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Abstract
In randomized distributed computing, executions encounter branch points resolved
either ral(lomly or non-deterministically. Random decisions and non-deterministic
choices interact al(nd affect each other in subtle ways. This thesis is devoted to
the analysis and illustration of the effects of the interplay between randomness and
non-determinism in randomized computing.

Using ideas from game theory, we provide a general model for randomized comput-
ing which formalizes the mutual effects of randomization and non-determinism. An
adlvantage of this model over previous models is that it is particularly effective for
expressing mathematical proofs of correctness in two difficult domains in random-
ized computing. The first domain is the analysis of randomized algorithms where
non-d(eterministic choices are made based on a limited knowledge of the execution
history. The second clomain concerns the establishment of lower- bounds and proofs
of optilmlality.

The advantage of this mIodel are described in the context of three problems. First,
we consider tile classical randomized algorithm for mutual exclusion [49] of Ra-
bIin. This algorithm illustrates perfectly the difficulties encountered when the non-
leterministic choices are resolved based oin a limited knowledge of execution history.

We then analyze the Lehmann-Rabin Dining Philosophers algorithm (1981). Our
analysis provides a general method for deriving probabilistic time bounds for ran-
dlomized executions.

In tle last part, we analyze a scheduling problem and give solutions in both the
(leterministic and the randomized cases. Lower bounds arguments show these solu-
tions to be optimal. For the randomized case, we take full advantage of the game
theoretic interpretation of our general model. In particular, the proof of optimality
reflects Von-Neumlann's duality for matrix games.

Thesis Supervisor: Nancy Lynch

Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

For many distributed problems, it is possible to produce randomized algorithms
that are better than their deterministic counterparts: they may be more efficient,
have simpler structure, and even achieve correctness properties that deterministic
algorithms cannot. One problem with using randomization is the increased difficulty
in analyzing the resulting algorithms. This thesis is concerned with this issue and
provides formal methods and examples for the analysis of randomized algorithms,
the proof of their correctness, the evaluation of their performance and in some
instance the proof of their optimality.

By definition a randomized algorithm is one whose code can contain random choices,
which lead to probabilistic branch points in the tree of executions. In order to
perform these random choices the algorithm is provided at certain points of the
execution with random inputs having known distributions: these random inputs are
often called coin tosses and we accordingly say that the algorithm flips a coin to
make a choice.

A major difficulty in the analysis of a randomized algorithm is that the code of
the algorithm and the value of the random inputs do not always completely char-
acterize the execution: the execution sometimes branches according to some non-
deterministic choices which are not in the control of the algorithm. Typical examples
of such choices are the choices of the inputs of the algorithm (in which case the cor-
responding branch point is at the very beginning of the execution), the scheduling
of the processes (in a distributed environment), the control of the faults (in a faulty
environment) and the changes in topology (in a dynamic environment). For the
sake of modeling we call adversary an entity controlling these choices. In a general
situation an adversary has also access to random sources to make these choices. (In

11



Chapter 1. Introduction

this case the adversary decides non-deterministically the probability distribution of
the coin.)

A randomized algorithm therefore typically involves two different types of nonde-
terminism - that arising from the random choices whose probability distributions is
specified in the code, and that arising from an adversary, resolving by definition all
the choices for which no explicit randomized mechanism of decision is provided in

the code.

The interaction between these two kinds of nondeterminism complicates significantly
the analysis of randomized algorithms and is at the core of many mistakes. To un-
derstand the issues at stake consider a typical execution of a randomized algorithm.
The execution runs as prescribed by the code of the algorithm until a decision not
in the control of the code has to be resolved. (For instance, in a distributed context,
the adversary decides, among other things, the order in which processes take steps.)
This part of the execution typically involves random choices and therefore, the state
reached by the system when a decision of the adversary is required is also random.
Generally, the decision of the adversary depends on the random value of the state,
sj, reached. Its decision, al, in turn, characterizes the probabilistic way the execu-
tion proceeds in its second part: the branch of the code then followed is specified by
sl a1. The execution proceeds along that branch, branching randomly as specified
by the code until a second non-deterministic branch point must be resolved. The
adversary then makes a decision. This decision generally depends on the random
value of the state, 2, reached, and, in turn, characterizes the probabilistic way the
execution proceeds in its third part ... The execution thus proceeds, in a way where
the random inputs used by the algorithm influence the decisions of the adversary;
decisions which in turn determine the probability distributions of the random inputs
used by the algorithm subsequently.

The analysis and the measure of the performance of randomized algorithms is usually
performed in the worst case setting. An algorithm "performs well" if it does so
against all adversaries. For example, among the correctness properties one often
wishes to prove for randomized algorithms are properties that state that a certain
property of executions has a "high" probability of holding against all adversaries; or
that a certain random variable depending on the executions, (e.g., a running time),
has a "small" expected value for all adversaries.

The proof of such properties often entails significant difficulties the first of which is to
make formal sense of the property claimed. Such statements often implicitly assume
the existence of a probability space whose sample space is the set of executions, and
whose probability distribution is induced by the distribution of the random inputs
used by the algorithm. But what is "this" probability space? As we saw, the

12
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random inputs used during an execution depend on the decisions made previously
in the execution by the adversary. This shows that we do not have one, but instead
a family of probability spaces, one for each adversary. For each fixed adversary,
the coins used by the algorithm are well-defined and characterize the probabilistic
nature of the executions.

The analysis of a given randomized algorithm r therefore requires one to model
the set of adversaries to be considered with r: we refer to them as the set of
admissible adversaries. We must then construct (if possible) the probability space
(QA, GA, PA) corresponding to each adversary A. It should be noted that the choice
A of the adversary not only affects the distribution PA, if it exists, induced by the
random inputs on the set of executions, but also the set of executions itself. This
remark justifies that the analysis of a randomized algorithm requires one to consider
a different sample space £fA and a different o-field GA for every adversary A.

Most authors, including the pioneers in the area of randomized computing, are aware
that the adversary influences the probability distribution on the set of executions.
For instance, in an early paper [37] Lehmann and Rabin define a schedule' A to be

"a function which assigns to every past behavior of the n processes the
process whose turn is next to be active ... Under past behavior we mean
the complete sequence of atomic actions and random draws with their
results, up to that time ... This captures the idea that, for any spe-
cific system, what will happen next depends on the whole history of past
successes and failures of the processes ... as well as on what happened
internally within the processes. "

To each such A, the same paper [37] associates a probability distribution on the set
of executions. We quote:

"For a given schedule A and specific outcomes of the random draws t, 2

we get a particular computation w = COM(A, t) ... On the space of all
possible outcomes of random draws t we impose the uniform distribution.
The function COM then associates with every schedule A a probability
distribution on the set of all computation, the probability of a set E of
computations being defined as the probability of the set of sequences of
random draws t such that COM(A, t) is in E. "

1In [37] a schedule corresponds to what we call an adversary.
2[37] uses the notation S in place of A, D in place of t and C in place of w. We use A, L and w

to be consistent with the rest of our discussion.



Chapter 1. Introduction

This approach presents well the direction to be followed in a formal analysis. Nev-
ertheless many of the models and analyses published so far suffer from various
limitations, incompleteness and sometimes mistakes that we summarize now. We
use the fact that most of the existing work on randomized distributed computing
can be classified into one of two classes.

To begin, there is on the one hand a very rich body of work analyzing the semantics
and logics of randomized computing (cf. [2, 18, 19, 23, 28, 29, 32, 38, 47, 51, 55, 58]).

The emphasis in most of these papers is to provide a unified semantics or model of
computation for the description of randomized algorithms; and to recognize some
proof rules, methods and tools allowing the automatic verification of some specific
subclasses of algorithms. The results thus obtained are typically limited in the
following three ways. A major limitation is that very little in general can be said
for properties of randomized algorithms that do not hold with probability one: such
properties are usually too specific to hold in general situations, and also usually too
hard to be simple consequences of general ergodic theory. For instance, the typical
problem considered by Vardi in [58] is the "probabilistic universality problem",
where one checks whether a formula belonging to some temporal logic holds with
probability one. (This problem can be reformulated in an equivalent way using
w-automata.) To quote [58], these methods

"deal only with qualitative correctness. One has often quantitative cor-
rectness conditions such as bounded waiting time [49] or real-time re-
sponses [52]. Verifications of these conditions requires totally different
techniques."

A second limitation of these methods is that they are directed at randomized al-
gorithms whose correctness reflects only the asymptotic properties of infinite ex-
ecutions. A translation of this fact is their relative success in expressing liveness
properties and their failure in expressing the short-term behavior and correctness of
the studied algorithms. A third limitation is that, in their generality these methods
are able to take into account only very marginally the exact numeric distributions
used for the random inputs. These considerations lead the authors of [38] to say
that, in their model,

"only very basic facts about probability theory are required to prove the
properties needed. Essentially one does not need anything more than:
"if I throw a coin an infinite number of times then it will fall an infinite
number of times on heads."

14
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A second big body of work in distributed randomized computing is devoted to the
design and analysis of specific randomized algorithms.

These algorithms typically introduce randomness into algorithms for synchroniza-
tion, communication and coordination between concurrent processes (cf. [3, 37, 49,
36, 48, 50, 14, 21, 25]). If correct (!), these algorithms solve problems that have been
proven unsolvable by deterministic algorithms [3, 37, 21, 14]. Others improve on
deterministic algorithms by various measures [49, 36, 50]. The analysis and proof of
correctness of these algorithms is complex as is attested by the fact that subsequent
papers were published providing new proofs of the same claims (cf. [29, 47]).

In spite of successive improvements most of the analyses presented in these papers
suffer from the fact that the proofs and often even the statements are not expressed
formally using the probability distributions PA and that the proofs do not track pre-
cisely how the adversaries can influence the probabilities. The paper by Aspnes and
Herlihy [3] is one of the few presenting formally the correctness statement claimed.
Nevertheless no explicit use of the measures PA is made during the proof. The
claims and arguments in the papers [14, 37] and [49] similarly lack a truly formal
treatment. As a consequence of this lack of formalism, many proofs are effectively
unreliable to readers not willing solely to rely on claims and neither willing to spend
the time to reach an intuitive understanding of the algorithm.

To summarize, the limitations encountered in the papers of the first class stem
from the desire to develop automatic methods of verification for a wide class of
randomized algorithms: the wider the class, the less intricate each algorithm can
be. In contrast, from our point of view, the question of generating the proofs of
correctness of randomized algorithms can be left to the ingenuity of each prover.
Instead, our ambition is to derive a probabilistic framework within which most if not
all mathematical analyses and proofs related to specific randomized algorithms can
be expressed. This requires two types of construction. First, we need to develop
a general model defining algorithms and adversaries and formalizing their interac-
tions. (We call this a general model for randomized computing.) Then, for each
algorithm/adversary structure (described within the general model for randomized
computing), we need to characterize the probability spaces used in the analysis.

To understand better the nature of the work required we describe two situations
that a general model for randomized computing ought to address. We begin with a
situation very rarely addressed in the literature but whose consideration places the
problems encountered in the right perspective.



Chapter 1. Introduction

Lower bounds, game theory. Most of the work existing on the analysis of dis-
tributed randomized algorithms and quoted above either provides an analysis of one
existing algorithm or provides some tools geared at providing such an analysis. All
these results can be called upper-bound results: they show that a given problem can
be solved at a given level of performance by providing an algorithm having that level
of performance. On the other hand very little work has been done in the direction of
exact lower-bounds of a randomized distributed problem and in establishing the op-
timality of a randomized solution to this problem. The lack of formal development
in this direction is mostly a reflection of the complications involved in randomized
lower bounds and of the dearth of published work in this area.3 One exception is
provided by the combined work of Graham, Yao and Karlin [25, 33] who provide
precise lower bounds and a proof of optimality for the randomized (3,1)-Byzantine
Generals Problem: Byzantine broadcast with 3 processes one of which is faulty.
Also, in [35], Kushilevitz et al. present some asymptotic lower bounds on the size

of the shared random variable for randomized algorithms for mutual exclusion.

A general model for randomized computing ought to provide a solid framework
allowing also the formal analysis of such lower bounds. In contrast with upper
bound proofs, the proofs of lower bounds require a model allowing the analyses
and comparison of a family of algorithms. These algorithms must be evaluated in
relation with a family of adversaries.

As mentioned in [3], page 443, [29], page 367, [46], page 145, the situation is actually

best understood in the language of game theory. The "unified measure of complexity
in probabilistic computations" proposed in 1977 in [61] by Yao also adopts (implic-

itly) this point of view and relies fundamentally on Von Neumann's theorem in game
theory. We will adopt explicitly this point of view in the sequel and let Player(l)
be the entity selecting the algorithm and Player(2) be the entity selecting the ad-
versary. In this language, algorithms and adversaries are strategies of respectively
Player(1) and Player(2).

If Player(1) selects the algorithm 7r and if Player(2) selects the adversary A, the
game played by the two players consists of the alternative actions of the algorithm
and the adversary: Player(1) takes all the actions as described by 7r until the first

3 The extreme difficulty of proving lower bounds for randomized algorithms is reflected in the
fact that [33] is one of the most referenced non-published papers!

Note also that lower bounds for on-line algorithms (cf., for instance, [7, 15]) are of a very different
type. These algorithms are not evaluated by their absolute performance but instead by some relative
measure, usually the ratio of their performance and the performance of the best off-line algorithm.
In such problems the coupling between the adversary and the algorithm is often easily analyzable,
using competitive analysis. By contrast, the coupling between adversary and algorithm is much
harder to analyze when absolute measures of performance are used.

16
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point where some choice has to be resolved by the adversary; Player(2) then takes
actions to resolve this choice as described by A and Player(1) resumes action once
the choice has been resolved ... In this game, the two players have conflicting
objectives: Player(1) selects its strategy so as to heighten the performance studied
whereas Player(2) selects its own strategy so as to lower it. The performance in
question depends on the problem studied.

For instance, in [49] the performance expresses a measure of fairness among par-
ticipating processes and Player(2) "tries" to be unfair to some process. In [37],
the performance expresses that "progress occurs fast" and Player(2) tries to slow
the occurrence of progress. In [3], the performance is measured by the expected
time to consensus and Player(2) chooses inputs and schedules so as to increase that
expected time. Also, let us mention that adopting a game point of view provides a
unifying description of the complex situation studied in [25] by Graham and Yao.
This paper studies the resiliency of a certain class of algorithms under the failure
of a single process. There, Player(2) fulfills the manifold following functions. It re-
ceives some information about the algorithm selected, selects both the initial input
and the identity of the faulty process, and then monitors the messages sent by the
faulty process in the course of the execution.

To finish let us remark that considering the relation between randomized algorithms
and adversaries as a game between Player(1) and Player(2) is also very useful when
a fixed algorithm r0o is analyzed.4 This situation simply corresponds to the case
where Player(l1) has by assumption a single strategy 7r0.

Formalizing the notion of knowledge. It should be intuitively clear that an
optimal adversary is one that will optimize at each of its steps the knowledge it holds
so as to take decisions most detrimental to the performance sought by Player(1).
Similarly, in cases where Player(1) has more then one strategy 7r to choose from,
(i.e., in cases where more then one algorithm can be considered), the best strategy
is one that takes best advantage of the knowledge available about the past moves of
Player(2) and about the strategy implemented by Player(2).

Establishing the performance of an algorithm is always tantamount to proving that
"the optimal" adversary cannot reduce the performance below the level of perfor-
mance claimed for that algorithm. Equivalently, a proof of correctness must in some
way establish a bound on the usefulness of the knowledge available to Player(2).

This justifies that a general probabilistic model for randomized computing should
formalize the notion of knowledge available to the players. And that it should

4This was actually the original insight of [3, 29, 46].
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provide an explicit mechanism of communication between the players, formalizing
the update of their knowledge as the execution progresses.

To illustrate that point of view note that in all the formal constructions quoted
above and associated with the analysis of a specific algorithm (see for instance
[3, 28, 29, 40, 47, 58]) the model proposed for an adversary formalizes that the
adversary makes its choices knowing the complete past execution: this was indeed the
idea of Rabin in [37] quoted above. Nevertheless the correctness of some published
algorithms depends critically on the fact that the adversary is allowed only a partial
knowledge of the state of the system and/or has only a finite memory of the past.
The example of Rabin's randomized algorithm for mutual exclusion [49] is very
interesting in this respect. ([49] is one of the few papers venturing into that area.)
Due to the lack of model, Rabin resorts to intuition to present and establish the
main correctness property. We quote:

"In the context of our study we do not say how the schedule arises, or
whether there is a mechanism that imposes it ... We could have an
adversary scheduler who tries to bring about a deadlock or a lockout
of some process Pi. A special case of this evil scheduler is that some
processes try to cooperate in locking out another process. Our protocol
is sufficiently robust to have the desired property of fairness for every
schedule S.

We have sufficiently explained the notion of protocol to make it unneces-
sary to give a formal definition: given a protocol r we now have a natural
notion of a run a = ilXli 2X 2 ... , resulting from computing according to
X. Again we do not spell out the rather straightforward definition. Note
that since process i may flip coins, even for a fixed schedule S there may
be many different runs a resulting from computing according to r. I'

As mentioned previously, the notion of schedule used in [49] corresponds to our
notion of adversary. Also, the notion of run used in [49] corresponds to what we call
the knowledge held by the adversary. As demonstrated in Chapter 3 of this thesis,
a rigorous proof of the correctness of the algorithm presented in [49] should have
actually required a formal model stating clearly "how the schedule arises" and also
formalizing the interaction between the algorithm and the adversary: after having
formalized the setting of [49], we establish that the knowledge at the disposal of the
adversary is much stronger then what was originally believed, and that the algorithm
is not "sufficiently robust to have the desired property of fairness for every schedule
S" as claimed in [49].

The reason for the failure of the proof given in [49] is that it does not take into

18
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account the knowledge available to Player(2). Instead it argues solely in terms
of the distribution of the random inputs; i.e., attempts to prove properties of the
executions w(A, ) by simply considering the random inputs . Again, this means
overlooking the power of the adversary in influencing the distribution of w(A, t).

To summarize, we have argued that a general model for randomized computing
should allow the simultaneous consideration of several algorithms: such situations
are typically encountered while proving lower bounds. It is natural to view the sit-
uation as a game between Player(1), the algorithm designer and Player(2) the ad-
versary designer. The algorithms are the strategies of Player(1) and the adversaries
are the strategies of Player(2). This model should provide an explicit mechanism of
communication between the two players allowing them to update their knowledge
as the execution progresses.

The goal of this thesis is to present such a model and to illustrate its generality on
several examples. We now present the work done in the thesis.

We present in Chapter 2 a general model corresponding to the previous discussion.
The model is simply constructed to formalize that both players take steps in turn
having only a partial knowledge of the state of the system. This knowledge is up-
dated at every move of either player. We then construct carefully the "natural"
probability space (,,A, 7,/,A, Pr,,A) obtained on the set of executions when the algo-
rithm is a given 7r and when the adversary is a given A. Our construction requires
the technical (but fundamental) hypothesis that all the coins used in the game have
at most countably many outcomes.

To our knowledge, this last probabilistic construction was similarly never conducted
to completion. In [58] and [29] Vardi and Hart et al. present the a-field G,,A that
allows to study probabilistically events "depending on finitely many conditions".
Nevertheless some additional work has to be devoted to justify the existence of a
probability measure P,,A on the set of executions. We prove this existence by a
limiting argument using Kolmogorov's theorem.5

5 Aspnes and Herlihy in [3] define formally the measure PA to be the image measure of the
measure on the random inputs under the mapping: t - w(A, ), where denotes a generic sequence
of random inputs and w(A, t) is the unique execution corresponding to a given adversary A and a
given sequence of random inputs . Indeed, the a-fields are defined precisely so that the mapping

- w(A, ) is measurable. But this approach cannot be used in general situations as it presupposes
a well defined probability measure on the set of random inputs t. This is trivially the case when
the sequence of inputs is obtained with independent coins, in which case the space of random draws
t is endowed with the product structure. This property holds for many published randomized
algorithms such as those in [3, 37]. Nevertheless this is not the case in [4] which considers a
situation where the weight of the coins used is modulated along the execution. Also, this is not



Ch apter 1. Introduction

An important feature of our model is the symmetry existing between the notions
of algorithm and of adversary. Eventhough this symmetry is rather natural in the
light of the game theory interpretation it nevertheless seems to be rather novel with
respect to the existing work. Most of the models presented so far are concerned with
the analysis of a single algorithm, i.e., when Player(l) has a single strategy. This
very specific (eventhough important) situation obscures the natural game theory
structure that we reveal and led various authors to asymmetric models where the
adversaries depend specifically on the algorithm considered. As discussed later, our
Chapter 7 provides a striking illustration in favor of a symmetric model.

Our Chapter 3 analyzes Rabin's randomized algorithm for mutual exclusion [49].
This algorithm is one of the few in the literature whose correctness hinges critically
on the limited knowledge available to Player(2).

As mentioned above, the study of such algorithms is rather complex and requires
the exact formalization of the notion of knowledge. In the absence of a formal model
for randomized computing Rabin resorted to intuition in his original paper [49] to
express and establish the intended correctness statement. One year later, in 1983,
as an illustration of their general method, Hart, Sharir and Pnueli provided in [29]
some additional "justifications" to the correctness of the algorithm.

As part of our analysis we first show how the formal model of Chapter 2 allows
one to formalize accurately the hypotheses. Our analysis then reveals that the
correctness of the algorithm is tainted for two radically different reasons. We first
show that the informal statement proposed by Rabin admits no natural "adequate"
formalization. The problem is in essence the following. The statement involves
proving that the probability of a certain event C is "high" against all adversaries
if a certain precondition B holds. One natural way to formalize such a statement
might seem to consider the expression

inf PA[C I B]

Nevertheless we show that this would be tantamount to giving the knowledge of B
to Player(2). But Player(2) would not be able to derive the knowledge of B from
the mere information sent to him in the course of the execution: Player(2) "learns"

the case in the complex paper [25] where a random adversary adapts its moves based on the past
execution. Finally, this is not also the case in the general models in [29, 58], where the i-th coin
used depends on the state si of the system at the time of the i-th flip.

Note nevertheless that the argument of Aspnes and Herlihy in [3] is now valid in the light of our
construction in Chapter 2 which precisely justifies the existence of a probability distribution on the
sequence of flips even when these flips are not independent.
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some non-trivial fact from the conditioning on B. Not surprisingly Player(2) can
then defeat the algorithm if this measure is used.

This first problem is not related to the proof of the correctness statement but
"merely" to its formalization. Our analysis shows that such formalization prob-
lems are general and proposes a partial method to formalize adequately informal
high-probability correctness statements.

We then show that the algorithm suffers from a "real" flaw disproving a weaker but
adequate (in the sense just sketched) correctness meas-re. The flaw revealed by
our analysis is precisely based on the fact that the dynamics of the game between
the two players allow Player(2) to acquire more knowledge then a naive analysis
suggests.

To finish we establish formally a correctness result satisfied by Rabin's algorithm.
The method we apply is rather general and proceeds by successive inequalities until
derivation of a probabilistic expression depending solely on the random inputs. Such
an expression is independent of Player(2) and its estimation provides a lower bound.

Our chapter 4 analyzes Lehmann-Rabin's Dining Philosophers algorithm [37]. In
spite of its apparent simplicity this algorithm is not trivial to analyze as it requires,
as usual, to unravel the complex dependencies between the random choices made by
the algorithm and the non-deterministic choices made by Player(2). The original
proof given in [37] does not track explicitly how the probabilities depend on the
adversary A and is therefore incomplete. In a subsequent paper [47], Pnueli and Zuck
provides a proof of eventual correctness of the algorithm. The method used there
shares the characteristics of most general semantic methods described on page 14: it
establishes that some event eventually happens with probability one. Furthermore it
does not take into account the specific probability distribution used for the random
inputs.

We present instead a new method in which one proves auxiliary statements of the
form U t, U', which means that whenever the algorithm begins in a state in set U,

p
with probability p, it will reach a state in set U' within time t. A key theorem about
our method is the composability of these U t U' arrows allowing to use each of

p
these results as building blocks towards a global proof. (This part was developed
jointly with Roberto Segala.) Our method presents the two following advantages.

It first provides a tighter measure of progress then "eventual progress": we provide
a finite time t and a probability p such that, for all adversaries, progress happens
within time t. This trivially implies the eventual progress with probability-one.



Chapter 1. Introduction

As mentioned in page 14, eventual probability-one liveness properties are usually
considered not because of their intrinsic relevance but because of the limitations of
the general methods used. Our method uses more specific and refined tools then
the very very basic facts about probability theory as "if I throw a coin an infinite
number of times then it will fall an infinite number of times on heads" mentioned
by Lehmann and Shelah in [38].6 Nevertheless it is still general and simple enough
to apply to a variety of situations and tighten the liveness measures usually derived.

An additional advantage of our method is that it does not require working with
events belonging to the tail a-field, an enterprise which can present some subtle
complications. Recall in effect that the argument proposed by Lehmann-Rabin
consisted in conditioning on the fact that no progress occurred and then deriving a
contradiction. Our discussion at the beginning of Chapter 3 shows that conditioning
on any event - let alone conditioning on an event from the tail a-field - can be
problematic.

Our Chapters 5 and 7 are concerned with a scheduling problem in presence of faults.
Chapter 5 investigates the deterministic case - where algorithms do not use ran-
domization - and Chapter 7 investigates the randomized case. In both situations we
are interested in providing optimal algorithms. Both are are rather complex even-
though in very different ways. The solution of Chapter 5 is obtained by translating
the problem into a graph problem. A key tool is Ore's Deficiency Theorem giving a
dual expression of the size of a maximum matching in a bipartite graph.

In Chapter 7 we describe a randomized scheduling algorithm and establish formally
its optimality. To our knowledge, Graham and Yao were before us the only ones
providing the proof of the exact optimality of a randomized algorithm.

The method that we develop to prove optimality is rather general and in particular
encompasses in its scope the specific proof strategy used by Graham and Yao in

their paper [25]. This method is presented by itself in Chapter 6. It is in essence
based on an application of a min-max equality reversing the roles of Player(1) and
Player(2) in the scheduling game considered. This min-max method uses critically
the natural symmetric structure between the two players. The success of this point
of view also brings a striking illustration of the relevance of a general symmetric
model for randomized computing as claimed at the beginning of this Chapter. In
particular, critical to the proof is the fact that adversaries are randomized and
defined independently of any specific algorithm, much in the same way as algorithms
are randomized and defined independently of any specific adversary.

6See page 14 of this chapter for a more complete quote.
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Eventhough the proof of [25] and our proof are both applications of the general
proof method presented in Chapter 6, the two proofs differ in an essential way. We
comment on this difference to give an account of the complexities involved in such
proofs. Critical to the proof of Graham and Yao [25] is the fact that, in their model.
Player(2) knows explicitly the strategy (i.e., the algorithm) used by Player(1): their
proof would not hold without this assumption. On the other hand, in the formal
model that we use, Player(2) is not explicitly provided with the knowledge of the
strategy used by Player(1), and our proof would not hold if it was.

Nevertheless, as is argued in Chapter 6, in both [25] and in our work, the optimal-
ity of an algorithm does not depend on the fact that Player(2) knows or not the
algorithm under use. Such a fact merely affects the shape taken by the proof. This
subtle point should make clear, we hope, that formal proofs of optimality are bound
to be very complex.

We describe summarily the content of Chapter 6. This chapter presents a general
proof method to attempt to prove that a given algorithm is optimal. At the core of
the method is the use of the min-max equality

maxinf f(r, A) = min sup f (r, A),
w A A ,

where f (r, A) is the performance of the algorithm r against the adversary A. Fun-
damental to us are therefore situations where such an equality occurs: in each of
these cases our method yields the possibility to prove the optimality of an algorithm.
We show that this equality occurs in the two following cases. (In the first case the
equality is a simple reinterpretation of Von Neumann's theorem.)

1. When the strategies of either player are the convex combinations of a finite
set called the set of pure strategies (and when f(r,A) is the expected value
E,,A[T] of some random variable T.)

2. When one player, typically Player(2), "knows" the strategy used by the other
player.

The two settings yield different proof systems. Very interestingly our proof of opti-
mality in Chapter 7 falls in case 1 whereas the proof of optimality [25] of Graham
Yao falls in case 2.

To summarize, we present in this thesis a formal and general model for randomized
computing. Under the assumptions that all the coins have at most countably many
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outcomes we succeed in constructing formally the probability spaces on the set of
executions to be used in the analysis of an algorithm. To our knowledge, our model
is stronger then all models previously constructed in that 1) it accurately allows
to formalize the precise nature of the knowledge held by both players (this is the
critical point in Rabin's randomized algorithm for mutual exclusion); 2) it allows
to conduct formal lower-bound proofs for randomized computing (no formal model
existed so far allowing that7 ); and 3) it does not require as in the models presented
by Vardi in [58] and Hart et al. in [29] that the algorithms be finite-state programs.
(Actually our model allows for algorithms having a state space with the cardinality
of the continuum). Our Chapters 3 and 7 illustrate the two first points. The last
one is a simple consequence of the fact that our model allows the algorithm to have
an infinite memory.

In Chapter 3 we present the notion of adequate performance measures for an algo-
rithm: measures that are "naturally" attached to an algorithm and provide mean-
ingful estimations. We illustrate this notion in our analysis of Rabin's algorithm
for mutual exclusion [49]. We furthermore provide a rather general technique for
proving rigorously high-probability statements holding against all adversaries.

In Chapter 4 we provide a rather general technique for proving upper bounds on
time for randomized algorithms. We illustrate this technique in our analysis of
Lehmann-Rabin's Dining Philosopher's algorithm [37].

In Chapter 6 we present a general proof methodology to attempt to prove that a
given algorithm is optimal. We illustrate this method in Chapter 7 with a specific
example.

7The model developed by Graham and Yao is an ad-hoc model for the specific situation per-
taining to [25].
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Chapter 2

A General Model for
Randomized Computing

We argued in Chapter 1 that formal proofs of correctness of randomized algorithms
required a formal model for randomized computing. Such a model should formalize
the notion of algorithm and of adversary, and formalize how these two entities
interact.

We also argued that the game-theory point of view was most appropriate to under-
stand and model these notions. For this, we let Player(1) be the entity selecting
the algorithm and Player(2) be the entity selecting the adversary. In this language,
algorithms and adversaries are strategies of respectively Player(1) and Player(2).
We therefore sometimes call Player(l) the algorithm-designer and Player(2) the
adversary-designer. If Player(1) selects the algorithm r and if Player(2) selects
the adversary A, the game played by the two players consists of the alternative ac-
tions of the algorithm and the adversary: Player(1) takes all the actions as described
by r until the first point where some choice has to be resolved by the adversary;
Player(2) then takes actions to resolve this choice as described by A and Player(1)
resumes action once the choice has been resolved ... This means that the two players
play sequentially.

The purpose of this chapter is to construct both 1) such a general model for ran-
domized computing and 2) the associated probability spaces used for the analysis of
randomized algorithms. Our model is presented in Section 2.3. The construction of
the associated probability spaces is presented in Section 2.4. Section 2.1 investigates
the features that a general model should be endowed with. Section 2.2 motivates
the formal presentation given in Section 2.3.
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Chapter 2. A General Model for Randomized Computing

2.1 Which Features should a General Model have?

We argue here that a model for randomized computing should have the following
general features. 1) It should not only allow to analyze the performance of a given
algorithm but the performance of a whole class of algorithms. 2) It should formalize
the notions of both an adversary and of an algorithm: for emphasis, the algorithms
and adversaries thus formalized are called admissible. 3) It should allow the adver-
saries to be randomized. 4) It should allow to formalize that both Player(l) and
Player(2) have in general only a partial knowledge of the state during the execution.
In particular it should provide an explicit mechanism of communication between the
two players allowing them to update their knowledge as the execution progresses.
And .5), an admissible adversary should be characterized independently of the choice
of any specific admissible algorithm.

1. & 2. Concurrent analysis of several algorithms; Formalization of the
notion of algorithm. As mentioned in Chapter 1 most of the existing models for
randomized computing (e.g. [3, 28, 29, 47, 54, 58]) are implicitly designed for the
analysis of one algorithm. In contrast we have in mind a general model in which all
proofs and arguments about randomized algorithms could be expressed. Our model
must in particular be suited for the formalization of lower-bound proofs. In that case
the analysis considers not only one, but a whole family II of algorithms. This family
must be characterized much in the same way as the family A of adversaries must be
characterized. Note that characterizing the family H corresponds to modeling the
notion of algorithm. In all the papers cited above and analyzing a fixed algorithm,
the necessity to model an algorithm was not felt: more exactly the description of the
algorithm analyzed was the only modelization required. This situation corresponds
to the case where II is reduced to a singleton {r).

3. Randomized adversaries. We now turn to the third point and argue that a
general model should allow the adversary to be randomized.

It is often claimed that, in the absence of cryptographic hypotheses, the analysis can
"without loss of generality" consider only non-randomized adversaries. For instance
in [29] the authors say and we quote:

"Note that the schedule's "decisions" are deterministic; that is, at each
tree node a unique process is scheduled. One might also consider more
general schedules allowing the schedule to "draw" the process to be sched-
uled at each node using some probability distribution (which may depend
on the particular tree node). However ... there is no loss of generality
in considering deterministic schedules only."
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The reason is that, whenever making a random choice among a set D, an optimal
Player(2) can instead analyze the outcomes corresponding to all the choices d in
D, (more exactly to all the measurable choices), and choose one that best lowers
the performance of the algorithm. (More exactly, can select one that brings the
performance of the algorithm arbitrarily close to the infimum "infdED performance
under choice of d".)

The above argument shows that a model allowing the adversaries to be randomized
does not make Player(2) more powerful. Nevertheless we do not share the more
restrictive view expressed in [13]:

"The motivation for models where the adversary is assumed to exhibit
certain probabilistic behavior is that the worst case assumptions are fre-
quently too pessimistic, and phenomena like failures or delays are often
randomly distributed."

Randomization can undoubtedly be useful in a setting where one wants to weaken
the power of Player(2). But, even when considering an "unweakened"Player(2)
allowing Player(2) to use randomization can be of inestimable help in the proof
of optimality of a given (optimal) randomized algorithm r0. Indeed, the proof
methodology - for establishing the optimality of a randomized algorithm - presented
in Chapter 6 of this thesis requires to provide a specific adversary and to prove
that this adversary satisfies an optimal propertyl. (Recall that an adversary is a
strategy of Player(2).) As just mentioned, randomization does not make Player(2)
more powerful and the existence of such an optimal randomized adversary therefore
implies the existence of a deterministic optimal adversary. But, in general, the sole
description of such a deterministic optimal adversary can prove to be a very hard task
(e.g., taking non constant space - even taking exponential space), therefore barring
the possibility to establish the optimality of an algorithm - at least using our proof
methodology. On the other hand, if the adversary is allowed to use randomization,
we can in some instances provide the description of a "simple" optimal randomized
adversary, thus also proving the optimality of the algorithm ro0.

An illustration of this phenomenon is given in the proof of optimality given by
Graham and Yao in [25]. A close analysis of the proof of [25] shows that it follows
the general methodology given in our Chapter 6, introduces a specific adversary
Ao and proves that it verifies an optimal property. A fundamental assumption
of the model used in [25] is that the Player(2) "knows" explicitly the algorithm
under use. This knowledge is used critically to define the strategy A 0: at every
point of the execution, Player(2) determine its next step by emulating 7r under

'The desired notion of optimality for the adversary will be clarified in Chapter 6.
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certain conditions. As r is randomized, the emulation of 7r also requires the uses of
randomness and Ao is therefore a randomized adversary.

This discussion justifies that a general model should allow the adversary to use
randomness. We will provide in Chapter 7 of this work another application of this
fact.

4. Formalization of the notion of knowledge. We now turn to the fourth
point and argue for a model formalizing the notion of knowledge. The model should
also provide an explicit mechanism of communication between the algorithm and
the adversary, allowing them to update their knowledge as the execution progresses.

It should be intuitively clear that an optimal strategy of Player(2) is one where
Player(2) optimizes at each of its steps the knowledge it holds so as to take decisions
most detrimental to the performance sought by Player(1). Similarly, in cases where
Player(l) has more then one strategy 7r to choose from, (i.e., in cases where more
then one algorithm can be considered), the best strategy is one that takes best
advantage of the knowledge available about the past moves of Player(2) and about
the strategy implemented by Player(2).

Establishing the performance of an algorithm is always tantamount to proving that
Player(2) adopting an optimal strategy cannot reduce the performance below the
level of performance claimed for that algorithm. Equivalently, a proof of correctness
must in some way establish a bound on the usefulness of the knowledge available to
Player(2). Similarly, to establish the optimality of an algorithm one is led to show
that no other admissible algorithm can use more efficiently the knowledge available
to Player(1).

This justifies that a general probabilistic model for randomized computing should
formalize the notion of knowledge available to the players. And that it should
provide an explicit mechanism of communication between the players, formalizing
the update of their knowledge as the execution progresses.

5. An adversary can be associated to any algorithm. We now turn to the
fifth point and argue that, in a general model for randomized computing, an ad-
missible adversary should be characterized independently of any specific admissible
algorithm. Note first that, by definition, an algorithm 7r is defined independently of
a given adversary A. On the other hand, an adversary might seem to be defined only
in terms of a given algorithm: the adversary is by definition the entity that resolves
all choices not in the control of the algorithm considered. We show over an example
that this conception is incorrect and that a correct game theory interpretation yields
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adversaries defined independently of the algorithm considered.

A situation where one can encounter several algorithms in the course of a correctness
proof is one where, as in Chapters 3 and 4 of this thesis, a program C is studied
for various initial conditions si,i E I. One can then model an algorithm to be a
couple (C, si): we have a different algorithm ri for each different initial condition
si.2 The code C is considered to "be correct" (with respect to the specifications of
the problem considered) if all algorithms behave well against Player(2). Note that,
in this situation, one implicitly assumes that Player(2) "knows" which algorithm
pri is under use. A strategy A for Player(2) (i.e., an adversary) is then accurately
defined to be a family (Ai)iEl, one for each algorithm ri. We will say that Ai is
an adversary specially designed for ri.3 The adversary A = (Ai)iEl is clearly not
associated to a specific algorithm ri.

More generally one will define an adversary to be a strategy of Player(2) taking into
account all the information available during the execution. (In the previous example
one assumed that Player(2) was told the algorithm selected by Player(1).) We thus
obtain a symmetric model where algorithms r in H (resp. adversaries A in A) are
defined independently of any choice of A (resp. of any choice of r). Because they
are dealing only with the special case where Player(1) has only one strategy, many
of the models published have developed in ways obscuring this natural symmetry
between Player(1) and Player(2), i.e., between adversaries and algorithms. (The
model presented in [40] suffers of this flaw.) This represents more than an esthetical
loss. For, as we show in Chapter 6 of this thesis, the symmetry of the two players is
expressed by a max-min equality and plays a central role in the proof of optimality
of a randomized algorithm.

Note that the properties 1, 2, 3 and 5 claimed for a general model - the possibility
to analyze and compare several algorithms, the necessity to formalize the notion
of an algorithm, the allocation of randomness to the adversary and the possibility
to characterize an admissible adversary independently of any specific admissible
algorithm - are useful mostly for lower-bounds. This explains why none of the
models considered so far in the literature included these features.

On the other hand, the fourth claim - that the notion of knowledge is crucial for
proofs of correctness and should be explicitly incorporated in a model - is very rele-
vant to upper-bounds. Proofs that do not approach formally the notion of knowledge
are walking a very slippery path, to use a term first coined in [37] and then often

2We will review this case in Section 2.2.
3We will come back in more detail to this notion in Chapter 6.
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quoted. An illustration of this fact is, as we will see, the algorithm for mutual ex-
clusion presented in [49] whose correctness property hinges critically on the limited
knowledge available to Player(1).

2.2 Towards the Model

The previous section outlined the features that a general model for randomized
computing should be endowed with. This section analyzes in a first part various
equivalent ways to construct a model and motivates in a second part the formal
definition presented in Section 2.3.

2.2.1 Equivalent ways to construct a model

We illustrate here how equivalent models for randomized computing can be obtained
by exchanging properties between the model used for an algorithm and the model
used for an adversary.

A first difficulty encountered when modeling the notions of adversary and algorithm
is that these two notions cannot be defined independently.4 As a consequence, some
properties can be exchanged between the model used for an algorithm and the model
used for an adversary. This can lead to develop different but equivalent models.

We illustrate this fact with three examples. The first example expands on the
example presented in Section 2.1 and shows that equivalent models can be achieved
by allocating to Player(1) or to Player(2) the choice of the initial configuration. The
second example shows that, when considering timed algorithms, equivalent models
can be achieved by allocating to Player(1) or to Player(2) the control of the time.
The third example shows that, in the case where Player(2) is assumed to know the
past of an execution, equivalent models can be achieved by allocating to Player(1)
or to Player(2) the control of the random inputs to be used next by Player(1).

Consider first the case of Lehmann-Rabin's algorithm presented in [37] and studied
in Chapter 4 of this work.

The correctness property of the algorithm expresses that "progress occurs with

4 This is not in contradiction with point 5 above stating that "an admissible adversary should
be characterized independently of any specific admissible algorithm". We speak here of the way
we define the sets II and A of algorithms and adversaries. We spoke in point 5 of the way a given
element A in A is characterized.
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"high" probability whenever a process is in its Trying section". Let C be the program
described in [37] and recalled in page 101. A possible way to model the situation is
to consider that an algorithm 7r is defined by the conjunction (C, s,nit) of C and of
the initial configuration init. We then derive a family of algorithms, one for each
initial configuration si,it. In this case, an adversary is a strategy guiding the moves
of Player(2) against all such possible algorithms (C, si,,t): by assumption Player(2)
learns which algorithm (C,sii) is selected by Player(1) at the beginning of the
execution. Another possible way to model the situation is to assume the existence
of a single algorithm, namely C, and to let Player(2) select the initial configuration.

This modeling duality is similarly encountered in the consensus problem studied
in [3], in the mutual exclusion problem studied in [49] and more generally in all
situations where the initial configuration or input is not a priori determined. In [61]
Yao specifically considers this situation.

As a second example we now consider the timed version of the same Lehmann-
Rabin's algorithm [37]. In this situation we restrict our attention only to executions
having the property that "any participating process does not wait more then time
1 between successive steps". The control of the time can be allocated in (at least)
two different ways resulting in two different models. One way is to allocate the
time control to Player(1): each timing policy such that no participating process
waits more then time 1 for a step corresponds to a different admissible algorithm.
Another solution is to assume instead that Player(2) controls the passing of time:
an adversary is admissible if it does not let time pass without allocating a step to a
process having waited time 1. This last solution is the one adopted in Chapter 4 of
this work.

