
Leader Election Using Loneliness Detection?

Mohsen Ghaffari, Nancy Lynch, and Srikanth Sastry

CSAIL, MIT
Cambridge, MA 02139, USA

Abstract. We consider the problem of leader election (LE) in single-
hop radio networks with synchronized time slots for transmitting and
receiving messages. We assume that the actual number n of processes
is unknown, while the size u of the ID space is known, but possibly
much larger. We consider two types of collision detection: strong (SCD),
whereby all processes detect collisions, and weak (WCD), whereby only
non-transmitting processes detect collisions.
We introduce loneliness detection (LD) as a key subproblem for solv-
ing LE in WCD systems. LD informs all processes whether the system
contains exactly one process or more than one. We show that LD cap-
tures the difference in power between SCD and WCD, by providing an
implementation of SCD over WCD and LD. We present two algorithms
that solve deterministic and probabilistic LD in WCD systems with time
costs of O(log u

n
) and O(min(log u

n
, log(1/ε)

n
)), respectively, where ε is the

error probability. We also provide matching lower bounds.
We present two algorithms that solve deterministic and probabilistic LE
in SCD systems with time costs of O(log u) and O(min(log u, log log n+
log( 1

ε
))), respectively, where ε is the error probability. We provide match-

ing lower bounds.

1 Introduction

We study the leader election problem in single-hop radio networks with synchro-
nized time slots for transmitting messages, but where messages are subject to
collisions. We focus on the time cost of electing a leader and the dependence
of this cost on the number n of actual processes in the network as well as on
a known, finite ID space I of the processes. We assume that while n may be
unknown, each process knows its own ID and the ID space I. We only restrict
the size of the ID space, u = |I|, to be at least n; the number of processes in the
system may be much smaller than the size of the ID space.

The time cost of leader election depends significantly on the ability of the
processes to detect message collisions. The problem has been well studied in
single-hop systems which have no collision detection (e.g., [3, 6, 10, 1, 8]) and in
systems with strong collision detection (SCD) in which all processes can detect
message collisions (e.g., [11, 2, 5, 3, 7, 9]). However, the cost of leader election is

? This work partially supported by NSF under award numbers CCF-0937274, CCF-
0939370, and CCF-0726514, and by AFOSR under award number FA9550-08-1-0159.



under-explored in systems with weak collision detection (WCD) wherein only
the listening processes detect message collisions. We focus on the time costs of
solving leader election, both deterministic and randomized, in WCD systems
and compare them to the time costs for leader election in SCD systems.

The primary challenge to solving leader election in WCD systems is to distin-
guish the following two cases: (1) n > 1 and all the processes transmit simulta-
neously resulting in a collision, which remains undetected because no process is
listening, (2) n = 1 and any message transmitted by the process does not collide,
but the successful transmission is undetected because no process is listening. In
both cases the transmitting processes receive the same feedback from the WCD
system despite different outcomes. Note that these two cases are distinguishable
in SCD systems. Hence, loneliness detection — determining whether or not there
is exactly one process in the system — is a key subproblem of leader election.

Summary of Results. We define the Loneliness Detection (LD) problem in
Sect. 4 and determine the time complexity of solving LD in single-hop wireless
networks in Sect. 5. We show that LD can be solved deterministically in WCD
systems in O(log u

n ) time slots for n > 1 and in O(log u) time slots for n = 1.
Interestingly, in the probabilistic case, if n > 1, LD can be solved in WCD
systems in a constant number of rounds with high probability; however, if n = 1,
then our algorithm takes O(log u) time slots. We demonstrate that these time
bounds are tight by presenting matching lower bounds.

In Sect. 4, we implement an SCD system on top of a WCD system augmented
with a solution to LD. This allows us to deploy SCD-based protocols on WCD
systems. We explore such SCD-based protocols for LE in Sect. 6 where we present
upper and lower bounds for both deterministic and randomized LE in SCD
systems. First, we present a deterministic LE protocol that terminates in at
most O(log u) time slots and show a matching lower bound. For probabilistic
LE, we interleave Nakano and Olariu’s algorithm from [9] with our deterministic
algorithm to solve the problem in O(min(log u, log log n + log( 1

ε )) rounds with
termination probability at least 1−ε (where 1 < ε < 0). We present a lower bound
of Ω(min(log(un ), log( 1

ε ))) for probabilistic LE on SCD systems with termination
probability at least 1 − ε. Note that the lower and upper bounds match when
ε = O( 1

n ). Subsequently, in Sect. 6, we demonstrate that the same upper and
lower bounds hold for LE in WCD systems as well.

The full proofs omitted here due to space constraints are available in [4].

2 System Models, Definitions, and Notations

Our model considers a finite set of n processes with unique IDs from I, a finite
ID space of size u. The set J ⊆ I denotes the set of IDs of the n processes.
Processes. Processes communicate by broadcasting messages from a fixed al-
phabetM on the shared channel. We assume thatM does not contain the special
placeholder elements ⊥ and >, which denote silence and collision, respectively.
We assume that time is divided into rounds, and processes have synchronized
clocks and can detect the start and end of each round. Processes transmit only



at round boundaries, and each transmission is contained within a single round.
We assume that all processes wake up at time 0, which is the start of round 1.

