
Implementation of A CompilerCompiler

by

Neil Joseph Savasta, II

Submitted in partial fulfillment
of the requirements for the

degree of

Bachelor of Science

at the

Massachusetts Institute of Technology

June 1984

© Massachusetts Institute of Technology 1984

SignatureofAuthor . . . LwiuiV
Department f Electrical Engineering and Computer Science

17 May 1984

Cenifiedby, *.. .

/ Thesis Supervisor

Accepted by PdM
Chairman, Departmental Committee

I



Implementation of A ConipilerCompiler

by

Neil Joseph Savasta, H

Submitted to the
Department of Electrical Engineering and Computer Science

on 13 May 1984 in partial fulfillment of the requirements
for the degree of Bachelor of Science

Abstract

This paper describes the design and implementation of a LALRO parser generator
CLUCC (CLU Compiler-Compiler). CLUCC accepts as input a BNF-like granunar
and produces as output a set of tables for a table-driven shift-reduce parsing routine.
The parsing routine and the tables together form a parser which recognizes the
language defined by the grammar. The parsing tables generated by CLUCC can be
used as the core of a compiler by including calls to user-provided action routines in
the grammar. These calls are made by the parser at specified points in the analysis
of the input string.

2



Ac knowledgin ents

The list of people I would like to thank is as long as my arm, I simply cannot name

them all, however there are some that cannot go without mention. Many, many

thanks go to Professors Nancy Lynch and John Guttag who provided rue with this

thesis topic and let me take the bull by the horns. I owe Howard Reubenstein a

special thanks for his constructive criticisms and being as much a friend as I could

ever expect. I have deep gratitude for Paul Bradford for driving me to Nancys

house to get her last minute drafts, and suggesting beer as a solution to some of the

problems I encountered. I would also like to thank Kathy Yelick. who put up with

my formatting problems. Ron Kownacki. Randy Forgaard. and Gary Leavens for

giving me some of their time to handle many of my unanswered questions, and my

various office mates who put up with me, A special thanks goes to John Goree

who’s talents as both a computer scientist and a teacher are an inspiration to me.

There are no words that can adequately show the thanks and appreciation I have for

Lora Silverman. If there is one person that has helped me through this thesis and

MIT, it is her; no one has ever provided me with so much support and

understanding in so many ways.

3



l’able of Contents

Chapter One: Introduction $

Li CLL and the Division of the Project 7

Chapter Two: Overview 9

2.1 Notational Conventions 9
2.2 Syntax 9

Chapter Three: Input Subsystem 13

3.1 Scanner 13
3.1.1 Lexical Analysis 13
3.1.2 Tnterfacing to the Parser 17

3.2 Parsing 17
3.3 Error Recovery 19
3.4 Grammar Building 21

Chapter Four: Processing Subsystem 22

4.1 Grammar Normalization 22
4.2 Function Descriptions 23
4.3 Constructing LALR(1) Sets-of-Items 23

4.3.1 items, Lookaheads, and Sets-of-Items 24
4.3.2 LR(O) Sets-of-Items Construcdon 24
4.3.3 c-Kernels

4.4 Lookaliead Generation 26
4.5 Action Table 26

Chapter Five: Output Subsystem 28

5.1 The Documentation 28
5.2 The Parsing Tables 29

Chapter Six: Experiences with the Development of CLUCC 33

4



Chapter One

Introduction

Many tools have been developed specifically to help construct compilers. One of

these tools is a compiler-compiler. A compiler-compiler produces the core of a

compiler from an input specification. The core is produced in the form of parsing

tables, and the input specification is a grammar that describes a the syntax of a

source language. A compiler-compiler is useful as a program development tool

because it helps produce a compiler quickly and reliably. In addition, compiler-

compilers are flexible and adaptable to changes, and encourage an inherent

modularity. Many compiler-compilers already exist. A very common and widely

available compiler-compiler, available with the UNIX operating system, is YACC

(Yet Another Compiler-Compiler). YACC is written in C and was developed by

Steve Johnson at Bell Laboratories. YACC takes, as input, an attributed grammar

and produces a description of the LALR(I) parsing tables and the code to be used

by a shift-reduce parser. A grammar is attributed in that the user may associate a

parsing action with each production nile. Parsing actions are performed when a

production rule is reduced. Before the symbols matching the right side of a rule are

popped oft the parse stack, the parsing action associated with the rule is executed.

Parsing actions can return values. YACC performs very well on 16- and 32- bit

machines, but has some performance difficulties on 36-bit machines. This is a result

of C not working well on 36-bit machines because a 36-bit word does not divide

evenly into 8-bit bytes. In 1977 Alan Snyder, then a graduate student at MIT,

decided to rewrite YACC in C for TOPS-20 (a 36-bit machine). This compiler

compiler was also called YACC but to eliminate any confusion it will hereafter be

referred to as YACC-20.

5



YACC-20 seemed to sene its usefulness. hut as time went on the Laboratory for

Computer Science at MIT became less involved wiLh C and gre more dependent

on its own language. CLL [CLL 79]. In late 1982, Gary Leavens. another MIT

graduate student, implemented a compiler-compiler along with a parser in CLU.

This new compiler-compiler was not quite a new one, but rather a mod [ication of

YACC-20. This modiflcation was a quick, ad hoc way of inipiernenting a compiler-

compiler in CLU. His solution ran YACC-20 and then converted YACC-20’s

output, parsing tables in C format, into CLU tables. (The C tables were arrays of

integers and were changed into sequences of integers in CLU.) The resulting

program became known as CLLJ-YACC. CLU-YACC, however, has one major

drawback: it is entirely TOPS-20 dependent CLU-YACC was used in an

introductory undergraduate course in language engineering during the spring of

1983, and during this course many bugs were found in both CLU-YACC and

YACC-20.

