
The Peterson-Burns Multi-Writer, MUlti-Reader

Atomic Register Algorithm

by

Russel W. Schaffer

Submitted to the Department of

Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements

for the Degree of

Bachelor of Science in Computer Science and Engineering

at the Massachusetts Institute of Technology

May 1988

Copyright Russel W. Schaffer 1988

The author hereby grants to M.I.T.
?ermission to reproduce and to distribute

copies of this thesis document in whole or in part.
i../11 f}

Certified by •
------~-----IA+---~/--~N~a-n-C-y~Lyn--C~h

Thesis Supervisor

Accepted by
--------------------------------------~----~----------~L~e-o-n-ar~d~A-.-G~oul~d

Chairman, Department Committee on Undergraduate Theses

The Peterson-Burns Multi-Writer, Multi-Reader
Atomic Register Algorithm

by
,Russel W. Schaffer

Submitted to the
Department of Electrical Engineering and Computer Science

May 16, 1988

In Partial Fulfillment of the Requi~ements for the Degree of
Bachelor of Science in Computer Science and Engineering

ABSTRACT

The construction of a multi-writer, multi-reader atomic register
has been addressed by several pa~ers by different authors. As a
result of the difficult nature of the problem, it is not easy to
grasp the intuition behind some of these algorithms, and the
proofs of correctness provided are sometimes not as rigorous as
one might desire. There is, however, one paper by Bard Bloom
that addresses a less general problem and is both intuitively
a~Dealin8 and comn1ete1y rigorous. It is the purpose of this
pa~er to urovide both an intuitive feel for and a rigorous proof
of correctness of the more general algorithm developed by
Peterson and Burns; Bloom's paper is used as a model for this
paper. In the process of developing the proof of correctness,
two problems were found with the algorithm. This paper thus
presents these counterexamples and a proof of correctness for the
modified algorithm.

Thesis Supervisor: Nancy ~nch
Title: Professor of Computer Science and Engineering

Part I

Introduction and Intuition

1 Introduction

The problem of constructing a multi-writer, multi-reader atomic register was first in­
troduced in [LL]. It has, at this point, been addressed by several papers by different
authors [BB],[IL],[LV],[PB]. As a result of the difficult nature of the the problem, how­
ever, most of these papers are rather hard to understand; it is not generally easy to
grasp the intuition behind some of the algorithms, and the proofs of correctness pro­
vided are sometimes not as rigorous as one would desire for a problem of this difficulty.
There is, however, one paper on the subject that distinguishes itself as both intuitively
appealing and completely rigorous; that paper presents a construction for the specific
case of a two-writer, multi-reader atomic register [BB]. It is the purpose of this paper
to attempt to provide both an intuitive feel for and a rigorous proof of correctness of
the more general algorithm presented in [PB]; [BB] is used as a model for this paper.
Consequently, many of the facts proved in- this paper are the same as or resemble those
proved in [BB] or [PB]. The terminology and notation of these papers has been largely
retained in the interest of consistency.

In the process of developing a proof of correctness for the algorithm from [PB], sev­
eral problems were found in the code that could cause the algorithm to work improperly.
Communication with one of the authors of [PB] concerning the first of these problems
confirmed that the problem did exist and that the counterexample presented to the
code exploited a case that was inadequately considered in the [PB] proof of correctness.
Indeed, the immediately obvious fixes to the code proved to be futile, as a final couterex­
ample cOlnmunicated by Burns demonstrates, and a more modest correction had to be
made to the algorithm for work on the proof of correctness to continue. Another unre­
lated problem arose at a later date. This problem has an obvious solution. This paper
thus presents both counterexamples to the correctness of the original algorithm and a
proof of correctness of a modified version of the algorithm.

2 The Model and the Problem

This paper presents the algorithm from [PB] within the framework of the I/O automaton
model developed in [LT]. The following loose and cursory description of that model is
sufficient for one to comprehend the remainder of the paper.

An I/O automaton may be thought of as a set of states, a set of actions, and a
transition function mapping the product of the sets of states and actions to the set of
states. Thus when the automaton is in one state and a particular action occurs, the
transition function specifies the new state that the automaton is to enter.

1

An execution of an I/O automaton may be thought of as an alternating sequence of
states and actions of the automaton; each action marks a transition of the automaton
from the state th,at preceeds the action in the sequence to the one that follows the action
in the sequence.

The actions of an I/O automaton are subdivided into three disjoint sets, the internal
actions, output actions, and input actions. An automaton controls the states from which
its internal and output actions may occur, however, it must be capable of accepting an
input action while in any state. Since automata may be formally composed, we may
thus think of two automata as communicating along a channel if an output action of one
automaton corresponds, in a composition, to an input action of the second automaton.

The problem of constructing an m-writer n-reader atomic register will thus be seen
as one of constructing an I/O automaton with the following actions and properties:

1. The automaton should have m channels along which the input actions Start(W),
for writes W, may be accepted. This implies that the symbol Start(W) subsumes
m distinct input actions which we will differentiate by explicit reference to their
respective writers. To each Start(W) action corresponds a unique Finish(W)
action.

Each Start(W) action thus represents a request by its particular writer to begin
the write W to the m-writer n-reader atomic register. When such an action occurs,
the writer that received it begins execution of its writer's protocol; when execution
of the protocol terminates, the automaton executes the Finish(W) action that
corresponds to the Write(W) action that initiated the write.

2. Similarly, the automaton should have n channels along which the n input actions
StarteR) may be accepted for reads R. Again, to each of these n distinct actions
there corresponds an output action Finish(R). As was the case with writers,
each StarteR) action initiates execution of the reader's protocol by a reader, and
is followed, after termination of execution of the protocol, by an action Finish(R).

3. Given any execution e of the I/O automaton, it should be possible, for every read R
to insert into e an internal action Atomic(R) between StarteR) and Finish(R),
and for ,every write W to insert into e an internal action Atomic(W) between
Start(lV) and Finish(W), to yield a new execution e' of the automaton with the
following property. For every read R in e', if WR is the write whose value was
returned by R then Atomic(WR) must be the last Atomic action for any write
before Atomic(R) in e'.

Note that it is assumed that along any given channel, the initiators of the Start
actions will wait until a corresponding Finish action has been received along
that channel before performing another Start action along that channel; if this
condition is not met, the behavior of the automaton will remain unspecified.

2

3 The Composition Automaton

Let us begin consideration of the Peterson-Burns algorithm for constructing an m-writer
n-reader atomic register from 1-writer n+m-reader atomic registers by presenting the
configuration of automata that would implement the multi-writer multi-reader atomic
register. With each writer is associated a 1-writer m+n-reader atomic register that may
be written by that writer alone, b1:lt which may be read by any of the writers or readers.
This is illustrated by figure 1.

In the figure 1, the circles represent distinct I/O automata, and the lines represent
channels between them. The heavy lines represent write channels, while the lighter lines
represent read channels.

Each Register i represents a single writer, m+n-reader atomic register automaton
that has the following actions associated with writes Wand reads R:

Start(W) This input action serves as a request on the register's write channel to initiate
the write W of some value to the register.

Atomic(W) This internal action denotes the point at which the write W may be thought
to have occured atomically.

Finish(lV) This output action serves as a signal on the write channel that the write W
has completed.

StarteR) This input action serves as a request on some read channel to initiate the
read R of the current value of the register.

Atomic(R) This internal action denotes the point at which the read R may bethought
to have occured atomically.

Finish(R) This output action serves as a signal, on the read channel along which
StarteR) originated, that the read R has completed.

Each Writer i denotes an I/O automaton executing the Peterson-Burns writer's
protocol. It has the following actions of interest associated with each write W that it
performs:

Start(W) This input action serves as a request on the i'th write channel to initiate the
write W of some value to the m-writer n-reader atomic register. Note that this is
thus an input action of importance to the composition register as well.

1S can(lV)j This action is actually an internal action of the m-writer n-reader atomic
register that corresponds to the Atomic(R) action of a particular read R of
Register j. More on its significance later. Note that in this case, as with all
other subscripted actions we define, we are actually defining one such action for
each j, 1 ~ j ~ m.

3

Figure 1: The composition automaton.

4

PWrite(W)j Like IScan(W)j, this is an internal action of the m-writer n-reader atomic
register; it corresponds to the Atomic(W') action of a particular write W' to
Register i. More will be said about it later.

2Scan(W)j Analogous to lScan(W)j.

S can(W) An internal action inserted in an execution immediately following the action
2Scan(W)m. The proof of correctness will show that the values returned by the
xScan(W)i are identical to those contained in all of the writers' registers at the
point Scan(W).

PScan(W)j Analogous in definition, though not in meaning, to lScan(W)j.

3Scan(W)j Analogous to IScan(W)j.

W rite(W) This is analogous in definition, but not in meaning, to PW rite(W)j. It is
at this point that the value, Value(W), being written by the write W is actually
written to Register i.

Finish(W) This output action serves as a signal on the i'th write channel that the
write W has completed. Note that this is thus an output action for the composition
automaton as well.

Note that for a write during which all these actions are performed, these actions occur
in the order in which they are presented above.

Finally, each Reader i denotes an I/O automaton executing the Peterson-Burns
reader's protocol. We will refer to the following of its actions associated with a read R
that it performs:

StarteR) This input action serves as a request on the i'th read channel to initiate the
read R by reader i of the value of the m-writer n-reader atomic register. Note
that this is thus an input action important to the composition register as well.

IScan(R)j This action is actually an internal action of the m-writer n-reader atomic
register that corresponds to the Atomic(R') action of a particular read R'· of
Register j performed during the read R .. More on its significance later.

2Scan(R)j Analogous to IScan(R)j.

Finish(R) This output action serves as a signal on the i'th read channel that the
read R has completed. Note that this is thus an output action for the composition
automaton as well.

Note that for a read during which all these actions are performed, these actions occur
in the order in which they are presented above.

It is the task of our proof of correctness to associate with each read R and each
write lil the internal actions Atomic(R) and Atomic(W) respectively. These are analo­
gous to the Atomic(R') and Atomic(lV') actions associated with reads R' and writes W'
of the I-writer, m+n-reader automata.

5

4 The Version Numbers

So far we have established the composition automaton that executes the Peterson-Burns
algorithm. We will now present a bit of intuition to explain how the algorithm should
work. Note that this is anything but a proof of correctness.

When a reader automaton receives a request to begin a read of the value in the m­
writer n-reader atomic register implemented by the composition automaton described
earlier, it must somehow figure out which writer contains a value that is the correct one
to return. To aid in this process, each writer maintains a set of "version numbers" which
are visible to the readers and on the basis of which a current value may. be selected.
The information maintained by each writer i in its register is as follows:

v N[i,j] Every time writer i performs a write that does not time out (we will discuss
what that means later) to the m-writer n-reader atomic register, a new value of
V N[i, j] is written into writer i's register for every writer j. The rules for choosing
the new V N [i, j] will be discussed later.

PV N[i,j] Even though writer i changes its V N[i,j] every time it performs a write
that does not time out, the old value of V N[i,j] does not immediately disappear;
whenever the value of V N[i, j] changes, its old value is rewritten by writer i into
its register as the value PV N[i,j].

OV N[i,j] In the process of performing 'a write W, writer i reads the version numbers
contained in the other writers' registers and writes them into its own register; the
value read for V N[j, i] is written by writer i into its register as OV N[i,jJ. These
values essentially record the global state of the V N's at the time of the write W;
. they thus serve as a sort of timestamp to communicate the relative recency of the
value, llalue[i]'in register i.

Value[i] At the same time that it writes the V N[i,j], PV N[i,j], and OV N[i,j], writer i
also writes to its register the value, Value(W), that it is in the process of writing
to the m-writer n-reader atomic register. This value is written by writer i into its
register as Val ue[i].

PreOV N[i, j] This value is used only by writers and is not visible to readers. It contains
either the current value of OV N[i, j], or a value of OV N[i, j] that writer i is
planning to write but has not yet written.

It is sometimes difficult to keep all of these different indexed variables straight; a
partial aid to remembering them is provided by noting that the first index of a variable
is always the index of the writer in whose 1-writer m+n-reader register the variable
resides. The V N[i,j] reside in the register of writer i and are thus written exclusively
by writer i; similarly for the other indexed variables.

Another important point to remember is that the first four variables, the V N[i,j],
PV N[i,j], Oll N[i,j], and Value[i], are written to the register of writer i only once

6

during any write ltV by writer i. Since the atomic action of this write to writer i's
register corresponds to the action Write(W), we conclude that the values of these
variables remain constant between such actions. The values of the PreOVN[i,j) change
at other times.

5 The Reader's Protocol ..
The importance of these variables to reads is that by examining the relative values of .
the V N, PV N, and OV N, a reader should be able to determine to a large extent which
writers wrote most recently. Consequently, a reader is capable of determining which of
the Value[i] is most likely to be the correct one to return. The following facts are useful
in this respect:

1. If at some point OV N[i,j] = V N[j, i], then as of that point, the most recent write
by writer i is somewhat more recent than the most recent write by writer j. This
is so for the following reason: when writer i was selecting the value of V N[j, i] to
write as OV N[i,j] during its last write, it chose the value V N[j, i] written by the
most recent write by writer j; this implies that the most recent write by writer i
was still deciding what to write after the point where the most recent write by
writer j had already written. Loosely speaking, we say that writer i "sees" the
version number V N[j, i] that was written by the most recent write by writer j.
This means that if writer i "sees" writer j's version number, then the last write
by writer i is relatively more recent than that of writer j.

Note that this is a "fact" only inasmuch as the correct operation of the algorithm
depends upon its truth; the second counterexample exploits a breakdown of this
fact.

2. If writer i "sees" neither the V N nor the PV N of writer j, thatis if OV N[i,j) f;
V N[j, i] and OV N[i,j] =I- PV N[j, i] at some point, then as of that point, the
most recent write by writer i is considerably less recent than that by writer j.
This is so because writer j must have written at least twice since the most recent
wri te by wri ter i was selecting the value of V N [j, i] it would write as 0 V N [i, j].
This would imply that the value contained in Value[i] is particularly archaic; in
general, a read should avoid returning such a value.

3. At no point does any writer ever "see" its own version number; that is, at all
points, OV N[i, i] =I- V N[i, i]. At the same time, however, every writer always
"sees" its own PV N; at all points OV N[i,i] = PV N[i, i).

Of these three facts, the first is by far the most important. Indeed, it captures
the essence of the purpose of the version numbers. It is on the basis of this fact that
we make the following definition. At a given point for a given writer i, we will define
V N SCi) to be:

VNS(i) = {jll ~ j ~ m,OVN[i,j] = VN[j,i]}.

7

It is an important fact about the V N S that, if at any point, V N S(i) f:. V N S(j), then
either V N S(i) is a proper subset of V N S(j) or V N S(j) is a proper subset of V N S(i)
at that point. This means that at each point there will be some writer k for which
V N SCi) C V N S(k) for all writers i. The first fact from above implies that if V N SCi)
is a proper subset of V N S(k) for some writer i, that is if writer i "sees" the version
numbers of fewer writers than does writer k, then Valtte[k] should be treated as being
more recent than Value[i]. Since set inequality implies set inclusion, we conclude that
IV N S(i)1 is a valid measure of the relative recency of the last write of Value[i].