We provide another less trivial example of the possible trade-off between the notion
of adversary and the notion of algorithm. This example shows that the two models
for randomized concurrent systems of Lynch et al. [40] and Vardi [58], page 334,
are equivalent. We summarize here the model presented in [40]. (See Chapter 4
and [54] for more details.) In this model a randomized algorithm is modeled as a
probabilistic automaton:

Definition 2.2.1 A probabilistic automaton M consists of four components:

* a set states(M) of states

* a nonempty set start(M) C states(M) of start states

* an action signature sig(M) = (ext(M), int(M)) where ext(M) and int(M) are
disjoint sets of external and internal actions, respectively

31



Chapter 2. A General Model for Randomized Computing

* a transition relation steps(M) C states(M) x acts(M) x Probs(states(M)),
where the set Probs(states(M)) is the set of probability spaces (Q, G, P) such
that Q C states(M) and G = 2n .

An execution fragment a of a probabilistic automaton M is a (finite or infinite)
sequence of alternating states and actions starting with a state and, if the execution
fragment is finite, ending in a state, a = soalsa 2s 2 ..., where for each i there exists
a probability space (, 5, P) such that (si, ai+, (Q, , P)) E steps(M) and si+ E Q.

An adversary for a probabilistic automaton M is then defined to be a function A
taking a finite execution fragment of M and giving back either nothing (represented
as I) or one of the enabled steps of M if there are any.

A quick interpretation of this model is as follows. A step (s, a, (Q, G, P)) in steps(M)
represents a step of the adversary. During an execution, a step (s,a,( , , P))
can be selected by the adversary as its t-th selection only if the state st_l of the
underlying system is s. (Note that this condition implicitly assumes the existence of
a mechanism allowing Player(2) to "know" precisely what the state of the system
is. Furthermore the definition of the adversary as a function of the whole past
execution fragment means that the Player(2) "remembers the past" and chooses
the successive steps based on this knowledge. This precise model therefore does not
apply to cases where, as in [49], Player(2) does not have access to the full knowledge
of the state of the system.) The second field a and the third field (, G, P) of the
step of the adversary characterize the step to be taken next by the algorithm: this
step corresponds to the action a and consists in choosing randomly an element st in
Q according to the probability distribution P.

Consider the case where, for every (s, a) in S x A, there is a fixed probability space

(fsa,G,a, Ps,a) such that, for every step in steps(M), if the state is s and the
action is a, then the associated probability space is (,s,a, ,a, P,,a).5 In this case,
we can change the model of [40] into an equivalent model by making the following
changes. We model a randomized algorithm to be a family ((Qs,a, Gs,a, Ps,a))( ,a)ESxA

of probability spaces. Following the idea presented in [58], page 334, we redefine

5The model presented in [40] does not always assume this fact: this model is a hybrid where the
adversary does decide at each step what is the probability space to be used next by the algorithm,
but where this space might not be uniquely characterized by the action a selected. This means in
essence that the set of actions, sig(M), is not big enough to describe accurately the set of decisions
taken by Player(2). In order to do so we need to refine the set of actions. Doing this allows one
to get a one-to-one correspondence (s, a) E S x A - (6,a, sa, P,a) and hence reduces the model
of [40] to our situation.
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the notion of adversary by saying that an adversary is a function A taking a finite
execution fragment so, a, s... of M and giving back either nothing (represented
as I) or one of the enabled actions of M if there are any. (This action is said to be
"decided" by the adversary.)6 Furthermore, if Player(2) decides action a while the
state is equal to s then the algorithm takes its next step by choosing randomly an
element s in Q,,a according to the probability distribution P,,a. Hence the family
((,, 9s,a, PS,a))(,, a)SxA of probability spaces can be interpreted as being the local
dynamics of the algorithm. In this model an algorithm is therefore identified with
its local dynamics. We will expend on this theme later in Section 2.3.

It is easy to convince oneself that this model is equivalent to the one of [40]. This
provides another example of a possible trade-off in the model of the algorithm and
in the model of the adversary: in essence, the difference lies in whether Player(l) or
Player(2) characterize the probability space (Q, 5, P) - the local dynamics - to be
used next by the algorithm. In [40] the local dynamics of the algorithm are specified
in the steps taken by the adversary. In the alternative model that we just outlined
these local dynamics are given separately and define the algorithm.

To summarize, the previous discussion illustrates the fact that a model for the anal-
ysis of randomized algorithms requires the simultaneous modeling of an algorithm
and of an adversary; and that various equivalent models can be derived by trading
some properties between the model of an algorithm and the model of an adversary.
Furthermore, in our discussion about the model of [40], we showed how we could
define an algorithm by its local dynamics. We also saw that a limitation of this
model is that it pre-supposes that Player(2) "knows" completely the state of the
system. This does not fit situations as the one encountered in Rabin's algorithm for
mutual exclusion that we study in Chapter 3 of this work, where Player(2) has by
assumption only a partial knowledge of the state of the system.

6The model considered by Vardi in [58] does not have a set of actions but solely a state space: the
evolution of the system is defined by a concurrent Markov chain. We show here that our redefined
notion of adversary coincides with the notion of scheduler in [58].

In [58], from a given state u, a step of the scheduler determines fully the next state v. This state
determines in turn the probability distribution to be used for the next step.

On the other hand, in our modified version of [40], the adversary determines the next action a.
This, along with the previous state s determines uniquely the probability distribution to be used
next.

33



Chapter 2. A General Model for Randomized Computing

2.2.2 Motivations for Section 2.3

Recall that, if Player(1) selects the algorithm 7r and if Player(2) selects the ad-
versary A, the game played (i.e., the unfolding of the execution) consists of the
alternative actions of the algorithm and the adversary: Player(1) takes all the ac-
tions as described by 7r until the first point where some choice has to be resolved by
the adversary; Player(2) then takes actions to resolve this choice as described by A
and Player(1) resumes action once the choice has been resolved... This means that
the two players play sequentially, each move being randomized. Consider a player's
random move and let R denote the outcome of this random move: R is a random
variable. Let (, 5) be the space where R takes values and let P be the probability
law L(R) of R.7

Recall also that our goal is not to construct a computational model that would
describe the implementation of randomized algorithms, but, instead, to derive a
probabilistic model allowing their analysis. In this perspective, two different imple-
mentations of a player's move leading to the same probabilistic output are indis-
tinguishable: in probabilistic terms, random values having the same probabilistic
law are indistinguishable. This means that the probability space (Q, A, P) gives all
the probabilistic information about the move of the player and we can for instance
assume that this move consists in drawing a random element of Q with probability
p. 8

By definition, a strategy of a player is a description of how the player is to take all
its moves. Each move being described by a probability space (Q, 5, P), a strategy
can be modeled as a family (,, Q, P,)zEX of probability spaces. The set X is the
set of different views of the system that the player can hold upon taking a move.
This set depends on the assumptions done about the information conveyed to the
player during the course of an execution, and about the memory of the past moves
allowed to this player.

To motivate this notion we discuss quickly the case of Rabin's randomized algo-
rithm for mutual exclusion presented in Chapter 3, the case of Lehmann-Rabin's
randomized dining-philosophers algorithm presented in Chapter 4 and the case of
the randomized scheduling problem presented in Chapter 7. The reader might not
be familiar with these problems at this point. Nevertheless, even in a first reading,

7 See Definition 8.1.2, Page 198, for a definition of the law of a random variable.
8 There is a little subtlety here. "Drawing a random element w of Q with probability P" does

not imply that, for every o E , the singleton {w} is measurable, i.e., is a set in 5. (For instance,
in the case where is the only element of 5 having zero P-measure, if B is an atom of 5 (see
Definition 8.1.1) and if w is in B, then {w} E 5 only if B = {w}.) Nevertheless this will be the case
in the sequel as we will assume that Q is countable and that 5 is the discrete a-field P(Q).
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the following description provides a good intuition of the issues involved with the
notion of view.

In Lehmann-Rabin's algorithm [37], Player(2) knows at each time the full state
of the system and remembers the past execution fragment. Its set X of views
is therefore the set of execution fragments. (The notion of execution fragment is
formally presented in Chapter 4.) By contrast, in Rabin's randomized algorithm
for mutual exclusion [49], Player(2) does not see the full state of the system, but,
instead, only sees the value of the program-counter pci of each process i: in particular
Player(2) does not see the values of the various program variables.9 Here also it
remembers everything it learns. The set of possible views held by Player(2) upon
making a move is therefore the set of finite sequences (il, pci,,... ik, ipcik) where
(il...., ik) is a sequence of process-id's.

Consider now the case of Player(1) (for the same algorithm [49]). After each of its
moves, Player(1) only remembers the current state s of the program: s is determined
by the values of the program counters and of the program variables. Before each of
its moves it furthermore learns from the adversary which process i is to take a next
step. Its set of views is therefore the set I x S, where I is the set of process-id's and
S is the state space of the system. (We can assume that the field i of the view of
Player(1) is erased, i.e., reset to #, after each move of Player(1).)

In the scheduling problem of Chapter 7 the two players play the following game.
At each (discrete) time t, Player(1) selects a set st of n elements from {1,..., n}.
Then Player(2) selects an element f from s. We assume that Player(2) learns the
choices of Player(1) (and remembers everything). Its set of views is therefore the set
of finite sequences sl, fi, s2, f2,... By contrast, Player(1) learns none of the moves
of Player(2) and its set of views is the set of sequences ss2, ...

The intuition behind the notion of view should be clear: a player with a restricted
knowledge of the state of the system can sometime hold the same view x of two
different states. Being unable to distinguish between these two states the player
therefore uses the same probability space (Qx, G,, P,) to take its next move.

In the sequel we distinguish between the views of the two players: we let X denote
the set of views of Player(l) and Y the set of views of Player(2).

The previous examples illustrate a general principle about the update mechanism
of the views held by the two players: when taking a move a player changes the

9As shown in the quote presented in page 18, in [49] Rabin actually defines a schedule to be
a function on the set of finite runs. Equivalently, the assumption of [49] is that Player(2) knows
the past run of every execution. Nevertheless, a careful analysis of the algorithm shows that this is
equivalent to having Player(2) knowing the values of the program counters of the processes.
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state of the system. Both players in general only learn partially the nature of the
change and update their views as prescribed by the specification of the problem.
Our model will introduce two functions f and g formalizing how the move of either
player modifies the state of the system and the views held by both players. Let us
emphasize that f and g formalize the acquisition of all information by either player.
This applies in particular to the situation considered by Graham and Yao in [25]
where Player(2) learns the strategy r selected by Player(1).

The previous discussion allows us to present in the next section a general model for
randomized computing.

2.3 A General Model for Randomized Computing

2.3.1 The model

We argued in Chapter 1 and in Section 2.2 that a formal model for randomized
computing should model simultaneously the notion of algorithm and of adversary
and should allow for the consideration of several algorithms; that the notion of
adversary should be modeled independently of the specific algorithm chosen; that
the adversary should be randomized (i.e., allowed to use randomization).

We argued also that the situation encountered while modeling algorithms and adver-
saries was best described in terms of game theory: Player(1) is the entity selecting
an (admissible) algorithm. Player(2) is the entity selecting an (admissible) adver-
sary. An algorithm is a strategy of Player(1), whereas an adversary is a strategy of
Player(2). These two players take steps in turn, following their respective strategies.

Using this language of game theory, we argued that a precise mechanism should be
introduced, describing how the state of the system evolves and how the views of the
two players are affected when one of the two players takes a move.

This discussion leads to the following definition.

Definition 2.3.1 An algorithm/adversary structure for randomized computing is a
tuple

(S, X, Y, init, f g, II, A)

having the following properties:

* S is a set called the set of states
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* X is a set called the set of views of Player(1). By assumption is an element
not in X.

* Y is a set called the set of views of Player(2)

* Y,,,t is the initial view of Player(2). By assumption Yi,it is not in Y.

* II = {7ri}iE is a family of elements called algorithms. Each algorithm ri
is itself a family of probability spaces, one for each view x in X: 7ri =

(9,i i ,i, P,i)EX 

* A = {Aj}jEJ is a family of elements called adversaries. Each adversary A
is itself a family of probability spaces, one for each view y in Y U {Yinit}:

Aj = (y,~jyjPyj)yEyu{yi,,l}. By assumption, I is an element of Qyj for
ally E Y andj E J.

* f S x X x Y x (UEX,iEI Q,,,i) - S x X x Y is the update function associated
to Player(1).

* g: S x X x (Y U {Yinit}) X (UyEy,jEJ Qyj) - S x X x Y is the update function
associated to Player(2). The function g is such that, for every s and s' in S, x
and x' in X, and a in U.EXiEI f~,i we have g(s, x, init, a) = g(s',',, yinit, a).
For every s, x and y, g(s, x, y, I) = (I, I, ).

Abusing language, we will sometimes find it convenient to refer to a (S, X, Y, yinit
f, g, H, A) structure as simply a IIH/A-structure. This is very similar to the abuse
of language committed by probabilists when speaking of a probability P without
mentioning the underlying a-field.

We now provide further justifications and reiterate some comments to the previous
definition.

We will describe in Section 2.4 how an algorithm/adversary structure for randomized
computing defines a set of executions. In doing so we will assume without loss of
generality that Player(2) takes the first move and that its initial view is an element
y,nit not in Y: we can assume this without loss of generality because we can always
add some dummy moves at the beginning of the game if necessary. The condition
g(s, x,yinit, a) = g(s',x',yinit, a) for every s and s' in S, x and x' in X, and a in
UEXiEIl RQ,i, ensures that the first move of Player(2) is independent of the values
the state s and the view x might originally hold. For convenience we will let g(Yinrt, a)
the value common to all g(s, x, yinit, a).

Let us emphasize that, eventhough seemingly restrictive, our choice of initial condi-
tions is very general. In particular our model allows to express that "a randomized
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algorithm must behave correctly for a family Init of different initial states". (This is
in particular the case of Lehmann-Rabin's algorithm which we analyze in Chapter 4.)
Indeed we model such a situation by enforcing that the first move of Player(2) con-
sists in choosing one of the states s in Init. The subsequent moves then correspond
to the "normal" exchanges between algorithm and adversary for the initial state
s selected by Player(2). Hence, in such a model, the fact an algorithm "performs
well" against all adversaries encompasses that it does so for all initial inputs. This
example illustrates the power of the game theory setting that we adopt.

As discussed in Section 2.2, the purpose we seek in a model for randomized comput-
ing is to analyze randomized algorithms and not to describe them. As a consequence,
eventhough a move of a player could be implemented in a variety of ways and involve
several sequential instructions, we are only interested in the probability distribution
of its output. This explains why we can assimilate a move to a probability space
(, G, P) and assume that, in order to take this move, the player draws a random
element of Q with probability P.

A randomized algorithm is a strategy of Player(1), i.e., a description of how Player(1)
is to take all its moves. Each move being described by a probability space (, 5, P),
a strategy ri can be modeled as a family (,i, ,i, Pz,i)sEX of probability spaces.
X is the set of views that Player(l) can have of the system: Player(1) can act
differently in two moves only if its views are different. This explains why a strategy
ri is associated to a different probability space for each different view x. This

justifies the definition of an algorithm given in Definition 2.3.1.

As discussed in Section 2.2, an adversary should similarly be randomized and, in
general, similarly allowed to have only a partial view of the state of the system.
This justifies the definition of an adversary Aj as a family of probability spaces
(Qy,,yj,, Py)yEY. The randomization of the adversary will be used crucially
in Chapter 7. The restricted view of the adversary is a crucial feature of Rabin's
algorithm for mutual exclusion studied in Chapter 3.

As mentioned in Page 32, the symbol I is meant to signify that Player(2) de-
lays forever taking its next move and that the execution stops. We check that
our formalism is accurate. Assume that Player(2) selects I. By assumption
g(s, x, y, I) = (I, I, I) so that the view of Player(1) is overwritten with I. As I
is not in X, Player(l) does not take any move and the execution stops.

For emphasis, we sometimes call A the set of admissible adversaries. Similarly I is
the set of admissible algorithms. In the case where we analyze a single algorithm r0
we have II = {r 0}. This is the case of Chapter 3 and Chapter 4 of this work. On
the other hand, in Chapter 7, we will prove the optimality of an algorithm within
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an infinite class II of algorithms.

The function f (resp. g) is the update function expressing how the state and the
views of the two players evolve when Player(1) (resp. Player(2)) takes a move: if
the state is s, if the views of the two players are x and y, and if a move a in Q ,i is
selected by an algorithm ri, then the new state is s' and the views of the two players
are changed into x' and y', where s', x' and y' are defined by f(s, x, y, a) = (s', x', y').
Similarly, if the state is s', if the views of the two players are x' and y', and if a
move a' in Qyj is selected by an adversary Aj, then the new state is s and the
views of the two players are changed into x and y, where s, x and y are defined by
g(s', x', y', a') = (s, x, y).

Note that we imposed the function f to be defined on the cartesian product S x X x
Y' x (Unx,iEl Q,i) only for simplicity of the exposition. We could for instance reduce
its domain of definition to the subset {(s, x, y, a); s E S, x E X, y E Y, a E UiElQxi}.
The domain of definition of g could similarly be reduced. As we will see in the
next section, these variations do not affect the probabilistic structure on the set
of executions derived from the model. Also, we could easily generalize our model
to the case where, for every (s, x, y), a move a would lead to a randomized new
configuration (s', x', y'). This situation would correspond to an environment with
randomized dynamics. For simplicity we consider here only situations where the
environment has deterministic dynamics.

The model of Definition 2.3.1 expends on the idea presented in Page 33 and defines
algorithms and adversaries by providing their local dynamics. Indeed each probabil-
ity space (,i, G,i, P, i) describes how the algorithm ri selects its next move when
its view is x. And the function f describes what the state and the views evolve into
after each such move. The adversary is defined through symmetric structures.

2.3.2 Special Cases

We now mention two special cases which will play an important role in the sequel.

The analysis of a single algorithm r0 corresponds to the case where II is equal to
the singleton {7ro}: Player(1) has only one strategy.

A second important case is when the strategies of Player(2) are all determinis-
tic. This corresponds to the situation where every admissible adversary Aj =
(Qy,j, y,j, Py,j) is such that all the measures Py,j are Dirac measures. In the case
where the a-fields yj are discrete this means that for all j and y, there exists some
point wy,j in 2yj such that P,j[wyj] = 1.
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As mentioned in Chapter 1, randomization does not make the adversary more pow-
erful and we can without loss of generality assume that all admissible adversaries
are deterministic when a single algorithm is considered. (Or more generally, when
II is finite.) This fact is largely acknowledged and explains that only determinis-
tic adversaries are considered in the literature interested in the analysis of a given
algorithm. (Hart et al. [29], page 359 and Aspnes-Waarts [4], section 5 mention
explicitly that fact. See also, section 4 of [58] devoted to probabilistic concurrent
programs, where Vardi models schedulers as deterministic entities.)

We are now ready to address the question raised in Section 2.2 and characterize
the global probability space(s) whose sample space is the set executions and whose
probability distribution is induced by the local dynamics of the two players.

2.4 The Probability Schema associated to a II/A-Structure

Consider an algorithm/adversary structure (in short, a II/A-structure) (S, X, Y, yinit,
f, g, 1, A) as presented in Definition 2.3.1.

The purpose of this section is to define for each algorithm r in H and each adversary
A in A a probability space (,,A, ,,A, P,,A) whose sample space fl,,A is the set of
executions generated by 7r and A and whose probability measure P,A is "induced"
by the local dynamics of r and A.

We need first to define the sample space Qr,A and the a-field ,A. The precise
sample space Q,,A we have in mind is the set of "maximal" executions, a maximal
execution being either an infinite execution or a finite execution such that the last
move of Player(2) is .

The a-field ,r,A we have in mind is the smallest one allowing to measure (in a
probabilistic sense) all the sets of executions "defined by finitely many conditions".

In order to carry out our construction we need to make the following assumption.

Assumption: The probability spaces (fG,, Q,i, P,i) and (fu,J y,, Pyj) defining
the algorithms in II and the adversaries in A have all countable sample spaces. The
associated a-fields Q,i and Gyj are the discrete a-fields P(Q,,i) and P(Qy,j).

(Let us mention that the requirement that all the a-fields are discrete is not restric-
tive: if this were not the case we would adopt an equivalent probabilistic model by
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changing all the sample spaces and taking only one point in every atom.10 Also, we
could relax the hypothesis of countability of the sample spaces by requiring instead
that all the probability measures P ,i and Pyj have countable support.)

Let ri = ( G ,i, P,i)2Ex and Aj = (y,~j,Gyj, PYsj)yEY be two elements in HI and
A respectively. A (7ri, Aj)-execution w is a (finite or infinite) sequence of alternating
actions a and triples (s, x, y) of states and views ending, if the execution is finite,
with the state-view triplet (I, I, I),

w = al (s, x, y) a2 ( 2, 2, Y2) a3 (s3, 3, y 3) ...

Player(2) Player(1) Player(2)

and having the following properties:

1. al E Qy,,,,j and (sl,Xl, yl) = g(yiit, al) 11

2. for every even k,k > 1, ak+l E Qykj and (Sk+, Xk+l, Yk+l) = g(sk, k, Yk, ak+l)

3. for every odd k, k > 1, ak+l E fQk,i and (Sk+l, Xk+l, Yk+l) = f(sk, Xk, Yk, ak+l)-

A (7ri, Aj)-execution-fragment is a finite execution-prefix terminating with a state-
view triplet. For every (ri, Aj)-execution-fragment w, we define the length Iwj
of w to be the number of actions a present in w. For instance the length of
al (sl, ,y) a2 (s 2,x 2, Y2) is 2. We define:

,7ri,Aj = {w; w is a (ri, Aj)-execution}.

We now turn to the formal definition of G,,Aj. We endow the sets S, X and Y
with the discrete a-fields P(S), P(X) and P(Y). We define on R,,Aj the functions
Ak,Sk,Xk, Yk;k > 1, by setting Ak(w) = ak, Sk(W) = Sk, Xk(w) = k and Yk(w) =
Yk for every w = al (s,1, x,yl)a 2 (s 2, X2, Y2 ) ... of length at least j. We extend the
definition and set Ak(w) = Sk(W) = Xk(W) = Yk(w) = I if I < k.

We define G,,.A to be the smallest a-field making all the functions Ak, S, Xk, ; k > 1
measurable:

,7i,Aj = r(Ak, Sk,Xk,Yk; k > 1) .

Note that, as for every k the triple Sk, Xk, Yk is defined deterministically in terms
of Ak, Sk- 1, Xk_ 1 and Yk_1, we also have that

G,Aj = (Ak; k > 1).

'OSee the Definition 8.1.1, page 198, for a definition of an atom.
1 See the discussion on page 37 for a discussion of the special case y = y,,,t.
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For the same reason we could have more simply defined an execution w to be the
sequence

= al a 3 ...· · ·

in place of the sequence

= a (S1,x1 , yl)a 2 (, 2, y 2)a3 (S3, 3,, 3) ...

We will adopt this simplified definition in Chapter 7. Our slightly redundant def-
inition has the advantage of making explicit states and views which are important
parameters.

Recall that, by assumption, all the -fields QG,i and y,yj are the discrete a-fields
'P(Q,i) and P(Qy,j). This implies that for every a in fQ,i or Qyj the singleton
{a} is in G,,i or yj, respectively. Hence, for every sequence (al,..., ak), the set
{A1 = al,...,Ak = ak} is measurable in GF,.A,. This allows us to present the
following equivalent definition of GR,,A,. For every (ri, Aj)-execution-fragment a we

define the rectangle R, to be the set of (ri,Aj )-executions having a as their initial
prefix. Then

,,,A, = a(R,; a is a (ri,Aj)-execution-fragment).

This formalizes the claim formulated at the beginning of this section that ,, is
the a-field allowing to measure probabilistically all the sets of executions defined
'by finitely many conditions".

We now turn to the definition of the global probability measure Pn,,A,. We want
this measure, if it exists, to be compatible with the local dynamics defining ri
and Aj. This means that, if a = a(s,xl,yl)a 2 (s 2 ,x 2 , y 2 ) ... ak (sk,xk,yk) is a
(7i, Aj)-execution-fragment, then

Pr,,Aj [R] Py,,,,j[al] P.,i[a2] Py ,j[a3] ... Pr,,I_,i[ak],

where, for the sake of exposition, we assumed that k was even. We now define a

filtration (Gk)k>l of (Q,A,,AA,,A), i.e., an increasing sequence of sub-a-fields of
r,,A, For every k, k > 1, we set

Gk = a(R,; a is a (ri,Aj)-execution-fragment, Ila < k) .

The a-field Gk should be more appropriately called Gi,j,k. We drop the indices i and
j for simplicity. Then, for every k > 1, setting

Pk[R,] = Py,,,,j[al] Px,,i[a2] Py2,j[a3] ... PXk,li[ak ]
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for every (ri, A)-execution-fragment a of even length k' < k, and similarly setting

Pk[Ra] = Py,.,,,j[al] P, [a2] Py2,j[a3] ... Py,,_,j [ak']

for every (ri, Aj)-execution-fragment a of odd length k' < k, defines a probability
measure Pk on 9k. The probability measures (Pk)k>l are compatible in the sense
that, if k < I are two integers then Pk[R] = P[RS] for every (ri,Aj)-execution-
fragment a of length at most k. Equivalently, the measures Pk and PI coincide on
Gk. Therefore, by Kolmogorov's extension theorem, (see for instance [56], page 161-
163), there exists a (unique) probability measure P defined on the a-field a(Ukgk).
As a(Ukgk) = St,,4,A we have therefore established the existence of a probability
measure P defined on (,Aj, X,,,A) and compatible with the local dynamics defin-
ing ri and Aj. This measure P is the measure P,. Aj we were after.

This finishes to characterize the global probability space (,,Aj,, ,,j, P ,,Aj) com-
patible with the local dynamics attached to an algorithm 7ri in II and an adversary
Aj in A as defined in a II/A structure (S, X, Y, yinit, f, g, H, A). The construction
required that the probability spaces ( 9.i, Xi,. P,i) and (Qy,j, gy, Py,j) defining the
algorithm 7ri and the adversary Aj have all countable sample spaces.

The analysis of a II/A structure requires the simultaneous consideration of all the
probability spaces (,, ,A ,ri,Aj, Pr, Aj). Correspondingly, the notion of event has
to be modified to take into account the various choices of strategy made by Player( 1)
and Player(2). The next definition summarizes these facts.

Definition 2.4.1 The family (,,A, 9 ,A, P,,A)(r,A)EnxA is called the probability
schema attached to the algorithm/adversary structure (S, X, Y, init, f , II, A).
An event schema B is a family B = (B,,A)(7,WA)EnxA, where Br,A E ,A for every
(7r, A) E IIx A. A variable-schema X is a family X = (X,,A)(,,A)ErnxA, where, for
every (r, A) E x A, Xr,A is a random variable measurable with respect to 9,,A.

Traditionally Kolmogorov's theorem is stated for R °° endowed with its Borel a-field
B(Rc°). We therefore explain and justify here our use of Kolmogorov's theorem in
the previous construction. This discussion is technical and not fundamental for the
rest of the work.

Recall that, by assumption, all the sample spaces Q.2,i and Qy j are countable and
endowed with their discrete a-fields P(Qi) and P(QyJ). By relabelling we can
therefore take all these spaces to be equal to N endowed with the discrete a-field
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P(N). Hence we can take Q,,A, = N x N x ... endowed with the product a-
field P(N) 0 P(N) ... For each k, the a-field Gk then corresponds to the set
{A x N x N x ... ; A E P(Nk)}. For each k the space Nk is a complete (a Cauchy-
sequence in Nk is constant after a certain rank and hence obviously converging)
separable metric space (for the topology induced from Rk). As every point in Nk
is open, the a-field P(Nk) is trivially generated by the open sets. Therefore the
extension of Kolmogorov's theorem given in [56], page 163, applies.



Chapter 3

Rabin's Algorithm for Mutual
Exclusion

3.1 Introduction

In this chapter we study the correctness of Rabin's randomized distributed algo-
rithm [49] implementing mutual exclusion for n processes using a read-modify-write
primitive on a shared variable with O(log n) values. As we are concerned with a sin-
gle algorithm, the remarks made in Section 2.3.2 of Chapter 2 allow us to consider
only deterministic adversaries throughout the analysis. Rabin's algorithm differs
markedly with most other work in randomized computing in the three following
ways.

1. The correctness statement is expressed in terms of a property holding with
"high" probability for all adversaries. Formally, such a statement is of the
form

inf PA[WA 1I A] > a,
AEA'

where W and I are event schemas' and A' is a subset of the set of admissible
adversaries A. Nevertheless, in contrast with much previous works, "high"
does not mean here "with probability one", i.e., a is not equal to one.

2. This correctness property is relative to the short term behavior of the algo-
rithm and depends critically on the specific probability distribution of the
random inputs.
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3. The adversary is assumed to have only a partial knowledge of the past execu-
tioIn.

We comment here on properties 1-3. Properties 1 and 2 are related. Property 3 is
of another nature.

As discussed in Chapter 1, most correctness statements for randomized algorithms
are either expressed in terms of a high expected performance or in terms of a property
holding with probability one. For instance the algorithms presented in [3] and [4]
are shown to have a low worst case expected running time.2 On the other hand, the
original property claimed in [37] for Lehmann-Rabin's algorithm is that "progress
occurs with probability one".

A reason for considering probability-one statements is that they arise naturally from
considerations of ergodic theory and zero-one laws. In particular, a feature of these
statements is that the events whose probability is claimed to be one belong to the
tail a-field of the executions, i.e., depend (only) on the asymptotic properties of the
executions. Also, these properties usually do not depend on the precise numeric
probability values associated to each random input X,. Instead, they typically
depend only on the asymptotic properties of the sequence (X, ),. 3

Such a setting has been exploited by authors interested in the logic and semantic
of randomized computing. (See for instance [19, 28, 29, 47, 58].) The methods
presented in these papers are directed at randomized algorithms whose correctness
reflects the asymptotic properties of infinite executions, depends only marginally on
the numeric specifications of the random inputs and, is expressed as a probability-
one statement.

These methods therefore do not apply to algorithms as Rabin's algorithm whose
correctness, as we will see, is relative to the short term behavior of the algorithm,
depends critically on the specific probability distribution(s) of the random inputs
and is expressed by a non trivial high-probability statement.

2 The term "worst case" refers to the adversary. The precise measure used in [4] is the worst
case expected running time per processor.

3The Borel-Cantelli Lemma provides a good example of a classical result of probability theory
which depends only on the tail of the sequence of events considered. This property states that, if
(,4n),neN is a sequence of independent events, then infinitely many events A, occur with probability
one if and only if the sum En P(A,) is infinite. Assume for instance that A, = {X, = H} where
(X,,)nEN is a sequence of flips made with independent coins. (The coins are possibly all different.)
Then Head appears infinitely often if and only if n,, P[X, = H] = oc. This depends only on
the asymptotic property of the coins and depends on the bias of the coins only through the sum

En P[X, = H].
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These difficulties significantly complicate the analysis of any randomized algorithm.
But one of the most significant challenges encountered in the proof of correctness of
Rabin's algorithm [49] is to account formally for the limited knowledge granted to
the adversary. As mentioned in Chapter 1, to our knowledge, our model of Chapter 2
is the first to present a general and formal framework allowing for adversaries with
limited knowledge. In the absence of such a framework, the analyses of non trivial
algorithms as the one presented in [49] have been fraught with mistakes in two rather
incomparable domains.

Mistakes can happen of course in the proof of the property claimed. Such mistakes
are not uncommon, as it is very hard to formally disentangle in a proof the combined
effects of randomness and of non-determinism. In particular, recall from Chapter 2
that the formal analysis of a randomized algorithm requires to work within a class
of different probability spaces (.A,G A, PA), one for each admissible adversary A.
A proof is therefore not truly formal unless it explicitly records the presence of the
adversary A in the probabilistic expressions involved.

But the complications in the analysis of a randomized algorithm sometimes begin
with the formalization of the intended correctness property, i.e., even before the
proof itself begins. Indeed, as we will see in Section 3.2, even a simple statement
including a precondition can lead to very delicate problems of formalization. Using
an image one might describe this problem as a Solomon dilemma trying to ascertain
'which of the two players should bear the responsibility of the precondition".

The example of Rabin's randomized algorithm for mutual exclusion illustrates per-
fectly the two types of difficulties and the dangers encountered with arguments not
fully formalized. In [49], Rabin claimed that the algorithm satisfies the following
correctness property: for every adversary, any process competing for entrance to the
critical section succeeds with probability Q(1/m), where m is the number of compet-
ing processes. In [29], Sharir et al. gave another discussion of the algorithm as an
illustration of their formal Markov chains model and argued about its correctness.

However, both papers did not write formally the correctness property claimed and
did not make explicit in their arguments the influence of the adversary on the
probability distribution on executions.

We show in this chapter that the correctness of the algorithm is tainted for the
two different reasons described above. We first show that the informal correctness
statement claimed by Rabin admits no natural "adequate" formalization.4 We then
show that the influence of the adversary is much stronger than previously thought,
and in fact, the high probability correctness result claimed in [49] does not hold.

4The notion of "adequate" formalization is discussed in Section 3.2.
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3.2 Formalizing a High-Probability Correctness State-
ment

As mentioned above, the complications in the analysis of a randomized algorithm
sometimes begin with the formalization of the intended correctness property, i.e., even
before the proof itself begins. Consider for instance a correctness property described
informally in the following general format: "for all adversaries, if property B holds
then property C holds with probability at least 1/2". (Tile probability 1/2 is chosen
only for the sake of illustration.) How can we formalize such a statement? In the
sequel we will refer to C as the target property and to B as the precondition.

Again, as discussed in Chapter 2, we know that the property B is actually formal-
ized to be a family of events (BA)AEA (each BA is an element of the a-field A),

and that, similarly, C is a family of events (CA)AEA. Also, the probability referred
in the informal correctness statement depends on A and corresponds to different
probability distributions PA. In spite of this comment we will conform to the tra-
dition, and write for simplicity B and C instead of BA and CA and emphasize only
when necessary the dependence in A. (The dependence in A will nevertheless be
everywhere implicit.) On the other hand, we will find it useful to emphasize the
dependence of the probability PA on the adversary A. This being clarified, how do
we formalize the "if B then C" clause of the statement?

Following well-anchored reflexes in probability theory we are naturally led to trans-
late this statement into a conditional probability and say that, for every A, we
compute the probability of the event CA conditioned on BA. Indeed, condition-
ing on an event B exactly formalizes that we restrict the probabilistic analysis to
within the set B. (The elementary definition of conditioning in terms of Bayes' rule
expresses that we restrict our attention to within B and consider the trace C n B
of C in B. The denominator P[B] is there to normalize the restricted measure
C --+ P[C n B] into a probability measure. 5) We can then formalize the previous
informal correctness statement into

infAEA;PA[B]> PA[C I B] > 1/2

5A more general definition of conditioning is as follows. In that case the "notion of restricting
the analysis" is formalized as an orthogonal projection in an adequate setting.

Let Q, 5'; ' C be two a-fields, and let (, g, P) be a measured space. For every function f
in L 2 (dP), we define the conditional expectation E[f I '] to be the orthogonal projection (in the
L2-sense) of the -measurable function f onto the subset of L 2 (dP) composed of g'-measurable
functions. We recover the elementary definition in the case where f is the indicator function of a
set C and 5' = {0, B, B, Q}: in that case, the orthogonal projection of f onto 5' is coincides with
the intersection C n B.
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The restriction PA[B] > 0 expresses that we consider only adversaries A for which
the precondition B is of probabilistic relevance.

An example.
We now show that, in some (frequent) cases, the dependence on A of the correct-
ness statement can have far reaching consequences and negate intuitive properties.
Consider for instance the following example proposed in a footnote of [11].

Imagine performing a random walk on a line, but where the adversary
can stop you at any time t < 100. One might like to say that: "if the
adversary allows you to make 100 steps, then with probability at least a
half you will have made 40 steps to the right".

We now formalize this statement. For all adversaries, the sample space can be taken
to be Sf = {H, T}1 00. For all adversaries, we also consider the associated discrete
a-field 2 . The probability distributions PA are defined as follows. Let a be an
execution-fragment (i.e., a sequence of draws). If A does not allow the occurrence
of a (i.e., if there is a strict prefix al of a after which A allocates no steps) then
PA[a] = 0. If A allows the occurrence of a but blocks the execution at a then
PA[a] = 2 -1a1+ 1, where jcl denotes the length of a. If A allows the occurrence of
a and does not block the execution at a then PA[a] = 2-1a1. Hence the support
of the measure PA is exactly the set of maximal executions allowed (with non-zero
probability) by A. We argue that this construction corresponds to an equivalent
form of the general construction given in Chapter 2. In Chapter 2 we (construct and)
consider a different probability space (A, GA, PA) for every adversary A: QA is the
set of maximal executions under A. Here we consider instead a measurable space
(Q, G) common for all the adversaries. Note that the two measurable structures are
related: (A, A) C (, ) for every A. (This means that QA C Q and that GA C 
for every A.) The equivalence between the two models is ensured by the fact that,
in both cases, for every A the support of PA is equal to QA.

We define B to be the event "the adversary allows you to make 100 steps" and
let C to be "Head comes up at least 40 times in the experiment". Is it true that
PA[C I B] > 1/2 for all adversaries A allowing 100 steps with non-zero probability ?
The answer is no. For instance, let A be the adversary that stops the process as
soon as a Head comes up. This adversary allows 100 steps with some non-zero
probability, namely when all draws are Tail. On the other-hand, for this adversary,
conditioned on B, the number of Heads is at most 1 with probability 1.

But this argument only shows that the correctness property proposed does not fit
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the algorithm, not that the algorithm is "not correct"6 : the algorithm must be
evaluated by other means. For instance, as we now show, the algorithm satisfies

infAEA;PA[B=l PA[C] > 1/2

and also satisfies
infAEA PA[B #= C] > 1/2

In this last statement B = C denotes the event B U C. (B denotes the complement
of B.) The first statement is easily proven, as, by definition, "PA[B] = 1" means
that the adversary allocates 100 steps and that, correspondingly, 100 independent
coin tosses are performed:

inf PA[C] = Prob[100 independent flips result in at least 40 Heads]
A, PA[B]= 

> 1/2.

The second statement is harder to prove and is actually a consequence of the equality
infAEA PA[B C] = infAEA;P[B]=l PA[C], which we now establish. Let us empha-
size that, as we will later argue, this equality does not hold in general. The idea
of the proof is that an adversary providing less then 100 steps in some executions
yields a higher or equal probability PA[B = C] then some other adversary always
allocating (at least) 100 steps.

To argue this formally, consider an adversary A for which PA[B = C] is minimized.
Assume the existence of an execution-fragment a (i.e., a sequence of draws) having
length k for some k less then 100, and such that 1) PA[a] > 0 and 2), A does not
allocate any steps after a. (We will call StopA the set of such execution fragments
a.) Consider the adversary A' which is equal to A except that A' always allocates a
total of 100 steps if the execution begins with a. Let D denote the event "the first
k draws do not yield a". Note that, by definition of D and A, PA[D C B] = 1, and
hence:

PA[B # C] = PA[B # C, D] + PA[B = C, D] = PA[D] + PA[B # C, D].

We have:

PA,[B C] = PA,[B C I D] PA,[] + PA,[B C I D] PA,[D]

6 The algorithm considered here is the trivial algorithm associated to the random walk and whose
code is "flip a coin": whenever the adversary allocates a step that unique instruction is performed.
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= PA[B C I D] PA[D] + PA[B CID] PA[D] (3.1)
= PA[B ~ C I D] PA[D] + PA[B = C,D] (3.2)
< PA[D] + PA[B = C,D]
= PA[B C].

Equations 3.1 and 3.2 come from the fact that A' behaves as A in D and during the
execution fragment a: A' behaves differently only if and once a appears, i.e., in D.

We have therefore constructed an adversary A' such that StopA, I < IStopAl1, i.e., which
brings to termination "more" executions then A and which is such that PA, [B 
C] < PA[B : C]. By iteration, we can therefore produce an adversary that we
will still denote A' which allocates always 100 steps, i.e., such that PA,[B] = 1,
and whose associated probability PA,[B ~ C] is no bigger then PA[B ~ C]. This
justifies the following first equality.

infPA [B C] = inf PA[B C]
A A,PA[B]=1 

= inf PA[C]
A, PA[B]=1

> 1/2.

Remark that the proof of the equality infA PA[B = C] = infA, PA[B]=1 PA[C] was only
possible because of the special nature of the problem considered here. In particular
we found it very useful that all the spaces (A, GA) were finite and equal for all
adversaries and that the events B and C were true events (and not only general
event-schemas). Also, the proof uses that, for every adversary A, it is possible to
construct an adversary A' having the following two properties:

1. The adversary A' gives probability one to B: PA,[B] = 1.

2. The adversary A' "makes the same decisions as the adversary A along the
executions ending in B under the control of A". More formally, the probability
measure PA, coincides with the probability measure PA on the set {w; w E
B and PA[w] > 0.7

The following modification on our example illustrates the importance of the first
previous property. (An example illustrating the importance of the second property
could similarly be constructed.) Assume that the game is changed so that, now,
an execution can also stop with some probability at each step of the random

7This property was the key for the derivation of Equations 3.1 and 3.2.
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walk. Then, obviously, no adversary can ensure termination with probability one
i.e., for all A, PA[B] < 1. Hence infAeA;pA[B]=1 PA[C] = 0o.8 On the other hand
infAEA PA[B = C] is obviously bounded (by 1!) and hence infAEA PA[B ~ C] <

infAEA;PA[B]=] PA[C]. This inequality is general as the following proposition demon-
strates. (We emphasize there for formality the dependence on A.)