A process i transmits a message m in round r through the action send(m, r)i
and receives a message m′ in round r through the action receive(m′, r)i. If a
process i does not send a message in round r, then, we say that process i executes
action send(⊥, r)i. If a process does not send a message in round r, then it is
assumed to be listening in round r. If a process i does not receive a message in
round r, then the process either receives silence through action receive(⊥, r)i or
receives a collision notification through action receive(>, r)i. We assume that in
every execution, for each process i and each round r, exactly one event of the
form send(∗, r)i and exactly one event of the form receive(∗, r)i occurs.

Wireless Channels. A wireless channel is a broadcast medium in which at
most one process can successfully send a message in any round. We assume that
a known, nondecreasing time-bound function b : N+ → R≥0, which maps each
round to an upper bound on the real time at which the round ends. Any channel
that satisfies a time-bound function b is said to be a b-time-bounded channel.

The behavior of a channel in a round r is determined by the set T of trans-
mitting processes in round r. If no process transmits a message in round r, i.e.,
|T | = 0, then for each process i in the system, the event receive(⊥, r)i occurs;
that is, all processes receive silence in round r. If exactly one process j trans-
mits a message (say) m in round r, i.e., |T | = 1, then for each process i in the
system, the event receive(m, r)i occurs. If two or more processes send messages
in a given round, i.e., |T | > 1, then we say that the round experiences a message
collision. The responses given by a channel in the event of a message collision are
determined by their collision detection ability. We consider two types of channels.

Weak Collision Detection (WCD) Channels. In WCD channels, in the case
of a collision, every transmitting process receives its own message, and every
process that is listening receives >. That is, if |T | > 1, then for each process i in
T , where event send(mi, r)i occurs, the event receive(mi, r)i occurs, and for each
process i not in T , the event receive(>, r)i occurs. We denote the time-bound
function of a WCD channel by bWCD.

Strong Collision Detection (SCD) Channels. In SCD channels, if a message
collision occurs, then all processes receive > in that round. That is, if |T | > 1,
then for each process i, the event receive(>, r)i occurs.

We also consider probabilistic SCD channels in which the real-time duration
of a round is specified by a function ρ : N+ × [0, 1] → R≥0, where ρ(r, ε) is an
upper bound on the real time by which round r terminates with probability at
least 1−ε. We assume that ρ is nondecreasing with respect to r and nonincreasing
with respect to ε. Additionally, we assume that every round terminates in finite
time with probability 1; that is, for each round r, ρ(r, 0) is finite. We say that a
probabilistic SCD channel whose round duration is upper bounded by a function
ρ is ρ-time-bounded.

We assert that systems with SCD are at least as powerful as systems with
WCD because SCD provides more information than WCD to the transmitting
processes in a given round. A proof appears in [4].



3 The Leader Election Problem

Leader election (LE) is a problem in which each process i eventually outputs
leader(l)i where l is the ID of some process in the system, and the process l is
the leader. The safety properties of LE state that every process i performs at
most one leaderi event, and no two processes output different leaders.

We consider two variants of the LE problem, deterministic and probabilistic,
which differ only in their liveness properties. The deterministic liveness prop-
erty states that in any execution, for every process i ∈ J , some event of the form
leader(∗)i occurs. The probabilistic liveness property states that in the space
defined by all infinite executions, for every process i some event of the form
leader(∗)i occurs with probability 1. For each process i, an upper bound on the
number of rounds within which a leaderi event occurs with probability at least
1 − ε is given by ρLE(ε) where ρLE : [0, 1] → N+ is a nonincreasing function.
Deterministic leader election satisfies the safety properties and the determin-
istic liveness property, whereas probabilistic leader election satisfies the safety
properties and the probabilistic liveness property.

For the purposes of demonstrating lower bounds, we also consider the variant
η-LE of leader election where η ∈ N+. Specifically, deterministic η-LE denotes
the variant of deterministic leader election in which the system consists of η
processes and η is known to the processes; similarly, probabilistic η-LE denotes
the variant of probabilistic leader election in which the system consists of η
processes and η is known to the processes.
Prior work. There is a significant body of work exploring LE in wireless systems
with collisions. Most of the results focus on LE in SCD systems. For deterministic
LE in single-hop SCD systems, there exist matching time bounds O(log n) from
[2, 5] and Ω(log n) from [3] where n, the number of processes in the system, is
known. When n is unknown, the best known deterministic upper bound on the
time complexity of LE in SCD systems is O(n) in [7] for arbitrary multi-hop
networks of which single-hop is a special case; however, the result in [7] assumes
that an upper bound u of n is known and is O(n). To our knowledge, better
upper and lower bounds are not known.

For probabilistic LE in single-hop SCD systems, Willard presents an algo-
rithm in [11] that solves LE on SCD systems in expected time O(1), O(log log u),
and log log n+ o(log log n) in the cases where n is known, where n is unknown,
but u is known, and where both n and u are unknown, respectively. For the
case where n and u are unknown, the results in [9] provided an improved al-
gorithm with running time log log n + o(log log n) +O(log( 1

ε )) with probability
of termination at least 1 − ε. A lower bound of Ω(log 1

ε ) for this problem has
been presented in [9] only for “uniform algorithms” in which all the processes
transmit with the same probability in each round (although the probability can
vary from one round to another).