At the conclusion of the course, the lecturers decided that a compiler-compiler

written from the ground up and solely in CLU was desperatejy needed. A compiler

compiler written in CLU could have no other name than CLUCC. The main

motivation to develop CLUCC came from the need to have a working compiler-

compiler in CLU. This motivation was a result of the poor performance of CLU

YACC. Aside from the bugs and the system dependencies that CLU-YACC

contains, it is slow because it must do a lot of I/O and string manipulation to convert

the C tables to CLU tables. In addition to this, CLU-YACC ‘vas written in two

different source languages. making it very difficult to maintain. One of the purposes

of CLUCC was to provide a clearly documented, efficient compiier-compiler

written in CLI;. The aim of this thesis is to provide a thorough and comprehensive

design and imp]ementation document for CLUCC. This, along with the code, will

provide a maintainable software system.

6



CLUCC is largely based on the algorithms presented by Alfred Aho and Jeffery

Ulirnun in Principles of Compiler Design. CLUCC is based on the theory of LR

Pursing. It is not within the ope of this thesis to explain this theory, and a reader

unfamiliar with the theory is referred to the text. The advantages of LR parsing

should, however, be cited. LR Parsers scan the input from left-to-right and

construct a rightmost derivation in reverse. LR Parsers can be constructed to

recognize irtuallv iii language constructs for which context-free grammars can be

written. LR Parsers are more general and dominate the common forms of top-down

parsing. Another advantage of LR Parsing is that they can detect syntax errors as

soon as possible in a left-to-right scan. [CLU 79] The parsing tables that CLUCC

produces are LALRO) parsing tables. CIUCC produces these tables because they

are considerably smaller than the canonical LR tables, and yet most common

syntactic constructs can be expressed by an LALR grammar.

1.1 CLU and the Division of the Project

CLU is designed to support modular programming, and thus, a great deal of insight

about how the a]gorithms work can be gained from reading the code. This is unlike

other languages, where the code is often not self-documenting. That is not to say

that there is no need to document any of the CLU programs. Rather,

undocumented CLU programs are, in general, easier to read than undocumented

programs of another language, particularly C. Both YACC and YACC-20 contain

almost no documentation.

The task of writing a compiler-compiler is a large one, and thus should be broken

down into parts that are easily defined and can be implemented and tested

incrementally. CLU supports this sort of modular programming very welt and

allowed for simple clear operations to be designed. A great deal of erfort was

invested in the overall design and implementation strategy to provide a clear and

7



well-written product that could be used by students learning about parsing and

compiler design theory.

Writing a compiler-compiler is very much like writing any other large programming

systems, particularly compilers. Most large programming systems can be broken

into three major substems: an input subsystem, a processing subsystem, and an

output subsystem. Each subsystem is further broken down into phases. CLUCC

and compilers are similar in that their input subsystems are essentially the same.

Both consist of four phases: scanning, parsing, error recovery, and semantics. The

first three phases are self-explanatory. The semantics phase of CLUCC builds an

internal form of the grammar in much the same way the semantics phase of a

compiler builds an internal form of a program, usually in the form of a symbol table.

The processing subsystem consists of five phases: grammar normalization, lR(O)

automaton construction, c-kernel generation, lookahead generation, and action table

compilation. The output subsystem consists of two phases: CLL!-code output, and

documented tables.

The rest of this thesis is organized as follows. Chapter Two is an overview

describing the notational conventions used in this thesis and the development of

CLUCC’s syntax. The next three Chapters discuss the implementation of CLUCC.

Chapters Three, Four and Five discuss the Input, Processing and Output subsystems

respectively. Chapter Six discusses some of the my experiences in developing

CLLJCC.

S



Chapter Two

Overview

2.1 Notational Conventions

The notational convention used in this thesis are explained in [AU 77] pg. 128. They

are summarized below:

nonterminal symbols A, B, C,... , lower case names and the letterS,
terminal symbols a, ... and upper case names,

nonterminals or terminals ..., 34 Y Z,
strings of terminals ..., x y, z,

strings of grammar symbols a, /3, y

Unless otherwise stated, the left side of the first production is the start symbol.

2.2 Syntax

CLUCC input is described by a grammar and CLUCC, itself, represents another

grammar. To eliminate any confusion, the grammar specilication of CLUCC shall

be referred to as its syntax, and the grammars that CLUCC takes as its input shall be

referred to as CLLTCC input

A great amount of care was taken in specifying the syntax for CLUCC in order to

maintain a flexib]e environment and keep the parser for CLUCC down to a

reasonable size. CLIJCC was designed to interface with CLU and thus should

maintain the same conventions as CLU. The syntax for identifiers, Titerals and

numbers is the same in CLUCC as it is in CLU. A nonterminal can only be an

identifier, and a terminal can be an identifier or a literal. A nonterminal is

somewhat analogous to a variable, likewise a terminal is analogous to a constant.

The BNF for a production rule in BNF is:

9



rule ::• LHS ‘::•“ rhs_lIst

rhs_list :: empty
I rhs_llst “a” rhs

rhs : symbol_list action

symbol_list ::— empty
I symbol_list symbol

symbol is either a nontemiinal or a terminal, and its BNF is therefore:

symbol :: IDENTIFIER
LITERAL

since the left hand side of a production can only be a noriterrninal, a LNS is an

identifier. Note, if the rule for a rule were:

rule ::• IDENTIFIER a:.” rhs

this would result in a shift-reduce conflict Thus, the syntax for CLUCC would be

LR(2). By introducing a new terminal LHS into the language this shift-reduce

conflict is resolved. Identification of an LHS token is done by the scanner. Once the

scanner has successfully recognized an identifier, it must lookahead to the next

token and check jfk is a •‘ symbol. If it is, then this identifier is a LHS token,

otherwise it isjust an IDENTIFIER token. Having the scanner determine whether an

IDENTIFIER is an LHS or just a symbol, weakens the strength or the parser, by

making error recovery mechanisms more difficult.