Unfortunately, IV N S(i)1 is not an adequate measure of recency to provide a basis
for a read to uniquely pick a "correct" value to return. It is possible to have two
separate writers i and j, i f:. j, that wrote at more or less the same time resulting in
V N S(i) = V N S(j). Thus an additional measure of the recency of a write is needed.
To this end we will employ the second fact from above and define, for a given point and
a given writer i, the value N(i) at that point to be:

{

1 if for all writers j, either .
N(i) = OVN[i,j] = VN[j,i] or OVN[i,j] = PVN[j,i]

o otherwise.

By the second fact from above, Value[i] for a writer i for which N(i) = 1 should be
co~sidered to be more recent than Value[j] for a writer j for which N(j) = O. It would
be quite desirable if the two measures of recency that we have just defined, IV N S(i)1 and
N(i), did not contradict each other; that is, if IVNS(i)1 > IVNS(j)1 then N(i) ~ N(j).
If these two measures did not contradict each other, then the sum N(i)+IVNS(i)1 would
serve as a better measure of recency than IV N S(i)1 alone. The problem that leads to
the second counterexample, however, may be exploited to show that these measures are
not always consistent with each other. In the modified algorithm, these values do have
consistent meanings.

Unfortunately, even when IV N S(i)1 and N(i) are consistent measures of recency,
I V N S (i) 1+ N (i) is still not an adequate measure of recency of Val ue[i] to provide readers
with a criterion for picking a unique value, Value[i], to return. It is again possible for
IV N S(i)1 + N(i) = IV N S(i)1 + N(i) even though i f:. i. Fortunately, IV N S(i)1 + N(i)
is a strong enough measure of recency that we can make the following definition, for a
given point, of F at that point: ifM is the maximum value of IV N S(i)1 + N(i) for any
writer i, then let F be the largest numbered writer for which IV N S(F)I+N(F) = M. It
is clear that at any point, the value of F is unique. It falls upon our proof of correctness.
to show that Value[F] is always a legitimate value for a read to return.

So far we have explained how a reader goes about choosing a correct value to return
based on observed values of the V N, PV N, and OV N. What we have not done is
to state how a reader goes about reading a consistent set of such values. If a reader
were simply to scan the writers' registers in succession, starting with an atomic read of
all the values in writer 1 's register and finishing with an atomic read of the values in
writer' m's register, then if we were to compute F on the basis of the values observed,

8

Value[F] need not be a correct value to return. It is entirely possible that the writers
could write, as the scan is taking place, in such a manner that the values observed by
the reader's scan are entirely unrealistic causing the reader to return the value of a write
that is very much out of date.

This is clearly undesirable behavior. So we ask if a reader would get a consistent
set of values if it were to scan the values of the writers' registers twice, starting with
an atomic read of the values in writer l's register through an atomic read of writer m's
register followed by another atomic read of writer l's register and so on through a final
atomic read of the values in writer m's register. IT we were to require that the values
V N[i,j] observed by the first scan be identical·with the values V N[i,j] observed by
the second scan for all writers i and j, would the second scali yield a set of values from
which we could determine F such that Value[F] is a valid value to return? This is the
approach adopted by the code in [PB].This approach does not work as we will see later;
this is the basis for the first counterexample. Indeed, even if one were to require that
not only the V N's but the PV N's and the OV N's as well remain constant across the
two scans, then the second scan still does not return a set of values for which Value[F]
is necessarily a correct value to return. The modified version of the algorithm that we
will prove correct incorporates a suggestion by Burns that a reader require that all of
the V N's, OV N's, and PV N'sremain constant across three consecutive scans of the
writers' registers.

Note that if these two consecutive, identical scans are performed as part of a read R,
then the action lScan(R)i corresponds to the "atomic" action of the read of the values
in writer i's register performed during the first of the two scans. Similarly for the actions
2Scan(R)i.

There is still one question about the way the read protocol determines the value of
F that remains unresolved. It is entirely possible. that a reader could perform an infinite
sequence of scans and never see two consecutive scans that are identical. To solve this
problem, readers keep track of the writers whose values they have seen change between
scans. If, in the course of a read R, it is observed that a writer i has changed its values
two times, then because writes by a single writer are not permitted to overlap in time,
the write "'2 that caused the second change of value must have started after the end of
the write 11'1 that caused the first change of value. Since changing the values visible to
readers is the last step in the writer's protocol, we conclude that essentially the entire
write W2 was performed after the start of the read R but before the scan that observed
the second change in the values in writer i's register. This means that to return the.
value, Value[i], written by the write W 2 is to return a legitimate value for the read R;
the point at which we can think of the write W2 as having occured atomically will
necessarily be contained within.the bounds of R so if we think of R as having occured
immediately after that point, we see that it is valid if Value(R) = Value(W2). IT a
reader observes that a writer i has changed its value twice, then it will take this course
of action, returning the value of Value[i] observed after the second change; reads that
return a value determined in such a way are said to have "timed out."

9

By the pigeon hole principle, it is necessary that after m + 2 consecutive scans of
the registers, either two consecutive scans have returned the same values for all of the
writers, or some writer has been seen to change its values at least twice. Thus, by the
time at most m + 2 scans have been completed as part of a read, that read has either
timed out, or terminated normally having completed two consecutive scans that return
the same values. Similarly, after 2m+3 consecutive scans, either three consecutive scans
have been observed to be identical or some register has been seen to change value twice.

In summary, the [PB] reader's protocol operates as follows:

1. A reader performing a read first scans the writers' registers attempting to make
two consecutive scans that return the same values of V N[i,j] for all writers i
and j. By the end of at most m + 2 scans, either two such scans will have been
observed, or the read will have tImed out returning a value written by a writer
whose values have been observed to change twice. If two consecutive scans return
the same values of the V N[i, j] then the values observed by the second scan are
used in the next step to determine the value to return.

2. On the basis of the values read in the first step, the values of IV N S(i)l, of N(i),
and finally of F are computed. The value of Value[F] seen during the second of
the two consecutive, identical scans from the first step is then returned.

Note that the code in [PB] actually returns the value Value[F] seen during the
first scan; this is in plain contradiction with the correctness arguments given in
that paper and has been corrected in the code in this paper.

This concludes our discussion of how readers choose the values they are to return.

6 The Writer's Protocol

We have discussed a reader's choice of a value to return based on the existence of several
variables maintained by the writers. We have yet to demonstrate how these variables
are maintained. We will do so now.

Just as a reader must first read the values in all of the writers' registers to determine
what value to return, so too a writer must first read all of the writers' registers to
determine what to write. Writers read a consistent set of values in a manner almost
identical with that by which readers obtain a consistent set of values (although the
reason why the method works is somewhat different in the two cases). As before, a
writer obtains a consistent set of values for the V N, PV N, and OV N by making scans
of the writers' registers. This time, if across three consecutive scans, none of the V N,
PV N, or OV N are seen to change, then the writer may assume that the values read
by the last of the three scans repre~ent a consistent state of the world on the basis of
which the writer may complete its write. Again, if these three scans are performed as
part of a write W, then the action 1Scan(W)i corresponds to the "atomic" action of

10

the read of the values in writer i's register performed during the first of the three scans;
similarly for the actions 2Scan(W)i and 3Scan(W)i. It is an important fact that at the
point where the action Scan(W) was placed, the values in all of the writers' registers
equal those read by the three scans, thus we may think of the three scans as having
occured atomically at the point Scan(W). We will consequently refer only to Scan(W),
the scan point of W, throughout the remainder of this paper, and ignore the separate
scans where possible.

The PreOV N are read somewhat differently. The PreOV N are not read as part
of the scans of the writers' registers. Rather, after three consecutive, identical scans
of the writers' registers have been performed as above, say as part of a write W by
writer i, the Preav N[j, i] are read sequentially. Each is read only once. This is
sUI\Posed to be adequate to obtain a meaningful set of values for the PreOV N[j, i]; it
turns out, however that it is not. This problem is corrected by performing the reads
of the PreOV .N[i, j] between the second and third of the three consecutive identical
scans. It is to the "atonlic" read action of the read of a PreOV N[j, i) that the action
PScan(W)j corresponds.

Assuming that a writer i has succeeded at reading a consistent set of values for the
V N[j, k], PV N[j, k], av N[j, k], and Preav N[j, k] for all writers j and k, it chooses
the values it will write for the V N[i,j), PV N[i,j], and av N[i,j), for all writers j as
follows:

V N[i,j) Since we want to have av N(j, i) = V N[i,j] only for writers j whose most
recent writes are more recent than the most recent write by writer i, we must
choose V N[i,j] f; av N[j, i). Similarly, since Preav N(j, i) is the value that an
ongoing write by writer j is planning to write for OV N[j, i], we want to choose
V N[i,j] f; PreOV N[i,j]; otherwise we would imply falsely that the ongoing write
by writer j had chosen the value it is to write for av N[j, i) on the basis of the
value of 11 N[i,j] that we are choosing here but have not yet written. Finally, since
V N[i,j] is to serve as a "version number" for the current write by writer i, it must
be different from the value previously written for V N[i, j]. We thus choose the
new value for 11 .N[i,j] to be an arbitrary element of the observed set:

{I, 2, 3,4} \ {aV N[j, i), PreOV N[j, i], V N[i, jn.

PV N[i,j]. Since we want PV N[i,j) to be the value that was previously written for
V N[i,j], we will choose PV N[i,j] to be the observed value for V N[i,j]:

PV N[i,j] := V N[i,j).

OV N[i,j] As was mentioned during the discussion of the version numbers, the values
of the OV N[i, j] are to represent the values of the V N[j, i] observed by writer i.
Consequently, we assign:

av N[i,j) := V N[j, i].

11

After a writer i performing a wri te W has chosen the values it is t<? write for V N [i, j],
PV N[i,j], and OVN[i,j], it proceeds to write to its register, in one atomic fell swoop,
Value[i], and VN[i,j], PVN[i,j], and OVN[i,j] for all writers j. It is to the "atomic"
action of this write to writer i'sregister that the W rite(W) action corresponds.

The PreOV N[i, j] are written somewhat differently. This is so for two reasons.
First,since the PreOV N[i, j] are not visible to the readers, it is not necessary to write
them with the other values. Second, since it is the purpose of the PreOV N[i, j] to
inform other writers of the value of OV N[i, j] that will be written, but has not yet been
written, it is vital that the PreOV N[i,j] be written as early as possible. Thus the
PreOV N[i,j] are written following the first scan of the writers' registers and following
each subsequent scan that returns values different from those returned by the previous
scan. Thus each time a scan returns a potentially new set of V N[j, i], we write the new
values:

PreOV N[i,j] := V N[j, i]

for all writers j. The "atomic" action of the last write of the value PreOV N[i,j] as
part of the write W corresponds to the action PW rite(W)j.

As was the case with the reader's protocol, a writer performing a write could perform
an infinite sequence of scans and never see three consecutive scans return the same
values. The solution here is the same as with the reader's protocol. As a writer i
performs scans of the writers' registers, it keeps track of those writers that have been
seen to change values between scans. As before, if some writer is seen to have changed
its values more than once, the last write was performed within the time bounds of
writer i's current write. The "atomic" action for writer i's current write may thus
be placed immediately before that of the write that was performed within its Start
and Finish bounds; writer i simply terminates its write without changing Value[i] ,
V N[i,j], PV.N[i,j], or OV N[i,j]. A writer that terminates in this manner is said to
have "timed out." Note that since writer i does not change its values while it is scanning
(the PreOV N[i,j]'s are not compared across scans), and three consecutive, identical
scans are needed, the pigeon hole principle dictates a ceiling on the number of scans
that a writer need perform that is somewhat different from the ~orresponding ceiling for
readers; after at most 2m + 1 scans, a writer has either seen three consecutive, identical
scans or has timed out.

Thus we can summarize the operation of the writer's protocol as follows:

1. A writer performing a write first repeatedly performs scans the of the writers'
registers. After each scan (except the first), the values read for the V N, PV N, and
OV N are compared to those that were read by the previous scan. If a difference
is found, the writer writes out its PreOV N[i, j]'s and notes which writers were
responsible for the difference. After a sequence of exactly two consecutive identical
scans, the PreOV N are read as this may turn out to be the point between the
second and third consecutive identical scans.

12

2. If after 2m + 1 scans, no three consecutive scans have been observed to have
the same values, the write times out by exiting without doing anything further.
Otherwise, the third scan of a set of three consecutive, identical scans, along with
the last observed set of PreOV N, is taken to be a consistent state of the V N,
PVN, OVN, and PreOVN.

3. New values are now chosen for the V N[i,j], OV N[i,j], and PV N[i,j] according
to the rules expressed earlier. After these values have been chosen, they, along
with the new value for Value[i] are written to writer i's register in one atomic
write.

This completes the discussion of the writer's protocol.

Part II

Code and CounterexaIllples

7 TheCode

Figure 2 presents the code for the reader's protocol published in [PB], rewritten with a
bug fix. Similarly, figure 3 presents the code for the published writer's protocol, again
rewritten with a bug fix.

A few comments about the code are in order. First note that the actions to which cer­
tain key portions of the code correspond have been placed at the right. The xScan(W)i
correspond to the the reads of writer i's register as, part of a scan. The only three such
scans for which we have explicitly defined actions xScan(W)i are the last three which
are lScan(W)i, 2Scan(W)i, and 3Scan(W)i respectively; since we do not know at the
time we perform a scan if it is one of those three scans, we must be content with the
variable labels xScan(H')i in the margin. Similarly for the xScan(R)i. Note that the
subscripts that appear in the action labels, such as the i in xScan(W)i' refer to the
variables in the code.

Note also that the code for the writer's protocol is specific to writer k; it makes u~e
of the variable k in the code so that it knows the register to which it may write. Note
also that the only variables that are shared among the protocols are the V N, PV N ,
Oll N, and PreOll]\T, all other variables are local.

An additional note about the code is that all code within a given pair of t><I symbols
is to be performed in one atomic action. Thus if a loop is contained within the triangle
symbols, the values to be written or read by the loop are written or read all at once;
the loop is only notation to quantify what gets written or read.