To our knowledge, the problem of LE seems to be relatively under-explored
in the context of WCD systems. The best known time bounds for deterministic
LE in single-hop WCD systems, based on the results for broadcast in multi-hop
wireless networks in [10], is Θ(log n) where n is known.



4 The Loneliness Detection Problem

Loneliness detection (LD) is a service that interacts with processes through
output alone. In some round r, LD outputs alone(a, r)i for all processes i where
a is Boolean. The safety properties state that if a is true there is exactly one
process in the system, and if a is false, then there is more than one process. Note
that LD outputs its alone event at all processes in the same round.

We consider two variants of LD, deterministic and probabilistic, which differ
only in their liveness properties. The deterministic liveness property states that
in any execution, for each process i, some alonei event occurs. The probabilis-
tic liveness property states that in the probability space defined by all infinite
executions, for each process i, some alonei event occurs with probability 1. The
upper bound on the number of rounds within which some alone event occurs
with probability at least 1− ε is given by ρLD(ε) where ρLD : [0, 1]→ N+ is non-
increasing, and ρLD(0) is finite. A deterministic loneliness detector satisfies the
safety and the deterministic liveness properties, whereas a probabilistic loneliness
detector satisfies the safety and the probabilistic liveness properties.

A solution to deterministic LD in which an alone event occurs within rLD
rounds is said to be a rLD-round-bounded, and a solution to randomized LD in
which some alone event occurs with probability at least 1 − ε within ρLD(ε)
rounds is said to be ρLD(ε)-round-bounded.

We show that Loneliness Detection (LD) is, in a sense, exactly the difference
between SCD and WCD. Note that LD is solved on SCD systems using the
following trivial algorithm. Each process i in the system sends a message m at
the beginning of round 1 and waits until the end of round 1. If a > is received
at the end of round 1, then the algorithm returns alone(false, 1)i, otherwise it
returns alone(true, 1)i.

We now present an algorithm that implements an SCD channel over a WCD
system augmented with an LD service. In order to distinguish the actions of the
two channels, we rename the send and receive actions associated with the WCD
channel as sendWCD and receiveWCD actions, respectively.

Pseudocode Notation. When an action at a process is triggered by an event
e, we denote the trigger with “upon e” in the pseudocode. Similarly, when the
automaton is waiting for the occurrence of an event e to proceed, we denote it
with “wait until e”. Instances in which an algorithm performs an action a are
denoted “perform a”.

We also use the following notation to bind values to certain variables. Con-
sider the statements “upon e(x, y)” and “wait until e(x, y)”. In both cases, if
(say) x is undefined and y is defined at the point in the code where the state-
ments occur, then the semantics of the code is to wait for any event of the form
e(∗, y), and when an event (say) e(x′, y) occurs, bind the value of x′ to x.

Algorithm Description. The algorithm consists of two concurrent tasks: Init
and Communicate. In the Init task each process i waits for the alone(aLD, rLD)i
event from the LD service. The Communicate task consists of two WCD rounds,
called Transmit and Ack, which are executed for every round rs of the SCD
channel. Let T denote the set of processes that transmit some message mi in



Algorithm 1 Implementing SCD on a WCD system using an LD service.

Each process i executes two concurrent tasks: Init and Communicate.
Variables:

m ∈M∪ {⊥}
m′, p2msg ∈M∪ {>,⊥}
rLD, rs ∈ N+

Task Init:
Wait until event alone(aLD, rLD)i from the LD service; halt

Task Communicate:
loop forever

/* Round rs for the SCD channel starts here */
upon send(m, rs)i wait for Task Init to terminate
Transmit Round:

perform sendWCD(m, rLD + 2rs − 1)i
wait until receiveWCD(m′, rLD + 2rs − 1)i

Ack Round:
if (m = ⊥ and m′ ∈M) then perform sendWCD(“ack”, rLD + 2rs)i
else perform sendWCD(⊥, rLD + 2rs)i
wait until receiveWCD(p2msg, rLD + 2rs)i

if (m′ = ⊥) then perform receive(⊥, rs)i
else if (aLD = true) then perform receive(m, rs)i
else if (p2msg 6= ⊥) then perform receive(m′, rs)i
else perform receive(>, rs)i
/* Round rs ends here */

end loop

round rs of the SCD channel via send(mi, rs)i for each process i ∈ T . In the
Transmit round, each process i ∈ T executes sendWCD(mi, rLD + 2rs − 1)i.
All other processes listen to the channel via sendWCD(⊥, rLD + 2rs − 1)i. At
the end of the Transmit round, each process i ∈ T receives its own message
via the event receiveWCD(m′, rLD + 2rs − 1)i where m′ = mi. Each listening
process j receives either some message, ⊥, or > via receiveWCD(m′, rLD +
2rs − 1)j . In the Ack round, each process i ∈ T listens to the channel via the
event sendWCD(⊥, rLD + 2rs)i. Each process j ∈ J \ T sends an “ack” via
the event sendWCD(“ack”, rLD +2rs)j iff j received a message in the Transmit
round; otherwise j listens to the channel via the event sendWCD(⊥, rLD+2rs)j .
At the end of the Ack round, each process receives either “ack”, ⊥, or > via
receiveWCD(p2msg, rLD+2rs)∗. If p2msg is “ack” or >, then the transmission
in the Transmit round was successful, and m′ is that transmitted message; so the
algorithm outputs receive(m′, rs)i at each process i. If aLD is true, then there is
only one process in the system, and so the transmission in the Transmit round
was successful, and the algorithm outputs receive(m, rs)i at the lone process i.
However, if aLD is false and p2msg is ⊥, then there was a collision, and the
algorithm outputs receive(>, rs)i at each process.

