Scan(W) < Scan(Wj), by 
Theorem 7, we have: 

OV N[j, k]" = V N[k,j]s. 

By choice of s, 
OV N(j, k]s = OV N[j, k]R. 
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Let u be the state following 1Scan(R)k. By proposition 19.2, Scan(W) < 
StarteR), implying Scan(W) < StarteR) < 'U < 2Scan(R)j < s. Since, by 
Proposition 19.4, there are no writesWk by writer k for which Scan(W) < 
Write(Wk) < s, V N[k,j],,1 equals a constant for·states s', Scan(W) < s' < S; 
in particular, 

V N[k,j]" = V N[k,j]u. 

By choice of u, 
V N[k,j]u = V N[k,j]R' 

Putting the above equations together, we get: 

OV N[j, k]R = OV N[j, k]s = V N[k,j]" = V N[k,j]u = V N[k,j]R. 

Since V N[k,j]R = OV N[j, k]R, we have k E V N S(j)R. Si,nce k was an arbi­
trary element of V N S( i)R, V N S( i)R C V N S(j)R. Since i E V N S(j)R but 
by Proposition 19.3, i ~ V N S( i)R, V N S( i)R is a proper subset of V N S(j)R. 

(b) Case 2: i < j. The proof of this case is very similar to, although not identical 
to, that of the first case, so we will omit many of the details. Let Wj be the 
last write by writer j for which Write(Wj) < lScan(R)j. Let s be the state 
following lScan(R)j. As before, we can show Write(W) < Scan(Wj), and 
thus Scan(W) < Scan(Wj). 
Let k be any writer for which k E V N S(i)R, and let Wk be the last write 
by writer k for which Write(Wk) < Scan(W). Then by Proposition 19.1, 
Wk is also the last write by writer k for which Write(Wk) < 1Scan(R)i 
since lScan(R)j < 2Scan(R)k. As before, Wj and Wk are the last writes by 
writers j and k respectively for which Write(Wj) < sand Write(Wk) < s. 
Again, we have OV N[j, k]" = V N[k,j]". Again, OV N[j, k]" = OV N[j, k]R. 
Since there are no writes Wk by writer k for which Scan(W) < Write(Wk) < 
2Scan(R)k and Scan(lV) < s < 2Scan(R)k, we have V N[k,j]" = V N[k,j]u = 
V N[k, j]R where u is the state following 2Scan(R)k. Thus V N[k, j]R = 
OV N[j, k]R and as before, V N S( i)R is a proper subset of V N S(j)R. 

Since i E V N S(j)R implies i :f; j, the proofs of the above two cases complete the 
proof of the proposition. 0 

Proposition 19.6 Let j be any writer, j :f; i. 

(a) If j < i and if there is some write Wi by writer j such that 2Scan(R)j < 
IVrite(lVj) < 3Scan(R)j, then OV N[j, i]R = V N[i,j]R. 

(b) If i < j and if there is some write Wj by writer j such that 1Scan(R)j < 
Write(lVj) < 2Scan(R)j, then OV N[j, i]R = V N[i,j]R. 

Proof of Proposition 19.6: 
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(a) Let Wj be the last write by writer j such that 2Scan(R)j < Write(Wj) < 
3Scan(R)j. Let sand t be the states following 2Scan(R)j and 3Scan(R)j 
respectively. Now since the last three scans of R see the same values for the 
V N 's, V N [j, j]8 = V N [j, jJt. Thus by Lemma 3 there exists at least one 
write Wi by writer j such that s < Scan(Wi) < Write(Wi) < t; since Wi 
is the last write by writer j for which s < Write(Wj) < t, we consequently 
have s < Scan(Wj) < Write(Wj) < t. Note then that we have the following 
order: 

1Scan(R)i < 2Scan(R)j < s < Scan(Wj) < 3Scan(R)j < t < 3Scan(R)i. 

By choice of t, 
OV N[j, i]R = OV N[j, i]t. 

Since 1Scan(R)i < t < 3Scan(R)i, by Proposition 19.1 we have 

V N[i,j]R = V N[i,j]t. 

Also by Proposition 19.1, W is the last write by writer i for which Write(W) < 
t. Furthermore, by choice of Wj, Wj is the last write by writer j for 
which Write(Wj) < t. By Proposition 19.1, Write(W) < 1Scan(R)i thus 
Write(W) < 1Scan(R)i < Scan(Wj), and by Theorem 7 we have 

V N[i,jh = OV N[j, i]t. 

Putting all these equations together yields: 

V N[i,j]R = V N[i,jlt = OV N[j, i]t = OV N[j, i]R. 

(b) Since i < j implies 1Scan(R)i < 1Scan(R)j < 2Scan(R)j < 3Scan(R)i, 
the second part of the proof of the proposition follows exactly like the first; 
1Scan(R)j replaces 2Scan(/l)j, and 2Scan(R)j replaces 3Scan(R)j. 