13

BEGIN
Same-Scan, := OJ Timed.Out := OJ
FOR i := 1 TO m DO Change • .5ecra[i) := OJ ENDj
FOR i := 1 TO m DO

• FORj:= 1 TO m DO Scan.VN[i,Jl:= VN[i,J1j ENDj
FORj:= 1 TO m DO Scan.oVN[i,j) :=OVN[i,J1j ENDj
FOR j:= 1 TO m DO Scan..PVN[i,J1:= PVN[i,J1; END;
Scan.Va/uc[.1 := Valuc[a1; 4

END;
Samc--Scan. := 1;
REPEAT

FOR i := 1 TO m DO
FOR j := 1 TO m DO Savcd.5can.V N[i, J1 := Scan.V N[i, ,1; END;
FOR j:= 1 TO m DO Saved.5can.VN[i,,1:= Scan.VN[i,j); END;
FOR j:= 1 TO m DO Savcd.5can.VN[i,,1:= Scan.VN[i,,1; END;

END;
FOR i := 1 TO m DO

• FOR j:= 1 TO m DO Scean.VN[i,,1:= VN[i,,1; END;
FOR j:= 1 TO m DO Secan.DVN[i"l:= OVN[i,,1; END;
FOR j:= 1 TO m DO Sccan-PVN[i"l:= PVN[i,,1i END;
Scan.Value[a1 := Vealue[i]; 4

ENDj
Any.Change.5ince.La.t.;Scan := F ALSEj
FOR i := 1 TO m DO

i.Changed.5ince.La.t-Scan := F ALSEj
FOR j := 1 TO m DO

IF Scan.V N[i,,1 ~ Saved-Scan.V N[i"l
THEN i.Changed.5ince.La,t-Scan := T RU E;

END;
IF LChanged-Since.Ltut.5ccan
TBE~ Changu.5een[.l := Changu.5een[tl + 1;

AnJl.Change.5ince.Lalt.5can := TRU E;
ENDj
IF AnJl.Change.5ince.La.t-Scan
THEN Same-Scan. := Ii

FOR i := 1 TO m DO
IF Changu.5een[ll = 2 THEN Timed.Out := i;

END'
ELSE S~me-ScQn. := Same-Scean. + Ij

UNTIL Same-Scan, = 2 OR Timed.Out f:. OJ
IF Timed.Out f:. 0
THEN RETURN(Scan.Value[Timed.Out»;
ELSE

FOR i := 1 TO m DO
N[;]:= 1;
FOR j := 1 TO m DO

IF Scan.OVN[i,j] ~ Scan.V N[j, '1 AND Scan.OV N[i, j] ~ Scan-PV N[j,;]
THEN N[11 := 0;

END;
VNS.5ize[a1:= 0;
FOR j := 1 TO m DO

IF Scean.OVN[i,i] = Scan.VN[j,ll
THEN VNS.5ize[i]:= VNS.5ize[11 + 1;

END;
ENDj
F := 0; N ..plu •• V NS.5ize := OJ
FOR i := 1 TO m DO

IF N[ll + VNS.5ize[11 ~ N..plu,.VNS.5ize
THE~ F := ij N ..plu,.V NS.5ize := N[;] + V NS.5ize[i];

ENDj
RETURN(Scan. Value[F]);

ENDj

Figure 2: The reader's protocol.

14

StarteR)

}'S"'(R);

} .S",.(R~

Fini.h(R)

BEGIN
Same_Scan. := 0; Timed_Out := 0;
FOR i:= 1 TO mOO Chonge.-Seen['1 := OJ ENDj
FOR i := 1 TO m DO

I> FOR;:= 1 TO m DO Scan_VN[i,J1:= VN[i,J1j END;
FOR; := 1 TO m DO Scan-DV N[i,;) := OV N(i, J1; END;
FOR j := 1 TO m DO Scan..PVN(i,J1:= PVN(i,J1j ENDj
Scan_Value['1 := Value(.1; <CI

END;
Same-Scan.:= 1;
REPEAT

FOR i := 1 TO m DO
FOR;:= 1 TO m DO Satled-Scan_VN[i,J1 :=ScGn_VN(i,J1; END;
FOR j := 1 TO m DO Saved-Scan_VN[i,j] := Scan_VN[i,J1; END;
FOR;:= 1 TO m DO Satled-Scan_VN[i,J1 :=Scan_VN[i,J1i ENDj

END;
IF Same-Scan' = 1
THEN

FOR i := 1 TO m DO
I> PreOV N[k, 11 := Scan_V N[i, i); 4

END;
FOR i := 1 TO m DO

I> FOR i := 1 TO m DO Scan_V N[i,;] := V N[i, J1; END;
FOR;:= 1 TO m DO Scan-DVN[i,;):= OVN[i,J1; END;
FOR j := 1 TO m DO Scan..PV N[i, J1 := PV N[i. j}j END;
Scan_Va/ue[.1 :::: Va/ue[.1; 4

END;
Any_Change-Since_Lalt-Scan := FALSE;
FOR i := 1 TO m DO

i-Changed-Since..Lalt-Scan := FALSE;
FOR j := 1 TO m DO

IF Scan_VN[i,i);I: Saved-Scan_VN[i,j]
THEN i_Changed-Since_L(ut-Scan := TRUE;

END;
IF i_Changed-Since..Lan-Scan
THEN Changu-Seen[i) := Change.-Seen[ll + 1;

Any_Change-Since..Lalt-Scan := TRUE;
END;
IF Any_Change-Since_Last-Scan
THEN Same-Scan. := 1;

FOR i := 1 TO m DO
IF Changu-Seen[.1 = 2 THEN Timed_Out := i;

END;
ELSE Same-Scan. := Same-Scan. + 1;

UNTIL Same_Scan. = 3 OR Timed_Out ;I: 0;
IF Timed_Out ;I: 0
THEN' RETURN;
ELSE

FOR i := 1 TO m DO
to PScan..PreOV N[i, k] := PreOV N[i, kj; <I

END;
to FOR i := I TO m DO

V N[k,.1 := Any({I, 2, 3, 4} \ {Scan_V N[k, 11, Scan-DV N[i, kj, PScan..PreOVN[i, k]};
OV N[k, i] := Scan_V N[i, k);
PVN[k,11:= Scan_V N[k, i]j

ENDj
\'a/ue[k] := V.4LU Ej <I

RETURN:
END:

Figure 3: \Vriter k's protocol.

15

Start(W)

} .SCGft{W),

PWrite(W)i

} .s",.(W),

PScan(W)i

x ------* --------------*-----------
y SA'! * S B ~ SeW S D ~ * ________ _

z ---------*-----------------------*---------------

Figure 4:

8 TIle First Counterexample

Let us first assume that the writer's protocol maintians a consistent state of the world;
that atolnic write points ll1ay be inserted within the bounds of each write such that the
value of F is a constant between those points, and at each point p, the value of F at p
is the writer that perfoflned the write whose atomic point most recently preceeds p.

Thus if a read R is performed in an interval containing no atomic write points, we
can place an atomic read point anywhere between Start(R) and Finish(R), and R will
necessarily return the value written by the write whose atomic write point most recently
preceedsR~s atomic read point. Similarly, for reads R that time out, we have argued that
R must return the yalue of a write that was performed completely within the bounds
of StarteR) and Finish(R); if the atomic read point for R is placed immediately after
that of the atomic write point of the contained write, then again R necessarily returns
the value written by the write whose atomic write point most recently preceeds its own
atomic read point.

Unfortunately, it is not the case that all reads either are performed in write-free
intervals or explicitly tinle out, as figure 4 illustrates. Figure 4 shows the actions of
three writers labeled .X, Y, and Z; we will assume in these figures that the writers
are presented in increasing order, thus X < Y < Z. In the interval pictured, X and
Z do not write while Y ,,,,rites four times. The Scan and IVrite actions of the writes
are indicated by the points labeled by Sand W respectively. Note that under S we
are lumping together aU three consecutive, identical scans made by a writer, as well as
the P1Vrite action. Also included in the diagram are two scans of the three writers'
registers made by a reader as part of a single read R. The * signs denote the atomic read
points of the reads of the individual writers' registers performed as part of the scans.
Thus writer Y starts with a complete write A. This is followed by the complete first
scan of the read R. This is then followed by three more complete writes by writer Y
and the final scan of R.

"Trite A sees the current l'l'rs posted by all three writers and records them as its

16

w S H W
X * *

S A W S B W S C W S D W
Y *

$ *-
S E W S F W S G W

Z . ,

* *-

Figure 5:

OV1V[i,j]'s when it \vrites, while changing its own set ofVl\"[i,j]'s. At this point, the
state of the world is seen by the first scan of read R, Write B then writes a new set
of V N [i, j)'s which by choice must differ from those written by write A, If the second
scan of R is to read the same 1']{ 's as the first scan we see that writer Y must write
again (indeed twice since the protocol requires a minimum of three writes for a writer to
restore its V 1\- for itself) to restore the V N's that had been written as part of write A,
This having been accOluplished, the second scan of read R is performed and returns the
same state of the world as was seen by the first scan of R. Thus the reader performing
read R cannot tell that a write has occured between the two read.scans, although several
have, and proceeds to return a value based upon the information observed by the two
scans.

One may ask if the value returned in the above example will violate the atomicity
requirements for the three-writer register construction. In this case, the answer is that
the value returned is legitinlate. The value returned is that written by write D. Since
write D is cOlupletely contained within the bounds of read R, its atomic action is as
well, and as in the case of the timed out reads, it is legitimate to place the atomic read
action of R immediately following the atomic write action of D. In [PB], R is referred
to as having tinled out without knowing that it did so. That paper then attempts to
generalize the argurnent, used above to demonstrate the need for C and D if the scans
of R are to agree, to provide a proof that when a writer times out without knowing it
has done so, it still returns a correct value. It was the study of that proof that led to
the developluent of the first counterexample to the correctness of the algorithm, thus it
is instructh'e to repeat it here.

Given the last two scans of a read R as shown in figure 5, assume that the values
of the V N's seen by the two scans are identical. Now divide the writers into two sets,
the "changing" writers that performed the Write action of some write between the two
scans of R, and the "unchanging" writers that did not perform the lVrite action of any
write between the two scans of R. By that definition, writers Y and Z are changing
writers while writer ~\ is an unchanging writer in figure 5. Now by reasoning presented

17

x ------*-----------------*--------------------------------------
y -----------*--------~-------*---------------------------------

z ---------------* ------------* ---------------------

Figure 6:

earlier, if the two scans of R are to see the same V N's for all writers, writes C and
D must occur between HTrite(B) and the second scan of read R; in general, every
changing writer must perform a complete write between the two scans of R. Thus at
the second scan of R, all of the changing writers will be observed to have "seen" the
V]\Tls of the unchanging writers whereas the unchanging writers will be observed not
to "see" the V!{'s of any of the changing writers. Also, since each changing writer has
written at least twice between the most recent write by any unchanging writer and the
second scan of R, we should have N(i) = 0 for all unchanging writers i. Thus it is
completely impossible for the value of an unchanging writer to be returned if there exist
any changing writers. If the value returned by R is read from the register of a changing
writer, then it was written by a write that occured entirely between the two scans of
R. If the value returned is read fronl the register of an unchanging writer, then there
are no changing writers, and the last two scans of R occured in an interval in which no
writing took place. Thus R returns a legitimate value.

The problenl with this proof is shown in figure 6 which demonstrates the real picture
of how read scans occur. The notions of "the point at which the first scan of R occured"
and thus of ';changing'~ and "unchanging" writers, are therefore not well defined. Sup­
pose the following definition of "changing" writer is made to eliminate ambiguity: a
writer i will be defined to be a changing writer if it completed a write liT between the
reads of its register in the first and second consecutive, identical scans made by the
read R; that is, if IScan(R)i < lri'rite(HT) < 2Scan(R)i. Thus in figure 7, writer Z is a
changing writer while writers X and Yare not. The same reasoning as above then shows
that SOlne writes C and D must occur between IVrite(B) and the read, 2Scan(R)z, of
writer Z~s register in the second scan.

There is a problem with this however, that is del1l0nstrated by figure 8. Assume that
the scans of the read R see the same V!{'s. \Vriter X is a changing writer while writer Y
is an unchanging writer. \Yriter Y will be seen to have observed the lIN's written by
writer X' during the write D. \Vriter X, on the other hand, will be observed to have
seen the V]\T's written by writer Y prior to the write E. ""Triter Y will consequently be

18

S E W
X -* * S A

W
Y * * S W S C W S D W
Z B *wt *

Figure 7:

x
S A 1~ S B W SeW S D W

~ ... --..... - - ----------
y

SEW
-----------------------------------.----~*---------*-

Figure 8:

19

sw sw sw
x - *--*

l2111 l3222 3222 1333
3222 L322 2L33 1222

sw SW SW SW
Y *

l 1322 l2122 l3211
*-

2111 32LL
2111 3222 1333 2111 ~222.

Figure 9: The first counterexample.

judged, correctly, to be the writer that wrote more recently before the second scan of R,
and its value, that written by E, will be returned by R. Read R thus returns the value
written by an unchanging writer despite the existence of a changing writer. Clearly,
the reasoning sketched above no longer works; one then asks if a conterexample may be
constructed to the algorithm in a similar manner.

The answer to this question is that we can. Such a counterexample is listed in
figure 9. The numbers following the vertical lines are the values of the various variables
following the actions to which the vertical lines are connected; the numbers below the
horizontal time-line for writer X refer, in order, to the V N[X, i], PV N[X, i], OV N[X, i],
and PreOV .1V[X, i); the rows of numbers are presented in the same order as the time­
lines for the different writers. For example, following the first write by writer X, we
have,

v)\'"[X, X] = 1 and V N[X, Y) = 4

PV 2V[.X, X] = 3 and PV lV[X, Y] = 3

OF)\i[.\,", X] = 3 and OV N[X, Y] = 2

PreOV ..IV [.X, X] = 3 and PreOV)\T[X, Y] = 2.

Then what this counterexample has done is to perform, without interruption, the first
scan of the read R as well as the read of writer X's register for the second scan of R.
Before the second scan of R gets to read the value in 1" 's register, however, we have
performed a series of writes that render completely meaningless the first values read.
In particular, we have written so that the values of l']\T[y, X] and V' N[Y, Y) observed
by the second scan equal the values of these variables observed by the first scan; this
i~plies that the read R detects no writes occuring between its scans and will select a
value to return based on the values seen by the second scan. But for the values returned
by the second scan we have:

1 = OV N[Y, X] =I V lV[X, YJ = 4 and 1 = OV N[Y, X) f; PV N[X, YJ = 3

20

and

2 = OVN[Y,Y] # VN[Y,Y] = 3 and 1 = OVN[Y,X] # VN[X,Y] = 4

implying that N(Y) = 0 and IVN S(Y)I = o. Also,

3 = OV N[X,X] = PV N[X, X] = 3 and 2 = OVN[X, Y] = PV N[Y, X] = 2

implying that N(X) = 1 while IV N S(X)I = o. The value of F computed on the basis
of these values is F = X. Thus the read R will return the value read from the register
of writer X during its second scan. Since this value was written by the first write shown
for writer X , and the atomic write action of the first write shown for writer Y must be
interposed between the atomic write ~ction of the first write shown for writer X and
the first scan of R, the atomicity condition is violated.

One will note that the first and second scans did not observe the same values for
OV N[Y, X]. One might ask then if the algorithm would perform correctly if not only
the V N's, but the PV N's and OV N's as well were required to be constant across the
two scans of a read. A counterexample communicated by Burns shows that both scans
of a read R may see the same values for the V N's, PV N's, and OV N's, and still return
a value that is no longer valid.

9 The Second Counterexample

In our discussion of the previous counterexample, we assumed that the writers write in
a manner that respects the atomicity condition. This turns out not to be so, the result
being another counterexample to the correctness of the algorithm.

Recall that when a writer is reading the values that it needs to determine what to
write, it reads the OV N's before the PreOV N's. At the same time, however, writers
write their PreOV N's before they write their OV N's. T~is leads to trouble.