Note that although the Init and Communicate tasks are executed concur-
rently, the Communicate task waits for the Init task to terminate before pro-



ceeding to sending and receiving messages on the WCD channel. The pseudocode
is shown in Algorithm 1.

Theorem 1. Algorithm 1 implements a deterministic SCD channel over a WCD
system with a deterministic LD service. If the WCD channel is bWCD-time-
bounded and the LD service is rLD-round-bounded, then the SCD channel im-
plementation is b-time-bounded, where b(r) = bWCD(rLD + 2r).

Proof Sketch. We show that (1) if no process sends a message in a round (say)
rs, then all the processes receive ⊥ in round rs; (2) if exactly one process sends
a message (say) m in round rs, then all the processes receive m in the round rs;
and (3) if multiple processes send messages in round rs, then all the processes
receive > in round rs.

Properties (1) and (2) are easy to verify based on the following observations.
When n = 1, at the lone process i, the event alone(true, rLD)i occurs, and when
n > 1, at each process i, the event alone(false, rLD)i occurs. For property (3)
let T denote the set of transmitting processes in round rs. If |T | ≥ 2, then there
is a message collision. From the properties of a WCD channel, we know that for
every process j ∈ T , m′j is mj , and for every process i /∈ T , m′i is > (and mi is ⊥).
Therefore, in the Ack round, for each process i event sendWCD(⊥, rLD + 2rs)
occurs, and consequently, p2msgi is ⊥. Given that aLD = false, and m′i 6= ⊥ at
every process i, each process i executes receive(>, rs)i. That is, if |T | ≥ 2, then
all processes receive > in round rs.

Next we determine a time-bound function b for the SCD channel. Let bWCD

denote a time-bound function for the underlying WCD channel. From the pseu-
docode we know that the deterministic LD service outputs the alone events
in round rLD of the WCD channel, and subsequently between every pair of
events send(∗, r)i and receive(∗, r)i, there are exactly two sendWCD events of
the form sendWCD(∗, rLD + 2r − 1)i and sendWCD(∗, rLD + 2r)i. Therefore,
b(1) = bWCD(rLD + 2) and for each round r, b(r) = bWCD(rLD + 2r). ut

Additionally, if the underlying LD service is a ρLD(ε)-round-bounded prob-
abilistic LD service, then Algorithm 1 implements a ρ(r, ε)-time-bounded prob-
abilistic SCD channel where ρ(r, ε) = bWCD(ρLD(ε) + 2r). Thus, we have the
following result whose correctness proof is similar to Theorem 1.

Theorem 2. Algorithm 1 implements probabilistic SCD channel over a WCD
channel and a probabilistic LD service. If the WCD channel is bWCD-time-
bounded and the probabilistic LD service is ρLD(ε)-round-bounded, then the prob-
abilistic SCD channel implementation is ρ(r, ε)-time-bounded where ρ(r, ε) =
bWCD(ρLD(ε) + 2r).

Remark 1. Implementing LD on top of a WCD system augmented with a solu-
tion to LE takes just one additional round. First, all the processes elect a leader
with the assumed solution to LE. In the next round of the assumed WCD sys-
tem, (1) every process that is not the leader transmits, outputs false, and then
halts; (2) concurrently, the leader outputs true iff it receives ⊥ at the end of this
round, and outputs false otherwise. Correctness is straightforward.



5 Algorithms and Lower Bounds for Loneliness Detection

Here, we explore algorithms and lower bounds for Loneliness Detection. Since
LD can be solved in SCD systems in a single round, we focus on WCD systems.

5.1 Upper Bounds for LD in WCD Systems

We present two algorithms, one deterministic and the other randomized. The
deterministic algorithm solves the deterministic LD problem in O(log( u

n−1 ))
rounds whereas the randomized algorithm solves the probabilistic LD problem

in O( log(1/ε)
n−1 ) rounds with probability 1− ε, for ε ∈ (0, 1]. We also combine these

algorithms to solve probabilistic LD with probability 1.

Bitwise Separation Protocol (BSP). BSP solves the deterministic LD prob-
lem in WCD systems in O(log u

n−1 ) rounds. The algorithm is as follows. Let the
ID of each process i be represented as a sequence of bits denoted idi; since the
ID space is of size u, the sequence is dlog(u)e bits long. Starting from the least
significant bit, number the bits from 1 to dlog(u)e, and let idi[k] denote the k-th
bit of process i’s ID. Let Tk = {i ∈ J : idi[k] = 1}1. The algorithm proceeds in
phases, each phase consisting of a Transmit round and an Ack round.

In the Transmit round of the k-th phase, exactly the processes in Tk that
have not yet halted transmit a message. In the Ack round, if a process i ∈ J \Tk
that has not halted receives either a message or > in the Transmit round, then
i sends an “ack” message; furthermore, processes in Tk do not send a message
in the Ack round. If a process i ∈ J that has not yet halted either sends or
receives an “ack” message or receives > in the Ack round of a given phase k,
then i outputs alone(false, 2k)i and halts.