Proposition 3.2.1 Let B = (BA)AEA and C = (CA)AEA be two event schemas.
Then

inf PA[CA I BA] < inf PA[BA = CA] < inf PA[CA].8
AEA; PA[BA]>O - AEA AEA;PA[BA]=l

PROOF. We abuse notations slightly by writing B instead of BA and C instead of
CA. Obviously, Al d-f {A E A; PA[B] = 1} is a subset of A. Also, for every A in Al,
we have PA[B C] = PA[C]. This establishes that

inf PA[B = C] < inf PA[C].
AEA AEA;PA[B]=1

Let A2 be the set {A E A; PA[B] > 0}. If A E A - A 2 then, by definition, PA[B] =
0 and hence PA[B = C] = 1. This trivially implies that infAEA, PA[C I B] <
infAEA-A 2 PA[B => C].8

Consider now an adversary A in A 2. We have:

PA[B C] = PA[B U C]

= P [Bu(CfnB)]
= P B] + PA[C n B]

= PA[B] + PA[C I B] PA[B]

= (1 - PA[C I B])PA[B] + PA[C I B] (PA[B] + PA[B])

> PA[C I B]

This immediately implies that infAeA 2 PA[C I B] < infAEA 2 PA[B => C]. This
inequality along with the one proved above establishes that

inf PA[C I B] < inf PA[B =~ C].AEA 2 - AEA

8Recall that infxEx f(x) = oo if X is the empty set. This is justified by the fact that, by
definition, infxEx f(x) is the biggest lower bound of the set {f(x); z E X}. Hence, if X is empty,
all numbers are lower bounds and the infimum is therefore infinite.
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Note also the interesting general probabilistic relation, which is easily derived using
Bayes' rule: P[B ~ C] = P[C B] if and only if P[B n C'] = P[B] P[C'], where we
let C' denote the event B C. In particular, P[B ~ C] = P[C I B] if (B C) is
independent of B. 9

Which correctness measure is adequate.
The previous discussion shows that "adequately" formalizing the correctness state-

mnent of a randomized algorithm is a not trivial problem. We proposed three possible
ways to formalize a correctness statement presented in the format: 'for all adver-
saries, if property B holds then property C holds with probability at least ." It
is natural to wonder which of the three is most "adequate" in practice, whether
they have different domains of application and whether some other good or even
better measures exist. The answer to these questions has significant implications
as it determines the benchmark to which randomized algorithms are evaluated and
against which their correctness is decided.

What do we mean by an "adequate measure"? The example discussed in page 49
provides a good illustration of the problem. We showed that, for this game and
the choices B = "100 steps are allocated", C = "At least 40 Heads turn up" the
measure infAeA;PA[B]>o PA[C I B] is equal to 0. The intuition behind this result
is that the use of this measure provides Player(2) with the implicit knowledge of
B. (See page 207 for a discussion on implicit knowledge.) Using this knowledge,
Player(2) is then able to select a specific strategy A so as to annulate the probability
of occurrence of C.

To justify why this measure is not adequate we have to return to our original inten-
tion. We can assume that we are provided with a II/A structure (S, X, Y, y,,it, f, g,
II, A) as in Definition 2.3.1, page 36, formalizing how the game is played between
Player(1) and Player(2). (As we are analyzing a single algorithm r0, II is by defi-
nition equal to the singleton {7ro}. Also, as mentioned at the beginning of the chap-
ter, the set A of admissible adversaries contains only deterministic adversaries.)
We would ideally like to play the role of a passive observer, able to analyze the
game without interfering with it. In this perspective, a measure is deemed adequate
if its use does not perturb the experiment, i.e., the game between Player(1) and
Player(2).

It is clear from our discussion that the measure infAEA;PA[B]>o PA[C I B] greatly
affects the game: we arrive at the scene, impose the unnatural condition B and let

9 The relation P[B n C'] = P[B] P[C'] does not imply the independence of B and C', because
this independence also involves similar relations with the complements of B and C'.
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Player(2) use it to its fullest. By contrast, an adequate measure would be one that
would derive probabilistic facts about the II/A structure that would hold similarly
if no measure was conducted. (This will constitute our definition of adequacy. As in
physics, it is hard to formalize how a measure influences the ambient structure. The
reason for the difficulty is by essence that we have access to the structure studied
only by measuring it.) With this in mind we can now come back to the analysis of
our three measures.

Probabilistic conditioning. First note that the adversary is restricted in a mini-
mal way by the precondition B when the measure infAEA;PA[(B]> PA[C I B] is used:
it must just not disallow B probabilistically. Furthermore, as is discussed in Chap-
ter 8, page 207, Player(2) learns implicitly that the execution is restricted to within
the set B. Player(2) can take selective actions (i.e., design some specific strategy
A) so as to take advantage of this knowledge.

Conditioning by adversary. By contrast, if the measure infAEA;PA[B]=1 PA[C] is
used, Player(2) is in some sense "fully responsible" to ensure that the precondition
B happens. The only strategies of Player(2) (i.e., the only adversaries) that are
retained are those that ensure with probability one that B happens.

These two measures correspond therefore to two extremes cases. In the setting
imposed by the first measure, Player(2) can use without any restriction the infor-
mation that the executions take place in B. In the second setting Player(2) is most
restricted and must select strategies ensuring that the executions happen in B with
probability one.

The third measure infAEA PA[B = C] does not define so precisely the role played
by Player(2) in bringing the event B or in taking advantage of it. The fact that
an execution falls in (B = C) is controlled in a mixed fashion by both the ran-
dom choices used by the algorithm and by the choices made by Player(2). As
discussed in the example presented in page 51, this measure corresponds to the
measure infAEA;PA[B]=l PA[C] only under very specific circumstances. On the other
hand neither of the two values infAEA PA[B = C] and infAEA;P[B]>0 PA[C I B] is
uniformly bigger than the other.

These considerations show that the first measure infAEA;pA[B]>O PA[C I B] using
probabilistic conditioning is an adequate measure in situations where the "nat-
ural dynamics of the game" (i.e., the dynamics described by the II/A structure
(S, X, Y, Yint, f, g, HI, A)) are such that the precondition B is part of the knowl-
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edge of Player(2).' ° Indeed. as we just argued, this measure implicitly gives the
knowledge of B to Player(2). The measure is adequate, i.e., passive, exactly when
the dynamics ensure naturally that Player(2) holds that knowledge. A typical ex-
ample of this situation is obtained when B represents a knowledge that Player(2)
can have acquired during an execution.

Similarly, the second measure infAEA;pA[B]=l PA[C] using conditioning by adversary
is adequate in situations where the dynamics of the II/A structure are such that
the precondition B depends solely of Player(2)."l This was the situation in the
example presented previously in this section: Player(2) was "naturally" the only
entity deciding the schedule. This situation - where B represents a scheduling deci-
sion depending solely of Player(2) - provides a typical example where the measure
infAEA;pA[B]=:l PA[C] is adequate.

On the other hand, as we saw, the fact that an execution falls in (B => C) is
controlled in a mixed fashion both by the random choices used by the algorithm
and by the choices made by Player(2). Our third measure infAEA PA[B => C] is
therefore adequate under only very special dynamics. For all practical purposes, we
will deem it inadequate.

The notions of "sole dependence" and "knowledge of player(2)".
We introduced in page 54 the notions of event-schemas that depend solely of Player(2)
and which are part of the knowledge of Player(2). We now formalize these notions.
Both require to use with precision the model of a II/A structure presented in Def-
inition 2.3.1, page 36, and the description of the associated probability schema
(Q.A, A,PA).AEA presented in page 41. Recall in particular from the construction
given in page 41 that the random variables Al, A 3, A 5 ,... are the actions taken by
Player(2) following its strategy A, and that the random variables A2, A4 ,... are the
actions taken by Player(l) following its strategy r.12

Definition 3.2.1 An event schema B = (BA)AEA is said to depend solely on
Player(2) if, for every A E A, conditioned on the a-field a(Al, A 3, A 5s,.. .),13 BA is

' 0We will formalize this statement later in Definition 3.2.2.
"We will formalize this statement later in Definition 3.2.1.
12Eventhough sharing the same notation A, the notion of actions A1,A 2 ,... is distinct from

the notion of set of admissible adversaries A = {A,}JEJ. Note also that, eventhough there is no
subscript A to emphasize that fact, the random variables Ak, Sk, Xk, Yk;k > 1 defined in page 41
are defined with respect to a given adversary A.

13We cannot say "conditioned on the values taken by A, A 2 ,..." because there are in general
infinitely many Ak and we cannot fix all of them when conditioning. We therefore have to resort
to the more general notion of conditioning with respect to a -field. (See [56], page 211. See also
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independent of the a-field a(A2, A4, A 4, . ..).

Recall that 5A is by definition equal to a(Ak; k > 1).1 4 Hence the previous condition
is equivalent to: "conditioned on or(Al, A 3, As,.. .), BA is independent of 5A".

Note also that the independence condition of this definition is trivially verified if
BA can be characterized solely in terms of the actions of Player(2) i.e., if BA E
a(Al, A 3, A 5,...). Indeed, in that case, when conditioned on a(Al, A 3, As,...) BA
"is a constant" and hence independent of 9A.'5 This is a satisfactory fact: we
would expect that events that depend syntactically only on the actions Al, A 3,...
of Player(2) do also "depend solely on Player(2)" in the sense of Definition 3.2.1!
Our more complex definition takes into account that some events B might not be
expressible uniquely in terms of the random variables Al, A 3 ,... but still result
in adequate measures of the type infAEA;PA[B]=l PA[C] when enforcing B.' 6 We
therefore provide now some motivations and justifications at how our definition
captures that fact.

As we just recalled, we introduced the notion of an event B "depending solely
on" Player(2) to justify the adequacy of measures where Player(2) enforces the
precondition B. The conditional independence of B and of the random choices of
the algorithm ensures that, eventhough the definition of B might also involve the
choices of the algorithm, A2, A 4 ,..., these choices do not influence whether B occurs
or not. Hence the occurrence of B depends only on the way values are allocated
to A, As,..., i.e., on the adversary. (Recall that, in Definition 2.3.1, page 36, we
defined an adversary to be a family A = (Qy, gy, Py)yEY i.e., the family of lawsl7 of
the random variables Al, A 3 , ... ) Therefore restricting the analysis to within B (the
precondition of "if B then C") corresponds to considering only adversaries ensuring
that B occurs i.e., such that PA[B] = 1.

This shows that the measure infAEA;p[B]=l PA[C] is an adequate formalization of
"the probability of C under condition B" if B depends solely on Player(2).

the footnote 3 above.)
14See page 41.
15A formal proof of this fact is as follows. The formal definition of conditional expectations

recalled in footnote 3 expresses that, for every f E L 2(dP), the conditional expectation E[f I1 ']
is characterized by the property: V E L 2 (dP) n 9', E[kf] = E[0 E[f ']]. Hence, for every

E L 2(dP) n G' and every g E L 2 (dP), E[Oqfg] = E[(bE[fg a']]. On the other hand, if by
assumption f is in 5' we also have E[cfg] = E [of E[g I g']]. Hence, in that case, V E L2(dP) n
Q', E [E[fg I ']] = E[kfE[g I 5']]. This implies that E[fg I '] = fE[g I '] = E[f g']E[g I ']
P-almost surely. As g is arbitrary in L 2(dP) this precisely means that, conditioned on 5', f is
independent of 5.

16See our discussion about adequate measures in page 53.
1 7See Definition 8.1.2, page 198, for a definition of of the notion of law of a random variable.
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We conclude this discussion about events "depending solely" of Player(2) with two
caveats. To begin, note that even if an event-schema depends solely on Player(2),
there might exist no strategy A such that PA[B] = 1. The reason is that the actions
Ak are random variables and hence not in the full control of Player(2).

This brings us to the second point. A special but important case is when, as is
the assumption in this chapter, the strategies of Player(2) are all deterministic. In
that case, each action Ak taken by Player(2) depends deterministically on the view
Yk: Yk represents the knowledge held by Player(2) at level k. Hence, in this case,
the condition presented in Definition 3.2.1 is equivalent to Y1,Y 2,... determining
completely B. Nevertheless it is possible that B be not characterized by a single
variable Yk. In that case, there is no point k at which Player(2) knows B, eventhough
B depends solely on that player. A justification for this apparent paradox is that
the sequence of views of Player(2) characterizes B, but Player(2) lacks at each
single point the possibility to assess more then one value of the sequence (Yk)kEN-
We can encounter such situations - where some B depends solely on the views of
Player(2) but where Player(2) does not "know" it - if, for instance, Player(2) does
not remember completely the past (i.e., if the the past values Y1,...,Yk_1 are not
recorded in the view Yk) or if B depends on infinitely many views Yk.

Definition 3.2.2 An event schema (BA)AEA is said to be part of the knowledge of
Player(2) if there exist a (random) step number kA such that BA is measurable with
respect to the view YkA.

By definition, BA is measurable with respect to YkA if there is a (deterministic)
function fA such that the indicator of BA is equal to fA(YkA). As mentioned in the
caveat above, the knowledge accessible to Player(2) at each point k is completely
described by the variable Yk. Our definition therefore formalizes well that B is part
of the knowledge of Player(2). We allow kA to be random to take into account the
fact that information becomes available to the players at random times.

Composition of adequate correctness-measures.
The two types of measure infAEA;PA[B]>0 PA[C I B] and infAEA;PA[B=l PA[C] can
be combined to yield an adequate composite measure 18 in the following situations.
Player(2) holds some specific knowledge B1 and uses this knowledge to enforce
a condition B2, which depends solely on him, trying to minimize the probability

'8See our discussion about adequate measures in page 53.
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of occurrence of an event C. In this case, the probability of occurrence of C is
adequately' 8 measured by:

inf PA[C[B] .
A;PA[B2 IB]=1

PA [Bl]>0

We actually have to be more precise to ensure that this measure is adequate' 8 .
In Definition 3.2.1, the formalization of "B depends solely of Player(2)" is made
(implicitly) in terms of the probability schema (A, A, PA)AEA.1 9 In contrast, the
formalization of "B2 depends solely on Player(2)" is made conditioned on B1, i.e., is
made in terms of the probability schema

(B1,A, A n B,A, PA[L ]PA[B1,A])AEA,

where B = (B1,A)AEA, A n B, d-f {C n B;C E A} and where A' df {A E
A; PA[B] > 0}.

We now generalize this construction. Our discussion involves a sequence of event-
schemas B1, B 2,... To justify the validity of our argument we make the following
assumption formalizing that, for every k, Bk happens before Bk+1 in the execution.
(This requirement might possibly be relaxed and the argument generalized.)

Assumption. There exists an increasing sequence of (random) values nl, n 2,...

such that, for every k, Bk E a(Ynk,Ynk+l,. .,Ynk+1-1)

Assume that the natural dynamics20 of the I/A structure ensure the following.
Player(2) holds the knowledge of B1. Using this knowledge Player(2) decides single-
handedly on B2: by assumption B2 depends solely on Player(2). (As above the
formal translation of this fact requires the use of the probability schema (B1,A, !A n

B,, PAL. ]/PA[B1,A])AEA'.) Player(2) then observes B3 and uses this knowledge to
decide on some B4 that depends solely on him ... We symbolically let

B, I B 2 - B 3 I B4 -...

denote such scenarios. To each scenario, we can associate an adequate correctness-
measure by iterating the previous procedure. For instance, an adequate correctness

9 The notion of probability schema is presented in Definition 2.4.1.
20The notion of natural dynamics is presented in page 54.
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measure associated to a scenario B1 I B2 B 3 is given by:

inf PA[CIB1, B 3] .
A;PA[B3aB1 ,B 2]>O

PA [B 2 BI]=1

PA [B1 ]>0

We thus obtain a whole family of (rather complex) adequate high-probability cor-
rectness measures. A special but important case where we can easily write such
adequate measures is when, for (each) odd index 2i - 1, the precondition B2i-1 is
part of the knowledge of Player(2) and when B2i is described in terms of the action
taken next by Player(2).2 1 Indeed, in that case, the precondition B 2i depends solely
on Player(2) (conditioned on Bl,...,B2i-_).

Summary and open questions about adequate measures.
WVe saw that there are two extremes when formalizing a high-probability statement
of the form "for all adversaries, if property B holds then property C holds with
probability at least E." In one extreme, we restrict the analysis to within B, leaving
Player(2) free to select the most damaging strategy it wishes. This leads to the
measure

inf PA[C I B].
AEA

This measure might be "unfair" to Player(1) as it gives to Player(2) some knowledge
that it might not receive otherwise according to the natural dynamics of the II/A
structure considered. The other extreme is to require that the adversary ensures B
with probability one. This leads to the measure

inf PA [C] .
AEA; PA[B]=1

This measure can be "unfair" to Player(2) as it forces that player to guaranty alone
an event which might depend on both players. Any other high probability measure
M formalizing the statement above must fall between these two measures:

inf PA [C I B] < M < inf PA [C].
AEA; PA[B]>O AEA; PA[B]=1

21We formalize here this statement. We will use the convenient labeling presented on page 65 to
describe an execution: w = A1 (S 1,X 1,Y ) Al (S',X',Y`) A2 (S 2 , X 2 ,Y 2 ) .... With these conven-

Player(2) Player(1) Player(2)
tions a formal translation of our statement is that, for every A in A, there exists a (random) index
kA such that B2i-1,A E o(YkA) and such that B2i,A E o(AkA )
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It would be very interesting to be able to characterize the set of adequate measures
of a given randomized algorithm.

Existence. In particular, an interesting question is whether there always exists an
adequate 22 formalization of the expression "the highest probability of C under con-
dition B". If not this would mean that some correctness statements are by nature
ill-formed. In particular, we would like to know whether Rabin's property quoted
in page 61 can be adequately formalized in connection with the HI/A structure pre-
sented on page 64.

Completeness. We saw that the set of actions of Player(2) depended solely23 of
her. Combining such actions with events that are part of her knowledge2 3 allowed us
to derive (infinitely many) adequate measures associated to a randomized algorithm.
Are all the adequate measures of this type? This would show that the method of
conditioning by adversary and of probabilistic conditioning24 are "basis" for all other
adequate measures.

3.3 Proving lower bounds

The previous section was devoted to formalizing adequately a statement informally
stated. We consider in this section the technical problem to provide a lower bound
for an expression already formalized into the form infAEA PA[W I I ]. In general it is
difficult to estimate directly this expression. Indeed recall that W and I are event
schemas and that we actually have to estimate infAEA PA[WA I IA ]-

Let (, G, P) be the probability space associated to the random inputs t used by the
algorithm. (Rabin's algorithm is using two independent coins so that this probability
space is easily defined in that case.) Our method for proving a high probability cor-
rectness property of the form PA[WII ] consists of proving successive lower bounds:

PA[WII] > PA[W 1 1]

> PA[Wr I Ir],

where all the Wi and Ii are event schemas, and where the last two event schemas, Wr
and I,, are true events in G and do not depend on A. The final term, PA[Wr I Ir],

22 See our discussion about adequate measures in page 53.
23 See Definitions 3.2.1 and 3.2.2.
24 See page 54
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is then evaluated (or bounded from below) using the distribution P. This method
can be in practice rather difficult to implement as it involves disentangling the ways
in which the random choices made by the processes affect the choices made by the
adversary.

3.4 Rabin's Algorithm

The problem of mutual exclusion [16] involves allocating an indivisible, reusable
resource among n competing processes. A mutual exclusion algorithm is said to
guarantee progress2 5 if it continues to allocate the resource as long as at least one
process is requesting it. It guarantees no-lockout if every process that requests
the resource eventually receives it. A mutual exclusion algorithm satisfies bounded
waiting if there is a fixed upper bound on the number of times any competing
process can be bypassed by any other process. In conjunction with the progress
property, the bounded waiting property implies the no-lockout property. In 1982,
Burns et al.[12] considered the mutual exclusion algorithm in a distributed setting
where processes communicate through a shared read-modify-write variable. For
this setting, they proved that any deterministic mutual exclusion algorithm that
guarantees progress and bounded waiting requires that the shared variable take
on at least n distinct values. Shortly thereafter, Rabin published a randomized
mutual exclusion algorithm [49] for the same shared memory distributed setting. His
algorithm guarantees progress using a shared variable that takes on only O(log n)
values.

It is quite easy to verify that Rabin's algorithm guarantees mutual exclusion and
progress; in addition, however, Rabin claimed that his algorithm satisfies the fol-
lowing informally-stated strong no-lockout property 26 .

"If process i participates in a trying round of a run of a computation by
the protocol and compatible with the adversary, together with 0 < m- <
.n other processes, then the probability that i enters the critical region at
the end of that round is at least c/m, c 2/3." (*)

This property says that the algorithm guarantees an approximately equal chance of
success to all processes that compete at the given round. Rabin argued in [49] that

25We give more formal definitions of these properties in Section 3.5.
26In the statement of this property, a "trying round" refers to the interval between two successive

allocations of the resource, and the "critical region" refers to the interval during which a particular
process has the resource allocated to it. A "critical region" is also called a "critical section".

61



Chapter 3. Rabin's Algorithm for Mutual Exclusion

a good randomized mutual exclusion algorithm should satisfy this strong no-lockout
property, and in particular, that the probability of each process succeeding should
depend inversely on m. the number of actual competitors at the given round. This
dependence on m was claimed to be an important advantage of this algorithm over
another algorithm developed by Ben-Or (also described in [49]); Ben-Or's algorithm
is claimed to satisfy a weaker no-lockout property in which the probability of success
is approximately c/n, where n is the total number of processes, i.e., the number of
potential competitors.

Rabin's algorithm uses a randomly-chosen round number to conduct a competition
for each round. Within each round, competing processes choose lottery numbers
randomly, according to a truncated geometric distribution. One of the processes
drawing the largest lottery number for the round wins. Thus, randomness is used
in two ways in this algorithm: for choosing the round numbers and choosing the
lottery numbers. The detailed code for this algorithm appears in Figure 3.1.

We begin our analysis by presenting three different formal versions of the no-lockout
property. These three statements are of the form discussed in the introduction and
give lower bounds on the (conditional) probability that a participating process wins
the current round of competition. They differ by the nature of the events involved
in probabilistic conditioning, those involved in conditioning by adversary and by the
values of the lower bounds.

Described in this formal style, neither of the two forms of conditioning - probabilistic
conditioning and conditioning by adversary - provides an adequate formalization 27

of the fact that m processes participate in the round. We show in Theorem 3.6.1
that, if probabilistic conditioning is selected, then the adversary can use this fact in
a simple way to lock out any process during any round.

On the other hand, the weak c/n no-lockout property that was claimed for Ben-Or's
algorithm involves only conditioning over events that describe the knowledge of the
adversary at the end of previous round. We show in Theorems 3.6.2 and 3.6.4 that
the algorithm suffers from a different flaw which bars it from satisfying even this
property.

We discuss here informally the meaning of this result. The idea in the design of
the algorithm was to incorporate a mathematical procedure within a distributed
context. This procedure allows one to select with high probability a unique random
element from any set of at most n elements. It does so in an efficient way using
a distribution of small support ("small" means here O(log n)) and is very similar
to the approximate counting procedure of [20]. The mutual exclusion problem in a

27 "adequate" in the sense of Section 3.2.
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distributed system is also about selecting a unique element: specifically the prob-
lem is to select in each trying round a unique process among a set of competing
processes. In order to use the mathematical procedure for this end and select a true
random participating process at each round and for all choices of the adversary, it
is necessary to discard the old values left in the local variables by previous calls of
the procedure. (If not, the adversary could take advantage of the existing values.)
For this, another use of randomness was designed so that, with high probability, at
each new round, all the participating processes would erase their old values when
taking a step.

Our results demonstrate that this use of randomness did not actuallv fulfill its
purpose and that the adversary is able in some instances to use old lottery values
and defeat the algorithm.

In Theorem 3.6.6 we show that the two flaws revealed by our Theorems 3.6.1 and
3.6.2 are at the center of the problem: if one restricts attention to executions where
program variables are reset, and if we condition by adversary on the number m of
participating processes then the strong bound does hold. Our proof, presented in
Proposition 3.6.7, highlights the general difficulties encountered in our methodology
when attempting to disentangle the probabilities from the influence of A.

The algorithm of Ben-Or which is presented at the end of [49] is a modification of
Rabin's algorithm that uses a shared variable of constant size. All the methods that
we develop in the analysis of Rabin's algorithm apply to this algorithm and establish
that Ben-Or's algorithm is similarly flawed and does not satisfy the 1/2en no-lockout
property claimed for it in [49]. Actually, in this setting, the shared variables can take
only two values, which allows the adversary to lock out processes with probability
one, as we show in Theorem 3.6.9.

In a recent paper [36], Kushilevitz and Rabin use our results to produce a modi-
fication of the algorithm, solving randomized mutual exclusion with log2

2n values.
They solve the problem revealed by our Theorem 3.6.1 by conducting before round k
the competition that results in the control of Crit by the end of round k. And they
solve the problem revealed by our Theorem 3.6.2 by enforcing in the code that the
program variables are reset to 0.

The remainder of this chapter is organized as follows. Section 3.5 contains a descrip-
tion of the mutual exclusion problem and formal definitions of the strong and weak
no-lockout properties. Section 3.6 contains our results about the no-lockout proper-
ties for Rabin's algorithm. It contains Theorems 3.6.1 and 3.6.2 which disprove in
different ways the strong and weak no-lockout properties and Theorem 3.6.6 whose
proof is is a model for our methodology: a careful analysis of this proof reveals ex-
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actly the origin of the flaws stated in the two previous theorems. One of the uses of
randomness in the algorithm was to disallow the adversary from knowing the value
of the program variables. Our Theorems 3.6.2 and 3.6.8 express that this objective
is not reached and that the adversary is able to infer (partially) the value of all
the fields of the shared variable. Theorem 3.6.9 deals about the simpler setting of
Ben-Or's algorithm.

Some mathematical properties needed for the constructions of Section 3.6 are pre-
sented in an appendix (Section 3.7).

3.5 The Mutual Exclusion Problem

The problem of mutual exclusion is that of continually arbitrating the exclusive
ownership of a resource among a set of competing processes. The set of competing
processes is taken from a universe of size n and changes with time. A solution to
this problem is a distributed algorithm described by a program (code) C having the
following properties. All involved processes run the same program C. C is partitioned
into four regions, Try, Crit, Exit, and Rem which are run cyclically in this order
by all processes executing C. A process in Crit is said to hold the resource. The
indivisible property of the resource means that at any point of an execution, at most
one process should be in Crit.

3.5.1 Definition of Runs, Rounds, and Adversaries

In this subsection, we define the notions of run, round, adversary, and fair adversary
which we will use to define the properties of progress and no-lockout.

A run p of a (partial) execution w is a sequence of triplets (pl, old1, new,), (P2, old2,
new2 ), ... (pt, oldt, newt) ... } indicating that process pt takes the tth step in w and
undergoes the region change oldt - newt during this step (e.g., oldt = newt = Try
or oldt = Try and newt = Crit). We say that w is compatible with p.

An adversary for the mutual exclusion problem is a mapping A from the set of
finite runs to the set {1,..., n that determines which process takes its next step
as a function of the current partial run. That is, the adversary is only allowed to
see the changes of regions. For every t and for every run p = (pl,oldl,newl),
(p2, old2, new 2 ),. .}, A[{(pl, old, new), .. ., (pt, oldt, newt)}] = Pt+l. We then say
that p and A are compatible.
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The associated II/A-structure. We show how these definitions can be formal-
ized into a H/A-structure within the general model presented in Definition 2.3.1,
page 36. Recall that we consider here only deterministic adversaries, i.e., adversaries
for which, for every k, the kth action of Player(2), Ak, is a deterministic function of
the view Yk.

To simplify the exposition we will slightly change the notations of Chapter 2, page 41,
in the following way. We write here a random execution w as

= A (S1,X 1 , Y) A (S, X1, Y) A2 (S2, X2 , Y2) .

Player(2) Player(l) Player(2)

Ak is the kth action taken by Player(2). Sk, Xk and Yk are respectively the state
of the system, the view of Player(1) and the view of Player(2) resulting after this
action. Similarly we let A, Sk, Xk and Yk denote the kth action taken by Player(1),
the state of the system, and the views of the two players resulting after this action.

* The set of states, S, is the set of tuples containing the value of the program
counters pcl,..., pc,, the values of all the local variables and the value of the
shared variable.

* The actions Ak take values in {1,...,n).

* The actions A' are described by the code of the algorithm given in Figure 3.1,
page 74. (We will not make these actions more explicit.)

* The views Xk take value in S x {1,..., n}. (If the view of Player(1) is (s, i),
then i represents the process to take a step next.)

* The views Yk take value in {runs of length (k - 1)} x {1,...,n}. (Yk = (y, i)
means that the previous view of Player(2) was Yk'_ = y and Player(2) just
selected i.)

* The set of views X' is equal to S. (Player(l) just remembers the state of the
system after its step.)

* The views Y take value in {runs of length k}.

The update functions are described as follows. Assume that (Sk, Xk, Yk) = (s, (x, i),
(y,i)). Then (S,X,Yk) = f(Sk,Xk,Ykx,A) = (s',s',(y,i, neu)), 2 8 where s' is the
state of the system after the kth move of Player(l1) and newi is the region reached by

28For simplicity we do not recall oldi which is recorded in y.
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process i. Similarly assume that (Sk, X, Yk) = (s,x , y). Then (Sk+l,Xk+l, Y.+1)=

g(s,xy,i) = (s, (x, i), (y, i)), where i is the process selected by Player(2) for round
k + 1.

This defines the II/A-structure associated to Rabin's randomized algorithm for mu-
tual exclusion. The construction given in Chapter 2, page 36, defines the associated
probability schema (QA, 5A, PA)AEA over which we will conduct the analysis.

In this model Player(1) "forgets" systematically all the past, knows the current
state and learns what the last action of Player(2) is. By contrast, we will consider in
Chapter 7 an example where Player(1) learns nothing about the moves of Player(2),
consequently knows only partially the state, and remembers everything about its
past actions.

For every adversary A, an execution w in fQA is in FairA if every process i in Try,
Crit, or Exit is eventually provided by A with a step. This condition describes
"normal" executions of the algorithm and says that processes can quit the compe-
tition only in Rem. The number of states, actions and views being finite we can
express FairA as an expression involving (only) countably many rectangles.29 This
establishes that FairA E 5A and that the family Fair = (FairA)AEA is an event-
schema. An adversary A is fair if the executions produced under the control of A
are in Fair with probability one, i.e., if PA[FairA] = 1. This definition was also given
in Vardi [58], page 334. Player(2) is fair if every A E A is fair.3 0

In this chapter, we choose the set A of admissible adversaries to be the set of fair
adversaries.

A round of an execution is the part between two successive entrances to the critical
section (or before the first entrance). More specifically, it is a maximal execution
fragment of the given execution, containing one transition Try -- Crit at the end
of this fragment and no other transition Try - Crit. The round of a run is defined

29See page 42 for a definition of a rectangle and page 43 for a definition of an event-schema.
30 The probabilistic notion of fairness allows more flexibility in the definition of adversaries then

requiring that all executions be in Fair. The following example illustrates that fact. Consider two
processes each running the simple code: "Flip a fair coin". This means that process i (i = 1 or
2) flips a coin whenever allocated a step by Player(2). An execution is in Fair if both processes
take infinitely many steps. Consider the adversary A defined by: "I. Allocate steps repeatedly
to process 1 until Head comes up. Then allocate steps repeatedly to process 2 until Head comes
up. Then go back to I and repeat." This adversary is fair in the probabilistic sense: PA[Fair] = 1.
Nevertheless it produces (with probability zero) some executions that are not in Fair.
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similarly. For every k, we let round(k) denote the kth round. Formally, round(k)
is a variable-schema3 " round(k) = (roundA(k))AEA: roundA(k) is the random kth
round of the generic execution obtained when the adversary is A. (For completeness
we write roundA(k) = I if the execution has less then k rounds.)

A process i participates in a round if i takes a step while being either in its trying
section Try or at rest in its section Rem. Hence, for a participating process oldi E
Rem, Try and newi E Try, Crit.

3.5.2 The Progress and No-Lockout Properties

Definition 3.5.1 An algorithm C that solves mutual exclusion guarantees progress
if for all fai?32 adversaries there is no infinite execution in which, from some point
on, at least one process is in its Try region (respectively its Exit region) and no
transition Try -+ Crit (respectively Exit -+ Rem) occurs.

Recall that the notion of fair adversary is probabilistic. But the notion of mutual ex-
clusion is not probabilistic: we require that, for all fair adversaries and all executions
w in FairA, w have the property enunciated in Definition 3.5.1.

We now turn towards the no-lockout property. This property is probabilistic. Its
formal definition requires the following notation:

For every adversary A, let XA denote any generic quantity whose value changes as
the execution unfolds under the control of A (e.g., the value of a program variable).
We let XA(k) denote the value of XA just prior to the last step (Try GCrit) of
the kth round of the execution. As a special case of this general notation, we define
the following.

* PA(k) is the set of participating processes in round k. (Set PA(k) = 0 if w
has fewer then k rounds.) The notation PA(k) is consistent with the general
notation because the set of processes participating in round k is updated as
round k progresses: in effect the definition of this set is complete only at the
end of round k. (This fact is at the heart of our Theorem 3.6.1).

* tA(k) is the total number of steps that are taken by all the processes up to
the end of round k.

3 1See Definition 2.4.1.
32The mention of the fairness is put here just as a reminder: recall that, in this chapter, all the

admissible adversaries are fair.
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* A(k) is the set of executions in which all the processes j participating in
round k reinitialize their program variables Bj with a new value Pj(k) during
round k. ( stands for New-values.) pj(k); k = 1,2,..., j = 1,...,n is a
family of iid 33 random variable whose distribution is geometric truncated at
log 2n + 4 (see [49]).

* For each i, Wi,A(k) denotes the set of executions in which process i enters the
critical region at the end of round k.

We consistently use the probability theory convention according to which, for any
property SA, the set of executions {w E QA : o has property SA} is denoted as

{SA}. Then:

* For each step number t and each execution w E QA we let lrt,A(w) denote the
run compatible with the first t steps of w. For any t-steps run p, {rt,A = }

represents the set of executions compatible with p. ({7rt,A = p} = 0 if p has
fewer then t steps.) We will use rk,A in place of 7rt(k),A to simplify notation.

Note that the definition of rt,A can be made independently of any adversary
A, justifying the simpler notation rt. We nevertheless keep the subscript A to
emphasize that, for every A, 7rt,A is defined on (A, A) which depends on A.

* Similarly, for all m < n, {IPA(k)l = m} represents the set of executions having
m processes participating in round k.

For every A, The quantities .A(k), {rt,A = p}, Wi,A(k), {IPA(k)l = m}, {i E
PA(k)} are sets of executions. We actually easily check that they are all events in
the a-field A. The care that we showed by keeping the reference to A in rt,A is
justified here by the fact that {rt,A = p} is an event in GA which does depend on
A. These families of events naturally lead to event-schemas (k), {rt = p}, Wi(k),

{IP(k)l = m}, {i E P(k)}. For instance, J(k) = (A(k))AEA and {rt = p} =
({TrtA = P})AEA. The analysis will consider these event schemas in connection with
the probability schema (QA, 5A, PA)A EA 

We now present the various no-lockout properties that we want to study. All are
possible formalizations of statement (*) given on page 61. Of great significance to us
is their adequacy34 : a measure which is not adequate does not confer valuable infor-
mation about the algorithm studied. To simplify the discussion we will sometimes

3 3Recall that iid stands for "independent and identically distributed".
34See our discussion about the notion of adequate measures on page 53. We also review that

notion shortly here.
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use the notation C,B 1 ,B 2 , B3 and B4 in place of Wi(k), {i E P(k)}, {7rk- = p},

{JP(k)l = m}, and A/(k), respectively. As suggested by our notation, we will con-
sider C to be the target property 35 and B 1, B 2, B3 and B4 to be the preconditions.
The target property can be considered only in conjunction with the precondition
B 1. Hence all the measures we will consider will have B1 as a precondition. The
other preconditions can be introduced or omitted, each choice corresponding to a
different measure (actually to two different measures as we now discuss).

We argued at the beginning of this chapter that a measure reflects an actual prop-
erty of the H/A-structure only if it does not perturb the dynamics of the game
between Player(l) and Player(2). We then say that the measure is adequate. All
the measures that we will consider formalize the preconditions using either proba-
bilistic conditioning or conditioning by adversary.3 6 (At this point we know of no
other method to construct adequate measures.) As we will see neither of these two
methods allows to treat adequately the precondition B3. This is unfortunate be-
cause, as is mentioned in [49], a "good" measure of no-lockout should be expressed
in terms of 7n, the actual number of participating processes in a round. In spite
of this fact we will treat the preconditions in the most adequate way, envisioning
various alternatives when no adequate formulation is available.

We have actually in mind to compute the probability of the target Wi(k) at different
(random) points Sk of the execution. The execution-fragment previous to Sk is
(obviously) determined at the point Sk. The definition of Rabin's H/A-structure
implies that Player(2) then knows the run associated to that execution-fragment.
As is explained on page 54, the natural way to account for this situation is to use
probabilistic conditioning on the knowledge held by Player(2) at that point sk. We
will consider two cases, when Sk is the beginning of the execution and when it is the
beginning of round k. In the latter case the knowledge held by Player(2)is the past
run p. Hence the adequate formalization of this case is obtained by probabilistically
conditioning on B 2 = {7rk-1 = p}. In the former case - when Sk is the beginning
of the execut:ion - there is no past and the corresponding adequate formalization
consists in simply omitting B 2 from the measure.

We now turn to B = {i E P(k)}. As mentioned above the target C = Wi(k) can
be considered only when this precondition is considered. In this case the situation
is not as clear as for B 2: the fact that a process i participates in round k depends
on both the strategy A used by Player(2) and on the random values drawn by the
algorithm during the round. Indeed, on the one hand i can participates only if

35 The notions of "target property" and "precondition" are defined on page 48.
36These notions are defined on page 54.
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Player(2) plans to schedule it. On the other hand, i can also participate only if no
process scheduled before its turn comes does succeed into Crit. This depends (in
part) on the random lottery values drawn by these processes.

There is one process though, for which the situation is unambiguous: the first
one scheduled in round k by Player(2). This one depends solely on Player(2) (in
the sense of Definition 3.2.1). When proving negative results (i.e., disproving the
correctness of the algorithm) we can therefore consider that process: if correct, the
algorithm should in particular ensure a good success rate for this specific process.

On the other hand, when proving positive results (i.e., proving that the algorithm
satisfies some correctness-measure) we will, by default of an adequate measure,
give Player(2) more power then it would in any adequate situation. Indeed, the
correctness of the algorithm in that case implies the correctness for any adequate
measure, if any exists. We achieve this by letting Player(2) know the identity of the
process i with respect to which the test is conducted. Formally, this means that we
use probabilistic conditioning on {i E P(k)}.

We now turn to B3, the most important character in the cast of B's. (Recall again
that the whole purpose of the algorithm is to achieve a measure of fairness with
respect to the m currently participating processes.) Unfortunately, in that case, we
have no means in our panoply to interpret adequately this precondition ... unless
m = 1, in which case statement (*) of page 61 is vacuously true. Indeed, consider
first probabilistically conditioning on B3 . This means, as we saw, letting Player(2)
know the number of participating processes and then letting it act as it wishes
(provided that Player(2) allows with non-zero probability that IP(k)l = m). This
gives a definite power to Player(2): Player(2) is in fact the main power in the
determination of m. Our Theorem 3.6.1 expresses that fact and shows that the
algorithm is incorrect ... for the inadequate correctness measure considered.

The other possibility at our disposal is to condition by adversary3 7 on B 3. This
does not provide an adequate measure either. As we will show in Lemma 3.6.5 this
constrains in essence Player(2) to give steps to all participating processes when the
critical section is still closed. This implies in particular that Player(2) cannot play
on the order according to which it schedules the processes: that is precisely the
weapon used by Player(2) to defeat the previous measure. This restriction can be
viewed as "unfair" to Player(2): it ties its hands in a way that does not correspond
to the natural dynamics of Rabin's HI/A-structure. Nevertheless our Theorem 3.6.2
shows that this over-constrained Player(2) still manages to defeat the algorithm.

37See page 54.
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The measure considered being the most restrictive towards Player(2), any measure
formalizing adequately that IP(k)l = m (if any exists) would similarly yield a defeat
of the algorithm.

This brings us to the last of the B event-schemas: B4 = Af(k). rrhis event is
similarly neither part of the knowledge of Player(2)3 8 at the beginning of round
k nor depending solely on him.39 Thus, as we already saw several times, both
methods of probabilistic conditioning and conditioning by adversary are inadequate.
The most unfavorable to Player(l) is the probabilistic conditioning method. A
correctness result in that case will therefore imply correctness for any other adequate
formalization of K(k), if any exits. This is why probabilistic conditioning is used in
Theorem 3.6.6.

We are now at last in a position to present the various measures. We use the following
notations. The term weak refers to the fact that a 1/n lower bound on the probabil-
ity is sought. The term strong refers to a 1/m lower bound. The terms/notations i,
run, m and renew refer to B 1, B2, B3 and B4 respectively. The term knowing refers
to a probabilistic conditioning. For instance (run, i, m and renew)-knowing summa-
rizes that probabilistic conditioning is performed on B 1, B 2, B3 and B4. The term
imposing refers to a conditioning by adversary. For instance i-imposing summarizes
that conditioning by adversary is performed on B1.

The first two definitions involve evaluating the probabilities "at the beginning of
round k". The measure infAEA, PA[Wi(k) I k-1 = p] used in the first definition
is adequate (in the sense defined on page 53). It corresponds to a probabilistic
measuring obtained for Player(2) sitting at the beginning of round k (and hence
knowing the past (k - 1)-run p) and scheduling the first step of round k to process i.
As discussed on page 70, this measure is too specific to provide a relevant measure
of performance of the algorithm. Nevertheless it is a good measure to establish a
negative result: if correct, the algorithm should in particular ensure a good success
rate for this specific process. The measures used in the other two definitions are not
adequate (in the sense defined on page 53). We argue this point after the definitions.

Definition 3.5.2 (Weak, Run-knowing, i-imposing, Probabilistic no-lock-
out) A solution to the mutual exclusion problem satisfies weak, run-knowing, i-
imposing probabilistic no-lockout whenever there exists a constant c such that, for

3 8 See Definition 3.2.2.
3 9 See Definition 3.2.1.
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every k > 1, every (k - 1)-round run p and every process i,

inf PA [ Wi(k) rk I = p] > c/n .
A;PA [iEP(k) k- =P]= 1

PA (7rk -- =P]> 0

Definition 3.5.3 (Strong, Run & m-knowing, i-imposing, Probabilistic no-
lockout) The same as in Definition 3.5.2 except that:

inf PA [Wi(k) rk-l = p, P(k) = m] > c/m.
A;PA [iEP(k) 7rk-1=P, IP(k)l=m] =1

PA[7rk_1=p, IP(k)=m]>0

The next definition is the transcription of the previous one for the case where the
probability is "computed at the beginning of the execution" (i.e., sk = 0 for all k).