Figure 10 presents an example of how this fact can result in the improper execution
of the algorithm. The second write by writer X scans the value OV N[Y, X] before the
write point of the first write by writer Y. Before the second write by writer X gets
around to reading PreOV N[Y, X] (at the point marked "PS"), however, writer Y both
writes and scans; the write by writer Y invalidates the value of OV N[Y, X] seen by
writer X while the scan invalidates the value of PreOV N[Y, Xl. This means that the
second write by writer X completely fails to see the value of OV N[Y, Xl written by the
first write by writer Y.

Let P be the point immediately preceeding the Write action of the second write by
writer X. Let Q be the point immediately following the same action.

We have the following set of equations at P:

3 = OVN[X,X] = PVN[X, X] = 3 1: VN[X,X] = 4

21

SW S PS W
x

3222
3222
3222

y
2111
2111
2111

z
2111
2111
2111

~ -
u333
4322
4333

S w S

2113 3233 32.34
2112 3222 3223
2112 3222 .3223

SW
-'"--

3233
3222
3222

Figure 10: The second counterexample.

2 = all ..iV[X,Y] = PV N[Y, X] = 2 =F V1V[Y,X] = 3

3 = OV N[X, Z] = 1IN[Z, X] = 3

Thus 1V(.\"") = 1 and IV1V' S(_\"")I = 1.

3 = OV1V[Y,X] = PV N[X, Y] = 3 =F V N[X, Y] = 4

2 = OV .N[Y, Y] = PV .N[Y, Y] = 2 =F V]\T[Y, Y] = 3

2 = OF .1V[Y, Z] = PV N[Z, Y] = 2 =F V]\T[Z, 1'] ~ 3

Thus .N(X) = 1 and IV lV S(.:\"')I = o.

3 = all .N[Z,X] = PV N[X, Z] = 3 =F 11 N[X, Z] = 4

2 = all]\; [Z, Y] = PV N[Y, Z] = 2 =F v N [Y, Z] = 3

2 = a v]\T[Z, Z] = PV N [Z, Z] = 2 :/; v N [Z, Z] = 3

Thus N(X) = 1 and IV]\T S(X)I = o. Consequently, F = X at P.

~.Te have the following set of equations at Q:

4 = OF]\T[X, X] = PV N[X,X] = 4 =F V]\T[X, X] = 1

2 = OF]\T[X, Y] = PV]\T[y, X] = 2 f; V]\1[1', .\""] = 3

22

1444
3422
1433

3 = OVN[X, Z] = VN[Z,X] = 3

Thus N(X) = 1 and IV N S(X)I = 1.

3 = OVN[Y,X] = VN[X,Y] = 3

2 = OVN[Y,Y] = PVN[Y,y] = 2:F VN[Y,Y] = 3

2 = OV N[Y, Z] = PVN[Z, Y] = 2:F VN[Z, Y] = 3

Thus N(X) = 1 and IV N S(X)I = 1.

3 = OV N[Z, X] :F PV N[X, Z] = 4and3 = OV N[Z, X] :F V N[X, Z] = 1

2 = OVN[Z, Y] = PVN[Y, Z] = 2:F VN[Y, Z] = 3

2 = OV N [Z, Z] == PV N [Z, Z] == 2 :F V N[Z, Z] = 3

Thus N(X) = 0 and IVNS(X)I = O. Consequently, since Y > X, F = Y at P.

This is not good because it implies that the most recent atomic write action pre­
ceeding P is not that of the first write by writer Y whereas the most recent atomic
write action preceeding Q is that of the first write by writer Y. Thus these writes were
not performed in a simulated atomic manner.

The obvious fix to this problem is to scan the PreOV N values earlier. The code
for the writer's protocol that is proved correct in the next part of this paper performs
the scan of the PreOV N values between the second and third consecutive identical
scans of the writers' registers instead of after all three consecutive identical scans have
completed.

Part III

Code and Correctness

10 The Code

The code for the algorithm we will be proving correct is found in figures 11 and 12.
Note that the only differences between this code and that which was presented earlier
are: the number of consecutive, identical scans a reader makes is now three; all of
the V N's, PV N's, and OV N's are now compared between scans for both reads and
writes; and writes perform their final reads of the PreOV N's between their second and
third consecutive, identical scans. The first two of these were suggested by Burns as
corrections to eliminate the first counterexample. The third is a fix to eliminate the
conditions that led to the second counterexample.

23

BEGIN
Same.Scans := 0; Timed.Out := 0;
FOR i := 1 TO m DO Changu.5een[al := 0; END;
FOR i := 1 TO m DO

c. FORi:= 1 TO m DO Scan.VN[i,i]:= VN[i,J1; END:
FORi:= 1 TO m DO Scan-OVN[i,i] :=OVN[i,J1; END:
FOR i := 1 TO m DO ScanJ'V N[i, J1 := PV N[i, J1; END;
Scan.Va/ue[~ := Va/ue[al;.s

END;
Same.5can.:= 1;
REPEAT

FOR i := 1 TO m DO
FORi:= 1 TO m DO Satled.5cCln_VN[i,J1 :=Scan_VN[i,J1; END;
FOR i := 1 TO m DO Saved.5can_V N[i,i]:= Scan.VN[i,i]; END;
FORi:= 1 TO m DO Savcd..scan_VN[i,i]:= Scan_VN[i,;]; END;

END;
FOR i := 1 TO m DO

co FOR i:= 1 TO mDO Scan_VN[i,i]:= VN[i,J1: END;
FOR i := 1 TO m DO Scan-C) V N[i,i] := OV N[i,J1; END;
FOR i:= 1 TO m DO Scan-PVN[i,J1:= PVN[i,J1; END;
Scan.Va/ue[a1 := Va/ue[a1; <I

END;
Any.Change.5ince.La,LScan := FALSE;
FOR i := 1 TO m DO

LChanged.5ince.La.t.5can := FALSE;
FOR i := 1 TO m DO

IF Scan,:V N[i, i] :;: Saved.5cCln_V N[i,Jl OR
Scan_OV N[i, i] ~ SalJed.5can_OV N[i, i] OR
Scan-PV N[i, ij :;: SalJed..5can-PV N[i, i]

THEN i_Changed.5ince.Lalt..5can := TRUE;
END:
IF LChanged.5ince-La.t.5can
THEN Changu..5een[i] := CJiange • ..5cen[al + 1;

Any.Change.5ince-La,t.5can := T RU E;
E~D:

IF Any.Change..5ince_Lalt..5can
THE:-.i Same..5can, := 1;

FOR i := 1 TO m DO
IF Changu..5een[i] = 2 THEN Timed_Out := i:

END;
ELSE Samf..scans := Same.Scarls + 1;

UNTIL Same..5can, = 3 OR Timed.Out 1: 0:
IF Timed_Out ~ 0
THE~ RETURN(Scan.Value[Timed.Outj);
ELSE

FOR i := 1 TO m DO
N[i]:= 1;
FOR i := 1 TO m DO

IF Scan_OV N[i,i] ~ Scan.vN[j,al AND Scan_OVN[i,i] ~ Scan.PVN[j, i]
THEN N[i] := 0;

END;
V N S..5ize[i] := 0:
FOR j := 1 TO m DO

IF Scan.OV N[i,j] = Scan.V N[j, i]
THEN V."l S..5ize[i] := l/ N S..5ize[z1 + I:

END;
END;
F := 0: N .plu •• V N S.5ize := 0;
FOR i:= 1 TO m DO

IF N[i] + VNS..5i:e[al ~ N.plu,.VNS..5ize
THEN F:= i: N.plus.VNS-Size:= N[i] + VNS..5ize[i]:

END;
RETURN(Scan.Value[F]);

E~D~

Figure 11: The reader '8 protocol.

24

StarteR)

}zscan(R)'

Fini,h(R)

BEGI~
Same-Scan, := 0; Timed.Out := OJ
FOR i := 1 TO m DO Changu-Seen[.1 := OJ END;
FOR i := 1 TO m DO

c. FORj:= 1 TO mOO Scan.VN[i,J1:= VN[i,J1; END;
FOR j := 1 TO m DOScan-DV N[i, J1 := OV N[i, J1; ENDi
FOR j := 1 TO m DO Scan.PVN[i,J1:= PVN[i,J1i END;
Scan.Value['1:= Volue[.1; 4

ENDj
Some-Scon.:= Ii
REPEAT

FOR i := 1 TO m DO
FOR j := 1 TO m DO SOlled-Scon.V N[i,J1 := Scan..V N[i,,1; END;
FOR j:= 1 TO m DO SOlled-Scon.V N[i, J1 := Scan.V N[i, J1; END;
FOR j := 1 TO m DO SOlled-Scon.V N[i,J1:= Scan.VN{i,J1i END;

END;
IF Same.$can. = 1
THEN

FOR i := 1 TO m DO
c. PreOV N[l,., := Scan.V N[i, l]j 4

END;
ELSIF Same-Scan, = 2
THEN

FOR i := 1 TO m DO
~ PScan.PreOV N[i, k] := PreOV N[i, l]; 4

END;
FOR i := 1 TO m DO

~ FOR j:= 1 TO m DO Scan.VN[i,J1:= VN[i,J1j END;
FOR j :=1 TO m DO Scon-DVN[i,j]:= OVN[i,J1i END;
FOR j:= 1 TO m DO Scan-PVN[i,j]:= PVN[i,j]i END;
Scan.Value[., := Value['1; 4

END;
Anll.Change-Since..Lalt-Scan := FALSE;
FOR i := 1 TO m DO

LChanged-Since..La,t-Scan := FALSE;
FOR j := 1 TO m DO

IF Scan.V N[i, j] ¢ Satled.5can.V N[i, J1 OR
Scan.OV N[i, j] ¢ Satled-Scan.OV N[i, j] OR
Scan-PVN[i,j] ¢ Satled-Scan-PVN[i,j]

THEN i.Changed-Since.Lalt-Scan := TRUE;
END;
IF LChanged-Since..La,t-Scan
THEN Changu.5een[i] := Changu.5een[., + Ii

Anll.Change-Since.La.t-Scon := T RU E;
END:
IF Anll.Change.5ince.La,t.5can
THEN Sarrae.5can. := 1;

FOR i := 1 TO m DO
IF Changu.5een[,1 = 2 THEN Timed.Out := i;

ENDj
ELSE Same.5can. := Same.Scan, + Ij

UNTIL Same.Scan. = 3 OR Timed.Out ¢ 0;
IF Timed.Out ¢ 0
THEN RETURN;
ELSE,

~ FOR i := 1 TO m DO
V N[l,.1:= AnJl({I, 2,3,4} \ {Scan.V N[l,.1,Scan-DVN[i,l1,PScan-PreOVN(i,k]}j
OV N[l,.1 := Scan.V N[i, k);
PVN[t,.1:= Scan.VN[k,.1;

END;
Value[kl := V ALU E; 4

RETt:RN;
E~D;

Figure 12: \Vriter k's protocol.

25

Stort(W)

}%s (W~

PWrite(W)i

PScan(W)i

} .s ... (W).

) WF«.(W)

Fini.h(W)

Note that up to this point we have ignored the question of initial values. We will
start the composition automaton in a state in which no readers or writers are reading
or writing and for which:

for all i > 1, and for which

VN[i,j] = 2

PV N[i,j] = 1

PreOV N[i,j] = OV N[i,j] = 1

VN[1,j] = 3

PVN[1,j] = 2

PreOV N[1, j] = OV N[1, j] = 2.

We will also assume that this configuration was reached by performing a number of
writes, at least one per writer, building on a previous set of values. As such the most
recent write W by writer i for which Write(W) < s is well defined for all states s and
all writers i.

11 Definitions

Let us begin our proof of correctness by recapitulating the definitions of the preceeding
sections.

DEFINITION: Let W be any write of a value to the composition automaton and R
be any read of the value in the composition automaton. Then Value(W) and Value(R)
refer to the values written by Wand read by R respectively.

DEFINITION: Let W be any write by writer i. Then the following actions are
associated with W:

Start(lV) The request to writer i to begin the write W. This is the first action in the
write W.

Finish(lV) Acknowledgement that the write W has just completed. This is the last
action in the write W.

DEFINITION: Let W be any write by writer i such that W did not timeout.
Then in addition to the above actions, the following actions are associated with W:

IS can(W)j The atomic action associated with the read of writer j's register during the
first of the last three scans performed by writer i as part of W. Note that we are
actually defining the m separate actions:

IScan(Wh < IScan(Wh < ... < IScan(W)m.

26

PWrite(W)j The atomic action associated with the last write of PreOV N[i,j] by
writer i as part of W. Note again that we are defining m separate actions. It
is not necessary, however, to perform the writes of the PreOV N[i,j] separately;
since the values are all being written to the same register, it would be quite
legitimate to write them all at once. The algorithm just happens to write them
separately.

2Scan(W)j The atomic action associated with the read of writer j's register during the
second of the last three scans performed by writer i as part of W. Note again that
we are defining m separate actions.

Scan(W) An action inserted immediately following 2Scan(W)m. The significance of
this action will be defined later.

PScan(lV)j The atomic action associated with the last read of PreOV N[j, i] from
writer j's register performed by writer i as part of W. Note again that we are
defining m separate actions.

3Scan(W)j The atomic action associated with the read of writer j's register during the
last scan performed by writer i as part of W . Note again that we are definingm
separate actions.

Write(W) The atomic action associated with the write of Value(W) and new VN's,
OV N's, and PV N's to writer i's register as part of the write W.

Note then that for a write W by writer i that does not time out, the actions of W
defined above occur in the following order:

Start(W) < IS can(Wh < ... < IS can(W)m <
PWrite(Wh < ... < PWrite(W)m <
2Scan(Wh < ... < 2Scan(W)m <
Scan(W) <
PScan(Wh < ... < PScan(W)m <
3S can(Wh < ... < 3S can(lV)m <
W rite(W) < Finish(W)

DEFINITION: Let R be any read by reader i. Then the following actions are
associated with R:

StarteR) The request to reader i to begin the read R. This is the first action in the
read R.

Finish(R) / Acknowledgem~nt that the read R has just completed. This is the last
action in the read R.

27

DEFINITION: Let R be any read by reader i such that R did not time out. Then
in addition to the 'above actions, the following actions are associated with R:

lScan(R)j The atomic action associated with the read of writer j's register during the
first of the last three scans performed by reader i as part of R. Note that we are
actually defining the m separate actions:

lScan(Rh < lScan(Rh < ... < lScan(R)m.

2Scan(R)j The atomic action associated with the read of writer j's register during the
second of the last three scans performed by reader i as part of R. Note again that
we are defining m separate actions.

3Scan(R)j The atomic action associated with the read of writer j's register during the
last scan performed by reader i as part of R. Note again that we are defining m
separate actions.

Note that for a read R by reader i that does not time out, the actions defined above
occur in the following order:

StarteR) < lScan(R)l < ... < lScan(R)m <
2Scan(Rh < ... < 2Scan(R)m <
3Scan(Rh < ... < 3Scan(R)m < Finish(R)

DEFINITION: Let s be any state in an execution of the composition automaton.
Let j and k be any writers.

v N[j, k]s Is the value of V N[j, k] at state s. It is important to note that this value
is stored in writer j's register and that it remains constant between consecutive
lVrite(lVj) actions of writes Wj by writer j.

OV N[j, k]s Is the value of OV N[j, k] at state s. Again, it is important to note that
this value is stored in writer j's register and that it remains constant between
consecutive Write(Wj) actions of writes Wj by writer j.