If⊥ is received in all the Ack rounds, then the algorithm terminates at the end
of 2dlog ue rounds and the lone process (say) j outputs alone(true, 2dlog ue)j .
The pseudocode is shown in Algorithm 2.

Theorem 3. BSP solves the deterministic LD problem and for each process i;
some alonei event occurs after 2dlog(u)e rounds if n = 1 and within 2(dlog ue −
dlog ne+ 1) rounds if n > 1.

Proof Sketch. From the pseudocode in Algorithm 2, note that every process
i performs exactly one alonei event. First, assume that alone(true, r)i occurs.
From the pseudocode, we see that r = 2dlog ue. For the purpose of contradiction,
we assume that n > 1. Since no alone(false, ∗)i event occurs, i never sends an
“ack” and i never receives an “ack” or > in any Ack round. This can happen
only if in the Transmit round of every phase k ≤ dlog ue, either all the processes
transmit or all the processes listen; this implies that all the processes share the
same ID. This contradicts our assumption that process IDs are unique. Hence,
when n = 1, event alone(true, 2dlog ue)i occurs at the lone process i.

1 Recall that J is the set of processes comprising the system.



Algorithm 2 Bitwise Separation Protocol

Let m ∈M denote a message that i sends to signal its presence in the system.
Process i executes the following:

for k := 1 to dlog(u)e
Transmit round:

if (id[k] = 1) then perform send(m, 2k − 1)i
else perform send(⊥, 2k − 1)i
wait until receive(m′, 2k − 1)i

Ack round:
if (id[k] 6= 1 and m′ 6= ⊥) then perform send(“ack”, 2k)i
else perform send(⊥, 2k)i
wait until receive(m′′, 2k)i
if (m′′ 6= ⊥) then perform alone(false, 2k)i; halt.

endfor
perform alone(true, 2dlog(u)e)i

Alternatively, assume that alone(false, r)i occurs. From the pseudocode, we
know that m

′′

i 6= ⊥ in round r; that is, i either sent or received an “ack” message
or received > in the Ack round of phase r/2. Therefore, there is at least one other
process in the system. Furthermore, since i either sent or received an “ack”
message or received > in round r, then the properties of the WCD channel
imply that the same is true for all processes. Hence, for each process j, the event
alone(false, r)j occurs.

Now we provide an upper bound on r. Since representing unique IDs among
n processes requires dlog ne bits, and since each process ID is of length dlog ue
bits, we infer that within the first dlog ue−dlog ne+ 1 bits of the process IDs, at
some bit position k, there exist at least two processes i and j such that idi[k] = 1
and idj [k] = 0. Therefore, in phase k, i transmits and j listens in the Transmit
round. Hence, alone(false, 2k) event occurs at each process. ut

Random Separation Protocol (RSP). RSP is used to solve probabilistic LD

in WCD systems. RSP verifies that n > 1 in 2 log(1/ε)n−1 rounds with probability
at least 1− ε where ε ∈ (0, 1]. However, if n = 1, RSP does not terminate.

The protocol is identical to BSP except that IDs in RSP are infinite-bit
strings in which the bits is chosen independently and uniformly at random. In
each phase k, if idi[k] = 1, then i transmits in the Transmit round; otherwise i
listens in the Transmit round. It can be verified easily that RSP terminates in
the first phase k in which for some pair of processes i and j, idi[k] 6= idj [k].

The probability that the k-th bit of the IDs of all processes are identical is
2 · ( 1

2 )n = ( 1
2 )n−1. It follows that, for a given ε ∈ (0, 1], the probability that RSP

does not terminate in log(1/ε)
n−1 phases is ε.

Theorem 4. In RSP, if n > 1 and ε ∈ (0, 1], then for every process i the event

alone(false, r)i occurs within the first log(1/ε)
n−1 phases, that is, r ≤ 2 log(1/ε)n−1 , with

probability at least 1− ε.



Remark 2. For ε = 2−n, Theorem 4 implies that, if n > 1, then for every process
i, the event alone(false, r)i occurs within the first 2 n

n−1 rounds with probability

at least 1 − 2−n. Thus, for n > 1, the number of rounds within which RSP
terminates with high probability is always at most 4.

Combined Separation Protocol (CSP). Even though RSP terminates in
fewer rounds than BSP with high probability if n > 1, it fails to terminate if
n = 1. We overcome this problem by interleaving RSP and BSP, executing BSP
in the odd rounds and RSP in the even rounds; CSP terminates when either
BSP or RSP terminates.

Theorem 5. CSP solves probabilistic LD on WCD systems where

ρLD(ε) =


4dlog ue if n = 1,
4(dlog ue − dlog ne+ 1) if ε = 0 and n > 1,

4 min
(
(dlog ue − dlog ne+ 1), log(1/ε)n−1

)
if ε ∈ (0, 1] and n > 1.

5.2 Lower Bounds for LD in WCD Systems

In this section, we present lower bounds for both probabilistic and deterministic
LD problems in WCD systems.

Lemma 1. For any LD algorithm A for WCD systems, any n > 1, and any
round number r ≤ dlog(u)e − blog(n − 1)c − 2, there exists a set JLB of n
processes, such that, when A is run on the system consisting of all processes in
JLB, the probability that A does not terminate within r rounds, is at least ( 1

2 )rn.