The syntax for an action is:

action :: empty
I “(‘ invocation “)‘

where invocation is a subset of the syntax of an Invocation in CLU. The CLU

syntax for a procedure invocation is quite large, almost four times the size of the

CLUCC syntax thus specified. CLUCC itself does not contain any reserved words

or operators, just separators. CLL has many reserved and words operators that can

be used in the syntax of an invocation. In the interest of keeping the parser and

scajiner small and quick, ail reserved words and operators have been eliminated.

10



This greatly reduces the size of the grammar for an invocation, although it is still

quite large. Next, array and record constructors were eliminated. The inclusion of

these constructors would increase the size of the parsing tables by thirty percent, and

add tokens to the scanner. In addition to the space savings, these constructors can

be constructed by calling external procedures. If these constructors are left in they

may also create some semantic problems that would go unnoticed until the parsing

tables are compiLed. This is a result of CLUCC not being aware of the compilation

environment that the tables are going to be used in, If the complete CLU syntax of

an invocation or the constructors were used, it would require a good deal of

semantic checking. This seems to be rather inefficient since CLU will do this when

the parsing tables are compiled. Rather than add a great amount of complexity to

CLIJCC, it seems a reasonable trade off to limit the syntax in this way.

The syntax for an action in CLUCC can now be fully described:

action : “{“ invocation “}“

invocation : primary “(“ opt_expression_list “)“

primary s primary ‘.“ element
primary “[“ expression “3’

I invocation
I type_spec
I type_spec $ type_spec

type_spec ::— IDENTIFIER
I IDENTIFIER “[“ expression_list “]“

opt_expression_list :: empty
I expression_list

expression_list ::= expression
I expression_list “. expression

expression :— prirwary
I type_spec
I IDENTIFIER
I LITERAL
f N(J148ER

I “N” NIJMDER

The addition of the production:

11



expression :: “#‘ NIJMSER

refers to the zittribute of the NUMBERUI symbol on the right hand side of the current

pwduction. This is Liseftil for passing semantic information along with the parse.

Fuch action is required to return an attribute which is assigned to the left hand side

nonterminal of the production the parser is reducing. If the action does not return

an attribute, then an error will result when the parsing tables are compiled. The

attributes are user defined, but must be called attribs and support the following

operations:

where attrlbs has
make_error: proctype( null ) returns( attribs
make_undef: proctype( null ) returns( attrlbs ),
make_empty: proctype( null ) returns( attrlbs ).

The first operation is used by the parser when an error arises. The second operation

is used when the parser is not executing the user supplied actions (for example. the

parser does not execute any user-actions during error recovery, but an attribute must

be created). The last operation is used for production rules that do not have actions

associated with them.

In addition to its syntax, CLUCC, like CLU, does not distinguish between

upper- and lower case letters. In an effort to force CLUCC input to look more

preventable, an LHS token must also be the first token on a line. Literals that are

used as grammar symbols, have their blanks and leading and trailing quotes

stripped, and all upper case letters changed to their lower case letters. The resulting

literal may not be empty.

12



Chapter Three

Input Subsystem

3.! Scairner

The purpose of ti-ic scanner is to provide a stream or tokens to the parser and to

report lexical error messages. To provide a stream of tokens 10 the parser, the

scanner performs the lexical analysis of the source stream and interfaces to the

parser. These two functions are performed by two main clusters in the scanner. The

lexical analysis cluster, lax, determines what the tokens are and the token cluster,

token, has many operations which create tokens suitable for the parser. The lexical

analysis and token clusters are separated for modularity, the lexical analyzer

recognizes tokens independently of the parser, and the token cluster serves as the

interface between the ]exical analyzer and aparticular parser.

The scanner that was designed and implemented for CLUCC was a very

straightforward scanner that can easily be adapted to handle tokens for another

language. While the scanner is general, a great amount of effon went into making it

very efficient

3.1.1 Inical Analysis

A lex object is internally represented as a record which contains the fol]owing

elements:

-a source stream from which lex gets its tokens,

- a lookahead buffer that is used during enor recovery and for
determining LKS nonterminals.

a compiler state for logging scanner errors.

13



- the current line in the source streni being scanned, and

- a ne line flag which is true if and univ if no tokens ha’e been read
from the current line.

The lax cluster performs rour operations:

create create a new lox given the name of the source file, arid a
compiler state

close close the source stream.

Insert insert a token in the front of the lookahead buffer, and

getjlext_token return the next available token.

The first three operations are implemented just as they are described.

get_next_token is not quite as straightforward. get_next_token performs the

‘exical analysis. It is a modified implementation of an FSA and is dependent on a

character ciass table. This table contains 128 elements and is based on the 7-bit

ASC]I representation of each character. The index of an element in the table

corresponds to the character with an ASCII value of index - I. Each element contains

one of nine values which define its class. There are nine classes:

letter { AM — z’, “. ‘a — z” 1
digit { •ti ‘9’ }
colon {M:l}

slash { Mlt. }
blank (<SP>, <as>, (VT>. <Er), <HI>, <CR)}

end-oft/nc (<LF> }
separator {n,, P$!, •(t! t.)M, H,”, H.., *[n !)n M{tt 9* •t}

}
quote { “‘‘, }
error anything else not defined above

From this table an efficient lexical analyzer can be wñtten. The operation

got_next_token first checks if the buffer is empty. lithe butTer is not empty, then

the token on top of the lookahead buffer is popped off and returned. Otherwise, a

token must be read from the source file. All comments, blanks, and end-of-lines are

eliminated. Note, a comment in CLUCC is the same as a comment in CLU.