Definition 3.5.4 (Strong, m-knowing, i-imposing, Probabilistic no-lockout)
The same as in Definition 3.5.2 except that:

inf PA [Wi(k) m = IP(k)l] > c/m .
A;PA [iEP(k) IP(k)I=m] 1

PA[lUP(k)l=m>0

We argue that the last two definitions are not adequate: both involve probabilis-
tically conditioning on the number m of participating processes in round k. As
mentioned above, the two definitions correspond to Player(2) sitting either at the
beginning of round k or at the beginning of the execution. In both situations, the
value of IP(k)l is not part of the knowledge40 of Player(2). Therefore probabilistic
conditioning on the value m of IP(k)l yields an inadequate measure of performance.

By integration over p we see that an algorithm having the property of Definition 3.5.3
is stronger then one having the property of Definition 3.5.4. Equivalently, an adver-
sary able to falsify Property 3.5.4 is stronger then one able to falsify Property 3.5.3.

3.6 Our Results

Here, we give a little more detail about the operation of Rabin's algorithm than
we gave earlier in the introduction. At each round k a new round number R is

4 0 See Definition 3.2.2.
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selected at random (uniformly among 100 values). The algorithm ensures that any
process i that has already participated in the current round has Ri = R, and so
passes a test that verifies this. The variable R acts as an "eraser" of the past:
with high probability, a newly participating process does not pass this test and
consequently chooses a new random number for its lottery value Bi. The distribution
used for this purpose is a geometric distribution that is truncated at b = log2n + 4:
P[/j(k) = ] = 2-' for < b- 1. The first process that checks that its lottery value
is the highest obtained so far in the round, at a point when the critical section is
unoccupied, takes possession of the critical section. At this point the shared variable
is reinitialized and a new round begins.

The algorithm has the following two features. First, any participating process i
reinitializes its variable Bi at most once per round. Second, the process winning
the competition takes at most two steps (and at least one) after the point fk of
the round at which the critical section becomes free. Equivalently, a process i that
takes two steps after fk and does not win the competition cannot hold the current
maximal lottery value. (After having taken a step in round k a process i must hold
the current round number i.e., Ri(k) = R(k). On the other hand, the semaphore S
is set to 0 after fk. If i held the highest lottery value at its second step after fk it
would pass all three tests in the code and enter the critical section.) We will take
advantage of this last property in our constructions.

We are now ready to state our results. The first result states that the strong m-
knowing correctness property does not hold unless n < 2.

Theorem 3.6.1 The algorithm does not have the strong no-lockout property of Defi-
nition (3.5.4) (and hence of Definition 3.5.3). Indeed, if n > 3, there is an adversary
A such that, for all rounds k, for all m, 2 < m < n,

PA[W(k) I m=IP(k)I]=0
P4[1 E P(k) m = P(k)l] = 1
P[m = IP(k)l ] > 0.

PROOF. Assume first that 2 < m < n - 1. Consider the following adversary A. A
does not use its knowledge about the past run p (which is granted to Player(2) by the
H/A-dynamics), gives one step to process 1 while the critical section is occupied,
waits for Exit and then adopts the schedule 2,2,3,3,..., n, n, 1. This schedule
brings round k to its end, because of the second property mentioned above (i.e.,
all processes are scheduled for two steps, one of which when the critical section is
empty). This adversary is such that m wins with non zero probability i.e., PA[m =
IP(k)l] > 0. Also 1 is scheduled first so that, obviously, PA[1 E P(k) I m = IP(k)l] =

7 3
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Shared variable: V = (S., B, R), where:
S E {0, 1}, initially 0

B C {0, ,..., log n + 4}, initially 0

R E {0, 2,... 99}, initially random

Code for i:
Local variables:

Bi E {0,..., flog n] + 4}, initially 0
Ri E {0, 1,..., 99}, initially 

Code:
while V $ (0, Bi, Ri) do

if (V.R z Ri) or (V.B < Bi) then
Bi - random
V.B - max( V.B, B )
Ri - V.R

unlock; lock;

V - ( 1,0, random)
unlock;
** Critical Region **
lock;
V. 'S- 0

Ri - I
Bi e--
unlock;
** Remainder Region **
lock;

Figure 3.1: Rabin's Algorithm
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1. But, for this adversary, P(k)l = m happens exactly when process m wins so that
PA[W(k) I nm = P(k)l] = 0.

Consider now the case where m = n. We consider then the adversary which gives
one step to process 2 while the critical section is occupied, waits for Exit and then
adopts the schedule 1, 1, 3,3,..., n, n, 2. As above, this schedule brings round k to
its end. Similarly, PA[IP(k)l = n] > 0, namely when 2 holds the highest lottery
value. Also, 1. is scheduled with certainty. We now show that 1 must have a smaller
lottery then 2 and hence cannot win access to Crit. Indeed, otherwise 1 would win
and IP(k)i would be equal to 2. This is a contradiction as we assume that IP(k)l is
n and as, by assumption, n is bigger then 2. 0

The previous result is not too surprising in the light of our previous discussion. The
measure

inf PA [W(k) I m= = P(k)l ]
A;PA [ 1EP(k) m=P(k)] =1

PA[ [P(k)l=m]>O

is not adequate and Player(2) punishes us for using it: in "normal times", i.e., under
the dynamics of the HI/A structure, Player(2) is provided with only incomplete
information about the past, and definitely no information about the future. But
our inadequate measure gives her the future information IP(k)l = m, allowing her
to target a specific strategy against any process.

We now give in Theorem 3.6.2 the more damaging result, stating (1) that, in spite
of the randomization introduced in the round number variable R, Player(2) is able
to infer the values held in the local variables and (2) that it is able to use this
knowledge to lock out a process with probability exponentially close to 1. This result
is truly damaging because the measure used is adequate: our result expresses that
the algorithm is "naturally" incapable to withstand the machinations of Player(2).

Theorem 3.6.2 There exists a constant c < 1, an adversary A, a round k and a
k - 1-round run p such that:

PA[Wl(k) I 7rk- = p] < e- 32 + cn

PA[1 e P(k) I k- =p= 1
PA['k-1 = p] > 0.

We need the following definition in the proof.

Definition 3.6.1 Let I be a round. Assume that, during round 1, Player(2) adopts
the following strategy. It first waits for the critical section to become free, then gives
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one step to process j and then two steps (in any order) to s other processes. (We
will call these test-processes.) Assume that at this point the critical section is still
available (so that round is not over). We then say that process j is an s-survivor
(at round 1).

The idea behind this notion is that, by manufacturing survivors, Player(2)is able
to select processes having high lottery values. We now describe in more detail the
selection of survivors and formalize this last fact.

In the following we will consider an adversary constructing sequentially a family
of s-survivors for the four values s = 2 1og2 n+t; t = -1,...,-5. Whenever the
adversary manages to select a new survivor it stores it, i.e, does not allocates it
any further step until the selection of survivors is completed. (A actually allocates
steps to selected survivors, but only very rarely, to comply with fairness. Rarely
means for instance once every nT2 steps, where T is the expected time to select
an n/2-survivor.) By doing so, A reduces the pool of test-processes still available.
We assume that, at any point in the selection process, the adversary selects the
test-processes at random among the set of processes still available. (The adversary
could be more sophisticated then random, but this is not needed.) Note that a new
s-survivor can be constructed with probability one whenever the available pool has
size at least s + 1: it suffices to reiterate the selection process until the selection
completes successfully.

Lemma 3.6.3 There is a constants d such that for any t = -5,...,-1, for any
21°g2n+t-survivor j, for any a = 0,..., 5

PA[ Bj(l) = logn + t + a] > d.

PROOF. Let s denote 2 1°gn+t. Let j be an s-survivor and i, i2,. . .,is be the test-
processes used in its selection. Assume also that j drew a new value Bj(l) = /j(1)
(this happens with probability q = .99 .) Remark that Bj(l) = Max{ Bi,(l),...,
Bi.(1), Bj(l)}: if this were not the case, one of the test-processes would have entered
Crit. As the test processes are selected at random, each of them has with probability
.99 a round number different from R(l) and hence draws a new lottery number pj(l).
Hence, with high probability q2 > 0, 90% of them do so. The other of them keep
their old lottery value Bj(l - 1): this value, being old, has lost in previous rounds
and is therefore stochastically smaller 41 then a new value Oj(l). (An application

41A real random variable X is stochastically smaller then another one Y (we write that: X <c Y)
exactly when, for all z E IR, P[X > z] < P[Y > z]. Hence, if X < Y in the usual sense, it is also
stochastically smaller.
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of Lemma 8.1.5 formalizes this.) Hence, with probability at least qlq2 we have the
following stochastic inequality:

Maxf,3j(I), .. .,0,50/,oo <,c Bj(l) <c IaxfPj(1),..., +().

Corollary 3.7.4 then shows that, for a = 0,...,5, with probability at least qq 2,
PA[Bj(l) = log2s + a] > q3 for some constant q3 (q3 is close to 0.01). Hence, with

probability at least d df qq 2 q3 , Bj(l) is equal to log2s + a. OE

PROOF of Theorem 3.6.2. The adversary uses a preparation phase to select and
store some processes having high lottery values. We will, by abuse of language,
identify this phase with the run p which corresponds to it. When this preparation
phase is over, round k begins.

Preparation phase p: For each of the five values log2 n+t, t = -5,..., -1, A selects in
the preparation phase many ("many" means n/20 for t = -5,..., -2 and 6n/20 for
t = -1) 2°g2n+t-survivors. Let S1 denote the set of all the survivors thus selected.
(Note that IS'11 = n/2 so that we have enough processes to conduct this selection).
By partitioning the set of 2l1g2n--survivors into six sets of equal size, for each of
the ten values t = -5,...,4, A has then secured the existence of n/20 processes
whose lottery value is log2n + t with probability bigger then d. (By Lemma 3.6.3.)

Round k: While the critical section is busy, A gives a step to each of the n/2 processes
from the set S2 that it did not select in phase p. (We can without loss of generality
assume that process 1 is in that set S2: hence PA[i E P(k)] = 1 which was to be
verified.) When this is done, with probability at least 1 - 2-32 (see Corollary 3.7.2)
the program variable B holds a value bigger or equal then log2n - 5. The adversary
then waits for the critical section to become free and gives steps to the processes
of S1 it selected in phase p. A process in S2 can win access to the critical section
only if the maximum lottery value Bs df Max, E s Bj of all the processes in S2 is
strictly less then log2 n -5 or if no process of S1 holds both the correct round number
R(k) and the lottery number Bs,. This consideration gives the bound predicted in
Theorem 3.6.2 with c = (1 - d/100) 1/20 . O

The lesson brought by this last proof is that the variable R does not act as an eraser
of the past as it was originally believed and that the adversary can correspondingly
use old values to defeat the algorithm.

Furthermore, our proof demonstrates that there is an adversary that can lock out,
with probability exponentially close to 1, an arbitrary set of n/2 processes during
some round. With a slight improvement we can derive an adversary that will succeed
in locking out (with probability exponentially close to 1) a given set S3 of, for
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example, n/100 processes at all rounds: we just need to remark that the adversary
can do without this set S3 during the preparation phase p. The adversary would
then alternate preparation phases P,P2,*.. with rounds k,k 2,... The set S3 of
processes would be given steps only during rounds k, k2 ,... and would be locked
out at each time with probability exponentially close to 1.

In view of our counterexample we might think that increasing the size of the shared
variable might yield a solution. For instance, if the geometric distribution used by
the algorithm is truncated at the value b = 2 log2n instead of log2n + 4, then the
adversary is not able as before to ensure a lower bound on the probability that an
n/2-survivor holds b as its lottery value. (The probability is given by Theorem 3.7.1
with x = logn.) Then the argument of the previous proof does not hold anymore.
Nevertheless, the next theorem establishes that raising the size of the shared variable
does not help as long as the size stays sub-linear. But this is exactly the theoretical
result the algorithm was supposed to achieve. (Recall the n-lower bound of [12]
in the deterministic case.) Furthermore, the remark made above applies here also:
a set of processes of linear size can be locked out at each time with probability
arbitrarily close to 1.

Theorem 3.6.4 Suppose that we modify the algorithm so that the set of possible
round numbers used has size r and that the set of possible lottery numbers has size
b (log2n + 4 < b < n). Then there exists positive constants cl and c2, an adversary
A, and a run p such that

( PA[Wl(k) I rk-1 = p, 1 E P(k)] < e-32 + e-cln/r + c2n

PA[1 E P(k) I rk- = p] = 1

PA[7rk-1 = P] > 0.

PROOF. We consider the adversary A described in the proof of theorem 3.6.2: for
t = -5,...,-2, A prepares a set Tt of 2l12n+t-survivors, each of size n/20, and a
set T_L of 21°g2n-l-survivors; the size of T_1 is 6/20n. (We can as before think of
this set as being partitioned into six different sets.) We let rj stand for 6/20 in the
sequel.

Let pi denote the probability that process 1 holds I as its lottery value after having
taken a step in round k. For any process j in S_ let also q, denote the probability
that process j holds I as its lottery value at the end of the preparation phase p.

The same reasoning as in Theorem 3.6.2 then leads to the inequality:

PA [W(k) I k-1 = p, 1 E P(k)]

< e-3 2 +(1 -e- 3 2)(1- d/r)n/20 + P,(l - )7 .

1>log2 n+5
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Write I = log2n + x - 1 = log2(n/2) + x. Then, as is seen in the proof of Corol-
lary 3.7.4, q, = e 1-C21-¢ for some ( e (x,x + 1). For I > log2n + 5, x is at least 6
and e- 2 ' - 1 so that q " 21- > 21- . On the other hand pi = 2 -' = 2-x+'/n.

Define +(x) ' e-2'-lxn/r so that i'(x) = e-2'-'l7n/21-q7rn/r. Then:

Z: Pm(x - •-)?n < 2/n Z 2-z(1 -- 2- )
l>log2+5 r >6

< 2/nE2 e-( n)
x>6

= 1/njE21-e-( qn)
x>6

7n2 >6

< jin'(x)dx
= rn 2

rn2

77n2'

The next result, Theorem 3.6.6, shows that the two flaws exhibited in Theorems 3.6.1
and 3.6.2 are at the core of the problem: the algorithm does have the strong no-
lockout property when we condition by adversary4 2 on the property {IP(k)l = m}
and when we force the algorithm to draw new values for the modified internal
variables.

Conditioning by adversary specifically solves the problem expressed by Theorem 3.6.1:
the measure analyzed in that theorem is inadequate43 and allows too much knowl-
edge to Player(2). On the other hand, forcing the adversary to reset to new values
the internal variables of the participating processes resolves the problem revealed
by (the proof of) Theorem 3.6.2. We will prove these facts in Theorem 3.6.6 for
a slightly modified version of the algorithm. Recall in effect that the code given
in Page 74 is optimized by making a participating process i draw a new lottery

42See page 54 for a definition of conditioning by adversary.
43See page 53 for a discussion of adequate measures.
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number when it is detected that V.B < Bi. For simplicity, we will consider the
"de-optimized" version of the code in which only the test V.R Ri ? causes of a
new drawing to occur. It is clear that a correctness statement for that de-optimized
algorithm implies a similar result for the original algorithm.

We proved that result before we were fully aware of the notion of adequate measures.
Our original result is presented in Proposition 3.6.7 and is based on the notion of
restricted adversary presented in Definition 3.6.2. As is shown in Lemma 3.6.5, a
restricted adversary is exactly one that decides with probability one the set of par-
ticipating processes. This result easily establishes the equivalence of Theorem 3.6.6
and Proposition 3.6.7.

Definition 3.6.2 A step taken after the time at which Crit becomes free in round
k is called a k-real step. We say that an adversary is k-restricted when, in round k,
the set of participating processes is composed exactly of the set of processes scheduled
when Crit is closed, along with the first process taking a k-real step. (That process
might have already taken a step when Crit was closed.) An adversary is said to be
restricted when it is k-restricted for every k.

Notation. We will use the notation A' (as opposed to A) in the following arguments
to emphasize when the adversaries considered are k-restricted.

Lemma 3.6.5 For every process i, for every round k > 1, and for every (k - 1)-
round run p,44

{A'; A' is k-restricted and PA [P(k)l = m, i E P(k) I f(k), rk- = pI > 0}

= {A; PA[lP(k) = m, i P(k) I (k), k-l = p] = 1}.

PROOF. Note first that, as by assumption an adversary is deterministic, random-
ness can affect the decisions of Player(2) only through the information Player(2)
receives from Player(1): the strategy of Player(1) - i.e., the algorithm - is indeed
randomized. A moment of thought based on the description of the function f given
on page 65 shows furthermore that, for Player(2), the only visible affects of random-
ness are whether a process in Try or Rem enters in Crit when scheduled while the
critical section is free. In particular, in round k Player(2) follows a deterministic
behavior until it learns the region newt (either Try or Crit) reached by the first

44Using Convention 8.1.1, page 198, we set P[BIA] = 0 whenever P[A] = 0.
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process i scheduled to take a k-real step. We will use this fact in both directions
of the proof.

For a k-restricted adversary, the set P(k) is by definition defined during that pe-
riod where A behaves deterministically. This implies that, for every k-restricted
adversary A', we have PA,[IP(k)l = m, i E P(k) AP(k), rk_ = p] > 0 only if
PA,[IP(k)l = m, i E 7P(k) I KV(k), rk-l = p] = 1. This establishes that

{A'; A' is k-restricted and PA,[IP(k)I = m, i E P(k) I A(k), rk-l = p] > 0}

C {A; PA[IP(k) = m, i eP(k) I (k), 7k-l =p] = 1}.

We now show the converse inclusion. Consider some adversary A such that PA[lP(k)l-
= m, i E P(k) I (k), rk- = p] = 1 for some value m. By the property
mentioned at the beginning of the proof, the adversary follows a deterministic
behavior until the first k-real step. Call i the process taking that first k-real
step. Let I be the number of processes scheduled up to that point (including
ix). Obviously I < m. Remark that (conditioned on K(k) and rk-l = p) i en-
ters Crit with some non-zero probability when taking its first k-real step. This
means that P[IP(k)I = , i E 7P(k) I A/(k), rk-l = p] > 0. The assumption
PA[IP(k) = m, i E P(k) N(k), rrk- = p] = 1 then implies that I = m. This
precisely means that A is k-restricted. E

Theorem 3.6.6 The algorithm satisfies strong, run and renew-knowing, i and m-
imposing probabilistic no-lockout. Equivalently, for every process i, for every round
k > 1, for every m < n and for every (k - 1)-round run p we have:

inf PA[Wi(k) I A/(k), rk-1 = P]> -
A;PA [l(k)I=m, iE(k) (k, r.1=p]=l - 3m

PA [(k), rk-l =P]>O

PROOF. This result is a simple consequence of Proposition 3.6.7 whose proof is
presented next. In that proposition one considers the set of k-restricted adversaries
A such that PA [J(k), rk-l = p, i E (k), I7P(k)l = m] > 0. This condition is
equivalent to the conjunction of the two inequalities PA [(k), 7rk-1 = p] > 0 and
PA[i E 7P(k), I(k) = m Af(k), 7rk_ = p] > 0. By Lemma 3.6.5 the set of
conditions

A restricted adversary

PA [i E P(k), IP(k)l = m (k), k- = P] > 
PA [X(k), k- 1 = P > 
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is equivalent to{ PA[i e P(k), IP(k) = m (k), rk- = ]=

PA[A(k), 7rk 1 = ] > 0,

where no a priori restriction applies here to A. Theorem 3.6.6 is therefore a direct
consequence of Proposition 3.6.7. O

Note that we proved along that if the adversary is m-imposing and renew-knowing
then the distinction between an i-knowing and an i-imposing adversary disappears.
More formally

{A; PA [ B3 B 1 ,B 2 , B 4 = 1 } = {A; PA[ B 3, B1 I B 2,B 4] = 1 } .45

This shows that the way the precondition B1 is formalized is inconsequential for
m-imposing and renew-knowing adversaries. On the other hand, as we saw already
several times, the adequate 46 formalization of the precondition B 2 is obtained by
probabilistic conditioning. This establishes that the measure used in Theorem 3.6.6
is as adequate 46 as it can be, provided that the adversary is m-imposing and renew-
knowing. These two restrictions are brought to solve the two problems revealed in
Theorems 3.6.1 and 3.6.2, respectively.

Proposition 3.6.7 Let i be a process, k a round number, and p be a (k - 1)-round
run. For concision of notation we let All denote the event schema {j(k), 7rk-_ =
p, i E P(k), IP(k)l = m}. We have:

inf P,, [Wi(k) Af(k), rk-Wl = p, i e P(k), P(k)I = m > 
PA,[AIi>O - 3m

PROOF. We will make constant use of the notation [n] d e {1,2,...,n}. Also, for
any sequence (aj)jEN we will write ai = Umaxaj to mean that i is the only index in

J for which ai = Maxaj.

We first define the events U(k) and U/' (k), where J is any subset of {1, . .. , n

U(k) _ ({3!i e P(k) s.t. B(k) = Max Bj(k)},
IE P(k)

U11(k) -f {3!i e J s.t. p/(k) = Maxpj(k)}.

4 5We never used the fact that we were conditioning on B2 so that the same equality holds without
the mention of B2. As is discussed in page 69, this correspond to analyzing the system at the point
sk equal to the beginning of the execution.

46The term adequate is used in the sense defined on page 53.
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The main result; established in [49] can formally be restated as:

Vm < n, P[U[,] (k)] > 2/3. (3.3)

Following the general proof technique described in the introduction we will prove
that:

PA [U(k) I A(k), wkl = p, i E P(k),IP(k)= m] = P[U(k)],

and that:

PA [ W(k) I (k),-l = p,i E P(k), IP(k)l = rn,U(k)]

= P[i(k)= MaxL j(k) I U(k)]
E [i]

The events involved in the LHS of the two inequalities (e.g., Wi(k), U(k), {lP(k) =
m), {7rk-_ = p}, i E P(k)}) depend on A' whereas the events involved in the RHS
are pure mathematical events over which A' has no control.

We begin with some important remarks.

(1) By definition, the set P(k) = (il, i2, ..) is decided by the restricted adversary
A' at the beginning of round k: for a given A' and conditioned on (rk-1 = p}, the
set P(k) is defined deterministically. In particular, for any i, PA,[ i E P(k) 
rk_- = p]has value 0 or 1. Similarly, there is one value m for which PA'[ IP(k)l
m rk-_ = p] = 1 . Hence, for a given adversary A', if the random event
{n(k), 7rk-l = p, i E P(k), P(k)I = m} has non zero probability, it is equal to the
random event {((k), k-1 = P}) - I

(2) Recall that, in the modified version of the algorithm that we consider here, a
process i draws a new lottery value in round k exactly when Ri(k- 1-) R(k). Hence,
within I, the event V(k) is equal to {Ri,(k- 1) R(k),... Rim(k- 1) $ R(k)}. On
the other hand, by definition, the random variables (in short r.v.s) Pij; ij E P(k)
are liid and independent from the r.v. R(k). This proves that, (for a given A'),
conditioned on {7rk- = p}, the r.v. JV(k) is independent from all the r.v.s 0ij.
Note that U(k)(k) is defined in terms of (i.e., measurable with respect to) the
(,3ij; ij E P(k)), so that UP(k)(k) and f(k) are also independent.

(3) More generally, consider any r.v. X defined in terms of the (ij; ij E P(k)):
X = f(/3Si,,,. ,_,) for some measurable function f. Recall once more that the
number m and the indices ix,..., i, are determined by {rkl = p} and A'. The
r.v.s i, being id, for a fixed A', X then depends on {rkl = p} only through
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the value m of IP(k)I. Formally, this means that, conditioned on P(k)l, the r.v.s
X and {rk-1 = p} are independent: EAI[X I k- = p ] = EA,[X IP(k)l =
m] = E[f( 1,..., m)]. (More precisely, this equality is valid for the value m for
which PA[lrk-l = p, IP(k)l = m] # 0.) A special consequence of this fact is that
PA',[(k)(k) I -1 = p] = P[U(m](k)].

Remark that, in U(k), the event Wi (k) is the same as the event {Bi(k) = Umax Bj (k)}.
EP'(k)

This justifies the first following equality. The subsequent ones are commented after-
wards. Also, the set I that we consider here is the one having a non zero probability
described in Remark (1) above.

PAI[ Wi(k) I U(k), I]

= PA,[Bi(k) = UmaxBj(k) I U(k), I]

= PA',[i(k)= Umaxoj(k) U,(k), I,] (3.4)E P(k)

= PA'[i(k)= Umax3j(k) U4(k)(k), k-l = P] (3.5)j E P(k)

Equation 3.4 is true because we condition on (k) and because U(k) n K/(k)
UP(k)(k). Equation 3.5 is true because A(k) is independent from the r.v.s ij as is
shown in Remark (2) above.

We then notice that the events {/i(k) = Umaxj(k)} and U,(k)(k) (and hence their
i · P(k)

intersection) are defined in terms of the r.v.s 3ij. From remark (3) above, the value
of Eq. 3.5 depends only on m and is therefore independent of i. Hence, for all i and
j in P(k), PA'[Wi(k) I U(k),I] = PA,[Wj(k) I U(k), I ].

On the other hand, iEE(k)PA,[Pi(k) = Umaxi(k) I UP(k)(k), 7rkl = p ] = 1:

indeed, one of the pi, has to attain the maximum.

These last two facts imply that, Vi E P(k),

PAI[Wi(k) I U(k), I] = l/m.

We now turn to the evaluation of PA,[,U(k) I].

PA,[U(k) I] = PA,[U(k)(k) I] (3.6)

= PA,[ U4(k)(k) |rk-1 = p] (3.7)
= P[U(m](k) 

> 2/3. (3.8)

Equation 3.6 is true because we condition on J(k). Eq. 3.7 is true because UP(k)(k)
and NA(k) are independent (See Remark (2) above). The equality of Eq. 3.8 stems
from Remark (3) above and the inequality from Eq. 3.3.
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We can now finish the proof of Proposition 3.6.7.

PA'[Wi(k) I I]

> PA,[Wi(k), U(k) I ]
= PA[Wi(k) U(k), I] PA,[U(k) I]

> 2/3 m.

We discuss here the lessons brought by our results. (1) Conditioning on KV(k) is
equivalent to force the algorithm to refresh all the variables at each round. By
doing this, we took care of the undesirable lingering effects of the past, exemplified
in Theorems 3.6.2 and 3.6.4. (2) It is not true that:

PA[13i(k) = Max ,j(k) I U(kp)(k), IP(k)l = m]

P[/I3(k)= Max /3(k) I Um(k)],

i.e., that the adversary has no control over the event {,i(k) = Max ,3(k)}. (This
3 EP(k)

was Rabin's statement in [49].) Indeed, the latter probability is equal to 1/m
whereas we proved in Theorem 3.6.1 that there is an adversary for which the former
is 0 when 2 < m < n.

The crucial remark explaining this apparent paradox is that, implicit in the expres-
sion PA[3i(k) = Max j(k) I ...], is the fact that the random variables Pj(k) (for

j E V(k)
j E P(k)) are compared to each other in a specific way decided by A, before one of
them reveals itself to be the maximum. For instance, in the example constructed
in the proof of Theorem 3.6.1, when j takes a step, /j(k) is compared only to the
,S1(k); 1 < j, and the situation is not symmetric among the processes in P(k).

But, if the adversary is restricted as in our Definition 3.6.2, or if equivalently, proba-
bilistic conditioning is done on P(k)l = m, the symmetry is restored and the strong
no-lockout property holds.

Rabin and Kushilevitz used these ideas from our analysis to produce their algo-
rithm [36].

Our Theorems 3.6.1, 3.6.2 and 3.6.4 explored how the adversary can gain and use
knowledge of the lottery values held by the processes. The next theorem states that
the adversary is similarly able to derive some knowledge about the round numbers,
contradicting the claim in [49] that "because the variable R is randomized just
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before the start of the round, we have with probability 0.99 that Ri R." Note
that, expressed in our terms, the previous claim translates into R(k) # Ri(k - 1).
Note also that the next measure is adequate, in the sense defined in page 53.

Theorem 3.6.8 There exists an adversary A, a round k, a step number t, a run
Pt, compatible with A, having t steps and in which round k is under way such that

PA[R(k) 54 Rl(k - 1) 7rt = Pt] < .99.

PROOF. We will write Pt = p'p where p' is a k - 1-round run and p is the run
fragment corresponding to the kth round under way. Assume that p' indicates that,
before round k, processes 1, 2, 3, 4 participated only in round k - 1, and that process
5 never participated before round k. Furthermore, assume that during round k - 1
the following pattern happened: A waited for the critical region to become free,
then allocated one step in turn to processes 2, 1, 1, 3, 3,4,4; at this point 4 entered
the critical region. (All this is indicated in p'.) Assume also that the partial run
p into round k indicates that the critical region became free before any competing
process was given a step, and that the adversary then allocated one step in turn to
processes 5, 3, 3, and that, after 3 took its last step, the critical section was still free.
We will establish that, at this point,

PA[R(k) $ R1(k - 1) I tr = p'p] < .99.

By assumption k - 1 is the last (and only) round before round k where processes
1,2, 3 and 4 participated. Hence Rl(k - 1) = R 2(k - 1) = R 3(k - 1) = R(k - 1).
To simplify the notations we will let R' denote this common value. Similarly we
will write /, O' ,... in place of Pl(k - 1), 32(k - 1),... We will furthermore write

/31, / 2,... in place of 3l (k), 2(k),. . and B, R in place of B(k), R(k).

Using Bayes rule gives us:

PA[R t R' I p p PA[R # R' I p'] Pp p',R R'] (3.9)
PA[pIp']

In the numerator, the first term PA[R $ R' p'] is equal to 0.99 because R is
uniformly distributed and independent from R' and p'. We will use this fact another
time while expressing the value of PA[P I P']:

PA[p I p' 

= PA[P p', R R'] PA[R$ R' p']
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+ PA[p p',R = R'] PA[R = R' I p']
0.99 PA[p I p',R R'] (3.10)

+ 0.01 PA[p p', R = R'].

· Consider first the case where R $ R'. Then process 3 gets a YES answer when
going through the test "(V.R $ R 3) or (VB < B3 )", and consequently chooses a
new value B 3 (k) = /3. Hence

PA[P I p',R R'] = P[ 3 </35 ] (3.11)

· Consider now the case R = R'. By hypothesis, process 5 never participated in the
computation before round k and hence draws a new number B 5(k) = /5. Hence:

PA[p I p',R = R'] = PA[ B(k) < 5 I p',R = R']. (3.12)

As processes 1,..., 4 participated only in round k - 1 up to round k, the knowledge
provided by p' about process 3 is exactly that, in round k - 1, process 3 lost to
process 2 along with process 1, and that process 2 lost in turn to process 4, i.e., that
/3 < /3, /31 < /32 and p/ < /3. For the sake of notational simplicity, for the rest
of this paragraph we let X denote a random variable whose law is the law of /3
conditioned on {/3P > Max{/3l, 3}, /3 < /3}. This means for instance that, Vx E X,

P[X > x = P[ > x /3 > Max{/3,/3}, 3 < ]

When 3 takes its first step within round k, the program variable V.B holds the value
/5. As a consequence, 3 chooses a new value when and exactly when B 3(k- 1)(= /3)
is strictly bigger then /35. (The case /3 = /35 would lead 3 to take possession of the
critical section at its first step in round k, in contradiction with the definition of p;
and the case 3 < /35 leads 3 to keep its "old" lottery value B 3(k - 1).) From this
we deduce that:

PA[B(k)< 5 p R = R] = P3 < P5 1 P/ < X]

+ P[ /3 > p5, 3 < 5 1 /3 < X]. (3.13)

Using Lemma, 8.1.5 we derive that:

P[/3 <5 3 < X] > P[3 <5]

On the other hand P[/3 < 35 = P[P/3 < /35 ] because all the random variables
/3i(j), i = 1,..., n, j > 1 are iid. Taking into account the fact that the last term of
equation 3.13 is non zero, we have then established that:

PA[B3(k) < 35 I ', R = R'] > P[3 < /35 ].
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Combining Equations 3.11, 3.12 and 3.14 yields:

PA[p ( p', R = R'] > PA[P l P', R R'].

Equation 3.10 then shows that PA[P I P'] > PA[p I p', R # R']. Plugging this result
into Equation 3.9 finishes the proof. O

We finish with a result showing that all the problems that we encountered in Rabin's
algorithm carry over for Ben-Or's algorithm. Ben-Or's algorithm is cited at the end
of [49]. The code of this algorithm is the same as the one of Rabin with the following
modifications. All variables B, R, Bi, Ri; 1 < i < n are boolean variables, initially
0. The distribution of the lottery numbers is also different but this is irrelevant for
our discussion.

We show that Ben-Or's algorithm does not satisfy the weak no-lockout property of
Definition 3.5.2. The situation is much simpler then in the case of Rabin's algorithm:
here all the variables are boolean so that a simple reasoning can be worked out.

Theorem 3.6.9 (Ben-Or's Alg.) There is an adversary A, a step number t and
a run Pt compatible with A such that

PA [ W2 (k) I r, = p, 2E P(k)=0.

PROOF. Assume that we are in the middle of round 3, and that the run pt indicates
that (at time 0 the critical section was free and then that) the schedule 1 2 2 3
3 was followed, that at this point 3 entered in Crit, that it left Crit, that at this
point the schedule 4 1 1 5 5 was followed, that 5 entered and then left Crit, that 6

4 4 then took a step and that at this point Crit is still free.

Without loss of generality assume that the round number R(1) is 0. Then R 2(1) = 0,
Bl(1) = 1 and B 2(1) = 0: if not 2 would have entered in Crit. In round 2 it then
must be the case that R(2) = 1. Indeed if this was not the case then 1 would have
entered the critical section. It must then be the case that B 1(2) = 0 and B 4(2) = 1.
And then that B 6(3) = 1 and R(3) = 0: if this was not the case then 4 would have
entered in Crit in the 3rd round.

But at this point, 2 has no chance to win if scheduled to take a step! O

3.7 Appendix

This section presents some useful mathematical properties of the truncated expo-
nential distribution used in [49]. Theorem 3.7.1 and its corollaries are used in the
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construction of the adversary in Theorem 3.6.2 and Theorem 3.6.4.

Definition 3.7.1 For any sequence (ai)iEN we denote Max, ai de Max{al, a 2 , · ·., a,}.

In this section the sequence (i) is a sequence of iid geometric random variables:

1
P[p = ] t;1=1, 2,...21'

The following results are about the distribution of the extremal function Max,3Li.
The same probabilistic results hold for iid random variables (/3'), having the trun-
cated distribution used in [49]: we just need to truncate at log2n + 4 the random
variables i and the values that they take. This does not affect the probabilities
because, by definition, P[3i(k) = log2n + 4] = '>log2n+4 P[i = I]. We will need
the following function:

(x) deS 1 - e2 1 - . (3.15)

Theorem 3.7.1 For all s E N and x E R such that log2s + x E N and such that
(2)1- < 1/2, we have the following approximation:

A dp[ Max,/i > log2s + x ] 1 - e2-

A bound on the error is given by A -(1 - e 2x)| < e'- 41

PROOF. We easily see that, Vj E N, P[Max,/3i < j] = (1 - 2 1-j)s. Setting
j = log2s + x gives:

P[ Max/3i < log 2s + x] ( -e(1 e

The upper bound on the error term is obtained by writing a precise asymptotic

expansion of (1 - 21-) [

The upper bound on the error shows that this approximation is very tight when s is
big. In the construction of Theorem 3.6.2 we consider the case where where s n/2
and x = -1/2logn. The error term is then less then e . As an illustration of
the theorem we deduce the two following results.

Corollary 3.7.2 Consider s > 1. Then P[ Max/,i > log2s] - 4] > 1 - e -.
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PROOF. Write log2s] = logs - t with 0 < t < 1. Then

P[ Max,Pi = log2sj - 4] > P[ Max,3i > log2s - (4 + t)]

, 1 -e- 2 1+(4+t) > 1- e-32

Corollary 3.7.3 Consider s > 1. Then P[ Maxs3i > [log2s] + 8] < 0.01

PROOF. 1- e- 2- 8 - 2- 7 < 0.01 . [

These results express that the maximum of s random variables 3i is concentrated
tightly around log2s: Corollary 3.7.2 shows that the maximum is with overwhelming
probability at least as big as [log2s] - 4, whereas Corollary 3.7.3 shows that with
probability 99% this maximum is at most [log2sl + 7.

Corollary 3.7.4 Let s > 1. Then P[Maxs/3i = log2sl ] > 0.17. For a > 1

P [ Max,/i = [log2s] + a ] > -'(a + 2). Hence P [ Maxspi = [log2sl +a ] > 0.005,

for s > 1 and a = 1,..., 5 .

PROOF. Let x E (0, 1) such that log2s + x = [log2s] . (Recall that the random
variables Pi are integer valued.) Then P[ Max,Pi = log2s + x] (x) - q(x + 1).
This is equal to -b'(() = log 22 e-2'1-2' - for some 5 E (x, x + 1) C (0, 2). We check

immediately that " is negative on (-oo, 1) and positive on (1, oo). This allows us
to write that

P[MaxsOi = [log2 sl] > Min(-'/(0),-'(2)) > 0.17.

The same argument gives also that Va > 1 P[Max,3i = [log2sl + a] = -4'(() for

some E (a, a + 2). In this interval - '(() > -q'(a + 2). Hence Va = 1,..., 5,

P [ Max,3 i = [log2sl + a ] > -4'(7), l1og2 e-2-2 -7 > 0.005.

O
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Chapter 4

Proving Time Bounds for
Randomized Distributed
Algorithms

4.1 Introduction

This chapter is devoted to the analysis of the timed version of Lehmann-Rabin's
Dining Philosophers algorithm [37]. We consider the case where, by assumption,
a participating processes cannot wait more then time 1 before taking a step. The
scheduling of the processes, i.e., the order under which the various processes take
steps, is not in the control of the algorithm. According to our general paradigm
(see Chapter 1) we therefore let Player(2) decide the schedules. We will prove that
Lehmann-Rabin's algorithm verifies a strong correctness property, i.e., a property
holding against Player(2) knowing the whole past execution.

As discussed in page 26 in the section about randomized adversaries, randomization
does not make the adversary more powerful and is not needed to establish the cor-
rectness of a given algorithm. (We argued nevertheless that considering randomized
adversaries was very useful for establishing lower bounds.) We will therefore restrict
ourselves in this chapter to the case of deterministic adversaries.

Furthermore, following the discussion of page 31, we consider the model where
Player(2) controls the passage of time. (We showed in page 31 that we could
equivalently allocate the time control to Player(1).)

We can summarize the previous discussion by saying that the admissible adversaries
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are deterministic, know the past execution and do not let a participating process wait
more then time 1 for a step. (This does not mean that these properties characterize
completely the set of admissible adversaries. We will for instance also require that
admissible adversaries let processes exit from their critical section.)

We showed in page 33 that the model for randomized computing presented in [54]
was equivalent to the model presented in Definition 2.3.1 in the case where 1)
Player(1) knows the complete state of the system and remembers it, and 2), deter-
ministic adversaries are considered. We therefore can and will equivalently develop
the analysis of [37] in the model of [54].

The original correctness property claimed by Lehmann and Rabin in [37] was that for
all admissible adversaries, the probability that the execution is deadlocked is equal
to zero. The authors of [37] did not write a formal transcription of this property.
In particular they never made explicit what was the event-schema' associated to
the informal description "the execution is deadlocked". (Note that such a property
involves infinitely many random tosses.) They similarly did not provide a formal
proof of correctness making explicit the probability spaces (A, A, PA) described
in our Section 2.4. A more formal proof is therefore needed.

The introduction of time in the proof of correctness presents three advantages. The
first one is that it will allow us to work "over a finite horizon of time" instead of the
whole infinite execution. This represents a major simplification of the setting within
which the proof is conducted. The second advantage is that the timed results are
interesting in their own right and provide more insight on the rate at which progress
occurs during an execution. (The correctness statement presented in [37] states in
essence that progress eventually occurs with probability one.) Last but not least, to
establish our result we develop a new general method based on progress functions
defined on states, for proving upper bounds on time for randomized algorithms.
Our method consists of proving auxiliary statements of the form U -t U', whichp

means that whenever the algorithm begins in a state in set U, with probability p,
it will reach a state in set U' within time t. Of course, this method can only be
used for randomized algorithms that include timing assumptions. A key theorem
about our method is the composability of these U t U' arrows, as expressed by

Theorem 4.3.2. This composability result holds even in the case of (many classes
of) non-oblivious adversaries.

We also present two complementary proof rules that help in reasoning about sets
of distinct random choices. Independence arguments about such choices are often
crucial to correctness proofs, yet there are subtle ways in which a non-oblivious ad-

lsee page 43 for a definition of an event-schema
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versary can introduce dependencies. For example, a non-oblivious adversary has the
power to use the outcome of one random choice to decide whether to schedule an-
other random choice. Our proof rules help to systematize certain kinds of reasoning
about independence.

As mentioned above, we present our proof in the context of the general framework
[54] for describing and reasoning about randomized algorithms. This framework in-
tegrates randomness and nondeterminism into one model, and permits the modeling
of timed as well as untimed systems. The model of [54] is, in turn, based on existing
models for untimed and timed distributed systems [30, 41], and adopts many ideas
from the probabilistic models of [58, 27].

Using this general method we are able to prove that T 1 C, where T is the set
1/8

of states in which some process is in its trying region, while C is the set of states in
which some process is in its critical region. That is, whenever the algorithm is in
a state in which some process is in the trying region, with probability 1/8, within
time 13, it will reach a state in which some process is in its critical region. This
bound depends on the timing assumption that processes never wait more then time
1 between steps. A consequence of this claim is an upper bound (of 63) on the
expected time for some process to reach its critical region.

For comparison, we already mentioned that [37] contains only proof sketches of
the results claimed. The paper [62] contains a proof that Lehmann and Rabin's
algorithm satisfies an eventual progress condition, in the presence of an adversary
with complete knowledge of the past; this proof is carried out as an instance of Zuck
and Pnueli's general method for proving liveness properties. Our results about this
protocol can be regarded as a refinement of the results of Zuck and Pnueli, in that
we obtain explicit constant time bounds rather than liveness properties.

The rest of the paper is organized as follows. Section 4.2 presents a simplified version
of the model of [54]. Section 4.3 presents our main proof technique based on time-
bound statements. Section 4.4 presents the additional proof rules for independence
of distinct probabilistic choices. Section 4.5 presents the Lehmann-Rabin algorithm.
Section 4.6.2 formalizes the algorithm in terms of the model of Section 4.2, and gives
an overview of our time bound proof. Section 4.7 contains the details of the time
bound proof.