Proof Sketch. For each process i, we consider executing A on system Si consist-
ing of only process i. Without loss of generality, assume that each execution of
Si takes at least r rounds. Consider the probability space of all executions corre-
sponding to r rounds of Si. For each such execution and each round z, 1 ≤ z ≤ r,
define transi(z) to be true if i transmits in round z, and false otherwise. Denote
the probability of events in this space by Pri. We define the boolean function
dtdi (dominating transmission decision) on {1, ..., r} recursively. dtdi(1) is as-
signed the value that is more likely to be taken by transi(1), i.e., dtdi(1) = true
iff Pri{transi(1) = true} ≥ 1

2 . Let DTDi,1 denote the event in the probability
space Pri that transi(1) = dtdi(1). For each z ≥ 2, we define dtdi(z) to be the
value that is more likely to be taken by transi(z), conditioned on DTDi,z−1, i.e.,
dtdi(z) = true iff Pri{transi(z) = true|DTDi,z−1} ≥ 1

2 . We denote by DTDi,z

the event that for each round r′, 1 ≤ r′ ≤ z, transi(r′) = dtdi(r
′).

Since for each process i and each round z, 1 ≤ z ≤ r, there are two possible
values for dtdi(z), there are 2r possible values for dtdi sequences. Since 2r < u

n−1 ,
by the Pigeonhole principle, there exists a set JLB of n processes that have
identical sequences of dominating transmission decisions, i.e., ∀i, j ∈ JLB , dtdi =
dtdj . Let S be the system consisting of processes in JLB . For each z, 1 ≤ z ≤ r,



let cdtd(z) denote the common dominating transmission decision of the processes
of JLB in round z.

Consider an execution α in system S. If for each process i ∈ JLB and each
round z ≤ r of α, transi(z) = cdtd(z), then for each i ∈ JLB there exists an
execution β in Si such that i cannot distinguish α from β in the first r rounds.
However, in α, the only valid output is alone(false, ∗)∗ whereas in β, the only
valid output is alone(true, ∗)∗. Hence, j cannot terminate within r rounds. By
induction we show that the probability that for each i ∈ JLB and z, 1 ≤ z ≤ r,
transi(z) = cdtd(z) is at least ( 1

2 )rn. Hence, with probability at least ( 1
2 )rn, A

does not terminate within r rounds. ut
Lemma 2. For n = 1, no LD algorithm for WCD systems guarantees termina-
tion within dlog(u)e − 2 rounds.

Theorem 6. For any LD algorithm A for WCD systems, and any n > 1, there
exists a set of processes, JLB, where |JLB | = n, such that the probability that

A terminates within min
( log( 1

ε )

n , dlog u
n−1e− 2

)
rounds, when run on the system

consisting of all processes of JLB, is at most 1− ε. For n = 1, no LD algorithm
for WCD systems guarantees termination within dlog(u)e − 2 rounds.

Proof. For n > 1, the proof follows by substituting r = min
( log( 1

ε )

n , dlog u
n−1e−2

)
in Lemma 1. For n = 1, the proof follows from Lemma 2. ut
Theorem 7. For n > 1, no deterministic LD algorithm for WCD systems guar-
antees termination within dlog u

n−1e rounds. For n = 1, no deterministic LD
algorithm guarantees termination within dlog(u)e − 2 rounds.

5.3 Revisiting SCD on WCD Systems

In Sect. 4, we presented an implementation of an SCD channel over a WCD
channel using an LD service. In Sect. 5.1, we presented the BSP and CSP al-
gorithms that solve deterministic and probabilistic LD, respectively, over WCD.
Note that, BSP and CSP do not send any messages on the WCD channel after
they terminate. Hence, Algorithm 1 may use the WCD channel after round r in
isolation. Therefore, BSP and CSP can be used as an LD service in Algorithm
1 to implement deterministic and probabilistic SCD systems, respectively.

6 Algorithms and Lower Bounds for Leader Election

In this section, we study deterministic and probabilistic LE problems in both
SCD and WCD systems and demonstrate matching upper and lower bounds.

6.1 Upper Bounds for LE in SCD Systems

In this section, we present two algorithms: Bitwise Leader Election Protocol
(BLEP) and Combined Leader Election Protocol (CLEP). The former is a de-
terministic algorithm which solves deterministic LE in SCD systems. The latter
is a randomized algorithm which interleaves BLEP and Nakano and Olariu’s
algorithm in [9] to solve probabilistic LE in SCD systems.



Algorithm 3 Bitwise Leader Election Protocol
active = true
for r := 1 to blog(u)c+ 1

if (active = true and idi[r] = 1) then perform send(idi, r)i
else perform send(⊥, r − 1)i
wait until receive(m′, r − 1)i
if (m′ ∈ I) then perform leader(m′)i; halt.
if (m′ = >) then active = (active)&(idi[r] = 1)

endfor

Bitwise Leader Election Protocol (BLEP). BLEP solves deterministic LE
in SCD systems in O(log u) rounds. In BLEP, every process contending to be
the leader is active, and inactive otherwise; a Boolean variable active denotes
whether or not a process is active. Initially, all the processes are active. The
execution proceeds from round 1 to round blog uc + 1. In each round r, every
process i such that i is active and idi[r] = 1, transmits its ID idi; all other
processes are silent in round r. At the end of round r, every process j receives
some response from the SCD channel. If j receives a collision notification > at
the end of round r, and j was active but did not transmit its ID in round r
(because idj [r] = 0), then j ceases to be active (becomes inactive) at the end of
round r and therefore stops contending to be the leader. On the other hand, if
the response at the end of round r is the ID of some process l, then j elects l
as the leader, outputs leader(l)j , and halts. If j receives ⊥ at the end of round
r, then j does nothing. The execution proceeds to round r + 1, and so on, until
round blog uc+ 1. The pseudocode is shown in Algorithm 3.