This completes the proof of Proposition 19.6. 0 

Proposition 19.7 Let j be any writer, j :F i. 

(aJ If j < i and there is some write Wj by writer j such that 2Scan(R)j < 
write(Wj) < 3S can(R)j then IV N S(j)RI > IV N S( i)RI. 

(bJ If i < j and there is some write Wj by writer j such that 1Scan(R)j < 
write(Wj) < 2Scan(R)j then IV N S(j)RI > IV N S(i)RI. 

Proof of Proposition 19.7: This follows directly from Proposition 19.5 and 
Proposition 19.6. 0 

Proposition 19.8 Let j be any writer, j :F i. 
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(a) If j < i and there is some write Wj by writer j such that 2Scan(R)j < 
write(Wj) < 3Scan(R)j then N(i)R = O. 

(b) If i < j and there is some write Wj by writer j such that 1Scan(R)j < 
write(Wj) < 2Scan(R)j then N(i)R = O. 

Proof of Proposition 19.8: 

(a) Let x and y be the states following 2Scan(R)j and 3Scan(R)j respectively. 
Then V N[j,j]z = V N[j,j]". Thus by Lemma 3, we may let Wj and Wj be 
the last two writes by writer j such that 

x < Scan(Wj) < Write(WJ) < Scan(Wj) < Write(Wj) < y. 

Let s, t, u, and v be the states following Scan(Wj), Write(Wj), Scan(Wj), 
and W rite(Wj) respectiveley. Then by Proposition 19.1, 

OVN[i,j]" = OVN[i,j]u = OVN[i,j]R. 

Also, by Lemma 1, we have 

V N[j, i]v ~ OV N[i,j]u 

V N[j, i]t ~ OV N[i,j]" 
PV N[j, i]v = V N[j, i]t. 

Since Wj is the last write by writer j for which Write(Wj) < 3Scan(R)j, we 
have 

V N[j, i]R = V N[j, i]ll 

PV N[j, i]R = PV N[j, i]ll 

Putting this all together, we get: 

V N[j, i]R = V N(j, i]v ~ OV N[i,j]u = OV N[i,j]R 

PV N[j, i]R = PV N[j, i]v = V N[j, i]t ~ OV N[i, j]s = OV N[i, j]R. 

We conclude N(i)R = O. 

(b) The second part of the proof of the proposition follows exactly like the first if 
we replace 2Scan(R)j by 1Scan(R)j and replace 3Scan(R)j by 2Scan(R)j. 

This completes the proof of Proposition 19.8. 0 

Proposition 19.9 Let j be any writer, j ~ i. 

(aJ If j < i then there is no write by writer j such that 2Scan(R)j < Write(Wj) < 
3Scan(R)j. 
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(b) Ifi < j then there is no write by writer j such that 1Scan(R)j < Write(Wj) < 
2Scan(R)j. 

Proof of Proposition 19.9: Assume otherwise. Then by Proposition 19.7 and 
Proposition 19.8, we have: 

This contradicts the fact that F(R) = i and the proposition is thus proved by 
contradiction. 0 

Proposition 19.10 Let j be any writer, j f; i. 

(a) If j < i then for all states u, 2Scan(R)j < u < 3Scan(R)j, and all writers k, 

v N[j, k]u . = V N[j, k]R 

OV N[j, k]u = OV N[j, k]R 
PV N[j, k]u = PV N[j, k]R. 

(b) If i < j then for all states u, 1Scan(R)j < u < 2Scan(R)j, and all writers k, 

VN[j,k]u = VN[j,k]R 

OV N[j, k]u = OV N[j, k]R 

PVN[j,k]u = PVN[j,k]R. 

Proof of Proposition 19.10: This proposition is a direct consequence of Propo­
sition 19.9. 0 

We now use these propositions to complete the proof of Theorem 19. Let s be 
the state following 2Scan(R)i. Note that for all writers j, if j < i then we have 
2Scan(R)j < s < 3Scan(R)j, and if i < j then we have 1Scan(R)j < s < 
2Scan(R)j. Then by Proposition 19.10, we have 

V N[j, k]R = V N[j, k]s 

OV N[j, k]R = OV N[j, k]s 

PV N[j, k]R = PV N[j, k]s 

for all writers j and k. But this means that F( s) = F(R) = i. 
Let Wi be the last potent write for which Write(Wi) < s. Since F remains 
constant between consecutive Write actions of potent writes, if t is the state 
following Write(Wi) then F(t) = F(s) = i. Since Wi is potent, this implies 
Wi was written by writer i. Since F( s') = i for all states s', t ~ s' ~ s, by 
definition of i~potent writes there can be no impotent write WI by writer i for 
which t < W rite(Wf) < s. Then since Wi is the last potent write by writer i for 

51 



which Write(Wi) < s, Wi is the last write, potent or impotent, by writer i for 
which Write(Wi) < s. By Proposition 19.1, W is the last write by writer i for 
which Write(W) < s. Therefore W = Wi. 