PV N[j, k]s Is the value of PV N[j, k] atstate s. Again, it is important to note that
. this value is stored in writer j's register and that it remains constant between

consecutive Write(Wj) actions of writes Wj by writer j.

Value[j]s If Wj is the last write by writer j for which Write(Wj) < s then we define
Value[j]s to be Value(Wj). Again, this value is stored in writer j's register and
changes only at the points W rite(W) for writes W by writer j.

PreOV N[j, kls Is the value of PreOV N[j, k] at state s. It is important to note that
this value is stored in writer j's register, that it is visible only to the writers and
not to the readers, and that it changes between some scans of a write Wj by
writer j. It remains constant, however, for all states between PW rite(Wj)k and
Finish(Wj) for all writers k and all writes Wj by writer j.

28

DEFINITION: Let W be a write by writer i that does not time out. Let j and k be
writers. Define V N[j, k]w, OV N[j, k]w, and PV N[j, k]w to be the values of V N[j, k],
ov N[j, k], and PV N[j, k] respectively, observed by the last three scans ofW. Thus if s,
t, and u are the states following lScan(W)j, 2Scan(W)j, and 3Scan(W)j respectively,
then we have:

V N[j, k]w = V N[j, k]. = V N[j, k]t = V N[j, k]u

OV N[j, k]w = OV N[j, k]. = OV N[j, klt = OV N[j, k]u

PV N[j, k]w = PV N[j, k]. = PV N[j, k]t = PV N[j, k]u

Define PreOV N[j, k]w to be the value of PreOV N[j, k] observed by the write W. Thus
if v is the state following PScan(W)j then we have PreOV N[j, k]w = PreOV N[j, k]v.

DEFINITION: Let Rbe a read by reader i that does not time out. Let j and k be
writers. Define V N[j, k]R, OV N[j, k]R, and PV N[j, k]R to be the values of V N[j, k],
ov N[j, k], and PV N[j, k] respectively, observed by the last three scans of R. Thus if
s, t, and u are the states following lScan(R)j, 2Scan(R)j, and 3Scan(R)j respectively,
then we have:

V N[j, k]R = V N[j, k]s = V N[j, k]t = V N[j, k]u

OV N[j, k]R = OV N[j, k]s = OV N[j, klt = OV N[j, k]u

PV N[j, k]R = PV N[j, k]s = PV N[j, klt = PV N[j, k]u

The following lemma embodies the rules by which the V N[i,j], OV N[i,j], PV N[i,j],
and PreOV N[i,j] are picked each time a writer writes.

Lemma 1 Let W be a write that does not time out and let i be the writer that performed
the write W. Letj be any writer. Let s, t, u, and v be the states following PScan(W)j,
3S can(lV)j, 3S can(lV)i' and Write(W) respectively. Then the following hold:

VN[i,j]v· ~ V N[i,j]u .

V N[i,j]v ~ OVN[j,i]t

VN[i,j]v ~ PreOV N[j, i]s

OVN[i,j]v = V N[j, i]t

PVN[i,j]v = V N[i,j]u.

Also, let x be the state following PWrite(W)j. Then

PreOV lV[i,j]x = V N[j, i]w = V N[j, i]t = OV N[i,j]v.

Proof of Lemma 1: This follows directly from the definitions of the P Scan, 3S can,
and Write actions and from trivial examination of the code. 0

Note that VN[i,j]v ~ VN[i,j]u implies that a writer changes all of its VN's every
time that it performs a write that does not time out.

29

DEFINITION: Let i be a writer and let s be a state in an execution of the
composition automaton. Then we will define:

VNS(i)s = {ill ~ i ~ m,OVN[i,j]s = VN[j,i]s}'

Let i be a writer and let R be any read that did not time out. We will define:

VNS(i)R = {ill ~ i ~ m,OVN[i,j]R = VN[j,i]R}.

DEFINITION: Let i be a writer and let s be a state in an execution of the
composition automaton. Then we will define:

{

I if for all writers j, either
N(i)s = OVN[i,i]s = VN[j,i]s or OVN[i,j]s = PVN[j,i].

o otherwise.

Let i be a writer and let R be any read that did not time out. We will define:

. { 1 if for all writers j, either
N(i)R = OV N[i,j]R = V N[j, i]R or OV N[i,j]R = PV N[j, i]R

o otherwise.

DEFINITION: Let s be a state in an execution of the composition automaton.
Then we will define:

F(s) = MAX{ill ~ i ~ m,IVNS(i).1 + N(i). = MAX1~i~m(IVNS(j).1 + N(j).)}.

Let R be any read that did not time out. We will define:

F(R) = }'1 AX {ill ~ i ~ m, IV N S(i)RI + N(i)R = M AX1~i~m(IV N S(j)RI + N(j)R)}'

Recall that the value of F(s) may be thought of as the writer whose 1-writer n + m­
reader register contains the current value for the m-writer n-reader register.

12 Basic Facts

Most of the following theorems, lemmas, corollaries, and such are useful in understand­
ing how writers, writing according to the writer's protocol, are able to write in such a
way that F(s) may always be taken to be the "current" value of the m-writer n-reader
atomic register.

The following lemma establishes a little fact that will be used throughout the re­
mainder of this paper.

Lelnma 2 For all writers i and all states s in an execution of the composition automa­
ton, i ¢ V N S(i)s.

30

Proof of Lemma 2: Let i be any writer and s be any state in an execution of the
composition automaton. Let Wi be the last write by writer i such that W rite(Wi) < s.
Let t and u be the states following 3Scan(Wi)i and Write(Wi) respectively. Then by
Lemma 1 we have V N[i, i]u =F V N[i, i]t = OV N[i, i]u. By choice of Wi, the values of
V N[i, i] and OV N[i, i] in writer i's register remain constant between u and 8 and thus
V N[i, i]s = V N[i, i]u and OV N[i, i], = OV N[i, i]u. Thus V N[i, i], :F OV N[i, i], and
by definition of V N S(i), we have i ¢ V N S(i), as desired. 0

All of the actions we have just described refer to particular, meaningful operations
performed during an execution of the read or write protocols, with on~ exception. In
particular, Scan(W) for a write Wthat did not time out was defined to be an action
inserted immediately after 2S can(W)m but it has had no meaning assigned to it. We will
give it meaning by showing that the values of the V N's, OV N's, and PV N's observed
by the last three scans of Ware identical to those in the writers' registers in the state
following S can(W); if u is the state following S can(W) then V N[j, k]u = V N[j, k]w,
OV N[j, k]u = OV N[j, k]w, and PV N[j, k]u = PV N[j, k]w for all writers j and k .

. Thus the values seen by the last three scans made during the write W may be thought
to have been read by an atomic scan at the point Scan(W). This is demonstrated by
the following Lemmas and Corollary.

Lemma 3 Let i and j be any writers. Let sand t be any two states, s < t, in an
execution of the composition automaton. If V N[i,j], = V N[i,jlt and there exists some
write IV by writer i such that s < W rite(W) < t then there exists at least one write Wt
by writer i such that .

s < Scan(Wt) < Write(Wt) < t.

If i = j then there exist at least two writes Wt and W2 by writer i such that

Proof of Lelnlna 3: Let Wo be the first write by writer i such that s < Write(Wo) <
t. Let u be the state following Write(Wo). Then by the way the V N's and PV N's are
chosen (ie. Lemma 1), we have

v N[i,j]u =F PV N[i,j]u = V N[i,j],.

Now since V N[i,j]t = V N[i,j]s there must be another write by writer i between u and
t to bring the value of V N[i,j] back to what it was at s. Let WI be the first such write.
Since WI must start after Wo finished, we have s < u < Scan(Wt) < Write(Wt) < t
and WI is as desired.

In the event that i = j, we have additionally, by Lemma 1, that OVN[i,i]u =
V N[i, i],. Thus if v is the state following Write(Wt}, by the way V N's are chosen we
have:

V N[i, i]v =I OV N[i, i]u = V N[i, i],.

31

Again, since V N[i, ih = V N[i, i]s, there must be yet another write by writer i between
v and t to bring the value of V N[i, i] back to what it was at s. Let W 2 be the first
such write. Again, since W2 must start after WI finished, we have s < Scan(W1) <
Write(W1) < v < Scan(W2) < Write(W2) < t, and WI andW2 are as desired. 0

Lemma 4 Let W be any write by a writer i such that W did not time out. Then
there does not exist a writer j and a write Wj by writer j such that 2S can(W)j <
W rite(Wj) < 3S can(W)j.

Proof of Lemma 4: Assume otherwise and let j be a writer for which there exists
a write Wj such that 2Scan(W)j < Write(Wj) < 3Scan(W)j. Let s and t be the states
following 2Scan(W)j and 3Scan(W)j respectively. Then since the last three scans of
W saw the same values in the registers, we have V N[j, k]w = V N[j, k]. = V N[j, k]t
for all writers k implying that V N[j, i]. = V N[j, i]t. Now we have assumed that there
is a write Wj by writer j for which s < Write(Wj) < t, so by Lemma 3, there exists
some write WJ by writer j such that s < Scan(WJ) < Write(WJ) < t; let WJ be the
last such write. If v is the statefollowing Write(WJ), then by choice of WJ, V N[j, i]
remains constant between v and t implying V N[j, i]v = V N[j, i]t. Let x be the state
following P S can(lVJ)i and note that

PHlrite(W)j < 2Scan(W)j < Scan(Wj) < x < Write(Wj) < 3Scan(W)j.

Then since PreOV N[i,j] remains constant between PWrite(W)j and 3Scan(W)j, by
Lemma 1 we have PreOVN[i,j]x = VN[j,i]w = VN[j,i]t. Also, by Lemma 1 we have
V N[j, i]v #- PreOV N[i,j]x. But this implies V N[j, i]v #- PreOV N[i,.j]x = V N[j, ilt
contradicting the V N[j, i]v = V N[j, i]t we saw above. Thus our assumption is incorrect
and the Lemma is proved. 0

Corollary 5 Let lV be any write by writer j such that W did not time out. Let u be the
state following Scan(W). Then V N[j, k]u = V N[j, k]w, OV N[j, k]u = OV N[j, k]w,
and PV N[j, k]u = PV N[j, k]w for all writers j and k.

Proof of Corollary 5: By Lemma 4, there are no writes to writer j's register that
could change the values of V N[j, k], OV N[j, k], and PV N[j, k] between 2Scan(W)j and
3Scan(lV)j for any writer k. Thus if sand t are the states following 2Scan(W)j and
3Scan(w)j respectively, we have s < u < t implying:

V N[j, k]s = V N[j, k]u = V N[j, k]t = V N[j, k]w

OV N[j, k]s = OV N[j, k]u = OV N[j, kh = OV N[j, k]w

PV N[j, k]s = PV N[j, k]u = PV N[j, k]t = PV N[j, k]w

for all writers k as desired. 0

32

This result permits us to thjnk of the values of the V N's, OV N's, and PV ~'s
observed by a write W, those values on the basis of which W chooses the V N's, OV N's,
and PV N's that it writes, to have been read by an atomic scan of all the writers' registers
acting at the point Scan(W). This meaning of the Scan(W) action is fundamental to
the remainder of the proof.

N ow that we have established the meaning of the· S can(W) action, we will present
two theorems that capture the essence of the relative meanings of the V N's, OV N's,
and PV N's; The first of these theorems states that for given writers i and j, if writer i
"sees" writer j's version number at a given point, if OV N[i, j] = V N[j, i] at that point,
then writer i has both scanned and written since the last write by writer j. The second
theorem states that for given writers i and j, if writer i ~ees neither writer j's V N nor
writer j's PV N at a given point, if OV N[i, j] :F V N[j, i) and OV N[i, j] :F PV N[j, i) at
that point, then writer j completed two writes between the scan arid write actions of
the most recent write completed by writer i. Let us first prove a little lemma.

Lemma 6 Let s be any state in an execution of the composition automaton. Let i be
any writer and let Wi be the last write by writer i for which Write(Wi) < s. Let j be
any writer for which there exists a write Wj such that Scan(Wi) < Write(Wj) < 8. Let
t be the state following Write(Wj). Then OV N[i,j]" :F V N[j, i]t.

Proof of Lemma 6: Let j, Wj, and t be as in the lemma statement. Let u and
v be the states following Scan(Wj) and PScan(Wj)i respectively. Then there are four
cases we must consider:

Case 1: v < Scan(Wi). Then since we have u < PScan(Wj)i < v, u < Scan(Wi) <
lVrite(lVj). Since writer j is in the process of performing the write Wj between
u and lVrite(lVj), ie. since Start(Wj) < u < Write(Wj) < Finish(Wj), there
are no other writes 111J by writer j for which u < Write(WJ) < Write(Wj) and
consequently V N[j, i]s' is constant for all 8', u ~ 8' < Write(Wj). In particular,
if x is the state following Scan(Wi) then:

V N[j, i]x = V N[j, i]u.

Let y be the state following Write(Wi)' Then by Lemma 1 we have:

OV N[i,j]y = V N[j, i]x

and
V N[j, i]t :F V N[j, i]u.

By choice of Wi and hence of y, OV N[i,j] remains constant between y and 8.

Consequently:
OV N[i,j]s = OV N[i,j]y.

Putting the above equations together yields:

OV N[i,j]s = OV N[i,j]y = V N[j, i]x = V N[j, i]u :F V N[j, i]t

as desired.

33

Case 2: Scan(Wi) < v < Write(Wi). Now PreOV N[i,j] remains constant between
PWrite(Wi)j and Write(Wi) and by Lemma 1 equals OV N[i,j]lI if 'II is the state
following Write(Wi). Since PWrite(Wi)j < Scan(Wi) < v < Write(Wi) we thus
have:

PreOV N[i,j]v = OV N[i,j]lI.

By Lemma 1, we have:

V N[j, i]t :f:. PreOV N[i, j]v.

By choice of Wi and thus of'll, OV N[i,j] remains constant between'll and 8. Thus:

OVN[i,j]. = OVN[i,j]y.

Putting the above equations together yields:

OVN[i,j]s = OVN[i,j]y = PreOVN[i,j]v:f:. VN[j,i]t

as desired.

Case 3: Write(Wi) < v but u < Write(Wi). This implies 2Scan(Wj)i < u <
Write(Wi) < V< 3Scan(Wj)i. By Lemma 4 this is impossible.

Case 4: Write(Wi) < v and Write(Wi) < u. Note that u < v < Write(Wj) < 8. Now
by choice of lVi, OV N[i,j] equals the constant OV N[i,j]s between Write(Wi)
and s. In particular:

OV N[i, j]u = OV N[i, j]s.

Now by Lemma 1:
V N[j, i]t :f:. OV N[i,j]u.

Putting these equations together yields:

OV N[i,j]s = OV N(i,j]u -:j; V N[j, iJt

as desired.

This completes proof of Lemma 6. 0

Theorem 7 Let i and j be writes, i -:j; j. Let 8 be any state in an execution of the
composition automaton. Let Wi and Wj be the most recent writes by writers i and j for
which Write(Wi) < sand Write(Wj) < s. Then OV N[i,j]s = V N[j, i]s if and only if
Write(Wj) < Scan(Wi).