Theorem 8. BLEP solves the LE problem within blog(u)c+ 1 rounds.

Proof Sketch. Establishing the safety properties of LE is straightforward and
follows from the pseudocode. Next, we prove that some leader event occurs
within blog uc+ 1 rounds.

From the pseudocode, we see that if i and j are active in round r, then for
each r′, 1 ≤ r′ ≤ r, idi[r

′] = idj [r
′]. Therefore, at the end of dlog ue rounds,

there can be at most two active processes in the system. If just one process (say)
i remains active, then consider the earliest round r ≤ blog uc at the end of which
i is the only active process. By construction, multiple processes are active at the
beginning of round r. Since i is the only process active at the end of round r, for
each process j 6= i that is active in round r, idj [r] = 0 and idi[r] = 1. Hence, in
round r, only i transmits its ID, and all the processes in the system receive i’s
ID. Therefore, for each process j in the system, leaderj event occurs in round
r ≤ blog uc and contradicts our assumption that no leader event occurs by the
end of round blog uc.

On the other hand, if two processes (say) i and j remain active, then the first
blog uc bits of their IDs are identical. Therefore, the last bit of their IDs must be
different. Without loss of generality, let idi[blog uc+1] = 1 and idj [blog uc+1] =



0. In round blog uc+ 1 only i transmits its ID and therefore, for each process i,
leaderi event occurs in round blog uc+ 1. ut

Combined Leader Election Protocol (CLEP). Nakano and Olariu [9]
present a randomized LE algorithm for SCD systems that terminates in O(1)
rounds if n = 1, and in O(log log n + log(1

ε )) rounds with probability at least
1− ε if n > 1. CLEP interleaves Nakano-Olariu’s algorithm with BLEP, by ex-
ecuting BLEP in the odd rounds and Nakano-Olariu in the even rounds. The
time complexity of CLEP matches the lower bound for probabilistic LE.

Theorem 9. CLEP solves the LE problem in SCD systems and terminates
within ρLE(ε) rounds with probability at least 1− ε where:

ρLE(ε) =

O(1) if n = 1,
O(log u) if ε = 0 and n > 1,
O(min(log u, log log n+ log( 1

ε )) if ε ∈ (0, 1] and n > 1.

6.2 Lower bounds for LE in both SCD and WCD Systems

Here we present lower bounds for deterministic and probabilistic LE in SCD
systems in Theorems 10 and 12, respectively, and they match the upper bounds
presented in Theorems 8 and 9, respectively. Note that these lower bounds hold
for the weaker WCD systems as well. We demonstrate these lower bounds by
proving the lower bounds for η-LE, and since η-LE is equivalent the LE problem
where n = η is known, lower bounds for η-LE hold for LE as well.

Lemma 3. For any η > 1 and any randomized η-LE algorithm A in SCD sys-
tems, there exist some set J of η processes such that there is a non-zero proba-
bility that A, when run on J , does not terminate within dlog u

η−1e − 2 rounds.

Proof Sketch. Let k = dlog u
η−1e − 2. Assume for contradiction that there exists

an η > 1 and an η-LE algorithm A that terminates within k rounds with prob-
ability 1. We construct executions of A for each process i in which i receives >
from the channel in each round that it transmitted and receives ⊥ otherwise.
Using techniques from Lemma 1, we show that there exists an execution of A on
some set JLB of η processes for which either each process i ∈ JLB elects itself
as the leader or no process is elected leader within k rounds. This violates the
properties of η-LE and forces the contradiction. ut

Theorem 10. For any n > 1, no deterministic LE algorithm in SCD systems
can guarantee termination within dlog u

n−1e − 2 rounds.

The proof follows from Lemma 3. Next we derive a lower bound for termination
probability of 2-LE and extend it to the LE problem.

Lemma 4. Let A be any 2-LE algorithm in SCD systems and suppose that
r < dlog(u)e − 1 and 2 ≤ u. There exist two processes such that the probability
of termination of A within k rounds, when A is run on the system of those two
processes, is at most 1− ( 1

4 )r+1.



Proof Sketch. The proof structure is similar to that of Lemma 1. The key dif-
ference is the following. In the proof of Lemma 1 we considered some specific
executions of an LD algorithm ALD in WCD systems with just one process and
showed that such executions are locally indistinguishable from some (other) spe-
cific executions of ALD in a WCD system with a specific set of n processes.
In SCD systems, such a construction is not feasible for the following reason. In
WCD systems when a transmitting process always receives the same feedback
from the channel. On the other hand, in SCD systems, a transmitting process
could receive different feedback depending on whether or not a collision occurred.
To circumvent this issue, we consider executions of A, a solution to 2-LE problem
in SCD systems, in a fake scenario where a process receives > in every round
that it transmits. We use such executions to demonstrate that with probability
at least ( 1

4 )r+1, A does not terminate. ut

Theorem 11. For any u ≥ 2, any ID space I of size u, any ε ∈ (0, 1], and any
2-LE algorithm A in SCD systems, there exist two processes with IDs from I
such that, when A is run with just those two processes, the probability that A
terminates within min(log( 1

4ε )/2, dlog(u)e − 2) rounds is at most 1− ε.