14



The following deflniüons h:i e been establish for the tokens:

LITERAL any group olcharacters surrounded by matching quotes.

IDENTIFIER /etter(leIierI digit)t

“: s’ c 0-eferred to as the derivation symbol)

\\fl S\fl

LHS IDENTIFIER (context sensitive)
A LHS must be the first token on a inc and be immediately
followed by a derivation symbol.

separators as defined in the character class table.

Once all comments, blanks, and line terminators hae been eliminated, the class s

obtained for the next available character in the source stream. A lexical error may

occur in some of the following modules. When an error occurs, no token can be

returned. Therefore, an internal error routine is called which logs the error with the

cowpt1er_state and calls get_nexctoken to get the next valid token to return. A

different routine is called for each class. Since all blanks, comments, and line

terminators have been eliminated, the only classes which are possible are error,

separator, slash, colon, quote, digit, and letter.

error. If the character is an error class character, then the internal error procedure

previously described is invoked.

separator. A separator class character calls tolcen$make_separator with the

character and the current line number.

slash This calls the got_slash_slash routine, and its purpose is to recognize a W\\W

delimiter. It checks if the next character is a “\, if it is, it returns slashslash

token, otherwise the internal error handling procedure is called for with the error

being the first back-slash character.

colon. This calls the got_derlvatlon_synibol routine, and its purpose is to recognize

15



a derivation ssmbol. This procedure works un&ogously to gat_slash_slash,

except that it must go a liltIe further. First. ii checks if the next character is a , if

it is, then this colon is read from the source stream, other% se the internal error

handling procedure is called For with the error being the first colon character. At

this point”: : has been recognized. \ext. it checks ilthe neKt character is an ‘s”,

if it is, it returns derlvat1on_s’mbo1 token. otherwise get._.derivatlonzsymbol is

called. It is called again because the wanner has detected a colon.

quote. This calls get_Il teral routine, and its purpose is to recognize literals. This

procedure simply reads the source stream until it reads a matching quote or an end-

of-line. If an end-of-line character is read, then an error message is logged stating

that the literal was improperly terminated. In either case, a lIteral token is

returned, and the literal will have a trailing quote that matches its leading quote.

digit. This calls got_number routine, and its purpose is to recognize numbers, ibis

procedure simply reads digits from the source stream and appends them to a string

until it reads a non-digit character. Once it reads a non-digit character, a number is

recognized and tokon$naIc&._nunber is called with the number string and the line

num her.

leiter. This calls the get_elthar_.syrnbol routine, and its purpose is to recognize

symbols. This procedure simply reads characters from the source stream and

appends them to a string while it reads a letter or digit class character. Once it has

read a symbol, it must be determined whether this symbol is an LHS or just a name

symbol. In order to determine this, it is necessary to establish the context of this

symbol. Remember a symbol is an LHS if it is followed by a derivation symbol. This

is accomplished by getting the next token, inserting it into the lookahead buffer, and

checking if if it is a derivation symbol. I F it is a derivation symbol then this symbol

is a nonterminal symbol, otherwise this symbol is a name symbol. This new token is

16



placed in the front of the loukahead buffer because of the recursive nature of this

operation.

If the end-ofJFk’ is reached. then an end-of-rile token is returned,

II.! Interlacing to the Parser

The basic purpose of the token cluster is to assign numbers to each of the tokens so

that the parser and error recovery phases can recognize them. Token numbers must

conform to the numbers associated with each terminal by CLUCC. The number of

a token is in the range [1, ... n ], where n is the total number of tokens. A token is a

structure consisting of three elements, a token number that is used by the parser, a

line number for this token, and an attribute, which contains the semantic

information about a token. The attribute for a token is simply the string that the

scanner has read in. There are several make_ operations which construct particular

tokens, and three get_ operations each of which return one of the elements in the

structure, Along with these operations is an operation that will return true if a token

is a derivation symbol, and false otherwise; an operation that will make dummy

tokens given the token number and the line number; this is used in the error

recovery section; and an operation, converts a token value to its string value. This

last operation actually returns the string value of the token which is contained in the

attribute.

3.2 Parsing

CLUCCs parsing phase was actually implemented twice. The first time the parser

was written using CLU-YACC, and when CLUCC was finished it as used to help

bootsirap CLUCC. Even though CLU-YACC has some bugs it did generate correct

parsing tables for CLUCC. These parsing tables successFully parsed CLUCC’s

17



syntax. This parser only needed to correctly parse CLUCCS syntax because the

pursing tables that CLLJCC would produce for itself wou’d be substitLited for the

pursing tables that CLU-YACC produced. This was not, however, the offly test case

that this parser was given, it was also successfully tested with a gramniar for a subset

of NloduJa2. This extra test was not necessary at this point, but it proved to be

useful input when testing later phases.

CLIJ-YACC and CLUCC use essenliaIl\ the same parser, Vhen CLLJ-YACC

outputs the tables it outputs them lexicall’ contained within the parser. The CLU

YACC parser references the tables through two internal fUnctions lractlon and

irgoto. The CLUCC parser is effectively the same parser except that the tables,

and the action and goto functions exist in the lrtables cluster, and the parser is a

stand aione cluster that is independent of any particular grammar. The parser is

independent of the parsing tables for modularity. The impkmentation also adds

flexibility and time savings to the compiler being built. The user is not forced to use

a specific parser with his tables, and is free to use another LR Parser. Since the

parser is independent of the tables, there is no need to keep recompi[ing the tables

or the parser while developing the other.