Since W is thus potent, Atomic(W) = Write(W). SinceW is the last potent 
write for which Write(W) < s, there can be no other writes W' such that 
Atomic(W) < Atomic(W') < s as there are no potent writes W" in this interval 
before which such Atomic(W') could be inserted. This contradicts our initial as­
sumption, upon which this whole sequence of propositions was based, that such a 
W' exists. Thus our initial assumption is incorrect; there exists no write W' such 
that Atomic(W) < Atomic(W') < Start( R). 

This (finally) completes proof of Theorem 19. 0 

We will now use Theorem 19 to place the Atomic(R) actions for reads R. Let R be 
any read. Then Atomic( R) will be placed as follows: 

1. If R did not time out, then let i = F(R), and let W be the last write by writer i 
for which Wri-te(W) < 3Scan(R)i as we did in the proof of Theorem 19. Then 
we have two cases: 

(a) If StarteR) < Atomic(W) then by Theorem 19, StarteR) < Atomic(W) < 
Finish(R). Thus if we insert Atomic(R) immediately following Atomic(W) 
it is clear that StarteR) < Atomic(R) < Finish(R). Also, since Theorem 19 
states Value(R) = Value(W), it is clear that'R returns the value of the last 
write W for which Atomic(W) < Atomic(R). 

(b) If Atomic(W) < StarteR) then we will insert Atomic(R) immediately fol­
lowing StarteR). It is clear that StarteR) < Atomic(R) < Finish(R). 
Also, since Theorem 19 states Value(R) = Value(W) and that there are no 
writes W' for which Atomic(W) < Atomic(W') < StarteR), it is clear that 
R returns the value of the last write W for which Atomic(W) < Atomic(R). 

2. If R did time out, then we know from the fact that it timed out that, for some 
writer i, R saw the contents of writer i's register change twice. Since the val­
ues in writer i's register that are visible to readers (the VN[i,j], OVN[i,j], 
PV N[i,j], and Value[i]) change only at the points Write(W') for writes W' by 
writer i that do not time out, the two observed changes must have been caused 
by separate writes by writer i. The write that caused the second of these ob­
served changes, call it W', must have begun after the first finished. Thus we 
have StarteR) < Scan(W') < Write(W') < Finish(R). Whether W' is po­
tent or impotent, we have Scan(W') < Atomic(W') :5 Write(W'), thus if we 
insert Atomic( R) immediately following W rite(W') it is clear that we will have 
StarteR) < Atomic(R) < Finish(R). Also, since the algorithm returns Value[i], 
it is clear that Value(R) = Value(W'). Thus R returns the value written by the 
last write W' for which Atomic(W') < Atomic(R). 
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Here, as was the case when we placed the Atomic actions for impotent writes and writes 
that timed out, we may have to insert several Atomic read actions following a given 
Atomic write action; again, this causes no problem. 

15 Conclusion 

Thus for every read R and every write W we have placed internal actions Atomic(R) 
and Atomic(W) such that: 

1. Start(W) < Atomic(W) < Finish(W). 

2. StarteR) < Atomic(R) < Finish(R). 

3. If WR is the last write for which Atomic(WR) < Atomic(R) then Value(R) = 
Value(WR). 

This completes the proof of correctness. 

Having thus completed our proof of correctness it is appropriate to reflect on the 
purpose of this paper, to provide intuitive explanation and rigorous proof of the correct­
ness of the multi-writer, multi-reader atomic register algorithm presented in [PB]. We 
have gone about this in several ways. First, the algorithm is presented, at an intuitive 
level, before the proof of correctness. This should hopefully arm readers of the proof 
with an understanding of what needs to be proved and why. Second, the approach to 
the problem is that taken in [BB]. An attempt is made to understand what different 
reads and writes do so that their Atomic actions may be placed in an appropriate and 
intuitively reasonable manner. Third, the proof has examined the algorithm at a finer 
level of detail than that presented in [PB]. Arguments are presented at the level of the 
individual reads of writers'registers and not at the level of scans asa whole. The re­
sult of this detailed proof was to find two problems with the algorithm. The detailed 
approach to proof is not, however, without its faults; it is possible to be so attentive to 
detail that the proof becomes little more than an exercise in symbol manipulation to 
those not already intimiately familiar with the algorithm. Thus while care was taken to 
present detail where necessary, as was the case with arguments about individual reads in 
scans, some arguments, particularly those dealing with the choice of V N's and PV N's 
by successive writes, have been presented in somewhat less detail. It is hoped then that 
one will find in this paper a clear survey of the algorithm in question in addition to a 
rigorous, but not overburdened, proof of correctness. 
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