Theorem 12. For any u ≥ 2, any ID space I of size u, any ε ∈ (0, 1], any
η, 1 ≤ η ≤ u

2 , and any 2η-LE algorithm A in SCD systems, there exist 2η
processes with IDs from I such that, when A is run with just those 2η processes,
the probability that A terminates within min(log( 1

4ε )/2, dlog(un )e − 2) rounds is
at most 1− ε.

Proof Sketch. Assume for the sake of contradiction that there exists some 2η-
LE algorithm A that terminates within min(log( 1

4ε )/2, dlog(un )e−2) rounds with
probability greater than 1− ε. Consider an ID space I∗ of size u∗ = buη c. Using
A we construct a 2-LE algorithm A∗ that emulates A on groups of processes and
terminates when A does. Since A terminates within min(log( 1

4ε )/2, dlog u∗e− 2)
rounds with probability greater than 1− ε, the same bounds apply to A∗ as well,
and this contradicts contradicts Theorem 11. ut

6.3 Leader Election in Weak Collision Detection Systems

In this section, we show that the LE problem in WCD systems can be solved in
time complexities that match the lower bounds presented in Sect. 6.2 for both
deterministic and probabilistic cases. We can solve LE on WCD systems by first
implementing SCD systems on WCD systems as presented in Sect. 5.3, and then
solving LE on the thus constructed SCD systems using BLEP and CLEP from
Sect. 6.1. Thus, we have the following results.

Theorem 13. For a WCD system with IDs from an ID-space of size u and
consisting of n processes, 1 ≤ n ≤ u, there exists a deterministic LE algorithm
with a time-bound function given by rLE = O(log u) rounds.

Note that the time complexity above, O(log u), matches the Ω(log u
n ) lower

bound presented in Lemma 3 asymptotically when n << u.



Theorem 14. For a WCD system with IDs from an ID-space of size u and
consisting of n processes, 1 ≤ n ≤ u, there exists a randomized LE algorithm
with a time-bound function ρLE(ε) where for any ε ∈ (0, 1],

ρLE(ε) =

{
bWCD(O(log(u))) if n = 1
bWCD(O(min(log u, log log n+ log( 1

ε ))) if n > 1.

The upper bounds presented above match the respective lower bounds. For
n = 1, Theorem 6, along with the reduction of LD to LE in the Remark 1, shows
an Ω(log u) lower bound for LE in WCD systems which matches the upper
bound. For n > 1, the upper bound presented above matches the lower bound
presented in Theorem 12, when ε = O( 1

n ).

References

1. Bordim, J.L., Ito, Y., Nakano, K.: Randomized leader election protocols in noisy
radio networks with a single transceiver. In: Proceedings of the 4th International
Symposium on Parallel and Distributed Processing and Applications. pp. 246–256
(2006), http://dx.doi.org/10.1007/11946441 26

2. Capetanakis, J.I.: Tree algorithms for packet broadcast channels.
IEEE transactions on information theory 25(5), 505–515 (1979),
http://dx.doi.org/10.1109/TIT.1979.1056093

3. Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio net-
works with unknown topology. Theoretical Computer Science 302, 337–364 (2003),
http://dx.doi.org/10.1016/S0304-3975(02)00851-4

4. Ghaffari, M., Lynch, N., Sastry, S.: Leader election using loneliness detection. Tech.
Rep. MIT-CSAIL-TR-2011-xxx, CSAIL, MIT (2011)

5. Hayes, J.: An adaptive technique for local distribution. IEEE transactions on com-
munication 26, 1178–1186 (1978), http://dx.doi.org/10.1109/TCOM.1978.1094204

6. Kowalski, D., Pelc, A.: Broadcasting in undirected ad hoc radio networks. Dis-
tributed Computing 18(1) (2005), http://dx.doi.org/10.1007/s00446-005-0216-7

7. Kowalski, D., Pelc, A.: Leader election in ad hoc radio networks: A keen ear helps.
In: International Conference on Automata, Languages and Programming. pp. 521–
533 (2009), http://dx.doi.org/10.1007/978-3-642-02930-1 43

8. Nakano, K., Olariu, S.: Randomized leader election protocols in radio networks
with no collision detection. In: Proceedings of the 11th International Conference of
Algorithms and Computation. pp. 362–373 (2000), http://dx.doi.org/10.1007/3-
540-40996-3 31

9. Nakano, K., Olariu, S.: Uniform leader election protocols for radio net-
works. IEEE transactions on parallel and distributed systems 13(5) (2002),
http://dx.doi.org/10.1109/TPDS.2002.1003864

10. Schneider, J., Wattenhofer, R.: What is the use of collision detection (in wireless
networks)? In: Proceedings of the International Symposium on Distributed Com-
puting. pp. 133–147 (2010), http://dx.doi.org/10.1007/978-3-642-15763-9 14

11. Willard, D.E.: Log-logarithmic selection resolution protocols in a mul-
tiple access channel. SIAM Journal of Computing 15, 468–477 (1986),
http://dx.doi.org/10.1137/0215032