Proof of Theorem 7: Let us first show that:

OV N[i,j]s = V N[j, iJs =? Write(Wj) < Scan(Wi).

34

Assume otherwise, that OVN[i,j]s = VN[j,i]s but that Scan(Wi) < Write(Wi)' Let
v be the state following Write(Wj). Then by choice of Wi we have Scan(Wi) <
W rite(Wj) < s implying by Lemma 6 that:

OV N[i,j}s # V N[j, i]v.

Since by choice, Wj is the last write by writer j such that W rite(Wj) < s, the value of
V N[j, i] remains constant between v and s implying that:

V N[j, i]v = V N[j, i] •.

Putting these together yields

OV N[j, i]. :F V N[j, i]v = V N[j, i].

which contradicts our initial assumption that OV N[i,j]s = V N[j, i]s. Thus the first
direction of the theorem is proved.

Now, let us show that:

Write(Wj) < Scan(Wi) ==> OV N[i,j)s = V N[j, i) •.

Assume lVrite(Wj) < Scan(lVi). Since Wj is the last write by writer j such that
Write(lVj) < s, V N[j, i]Sl = V N[j, i]s for all states s' such that Write(Wj) < s' < s. In
particular, if t is the state following Scan(Wi), then 'since by-assumption Write(Wi) <
Scan(Wi) < s, we have Write(Wj) < t < s implying VN[j,i]t = VN[j,i] •. By
Lemma 1, OV N[i,j). = V N[j, i)t and thus OV N[i,j]. = V N[j, i]. as desired. This
concludes the proof of Theorem 7. 0

Theorem 8 Let i be any writer and s be any state in an execution of the composition
automaton. Let Wi be the last write by writer i such that Write(Wi) < s. Then
N (i). = 0 if and only if there is a writer j # i that made writes Wi and Wi, Wi :F W;
such that

Scan(lVi) < lVrite(Wj) < Write(Wi) < s.

Proof of Theorem 8: Assume there exist two writes Wi and Wj by writer j such
that Scan(Wi) < Write(lVJ) < lVrite(lVj) < S; let Wi and Wj be the last such writes.
Let t and u be the states following W rite(WJ) and W rite(Wj) respectively. Then by
Lemma 6 we have:

OV N[i, j). # V N[j, i]t

and
OV N[i,j]. # V N[j, i]u.

By choice, Wi is the last write by writer j such that W rite(W;) < W rite(Wi), thus if
v is the state following S can(Wj), we have V N[j, i]v = V N[j, i]t. By Lemma 1 we have
PV N[j, i]u = V N[j, i]v, thus:

PV N[j, i]u = V N[j, i]t.

35

Now by choice, Wj' is the last write by writer j such that Write(Wj) < s, thus:

V N[j, i]. = V N[j, i]u

and
PV N[j, i]. = PV N[j, i]u.

Putting the above equations together we get:.

ov N[i,j]. :f; V N[j, i]u = V N[j, i].

and
OV N[i,j]s # V N[j, i]t = PV N[j, i]u = PV N[j, i]s.

Consequently, N(i)s = O. Thus if j, Wi, and Wj exist as in the theorem statement,
then fl(i)s = O.

Now for the other direction. Assume N(i). = O. This means PV N[j, i]. :f; ov N[i,j].
and V N[j, i]s ¥ ov N[i,j]. for some writer j. We have three cases:

1. There are no writes Wj by writer j for which Scan(Wi) < W rite(Wj) < s. Let t
be the state following Scan(Wi). Then V N[j, i] remains constant between t and
s implying V N[j, i]s = V N[j, i]t. By Lemma 1, V N[j, i]t = OV N[i,j]. and we
have:

V N[j, i]s = V N[j, i]t = OV N[i,j] •.

Thus this case is not possible.

2. There is exactly one write Wj by writer j for which Scan(Wi) < Write(Wj) < s.
Let t and x be the states following Scan(Wi) and Write(Wj) respectively. Then

PV N[j, i]s = PV N[j, i],x = V N[j, i]t = OV N[i,j] •.

Thus this case is not possible.

3. There are at least two writes Wj by writer j for which Scan(H'i) < Write(Wj) < s.
This implies the existence of Wj and Wi as required by the theorem statement.

Thus N(i) = 0 implies there exists a writer j and writes 11'j and Wi by writer j
such that Scan(Wi) < Write(Wi) < Write(Wj) < s. This completes the proof of the
theorem. 0

We will now apply the two theorems that we have just proved to prove several useful
and interesting facts about some of the various constructs, such as V N S(i)., N(i)., and
F(s), that we defined earlier. The first of these facts, expressed in the following Lemma,
shows that for any state s and any writers i and j, if V N S(i)s :f; V N S(j). then one of
V N S(i)s and V N S(j)s is a proper subset of the other.

36

Lemma 9 Let i and j be writers and s be a state in an execution of the composition
automaton. If V N S(i)s \ V N S(j)s ~ 0 then V N S(j)s is a proper subset of V N S(i)s.

Proof of Lemma 9: Given V N S(i)s \ V N S(j)s ~ 0, let k E V N S(i)s \ V N S(j) •.
Let Wi, Wj and Wk be the last writes by writers i, j, and k respectively for which
Write(Wi) < s, Write(Wj) < s, and Write(Wk) < 8. Since k E VNS(i)., VN[IC,i]. =
OV N[i, k]s which by Theorem 7 implies Write(Wk) < Scan(W.). Also, since k ¢
V J:l S(j)s, V N[k,j]s ~ OV N[j, k]" implying by Theorem 7 that Scan(Wj) < Write(Wk).
This implies Scan(Wj) < Scan(W.). Now by symmetry, VNS(j). \ VNS(i).1: 0 would
imply Scan(Wi) < Scan(Wj), thus we know V N S(j). \ V N SCi). = 0. This implies
V N S(j)s C V N S(i)s. Since k E V N S(i)" \ V N S(j)", the inclusion is proper and the
lemma is proved. 0

Corollary 10 Let i and j be writers and s be a state in an execution of the composition
automaton. Then:

1. V N S(j)sis a proper subset of V N S(i)" if and only if IV N S(j).1 < IV N S(i).I.

2. V N S(j)s = V N S(i)s if and only if IV N S(j)sl = IV N S(i)"I.

Proof of Corollary 10: This follows directly from Lemma 9 and elementary set
theory. 0

The following lemma presents another important fact. It is important because it and
the corollary that follows it relate the two principal values that are used for determining
the value of F(s) at a state s, namely the IVNS(i).\ and the N(i)s.

Lemma 11 Let i and j be any writers, i t= j, and let 8 be any state in an execution of
the composition automaton. Then:

IV N S(i)sl > IV N S(j)sl ==> N(i)s ~ N(j) •.

Proof of Lemma 11: Assume otherwise, that IV N S(i)sl > IV N S(j),,1 but N(i). <
l\T(j)S. By Corollary 10, V N S(j)s is a proper subset of V N S(i)s implying that there is
some k E V N S(i)s \ V N S(j)s. By definition of the V N S this means that V N[k, i]s =
OV N[i, k]s but VN[k,j]s:l OVN[j, k]s. Let Wi, Wj, and Wk be the last writes by writ­
ers i, j, and k respectively for which Write(Wd < s, Write(Wj) < s, and Write(Wk) <
s. Then by Theorem 7 we have Scan(Wj) < Write(Wk) but Write(Wk) < Scan(Wi)
and thus Scan(Wj) < Scan(Wi). Now N(i)s < N(j)s implies N(i)s = 0 and N(j). = 1.
By Theorem 8, N(i)s = 0 implies that there exists some writer I and two writes WI and
W! such that:

Scan(Wd < Write(W{) < Write(Wz} < s.

But Scan(lVj) < Scan(Wi) implies that:

S can(lVj) < W rite(W{) < W rite(Wl) < s.

By Theorem 8 again, we have N (j)s = 0 contradicting the above. Thus our assumption
is incorrect and the lemma is proved. 0

37

Corollary 12 Let i and j be any writers i 1= j, and let s be any state in an execution
of the composition automaton. Then:

1. IV N S(i)sl > IV N S(j)sl ==? IV N S(i)sl + N(i)s > IV N S(j)sl + N(j)s

2. IV N S(i)sl + N(i)s > IV N S(j)sl+ N(j)s ==? IV N S(i)sl 2: IV N S(j)sl

3. IV N S(i)sl + N(i)s > IV N 5(j)sl + N(j)a ==? N(i)s 2: N(j)s

4. IVNS(i)sl + N(i)s = IVN5(j)sl + N(j)s ==? IVNS(i)sl = IVNS(j)sl

5. IV N S(i)sl + N(i)s = IVN 5(j)sl + N(j)s ==? N(i)s = N(j)s

Proof of Corollary 12: All parts follow directly from Lemma 11. 0

Corollary 13 Let s be any state in an execution of the composition automaton. Then:

V N S(i)s C V N S(F(s))s

for all writers i.

Proof of Corollary 13: Assume otherwise. Then for some i 1= F(s),

VNS(i)s \ VNS(F(s)s 1= 0.

Then by Lemma 9, V N S(F(s»)s is a proper subset of V N S(i)s. Then

IV N S(F(s))sl < IV N S(i)sl

implying by Corollary 12 that

IV N S(F(s»)sl + N(F(s»)s < IV N S(i)sl + N(i)s

contradicting the definition of F(s). Thus our assumption is incorrect and the corollary
holds. 0

The following lemma and corollary demonstrate that at· each step s, the function N
takes on a non-zero value for at least one writer, and in particular, N(F(s))s = 1.

Lelnma 14 Let s be any state in an execution of the composition register. Then there
exists some writer i for which N (i)s = 1.

Proof of Lemma 14: Of all the writes W, by any writer, for which Write(W) < s,
let Wi be the one for which Scan(Wi) most recently preceeds s. Let i be the writer that
performed the write Wi. Assume N(i)s = O. Then by Theorem 8 there exists a writer j
and writes li1j and ltVJ by writer j for which

Scan(Wi) < Write(WJ) < Write(Wj) < s.

38

But Wj must have begun after WJ finished implying

Write(WJ) < Scan(Wj) < Write(Wj).

Consequently,
Scan(Wi) < Scan(Wj) < Write(Wj) < s

contradicting our choice of Wi. Thus our assumption is incorrect and N(i). = 1 proving
the lemma. 0

Corollary 15 Let s be any state in an execution of the composition register. Then we
have N(F(s))s = 1.

Proof of Corollary 15: Let i be some writer such that N(i). = 1; such a writer
exists by Lemma 14. If i = F(s) then we're done. Otherwise we have three. cases:

1. IV N S(F(s)).1 + N(F(s))s > IV N S(i).1 + N(i) •. By Corollary 12, N(F(s)). ~
N(i)s = 1 and we're done.

2. 11'1VS(F(s))sl + N(F(s))s = \VNS(i)s\ + N(i)s. By Corollary 12, N(F(s))s =
N (i)s = 1 and we're done.

3. \VNS(F(s))sl + N(F(s))s < \VNS(i)s\ + N(i)s. This case cannot occur as it
would contradict the definition of F(s).

This completes the proof of the corollary. 0

13 Placement of Writes

"Te will now use the facts we have established to prove two theorems that are the basis
for the placement of atomic write points in an execution of the composition automaton.
First, however, we willlleed the following definition.

DEFINITION: Let tV be a write by writer i that does not time out. Let s be the
state following W rite(lV). vVe will call the write W potent if F(s) = i. We will call the
write W impotent if F(s) 'f; i.

The first of the two theorems we will now prove states that if W is an impotent
write, then F has the same values for the states immediately preceeding and following
W rite(W). Intuitively, this is very desirable behavior. If a writer writes a new value
V to its register, one would expect that in doing so, it would either change the value
of the composition register to V, or it would leave the value in th~ composition regis­
ter unchanged. It would be highly undesirable if writes could cause a value that had
previously been current, but had since been overwritten, to become current again.

39

The second of the two theorems that we are about to prove states that if W is any
impotent write, then there is some potent write W' such that W' wrote its value and
new V N, OV N, and PV N numbers between the scan and write actions of W. This,
again, is what one would expect. A w·riter performing its scan and write opera.tions
during an interval in which no other writes are occuring should change the value of the
composition register to that of its own register when it completes its write. These two
theorems provide us with points at which to insert an "atomic" action for both potent
and impotent writes, as we will see later.

Theorem 16 Let W be an impotent write written by writer i. Let s' and s be the states
preceeding and following Write(W) respectively. Then F(s') = F(s).

Proof of Theorem 16: We will first prove a few propositions that will be useful
in the proof of the theorem. In all of these propositions, we will assume W, i, s', and s

. are as above. Note that i i= F(s) since W is impotent.

Proposition 16.1 i E V N S(F(s))sl.

Proof of Proposition 16.1: Assume otherwise. Then

OVN[F(s),i]sl i= VN[i,F(s)]sl

implying by Theorem 7 that if WF(s) is the last write by writer F(s) for which we have
'Jtf1rite(lVF(s») < s' then there is some write W' by writer i such that

Scan(WF(s») < Write(W') < s'.

Then since WF(s) is also the last write by writer F(s) for which Write(WF(s») < s a.nd

Scan(H1F(s») < Write(W') < s' < Write(W) < s

Theorem 8 tells us that N (F(s))s = 0 contradicting Corollary 15. Thus the proposition
holds. 0

Proposition 16.2 F(s') i= i.

Proof of Proposition 16.2: By Corollary 13 we know that V N S(F(s))sl C
V N S(F(s'))sl and by the above, i E V N S(F(s))sl thus i E V N S(F(s'))sl. Now by
Lelnma 2 we know i f/. V N S(i)SI. We conclude F(s') i= i. 0

Proposition 16.3 For all writers j, j # i, V N S(j)s = V N S(j)sl \ {i}.

40

Proof of Proposition 16.3: Let j be a writer, j =1= i. Since there are no writes
Wk by any writer k =1= i such that s' < Write(Wk) < s, we know that V N[k,j]. =
OV N[j, k]. if and only if V N[k,j]., = OV NU, k]., for all writers k, k =1= i. Thus we
have k E V NS(j). if and only if k E V N S(j)., for k =1= i.

If we had i E VN S(j). then by Theorem 7 we would have s' < W rite(W) <
S can(Wj) < s where Wj is the last write by writer j for which W rite(Wj) < Sj this
would clearly contradict our choice of s' and s which are chosen such that W rite(W) is
the only action between them. Therefore, i ¢ V N S(j) •.

Thus we have k E V N S(j). if and only if k E V N S(j)., for k =1= i, and i ¢ V N S(j) •.
By elementary set theory, we conclude VNS(j). = VNS(j)s' \ {i}. Since j is an
arbitrary writer, our proof of the Proposition 16.3 is complete. 0

Proposition 16.4

IVNS(F(s'».1 = IVNS(F(s'»sl-l and IVNS(F(s»sl = IVNS(F(s)).I-l.

Proof of Proposition 16.4: As was noted in the proof of Proposition 16.2, i E
V N S(F(s))s' and i E V N S(F(s')).,. By Proposition 16.2, F(s') =1= i, and F(s) =1=

i because W is impotent: The proposition thus follows from Proposition 16.3 and
elementary set theory. 0

Proposition 16.5 Let j be any writer for which i E V N S(j).,. Then N(j). = N(;).,.