Acknowledgments. Sections 4.2, 4.3 and 4.4 were written by Roberto Segala.
The references in the subsequent proofs to execution automata, and to the event
schemas Unit-Time, FIRST(a,U) and NEXT(a, U) are also his contribution. (The
notation U t U' and Theorem 4.3.2 is part of the work of the author.)
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4.2 The Model

In this section, we present the model that is used to formulate our proof technique.
It is a simplified version of the probabilistic automaton model of [54]. As mentioned
in page 33, this model considers the case where 1) Player(1) knows and remembers
the complete state of the system, and 2), deterministic adversaries are considered.
Under these conditions it is equivalent to the model presented in Chapter 2. Here
we only give the parts of the model that we need to describe our proof method and
its application to the Lehmann-Rabin algorithm; we refer the reader to [54] for more
details.

Definition 4.2.1 A probabilistic automaton2 M consists of four components:

* a set states(M) of states

* a nonempty set start(M) C states(M) of start states

* an action signature sig(M) = (ext(M), int(M)) where ext(M) and int(M) are
disjoint sets of external and internal actions, respectively

* a transition relation steps(M) C states(M) x acts(M) x Probs(states(states(M))),
where the set Probs(states(states(M))) is the set of probability spaces (Q, F, P)
such that Q C states(M) and F = 2 . The last requirement is needed for tech-
nical convenience.

A probabilistic automaton is fully probabilistic if it has a unique start state and from
each state there is at most one step enabled.

Thus, a probabilistic automaton is a state machine with a labeled transition relation
such that the state reached during a step is determined by some probability distri-
bution. For example, the process of flipping a coin is represented by a step labeled
with an action flip where the next state contains the outcome of the coin flip and
is determined by a probability distribution over the two possible outcomes. A prob-
abilistic automaton also allows nondeterministic choices over steps. An example of
nondeterminism is the choice of which process takes the next step in a multi-process
system.

An execution fragment a of a probabilistic automaton M is a (finite or infinite)
sequence of alternating states and actions starting with a state and, if the execution

2In [54] the probabilistic automata of this definition are called simple probabilistic automata.
This is because that paper also includes the case of randomized adversaries.
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fragment is finite, ending in a state, a = soalsla 2s 2 *, where for each i there exists
a probability space (, X, P) such that (si, ai+l,(, , P)) E steps(M) and si+1 E Q.
Denote by fstate(a) the first state of a and, if a is finite, denote by Istate(a) the
last state of tR. Furthermore, denote by frag*(M) and frag(M) the sets of finite and
all execution fragments of M, respectively. An execution is an execution fragment
whose first state is a start state. Denote by exec*(M) and exec(M) the sets of finite
and all executions of M, respectively. A state s of M is reachable if there exists
a finite execution of M that ends in s. Denote by rstates(M) the set of reachable
states of M.

A finite execution fragment al = soals ... ans, of M and an execution fragment
a2 = snan+lsn+l ... of M can be concatenated. In this case the concatenation,
written al act2, is the execution fragment soals1 ... ansnan+lsn+l *.. An execution
fragment al of M is a prefix of an execution fragment a 2 of M, written a l < a 2, if
either aC = ak2 or aC is finite and there exists an execution fragment a' of M such
that a 2 = a1 a'.

In order to study the probabilistic behavior of a probabilistic automaton, some
mechanism to remove nondeterminism is necessary. To give an idea of why the
nondeterministic behavior should be removed, consider a probabilistic automaton
with three states s, s1, s2 and with two steps enabled from its start state so; the
first step moves to state sl with probability 1/2 and to 2 with probability 1/2;
the second step moves to state s with probability 1/3 and to 2 with probability
2/3. What is the probability of reaching state sl? The answer depends on how
the nondeterminism between the two steps is resolved. If the first step is chosen,
then the probability of reaching state s is 1/2; if the second step is chosen, then
the probability of reaching state s is 1/3. We call the mechanism that removes
the nondeterminism an adversary, because it is often viewed as trying to thwart the
efforts of a system to reach its goals. In distributed systems the adversary is often
called the scheduler, because its main job may be to decide which process should
take the next; step.

Definition 4.2.2 An adversary for a probabilistic automaton M is a function A
taking a finite execution fragment of M and giving back either nothing (represented
as ) or one of the enabled steps of M if there are any. Denote the set of adversaries
for M by Advshf3.

Once an adversary is chosen, a probabilistic automaton can run under the control
of the chosen adversary. The result of the interaction is called an execution automa-

3In [54] the adversaries of this definition are denoted by DAdVsM, where D stands for Determin-
istic. The adversaries of [54] are allowed to use randomness.
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ton. The definition of an execution automaton, given below, is rather complicated
because an execution automaton must contain all the information about the differ-
ent choices of the adversary, and thus the states of an execution automaton must
contain the complete history of a probabilistic automaton. Note that there are no
nondeterministic choices left in an execution automaton.

Definition 4.2.3 An execution automaton H of a probabilistic automaton M is a
fully probabilistic automaton such that

1. states(H) C frag*(M).

2. for each step (a, a, (, F, P)) of H there is a step (Istate(a), a, ( ', F', P')) of
M, called the corresponding step, such that Q = {aasls E Q'} and P'[aas] =
P[s] for each s E Q'.

3. each state of H is reachable, i.e., for each a E states(H) there exists an
execution of H leading to state a.

Definition 4.2.4 Given a probabilistic automaton M, an adversary A E AdvsM,
and an execution fragment a E frag*(M), the execution H(M, A, a) of M under
adversary A with starting fragment a is the execution automaton of M whose start
state is a and such that for each step (a', a, (, , P)) E steps(H(M, A, a)), its
corresponding step is the step A(a').

Given an execution automaton H, an event is expressed by means of a set of maximal
executions of H, where a maximal execution of H is either infinite, or it is finite
and its last state does not enable any step in H. For example, the event "eventually
action a occurs" is the set of maximal executions of H where action a does occur.
A more formal definition follows. The sample space QH is the set of maximal
executions of H. The a-algebra FH is the smallest a-algebra that contains the set
of rectangles R,, consisting of the executions of PH having a as a prefix4. The
probability measure PH is the unique extension of the probability measure defined
on rectangles as follows: PH[R] is the product of the probabilities of each step of H
generating a. In [54] it is shown that there is a unique probability measure having
the property above, and thus (H, .FH, PH) is a well defined probability space. For
the rest of this abstract we do not need to refer to this formal definition any more.

Events of FH are not sufficient for the analysis of a probabilistic automaton. Events
are defined over execution automata, but a probabilistic automaton may generate

4 Note that a rectangle R can be used to express the fact that the finite execution a occurs.



4.3. The Proof Method

several execution automata depending on the adversary it interacts with. Thus a
more general notion of event is needed that can deal with all execution automata.
Specific examples are given in Section 4.3.

Definition 4.2.5 An event schema e for a probabilistic automaton Al is a function
associating an event of FH with each execution automaton H of M.

We now discuss briefly a simple way to handle time within probabilistic automata.
The idea is to add a time component to the states of a probabilistic automaton,
to assume that the time at a start state is 0, to add a special non-visible action
I' modeling the passage of time, and to add arbitrary time passage steps to each
state. A time passage step should be non-probabilistic and should change only the
time component of a state. This construction is called the patient construction in
[44, 57, 22]. The reader interested in a more general extension to timed models is
referred to [54].

We close this section with one final definition. Our time bound property for the
Lehmann-Rabin algorithm states that if some process is in its trying region, then
no matter how the steps of the system are scheduled, some process enters its critical
region within time t with probability at least p. However, this claim can only be
valid if each process has sufficiently frequent chances to perform a step of its local
program. Thus, we need a way to restrict the set of adversaries for a probabilistic
automaton. The following definition provides a general way of doing this.

Notation. We let Advs denote a subset of AdvsM.

4.3 The Proof Method

In this section, we introduce our key statement U t Advs U' and the composability

theorem, which is our main theorem about the proof method.

The meaning of the statement U Advs U' is that, starting from any state of U

and under any adversary A of Advs, the probability of reaching a state of U' within
time t is at least p. The suffix Advs is omitted whenever we think it is clear from
the context.

Definition 4.3.1 Let eu,,t be the event schema that, applied to an execution au-
tomaton H, returns the set of maximal executions a of H where a state from U' is
reached in some state of a within time t. Then U -t-Advs U' iff for each s E U and

each A E Advs, PH(MA,)[eu,,t(H(M, A, s))] p.
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Proposition 4.3.1 Let U, U', U" be sets of states of a probabilistic automaton M.
If U t) U', then UU U" t- U' U U".

P P

In order to compose time bound statements, we need a restriction for adversary
schemas stating that the power of the adversary schema is not reduced if a prefix of
the past history of the execution is not known. Most adversary schemas that appear
in the literature satisfy this restriction.

Definition 4.3.2 An adversary schema Advs for a probabilistic automaton M is
execution closed if, for each A E Advs and each finite execution fragment a E
frag*(M), there exists an adversary A' E Advs such that for each execution fragment
a' E frag*(M) with Istate(a) = fstate(a'), A'(a') = A(a a').

Theorem 4.3.2 Let Advs be an execution closed adversary schema for a probabilis-
tic timed automaton M, and let U, U', U" be sets of states of M.
If U -- Advs U' and U' Ads U", then U tlAdt U.

P1 P2 PIP2

Sketch of proof: Consider an adversary A E Advs that acts on M starting from
a state s of U. The execution automaton H(M, A, s) contains executions where a
state from U' is reached within time tl. Consider one of those executions a and
consider the part H of H(M, A, s) after the first occurrence of a state from U' in
a. The key idea of the proof is to use execution closure of Advs to show that there
is an adversary that generates H, to use U' tadv U" to show that in H a state

P2
from U" is reached within time t2 with probability at least P2, and to integrate
this last result in the computation of the probability of reaching a state from U" in
H(M, A, s) within time t + t2-.

4.4 Independence

Example 4.4.1 Consider any distributed algorithm where each process is allowed
to flip fair coins. It is common to say "If the next coin flip of process P yields head
and the next coin flip of process Q yields tail, then some good property q$ holds."
Can we conclude that the probability for to hold is 1/4? That is, can we assume
that the coin flips of processes P and Q are independent? The two coin flips are
indeed independent of each other, but the presence of non-oblivious adversaries may
introduce some dependence. An adversary can schedule process P to flip its coin
and then schedule process Q only if the coin flip of process P yielded head. As a
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result, if both P and Q flip a coin, the probability that P yields head and Q yields
tail is 1/2.

Thus, it is necessary to be extremely careful about independence assumptions. It
is also important to pay attention to potential ambiguities of informal arguments.
For example, does X hold if process P flips a coin yielding head and process Q does
not flip any coin? Certainly such an ambiguity can be avoided by expressing each
event in a formal model.

In this section we present two event schemas that play a key role in the detailed
time bound proof for the Lehmann-Rabin algorithm, and we show some partial
independence properties for them. The first event schema is a generalization of
the informal statement of Example 4.4.1, where a coin flip is replaced by a generic
action a, and where it is assumed that an event contains all the executions where
a is not scheduled; the second event schema is used to analyze the outcome of the
first random draw that occurs among a fixed set of random draws. A consequence
of the partial independence results that we show below is that under any adversary
the property I of Example 4.4.1 holds with probability at least 1/4.

Let (a, U) be a pair consisting of an action of M and a set of states of M. The
event schema FIRST(a, U) is the function that, given an execution automaton H,
returns the set of maximal executions of H where either action a does not occur, or
action a occurs and the state reached after the first occurrence of a is a state of U.
This event schema is used to express properties like "the ith coin yields left". For
example a can be flip and U can be the set of states of M where the result of the
coin flip is left.

Let (a,, Ul),..., (an, Un) be a sequence of pairs consisting of an action of M and a
set of states of M such that for each i,j, 1 i < j n, ai a. Define the event
schema NEXT((al, U1), . . ., (an, Un)) to be the function that applied to an execution
automaton H gives the set of maximal executions of H where either no action from
{al,...,an} occurs, or at least one action from {al,...,a,} occurs and, if ai is the
first action that occurs, the state reached after the first occurrence of ai is in Ui.
This kind of event schema is used to express properties like "the first coin that is
flipped yields left."

Proposition 4.4.2 Let H be an execution automaton of a probabilistic automaton
M. Furthermore, let (a, U),..., (an, Un) be pairs consisting of an action of M and
a set of states of M such that for each i,j, 1 < i < j n, ai aj. Finally, let
Pi, ... , Pn be real numbers between 0 and 1 such that for each i, 1 < i < n, and each
step (s,a,(Q,F,P)) E steps(M) with a = ai, the probability P[Ui n Q] is greater
than or equal to Pi, i.e., P[Ui n Q] > pi. Then
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1. PH[(FIRST(al, U1) n ... FIRST(an, Un))(H)] > P * 'P,,

2. PH[N EXT((al, U1), ... ,(a,, U))(H) > min(pl,..., p,).

4.5 The Lehmann-Rabin Algorithm

The Lehmann-Rabin algorithm is a randomized algorithm for the Dining Philoso-
phers problem. This problem involves the allocation of n resources among n com-
peting processes arranged in a ring. The resources are considered to be interspersed
between the processes, and each process requires both its adjacent resources in or-
der to reach its critical section. All processes are identical; the algorithm breaks
symmetry by using randomization. The algorithm ensures the required exclusive
possession of resources, and also ensures that, with probability 1, some process is
always permitted to make progress into its critical region.

Figure 4.1 shows the code for a generic process i. The n resources are represented by
n shared variables Resl,..., Res,, each of which can assume values in {free, taken}.
Each process i ignores its own name, i, and the names, Resi_l and Resi, of its
adjacent resources. However, each process i is able to refer to its adjacent resources
by relative names: Res(ileft) is the resource located to the left (clockwise), and
Res(i,right) is the resource to the right (counterclockwise) of i. Each process has a
private variable ui, which can assume a value in {left, right}, and is used to keep
track of the first resource to be handled. For notational convenience we define an
operator opp that complements the value of its argument, i.e., opp(right) = left
and opp(left) = right.

The atomic actions of the code are individual resource accesses, and they are rep-
resented in the form <atomic-action> in Figure 4.1. We assume that at most one
process has access to the shared resource at each time.

An informal description of the procedure is "choose a side randomly in each iteration.
Wait for the resource on the chosen side, and, after getting it, just check once for
the second resource. If this check succeeds, then proceed to the critical region.
Otherwise, put down the first resource and try again with a new random choice."

Each process exchanges messages with an external user. In its idle state, a process
is in its remainder region R. When triggered by a try message from the user, it
enters the competition to get its resources: we say that it enters its trying region T.
When the resources are obtained, it sends a crit message informing the user of the
possession of these resources: we then say that the process is in its critical region
C. When triggered by an exit message from the user, it begins relinquishing its
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Shared variables: Resj {free, taken}, j = 1,..., n, initially free.

Local variables: ui E {left, right}, i = 1,...,n

Code for process i:

0. try ** beginning of Trying Section **
1. < ui random> ** choose left or right with equal probability **
2. < if Res(i,,,) = free then

Res(i,u,) := taken ** pick up first resource **
else goto 2. >

3. < if Res(iopp(u,)) = free then
Res(iopp(u)) := taken; ** pick up second resource **
goto 5. >

4. < Res(i,):= free; goto 1.> ** put down first resource **
5. crit ** end of Trying Section **

** Critical Section **
6. exit ** beginning of Exit Section **
7. < ui - left or right ** nondeterministic choice **

Res(iopp(u,)) := free > ** put down first. resources **
8. < Res(i,u) := free > ** put down second resources **
9. rem ** end of Exit Section **

** Remainder Section **

Figure 4.1: The Lehmann-Rabin algorithm

resources: we then say that the process is in its exit region E. When the resources
are relinquished its sends a rem message to the user and enters its remainder region.

4.6 Overview of the Proof

In this section, we give our high-level overview of the proof. We first introduce
some notation, then sketch the proof strategy at a high level. The detailed proof is
presented in Section 4.7.
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4.6.1 Notation

In this section we define a probabilistic automaton M which describes the system
of Section 4.5. We assume that process i + 1 is on the right of process i and that
resource Resi is between processes i and i + 1. We also identify labels modulo n so
that, for instance, process n + 1 coincides with process 1.

A state s of M is a tuple (X 1,.. ., X, Resl,..., Resn, t) containing the local state Xi
of each process i, the value of each resource Resi, and the current time t. Each local
state Xi is a pair (pci, ui) consisting of a program counter pci and the local variable
ui. The program counter of each process keeps track of the current instruction in
the code of Figure 4.1. Rather then representing the value of the program counter
with a number, we use a more suggestive notation which is explained in the table
below. Also, the execution of each instruction is represented by an action. Only
actions tryi, criti, remi, exiti below are external actions.

Number pci Action name Informal meaning
0 R try
1 F flip/
2 W waiti

3 S second,

4 D dropi

5 P criti
6 C exit/

7 EF dropfi
8 Es- drops/

9 ER remi

The start state of M assigns the
value R to each program counter

Remainder region
Ready to Flip
Waiting for first resource
Checking for Second resource
Dropping first resource
Pre-critical region
Critical region
Exit: drop First resource
Exit: drop Second resource
Exit: move to Remainder region

value free to all the shared variables Resi, the
pci, and an arbitrary value to each variable ui.

The transition relation of M is derived directly from Figure 4.1. For example, for
each state where pci -= F there is an internal step flipi that changes pci into W
and assigns left to ui with probability 1/2 and right to ui with probability 1/2;
from each state where Xi = (W, left) there is a step waiti that does not change
the state if Res(i,left) = taken, and changes pci into S and Res(ileft) into taken if
Res(i,left) = free; for each state where pci = EF there are two steps with action
dropfi: one step sets ui to right and makes Res(ileft) free, and the other step
sets ui to left makes Res(i,right) free. The two separate steps correspond to a
nondeterministic choice that is left to the adversary. For time passage steps we
assume that at any point an arbitrary amount of time can pass; thus, from each
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state of M and each positive 6 there is a time passage step that increases the time
component of 6 and does not affect the rest of the state.

The value of each pair Xi can be represented concisely by the value of pci and an
arrow (to the left or to the right) which describes the value of ui. Thus, informally,
a process i is in state S or D (resp. S or D) when i is in state S or D while

holding its right; (resp. left) resource; process i is in state W (resp. W) when i

is waiting for its right (resp. left) resource to become free; process i is in state
Es (resp. Es) when i is in its exit region and it is still holding its right (resp.

left) resource. Sometimes we are interested in sets of pairs; for example, whenever
pci = F the value of ui is irrelevant. With the simple value of pci we denote the set
of the two pairs {(pci,left), (pci,right)}. Finally, with the symbol # we denote
any pair where pci E {W, S, D}. The arrow notation is used as before.

For each state s = (X 0 ,. . .,Xn_ 1,Resl,...,Resn_l,t) of M we denote by Xi(s) the
pair Xi and by Resi(s) the value of the shared variable Resi in state s. Also, for any
set S of states of a process i, we denote by Xi E S, or alternatively Xi = S the set of
states s of M such that Xi(s) E S. Sometimes we abuse notation in the sense that
we write expressions like Xi E {F, D} with the meaning Xi E F U D. Finally, we
write Xi = E for Xi = {EF, Es , ER), and we write Xi = T for Xi E {F. W, S, D, P}.

A first basic lemma states that a reachable state of M is uniquely determined by
the local states its processes and the current time. Based on this lemma, our further
specifications of state sets will not refer to the shared variables; however, we consider
only reachable states for the analysis. The proof of the lemma is a standard proof
of invariants.

Lemma 4.6.1 For each reachable state s of M and each i, 1 < i < n, Resi = taken
iff Xi(s) E { S.,D,P,C, EF, Es} or Xi+1 (s) E {S,D,P,C, EF, Es}. Moreover,
for each reachable state s of M and each i, 1 < i < n, it is not the case that
Xi(s) E {S, D, P, C, EF, Es} and Xi+1(s) E {S, D, P,C, EF, Es)}, i.e., only one
process at a time can hold one resource. O

4.6.2 Proof Sketch

In this section we show that the RL-algorithm guarantees time bounded progress,
i.e., that from every state where some process is in its trying region, some process
subsequently enters its critical region within an expected constant time bound. We
assume that each process that is ready to perform a step does so within time 1:
process i is ready to perform a step whenever it enables an action different from
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try2 or exiti. Actions try/ and exiti are supposed to be under the control of the
user, and hence, by assumption, under the control of the adversary.

Formally, consider the probabilistic timed automaton M of Section 4.6.1. Define
Unit-Time to be the set of adversaries A for M having the properties that, for
every finite execution fragment a of M and every execution a' of H(M,.A, a), 1)
the time in ca' is not bounded and 2) for every process i and every state of a'
enabling an action of process i different from tryi and exiti, there exists a step in
ca' involving process i within time 1. Then Unit-Time is execution-closed according
to Definition 4.3.2. An informal justification of this fact is that the constraint that
each ready process is scheduled within time 1 knowing that ar a' has occurred only
reinforces the constraint that each ready process is scheduled within time 1 knowing
that a' has occurred. Let

T - {s E rstates(M) I 3iXi(s) E {T}}

denote the sets of reachable states of M where some process is in its trying region,
and let

C {s E rstates(M) I 3iXi(s) = C}

denote the sets of reachable states of M where some process is in its critical region.
We show that

13
T - )Unit- Time C,

1/8

i.e., that, starting from any reachable state where some process is in its trying
region, for all the adversaries of Unit-Time, with probability at least 1/8, some
process enters its critical region within time 13. Note that this property is trivially
satisfied if some process is initially in its critical region.

Our proof is divided into several phases, each one concerned with the property of
making a partial time bounded progress toward a "success state", i.e., a state of
C. The sets of states associated with the different phases are expressed in terms of
7, I7T, , , , and C. Here,

RT {s E T I ViXi(s) E {ER, R,T}}

is the set of states where at least one process is in its trying region and where no
process is in its critical region or holds resources while being in its exit region.

f - {s E rI 3i Xi,(s) = F}

is the set of states of 7RT where some process is ready to flip a coin.

P - {s E rstates(M) I 3Xi(s) = P}
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is the sets of reachable states of M where some process is in its pre-critical region.
The set 5 is the most important for the analysis. It parallels the set of "Good
Pairs"in [62] or the set described in Lemma 4 of [37]. To motivate the definition, we
define the following notions. We say that a process i is committed if Xi E {W, S),
and that a process i potentially controls Resi (resp. Resi_l) if Xi {W, S, D}

(resp. Xi E {W, S, D}). Informally said, a state in 7ZT is in 5 if and only if
there is a committed process whose second resource is not potentially controlled by
another process. Such a process is called a good process. Formally,

5 - { E RZT 3i Xi(s) E {W, S} and Xi+l(s) E {ER, R, F, #}, or
Xi(s) E {W, S} and Xi_l(s) E {ER, R, F,#}}

Reaching a state of a is a substantial progress toward reaching a state of C. Actually,
the proof of Proposition 4.7.11 establishes that, if i a is good process, then, with
probability 1/4, one of the three processes i - 1, i and i + 1 soon succeeds in getting
its two resources. The hard part is to establish that, with constant probability,
within a constant time, 5 is reached from any state in T. A close inspection of the
proof given in [62] shows that, there, the timed version of the techniques used is
unable to deliver this result. The phases of our proof are formally described below.

T 2 - 1T U C (Proposition 4.7.3),

1ZT 3 ) .U P (Proposition 4.7.15),

.T 1/2 5 U P (Proposition 4.7.14),
1/2

5 1 P (Proposition 4.7.11),
1/4

P I C (Proposition 4.7.1).

The first statement states that, within time 2, every process in its exit region re-
linquishes its resources. By combining the statements above by means of Proposi-
tion 4.3.1 and Theorem 4.3.2 we obtain

f 13 C,
1/8

which is the property that was to be proven. Using the results of the proof summary
above, we can furthermore derive a constant upper bound on the expected time
required to reach a state of C when departing from a state of T. Note that, departing
from a state in 7ZT, with probability at least 1/8, P is reached in time (at most) 10;
with probability at most 1/2, time 5 is spent before failing to reach 5 U P ("failure
at; the third arrow"); with probability at most 7/8, time 10 is spent before failing
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to reach P ("failure at the fourth arrow"). If failure occurs, then the state is back
into RT. Let V denote a random variable satisfying the following induction

V = 1/8 10 + 1/2(5 + V) + 3/8(10 + V2),

where V and V2 are random variables having the same distribution as V. The
previous discussion shows that the expected time spent from RZT to P is at most
E[V]. By taking expectation in the previous equation, and using that E[V] =
E[Vj] = E[V2], we obtain that E[V] = 60 is an upper bound on the expected time
spent from RZT to P, and that, consequently, the expected time for progress starting
from a state of T is at most 63.

4.7 The Detailed Proof

We prove in this section the five relations used in Section 4.6.2. However, for the sake
of clarity, we do not prove the relations in the order they were presented. Through-
out the proof we abuse notation by writing events of the kind FIRST(flipi,left)
meaning the event schema FIRST(flipi, {s E states(M) Xi(s) = W}).

Proposition 4.7.1 If some process is in P, then, within time 1, it enters C, i.e.,

P l&,C.

PROOF. This step corresponds to the action crit: within time 1, process i informs
the user that the critical region is free. O

Lemma 4.7.2 If some process is in its Exit region then, within time 3, it will enter
R.

PROOF. The process needs to take first two steps to relinquish its two resources,
and then one step to send a rem message to the user. O

Proposition 4.7.3 T 2 R ZTUC.

PROOF. From Lemma 4.7.2 within time 2 every process that begins in EF or Es
relinquishes its resources. If no process begins in C or enters C in the meantime,
then the state reached at this point is a state of RZT; otherwise, the starting state
or the state reached when the first process enters C is a state of C. [
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We now turn to the proof of G -~- P. The following lemmas form a detailed cases
1/4

analysis of the different situations that can arise in states of G. Informally, each
lemma shows that some event of the form of Proposition 4.4.2 is a sub-event of the
properties of reaching some other state.

Lemma 4.7.4

1. Assume that Xi_1 E {Es, R, F} and Xi = W. If FIRST(flipil, left), then,
within time 1, either Xi_1 = P or Xi = S.

2. Assume that Xi_1 = D and Xi = W. If FIRST(flipi_1,left). then, within
time 2, either Xi_1 = P or Xi = S.

3. Assume that Xi_1 = S and Xi = W. If FIRST(flipi_, left), then, within
time 3, either Xi-1 = P or Xi = S.

4. Assume that Xi_1 = W and Xi = W. If FIRST(flipi_,left), then, within
time 4, either Xil = P or Xi = S.

Proof. The four proofs start in the same way. Let s be a state of M satisfying the
respective properties of items 1 or 2 or 3 or 4. Let A be an adversary of Unit- Time,
and let a be the execution of M that corresponds to an execution of H(M, A, {s))
where the result of the first coin flip of process i - 1 is left.

1. By hypothesis, i - 1 does not hold any resource at the beginning of a and
has to obtain Resi_2 (its left resource) before pursuing Resi_l. Within time
1, i takes a step in a. If i - 1 does not hold Resi_l when i takes this step,
then i progresses into configuration S. If not, it must be the case that i - 1
succeeded in getting it in the meanwhile. But, in this case, Resi_l was the
second resource needed by i - 1 and i - 1 therefore entered P.

2. If Xi = S within time 1, then we are done. Otherwise, after one unit of time,
Xi is still equal to W, i.e., Xi(s') = W for all states s' reached in time 1.
However, process i - 1 takes also a step within time 1. Let a = al . a 2 such
that the last action of al corresponds to the first step taken by process i - 1.
Then X_l1(fstate(a2)) = F and Xi(fstate(a 2)) = W. Since process i - 1 did
not flip any coin during al, from the execution closure of Unit-Time and item
1 we conclude.
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3. If X i = S within time 1, then we are done. Otherwise, after one unit of time,
Xi is still equal to W, i.e., Xi(s') = W for all states s' reached in time 1.

However, also process i - 1 takes a step within time 1. Let a = al a2 such
that the last action of al corresponds to the first step taken by process i - 1.
If Xi_l(fstate(a2)) = P then we are also done. Otherwise it must be the case
that Xi_(fstate(a 2)) = D and Xi(fstate(a 2)) = W. Since process i- 1 did
not flip any coin during al, from the execution closure of Unit-Time and item
2 we conclude.

4. If Xi = S within time 1, then we are done. Otherwise, after one unit of
time, Xi is still equal to W, i.e., Xi(s') = W for all states s' reached in time

1. However, since within time 1 process i checks its left resource and fails,
process i - 1 gets its right resource within time 1, and hence reaches at least
state S. Let a = al a 2 where the last step of ae is the first step of a leading
process i - 1 to state S. Then Xi_(fstate(a 2)) = S and Xi(fstate(a 2)) = W.

Since process i - 1 did not flip any coin during al, from the execution closure
of Unit- Time and item 3 we conclude. [

Lemma 4.7.5 Assume that Xi_1 E {ER, R, T} and Xi = W. IfFIRST(flipi_, left),
then, within time 4, either Xi-, = P or Xi = S.

PROOF. The lemma follows immediately from Lemma 4.7.4 after observing that

Xi- 1 E {ER, R, T means Xi_ E {ER, R, F, W, S, D, P. °

The next lemma is a useful tool for the proofs of Lemmas 4.7.7, 4.7.8, and 4.7.9.

Lemma 4.7.6 Assume that Xi E W, S or X E ER, R, F, D } with FIRST(flipi,

left), and assume that Xi+l E {W, S} or Xi+l E {ER, R,F, D} with FIRST(flipi+,

right). Then the first of the two processes i or i+ 1 testing its second resource enters
P after having performed this test (if this time ever comes).

PROOF. By Lemma 4.6.1 Resi is free. Moreover, Resi is the second resource needed
by both i and i + 1. Whichever tests for it first gets it and enters P. [

Lemma 4.7.7 If Xi = S and Xi+l E W, S then, within time 1, one of the two
processes i or i + 1 enters P. The same result holds if Xi E W, S and Xi+1 = S.

PROOF. Being in state S, process i tests its second resource within time 1. An
application of Lemma 4.7.6 finishes the proof. a]
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Lemma 4.7.8 Assume that Xi = S and Xi+ E {ER, R, F, D}. If FIRST(flipi+l,
right), then, ithin time 1, one of the two processes i or i + 1 enters P. The same
result holds if Xi {ER, R, F, D}, Xi+1 = S and FIRST(flipi,left).

PROOF. Being in state S, process i tests its second resource within time 1. An
application of Lemma 4.7.6 finishes the proof. a

Lemma 4.7.9 Assume that Xi_, E {ER, R, T}, Xi = W, and Xi+l E {ER, R, F, W,
D}. If FIRST(flipi_ 1 ,left) and FIRST(flipi+, right), then within time 5 one of
the three processes i - 1, i or i + 1 enters P.

PROOF. Let s be a state of M such that Xi_i(s) E {ER, R,T}, Xi(s) = W, and
Xi+l(s) E ERR,F,W,D}. Let A be an adversary of Unit-Time, and let a be
the execution of M that corresponds to an execution of H(M, A, {s}) where the
result of the first coin flip of process i - 1 is left and the result of the first coin
flip of process i + 1 is right. By Lemma 4.7.5, within time 4 either process i - 1
reaches configuration P in a or process i reaches configuration S in a. If i - 1
reaches configuration P, then we are done. If not, then let a = al a2 such that
Istate(al) is the first state s' of a with Xi(s') = S. If i + 1 enters P before the

end of a,, then we are done. Otherwise, Xi+l(fstate(a 2)) is either in {W. S} or
it is in {ER, R, F, D} and process i + 1 has not flipped any coin yet in a. From
execution closure of Unit-Time we can then apply Lemma 4.7.6. Within one more
time process i tests its second resource and enters P if process i + 1 did not check
its second resource in the meantime. On the other hand, process i + 1 enters P if it
checks its second resource before i does so. O

Lemma 4.7.10 Assume that Xi_1 E {ER,R,F,W,D}, Xi = W, and Xi+ E
{ER, R,T}. If FIRST(flipi_l,left) and FIRST(flipi+,right), then within time
5 one of the three processes i - 1, i or i + 1, enters P.

PROOF. Analogous to Lemma 4.7.9. [1

Proposition 4.7.11 Starting from a global configuration in G, then, with probabil-
ity at least 1/4 and within time at most 5, some process enters P. Equivalently:

5

1/4
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PROOF. Lemmas 4.7.7 and 4.7.8 jointly treat the case where Xi = S and Xi+ E

{ER,R,F,#} and the symmetric case where Xi E {ER,R,F,#} and Xi =

S; Lemmas 4.7.9 and 4.7.10 jointly treat the case where IYi = W and Xi+, E

{ER, R,F,W,D} and the symmetric case where Xi- 1 E {ER,R,F,W,D} and

Xi = W.

Specifically, each lemma shows that a compound event of the kind FIRST(flipi, x)
and FIRST(flipj, y) leads to P. Each of the basic events FIRST(flipi, x) has prob-
ability 1/2. From Proposition 4.4.2 each of the compound events has probability at
least 1/4. Thus the probability of reaching P within time 5 is at least 1/4. a

We now turn to T -- 2, U P. The proof is divided in two parts and constitute the
1/2

global argument of the proof of progress.

Lemma 4.7.12 Start with a state s of F. If there exists a process i for which
Xi(s) = F and (Xi_l,Xi+l) (, #), then, with probability at least 1/2 a state of
G U P is reached within time 1.

PROOF. The conclusion holds trivially if s E G. Let s be a state of F-G and let i be
such that Xi(s) = F and (Xi-,Xi+) # (#, ). Assume without loss of generality

that Xi+l $ #, i.e., Xi+l E {ER, R,F, #}. (The case for Xil # is similar.) We

can furthermore assume that Xi+ E {ER, R, F, D} since if Xi+l E {W, S} then s

is already in G.

We show that the event NEXT((flipi,left), (flipi+,,right)), which by Proposi-
tion 4.4.2 has probability at least 1/2, leads in time at most 1 to a state of GUUP. Let

A be an adversary of Unit-Time, and let a be the execution of M that corresponds
to an execution of H(M, A, {s}) where if process i flips before process i + 1 then
process i flips left, and if process i + 1 flips before process i then process i + 1 flips
right.

Within time 1, i takes one step and reaches W. Let j E {i, i + 1} be the first
of i and i + 1 that reaches W and let s be the state reached after the first time
process j reaches W. If some process reached P in the meantime, then we are done.
Otherwise there are two cases to consider. If j = i, then, flipi gives left and
Xi(sl) = W whereas Xi+ is (still) in {ER, R, F, D}. Therefore, sl E G. Ifj = i+ 1,

then flipd+ 1 gives right and Xi+ 1(sl) = W whereas Xi(sl) is (still) F. Therefore,

l E G. 
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Lemma 4.7.13 Start with a state s of F. Assume that there exists a process i for
which Xi(s) := F and for which (Xi_l(s), Xi+l(s)) = ( #, #). Then, with probability
at least 1/2, within time 2, a state of 5 U P is reached.

PROOF. The hypothesis can be summarized into the form (Xi_(s), Xi(s), Yi,+(s))
= (#, F, #). Since i - 1 and i + 1 point in different directions, by moving to the
right of i + 1 there is a process k pointing to the left such that process k + 1 either
points to the right or is in ER, R,F), i.e., Xk(s) E W, S,D} and Xk+l(S) E
(ER, R, F, W, S, D}. If Xk(s) E {W, S} then s E and we are done. Thus, we
can restrict our attention to the case where Xk(s) = D.

We show that the event NEXT((flipk, left), (flipk+, right)), which by Proposi-
tion 4.4.2 has probability at least 1/2, leads in time at most 2 to a U P. Let A be
an adversary of Unit-Time, and let a be an execution of M that corresponds to an
execution of H(M, A, {s}) where if process k flips before process k + 1 then process
k flips left, and if process k + 1 flips before process k then process k 4- 1 flips right.

Within time 2, process k takes at least two steps and hence goes to configuration W.
Let j E {k, k + 1} be the first of k and k + 1 that reaches W and let s be the state
reached after the first time process j reaches W. If some process reached P in the
meantime, then we are done. Otherwise there are two cases to consider. If j = k,
then, flipk gives left and Xk(sl) = W whereas Xk+l is (still) in {ER, R,F,#}
Therefore, s G5. If j = k + 1, then flipk+ 1 gives right and X+1(sl) = W
whereas Xk(sl) is (still) in {D,F}. Therefore, s1 E 7. 3

Proposition 4.7.14 Start with a state s of F. Then, with probability at least 1/2,
within time 2, a state of 5 U P is reached. Equivalently:

2

1/2

PROOF. The two different hypotheses of Lemmas 4.7.12 and 4.7.13 form a partition
of F. 

Finally, we prove RT 3 _, U P.

Proposition 4.7.15 Starting from a state s of 1T, then, within time 3, a state of
F U P is reached. Equivalently:

7T 3F U P.
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PROOF. Let s be a state of ZRT. If s E F, then we are trivially done: We can
therefore restrict ourselves to the case where in s each process is in {ER, R, W, S, D}
and where there exists at least one process in {W, S, D}. Furthermore we can restrict
ourselves to the case where no process reaches P in time 3, i.e., where the state stays
in RZT. (Else we are done.) Let A be an adversary of Unit-Time, and let a be the
execution of M that corresponds to an execution of H(M, A, {s}).

Within time 1 a process reaches S, D, F}. Therefore Within time 2 a process
reaches {D, F}. Therefore Within time 3 a process reaches {(F. As, by assumption,
the state stays in Z' in time 3, we have therefore proven that Y is reached in time
3. 0



Chapter 5

A Deterministic Scheduling
Protocol

In this chapter we present a scheduling problem, analyze it and provide optimal
deterministic solutions for it. The proof involves re-expressing the problem in graph-
theoretical terms. In particular the main tool used in the proof of optimality is Ore's
Deficiency Theorem [45] giving a dual expression of the size of a maximum matching
in a bipartite graph. We will consider in Chapter 7 the randomized version of this
scheduling problem.

5.1 Introduction

Many control systems are subject to failures that can have dramatic effects. One
simple way to deal with this problem is to build in some redundancy so that the
whole system is able to function even if parts of it fail. In a general situation, the
system's manager has access to some observations allowing it to control the system
efficiently. Such observations bring information about the state of the system that
might consist of partial fault reports. The available controls might include repairs
and/or replacement of faulty processors.

To model the problem, one needs to make assumptions regarding the occurrence
of faults. Typically, they are assumed to occur according to some stochastic pro-
cess. To make the model more tractable, one often considers the process to be
memoryless, i.e. faults occur according to some exponential distribution. However,
to be more realistic, many complications and variations can be introduced in the
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stochastic model, and they complicate the time analysis. Examples are: a processor
might become faulty at any time or only during specific operations; the fault rate
might vary according to the work load; faults might occur independently among the
processors or may depend on proximity. The variations seem endless and the results
are rarely general enough so as to carry some information or methodology from one
model to another.

One way to derive general results, independent of the specific assumptions about the
time of occurrence of faults, is to adopt a discrete time, that, instead of following
an absolute frame, is incremented only at each occurrence of a fault. Within this
framework, we measure the maximal number of faults to be observed until the
occurrence of a crash instead of the maximal time of survival of a system until the
occurrence of a crash.

As an introduction to this general situation, we make the following assumptions and
simplifications:

Redundancy of the system: We assume the existence of a pool JN composed of p
identical processors from among which, at every time t, a set st of n processors
is selected to configure the system. The system works satisfactorily as long as
at least n - m processors among the n currently in operation are not faulty.
However, the system cannot tolerate more than m faults at any given time: it
stops functioning if m + 1 processors among these n processors are faulty.

Occurrence of faults, reports and logical time: We consider the situation in
which failures do not occur simultaneously and where, whenever a processor
fails, a report is issued, stating that a failure has occurred, but without spec-
ifying the location of the failure. (Reporting additional information might be
too expensive or time consuming.) Based on these reports, the scheduler might
decide to reconfigure the system whenever such failure is reported. As a result,
we restrict our attention to the discrete model, in which time t corresponds to
the t-th failure in the system.

Repairs: No repair is being performed.

Deterministic Algorithms: We assume that the scheduler does not use random-
ness.

Since the universe consists of only p processors, and one processor fails at each
time, no scheduling policy can guarantee that the system survives beyond time p.
(A better a priori upper bound is p - n + m + 1: at this time, only n - m - 1
processors are still non-faulty. This does not allow for the required quorum of n - m
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non-faulty processors.) But some scheduling policies seem to allow the system to
survive longer than others. An obviously bad policy is to choose n processors once
and for all and never to change them: the system would then collapse at time m + 1.
This chapter investigates the problem of determining the best survival time.

This best survival time is defined from a worst-case point-of-view: a given scheduler
allows the system to survive (up to a certain time) only if it allows it to survive
against all possible failure patterns in which one processor fails at each time.

Our informal description so far apparently constrains the faults to occur in on-line
fashion: for each t, the t-th fault occurs before the scheduler decides the set st+ to
be used subsequently. However, since we have assumed that no reports about the
locations of the faults are available, there is no loss of generality in requiring the
sets st to be determined a priori. (Of course, in practice, some more precise fault
information may be available, and each set st would depend on the fault pattern up
to time t.) Also, as we have assumed a deterministic scheduler, we canll assume that
the decisions s,..., sp are revealed before the occurrence of any fault. We express
this by saying that the faults occur in an off-line fashion.

5.2 The Model

Throughout this chapter, we fix a universal set X of processors, and let p denote
its cardinality. We also fix a positive integer n (n < p) representing the number of
processors that are needed at each time period, and a positive integer mr representing
the number of failures that can be tolerated (m < n).

We model the situation described in the introduction as a simple game between two
entities, a scheduler and an adversary. The game consists of only one round, in
which the scheduler plays first and the adversary second. The scheduler plays by
selecting a sequence of p sets of processors (the schedule), each set of size n, and the
adversary responds by choosing, from each set selected by the scheduler, a processor
to kill. We consider only sequences of size p because the system must collapse by
time p, since, at each time period, a new processor breaks down.

Formally, a schedule S is defined to be a finite sequence, sl,.. ., sp, of subsets of JV,
such that st[ = n for all t, 1 < t < p. An adversary A is defined to be a function
associating to every schedule S = (sl,...,sp) a sequence A(S) = (fi,...,fp) of
elements of A' such that ft E st for every t.

Now let S be a schedule, and A an adversary. Define the survival time, T(S, A),
to be the largest value of t such that, for all u < t, {fi,... f} n s, I < m, (where

115



116 Chapter 5. A Deterministic Scheduling Protocol

(fi. ,fp) = A(S)). That is, for all time periods u up to and including time period
t, there are no more than m processors in the set s, that have failed by time u.