The parser, in both cases, is implemented as a deterministic push-down automaton

(DPDA). Each frame on the stack contains three values: a grammar symbol, a state,

and the attribute associated with the state. The state on top of the parse stack is

related to preceding states by the action tables and goto tables constructed for the

grammar. Several of the parsing operations support syntax error recovery.

18



3.3 Error Recovery

A very crude error recovery could have been accomplished by reading tokens until

an LHS or end-of-file token is read. If an end-of-file token is read, then the error

cannot be recovered from, and parsing halts. Otherwise, this token is an LKS and

states are popped from the stack until an LHS token can be legally read. This

recovery scheme, while crude, would work very well with the syntax for BNF.

However, the syntax of CLUCC is much more complicated than a BNF syntax

because of the syntax of an action. Because of this added complexity, an error

recovery scheme like this would prove to be inadequate, and a more general error

recovery scheme is necessary. Even though the syntax of an action makes the

CLUCC syntax more complicated, the syntax is still rather simple and the error

recovery schemes necessary for each possible error are similar.

The error recovery scheme that CLLJCC uses is a simple bounded range error

recovery scheme. The basic strategy is to make a patch, and then try to parse ahead

a fixed number of tokens, n, called the bound, to see if the patch is correct

When CLUCC first encounters a syntax error, the error recovery scheme is invoked,

and an error message is written stating which line number the error occurred on,

what the contents of the token were, and what types of tokens it was expecting.

CLUCC then tries to patch the error. Patches fall into four different categories:

insert a token, replace the current token with another token, push a nonterminal

onto the parse stack, and pop the top state off the stack. Deleting a token is

considered a last ditch effort, and is only used when the other four types of patches

fail. It is considered a last ditch effort because discarding input should be avoided

unless absolutely necessary.

A patch is considered to be successful if the parser can parse ahead n tokens without

a syntax crc-or, otherwise a patch is not, successFul and another one must be tried. If

19



all the patches are tried and none are successful, then the current token is deleted

from the token stream. This deletion, however, cannot occur if the current token is

an end-of-file token, if this occurs then, the error recovery has failed and a fatal

error is generated.

The minimum distance the error recovery scheme must parse ahead is seven tokens.

A smaller bound would not adequately test the patch to see if it were good and a

larger bound, along with being more expensive, may encounter another error and

therefore not allow recovery from the current error. If another error is encountered

within ii tokens then the original token will automatically be deleted because no

other patch will work. This has dramatic effects because the recovery scheme may

delete all the tokens between the two tokens.

The order in which patches are tried is as follows: insert a token into the token

stream before the current token, replace the current token in the token stream, push

a nonterminal onto the parse stack, and pop the top state from the parse stack. Once

again, deleting the current token is the last operation performed. This is the order

because it the order of these patches minimizes the loss of infomiation. Replacing a

token does discard some input, but there is no net loss of input since the token is

replaced with another token. Any state can be popped off the stack, because the

parser must parse ahead ii tokens and this should prevent trouble from occurring. If

this patch does not work, the only alternative is to delete the current input token.

There is a fist of terminals which is used to sort and eliminate tokens from the

parsers’ expected token list. This terminal list determines which terminals will be

inserted or replaced. The sort is performed by intersecting this terminal list with the

expected token list. The order of the resulting Jist is consistent with the order in the

terminal list. There is a corresponding nonterminal list that determines which

nonterminals will be pushed onto the parse stack. These lists are ordered in

20



preference of a patch, in other words, for example, there may exists two or more

terminals in the terminal list which will successfully parse ahead n tokens, The error

recovery scheme will take its first successful patch; therefore, the terminal list and

the nonterminal list should be ordered according to their preference for a successful

patch. Terminals and nonterminals that are undesirable at any cost must be left out

of tiieir respective lists.

3.4 Gramniar Building

The next phase of the project builds a representaflon of the input grammar and

associates an action with each production rule.

The grammar and actions are built by executing the translation rules that are

associated with the syntax reduction being performed. The grammar is initialized

with the list of tokens that precedes the rules, The semantic rules build the

production rules one at a time. Internally a rule is a record that consists of two parts,

a left hand side and a right hand side list. The left hand side is a string, and the right

hand side list is an array of right hand sides, A right hand side is a record that

consists of a symbol list and an action. The symbol list, is just a list of strings, and

the action is also just a string that represents a procedure call or is empty in the case

where no action is given. As each nile is synthesized it is inserted into the grammar.

If the left hand side has already been inserted into the grammar then the right hand

side list of this new rule is appended to the right hand side list of the existing rule.

The tokens which constitute an invocation are simply concatenated together to

generate a procedure call. The only exception is: “0K NUMBER, which is replaced by

pv[ NUMBER ], where pv is the name of the array containing the attributes. pv

stands for production variables. The grammar rules are represented by an AVL tree.

An additional list is also maintained to hold the order in which the nornerminals and

appear on the left hand side of the CLUCC input The left hand side of the first

production symbol entered into the grammar is the start symbol.

21



Chapter Four

Processing Subsystem

41 Grammar Noriiialization

Once the grammar specification has been parsed, another pass is made over the

grammar. This pass assigns a distinct integer to each grammar symbol. 11w set of

integers associated with the nonterminals ranges from one to the total number of

nonterminals. Each nonterminal is assigned a number based on its first occurrence

on the left hand side of a production rule. The terminal numbers range from the

number of nonterminals plus one to the number of nonterminals plus the number of

terminals. The first terminal is assigned the value of the number of nonterminals

plus one. Each terminal is assigned a number based on its first appearance in the

grammar. Usually the order of the terminals is defined in the prefix section, but if a

symbol appears in the right hand side of some production and does not appear on

the left hand side of any production then it is assumed to be a terminal. Mapping all

the grammar symbols into a continuous set of integers allows for compact and

efficient representation of the structures that depend on the grammar. Since

terminals and nonterminals have a numeric representation, information about sets

of them is stored in bit vectors. Bit vectors provide an efficient way to store sets of

terminals and nonterminals. By using the bit vectors as sets, elements can easily be

added, and deleted. Bit vectors also merge two sets together very efficiently.