Proof of Proposition 16.5: By definition, i E V N S(j)., implies V N[i,;]., =
OV N[j, i]s'. By Lemma 1 we have PV N[i,j]. = V N[i,j]., and thus PV N[i,j]. =
V N[i,;]., = av N[i,j]s' = all N[j, i) •. Thus PV N[i,;]. = av N[j, i] •. By definition,
N(j). = 0 if and only if there exists some writer k such that V N[k,;]. =1= OV NU, k].
and PV N[k,j]. =1= all N[j, k] •. Since PV N[i,;]. = av N[j, i]., there exists such a k
if and only if there exists such a k, k 1= i. Since; 1= i, OV NU, I]., = OV NU, I]. for
alII, I =1= i; also, V N[l,j]s' = V N[l,j]. and PV N[l,;]., = PV N[l,;]. for alII, I =1= i.
This implies that there exists such a k =1= i if and only if V N[k,j]., =1= OV NU, k]., and
PV N[k,j]s' 1= all N[j, k]s,. But by definition, N(j)., = 0 if and only if either such
a k =1= i exists or if V N[i, j]., =1= av N[j, i]., and PV N[i,j]., 1= OV N[;, i].,. We have
seen that V N[i,j]., = av N[j, i]., and we thus conclude that N(j). = 0 if and only if
N (j)., = o. Since N takes on only the values 1 and 0, our proof is complete. 0

Proposition 16.6 N(F(s». = N(F(s».,andN(F(s'». = N(F(s'».,.

Proof of Proposition 16.6: As was noted in the proof of Proposition 16.2,
i E V N S (F(s ».' and i E V N S (F(s')).'. The proposition follows immediately from
Proposition 16.5. 0

We now proceed with the proof of Theorem 16. Assume that F(s') 1= F(s)j we will
derive a contradiction. Now by definition of F(s'), one of two cases must occur:

41

1. IV N S(F(s'))sll + N(F(s'))s' > IV N S(F(s))$11 + N(F(s))sl. Then by Proposi­
tions 16.4 and 16.6,

IV N S(F(s'))sl + N(F(s'))1J = IV N S(F(s'))$/1 + N(F(s'))1J1 - 1

> IVNS(F(s))IJ'1 + N(F(s))1J1 -1 =
IV N S(F(s))1J1 + N(F(s))1J

Thus IVNS(F(s'))sl + N(F(s'))s > IVNS(F(s))$1 + N(F(s))s contradicting the
definition of F(s).

2. IV N S(F(s'))sll + N(F(s'))$I = IV N S(F(s))1J11 + N(F(s))1J1 and F(s') > F(s).
Then by Propositions 16.4 and 16.6,

IV N S(F(s'))sl + N(F(s'))$ = IV N S(F(s'))s,1 + N(F(s'))IJI - 1

= IV N S(F(s))s,1 + N(F(s))s' - 1

= IVN S(F(s))sl + N(F(s))s

Thus IV N S(F(s'))sl + N(F(s'))s = IV N S(F(s))sl + N(F(s))s and F(s') > F(s)
contradicting the definition of F(s).

Thus our assumption is incorrect and F(s') = F(s) as desired. This completes the proof
of Theorem 16. 0

Corollary 1 7 F remains. constant between consecutive W rite(W) actions for potent
writes lV.

Proof of Corollary 17: We noted earlier that the only points at which the values
of V N[i,j], OV N[i,j], and PV N[i,j] may change are at the Write(W) actions for
writes W by writer i. Formally, if A is an action in an execution of the composition
automaton and if A is not equal to Write(W) for any write W, and if s' and s are the
states preceeding and following A respectively, then:

v N[i,j]s' = V N[i,j]1J

PV N[i,j]sl = PV N[i,j]s

OV N[i,j]IJ' = OV N[i,j]1J

for all writers i and j. Consequently, F(s') = F(s). Theorem 16 implies that F(s') =
F(s) even if A = W rite(W) for an impotent write W. Since W rite(W) actions are
associated only with potent and impotent writes W, the correctness of the corollary
follows. 0

Theorem 18 Let i be any writer and Wi be any impotent write by writer i. Then
there exists some writer j, j =I i and some write Wj by writer j such that S can(Wi) <
Write(lVj) < lVrite(lVi).

42

Proof of Theorem 18: Let s be the state immediately following Write(Wi). Then
Wi is the last write by writer i for which Write(Wi) < s. Let j = F(s). Note j ~ i
because lVi is impotent. Since, by Corollary 17, the value of F remains constant between
potent writes, we have j = F(s') where s' is the state following the last potent write Wi
for which Write(Wj) < s. Now Wj is clearly written by writer j as F(s') = j and Wi is
potent. Because F equals j between s' and s, we know by definition of an impotent write
that there can be no impotent writes Wj by writer j for which s' < Write(WJ) < s.
Also, because Wj is the most recent potent write before s, we know that there can be
no potent writes W} by writer j for which s' < Write(W}) < s. Therefore Wi is the
last write by writer j for which W rite(Wj) < s.

Assume now that there is no potent write W for which Scan(Wi) < Write(W) <
Write(Wi). Then, in particular, Write(Wj) < Scan(Wi). By Theorem 7 this implies
that OVN[i,j]s = VN[j,i]s' Thus j E VNS(i). \ VNS(j). and thus by Lemma 9,
V N S(j)s is a proper subset of V N S(i)s. By Corollary 12 we have IV N S(i).1 + N(i). >
IVNS(j).1 + N(j) •. This implies, by definition of F(s) that F(s) could not possibly
equal j. Thus our assumption is incorrect and there is a writer j, j ~ i, and a potent
write Wj by writer j for which Scan(Wi) < Write(Wj) < Write(Wi). This completes
the proof of Theorem 18. 0

We are now ready to place Atomic(W) action for.each write W.

1. For each potent write W, define the internal action Atomic(W) to equal Write(W).
Clearly, Start(W) < Atomic(W) < Finish(W).

2 .. For each impotent write W, we know by Theorem 18 that there exists some potent
write W' such that Scan(W) < Write(W') < Write(W); let W' be the last such
potent write. Insert an action Atomic(W) immediately preceeding Write(W').
Again, since we are inserting Atomic(W) between Scan(W) and Write(W), it is
clear that Start(W) < Atomic(W) < Finish(W).

Note that we may have to insert several Atomic actions for impotent writes im­
meditately preceeding a single potent write W'. This is not a problem; since we
have only m writers, there are at most m - 1 writers that could be performing
impotent writes at the point W rite(W'). We are thus inserting a finite number
of actions before any W rite(W').

3. For each write W that times out, we know from the fact that it timed out that,
for some writer i, W saw the contents of writer i's register change twice. Since
the values in writer i's register that are compared between scans (the V N[i,j],
OV N[i,j], PV N[i,j], and Value[i]) change only at the points Write(W') for
writes W' by writer i that do not time out, the two observed changes must have
been caused by separate writes by writer i. The second of these writes, call
it W', must have begun after the first finished. Thus we have Start(W) <
S can(W') < W rite(W') < Finish(W). Whether W' is potent or impotent,
we have Scan(W') < Atomic(W') ::; Write(W'), thus if we insert Atomic(W)

43

immediately preceeding W rite(W') it is clear that we will have Start(W) <
Atomic(W) < Finish(W).

Here, as was the case with impotent writes, we may have to insert several Atomic
actions immediately before a given Write action; here, as before, this causes no
problem.

Before we continue, there are a few things that we should note about our placement
of the Atomic actions for writes. First, for every w~ite W that does not time out,
we have Scan(W) < Atomic(W) ~ Write(W). Second, if e is an execution of the
composition automaton in which no Atomic actions have been inserted and s is a state
in e, then once the Atomic actions for writes have been inserted into e to yield e', the
most recent Atomic write action preceeding s in e' is that of a potent write. Third, from
Corollary 17 we see that the value of F remains constant between consecutive Atomic
actions of writes.

14 Placement of Reads

Now that all of the writes have been placed, we need to show that reads will behave
in the desired manner. This is demonstrated by the following theorem that, although
it is not constructive and does not tell us exactly where to place the "atomic" action
associated with a read, tells us that all reads that do not time out do indeed return
legitimate values.

Theorem 19 Let R be any read that did not time out. Let i be the number of the
writer whose value was chosen to be returned by R; i = F(R). Let W be the last write
by writer i for which Write(W) <3Scan(R)i. Then the following hold.

1. Value(R) = Value(W).

2. Atomic(W) < Finish(R).

3. There does not exist a write W' for which Atomic(W) < Atomic(W') < StarteR).

Proof of Theoreln 19: We will prove the parts separately. Assume R, W, and i
are as defined above.

1. Since lV is the last write by writer i for which Write(W) < 3Scan(R)i' and R
returns the value read by 3Scan(R)i from writer i's register, R returns the value
written by lV.

2. Note that by the way we placed Atomic(W') actions for writes W', Atomic(W') ::;
Write(lV') for all writes W'. By choice of W, Write(W) < 3Scan(R)i. By defi­
nition, of Finish(R), 3Scan(R)i ::; Finish(R). We conclude that Atomic(W} <
Finish(R).

44

3. This is the hard part. We will derive a contradiction after demonstrating the
following sequence of propositions. Thus the first step of our proof is to assume
the negation of what we are trying to prove. Namely, assume that there exists
some write W' such that Atomic(W) < Atomic(W') < StarteR). Note that all
of the following propositions are dependent upon the existence of W' and that all
assume R, W, and i to be defined as above.

Proposition 19.1 There is no write W" by writer i for which

Consequently,

lScan(R)i < Write(W") < 3Scan(R)i.

V N[i,j]" = V N[i,i]R
ov N[i,j]s = OV N[i,i]R
PV N[i,j]" = PV N[i,j]R

for all states s, lScan(R)i < 5 < 3Scan(R)i and all writersj. Also, W is the
last write by writer i for which Write(W) < s for all states 5, lScan(R). < s <
3Scan(R)i.

Proof of Proposition 19.1: Let t and u be the states following lScan(R)i and
3Scan(R)i respectively. Since the last three scans made by R see the same values,
we have V N[i, i]t = V.N[i, i]u. Assume there exists some write W" by writer i
such that lScan(R)i < Write(W") < 3Scan(R)i. Then by Lemma 3 there exists
some write Will by writer i for which t < Scan(W"') < Write(W"') < U; let WIll
be the last such write. Then by the way we placed the Atomic actions for writes,
we have Scan(W"') < Atomic(WIII

) < Write(W"'). Since we have just chosen
WIll to be the last write by writer i for which Write(W"') < u, WIll must also be
the last write by writer i for which Write(W"') < 3Scan(R)i. Then by choice of
lV, we have ltV = 11''''. But we have assumed

Atomic(W) < StarteR)

while
StarteR) < lScan(R) < t < Scan(W"') < Atomic(WIII

).

This contradiction implies that our assumption is incorrect and the proposition is
proved. 0

Proposition 19.2 Scan(W) < StarteR).

Proof of Proposition 19.2: By assumption, there exists some write W' for
which Atomic(W) < Atomic(W') < StarteR), thus Atomic(W) < StarteR).
N ow by the way we placed the Atomic actions for writes, S can(W) < Atomic(W) ~
l:Vrite(lV). Thus we have Scan(W) < Atomic(lV) < StarteR) as desired. 0

45

Proposition 19.3 i Ft V N S(i)R.

Proof of Proposition 19.3: Let s be the state following lScan(R)i. Then
OV N[i, i]s = OV N[i, i]Rand V N[i, i]s = V N[i, i)R. Thus, since Lemma 2 implies
OV N[i, i]s ~ V N[i, i]s, we have OV N[i, i)R ~ V N[i, i)R. Hence i Ft V N S(i)R as
desired. 0

Proposition 19.1 sho.wed that writer i is incapable of performing the Write actions
of any writes between lScan(R)i and 3Scan(R)i. Since the principal values in
writer i's register (the VN[i,j), OVN[i,j), and PVN[i,j)) thus remain constant
between lScan(R)i and 3Scan(R)i, the interval from lScan(R)i to 3Scan(R),
forms a sort of "magic interval" in which we can infer many things about the
behavior of other writers. The following inequalities are particularly important in
this respect:

lScan(R)i < 2Scan(R)j < 3Scan(R)j < 3Scan(R)i

for all writers j, j < i, and

lScan(R)i < lScan(R)j < 2Scan(R)j < 3Scan(R)i

for all writers j, j > i. These inequalities are fundamental because they define
intervals, defined in terms of reads of writer j's register, that are contained within
the interval from lScan(R)i to 3Scan(R)i. Since these inequalities are fundamen­
tal to the proof of the remaining propositions, they will have the undesirable effect
of introducing a division into the cases of j < i and j > i in all of the following
proposi tions.

Proposition 19.4 (a) Let j be the number of any writer j < i. If j E V N S(i)R
then there is no write Wj by writer j such that S can(W) < W rite(Wi) <
3Scan(R)j.

(b) Let j be the number of any writer i < j. If j E V N S(i)R then there is no
write lVj by writer j such that Scan(W) < Write(Wj) < 2Scan(R)j.

Proof of Proposition 19.4:

(a) Assume otherwise, that there is some writer j, j < i, j E V N S(i)R that
performed a write Wi such that:

Scan(W) < Write{Wj) < 3Scan(R)j

and let Wj be the last such write. Let sand t be the states following
3Scan(R)j and Write{Wi) respectively. By Proposition 19.1, W is the last
write by writer i such that W rite(W) < s. Then by Lemma 6 we have:

OV N[i,j]s ~ V N[j, i]t.

46

Since Wj is the last write by writer j such that Write(Wj) < 3Bcan(R)j,
V N[j, i] remains constant between Write(Wj) and 3Scan(R)j; in particular,

V N(j, ilt = V N(j,'i]R.

By Proposition 19.1, since. 1Scan(R)i < s < 3Scan(R)i, we have:

OVN[i,j]R = OVN[i,j]".

Putting these equations together yields:

OV N[i,j]R = OV N[i,j]" :F V N[j, i]t = V N[j, i]R

contradicting our assumption that j E V N S(i)R. Thus our assumption is
incorrect and the first half of the proposition is proved.

(b) The second part of the proof of the proposition follows exactly like the first;
1Scan(R)j replaces 2Scan(R)j, and 2Scan(R)j replaces 3Scan(R)j.

This completes the proof of Proposition 19.4. 0

Proposition 19.5 Let j be any writer. If i E V N S(j)R then V N S(i)R is a
proper subset of V N S(j)R.

Proof of Proposition 19.5:

(a) Case 1:- j < i. Since i E V N S(j)R we have OV N[j, i]R = V N[i,j]R. Let Wj
be the last write by writer j for which Write(Wj) < 2Scan(R)j. Let s be
the state'following 2Scan(R)j. By Proposition 19.1, V N[i,j]" = V N[i,j]R.
By choice of s, OV N[j, i]" = OV N[j, i]R and thus OV N(j, i]. = V N[i,j] •.
By Proposition 19.1 and choice of W, W is the last write by writer i for
which Write(W) < s. By choice of Wj, Wj is the last write by writer j for
which Write(HTj) < s. Then by Theorem 7, Write(W) < Scan(Wj). This,
of course, implies S can(lV) < S can(Wj).