We are interested in the minimum survival time for a particular schedule, with
respect to arbitrary adversaries. Thus, we define the minimum survival time for a
schedule, T(S), to be T(S) df minA T(S, A). An adversary A for which T(S) =
minA T(S, A) is said to be minimal for S. Finally, we are interested in determining
the schedule that guarantees the greatest minimum survival time. Thus, we define
the optimum survival time top,, to be maxs T(S) = maxs minA T(S, A). Also define
a schedule S to be optimum provided that T(S) = top,,,. Our objectives in this
chapter are to compute top, as a function of p, n and m, to exhibit an optimum
schedule, and to determine a minimal adversary for each schedule.

5.3 The Result

Recall that 1 < m < n < p are three fixed integers. Our main result is stated
in terms of the following function defined on the set of positive real numbers (see
Figure 5.1):

hn,m(k)f m+ (k - n+m-n ,

where (x)+ = max(x, 0). In particular, hn,m(k) = -m when n divides k.

The main result of this chapter is:

Theorem 5.3.1
topt = h,m(p).

We will present our proof in two lemmas proving respectively that topt is no smaller
and no bigger than hn,,m(p).

Lemma 5.3.2
top > hn,m(p).

PROOF. Consider the schedule St,ri,i, in which the p processors are partitioned into
l [J batches of n processors each and one batch of q = p- L J n. Each of the first L [J
batches is used m time periods and then set aside. Then, the last batch of processors
along with any n - q of the processors set aside is used for (m + q - n)+ time periods.
It is easy to see that no adversary can succeed in killing m + 1 processors within a
batch before this schedule expires. []
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Figure 5.1: The function hn,m(k)

In order to prove the other direction of Theorem 5.3.1, we need the following result
about the rate of increase of the function hn,m(k).

Lemma 5.3.3 For O < k and O < I < n we have hn,m(k) < hn,,(k + ) + n - I - m.

PROOF. Notice first that h,m(k) = h,m,(k + n) - m for all k > 0. Moreover, the
function h increases at a sublinear rate (see Figure 5.1) so that, for p, q > 0, we have
hn,m(p + q) < h,m(p) + q. Letting p = k + I and q = n - 1, we obtain

hn,m(k) = hn,m(k + n)- m < h,m(k + ) + n- I- m,
which proves the lemma. ]

5.4 The Upper Bound

In this section we establish the other direction of the main theorem. We begin with
some general graph theoretical definitions.

Definition 5.4.1

* For every vertex v of a graph G, we let YG(V) denote the set of vertices adjacent
to v. We can extend this notation to sets: for all sets C of vertices YG(C) d=~
U EC-YG(v).

__ __
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* For every bipartite graph G, v(G) denotes the size of a maximum matching
of G.

* For every pair of positive integers L, R, a left totally ordered bipartite graph
of size (L, R) is a bipartite graph with bipartition C, Z, where 2 is a totally
ordered set of size L and R is a set of size R. We label 2 = {al,..., aL} so
that, ai < aj for every 1 < i < j < L. For every 2' C L2 and R' C R, the
subgraph induced by 2' and R' is a left totally ordered bipartite graph with
the total order on £ inducing the total order on 2'.

* Let G be a left totally ordered bipartite graph of size (L, R). For t = 1,..., L,
we let It(G) denote the left totally ordered subgraph of G induced by the
subsets {a,a 2 ,...,at_l} C 2 and 'yG(at) C R.

Let us justify quickly the notion of left total order. In this definition, we have in mind
that 2 represents the labels attached to the different times, and that R represents
the labels attached to the available processors. The times are naturally ordered.
The main argument used in the proof is to reduce an existing schedule to a shorter
one. In doing so, we in particular select a subsequence of times. Although these
times are not necessarily consecutive, they are still naturally ordered. The total
order on 2 is the precise notion formalizing the ordering structure characterizing
time.

Consider a finite schedule S = sl,...,st. In graph theoretic terms, it can be repre-
sented as a left totally ordered bipartite graph G with bipartition T = {1, 2,...,T}
and K/ = {1,2,...,p}. There is an edge between vertex t E T and vertex i E if
the processor i is selected at time t. The fact that, for all t, stl = n translates into
the fact that vertex t E T has degree n. For such a bipartite graph, the game of the
adversary consists in selecting one edge incident to each vertex t E T.

Observe that the adversary can kill the schedule at time t if it has already killed,
before time t, m of the n processors used at time t. It then kills another one at time
t and the system collapses. In terms of the graph G, there exists an adversary that
kills the schedule at time t if and only if the subgraph It(G) has a matching of size
m, i.e. v(It(G)) > m. Therefore, the set P that we now define represents the set of
integers L and R for which there exists a schedule that survives at time L, when R
processors are available.

Definition 5.4.2 Let L and R be two positive integers. (L, R) E B iff there exists
a left totally ordered bipartite graph G of size (L, R) with bipartition 2 and ?
satisfying the two following properties:
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1. All vertices in have degree exactly equal to n,

2. For every t = 1,..., Cl, all matchings in It,(G) have size at most equal to
m- 1, i.e. v(I,(G)) < f - 1.

The main tool used in the proof of Theorem 5.3.1 is the following duality result for
the maximum bipartite matching problem, known as Ore's Deficiency Theorem [45].
A simple proof of this theorem and related results can be found in [39].

Theorem 5.4.1 Let G be a bipartite graph with bipartition A and B. Then the size
v(G) of a maximum matching is given by the formula:

v(G) = min [B - C[ + I7G(C)I]. (5.1)
CCB

The following lemma is crucial for our proof.

Lemma 5.4.2 There are no positive integers L and R such that (L,R) E B and
such that L >- h,m(R).

PROOF. Working by contradiction, consider two positive integers L and R such
that (L, R) E and L > h,m,(R). We first show the existence of two integers L'
and R' such that L' < L, (L', R') E B and L' > h,m,(R').

Let £L = al, a2, ... , aL and 7R = {bl, b2, .. ., bR} be the bipartition of the graph G
whose existence is ensured by the hypothesis (L, R) E B.

We apply Theorem 5.4.1 to the graph IL(G) where we set A = al, a2,.. ., aL_ and
B = YG(aL). Let C denote a subset of B for which the minimum in (5.1.) is attained.
(C is possibly empty.) Define ' -L -({aL)} U y(G)(C)) and R' -f - C and let
L' and R' denote the cardinalities of C' and 2'. Hence, L' = L - 1 - IYIL(G)(C)I SO
that L' < L. Consider the bipartite subgraph G' of G induced by the set of vertices
C' U R'. In other words, in order to construct G' from G, we remove the set C U {aL}

of vertices and all vertices adjacent to some vertex in C. We have illustrated this
construction in Figure 5.2. In that specific example, n = 4, m = 3, L = 6 and
R = 7, while h4,3(7) = 5. One can show that C = {b5, b6, b7} and as a result G' is
the graph induced by the vertices {al, a2, a3, a4, b, b, b3, b4}. The graph G' has size
(L', R') = (4, 4).

We first show that (L', R') E B. Since the vertices in ' correspond to the vertices
of C - {aL} not connected to C, their degree in G' is also n. Furthermore, G', being
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Figure 5.2: An example of the construction of G' from G. The vertices in C are
darkened.
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a subgraph of G, inherits property 2 of Definition 5.4.2. Indeed, assume that there
is a vertex at, in G' such that I,(G') has a matching of size m. Let t be the label of
the corresponding vertex in graph G. Since the total order on ' is induced by the
total order on £, It,(G') is a subgraph of It(G). Therefore, It(G) would also have a
matching of size m, a contradiction.

Let us show that L' > hn,m(R'). The assumption (L, R) E B implies that m - 1 >
v(IL(G)). Using Theorem 5.4.1 and the fact that B = yG(L) has cardinality n, this
can be rewritten as

f - 1 > v(IL(G)) = B - C| + I-IL(G)(C)
= n- ICI + 7IL(G)(C)I. (5.2)

Since C C B C R, we have that 0 < ICl < n < R and, thus, the hypotheses of
Lemma 5.3.3 are satisfied for k = R - CI and = ICl. Therefore, we derive from
the lemma that

hn,m(R') = hn,m(R -ICI) < hn,(R) + n - ICI - f.

Using (5.2), this implies that

hn,(R') < hn,m(R) -YI(G)(C)I - 1.

By assumption, L is strictly greater than hn,m(R), implying

hn,m(R') < L - 1 - IYI(G)(C)I

But the right-hand-side of this inequality is precisely L', implying that L' > hn,m(R').

We have therefore established that for all integers L and R such that (L, R) E B
and L > h,m(R), there exists two integers L' and R' such that L' < L, (L', R') E B
and L' > hn,m(R'). Among all such pairs (L, R), we select the pair for which L is
minimum. By the result that we just established, we obtain a pair (L', R') such that
(L', R') E B and L' < L. This contradicts the minimality of L.

Lemma 5.4.3
top, < hn,.m(p)

PROOF. By assumption, (top,,, N) E B. Hence this result is a direct consequence of
Lemma 5.4.2
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This Lemma along with Lemma 5.3.2 proves Theorem 5.3.1.

In the process of proving Lemma 5.3.2 we proved that Srivia, is an optimum sched-
ule. On the other hand, the interpretation of the problem as a graph problem also
demonstrates that the adversary has a polynomial time algorithm for finding an op-
timum killing sequence for each schedule S. When provided with S, the adversary
needs only to compute a polynomial number (actually fewer than p) of maximum bi-
partite matchings, for which well known polynomial algorithms exist (for the fastest
known, see [31]).

5.5 Extensions

The problem solved in this chapter is a first step towards modeling complex resilient
systems and there are many interesting extensions. We mention only a few.

An interesting extension is to consider the case of a system built up of processors
of different types. For instance consider the case of a system built up of a total of
n processors, that is reconfigured at each time period and that needs at least gl
non-faulty processors of type 1 and at least g2 non-faulty processors of type 2 in
order to function satisfactorily. Assume also that these processors are drawn from
a pool Af of pi processors of type 1. and a pool Af2 of P2 processors of type 2, that
XA n. A2 = 0, that that there are no repairs. It is easy to see that the optimum
survival time topt is at least the survival time of every strategy for which the number
of processors of type 1 and type 2 is kept constant throughout. Hence:

topt > max min(hnln g (p),hn2,n2_92(P2))-
{- (n ,n2);n +n2=n}

It would be an interesting question whether top, is exactly equal to this value or very
close to it.

Extend the definition of a scheduler to represent a randomized scheduling protocol.
(Phrased in this context, the result presented in this chapter is only about deter-
ministic scheduling protocols.) A scheduler is called adversary-oblivious if it decides
the schedule independently of the choices fi, f2,... made by the adversary. An off-
line adversary is an adversary that has access to the knowledge of the full schedule
sl1, s2,... before deciding the full sequence sl, s2,. . Note that, by definition, off-line
adversaries make sense only with adversary-oblivious schedulers. By comparison, an
on-line adversary decides for each time t which processor ft to kill, without knowing
the future schedule: at each time t the adversary decides ft based on the sole knowl-
edge of sl,...,s, and of fl,..., ft_-. In this more general framework, the quantity



5.5. Extensions

we want to determine is

topt df maxmin E [T(S, A)]. (5.3)S A

For an adversary-oblivious, randomized scheduler, one can consider two cases based
on whether the adversary is on-line or off-line. As is easily seen, if the adversary is
off-line, randomness does not help in the design of optimal schedulers: introducing
randomness in the schedules cannot increase the survival time if the adversary gets
full knowledge of the schedule before committing to any of its choices. As a result,
the off-line version corresponds to the situation investigated in this chapter.

It is of interest to study the online version of Problem 5.3. On-line adversaries model
somewhat more accurately practical situations: faults naturally occur in an on-line
fashion and the role of the program designer is then to design a scheduler whose ex-
pected performance is optimum. We study this question for m = 1 in Chapter 7 and
provide in this case a characterization of the set of optimal randomized scheduling
policies.
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Chapter 6

Establishing the Optimality of a
Randomized Algorithm

Proving the precise optimality of a randomized algorithm solving a given problem
P is always a very difficult and technical enterprise and only very few such proofs
exist (see [25, 61]).

A first difficulty is to define an adequate probabilistic model for the analysis of
the randomized algorithms solving P. This model must take into account that, in
general, some choices are not in the control of the algorithm considered but, instead,
controlled by the adversary. It must also reckon with the fact that each randomized
algorithm uses different random coins and hence carries a different probabilistic
structure; nevertheless a common probabilistic structure has to be defined allowing
for the comparison of all the algorithms solving P. The few papers published so
far and dealing with lower bounds [25, 35, 33, 61] rarely address this issue. ([25]
introduces an ad-hoc model for the proof presented there.) The model presented in
Chapter 2 is, to our knowledge, the first to allow formal proofs of lower-bounds for
general randomized algorithms.

A second difficulty is that, for a given problem P, the set of randomized algorithms
is infinite in general and hence looking for an optimal randomized algorithm involves
doing a maximization over an infinite set.

We let f (r, A) denote the performance of a given randomized algorithm r when used
in conjunction with an adversary A. Examples of typical performances f(7r, A) are
the expected running time or the probability of "good termination" when the al-
gorithm 7r is used in conjunction with the adversary A. By changing changing if
necessary f(rr,A) into -f(r, A) we can always assume that the algorithms r are
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chosen so as to maximize the value f(r, A). The worst case performance of an algo-
rithm r is given by infA f(7r, A), and therefore the optimal worst case performance
is given by supr infA f (r, A).

As discussed in Chapter 2, the problem of analyzing an algorithm - and proving its
optimality - is best described in the language of game theory. (See also Section 8.3
for a presentation of the main notions of Game Theory.) We let Player(1) be the
entity selecting the algorithm (in short, the algorithm designer) and Player(2) be
the entity selecting the adversary (in short, the adversary designer). If Player(1)
selects the algorithm r and if Player(2) selects the adversary A, the game played
consists of the alternative actions of the algorithm and the adversary: Player(1)
takes all the actions as described by 7r until the first point where some choice has to
be resolved by the adversary; Player(2) then takes actions to resolve this choice as
described by A and Player(l) resumes action once the choice has been resolved...

Note that, by definition, an algorithm 7r is defined independently of a given adversary
.A. On the other hand, an adversary might seem to be defined only in terms of a given
algorithm: the adversary is by definition the entity that resolves all choices not in
the control of the algorithm considered. If the model allowed for such an asymmetry
between the notions of algorithm and adversary we could not speak of an adversary
independently of the algorithm it would be associated to. For reasons that will soon
be explained, it is critical for our method to model adversaries independently of any
specific algorithm. In this case the algorithm designer and the adversary designer
are two well defined players playing a zero sum non-cooperative game. The set of
strategies II and A are respectively the algorithms r and the adversaries A. The
rules governing the interaction of the two players during an execution of the game
are set by the description of the problem 'P.

A very delicate matter is the nature of the information about the system held by
either player when taking a step, and the formal way this information is taken into
account in the model. Generally, some information about the moves of either player
is conveyed onto the other player during the execution (i.e., during the game). A
player having a more precise knowledge of the state of the system is more capable to
act optimally toward its goal (maximizing or minimizing the performance function
f(r, A)). The proof of optimality of a player is therefore tantamount to proving
that, at each round, the player uses optimally the information available in order to
take its next move. This is in general a very difficult task for which no clear general
approach seems to exist. Nevertheless, using the concept of saddle point in game
theory allows us to derive a general proof strategy for proving the optimality of an
algorithm. We now present and discuss this methodology.
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If adversaries are each defined independently of any specific algorithm 7r, for every
adversary A we can consider the family (f(r, A)), obtained by letting 7r range over
the whole set of algorithms. Therefore, in this case, for every adversary A, the
quantity sup, f(ir, A) is well-defined.

By Lemma 8.2.2, for every algorithm ro and every adversary AO we have infA f(7ro, A)
< sup, f(7r, AO). Furthermore, this inequality is an equality only if 7r(, is an optimal
algorithm. This simple fact provides us with the following general proof methodol-
ogy to attempt to prove that a given algorithm 7ro is optimal.

1. Construct a I/A-structure modeling the interaction between Player(l)
and Player(2). (This means in particular that an adversary is defined
independently of the choice of any specific algorithm.)

2. Provide an adversary A40 such that infA f(7o, A) = sup, f(7r. A 0).

By Proposition 8.2.3, the existence of a pair (ro, A4) realizing the equality infA f(ro,
A) = sup, f(r,0Ao) occurs if and only if max, infA f(r, A) = minA sup, f(r, A).

(This equality succinctly expresses the three following facts. 1) sup,, infA f(ir,4) =
infA sup, f(7r, A). 2) A protocol 7r achieves the sup in sup, infA f(7r, A) i.e., sup, infA
f(7r, A) = max, infA f(7r, A). And 3) an adversary A achieves similarly the inf in
minA sup, f(7r, A) i.e., infA sup, f(ir, A) = minA sup,r f(r, A).)

To find an algorithm and prove its optimality using the previous methodology, we
are therefore led to model algorithms and adversaries in such a way that the equal-
ity sup,, infA f(7r, A) = infA sup, f(7r, A) holds. There exists two cases where this
happens:

Von Neumann: We assume that the set II of strategies of Player(l) is the set
of probability distributions on a given finite set I and that, similarly, the set
A of strategies of Player(2) is the set of probability distributions on a given
finite set J. When saying this, we actually abuse language and identify a
probability distribution with the procedure consisting in drawing an element
at random according to this probability distribution. Hence, by convention,
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for every 7r E II, the strategy 7r consists in drawing an element i of I at
random and according to the distribution 7r. Similarly, for every A E A, the
strategy A consists in drawing an element j of J at random and according
to the distribution A. For every (i, j) E I x J and every strategies 7r and A
resulting in the selection of i and j, a predetermined cost T(i,j) is incurred.
The performance f (r, A) is by assumption the expected cost E,,A[T] obtained
under the strategies r and A.

The game just described can be encoded as a matrix game: I and J are the
sets of pure strategies whereas II and A are the sets of mixed strategies of the
game. By Von Neumann's theorem, (see Theorem 8.3.2), max, minA f(r, A) =
minA max, f(7r, A). Recall once more that the finiteness of both I and J is
critical for this result.

Strong Byzantine: Assume that the rules of the game played between Player(l)
and Player(2) specify that, in every execution, Player(2) first learns explicitly
the strategy 7r chosen by Player( 1) before having to commit itself to any action.
(We could picture this by saying that, by convention, an execution begins with
Player(l) "sending a message" to Player(2) disclosing the strategy r under
use.) Hence, in this situation, a strategy A for Player(2) is actually a family
A = (A,), of strategies A,, one for every strategy r of Player(l). We say
that AA, is an adversary specially designed for 7r. Assume furthermore that the
performance function is such that, for every adversaries A and A', for every
algorithm 7r, if A, = A' then f(r,A) = f(7r,A'). This last property allows
us to extend the definition of f: for every algorithm 7r and every strategy a
specially designed for ir, we set f(r, a) = f(r, A) where A is any adversary
such that A, = a. Assume also that A is stable under reshuffling in the
following sense. Let (a(7r)),r be a family of specially designed adversaries, one
for every 7r E II. (Hence, by definition, for every r and 7r' in II, there exists
an adversary A and an adversary A' such that A, = a(7r) and A', = a(7r').
The adversaries A and A' are a priori different.) Then (a(r)),r is itself an
admissible adversary, i.e., an element of A.

The definition A = (A , ), immediately shows that an adversary A does not
depend on the choice of a specific algorithm. Hence the Strong Byzantine
setting verifies point 1 of our general methodology.

We now show that, in this setting, sup,r infA f(ir, A) = infA sup ,r f (r,A) and
that, therefore, an algorithm ro is optimal if and only if there exists an ad-
versary Ao such that infA f(ro, A) = sup , f(7r, Ao). This will show that the
Strong Byzantine setting is well suited for an implementation of our general
methodology.
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For every e > 0 and every 7r in H - the set of strategies of Player(l) - let
A,(E) be an adversary specially designed for r and such that

f (r, A (e)) < inf f (r, A) + .

The set A of adversaries being stable under reshuffling we can define an ad-
versary A(e) by A(e) = (A,(e)),. We have:

infsup f(r, A) < sup f(r, A())

= sup f (r, A,(e))
1r

< supinf f(Tr,A)+ .

The parameter E being arbitrary, this shows that infA sup,r f(r, A) < sup, infA
f(r, A). By Lemma 8.2.1 the converse inequality sup, infA f(ir, A) < infA sup,-
f(r, A) holds trivially. Hence sup, infA f(r, A) = infA sup, f(r,A) which
concludes the proof.

We present here an intuitive interpretation of this result.

Recall first that, as discussed in Page 207, in the expression sup, infA f(r, A),
Player(2) can be assumed to learn implicitly the strategy r chosen by Player( 1).
Symmetrically, in the expression infA sup,r f(ir, A), Player(1) learns implicitly
the strategy A chosen by Player(2). Furthermore, as discussed after Equa-
tion 8.4, Page 206, the strict inequality sup, infA f(r, A) < infA sup, f (r, A)
means precisely that the outcome of the game is different according to which
of the two players can thus learn its opponent's strategy.

If, by construction, Player(2) is informed explicitly of the strategy used by
Player(1), its knowledge is evidently unaffected by whether it furthermore
learns this fact implicitly (as in the expression sup, infa f(r, A)) or not (as
in the expression infA sup, f(r, A)). Let A be the strategy for Player(2)
informally described by "Wait for the disclosure of the strategy r selected
by Player(1). Then select an optimal strategy to be adopted for the rest of
the game." It is clear that A 0 is an optimal strategy for Player(2). Assume
that Player(2) plays optimally and adopts this strategy and consider the case
where Player(1) learns implicitly that Player(2) uses strategy Ao. We easily
see that this knowledge does not confer any advantage to Player(l): Player(1)
can only derive from it that, for every strategy r it elects, Player(2) chooses
a corresponding optimal strategy.



Chapter 6. Proving the Optimality of an Algorithm

This establishes that, when Player(2) is informed explicitly of the strategy
used by Player(l), Player(2) gains no additional advantage in learning im-
plicitly the strategy r used by Player(1); and that, in this case, Player(1)
gains similarly no advantage in being guaranteed that Player(2) uses its (op-
timal) strategy Ao. This shows that, when Player(2) is informed explicitly
of the strategy used by Player(l), the outcome of the game is not affected
when one or the other player learns implicitly its opponent's strategy. As ar-
gued at the beginning of this discussion, this means that sup, infA f(r, A) =
infA sup, f(r, A) for every Strong Byzantine game.

As a short aside and to illustrate the generality of our proof methodology we show
that the complicated proof of given in [25] falls in the framework of the Strong
Byzantine case of the methodology. (In [25], Graham and Yao consider the Byzan-
tine Generals problem with 3 processes, one of which is faulty.)

By assumption Player(2) knows the algorithm r selected by Player(1). (This point
is never stated explicitly in [25]: the authors of [25] just mention that they "have
incorporated the capability for faulty processes to collude, to spy on all commu-
nication lines and to wait for messages transmitted by non-faulty processes in the
current round to arrive before making decisions on their own messages." Neverthe-
less the strategies eaA, B and ac of Player(2) are described in terms of r.) Hence,
as discussed in page 128, a strategy A of Player(2) is actually a family (A,), and
does not depend on the choice of a specific r.

The performance function is defined to be

f(r, A) df P,A [good termination],

where P,,A,, is the probability on the set of executions induced by the algorithm
7r and the adversary A, specially designed for r and associated to A. The event
good termination is a special event defined in terms of the game studied in [25].
The definition of f(r, A) shows immediately that f(r, A) = f(r, A') if A, = A'.
Furthermore, the set A of adversaries considered in [25] is by assumption stable
under reshuffling. We are therefore in the Strong Byzantine setting of the general
methodology. We now summarize the proof presented in [25] and show that it follows
precisely our general methodology.

The proof of [25] is organized as follows. A specific algorithm r0 is first given

for which the quantity performance(ro) df infA f(ro, A) is easily derived.l A spe-
cific (but very complex) strategy Ao for Player(2) is then described. In order to

'This algorithm is actually called Ao in [25]. We use ro to be consistent with the rest of our
discussion.
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implement strategy Ao,2 Player(2) uses critically its knowledge of the strategy r
used by Player(l): at every point of the game (i.e., of the execution) Player(2)
selects its next move by emulating r under certain conditions. Working by in-
duction on the number of rounds of the algorithm r selected by Player(1), [25]
then shows that, for every 7r, f(7r,AO) < performance(7ro). This implies that
sup,, f(7r, Ao) < performance(7ro) df infA f(ro, A). By Lemma 8.2.2. the converse
inequality sup,r f(7r, A) > infA f(ro,A) is trivially true. Hence

sup f (r,.Ao) = inf f (ro, A),
r A

which establishes the second point of our general proof methodology and therefore
proves that r0 is optimal.

A natural question is whether the two previous settings, although different in form,
are truly different. In slightly more precise terms, the question is whether the
existence of a, proof of optimality of a given algorithm ro in one of the two settings
implies the existence of a proof of optimality of 7ro in the other setting.

The following argument tends to suggest a similarity between the two settings. (At
least when the performance function f(ir, A) is equal to the expected value E,,A[T] of
a random variable T: recall that the Von Neumann setting requires this condition.)

Let (G, HII, A) be a game3 between Player(l) and Player(2) with a performance
function f. Consider all the possible modifications of this game obtained by provid-
ing Player(2) during the execution of the game with some information about the
strategy 7r followed by Player(1). All these different games yield the same value
sup, infA f(ir, A), because, as discussed in Page 207, Player(2) can be assumed
to learn implicitly the complete strategy r in the expression sup,r infA f(r, A): re-
ceiving some complementary explicit information about 7r does not then raise its
knowledge. This shows that there is a whole spectrum of models for the adver-
sary and that to all of them is attached the same class of optimal algorithms. The
two. settings presented above, the "Von Neumann setting" and the "Strong Byzan-
tine setting", correspond to two extreme situations where Player(2) receives only a
bounded number of bits of information about 7r in the course of an execution, and
where it receives the complete description of 7r at the very beginning of the game.
The argument above seems to suggest that the two settings are equally good to
establish the optimality of a randomized algorithm.

2 More precisely, in order to implement A o ,,r, the adversary associated to Ao and specially de-
signed for r.

3See page 205 for a discussion on game theory.
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We now discuss two examples, the algorithm of [25], (again), and the scheduling
algorithm presented in Chapter 7. These examples reveal that the choice of the
setting actually influences greatly the proof of optimality of a randomized algorithm.

Consider first the scheduling problem considered in Chapter 7. The performance
function f(7r,A) considered is the expected value E,r,A[T] of a random variable T
called the survival-time. In this game, Player(2) does not know a priori the strategy
selected by Player(1). This is formally seen in the model presented in Section 7.2:
at each time t, the view of Player(2) contains the schedule sl,...,st previously
selected by Player(1) but contains no additional information about the algorithm
r that generated that schedule. We prove that all the algorithms in the set Progo

defined in page 151 are optimal. Our discussion above therefore shows that these
algorithms would similarly be optimal if Player(2) was endowed with the spying
capability and learned the strategy selected by Player(1) at the beginning of the
execution. Nevertheless, the proof that we present uses critically that Player(2)
does not have this capability: if Player(2) was modeled as knowing the algorithm
7r, our Lemma 7.3.2 would not be true and all the results of Section 7.6 would not
hold anymore.

We consider now the Byzantine Generals problem of [25] and show that, in contrast
to the previous example, both the Strong Byzantine setting and the Von Neumann
setting can be used to formalize the proof given by Graham and Yao.

The performance function f (r, A) considered in [25] is the probability of termination
with agreement on a correct value when Player(1) selects selects the algorithm r
and Player(2) plays according to the strategy A. A probability being a special
case of an expected value, the performance function f(r, A) is the expected value

E,r A[T] of some variable schema 4 T.

We argued on page 130 that Graham and Yao use the strong byzantine setting in
their proof: their Player(2) uses as a black box the algorithm 7r chosen by Player(1)
in order to generate its own outputs in the course of the execution. Nevertheless an
even more careful reading of their proof reveals that Player(2) does not need the
full knowledge of r but just needs to have access to finitely many values produced
by r. Hence we could consider a setting where, by convention, Player(1) would
provide Player(2) with those values: in that case Player(2) would need no additional
knowledge about 7r. As argued above on page 131, in this modified game - where
Player(1) gives some partial information about its strategy - the algorithm 7r0 of [25]
is still optimal. But we are now in the Von Neumann setting (when analyzing
algorithms terminating in finitely many rounds).

4The definition of a variable schema is given in Definition 2.4.1.
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We have thus argued that, by reducing the information transmitted to Player(2)
from the complete description of r to only finitely many bits of information we
could adapt the proof of [25] given in the Byzantine setting into one given in the
Von Neumann setting. We could go further and consider the case where Player(1)
does not cooperate with Player(2) and provides Player(2) with no information about
its strategy (except for what can be "naturally" deduced from an execution). The
discussion given above on page 130 shows as before that the algorithm r0 of [25] is
still optimal. Nevertheless, in this case, the proof of [25] does not apply and it is
not clear at all how a direct proof would then proceed.

These two examples show that the choice of setting is far from innocent and influ-
ences greatly the proof of optimality of a randomized algorithm. We present in the
next theorem a result establishing formally that the two settings are in some cases
incompatible.

Theorem 6.0.1 Let P be a problem, let II be the set of randomized algorithms
solving P ad A be the set of adversaries. Assume that II contains more then
one element. Assume also the interaction between the two players modeled to allow
Player(2) to know the algorithm r under use. Then the Von Neumann setting cannot
be used to model the interaction between Player(1) and Player(2).

PROOF. Note first that the Von Neumann setting applies only if the sets II and
A of strategies contain all the convex combinations of their elements: for every
strategies 7rl and r 2 in H, for every non-negative numbers al and a 2 summing to
one, al1 rl+a 2 r2 is also in II. (Recall that, by definition, in the Von Neumann setting,
the strategies rl and it2 are probability distributions so that the linear combinations
al 1 1 + a 2 7r2 are well defined.) Hence, in the case where the Von Neumann setting
applies, the set II is either a singleton or an infinite set. (The case where II is
a singleton is a degenerate case where Player(1) has only one strategy, which is
trivially optimal.5 )

Also, in the case where the Von Neumann setting applies, a single probability space
(Q, ) can be used to analyze the probabilistic behavior of all the pairs (r, A) of
algorithm and adversary. This probability space can be chosen to be the product
space fQ = I x J endowed with its complete a-field 5 = 2: Q and g are both finite.

In the general case, we saw in Chapter 2 that the construction of an adequate
probabilistic structure is more complicated and yields a possibly different space
(Q,,A, 9,,A) for every pair (r, A). Consider the case, where, as when the Von Neu-
mann setting applies, a single space (Q, 5) is used for all the pairs (r, A). The sample

5Remember that all this discussion is geared at finding an optimal algorithm!
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space Q2 must contain a different element w for each possible execution i.e., for each
sequence of actions (act, act,, act3,...) arising from the game played by Player(l)
and Player(2).

Assume the interaction between Player( 1) and Player(2) modeled to allow Player(2)
to know the algorithm r under use. Therefore, by assumption, in every execu-
tion, there must be a move (or a sequence of moves), specific to r, undertaken by
Player(l), and informing Player(2) of the strategy r chosen.

Working by contradiction, assume that we could use the Von Neumann setting to
model the game between Player(1) and Player(2). This means that the set II can
be represented as a set of probability distributions on a given finite set I, and that,
similarly, the set A can be represented as a set of probability distributions on a
given finite set J (and that the performance f(r, A) is the expected value E,,A[T]
of a random variable T). In that case the sample space Q is equal to I x J and is
therefore finite.

On the other hand, as discussed above, in that case, the set II must be infinite.
As in each execution Player(1) informs Player(2) of its strategy r, the set of dif-
ferent executions must therefore also be infinite. This implies that Q is infinite, a
contradiction. O
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Chapter 7

An Optimal Randomized
Algorithm

In this chapter we consider the scheduling problem studied in Chapter 5 but al-
low algorithms to use randomness. The terms protocol and algorithm are synony-
mous but for notational emphasis we favor here the use of protocol: the notations
H, r, P,, Pgenerating will refer to protocols whereas the notations A, A, PA, Agen-
erating will refer to adversaries.

Using the general model presented in Chapter 2 we construct a 1/A-structure asso-
ciated to the scheduling problem. This allows us to characterize very precisely the
optimization problem. We provide a specific randomized protocol and and give a
completely formal proof of its optimality.

This proof is to our knowledge the first completely formal proof of optimality of
a randomized algorithm.' This chapter should therefore illuminate the power and
relevance of the model presented in Chapter 2.

7.1 The Scheduling Problem

7.1.1 Description of the problem

We recall quickly here the setting of the problem. m, n and p are three non-negative
integers such that 1 < m < n < p.

1The proof given by Graham and Yao in [25] still needs some fine tuning...
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* p is the total number of processors available.

* n is the number of processors that are necessary to configure the system: at
each time n processors are in operation.

* We assume that a processor can become faulty only when in operation and
that faults occur one at a time. We also assume that no repairs are available.
m is the resiliency parameter of the system: the system functions as long as
the set of n processors selected does not include more then m faulty processors.
The system crashes as soon as the set of n processors currently in use includes
at least m + 1 faulty processors.

We define the discrete time t of an execution to be the execution point at which the
t-th fault occurs. In the sequel, we write time instead of discrete time.

We consider the blind situation where, during an execution, the scheduler is informed
of the occurrence of a fault whenever one occurs, but does not get any additional
information about the location of this fault. Upon notification of a fault the sched-
uler reconfigures the system. We let sl denote the set of n elements selected for
the first time and, for t > 2, we let s denote the set of n elements selected after
report of fault t - 1 (i.e., after time t - 1). We also let fi, (fi E si), denote the
location of the first fault and generally we let f,, (f, E s,), denote the location
of the t-th fault. For the sake of modeling we say that the sequence f, f 2,..., is
decided by an entity called the adversary. The purpose of this work is to find a
scheduling protocol guarantying the best expected survival time against worst case,
on-line adversaries. This means that, when selecting the t-th location of fault ft,
the adversary "knows" the whole past sl, fi, S2, f2,..., St. We can equivalently say
that, for each t, the adversary "receives the information" of what the choice st of the
scheduling protocol is before deciding what the next fault is. Note that, by contrast,
expressed in this language of on-line information, the assumption that the protocol
is blind means that, for each t, the scheduling protocol "receives no information"
about the choices previously made by the adversary before deciding itself what the
set st is. We will provide in Section 7.2 a formal setting allowing to interpret these
notions of knowledge.

7.1.2 Interpretation using Game Theory

The purpose of this section is to present some intuition for the formal model pre-
sented in Section 7.2. Some notions as the notion of actions, internal and external,
that we introduce in the course of the discussion are not presented formally but
should be clear from the context.

136



7.1. The Scheduling Problem

Following the methodology outlined in Chapters 2 and 6 we describe the scheduling
problem presented in Section 7.1.1 as a game played between two players Player(1)
and Player(2). We will refer to this game as the "scheduling game". In this setting,
a protocol is a strategy of Player(1) and an adversary is a strategy of Player(2):
Player(l) is called the protocol-designer and Player(2) is called the adversary-
dlesigner. The game played by the two players follows the rules of the scheduling
problem described in Section 7.1.1: Player(1) plays first, chooses s and informs
Player(2) of its decision. Player(2) then plays and selects fi in sl. No informa-
tion is conveyed from Player(2) to Player(1). More generally, in the t-th round,
Player(1) selects a set st and informs Player(2) of its choice; Player(2) then plays
and selects an element f in st. We adopt the model where Player(2) does not know
explicitly the strategy r followed by Player(1). 2 (In the model where Player(2)
knows explicitly the strategy r followed by Player(1), Player(1) "sends a message"
informing Player(2) of the strategy selected by Player(1).)

As discussed in Chapter 6, Page 134, for every protocol 7r and for every adver-
sary A the sample space Q must contain a different w for each possible execution
i.e., for each sequence of actions (actl, act2, act3,...) undertaken in the game played
by Player(1) and Player(2) when following the rules of the scheduling game. Some
care has to be devoted to characterize the actions that we here consider. A specific
protocol (or adversary) can be implemented in various ways, each of them having
specific internal actions. Nevertheless, internal actions are irrelevant for the per-
formance analysis of a protocol: the performance analysis of a protocol is solely
measured in terms of its external actions, i.e., the specific actions it undertakes as
prescribed by the rules of the game. In a figurative sense, we treat a protocol (resp.
an adversary) as a black box and only analyze its external actions.

In our scheduling game and in the model where Player(2) does not know the strategy
7r followed by Player(1), the external actions undertaken by Player(l) are the suc-
cessive choices of a set st and communications to Player(2) of the choice last made.
To simplify the discussion we will omit explicit reference of the communication be-
tween Player(1) and Player(2) and implicitly assume that this communication is
systematically (and instantaneously) performed at each selection of a set st. Simi-
larly, the external actions undertaken by Player(2) are the successive choices of an
element f, in the set st last selected by Player(1). To simplify further the discus-
sion we will abuse language and speak of the actions st and ft in place of "choice
of st" and "choice of ft". The assumption m < p clearly implies that the system
cannot survive more then p faults. We can therefore restrict our analysis to the

2See Section 8.3 and Chapter 6 for a presentation of the notions of explicit/implicit knowledge.
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times t = 1,... ,p. From this discussion we deduce that the sample space

S {(s, fi ,, spIfp); st E P (p), ft st, 1 < t < p}

is big enough for the probabilistic analysis.

This definition is in conformity with the general construction given on page 41 of of
Chapter 2. For every protocol r and every adversary A we defined there

Q,.A = {w; w is a (,A)-execution},

where
w = a (s 1 , xl, y) a2 ( 2, 2 , Y2) a3 (S3,3, Y 3) ...

Player(2) Player(l) Player(2)

The discussion given on page 42 shows that, for every t, (st, xt, Yt) is a deterministic
function of al,..., at so that, from a probabilistic point of view, an execution can
equivalently be defined to be the sequence al, a2 ,... This is the definition adopted
in this chapter.

We have so far informally defined protocols and adversaries to be the strategies of
Player(l) and Player(2), respectively. We now discuss how these notions can be
formalized, beginning with the notion of adversary. Our construction is a direct
application of the general construction given in Chapter 2.

We define an adversary to be a family of probability distributions (Qv)vEv, one
for each v in V: V is the set of all the possible views that Player(2) can have of
the system at any time of the game i.e., at any time of the execution. (We will

make this more explicit in Section 7.2.) For every element f, the quantity Q,(f)
represents the probability that Player(2) chooses f if its view of the system is v.

Note that, according to the general presentation made in Chapter 2, we should define
an adversary to be a family of probability spaces (Q,, , P,),Ev. Nevertheless we
can take all the measurable spaces (,,QG) to be equal to ({1,..., N},2 1 . N}).

This allows us to omit mentioning (,,, G) in the definition of the adversary.

Note that a family (fv)vEv, i.e., the choice of an element f for each view v in V,
corresponds to a decision tree of Player(2).3 As the number of rounds of a game is
bounded and as, at each round, the number of different actions of both players is
also bounded, the number of decision trees of Player(2) is similarly bounded. In this
case it is easy to see that the set of strategies of Player(2), i.e., the set of families

3Actually a decision tree corresponds to a "weeded out" family (fv),ev, where V' is a maximal
subset of V having the property that each view v in V' is compatible with the choices f, made
previously by the player. Nevertheless, the extension to the set of all views is inconsequential and
we adopt for simplification this characterization of a decision tree.
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(Qv)Ev, is in one-to-one correspondence with the set of probability distributions
on decision trees.

We could therefore equivalently define an adversary to be a probability distribution
on the set of decision trees (of Player(2)). We say that the definition in terms of a
family (Q,),Ev adopts the local point of view whereas the definition in terms of a
decision tree adopts the global point of view. Let us emphasize that the equivalence
of these two points of view depends on the finiteness of the number of decision trees.4

Following the same model for Player(1) we could define a protocol to be a family
(Pu)uEU of probability distributions, one for each possible view u that Player(l) can
have of the system at any time of the game.5 Nevertheless, as by assumption the
protocol receives no information from the adversary, we find it easier to adapt the
global point of view: in this case a decision tree (of Player(1)) is simply a sequence
(s, ... , sp) in Pn(p). We therefore define a protocol to be a probability distribution
on Pn(p).

Note that the distinction between protocol and protocol-designer (resp. between
adversary and adversary-designer) is often not kept and we refer to properties of
the protocol (resp. the adversary) that should be more properly attributed to the
protocol-designer (resp. the adversary-designer). A case where both points of views
are equally valid is when we refer to the decisions done by the protocol or by the
protocol-designer: the protocol is the strategy used by the protocol-designer for its
decision making. By contrast, when speaking of "the knowledge held by the adver-
sary" or of "the information received by the adversary" we should more correctly
speak of the knowledge held by the adversary-designer: by definition, an adversary
A is a family (Q,), of probability distributions which receives no information. On
the other hand, Player(2), the adversary-designer, does receive some information
during an execution and uses this information as prescribed by its strategy A.

4This duality is well known, but not everyone realizes the caveat about finiteness. For instance
Hart et al. say in [29] and we quote: "There are two main ways of introducing randomizations ...
The first consists of a random choice of the next process at each node of the execution tree ... The
second way consists of taking a probability distribution over the set of deterministic [executions]
(i.e., make all the random decisions a priori.) ... It is easy to see that the first case (independent
randomization at each decision node) is a special case of the second one (by doing all randomizations
at the start!)" Note though that, in the case of infinite executions, it is not trivial to convert "the
first way" into "the second way". This is actually the heart of the problem in the construction of
the probability distribution PA given on page 41.

5As previously for the adversary, note that, according to the general presentation made in
Chapter 2, we should actually define a protocol to be a family of probability spaces (,, ,, P,)uu.s
Nevertheless we can take all the measurable spaces (u, u) to be equal to (P(p). 2 Pn(P)}). This
allows us to omit mentioning (u {u) in the definition of the adversary.
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As is established in Chapter 2, a given strategy r of Player(l) and a given strategy A
of Player(2) define a unique probability distribution P,,A on the set Q of executions.
We will give a precise characterization of P,,A in Section 7.2. We will also define

there formally the random variable T representing the survival time. With these
notions, the optimal expected survival time achievable against every adversary is

sup inf E,,A[T] .
7r A

Note that we adopt here the Von Neumann setting described in Chapter 6: for each
of the two players the set of pure strategies is the finite set of decision trees of that
player. Hence, by Von Neumann's theorem, (see Theorem 8.3.2),

sup inf E,,A [T] = inf sup E,,A [T],
r A A 7r

and the general proof methodology described in Chapter 6, Page 127, applies. Our
proof will follow this methodology.