Merging quick1 will be very useful in later parts of the project

22



4.2 Function Descriptions

After the gramniur has been normalized, there are a five sets of computations that

are usefut to perform before computing the tables. They are:

ENIPIY The set oral! nonterminals A such that A

For each nonterminal A in the grammar, the set of all terminals a
such that and A : ay.

TIYINONIERM For each nonterminal A in the grammar, the set of all
nonterminals B such that A Bz and the last step does not
use an s-production.

LEETTERM For each nonterminal A in the grammar, the set of all terminals a
such that A az and the last step does not use an
c-production.

IEFTEMPTY For each nonterminal A in the grammar, the set of all
nonterminals B such that B is a member of LEFINONTERM(A)

andandB -‘ c

These functions help generate the parsing tables for a grammar. The mi of

means that the derivation is a rightmost derivation. These functions can be

calculated quite easily and quickly using bit vectors as previously discussed. The

computation of the LEFFLERM, LEFTNONTERM and LEFTEMPTY functions can be

carried out simultaneously, because of the recursive depth-first nature of the

production rules.

4.3 Constructing LALR(1) Sets-of-Items

The parser is a one operation cluster rather than a procedure. This was done to

isolate the internal operations that are used only to generate the parsing tables.

23



4,3.1 Items, Lookalicads. and Sets-of-Reins

An iteni is a dotted production rule. The dot indicates how much of the right-hand-

side has been seen h the parser “lien the parser is in that state. An item also

contains a lookahead set. to assist the parser in making action decisions. A

lookahead set is a bit vector. This greatly helps the calculating speed of the

lookaheads.

A sd-of-items is an ordered set of items. The s mbol to the immediate dght of the

dot is a transition symbol for the state identified by this set-of-items. The items are

sorted based on the production number and the position of the dot. Each state is

identified by its set-of-items and completely specified when all the GOTO transition

information has been generated.

The act of closing a set-of-items consists of adding certain new dotted productions to

the existing set-of-items. For each symbol immediately to the right of a dot, the set

of productions with this non-terminal symbol as a left hand side is added, with the

dot appearing in the leftmost position of the right hand side. In the case of a

canonical LR(1) closure, lookaheads are propagated from one item the the next

A kernel is a set of items. It is the collection of those items not added in the closure.

4.3.2 LR(O) Sets-of- Items Construction

The GOTO automaton consists of parsing states and the transitions between them.

In order to keep track of the construction of the GOTO automaton, an exploration

list” will be kept. The exploration list contains those states that have not had their

GOTO states generated. Each element of this list is a state from which exploration

is still needed, together with those grammar symbols for which shifts are defined

from that state, and for which exploration from that state still needs io be carried

out. This exploration list is a queue and the automaton is generated in breadth-first

order.
24



I nitiall\ this list consists oF only a standard initial state, and that state is the only

state in the initial autoni aton. \ow. vcpeawdI) slates are remo’ ed From the

exploration list until it is empty. When stows is removed From the exploration fist.

the goto states arc generated for state s. All the gob slates for a state are generated

at the same time. The goto states are compLited b3 going through each item in the

kernel and generating all its goto items. For each item. [A — a.Xfl]. the goto items

are all the items such that [B — Y.yj. where B is in LEVINONrERM(X).

[A — aKflj is also a goto item of this item. The goto items are grouped into states

according to the grammar symbol to the left of the dot This symbol is the transition

symbol. Next, the automaton is checked to see if any of the goto states already exist.

If a goto state already exists, then a new edge from state sto this goto state is added

the automaton. If a goto state is new, then the automaton is augmented with a new

state and an edge, and the new state is placed in the exploration list. The goto states

are entered into the exploration list so that their goto states can be found.

4.3.3 rKernels

An E-kernel of a set-of-items is defined to be the kernel and those items [C —‘

such that there exists an item [4 —. 13.CSJ in the kernel and B Cx and C —‘ a

Empty productions are added to the kernels because computing reductions becomes

quite complicated without them. A reduction of the form C —‘ c is called for on

inpul a if and only if there is a kernel item [A —‘ .By. bJ such that B CS for

some c, and a is in FIRST(Syb). This definition is quite complicated, but by adding

all empty productions to the kernel a reduction of the form C - is called for on

input a if and only if there is a kernel item [C — al. A The kernels already exist

from the LR(O) construction, and all that needs to be added are the rules that derive

an empty string. This is done by going through each state and examining each item

in the kernel, if [A —, j3.C8] is in the kernel and B Cx and C—’ €, then item

[C — .J is added to the kernel. LEF]EMVFY contains the set of nonterminals C such

thatBCxandC—..

25



4.4 Lookahcad Generation

Lookaheads are generuted for each set of items much in the same way Lo gob slates

For the LR(O) automaton are generated. The initial item has the endof-fi/c terminal

for a lookahead. and is placed in a new exploration list. This exploration list

contains items that hae to propagate lookaheads to their goto states. Again, states

arc rcmoed from the list and processed until the list is empty. The Canonical

LR( 1) Closure [AL 77) is computed for each set of items, s. as it is removed from the

closure. For each item, [A — a.Xfl], in this closure, the lookaheads are propagated

to [A —‘ aX./3] in the goto state of under the transition symbol X. If any of the

lookaheads were not in [A — aX./3] then this goto state is placed in the exploration

list.