Let k be any writer for which k E V N S(i)r. Note then that by Proposi­
tion 19.3, k :F i. Let Wk be the last write by writer k for which Write(Wk) <
S can(W). Then by Proposition 19.4, Wk is also the last write by writer k for
whieh Write(Wk) < 2Scan(R)j since 2Scan(R)j < 2Scan(R)k for k > i > j,
and 2Scan(R)j < 3Scan(R)k if k < i. Thus Wk is the last write by writer.k
for which Write(Wk) < s. By choice of Wj, Wj is the last write by writer j
for which Write(Wj) < s. Since Write(Wk) < Scan(W) < Scan(Wj), by
Theorem 7, we have:

OV N[j, k]" = V N[k,j]s.

By choice of s,
OV N(j, k]s = OV N[j, k]R.

47

Let u be the state following 1Scan(R)k. By proposition 19.2, Scan(W) <
StarteR), implying Scan(W) < StarteR) < 'U < 2Scan(R)j < s. Since, by
Proposition 19.4, there are no writesWk by writer k for which Scan(W) <
Write(Wk) < s, V N[k,j],,1 equals a constant for·states s', Scan(W) < s' < S;
in particular,

V N[k,j]" = V N[k,j]u.

By choice of u,
V N[k,j]u = V N[k,j]R'

Putting the above equations together, we get:

OV N[j, k]R = OV N[j, k]s = V N[k,j]" = V N[k,j]u = V N[k,j]R.

Since V N[k,j]R = OV N[j, k]R, we have k E V N S(j)R. Si,nce k was an arbi­
trary element of V N S(i)R, V N S(i)R C V N S(j)R. Since i E V N S(j)R but
by Proposition 19.3, i ~ V N S(i)R, V N S(i)R is a proper subset of V N S(j)R.

(b) Case 2: i < j. The proof of this case is very similar to, although not identical
to, that of the first case, so we will omit many of the details. Let Wj be the
last write by writer j for which Write(Wj) < lScan(R)j. Let s be the state
following lScan(R)j. As before, we can show Write(W) < Scan(Wj), and
thus Scan(W) < Scan(Wj).
Let k be any writer for which k E V N S(i)R, and let Wk be the last write
by writer k for which Write(Wk) < Scan(W). Then by Proposition 19.1,
Wk is also the last write by writer k for which Write(Wk) < 1Scan(R)i
since lScan(R)j < 2Scan(R)k. As before, Wj and Wk are the last writes by
writers j and k respectively for which Write(Wj) < sand Write(Wk) < s.
Again, we have OV N[j, k]" = V N[k,j]". Again, OV N[j, k]" = OV N[j, k]R.
Since there are no writes Wk by writer k for which Scan(W) < Write(Wk) <
2Scan(R)k and Scan(lV) < s < 2Scan(R)k, we have V N[k,j]" = V N[k,j]u =
V N[k, j]R where u is the state following 2Scan(R)k. Thus V N[k, j]R =
OV N[j, k]R and as before, V N S(i)R is a proper subset of V N S(j)R.

Since i E V N S(j)R implies i :f; j, the proofs of the above two cases complete the
proof of the proposition. 0

Proposition 19.6 Let j be any writer, j :f; i.

(a) If j < i and if there is some write Wi by writer j such that 2Scan(R)j <
IVrite(lVj) < 3Scan(R)j, then OV N[j, i]R = V N[i,j]R.

(b) If i < j and if there is some write Wj by writer j such that 1Scan(R)j <
Write(lVj) < 2Scan(R)j, then OV N[j, i]R = V N[i,j]R.

Proof of Proposition 19.6:

48

(a) Let Wj be the last write by writer j such that 2Scan(R)j < Write(Wj) <
3Scan(R)j. Let sand t be the states following 2Scan(R)j and 3Scan(R)j
respectively. Now since the last three scans of R see the same values for the
V N 's, V N [j, j]8 = V N [j, jJt. Thus by Lemma 3 there exists at least one
write Wi by writer j such that s < Scan(Wi) < Write(Wi) < t; since Wi
is the last write by writer j for which s < Write(Wj) < t, we consequently
have s < Scan(Wj) < Write(Wj) < t. Note then that we have the following
order:

1Scan(R)i < 2Scan(R)j < s < Scan(Wj) < 3Scan(R)j < t < 3Scan(R)i.

By choice of t,
OV N[j, i]R = OV N[j, i]t.

Since 1Scan(R)i < t < 3Scan(R)i, by Proposition 19.1 we have

V N[i,j]R = V N[i,j]t.

Also by Proposition 19.1, W is the last write by writer i for which Write(W) <
t. Furthermore, by choice of Wj, Wj is the last write by writer j for
which Write(Wj) < t. By Proposition 19.1, Write(W) < 1Scan(R)i thus
Write(W) < 1Scan(R)i < Scan(Wj), and by Theorem 7 we have

V N[i,jh = OV N[j, i]t.

Putting all these equations together yields:

V N[i,j]R = V N[i,jlt = OV N[j, i]t = OV N[j, i]R.

(b) Since i < j implies 1Scan(R)i < 1Scan(R)j < 2Scan(R)j < 3Scan(R)i,
the second part of the proof of the proposition follows exactly like the first;
1Scan(R)j replaces 2Scan(/l)j, and 2Scan(R)j replaces 3Scan(R)j.

This completes the proof of Proposition 19.6. 0

Proposition 19.7 Let j be any writer, j :F i.

(aJ If j < i and there is some write Wj by writer j such that 2Scan(R)j <
write(Wj) < 3S can(R)j then IV N S(j)RI > IV N S(i)RI.

(bJ If i < j and there is some write Wj by writer j such that 1Scan(R)j <
write(Wj) < 2Scan(R)j then IV N S(j)RI > IV N S(i)RI.

Proof of Proposition 19.7: This follows directly from Proposition 19.5 and
Proposition 19.6. 0

Proposition 19.8 Let j be any writer, j :F i.

49

(a) If j < i and there is some write Wj by writer j such that 2Scan(R)j <
write(Wj) < 3Scan(R)j then N(i)R = O.

(b) If i < j and there is some write Wj by writer j such that 1Scan(R)j <
write(Wj) < 2Scan(R)j then N(i)R = O.

Proof of Proposition 19.8:

(a) Let x and y be the states following 2Scan(R)j and 3Scan(R)j respectively.
Then V N[j,j]z = V N[j,j]". Thus by Lemma 3, we may let Wj and Wj be
the last two writes by writer j such that

x < Scan(Wj) < Write(WJ) < Scan(Wj) < Write(Wj) < y.

Let s, t, u, and v be the states following Scan(Wj), Write(Wj), Scan(Wj),
and W rite(Wj) respectiveley. Then by Proposition 19.1,

OVN[i,j]" = OVN[i,j]u = OVN[i,j]R.

Also, by Lemma 1, we have

V N[j, i]v ~ OV N[i,j]u

V N[j, i]t ~ OV N[i,j]"
PV N[j, i]v = V N[j, i]t.

Since Wj is the last write by writer j for which Write(Wj) < 3Scan(R)j, we
have

V N[j, i]R = V N[j, i]ll

PV N[j, i]R = PV N[j, i]ll

Putting this all together, we get:

V N[j, i]R = V N(j, i]v ~ OV N[i,j]u = OV N[i,j]R

PV N[j, i]R = PV N[j, i]v = V N[j, i]t ~ OV N[i, j]s = OV N[i, j]R.

We conclude N(i)R = O.

(b) The second part of the proof of the proposition follows exactly like the first if
we replace 2Scan(R)j by 1Scan(R)j and replace 3Scan(R)j by 2Scan(R)j.

This completes the proof of Proposition 19.8. 0

Proposition 19.9 Let j be any writer, j ~ i.

(aJ If j < i then there is no write by writer j such that 2Scan(R)j < Write(Wj) <
3Scan(R)j.

50

(b) Ifi < j then there is no write by writer j such that 1Scan(R)j < Write(Wj) <
2Scan(R)j.

Proof of Proposition 19.9: Assume otherwise. Then by Proposition 19.7 and
Proposition 19.8, we have:

This contradicts the fact that F(R) = i and the proposition is thus proved by
contradiction. 0

Proposition 19.10 Let j be any writer, j f; i.

(a) If j < i then for all states u, 2Scan(R)j < u < 3Scan(R)j, and all writers k,

v N[j, k]u . = V N[j, k]R

OV N[j, k]u = OV N[j, k]R
PV N[j, k]u = PV N[j, k]R.

(b) If i < j then for all states u, 1Scan(R)j < u < 2Scan(R)j, and all writers k,

VN[j,k]u = VN[j,k]R

OV N[j, k]u = OV N[j, k]R

PVN[j,k]u = PVN[j,k]R.

Proof of Proposition 19.10: This proposition is a direct consequence of Propo­
sition 19.9. 0

We now use these propositions to complete the proof of Theorem 19. Let s be
the state following 2Scan(R)i. Note that for all writers j, if j < i then we have
2Scan(R)j < s < 3Scan(R)j, and if i < j then we have 1Scan(R)j < s <
2Scan(R)j. Then by Proposition 19.10, we have

V N[j, k]R = V N[j, k]s

OV N[j, k]R = OV N[j, k]s

PV N[j, k]R = PV N[j, k]s

for all writers j and k. But this means that F(s) = F(R) = i.
Let Wi be the last potent write for which Write(Wi) < s. Since F remains
constant between consecutive Write actions of potent writes, if t is the state
following Write(Wi) then F(t) = F(s) = i. Since Wi is potent, this implies
Wi was written by writer i. Since F(s') = i for all states s', t ~ s' ~ s, by
definition of i~potent writes there can be no impotent write WI by writer i for
which t < W rite(Wf) < s. Then since Wi is the last potent write by writer i for

51

which Write(Wi) < s, Wi is the last write, potent or impotent, by writer i for
which Write(Wi) < s. By Proposition 19.1, W is the last write by writer i for
which Write(W) < s. Therefore W = Wi.

Since W is thus potent, Atomic(W) = Write(W). SinceW is the last potent
write for which Write(W) < s, there can be no other writes W' such that
Atomic(W) < Atomic(W') < s as there are no potent writes W" in this interval
before which such Atomic(W') could be inserted. This contradicts our initial as­
sumption, upon which this whole sequence of propositions was based, that such a
W' exists. Thus our initial assumption is incorrect; there exists no write W' such
that Atomic(W) < Atomic(W') < Start(R).

This (finally) completes proof of Theorem 19. 0

We will now use Theorem 19 to place the Atomic(R) actions for reads R. Let R be
any read. Then Atomic(R) will be placed as follows:

1. If R did not time out, then let i = F(R), and let W be the last write by writer i
for which Wri-te(W) < 3Scan(R)i as we did in the proof of Theorem 19. Then
we have two cases:

(a) If StarteR) < Atomic(W) then by Theorem 19, StarteR) < Atomic(W) <
Finish(R). Thus if we insert Atomic(R) immediately following Atomic(W)
it is clear that StarteR) < Atomic(R) < Finish(R). Also, since Theorem 19
states Value(R) = Value(W), it is clear that'R returns the value of the last
write W for which Atomic(W) < Atomic(R).

(b) If Atomic(W) < StarteR) then we will insert Atomic(R) immediately fol­
lowing StarteR). It is clear that StarteR) < Atomic(R) < Finish(R).
Also, since Theorem 19 states Value(R) = Value(W) and that there are no
writes W' for which Atomic(W) < Atomic(W') < StarteR), it is clear that
R returns the value of the last write W for which Atomic(W) < Atomic(R).

2. If R did time out, then we know from the fact that it timed out that, for some
writer i, R saw the contents of writer i's register change twice. Since the val­
ues in writer i's register that are visible to readers (the VN[i,j], OVN[i,j],
PV N[i,j], and Value[i]) change only at the points Write(W') for writes W' by
writer i that do not time out, the two observed changes must have been caused
by separate writes by writer i. The write that caused the second of these ob­
served changes, call it W', must have begun after the first finished. Thus we
have StarteR) < Scan(W') < Write(W') < Finish(R). Whether W' is po­
tent or impotent, we have Scan(W') < Atomic(W') :5 Write(W'), thus if we
insert Atomic(R) immediately following W rite(W') it is clear that we will have
StarteR) < Atomic(R) < Finish(R). Also, since the algorithm returns Value[i],
it is clear that Value(R) = Value(W'). Thus R returns the value written by the
last write W' for which Atomic(W') < Atomic(R).

52

Here, as was the case when we placed the Atomic actions for impotent writes and writes
that timed out, we may have to insert several Atomic read actions following a given
Atomic write action; again, this causes no problem.

15 Conclusion

Thus for every read R and every write W we have placed internal actions Atomic(R)
and Atomic(W) such that:

1. Start(W) < Atomic(W) < Finish(W).

2. StarteR) < Atomic(R) < Finish(R).

3. If WR is the last write for which Atomic(WR) < Atomic(R) then Value(R) =
Value(WR).

This completes the proof of correctness.

Having thus completed our proof of correctness it is appropriate to reflect on the
purpose of this paper, to provide intuitive explanation and rigorous proof of the correct­
ness of the multi-writer, multi-reader atomic register algorithm presented in [PB]. We
have gone about this in several ways. First, the algorithm is presented, at an intuitive
level, before the proof of correctness. This should hopefully arm readers of the proof
with an understanding of what needs to be proved and why. Second, the approach to
the problem is that taken in [BB]. An attempt is made to understand what different
reads and writes do so that their Atomic actions may be placed in an appropriate and
intuitively reasonable manner. Third, the proof has examined the algorithm at a finer
level of detail than that presented in [PB]. Arguments are presented at the level of the
individual reads of writers'registers and not at the level of scans asa whole. The re­
sult of this detailed proof was to find two problems with the algorithm. The detailed
approach to proof is not, however, without its faults; it is possible to be so attentive to
detail that the proof becomes little more than an exercise in symbol manipulation to
those not already intimiately familiar with the algorithm. Thus while care was taken to
present detail where necessary, as was the case with arguments about individual reads in
scans, some arguments, particularly those dealing with the choice of V N's and PV N's
by successive writes, have been presented in somewhat less detail. It is hoped then that
one will find in this paper a clear survey of the algorithm in question in addition to a
rigorous, but not overburdened, proof of correctness.

16 References

[BB] Bloom, Bard, "Constructing Two-Writer Atomic Registers," Proceedings of the
Symposium on Principles of Distributed Computing, pp. 249-259, August 1987.

53

[IL] Israeli, A. and Ming Li, manuscript.

[LL] Lamport, Leslie, "On Interprocess Communication," Digital Systems Research
Center Report 8.

[LT] Lynch, Nancy A. and Mark R. Tuttle, "Hierarchical Correctness Proofs for Dis­
tributed Algorithms," Proceedings of the Symposium on Principles of Distributed
Computing, pp. 137-151, August 1987.

[LV] Li, Ming, and Paul Vitanyi, manuscript.

[PB] Peterson, Gary L. and James E. Burns, "Concurrent Reading While Writing
II: The Multi-writer Case," Proceedings of the Symposium on Foundations of
Computer Science, pp. 383-392, October 1987.

54

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056