The rest of the chapter is organized as follows. In Section 7.2 we formalize the
previous discussion and construct the probabilistic model used in the subsequent
sections. In Section 7.3 we define for every ar and A two pseudo-probability dis-
tributions P, and PA which play a crucial role in the proof. (The denomination
"pseudo-probability distribution" refers to the fact that P, and PA are not prob-
ability distributions but that, as is asserted in Lemma 7.3.4, some "conditional"
variants of them are well defined probability distributions.) Section 7.4 describes
a class Prot(Progo) of protocols Ir0 and an adversary Ao. The main result of this
chapter which is presented in Theorem 7.4.6 asserts that 7r0 and Ao verify point 2 of
the methodology given in Page 127, and hence that every protocol r0 Prot(Progo)
is optimal:

sup E,,Ao[T] = E,,AO [T] = inf E,A[T].
7r A

The proof of this theorem is the object of the rest of the chapter. Section 7.5 presents
some random variables that are fundamental for the proof. Section 7.6 establishes
that sup 1 E,,A[T] = E,o,Ao [T]. Similarly, Section 7.7 establishes in essence that
infA E,.,A[T] = ETO,A[T].
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7.2 The Probabilistic Model

We formalize here 1) the notions of protocol and adversary and 2) the probability
spaces that will be used in the subsequent analyses. Recall that a protocol is a
strategy of Player(l) and that, similarly, an adversary is a strategy of Player(2).

For every t, 1 < t < p , a sequence a = (s1,s2,...,st) in P,(p) t is called a t-schedule
and a sequence < = (f, ... , fp) of elements of [p] is called a t-fault-sequence. A
t-fault-sequence 45 is adapted to a schedule a if fj E sj fo- all j, 1 < j < t, and if, for
all j, the condition sj g {fi,...,fj-i) implies that fj E sj - (fi,...,fj-)}.

A t-execution is an alternating sequence w = (si, fl, s2, f2, . , St, ft) obtained from
a t-schedule (si,.. ., t) and a t-fault-sequence (fi,.. ., ft) adapted to (s1 ,.. ., st). A
t-odd execution is a sequence w = (sl, f, S2, f2,..., st) obtained fron a t-schedule
( sl, ... st) and a t - 1-fault-sequence (fi,..., ft_) adapted to (Si,...,St-1). For
simplicity, we use the term execution in place of p-execution.

We define the sample space Q to be the set of all executions: Q df {(W; execution}.
We endow Q with its discrete a-field G df 2.

We now define various random variable on (, ). Throughout, random variables
are denoted by upper-case and their realizations by lower-case. For all t, 1 <
t < p, St and Ft are defined by St(w) = st, and Ft(w) = ft. This allows us to
define the derived random variables St = (Si,...,St), Ft = (F1,...,Ft) and St =

(S 1, F,.. .,Ft - ,S t). St, Ft, and £t are respectively the random t-schedule, the
random t-fault sequence and the random t-odd-execution produced up to time t.

We also let ait d- (S1, F,...,S t,Ft) and G df (S 1,Fl,...,St+ 1) be the a-fields

of events "happening no later" then the selection of ft and st+l, respectively.

We now define protocols and adversaries. As recalled in the previous section, the
protocols and the adversaries are the strategies of Player(1) and Player(2) taking
random steps in turn and sending information to the other player at the end of each
step. The probability distribution used for this step depends on the view of the
system held by the player. In our specific problem, Player(2) is informed of all the
moves of Player(1), (but nothing else about the protocol 7r selected by Player(1)),
whereas Player(1) learns nothing from and about Player(2). We adopt the local
point of view to describe an adversary and the global point of view to describe a
protocol.'

Hence, an adversary A is a family of probability distributions (Qv)vEv on [p], one
for each t, 1 : t < p and each t-odd-execution v = (sl,fi,..., ftl, st) and such

6See page 139 for a definition of the local and of the global point of views.
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that, with Qv-probability one, (fl,..., f) is adapted to (sl,...,s,t).

A scheduling protocol 7r is a probability distribution on P,(p)P.

As is established in Section 2.4, there is a unique and well defined probability dis-
tribution P,,,A induced on the set of executions by a given protocol r and a given
adversary A. For the sake of illustration, we give an explicit characterization of Pw,A
in the next proposition.

Proposition 7.2.1 Let r and A = (Qv)vEv be a protocol and an adversary as
defined above. Then there is a unique and well defined probability distribution P,,A
on (, G) satisfying the following two properties:

i P,A [S = ] = .

ii For every t, 1 < t p, every t-execution v = (sl,fl,...,ft-1, t), and every
(p-t)-schedule (St+,..., sp) such that r(sl,...,sp) > 0 and Q,,(fl)Q,lfs,,(f2)
Qa1f,2 ... t-(ft- 1 ) > 0, we have:

PT,A [Ft = I t =v, (St+,...Sp) = (t+1,...,s)]= Q.

Property i formalizes the fact that the protocol receives no on-line information
and makes its decisions in isolation. Property ii formalizes the fact that the ad-
versary is on-line and selects Ft based on the sole knowledge of the past odd-
execution Et, independently of the schedule (St+l,..., Sp) selected for subsequent
times. Using Convention 8.1.1 we extend the definition of the conditional probabil-

ity in ii and set P,,A [Ft = I t = v, (St+,...,S) = (s+,..., ,)] = 0 whenever

Q,,(f)QJ,1f,(f 2)Qf,12.. ,_ (f t-1) = 0.

PROOF. Let w = (sl,fl,82,f2,...,sp,fp) be a generic execution in Q and, for
every t, let wt = (s,fl,...,st) be the associated t-odd-execution. By successive
conditioning we can write

P,r,A(W) = P,,A[SP = (s,...,sP)] PA[F1 = fl 1 = 1,2,p = (2,...,s)] ...

... P.,A [Fp-1 = fp- 1 = -p-1, S p = Sp] P,A [Fp = f I P = WP]

so that we see that the conditions i and ii imply that, if it exists, P,,A(W) must be
equal to

p

Pr,A(W) = 7r[(S,.. .,SP)] I Qw,(ft)
t=l
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We easily check that P,r,A thus defined is additive and that P,,A(Q) = 1. As is
finite, the a-additivity of P,,A holds trivially. Hence P,,A is a well defined probability
measure. O

We have therefore defined the family of probability distributions (P,,A),,A on the
same space (, ). In situations different from our scheduling problem, such a
modeling is in general not possible and a different probability space (,,A, ,A)
must be associated to each couple (r, A). Also, in the case of infinite executions,
the construction of a measure P,,A is a non-trivial probability problem requiring the
use of an extension theorem (e.g., Kolmogorov's extension theorem). We presented
the general construction in Section 2.4 of Chapter 2 when the the coins of both
players have at most countably many outcomes.

We can now set up formally the optimization problem presented in Section 7.1.
The survival time is defined to be the random variable T = max{t; Vu < t, ISu n
{F,..., Fu }I < m}. For every protocol 7r, let t(r) = infA E,,A[T] be the worst case
performance of r. We let

top, = sup t(r) = sup inf E,,A[T].
T ' A
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7.3 Some specific probability results

7.3.1 A formal interpretation of the on-line knowledge of the ad-
versary

We begin this section by presenting a lemma expressing that, for every protocol and
every adversary, conditioned on the past, the selection Ft made by the adversary at
time t is independent of the choices St+l,..., Sp made for ensuing times by the pro-
tocol. This shows that the definitions of a protocol and of an adversary given in the
previous section formalize accurately the on-line nature of the information received
by the adversary: eventhough a protocol decides the whole schedule sl,...,s at
the beginning of the execution, the adversary does not get to see each decision st
before time t. (As mentioned in Section 7.1.2, Page 139, a more correct statement
is "the adversary-designer does not get to see each decision st before time t".)

Lemma 7.3.1 Let r be a protocol, A be an adversary, t, t < p - 1, be a time and v
be a t-odd-execution such that Pr,A[[t = v] > O. Then the random variables Ft and
St+l p are independent with respect to the measure P,,A when conditioned on t = v.

PROOF. This is a direct consequence of Proposition 7.2.1: by Condition bf ii, for
every p-(t + 1)-schedule a, for all v and or,

P.,A[Ft = =v, S+ , = a] = P,,A [Ft = *1t = v]

This expresses exactly the independence of Ft and St+1,p conditioned on t = v. 

7.3.2 The Notations P, and PA

The next two definitions Definition 7.3.1 and Definition 7.3.2 introduce the family
of protocols that select with non-zero probability a given t-schedule, and the family
of adversaries that select with non-zero probability a given t-fault sequence. The as-
sociated lemmas, Lemma 7.3.2 and Lemma 7.3.3 introduce and justify the notations
P, and PA. These two lemmas will be fundamental in our proofs for the following
reasons. We will introduce one (family of) algorithm ir0 and an adversary A. In
one part of the proof we will establish that ro is optimal against Ao. Throughout
this part we will consider only the adversary Ao. Lemma 7.3.2 will allow us to
consider the unique expression PA instead of the family (PT,Ao),Er. This will make
the analysis much simpler as the optimization over 7r will not involve the probability
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measure. Symmetrically, in the second part of the proof we will in essence estab-
lish that A 0 is optimal against ro. In this part we will need to consider only the
expression Po instead of the family (Pr,A)AEA.

Definition 7.3.1 Let (sl,..., st) be some t-schedule. Then

Pgenercating(sl, . . ., st) '-f{7r; 3(St+l,...,sp), 7r[(,s ,.,sp)] > 0} 

As just mentioned, the next Lemma provides the fundamental technical tool that will
allow us to handle conveniently all the probabilistic expressions required in the proof
of Lemma 7.4.7 - the proof that r0o is optimal against AO7. Similarly, Lemma 7.3.3
will provide the probabilistic tool required in the proof of Lemma 7.4.8 - the proof
that Ao is optimal against ro .

Lemma 7.3.2 Let t, 1 < t < N and let a = (sl,..., St) be a t-schedule. Let E Gt.
Then, for every adversary A,

P,,A [ I St = a]

is independent of the protocol r E Pgenerating(a). We let

PA [ I St = a]

denote this common value.

Following Convention 8.1.1, P,,A [ I St = a] is set to zero if 7r ¢ Pgenerating(a).

PROOF. Let; r be any protocol in Pgenerating(a) and let A = (Q,),,v be a given
adversary. Recall that, by definition, (see page 141), t = (S 1,F 1,...,St,Ft).
Thus, an event is in Gt if and only if there exists a boolean random variable 4
depending on w only through the random variables (S1, Fl,..., St, Ft), (i.e., O(w) =
~,0(Sl(w),..., Ft(w)) for some real random variable b), such that = {w ; +(w) = 1}.
We have:

P,rA [ I St = a

= E,A [$St = a]

7 Both ro and Ao are defined in Section 7.4.
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= ( P,,,A [F1 = l I St = a] P,A [F2 = f I St = a,F1 = fi] 
11 f2

* : --*P-., [Ft = ft St = J F = flu , Ft- = ft-l]) '(sf *... Stft)

= E Q5 [fE] E Q5 ,lS 2 [fe] ... QSSl,·,S, [ft] '(Sli fi, St, ft)
fi f2 ft

This last expression is independent of the protocol 7r, as needed. O

The following definition describes the set of adversaries that generate with non zero
probability a given fault sequence. Note that, by Lemma 7.3.2, PA[Ft = I St = a]
is itself well-defined.

Definition 7.3.2 Let a be a t-schedule, and a t-fault sequence adapted to a. Then

Agenerating () df {A; PA [Yt = St = a] > } -

Lemma 7.3.3 Let t, 1 < t < p, let a be a t-schedule, be a t-fault sequence adapted
to a and Let a be an event in 9'. Then, for every protocol r E Pgenerating(a), the
expression

P,,A [ I St = a, Ft = Y (]

is independent of the adversary A E Agenerating,(q). We let P,1 [4 St = a, Ft = q)]
denote this common value.

PROOF. The proof closely follows that of Lemma 7.3.2. We write a = (sl,...,st)
and b = (fi,..., ft). By assumption, there exists a boolean random variable t de-
pending on w only through the random variables (S1, F1, ... , St, Ft, St+1), (i.e., +(w) =
b(S~,Fj,...,St,Ft,St+i)(w)) for some real random variable ), such that =
{w ; (w) = 1}. Let r be a protocol in Pgenerating(a) and A = (Qv)vev be
an adversary in Agenerating,(q). We let Pr [St+l = st+ I St = a] denote the con-
ditional probability (,, r[(at, st+l, a)])/(E,, r[(at, a')]) where the first summation
is over all p - (t + 1)-schedules a and the second over all p - t-schedules a'. Then:

P,A [ | St = a, Ft = ]

= E,A[[ I St = ,Ft= ]

= Pr [ St+l = st+ I St = a] '(s, f ... ,st, ft,st+l)
3t+l

This last expression is independent of the adversary A used and this concludes the
proof. °
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Lemma 7.3.4 Let t be a time, 1 < t < p. Let a be a t-schedule and A be an adver-
sary. Then P[ I St = a] is a probability distribution on (, Gt). Similarly, if a is
a t-schedule, X a t-fault sequence adapted to a and r a protocol in Pgenerating(a),
then P,[ . St = a, Ft = a] is a probability distribution on (, ').

PROOF. PA[ St = a] is defined on (Q,Gt) to be equal to P,,A[' St = a] for
any r E Pgenerating(a) and is therefore a well defined probability distribution (on
(,t)). Similarly, P,[ . I St = , t = q] is defined on (,i) to be equal to
P,,A [' I St = a, Ft = q] for any A e Agenerating,(O) and hence is a well defined
probability distribution on (, I). [

Note: In spite of its apparent simplicity, Lemma 7.3.2 answers a subtle point il-
lustrating the difference between implicit and explicit knowledge that we quickly
recall 8 .

In order to compute the optimal survival time top = sup,, infA E,A[T] we are led
to consider the performance values t(7r) = infA E,,A[T] associated to all protocols
7r. In the previous formula the infimum is taken over all adversaries for a given
7r. A common interpretation of this fact is that the optimal adversary "knows"
the protocol: this consideration entitled us to assume an off-line adversary in the
deterministic case. Hence, such an adversary is provided with:

* the on-line information of the past schedule. At every time t, we can picture
that an explicit message is relayed to the adversary to inform it of the set st
last selected by the protocol.

* the off-line information of the protocol r that A is associated with: this infor-
mation is implicitly provided to an optimal adversary.

These two notions of knowledge are very different, and Lemma 7.3.2 would not hold
if we assumed that the adversary was provided with the explicit knowledge of r
and was able to use this information in the selection of the elements F,...,Fp.
For instance, consider the case where p = 3, n = 2 and m = 1. Consider a greedy
adversary A, selecting at each time t a processor Ft so as to maximize the probability
that Ft is in St+l. Assume that sl = {1, 2}. Consider two different protocols 7rl and
Irt. Assume that protocol 7rl always selects 2 = {1,3} whereas r2 always selects
s = {2. 3}. If A knows the protocol it is associated with, A selects F = 1 with
probability one when associated with rl, and selects F = 2 with probability one

8These notions are presented in Page 207.
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when associated with r2. Hence, in this case, the probability

P,r,A [Fl = 1l S = {1,2}]

is not independent of the protocol r considered, even though the event {F1 = 1} is
clearly in the a-field GS.

Hence Lemma 7.3.2 would not be true, had we assumed, as in [25], that the ad-
versary "knew" the protocol. Recall that, as is argued in Page 131, this change of
model only affects the way the adversary is defined and interacts with the proto-
col. In particular, it does not affect the class of optimal protocols. Nevertheless, as
Lemma 7.3.2 is crucial for the proofs given in Section 7.6, our proof of optimality
would not carry over in the Strong Byzantine setting.

7.3.3 Applications of the definition of PA and of P,

Lemma 7.3.5 For all j and t, j < t, all t-schedules a and all adversaries A,
PA[Fj E I St = a] and PA[T > t I St = a] are well defined probabilities.
Similarly, if a is a t-schedule in .lt, a t-fault-sequence adapted to a and r a
protocol in Pgenerating(a), then P,[T > t + 1 St = a, Ft = q$] is a well defined
probability.

PROOF. The random variable Fj is clearly Gt-measurable for all j, 1 < j < t (by
definition of Gt!). Hence the first result is a simple application of Lemma 7.3.2. On
the other hand we can write

{T>t} = n{lSjn{FI, .. ,Fj < m}
j=1

= n{iSj n {F,-,Fj}l <m-1}.
j=1

For all j, the event {ISj n {F1,...,Fj_l}l < m- 1} is clearly in G7_- C G_ C gt-.
Hence {T > t} is also in Gt and Lemma 7.3.2 again shows that PA [T > t I St = a]
is a well defined probability. Similarly {T > t + 1} is in so that, by Lemma 7.3.3,
P, [ T > t + 1 St = a, .T = q5] is a well defined probability. [

The following lemma expresses that, conditioned on St- = ra, the events St = s
and T > t - 1 are independent with respect to the measure PA (i.e. with respect to
any measure P,A).
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Lemma 7.3.6 For every t, 2 < t < N, every t - 1-schedule a and every s E P,(p),

PA[T > t- 1 St = (a, s)] = PA [T > t- St- = a]

PROOF. Note first that, by Lemma 7.3.5, the quantities involved in the previous
equality are well defined.

PA [T > t- l = S- = ,= s]

t-=

=PA[ n S n {F,...,FUl}=0} sl=a,s=S]
u=l
t-1

PA [ s{[ n F,,.. .,FU}=0} I St=,St=s].
u=l

By Lemma 7.3.1, conditioned on St- = a, the random variables (F1 ,...,Ft_l)
and St are independent. Hence, conditioned on St_ = a, the events nt-=L {s n
{F1,. . .,F_} = 0} and {St = s} are similarly independent so that

t-1
PA[ {sU n{F1,...,FU }=0} St = ,St=s]

u=l

t-l

This establishes our claim. o

The following definition characterizes the schedules a which allow the system to
survive with non-zero probability.

Definition 7.3.3 Let a be a t-schedule such that sup,, P,,A [St = a, T > t] > O. We

then say that a is an A-feasible t-schedule and we denote this by:

0a e FeasA.

Remarks:

1. Using Convention 8.1.1 we see that a E FeasA if and only if sup, P,.A[T t I
St = a] > 0 i.e., if PA[T > t St = a] > .

2. We will provide in Corollary (7.6.2) a pure combinatorial characterization of
FeasAo for the adversary Ao defined in Definition 7.4.1, page 163.
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7.4 Description of a Randomized Scheduling Algorithm

For the rest of this chapter we restrict ourselves to the case m = 1, i.e., when the
system can sustain one fault but crashes as soon as at least two of the n processes
are faulty. We provide a family of protocols and prove their optimality.

7.4.1 Description of the Program

We formally defined a protocol to be a probability distribution on Pn(p)P. In place of
a single protocol 7ro we present here a family Progo of programs not only outputting
random schedules (S 1,...,Sp) in Pn(p)P but making also other, internal, random
draws. For the sake of clarity we distinguish between a program and the protocol
associated to it, i.e., between a program and the probability distribution of the
random schedule (S 1,..., Sp) that it generates. For every program prog in Progo we
let rprog denote the associated protocol. We also let Prot(Progo) denote the family
of protocols derived from Progo:

Prot(Progo) = {7rprog; prog E Progo}.

In the code describing Progo we use statements of the kind X := uniform(a; A) and
X := arbitrary(a; A). We call these statements randomized invocations. For
every set A and integer a, a < AI, the statement X := uniform(a; A) means that
the set X is chosen uniformly at random from Pa(A) i.e., from among all subsets of
A of size a. Similarly, for every set A and integer a, a < IAI, the statement X :=
arbitrary(a; A) means that the set X is chosen at random - but not necessarily
uniformly - from Pa(A). The probability distribution used for this random selection
is arbitrary and depends on the values returned on the past previous randomized
invocations done by the program. This means that, for every t, the probability
distribution used for the t + 1-st invocation can be written Pr1 ,. r,, where r,..., rt
are the t values returned by the first t randomized invocations.

Progo represents a family of programs, one for each choice of the probability distribu-
tions Pr,, ,, used at all the randomized invocations. (Recall though, by definition,
if the t + 1-st randomized invocation is X := uniform(a; A) then P, ... , rt U,.P(A)
for all r,..., rt.) We will not make these choices explicit and will show that all
programs prog in Progo are optimal.

We present the code describing Progo in the next figure and provide explanations
after it.
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Progo

Variables:
Co C [p]; initially [p]
Cj C [p], j = 1,... ,p; initially arbitrary
Sj E P(p), j = 1,..., p; initially arbitrary
S E Pn(p); initially arbitrary
I, I', J C [p]; initially arbitrary
K E [p]; initially arbitrary
o E N; initially n

Code:
01. fort= 1,..., p/nJ do:
02. St := arbitrary(n; Co)
03. Co :=Co - St
04. C, := St

05. for t = Lp/n + 1,...,p- n + do:
06. if t = Lp/nJ + 1 then:
07. St := Co
08. Co := 0
09. else St := 0

10.

11.

12.
13.
14.

15.
16.

17.

18.
19.
20.
21.
22.
2-3.

if Lj <a then:
a := Lt- lJ

I := arbitrary(p - n - t (t- 1); [t - 1])
J := I; I' := [t - 1] - I
while I 5 0 do :

K := arbitrary(l; I)
S := uniform(a + 1; CK)
St := St U (CK - S)
CK := S
I:= I- {fK}

while I' 54 0 do:
K := arbitrary(l; I')
S := uniform(a; CK)
St := St (CK - S)
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24. CK := S
25. I' := I' - {K}
26. Ct := St

27. if P- = a then
28. S := uniform(at + 1; Ct-1)
29. St := Ct-1 - S
30. Ct- := S
31. I' := arbitrary(a + 1; J U {t - 1})
32. J := (J u {t- 1))- rI'
33. while I' 0 do:
34. K := arbitrary(1; I')
35. S := uniform(a; CK)
36. St := St U (CK - S)
37. CK := S
38. I' := I'- {K}
39. Ct := St

7.4.2 A presentation of the ideas underlying Progo

We begin by presenting the purpose of the program variables used in Progo. At the
end of each round t:

1. St is the set of n elements selected by the protocol for round t.

2. Co represents the set of elements of [p] that have not been used in the first t
rounds.

3. For every j, 1 < j < t, Cj is the set of elements selected at time j - i.e., elements
in Si - and which have never been used in later rounds j + 1,j + 2,..., t -
i.e., which are in the complement (Sj+l U ... U St) of Sj+, U ... U St.

For reasons presented below, at the end of each round t, t > LeJ + 1, and for every
j, 1 < j < t - 1, Cj is either of size L t-] or of size LIJ + 1. To achieve this, at
each round t, t > L[J + 1, the program variable a is re-initialized to this value L - J
The program variables I, I' and J are used to distinguish and manipulate the two
sets {j E [1, t- 1]; ICj = a} and {j E [1, t- 1]; Cjj = a+ 1. The program variable
K is used to make some non-deterministic choices in the course of the execution.
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The following explanations will explain the code and bring some intuition behind
the choice of these numbers.

The idea of the code is to select for each round t the set St in a greedy fashion so
as to optimize the probability of surviving one more round, if faulty processors are
selected uniformly at random. For each t < I'J, the set Co of fresh elements has
size at least n at the beginning of round t and it is therefore possible to select St
as a subset of Co. This is accomplished in lines 01 through 04 of the code. As only
so far unselected elements are selected at each round t, we have C = Sj for every

< j < t < LJ.
In round LPJ + 1 the set Co is possibly non-empty at the beginning of the round, but
holds less then n elements. We select all its elements and allocate them to SLJ+1.
This is done in lines 06 through 08 of the code. From that point on, i.e., for the
completion of the selection of the set Sznlj+l as well as for the selection of later sets
St, we have to select elements that have been selected previously at least once. We
adopt the following simple strategy: we select elements from the sets Cj, 1 < j < t,
that have the biggest size until n elements have been selected. For every j, 1 < j < t,
by definition of Cj - as the set of elements selected in round j but never selected
afterwards - every element of Cj selected in round t must be removed from Cj during
this same round. Hence the strategy consists in transferring into St n elements from
the sets Cj that have the biggest size. Once this transfer is accomplished St is of
size n and we initialize Ct to be equal to S,.

At the point in round L[Pj + 1 when Co becomes finally empty, (in line 08), and when
the transfer strategy begins to be implemented, the sets C1,..., C[Lj are all of size
n. We can picture transferring elements away from sets Cj of biggest size as the
selective flow of resources away from big reservoirs: by doing so we maintain to parity
the level of all the reservoirs. In our case, as we are transferring discrete elements in
place of a fluid, the transfer strategy keeps the size of the sets Cj different by at most
one. Another consequence of the fact that elements are transferred from the sets Cj
into St is that, at the end of each round t, t > [iJ + 1, the sets C1, . . ., Ct_1, St are a
partition of the set [p] of all elements. Hence we are in a situation where p elements
are partitioned into t sets: on the one hand, a set St of n elements and, on the other
hand, t- 1 sets whose size differ by at most one. A computation (see Lemma 7.4.3)
shows that these sets must be either of size L J or of size L IJ + 1 and that the

number of sets of size [t-J + 1 is p - n - L - j (t - 1). The idea in the code is to use
these numbers and modify for every round t the sets C 1,..., Ct-2 , St-L determined
at the end of each round t - 1 to produce the partition Ci,..., Ctl, St that must
result in round t.
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By our previous argument. at the end of each round t - 1, the sets C 1,..., Ct-2 are
all of size at least -2J and St = Ct-1 is of size n. At the end of each round t,
these t - 1 sets must be modified and reduced to size L P- or L -' ] + 1. We need
to distinguish two cases according to whether [LP-l is less or equal to LP-2. In
the first case the code branches according to line 10, and lines 11 through 26 are
followed. In the second case the code branches according to line 27, and lines 28
through 39 are followed.

Consider the case where L[- < [t-2 In this case, every set Cj,1 < j < t - 1,
existing at the end of round t- 1 is of size at least [P-2J > LP-J + 1 and hence is big
enough to be reduced to either one of the two allowable sizes (t 1 or Lt- + 1)

at the end of round t. Consider now the case where L[-~ J = L W-J In this case the
sets Cj, 1 < j < t - 1, which are of the smaller size [ 7- at the end of round t - 1
cannot be reduced to the size L-nJ + 1 (= Lt-2 + 1) in the next round: only sets
being of the bigger size LP-'2 + 1 at the end of round t - 1 can give rise to sets of
the bigger size L t- J + 1 at the end of round t.

In the first case, we branch according to line 10 and select in line 12 an arbitrary
subset I of {1,. .. , t - 1} of size p - n - [L-RJ(t - 1): this set is the set of indices
describing which of the sets C1,..., Ct_1 will be the bigger sets at the end of round
t. We keep in the variable J a record of this selection (see line 13). Then, in lines 15
through 19 and 21 through 25 we transfer elements from the sets Cj into St, leaving
the sets Cj, 1 < j < t - 1, in their pre-decided size. We finally initialize Ct to the
value St once the selection of St is finished (see line 26). Let us emphasize that, at
the end of the round, J records the identity of the bigger sets Cj.

In the second case we branch according to line 27. In this case, at the beginning of
round t, the sets C1,..., Ct-2 are all of one of the two sizes l tP-J + 1 and [ t- ], and
J records the identity of the bigger sets Cj, 1 < j < t - 2. Also, at this point, Ct-1
is of size n. As all the sets C 1, . . ., Ct_ must be reduced to size at most L 1 J + 1,
we first transfer n - (lP-n + 1) elements from Ct-1 to St (see lines 28 through 30).
We finish the selection of St by selecting one element from each of [7t-l j + 1 sets
arbitrarily selected from J U {t - 1}. (The selection of the It-1J + 1 sets is done
in line 31. The transfer of the elements is done in lines 34 through 38.) As in the
previous case, we update J so as to record the identity of the bigger sets Cj at the
end of the round (see line 32) and initialize Ct with the value St (see line 39).
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We quickly discuss the choice of the probability distributions used in Progo. As
mentioned at the very beginning of our explanations, the idea of the code is to select
for each round t the set St in a greedy fashion so as to optimize the probability of
surviving one more round, if faulty processors are selected uniformly at random.
Let us call random adversary the adversary that selects the faulty processors in
this fashion. The main idea of the proof will be to prove that any r in Prog is
optimal against the random adversary and then to prove that, against any such
7r, no adversary can do better then the random adversary. As we will see, we
could replace all the uniform randomized invocations by arbitrary randomized
invocations and still obtain optimal protocols against the random adversary. The
reason is, (as we will see), that for every time t, the fact that the system is still
alive after the occurrence of the t-th fault means exactly that, for every j, j < t - 1,
the j-th fault; is in the set Cj. (This is where the condition m = 1 plays its role.)
Furthermore, if the system is still alive after the occurrence of the t-th fault and if
the adversary is the random adversary, all the elements of Cj are equally likely to be
faulty. This is due to the nature of the random adversary which, by definition, makes
its selections irrespectively of the identity of the elements chosen by the protocol.
Hence, for every N, if in round t + 1 the protocol is to select a given number N of
elements from one of the sets Cj, all the (ICI) choices are equally as good, as any
N elements of Cj have the same probability of all being not faulty.

But this does not hold for a general adversary. In effect, a general adversary can
differentiate between different elements of a given Cj when the protocol uses arbi-
trary distributions to make such selections. We show that the strategy according
to which, whenever selecting elements from a given set Cj, the protocol always uses
the uniform distribution, disallows the adversary such capabilities of differentiation.
This means that the use of uniform randomized invocations reduces the power of
any adversary to the one of the random adversary.

We use arbitrary randomized invocations to emphasize that for the other random-
ized invocations made by the protocol, the choice of the distribution is irrelevant
for the effectiveness of the protocol. For the simplicity of the exposition we let the
protocol make these choices. But we could easily extend our results and prove that
the programs in Progo would perform equally well if these choices were made by the
adversary.
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7.4.3 Invariants

For t = 1,..., Lp/nj and for every execution of a program in Progo, we define round
t to be the part of the execution corresponding to the t-th loop, between line 02
and line 04 of the program. Similarly, for t = Lp/nJ, . . , p - n + 1 and for every
execution of a program in Progo, we define round t to be the part of the execution
corresponding to the t-th loop, between line 06 and line 39 of the program.

Lemma 7.4.1 Progo satisfies the following invariants and properties valid at the
end of every round t, 1 < t < n - p + 1.

a. All invocations in round t of the commands arbitrary or uniform are licit,
i.e., a < Al for every invocation of arbitrary(a; A) and of uniform(a; A).

b. a is equal ton if t LPJ and equal to Lt- J if LJ + t <p-n+l.

c. Stl = n.

d. For every j, 1 < j < t, C = Sn (Sj+ U .. .. U St). In particular Ct = St.

e. Co = (U=Sj)c = (U,iCj)c.

f. Co, C1,..., Ct form a partition of [p].

g. If < t < LPl then C1l = ... = Ct[ = n.

h. If L +1 <t < p- n+l then

1. Co=0

2-i. For every j, 1 < j < t - 1, ClJ is equal to L --nJ or P-n + 1

2-ii. There exists j, 1 < j < t - 1, such that ICj = Ljj.

3. Ctl is equal to n.

i. If LJ + 1 < t < p - n + 1 then J = {i [t - 1]; ICi = a + 1} and IJ =
p-n-Ltp-J(t-1).

PROOF. For every program variable X, we let X(t) denote the value held by X
at the end of round t. We extend this definition to t = 0 and let X(O) denote the
initial value of any program variable X.

We easily see that, for every t, the program variable St is changed only in round t.
Hence St(t) = St(t + 1) = ... = St(n - p + 1) so that we can abuse language and let
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St also denote the value St(t) held by the program variable St at the end of round t.
(We will make explicit when St refers to the program variable and not to the value

S,(t).)

Invariant b. For every round t, 1 t < p/n], the program variable a is left
unchanged: a(t) = a(O) = n. For every t, [p/nj + 1 t < p - n + 1, the program
variable a is left unchanged if equal to L t- 1J and reset to this value otherwise. (See

lines 10, 11 and 27). Hence a(t) = L[1J. This establishes invariant b. We prove
the other invariants by induction on the round number t.

Case A. Consider first the case 0 < t < L[J. In this case we furthermore establish
that S, ... , St are all disjoint, that Cj(t) = Sj for every j, 1 < j < t < [zj and that
Co(t) is a set of size p - tn. This is true for t = 0 as Co(O) = [p] and as, in this case,
the family S1,. .. , St is empty. Assume that all the invariants are true for some round
t - 1, 0 < t - 1 < L[J. Consider round t. In line 02 of the program, Co has value
Co(t- 1), which is of size p- (t- 1)n, by induction. As t- 1 < L[a, p- (t- 1)n > n
and hence the invocation S := arbitrary(n; C0 ) is licit: invariant a is satisfied
for round t. Hence St is a well-defined set of size n and invariant c is satisfied for
round t. As St is a subset of Co(t), invariant e (for t - 1) shows that St is disjoint
from Ut-lSi so that S 1,..., St are all disjoint. In lines 02-04 the program variables
Ci, 1 < j < t- 1 are not changed. Hence Cj(t) = Cj(t - 1) = Sj, 1 < j < t - 1. On
the other hand, by line 04, Ct(t) = St, and by line 03, Co(t - 1) is the disjoint union
of Co(t) and of St. Hence ICo(t)l = ICo(t - 1)1 - IStl = (p - (t - )n) - n = p - tn.
From these properties we easily check that the invariants d, e, f and g are true for
t.

Case B. We now turn to the case [p/nJ + 1 < t < p - n + 1. Assume that t is such
an integer and such that all the invariants are true for t - 1.

Case B-I. Assume l t-j < a in line 10 is true.

We first establish that t = [p/nJ + 1 falls in case B-I. We just proved that all the
invariants a, ... , g hold for t - 1 = p/nj. By Lemma 7.4.2, [t- J < n. On the
other hand, in line 10, the program variable a has value a(t- 1) = a(0) = n. Hence
the precondition l[-'j < a in line 12 is true for t = Lp/nj + 1.

Invariant a. We easily check that for every t, 0 < p - n - L J(t - 1) < t - 1.
(For every numbers x and y, x - x/yJy is the rest of the Euclidean division of x

157



Chapter 7. An Optimal Randomized Algorithm

by y.) Hence the invocation I := arbitrary(p - n - -J(t- 1); [t - 1]) of line 12
is always licit (for t = Lp/nJ + 1,...,p - n + 1).

In line 17 and in line 23 the program variable CK- has value CK(t - 1), a set of size
a(t - 1) or a(t - 1) + 1 by invariant b and h for t - 1. Recall that, by assumption,
the precondition of line 10 is true: a(t) < a(t - 1) i.e., a(t) + 1 < a(t - 1). This
implies that the invocations S := uniform(a + 1; CK) and S := uniform(a; CK) of
respectively lines 16 and 22 are licit. This shows that the invariant a is true for t.

Invariant h-1. The variable Co is set to 0 in round p/nJ + 1 and never altered
afterwards so that Co(t) = 0 for t = p/nJ + 1,...,p- n + 1. This establishes
invariant h-1.

Invariants d, e and f. By assumption, (invariant f for t-1), Co(t-1),..., Ct-l(t-1)
is a partition of [p]. The set St is obtained by first taking all the elements of Co(t- 1),
(which is non-empty only if t = Lp/nJ + 1), and then, in lines 16, 17, 18 and 22,
23, 24, transferring some subsets of Co(t - 1),..., C_l(t - 1) into St. Hence, by
construction, the sets Cl(t),..., Ct_l(t) and St are a partition of [p] i.e., invariant
f is true. This implies also that Cj(t) = Cj(t - 1) - St = Cj(t - 1) n Sc for every
j, 1 < j < t - 1. By invariant d for t - 1, we have Cj(t - 1) = Sj n (S u ... U St-)c.
Hence Cj(t) = S n (S1 U ... U St)c for every j, 1 < j < t - 1. Furthermore, by line
26, Ct(t) is equal to St. Hence invariant d holds for t. We also easily deduce e.

Invariants i and h-2. By lines 16, 18 and 22, 24, for every j, 1 < j < t - 1, the
quantity ICj(t)l is equal to a(t) or a(t) + 1. This along with invariant b already
proven shows that invariant i is true for t. Furthermore, the set of indices j, 1 <
j < t - 1, such that Cj(t) is of size a(t) + 1 is the set I determined in line 12.
(See lines 12 through 19 of the protocol.) This set is equal to the value allocated
to J in line 13. As J is not further changed in round t this value is J(t). This
establishes invariant h-2-i. As mentioned in the proof of invariant a, for every t,
p- n- L (t -(t ) < t - 1. Hence the value allocated to I in line 12 is not the
whole set [t - 1]. Consequently, at the end of line 13 I' is not equal to 0 and for
every k E I' the while loop from line 20 to 25 produces a set Ck(t) of size a(t),
i.e., by invariant b, a set of size t1 'J. This establishes invariant h-2-ii.

Invariants c and h-3. Let b denote p - in - L -? J (t - 1) and let a denote t - 1 - b.
Note that a > 0. We just established that the family C(t),..., Ct-l(t), St is a par-
tition of [p]. Therefore, C1(t),...,Ct_l(t) is a partition of [p] - St. By invariants
h and i this partition is composed of b elements of size a(t) + 1 and of a elements
of size a(t). Hence p - St = q = aa(t) + b(a(t) + 1). On the other hand, by
Lemma 7.4.3, p - n = aac(t) + b(a(t) + 1). This shows that IStl = n and hence, by
line 26, that Ct(t)l = n.
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Case B-II. Assume LP-] < a in line 10 is false (i.e., [t- J = a in line 27 is true).

Invariant a. In line 28, the value of the program variable Ct_1 is Ct_l(t - 1) which
is of size n by invariant c and d for t - 1. As t > p/nj + 1, by Lemma 7.4.2,

Lp'J + 1 < n which shows that the invocation S := uniform(a + 1; Ctl) is licit.

Note that, in line 27, a has value a(t -1) so that the condition L t-? = a of line 27
exactly means that [ a-j = a(t - 1). By invariant b, a(t - 1) is either n or L P2 Jealyu l ma~slv tha~tl J -, t-2
We prove that only the latter form arises in the equality [ _- J - a(t - 1). Recall
the two following facts established in the proof of invariant b given in page 157. 1)
Lp/`j < n. 2) a([p/nj) = n. From these two facts we deduce that the equality

L-nJ = a(t - 1) does not hold for t = p/nJ + 1 as L p-n j < n = a(Lp/n). Hence
equality in line 27 can occur only for t > p/nJ + 1. By Lemma 7.4.2, t > p/nj + 1
implies that L t-- < n and hence that a(t - 1) = LP-2J. To summarize: equality

holds in line 27 only for t > p/nj + 1 and then implies that - j = Lt-2 J 

In line 31, the value of the program variable J is J(t - 1). By induction, (invariant i
for t - 1), J(t - 1) is a subset of [t - 2] which is of size IJ(t - 1)1 = p- n -- LP- (t- 2).
The element t- 1 is not in J(t- 1) (see invariant i for t- 1) so that IJ(t-1)U{t- 1}1 =
1J(t- 1)1+ 1. Recall that in line 31, the program variable a is equal to a(t) = l[t-J '
We have:

(t)+ 1 = t-1J + 1

< p - n - - 2J(t - 2) + 1 (by Lemma 7.4.4)

= IJ(t - 1)1 + 1
= IJ(t - 1) U {t - 1}1.

This shows that the invocation I' := arbitrary(a + 1; J U {t - 1}) of line 31 is licit.

Line 34 is within the while-loop originated in line 33. Each of the invocation
K := arbitrary(1; J) of line 34 is licit as occurring while J is non-empty.

In line 35, CK is of size a(t - 1) + 1 because, by lines 31 and 34, K is an element of

J(t - 1)U {t - 1} and because, by invariant i, K E J(t - 1) implies that ICK(t - 1)I =
a(t - 1) + 1 which is a(t) + 1 by line 27 - if K = t - 1, lines 28 and 30 show directly

that ICKI = + 1. This shows that the invocation S := uniform(a; CK) in line 35
is licit.
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This finishes to establish that invariant a is true for t.

Invariants c and h-3. In lines 28, 29, ICt-1l - (a(t - 1) + 1) = n - (a(t - 1) + 1)
elements are allocated to St. Let I'ni denote the value held by I' at the end of line
31. In the while-loop (line 33 to 38), a(t - 1) + 1 additional elements are allocated
to St. (a(t - 1) + 1 is the size of Ii.) Hence a total of n elements are allocated to

St in round t. This shows that St1 = n and hence, by line 39, that ICt(t)l = n.

Invariants d, e, f, and h-1. As in the Case I, Cj(t) = Cj(t - 1) - St for every
j, 1 < j < t- 1, and C,..., Ct_l(t), St is a partition of [p]. As in Case I, this implies
that invariants d, e and f hold for t. The proof for invariant h-1 is also the same
as in Case I.

Invariant i and h-2. By invariant h-2 for t - 1, for t - 1, all the sets CJ(t - 2), 1 <
j < t - 2, are of one of the two sizes a(t - 1) and a(t - 1) + 1, i.e., (recall that the
condition of line 27 is true), of size a(t) or a(t) + 1. Also, by invariant i for t - 1,
J(t - 1) is the set of indices i, 1 < i < t - 2 for which Ci(t - 1) is of size a(t - 1) + 1
i.e., of size a(t) + 1. At the end of line 30, the set of indices i, 1 < i < t - 1 for which
the value of Ci is of size a(t) + 1 is the set J(t - 1) U {t - 1. Let Ii'i, denote the value
held by I' at the end of line 31. In the while-loop of line 33, (finishing in line 38),
for every index k in EIi'i,, an element is transferred from Ck to St. Hence, at the end
of the while-loop all the sets Ci, 1 < i < t - 1 are of size a(t) or a(t)+ 1. This proves
invariant h-2 for t. Furthermore, in the while-loop of line 33, the set of indices i
for which the value of Ci is of size a(t) + 1 is reduced to J(t - 1) U {t - 1} - I'it. The

value J(t - 1) U {t -1} - iit, is the value J(t) given to J in line 32. (J is not altered
further in round t and hence the value allocated to J on line 32 is the value J(t).)
This establishes the first part of invariant i: J(t) = {i E [t - 1]; Ci(t)l = a(t) + 1).

We compute IJ(t)l.