4.5 Action Table

The actions for each state are computed as follows: an item that calls for a reduction

will be in the kernel and a shift will occur for all terminals a such that K ax

such that [A —. a.Xfl, b] is in the kernel. First all the shift actions are computed.

and then the reduce actions are computed. The shift actions are simply entered into

the table. The reduce actions must be check for shift-reduce and reduce-reduce

conflicts, and if a conflict arises, it must be resolved. Ln addition to this, each reduce

action must be counted, so that the most frequent reduce action will be the default

action for that state. An accept occurs when the first production is reduced, this is

checked before the reduction is entered into the table.

A conflict indicates that the grammar is not LALR(1). These conflicts, however,

may be intentional, and so a crude mechanism for handling conflicts exists for

resolving them. Shift/reduce conflicts are resolved in favor of shifting.

Reduce/reduce conflicts are resolved in favor of the prcduction appearing earlier in

the input file.

26



In order to represent the parsing tnblcs compactly, there are several space

optirnizations that can be perIbrnied. Mans states have the same actions, and a

great amount of space can be ed if a pointer is created for each state to a list of

actions for that state. Pointers for states with the same actions point to the same list

of actions. Further space efficiency can he achieved by creating a default action.

iThe default action would be the most frequent reduce action in the state. States

with a reduce action can be considerably compacted by the addition of a default’

condition for the most popular reduction. The only apparent difficLilty with the

above optimization is that delayed error detection might allow certain very obscure

errors to pass undetected, but this in fact is not true. If the lookahead symbol were

not in the original complete lookahead set, then the “default’ action would be

taken. However, a subsequent state would eventually be forced to shift the next

token. This token in fact would not be legal in any subsequent state since it was not

included in the lookahead state (the state is created by looking at the surrounding

states). Therefore, the error will still have been detected. Since the ACflON

function determines its results by searching through linear lists, then any reduction

in the size of these lists will obviously increase the parsing speed. iTherefore, any

compaction of this sort is of great value.

Using the compaction techniques described above, it is very easy to generate the

action table. The process simply examines each state and makes the actions for that

state. Once the actions for that state have been determined, the list of actions is

entered into the action table and an offset is returned. The table will only contain

distinct action lists, and therefore states with identical actions have the same offset

value.

27



Chapter Five

Output Subsystem

Once CLUCC has finished computing all the actions. it will create two output flies.

The first file is a documentation tile that describes the LALR(I) parsing tables, and

the second file contains the CLU code for the LALR(I} parsing tables. The

documentation file can be used to understand the parsing states. The CLU code

contains the tables needed by the parser.

5.1 The Docurnentatiou

This file contains description of the grammar, the goto and action tables. In

addition to these descriptions, this file will contain information about conflicts that

may have arisen in the process of constructing the tables for the grammar. The

modules that write out these descriptions are quite straightforward.

The description of the grammar consists of three parts: terminals, nonterminals,

and production rules. Each of these three grammar parts is numbered from one to

the number of elements in each part. The terminal and nonterrninal numbers

correspond to the same numbers that are used by scanning, parsing, and error

recovery phases of a compiler. The production rules are numbered so that it is

easier to describe reductions in the action table section.

The goto table description is organized by nonterminals. This is also how it is

organized in the CLU tables file. The description is a list of al] the nonterminals

with their lists of corresponding state transitions paks, (current, next),

28



Che action table description is a description of each slate in the LR(O) automaton.

11w description of a suite consists of two pans, the c-kernel and the actions. The

c-kernel is a set of [ems, and each item is prnted out us a production ft1C with its

dot (.‘) in the correct position. The actions are printed out according to the

terminal symbol. The shift and educe actions have the form:

shift S there is the next stale.

reduce p here p is the production nile number.

Since an accept action signals that parsing has been completed successfully, and an

error action only occurs as a default action, no arguments accompany these actions.

The default action is the last action printed for a state and is preceded by a dot “.‘.

If conflicts exist in the grammar, they are written out first. A conflict is described by

its state, the two actions which are in conflict, and the terminal that caused it. The

description file may be used to determine the cause of these conflicts by examining

the description of the particular states where the conflicts occurred.

5.2 The Parsing Tables

The parsing tables produced by CLUCC are in the form of a CLU cluster called

1 rtabl as. The parsing tables are embedded lexically in the the cluster. The cluster

consists of three parts, a head, the parsing tables, and a tail. The head of the cluster

has the names of the operations that may be performed on the tables, and the tail of

the cluster contains the code for the operations. The head and tail of the cluster are

always the same, independent of the CLUCC input. rtab1es provides six external

operations to use with a shift-reduce parser:

action lockup the action given a state and mid a terminal.

gota lockup the next state given a state and a nonterminal.

terrnl nal fetch the string associated with a given terminal number.

29



nonterminal lech string associated with a gien nonterminal number.

tercoun t return the number of terminals in the input grummar.

nantermcount return We number of nonerminals in the input grammar.

The tables are output in the middle or the cluster, and turned into sequences of

integers, and strings. Integers are unparsed into strings, and strings ha’e double

quotes appended to the beginning and end. There is one other type of sequence in

the CLU file, the sequence of procedure calls to be associated with each reduction.

These are referenced b name only. iThe procedures themselves are also output into

the middle of the cluster. The procedures have the form:

ruleN
proc( cstate: compiler_state, pv: attributes

returns( attribs )
return( PROC_CALL
end ruleN

where N is the production rule number, and PROC_CALL is the procedure call

associated with this production rule in the cluce input If a procedure call was not

associated with a production rule, then the default procedure rule is empty_rule.

empty_rule wilt return the first attribute on the right side of the production; if the

right side is empty, an empty attribute is returned.

The contents of the parsing tables fall into three categories: the grammar sequences.

the goto sequences, and the action sequences.

The grammar sequences consist of five sequences. The first two sequences are

sequences of strings. One contains the string names of each of the terminals, and

the other one contains the string names of each of the non-terminals. The next three

sequences contain information about the grammar rules. The index of the

sequences corresponds to the production rule number. One contains the sizes of the

right hand side of each production. One contains the number of the nonterminal

for that production. The East sequence contains the procedure names that will be

called upon the reduction ala production rule.

Jo



The primary function of the goto table is to choose the next state after a reduction.

Thus there is no need to keep inlormation about terminals and their nansitions in

the goto table. The goto table is a list of nonterminals followed by a list of pairs of

states (current, next). The goto table is organized by nonterminals for space

eFficiency. All the transitions in this list are valid Linder that nonterminal. There are

three integer sequences which comprise the goto table. The first two sequences

contain all the valid (current. next) transilions, one sequence contains the current

states, and the other conmins the next states. The last sequence contains the offsets

into these sequences for each nonterminal. The index of the offset sequence is the

nontermnaI number, and its content is the offset into the transition sequences. The

offset sequence has one more element than the total number of nontenninals. The

offset sequence is an ordered sequence, element i element i-i-!. ibis means

that transitions for nonterminal i are located in positions element i through

(element 1* 1)-! of the transition sequences.

The action tables is made up of four integer sequences. There are two offset

sequences. These two offset sequences are used because of the table compaction

algorithm for states with identical actions presented earlier. The first ofet

sequence contains the offsets for each state into the second offset sequence. The

second offset sequence contains offsets into the action sequence. The action

sequence is organized in groups of three elements starting from the first position,

The first element in the group is the terminal number for the lookahead, the second

number is that action number, and the third number is the argument for the action.

Since error and accept actions have no arguments, the element is not consulted for

this argument. For a shift action this argument is the next state number, and for a

reduce action this argument is the production number. The list of actions valid for a

particular state is terminated by a -1 in the first position. The last sequence contains

the defaults actions. The default action for a particular state is located at element s

31



here s is the sUite number. iThe definilt action will he the production number in

the case of a reduction, or zero in the case of an error.

32



Chapter Six

Experiences with the Development of CLUCC

CLUCC has been designed and implemented o efflciently produce a purser in time

and space. The one shortcoming CLUCC has with respect to YACC is that there is

no mechanism for controlling the use of ambiguous grammars. YACC controls the

use of ambiguous grammars, by specifying precedence and associativity,

CLUCC took about 25 40-hour weeks to write and debug. In that time many

different versions evolved in an attempt to gain time and space efficiency wherever

possible. For example, the normalization of the grammar, and the subsequent use

of bit vectors lead to an improvement of almost an order of magnitude for the time

necessary to generate the lookaheads.

In order to gather timing statistics CLUCC was made to display the cpu time at

similar points to YACC-20 during the parsing table generation. The total Cpu time

used by CLUCC to produce parsing tabies in CLU is about five times greater than

the Cpu time used by YACC-20 to produce parsing tables in C for the same input

This time factor is relatively the same for different sized grammars. This factor

drops a little with very large grammars. This time factor can largely be attributed to

the use of CLU instead of C. YACC-20 displayed the cpu time as it generated to

parsing tables. The timing statistics are not exactly comparable because the CLU

cpu time includes the time used for paging and C does not include this time.

When CLUCC is compared with CLU-YACC, it is found that CLUCC is about

four times faster than CLU-YACC. This statistic is purely speculative because the

cpu time for CLU-YACC to process the YACC-20 parsing tables is not displayed.

33



The time it takes to convert the tables from C to CLLI can only be estimated.

However rough an estimate, this is the important time statistic, since we are

concerned with the performance of conipilër’conipilers which generate CLU code,

not C code. CLUCC is also more practical than CLU-YACC because the parsing

tables are independent of the parser. This is advantageous because there is no need

to recompile the parser and the tables when changes are made to only one of them.

Displaying the cpu time at intervals in the generation, process, proved to be very

useful. The breakdown of the total cpu time showed where the bottlenecks were in

CLUCC. The time used by YACC-20 and CLUCC for 1/0 is essentially the same.

The time to generate the tables using CLUCC is much greater than the time it takes

in C. The time used to compute the lookaheads using CLLJCC is about ten times

slower than using YACC-20. Fortunately, the lookahead computation occupies the

least amount of time relative to the other sections.

Virtually no bugs have been discovered in CLLrCC. This is a result of the way the

project was divided so that it could be incrementally tested. Testing was performed

bottom up; as something was added, it was tested. The testing was greatly

simplified because CLI) codes algorithms so well, and it is easy to see which tt

cases are necessary. This eliminates a great deal of testing redundancy, and results

in a great time savings. Much of the testing was also simplified because CLU

supports modular programming so well,

CLUCC was used in an introductory course in compiler design at MIT this past

spring. This proved to be the best testing ground of all. Students are notoriously

good at finding bugs that exist in a program and MIT students are among the best.

There were one or two bugs discovered in the parser provided to work with the

tables that CLIJCC generated, but aside from these bugs CIWCC has worked

marvelously.

34



References

[AU 771
Aho, A. V. and Climan, J. D.
Principles ofCompiler Design.
Addison-Wesley, 1977.

[CLU 79]
B. Liskov et aL
CLU Reference ManuaL
Technical Report TR-225, Laboratory for Computer Science, Massachusetts

Institute of Technology, 1979.

35