IJ(t) = IJ(t -1)1 + 1 -init 

= IJ(t - 1)l + 1 - (a(t) + 1)
= p -n- L 2 J(t - 2) -a(t) (by invariant i for t - 1)

= p - n - L J(t - 2) - a(t) (because a(t) = Lt- = t-2 )

= p- n- _nl(t- 1)

This finishes the proof of invariant i for t.

Lemma 7.4.2 Let t be a positive integer. Then lPJ < n if and only if t > Lp/nj.
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PROOF. Write p = an + b with 0 < b < n. Assume that t > [p/nj. Then

L7 J< Ip/nJ = (an+b- n)/a =n+(b-n)/a<n.t , Lp/"JJ

We now prove that [1 t < p/nj - 1] = [L-n > n. If Lp/nj = 1 the implication
is trivially true. Assume that Lp/nJ > 1. We have:

[-t]I > /nJ-l = (an + b - n)/(a - 1)= n + b/(a - 1)> n.

Lemma 7.4.3 For every integers q and t the system of equations

q = aa + b(a + 1)
a+b=t
a > O,b> 0

has exactly one integer-valued system of solutions: a = [lj, b = q- [lJt and
a = t - b.

PROOF. Uniqueness: The equation q/t = (a/t)a + (b/t)(a + 1) shows that q/t
is a convex combination of a and a + 1. Hence a must be equal to [j. Also, the
equation q = (a + b)a + b = ta + b shows that b must be equal to q - tJ.

Existence: Write q/t as the convex combination of a = l[j and of a + 1 = [iJ + 1:
q/t = ua + v(a+ + 1) with + v = 1. We have q/t = (u + v)a + v = a + v = lj + v.
This shows that v is equal to q/t - [tJ and that u = 1 - v = 1 - q/t + I[. Hence
we can chose b = vt = q - Lt and a = ut = (1 - v)t = t - b. [

Lemma 7.4.4 Let n, p and t be three positive integers such that n < p. Assume
that -J = [-J. Then Lt-1J < P-n- Lt2J(t - 2).t-1 t-2 hat-[ t-2

PROOF. Obviously, 0< p-n-LP 1 (t - 1) so that Lt J < p-n-L P-t(t- 1)+
Lt-l' By assumption, Lt ] = L t-2n and hence Lt-] <

- n- n-LP-(t-2). 

We now establish that, for every t, the quantity I-lI ICj(t)l is deterministic i.e., does
not depend on the successive values returned by the randomized invocations arbitrary
and uniform. This means in particular that, for every t, the quantity J 1t-l IC(t)l
is the same for all prog in Progo and does not depend on the values taken by the
random variables St, J1, J2,...
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Lemma 7.4.5 For every prog E Progo , for every t, 1 < t < p - n + 1, the prod-
uct f1j ICj(t)l is uniquely determined as follows. (For conciseness we let a =

p-- -Lt_J(t - 1) andb= t- 1 -a = t- 1 -p+n+ Lj( 1).)

Icj(tl = nt- if t L_<e,
LP- L - + 1)a -lnJb if Lzj + 1 t p n + 1

PROOF. If t < LnJ the result is an immediate consequence of invariant g. If

LEJ + 1 < t < p - n + 1 the result is a consequence of invariants h and i. [

7.4.4 The Probability Space associated to Progo

By definition, a program prog in Progo has randomized invocations. The output val-
ues of prog are the final values of S1,. .. , Sp. The randomized invocations are internal
actions. For each prog in Progo we can construct a probability space (', G', Pprog)
allowing to measure (in a probabilistic sense) not only the output - the schedules

S1,..., Sp - but also all the randomized invocations made by prog.

We will need in Section 7.7 to analyze programs in Progo and to manipulate some
events from (', G', Pprog). We therefore describe informally the construction of this
probability space. The sample space f' contains the sequences of values produced
by randomized invocations during executions of Progo, i.e., the realizations of the
sequence (randomized-invocation, randomized-invocation 2 ,...). The a-field G' is
the power set of W'. The measure Ppro is the measure characterized by the relations

Pprog [ I past randomized invocations are r ,.. ., r,] = Pr, .,r,,

one for each sequence rl, ... , r. By integration this means that, for every sequence
rl,.. .,rt, the probability Pprog[(rl,..., rt)] is given by Pe[ri] Pr, [r2] Pr,, .,rt ,[rt],
where we let Pe denote the the probability attached to the empty sequence e.

In contrast, recall that in Section 7.2 we constructed the sample space associated to

protocols ar to contain the sequences of values taken by random schedules i.e., the
realizations of the sequence (S 1,S 2,...). As each set St outputted by prog can be
constructed from the sequence

(randomized-invocation , randomized-invocation 2,...),
we see that the a-field 6' is bigger then the one considered for protocols. For every
prog in Progo, the measure Pprog extends the measure prog defined on the set of
schedules produced by prog onto this bigger space (', G').

Recall that, for every t, every t-schedule a and every t-fault sequence adapted to a,
the conditional probability 7r[ I St = a] is well defined whereas r[- I St = a, Ft = ]
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is not. This is because the event {Ft = 0} is not expressible in terms of the schedule
S 1, S 2,... and hence is not in the a-field over which the probability distribution r
is defined. In Lemma 7.3.3 we formally made sense of this conditional probability
for events in 6, i.e., for events describable in terms of the set St+l and in terms of
the decisions a and 0 taken up to round t by both the protocol and the adversary.
We let P, [ I St = a, Ft = q$] denote this extension.

We can make a similar extension with Pprog so as to compute the probability of
events depending on the randomized invocations done by prog up to round t + 1 -
the current round - and of past decisions (i.e., up to round t), conditioned on the
past decisions taken by both the protocol and the adversary. To simplify we use
also Ppro, to denote this extension. For instance, in the proof of Lemma 7.7.4 we
will consider the expression

Pprog[T > t + 1 St =a, = T > t, J(t + 1)=

7.4.5 The Optimality Property

The optimization problem sup, infA E,,A[T] is called the primal problem. We let topt
denote its value. Similarly the optimization problem infA sup,r Er,A[T] is called the
dual problem and we let tp, denotes its value. A protocol ropt, solves the primal prob-
lem if top, = t(r,pt) 9. The existence of such a protocol implies in particular that the
sup is attained in the primal problem and that max, infA E1 ,A[T] = infA E,r,A[T].
An adversary A 0p, solves the dual problem if tp = t'(Aop,) def SUp E,Aopt[T]. The
existence of such an adversary implies in particular that the inf is attained in the
dual problem and that minA sup, E,,A[T] = sup, E,,Aop, [T].

The following adversary Ao plays a fundamental role in the understanding and the
analysis of protocols in Prot(Progo).

Definition 7.4.1 We let Ao denote the adversary that selects at each round t an
element chosen uniformly at random from st - (fl,..., ft- 1l if this set is not empty,
and selects an arbitrary element from s, otherwise.

This formally means that Ao = (Qv)VEv where V is the family of t-odd-executions
and where, for every v = (sl, fl,...,st), Q is equal to Ut-({lf . f.l. } when St -
{fl,...,ft -} 0 - and Q arbitrary when st - {fl,...,ftl) = 0.

Our main result is described in the next theorem.
9We presented in Page 143 the definition of of t(7r) for a protocol r: t(7r) = infA E,,A[T]. For

an adversary A. t'(A) is defined symmetrically by t'(A) = sup, E,A[I
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Theorem 7.4.6 Every protocol ro in Prot (Progo) solves the primal problem while
the adversary Ao solves the dual problem. These two problems have the same value,
equal to E,,O,A[T].

The two following lemmas are the crucial ingredients to the proof of Theorem 7.4.6.
We defer their proof after the one of Theorem 7.4.6. The first lemma expresses that
the protocols in Prot(Progo) are optimal against adversary 4o.

Lemma 7.4.7 Let ro be a protocol in Prot(Progo). Then max, E,,Ao[T] = Eo,Ao[T ].

The next lemma expresses that, when a protocol ro in Prot(Progo) is used, the
expected time of survival of the system is independent of the adversary A used
in conjunction with 7ro. This implies in particular that Ao is optimal against the
protocol r0 .

Lemma 7.4.8 Let ro be a protocol in Prot(Progo). Then Er,,,A[T] is independent
of A.

We are now ready to prove our main result.

PROOF of Theorem 7.4.6:
Let r0 be a protocol in Prot(Progo). Then

sup,r E,Ao[T] = Eo,A,[T] (by Lemma 7.4.7)
= infA E.,A[T] (by Lemma 7.4.8).

By Lemma 8.2.2, sup, infA E,,A[T] = infA E,,A [T] i.e., ro solves the primal prob-
lem, and similarly Ao solves the dual problem. Furthermore these two problems
have the same value, equal to E,,OA[T]. []

Note: As discussed in Section 7.1.2, the equality of the values of the primal and
the dual problem is a direct consequence of Von-Neumann's theorem.
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7.5 The random variables Cj(t) and Li(t)

In Section 7.4, for every program prog in Progo, for every t and j, 1 < j t < p, we
defined Cj(t) to be the value held by the program variable Cj at the end of round t
of prog. In this section we define the values Cj(t) to be random variables expressed
in terms of the schedule St. This definition is valid for arbitrary protocols and is
compatible with the definition given in Section 7.4 in the special case of protocols
in Prot(Progo). (See invariant d of Lemma 7.4.1.)

For each j and t, 1 j < t, Cj(t) is the set of elements selected at time j and which
are not used in ulterior rounds j + 1,j + 2,..., t. Co(t) is the set of elements of [p]
that are not used in the first t rounds. We also introduce the random variables Li(t)
counting the number of sets Cj(t), 1 < j < t - 1, which are of size i.

An indication of the relevance of these random variables is indicated by Lemma 7.4.5
which expresses that every prog in Progo is such that for every t, 1 t < p/nl,
Ln(t) = t - 1 and Li(t) = 0 if i n; and such that for every t,t > Lp/nj + 1,
Li(t) = p-n- L-J(t-1) if i = L- j + 1, Li(t) = t- 1 -p+n+ f (t 1)
if i = [t rJ and Li(t) = 0 for any other value of i. We will see that these properties
do in fact characterize optimal schedules. The following definition formalizes these
notions. For a set i in {1,..., p}, we use the notation c to denote the complement
of c in {1,...p}.

Definition 7.5.1 For every integers j and t, 1 < j t < p and every k, 0 < k < n
we define the following random variables:

Cl(t) = S n (S2 U ... U St)

Cj(t) sjn (s ... u t)

Ct(t) = St.

We extend the definition of Cj(t) to j = 0 and set

Co(t) = (=Cj(t)) 0 .

We say that (Co(t),..., Ct(t)) is the c-sequence derived from the schedule (S1,..., St).
For 1 < t p and 0 i < n, we let Li(t) denote the number of sets C((t), 1 < j <
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t - 1, which are of size i:

Li(t) 'e {C,(t); 1 < j < t - 1, Cj(t) =

We etend the definition of Li(t) to i = n + 1 and set

L.+,(t) de_ Co(t)l

As usual, we use lower case letters and write for instance co(t), ci(t),..., ct(t) to de-
note the realizations of the random variables Co(t), C 1(t),..., Ct(t) and lo(t),.. ., In+l(t)
to denote the realizations of the random variables Lo(t),... , Ln+(t).

The next properties are simple but fundamental. Property 3 means that the system
is still alive by time t if and only if for every j, j < t - 1, the j-th fault is in the set
C. Let us emphasize that this property would not hold for m > 2.

Lemma 7.5.1 Let t, 1 < t < p be arbitrary. Then:

1. The family (Cj(t))0<j<t forms a partition of [p].

2. EZ=0 Li(t) = t - 1.

3. {T > t} =f nj{F, E Cj(t)} (= nt=l{su n {F,..., F_1}= }).

PROOF. We easily check that the family (Cj(t))o0 <jt is a partition of [p]. The
condition Ei=0 Li(t) = t- 1 just expresses that the t - 1 sets Cl(t),..., Ct_(t)
are different and of cardinality between 0 and n. As expressed by the formula
{T > t = n=l{Su n {F,...,Fu_ 1} = 0} that we recall for completeness, the
survival time T is at least t if and only if, for every time u, 2 < u < t, S does
not contain any of F 1,...,F,_ 1. (Note that this fact uses the hypothesis m = 1.)
Equivalently, T > t if and only if, for every j, 1 < j < t -1, Fj is not contained in any
of Sj+l,..., St, i.e., if Fj E (S+lU ...US)c. On the other hand, by definition, Fj E Sj
for every j. Therefore T > t if and only if Fj E Cj(t) for every j, 1 < j < t - 1. O

Definition (7.5.1) establishes how a c-sequence (cj(t))j can be derived from a given
schedule (sl,..., st). The following lemma conversely characterizes the sequences
(yj)j that can be realized as a c-sequence from some schedule (sl,...,st). This
result will be used in Lemma 7.6.11 to characterize the optimal schedules.
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Lemma 7.5.2 Let 1, .... 7t-1 be integers in the interval [0, n]. Then the condition

n < N - (71 + ... + t-l)

is a necessary and sufficient condition for the existence of a schedule (sl,...,st)
satisfying Icj(t)l = 7j for all j, 1 < j < t - 1.

PROOF. We first establish the necessity of the condition. By Lemma 7.5.1, for all
schedules (sl,. .,s,), the family (cj(t))o<j<t forms a partition of [p]. This clearly
implies that >ii [cj(t)l - p and hence that Z [cj(t)l < p.

Conversely, we prove by induction on t that, for every sequence 'l,..-,7t- of
integers in [0, n] such that n < p - ( + ... + yt-l), there exists a schedule
(sl,...s,t) whose associated c-sequence is given by cj(t) = 7j,1 < j < t - 1 and
co(t) = p- ( -... + 7t-)-n

· The property is trivially true for t = 1: in this case the family of conditions
Icj(t)l = yj, 1 < j < t - 1 is empty, and the set co(1) of processors not used has size
pl- Isi = p-- n.

* Assume the property verified for t, and consider a sequence , .... yt of integers
in [0, n] such that n < p - ( + ... + 7t). This condition trivially implies that
n < p - (1 - .. + at-l). Therefore, the result at the induction level t being true,
there exists a schedule (si,...,st) for which cj(t) = 7'j, 1 < j < t - 1 and such that
the number of processors still unused at time t is

Ico(t)l = p-( + ... + -,)-n

We then construct a set st+l of n processors by taking any n - at elements from the
set st and any 7! elements from the set co(t) of unused processors. This construction
is possible exactly when t < Ico(t)l i.e., when

,t < P - (71 + ... + 7t-1) - n,

which is true: this is the induction hypothesis. Note that, by construction, the sets
c;;(t), 1 < j < t -- 1 are unaffected by the selection of the set st+l and hence:

Icj(t + 1)l = Icj(t)l = 7j, 1 < j < t - 1 .

On the other hand,

Ict(t + 1) = Ist-(n - 7,)

- at 
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To finish the induction from t to t + 1, we note that

Ico(t + 1)1 = Ic(t) -t

=p - (1 + * + t- + t) - n

The schedules in normal form that we now define will be shown in the sequel to be
the schedules maximizing the expected survival time. In essence, a t-schedule a is in
normal form if the sizes of the sets cj(t), 1 < j < t - 1, (of the c-sequence associated
to a), differ by at most one, and if co(t) is not empty only if every cj(t), 1 j < t- 1
is of size n. Formally:

Definition 7.5.2 Let t > 1 be a time. We say that a t-schedule a is in normal
form and write

0 E A

if there exists a,, 0 < at < n, s.t.,

Vj, 1 < j < t-1, jcj(t)l = at or cj(t)l = at + 1 ,
Ico(t)I > 0 = aCt = n

We then also say that (co(t),..., ctl(t)) is in normal form.

Invariants g and h of Lemma 7.4.1 express that the programs in Progo all produce
schedules in normal form. We next show that a t-schedule a is in normal form if and
only if the associated sequence (10(t), ... , n+(t)) has at most two non-zero terms,
which are consecutive.

Lemma 7.5.3 A t-schedule a is in normal form if and only if there exists at, 0 <
art < n + 1 such that the associated sequence (lo(t), . .., In+(t)) satisfies the equality

(lo(t), . .. In+l(t)) = (O, . . ,O ,l ,t(t),lt+l(t),O. ,O) ·

PROOF. Simple consequence of Definitions 7.5.1 and 7.5.2. 0

The next lemma shows that, for every t, t-schedules in normal form have a unique
associated sequence (10o(t),..., In+l(t)) and that, conversely, this value characterizes
t-schedules in normal form. We will use this property in Lemma 7.6.11 to show that
a property is specific to schedules in normal form.
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Lemma 7.5.4 1. Let 1 < t < [p/n. Then a t-schedule a is in Aft if and only
if the only non zero terms of the sequence (lo(t),..., ln+(t)) are 1,(t) = t - 1 and
l,+ 1(t) = p - tn. (And hence, at = n.)

2. Let t > Ip/nj. Then a t-schedule a is in At if and only if the only non zero
terms of the sequence (10(t),..., ln+(t)) are

la,(t) [-= (t - 1) + t + n - p

and, if p- n is not a multiple of t - 1,

la+l(t) = p- n - [P- J(t - 1),

where
def [p2j

at - t-L.

PROOF. If t < p/nJ then tn < p. Working by contradiction, assume that
there exists i < n such that li(t) > 0, i.e., that there exists a set cj,,(t) such that
Icjo(t)l < n. Then

t t

I U Cj(t)l < E [cj(t)
j=1 j=1

_ Z Icj(t) + Cj(t)l

< tn<p.

As the family (cj(t)), 0 j < t, is a partition of [p], co(t) must be not empty which,
by the normality property, implies that all the sets cj(t), 1 < j < t - 1, must have
size n. Hence

In(t) df {cj(t); 1 < j < t - 1, Icj(t)I = n}

= t-1.

This in turn implies that

ln+J(t) e cO(t) = P- I U (t)l
j=1

= p- nt.

* Consider now the case t > p/nJ. Working by contradiction, assume that In+ 1(t) >
0. Then, by the normality condition, all the sets cj(t), 1 < j < t- 1 must have size n.
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= E Ic(t)
j=t

tn

(since the sets cj(t) are disjoint)

(Lp/nJ + l)n
> p,

a contradiction. Hence l,+1(t) = 0, i.e., co(t) = 0. Hence the t-1 sets cl(t),...,ct_l(t)
must divide p- Istl = p- n elements among themselves. Lemma 7.4.3 (where we re-
place q by p-n and t by t-l) shows that at - J, lat(t) = tP-1n (t-1)+t+n-p-1
and l+l(t) = p - n - [t-l J(t - 1). 0
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7.6 7ro is optimal against Ao

This section is devoted to the proof of Lemma 7.4.7.

7.6.1 Sketch of the proof and intuitions

For a given adversary A, an optimal protocol is one that, at each time t+ 1, exploits
to its fullest all the information available so as to optimize the choice of St+l. There-
fore to construct an optimal protocol, we first analyze the notion of "information
available to the protocol". We distinguish between the explicit information, for-
mally described in the model, and the implicit information that an optimal protocol
is able to deduce. Consider for instance the case of the identity of the adversary
A. In Section 7.2, when modeling protocols and adversaries, we did not provide a
mechanism allowing a protocol to be informed of the identity of the adversary that
it plays against. This means that the protocol does not know explicitly the identity
of the adversary. Nevertheless, for a given adversary A, there is one protocol that
always assumes that the adversary is A and takes optimal decisions based on this
assumption. This protocol is by construction optimal if the adversary is A. We
then say that the optimal protocol knows implicitly the identity of the adversary.

In Section 7.2 we modeled a protocol to be an entity deciding the whole schedule
(S1,..., Sp) ahead of time, i.e., in an off-line fashion. S is the first selected set,
and for every t, t > 1, S+l is the set selected to be used after the occurrence of the
t-th fault. In this model the adversary "sees" the sets St only when they come in
operation.

Alternatively, we could have modeled a protocol to be an entity interacting in an
on-line fashion with the adversary: in this model, at each occurrence of a fault, the
adversary informs the protocol of the occurrence of a fault and whether the system
is still alive at this point. If the system is still alive the protocol then selects the set
St+1 to be used next and communicates its choice to the adversary.

It might seem that in our model - the off-line model - the protocol is weaker then
in the on-line model, as, for every t, it has to select the set St+l without knowing
whether the system is alive after the t-th fault. Nevertheless we easily see that, in
the off-line model, the protocol can assume without loss of generality that T > t,
i.e., that the system is alive after the t-th fault, while selecting the set St+l for time
t + 1. Indeed, if this happens not to be the case and the system dies before time
t + 1 all the decisions and assumptions made by the protocol for time t + 1 are
irrelevant.
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This discussion shows that the off-line and the on-line model of a protocol are
equivalent so that we can adopt the on-line model in this informal presentation.
From the on-line description. it is clear that, for every t, the information about the
past execution available to the protocol upon selecting the set St+l consists of its
own past decisions, i.e., of St = a, and of the fact that the system is still alive at
this point, i.e., of T > t. Note that the information T > t is given explicitly to the
protocol in the on-line model and only given implicitly in the off-line model that we
chose in Section 7.2.

For every t, upon selecting a new set St+, an optimal protocol can use all the
information available and guess first what are the locations Fl,..., Ft of the faults
already committed by the adversary. To "guess" the protocol uses the probability
distribution

PA [(F,*, F)= · I T > t, = a],

i.e., the probability of the value allocated to (F,..., Ft) by the adversary A, con-
ditioned on the knowledge of the past execution held by the protocol.

By Lemma 7.5.1, the system is alive at time t, i.e., T > t, exactly if Fj is in Cj(t) for
every j, 1 < j < t - 1. (This is not true for m > 2.) Hence the previous probability
can be rewritten PA[(Fl,.. .,F) = I nf=l{Fj E cj(t)}, St = a], which shows
the relevance to the analysis of the sets Cj(t). In this section the adversary is the
random adversary Ao defined in Definition 7.4.1. In this case, by definition, at each
time t, a fault occurs uniformly at random in St and we can then further establish
in Section 7.6.2 that PAO[(F,,...,Ft) = T > t, St = ] =(t)

This result fully elucidates the notion of "information available to the protocol" and
we can say that a protocol optimal against Ao is one that, for each t, uses most
efficiently the probabilistic guess PAO[(F,..., Ft) = I T > t, St = a] in order to
chose a "most appropriate" set St+, for time t + 1. The next challenge towards the
construction of optimal protocols is to understand how, for every t, such a "most
appropriate" set St+l is selected. For this we use the general equality

E,,Ao[T] = E P, Ao[T > t],
t>l

established in Lemma 8.1.2. A natural idea is to try the following greedy strategy.
Select a set s maximizing the quantity PAO[T > 1 S1 = s]. Then select a set s
maximizing the quantity PAO[T > 2 T > 1, S2 = (s,s)]. Generally, assuming that
the schedule St = (s,..., st) has already been chosen and assuming that the system
is still alive at time t, i.e., that T > t, we select a set s maximizing the probability

PAo[T > t+ 1 IT > t, St+- = (si,...,s,s)]
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of being alive one more time. If the protocol r defined by this procedure maximizes
P,A[T > t] for every t, it also maximizes the sum Et>l P.,A.[T > t] and hence is
a protocol optimal against Ao. As is discussed in Section 7.6.4, this is true if the
schedule a = (sl,..., st) greedily chosen as described above maximizes the quantity
PAO[T > t St = C].

We therefore compute this quantity PA[T > t St = a] for every ea and show that it
is equal to l-= L(t) , where the values cj(t), 1 < j < t are uniquely derived from a.
This computation uses critically the relation PAO [(F, ... , Ft) = · I T > t, St = a] =
®)=1 Uc,(t) discussed above. We establish that the schedules maximizing this value
are the schedules for which all the associated terms Icj(t)l, 1 < j < t- 1, differ by at
most one, i.e., the schedules in normal form. (See Definition 7.5.2.) By invariants
g and h of Lemma 7.4.1, all protocols in Prot(Progo) produce such schedules and
hence are optimal against A0. This is formally established in Section 7.6.5.

The results established in Section 7.6.4 also show that the schedules produced by
the greedy procedure previously described are in normal form, and hence that the
greedy procedure is optimal against A 0. Actually, the protocols produced by the
greedy procedure are exactly those in Prot(Progo).

7.6.2 Analysis of the Distribution of the Random Variables Fj

Let t and j such that 0 < t < p- 1, and 1 < j < t. Assume that the adversary
is the random adversary Ao defined in Definition 7.4.1. The next lemma says that,
conditioned on the past schedule and on the fact that the system is still alive at
time t,

* each random variable Fj has a uniform distribution on the set cj(t),

* the random variables (Fj)l<<t are independent.

This lemma will be a crucial tool for the estimation of the probability PAo[T >
tlS, = a] done in Lemma 7.6.10.

Lemma 7.6.1 Let 1 < t < p and a E FeasAO lo. Then, for every family ( 1,..., t)
of subsets of [p],

t

PA [(F Ft) E (, T > t St =
,=1

l°See Page 149 for the definition of FeasAO.
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where cj(t), 1 < j < t, are the values of Cj(t), 1 < j < t, uniquely determined by the
condition St = a.

Lemma 7.3.5, page 148, justifies the well-formedness of this statement.

PROOF. Define (l,G 1,P1) to be the probability space (, ,PAo). Using the no-
tions recalled in Definition 8.1.2 we can reformulate the statement of Lemma 7.6.1
into the concise form: for all t, 0 < t < p- 1 and all t-schedule a in FeasA,

t

((F,...,F )I > t,S = ) = ?C(F, T > t,S =) )
j=1

0U a,(t). (7.1)
j=1

Equation 7.1 holds vacuously for t = 0: the family (Fi)l<i<t is empty and there
is nothing to prove. We now work by induction on t, 0 < t < p- 1: assume that
Equation (7.1) has been established for time t. To progress from t to t + 1, we first
prove that, for every t-schedule oa and and every s E Pn(p) such that (, s) is in
FeasAo, for every j, 1 < j < t + 1,

( Fj T > t + =,S +1= ,s)) = Ucj(t+l). (7.2)

* Consider the case j = t + 1. This case corresponds to the processor Ft+1 selected

at time t + 1 by the adversary. We want to prove that, £(Ft+, I T > t + 1,St+l =

(a, s)) = Uc,,t+,(t+l). Conditioning on T > t + 1 ensures that the adversary did not
select a processor of s at a time prior to t + 1. Hence, at the end of time t + 1,
there is exactly one faulty processor, F,+, amongst the set s. As A0 is the random
adversary, Ft+1 is uniformly distributed in s, i.e., has a law equal to U, -f Uc+,(t+l).

* Let j be any integer, 1 < j < t. We let F denote the random variable (F, T >

t, St = a). Then

£(F,T > t + l1,St+ , = (as))

= PAo[F E T > t,St = F ,...,F s] (7.3)

= PAO [F E T >t,St, = Fj S] (7.4)
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= PAO[F e I Fj s] (7.5)

= Uc3(t)[ I F s] (7.6)

= Ucj(t)n,+ [ ] (7.7)

= Ucj(t+l) · (7.8)

Equality 7.3 comes from the fact that, conditioned on the schedule St = a and the
fact that the system has survived up to time t, the system survives at time t + 1
exactly when the set s selected at time t + 1 contains no processor broken at a
previous time. Equality 7.4 comes from the fact that, by our induction hypothesis

at level t, (F IT > t,St = a) is independent from (Fi T > t,St a);1 < i <
t, i $ j. Equality 7.5 comes from the fact that, conditioned on {T > t, St = a}, the
condition Fj s is equivalent to Fj' ~ s. Equality 7.6 comes from the fact that, by
our induction hypothesis at level t,

PAo[ F E .] = Uc(t[] 

Equality 7.7 is a simple application of Lemma 8.1.3: again, remember that UCj(t) is
the law of Ft. Equality 7.8 comes from the definition of cj(t + 1). This finishes to
establish that; Equation 7.2 holds for every j, 1 < j < t + 1.

A consequence of Equation 7.2 is that, for every j, 1 < j t, the support of
(Fj T > t,St = a) is equal to cj(t). By Lemma 7.5.1 the sets cj(t) are all disjoint.
This trivially implies the independence of the random variables and concludes the
proof by induction of Formula 7.1. E

The proof of the next result can be omitted in first reading. It will be used in the
next section and in Lemma 7.6.11 where optimal schedules are characterized.

Corollary 7.6.2 Let a be a schedule and let (lo(t),...,ln+ 1 (t)) be the associated
sequence as described in Definition 7.5.1. Then a is in FeasAO if and only if lo(t) = 0.

PROOF.

* Assume that a E FeasA. Then, by Equation 7.1,

L((F,...,F,) T > tSt =St ) = Uj(i.
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The uniform distributions Ucj(t) are well defined probability distributions only if
cj(t) 0 for j, 1 < j < t - 1, i.e., if lo(t) = 0.

* We now prove the converse and assume that (sl,... , st) is a schedule which is not
in FeasAo. We want to establish that lo(t) > 0.

Note first that every set s of size n is clearly in FeasAO. (Consider the protocol
ir such that St = s for all t. Then P,Ao[T > 1,S 1 = s] = P, ,Ao[T > 1] = 1,
because m = 1.) This establishes that t > 1. Let v, 1 < v < t be the smallest
u such that (sl,..., su) Feas,4 . Using the formulation given in Remark 1 after
Definition 7.3.3, page 149, and using Lemma 7.3.2 we obtain

PAO [T > v I SV = (,...,s,V)] = 

whereas

PAo [T > v - 1 S_ = (sl ,...,SV_-)] > 0. (79)

Therefore:

0 = PA [T > SV =(sl,..., )]

= PAo[T> v,T> v-1S = (,...,sV)]

PAO [T > v T > v - 1,Sv = (Si ... V)] PAO[T > v - 1 S = (S,. ,s)]

= PAO[T > v T > v - 1SV = (vl,...,sv)] .PA[T > v - 1 S = (,.., )

where the last equality is a consequence of Lemma 7.3.6.

Using Equations 7.9 and 7.10 allows us to derive the first next equality.

0 = PAO[T v T > v - 1,SV = (sl,...,s)]

= PAO [SV n{F,..., FV =0 T > V - 1, Sv =(S,...,Sv)]

= PA. [sV n {F...,, FV-} I= T > v-1, S_ 1 = (sl,...,s_)] (7.11)
v-1

Pa= FAO nFj E S Tv > - 1, S1 = (S(i,., sv-l)]
j=1

v-1

= U'c,(V -1)[s , (7.12)
j=1

where Equation 7.11 comes from Lemma 7.3.6 and Equation 7.12 from Lemma 7.6.1.
The nullity of the product in 7.12 implies that there exists j, 1 < j < v - 1, such
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that

U1c(v-1)[S = 0

i.e., s n cj(v - 1) = 0

i.e., c(v) = 0,

and this implies that lo(v) > 0. To finish, note that the sequence (lo(u)) is a non-
decreasing sequence so that lo(v) > 0 implies that lo(t) > 0, which was to be proven.

7.6.3 A Max-Min Equality for the Maximal Survival Times

Our final proofs will rely on the equality ET,A[T] = E,>1 P,A[T >_ t] and will
entail an analysis of each of the non-zero terms of this summation. This section is
concerned with finding which of these terms are non-zero.

Following the definitions given in Lemma 8.2.4 we define tm,,,(A) d- max{ t; sup,,-

P,,A[T > t] > 0 } and tmin(W) d_ max{ t; infA P,,A[T > t] > 0 }. (Note that, for every
A and every r, P,,,A[T > t] = 0 if t > p. This justifies that sup{ t; sup, P,,A[T >
t] > 0 } = max{ t; sup, P,,A[T > t] > 0 }. We similarly show that the supremum is
achieved in tmin(7r).)

We easily see that, for a given adversary A, we can limit the range of summation of
the series ,Et> P,.,A[T > t] to within the first tn,.(A) terms. For a given protocol r,
the interpretation of tmin(r) is in general a bit more complicated: if infA P,T,A[T >

tmin(7r) + 1] = minA P,,A[T > tmin(r) + 1](= 0), then there exists an adversary A for
which only tin(r) terms of the series Z,>l P,,A[T > t] are non-zero.

Note that all the values tmax,(A) are a priori bounded by p. Hence Lemma 8.2.4
shows that the quantities tma(A) and tmin(7r) satisfy the max-min equality

maxtmin(r) < min tm.(A).
V A

In this section we show that we can strengthen this inequality into an equality in
the special case where m = 1. (See Corollary 7.6.9.) Lemma 7.6.8 will also be useful
in the sequel of this work.

Let t, t < p be a time, a be a t-schedule and b be a t-sequence of faults adapted to
a. We let to~ be the survival time of schedule a used in conjunction with . By
definition, t,,, is less then equal to t.

Lemma 7.6.3 Let t, t < p be a time, a be a t-schedule and be a t-sequence of
faults adapted to a such that t,,o = t. Then A E Agenerating,(q).
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PROOF. This a direct consequence of the definition of Ao. At each time, Ao selects
with non zero probability every element non already selected. Hence Ao selects a
with non-zero probability. O

Lemma 7.6.4 Let t, t p be a time, a be a t-schedule and be a t-sequence of
faults adapted to a. Then P,,A[T > t,St = a, Ft = b] > 0 if and only if t,o > t,
7r E Pgenerating(a) and A E Agenerating,().

PROOF. This is a direct consequence of the fact that, conditioned on St = a and

.Ft = , T > t is equivalent to t,a > t. 0

Lemma 7.6.5 For every t > p - n + 1 there is no t-schedule a and no t-fault
sequence such that t,, > t.

PROOF. Working by contradiction, consider t > p- n +1 and assume the existence
of such a schedule a and of such a fault sequence b. Consider the point just after the
selection of the t-th fault f, by the adversary. The hypothesis t,O_ > t implies that,
at this point, st contains n- 1 non-faulty elements. On the other hand the t elements
fi,... , ft are faulty. Hence we must have p > t + n - 1 which is a contradiction. 

Lemma 7.6.6 Let t be a time and r a protocol. Then P,,.A[T > t] > 0 only if

P,,o[T > t] > 0.

PROOF. The condition P,.,A[T > t] > 0 implies that there must exist a t-schedule
a and a t-sequence of faults X, adapted to a, such that P,,A[T > t,St = , Ft =
A] > 0. By the only if part of Lemma 7.6.4, it must then be the case that t,,o > t,
that r E Pgenerating(a) and that A E Agenerating,(k). By Lemma 7.6.3, Ao E
Agenerating,(0). By the if part of Lemma 7.6.4, P,,AO[T > t,St = a, Ft = ] > 0
and hence PT,AO[T > t] > 0. 0

In the following lemma, lo(t) is the value related to a as defined in Definition 7.5.1.

Lemma 7.6.7 Let t, t < p be a time and r a protocol. Then t < tmin() if and only
if there exists a t-schedule a such that lo(t) = 0 and such that P,[St = a] > 0.

PROOF. If part.

P,A,A[T > t] > Pr,A[T > t,S=a]

= PA[T > t I St = a]P,[St = a].
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By assumption, the term P,[ St = ar] is positive. On the other hand, by Corol-
lary 7.6.2, the assumption lo(t) = 0 implies that a E FeasAo i.e., that PAo[T > t
St = a] > 0. Hence

inf P,A[ T > t ] > P,Ao [ T > t ] > 0.
A

This inequality, along with the definition of tmin(ir) shows that t < tin().

Only if part. By definition of tmin(ir), there exists an adversary A such that

P,.A[T > t] > 0. By Lemma 7.6.6, this implies that P,r,Ao[T > t] > 0. Hence
there must exist a t-schedule a such that P,,A[ T > t,St = a] > 0. This implies
that P,.,Ao[St = a] > 0 and that a E FeasAo i.e., by Corollary 7.6.2, that lo(t) = 0.

LO

Lemma 7.6.8 For all A, for all ro in Prot(Progo), tmin(Oro) = tmax(A) = p - n + 1.

PROOF. For every adversary A and every protocol r, the inequality tmin(Wr) <
tmax(A) is true for any m > 1 and stems from the general result of Lemma 8.2.4 We
prove that the converse inequality holds in the special case where m = 1 and where
the protocol is in Prot(Progo).

Let t < p-n -+ 1 and let r0 E Prot(Progo). Every t-schedule a selected by 7r0 is such
that lo(t) = 0: by invariants g and h of Lemma 7.4.1, for every j, 1 < j < t - 1, the
set cj(t) has size at least min(n, [t- J) > 1. This fact together with Lemma 7.6.7
implies that tmi,,(r0) > p - n + 1. On the other hand, Lemmas 7.6.5 and 7.6.4
imply that P,,A [T > p - n + 1] = 0 for every protocol r and every adversary
A. This fact implies that tmin(r) < p - n + 1 and that tm,,(A) < p - n + 1 for
every r and 4. Hence, for every A, tm,,(A) < p - n + 1 = tmin(710). This, along
with the inequality tmin(7ro) < tm,,x(A) previously established implies the equality
tmin(70 ) = tma..(A) = p - n + 1, valid for every A. ]

Corollary 7.6.9 max, tmin(r) = minA tm,,(A).

PROOF. By Lemma 8.2.4, max, tmin(7r) < minA tm,,(A). Conversely, let 7r0 be any
protocol in Prot(Prog o ). We have:

mintmax(A) = tmin(r0 ) (by Lemma 7.6.8)
A

< maxtmi(7r).
T

It follows that max, tmin(r) = minA tm,,(A).
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7.6.4 Schedules in Normal Form are most efficient against Ao

The next lemma is crucial to evaluate the performance of a schedule. In essence,
for a given schedule a, it allows to compute for each time t the probability that
the system survives one more time when following the schedule a, provided that
the system survived thus far and that the adversary is Ao. It will allow us in
Lemma 7.6.11 to characterize the schedules that perform best against Ao.

Lemma 7.6.10 For every t > 1 and every t-schedule a the two following equalities
hold:

PA[T > St = a. T > t - 1] = c(t7.13)

t-1 n i,;(t)
PA[T > t St= ] St rJ Hn ' (7.14)

j=l i=0

where cj(u), 1 j < u t are uniquely derived from a and where, by convention,
we set 00 to be equal to I and 0/0 to be equal to 0.

Corollary 7.3.5, page 148, justifies the well-foundedness of the probabilities com-
puted in Lemma 7.6.10.

PROOF. Consider first the case where a ¢ FeasA. By Remark 1 on page 149, the
left-hand side PAo[T > t I St = a] of Equation 7.14 is equal to 0. As

PA [T >t T>t-1,St = a PA[T > t-, St = a]

the left hand side of Equation 7.13 is also 0. (Note that, by Convention 8.1.1,
the left-hand side PAo[T t St = a,T > t - 1] is automatically set to 0 in the
special case where PAo[T > t - 1, St = a] = 0. On the other hand, in this case,
the convention 0/0 = 0 also gives 0 to the right-hand side.) On the other hand,
by Corollary 7.6.2, the condition a FeasAo implies that lo(t) > 0, i.e., that there
exists j, 1 < j < t - 1 such that cj(t) = 0 and hence that [t-j cj(t)l = 0. This
implies that the right hand side of both Equations 7.13 and 7.14 is equal to zero.

We can therefore restrict ourselves in the sequel to the case where a = (sl, st) E
FeasA .
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a. We begin with the proof of Equation 7.13.

PAO [T > t St = a, T > t -l]

= PA[njl=I{Fj E s} St-_ = (s,.. .,s,_),T > t - 1] (7.15)
t-1

UCj (t-l)[st] (7.16)
j=1

=-t- Istc n cj(t - 1)1 (7.17)
j=1 Ic:(t- 1)1

=1 c ( (7.18)

Equation 7.15 is a consequence of Lemma 7.3.6. Equation 7.16 is a simple application
of Lemma 7.6.1. Equation 7.17 is a simple application of the fact that Ucj(t-l) is the
uniform distribution on cj(t - 1). Equation 7.18 comes from the definition of cj(t).
This finishes to establish Equation 7.13.

b. We now turn to the proof of Equation 7.14.

PAO [T > t I St = (1,..., st)]

= PAO [ > t, T > t - 1, ... , T>1 I St=(s,..,s)] (7.19)

= PAo[> t I T > t-1, St = (s,...,St)]

.PAO[T t- 1 I T > t - 2, St = ( St)] (7.20)

. PAO [T > 2 IT > 1, St = (1,...,s,)] PAO[ T > 1 St = (Si,., St)]

= PA[T > t T > t- , St = (SI,...,St)]

PAO,[T > t- I T > t-2, _= (s,..., St)]

... PAO [T > 2 1 T > 1,S 2 = (S1,S2)] .PO [T > 1 I S1 = sl ] (7.21)

U- I Ic(u)I
l -= (rU II)1 (7.22)
u=2j=1 ICAl - ')I
t-l t I j(U)

=lu=j+l C(u- 1)1
j=l u=j+l CU-U
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t-1
= I lcj(t)/cj(j)l

j=1
t-1

= ] lc(t)/n
j=1

Equation 7.19 is justified by the equality {T > t} = {T > t,T > t - 1,...,T > 1}
Equation 7.20 is obtained by successive conditioning. Equation 7.21 is a consequence
of Lemma 7.3.6. Equation 7.22 is a consequence of Equation 7.13 and of the simple
property PAO[T > 1 I S = sil] = 1. °

The following lemma establishes that, for every time t, 1 < t < tm,,,(A), the set of
t-schedules a maximizing the probability PAo [ T > t St = a] is equal to the set At
of t-schedules a in normal form.

Lemma 7.6.11 For any t, 1 < t < tm,,(A 0), the value PAo[T tSt = a] is the
same for all t-schedules a in ft. We let PAO [T > t I St E M] denote this common
value. Furthermore, let a' be a t-schedule. We have:
1. If a' E t, then

PA [ T > t St = '] = max PA [ T > t St = a]. (7.23)

2. Conversely, if a' At, then

PA [T > t St = a'] < maxPA[T > t St = a] (7.24)

PROOF. By Lemma 7.6.10, that, for every t-schedule a,

PAO [ T > t t= ] = n j n
j=1 i=0

A first consequence of this fact is that the value PA[T > t I St = a] depends on a
only through the values (lo(t),..., ln(t)). By Lemma 7.5.4, there is a unique and
well defined sequence (10(t),..., l,(t)) to which all schedules in .At are associated.
This implies that the probability PAo[T > t S = a] takes only one value when a
varies in .t. This fact justifies the notation

PAO [T > t St E t] = PAO [ T > t I St= a'],
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for any arbitrary schedule a' in At.

Taking into account that all schedules a' E At give rise to the same value PA [ T >
t St = a'], we see that Equation 7.23 is a consequence of Equation 7.24 that we
now set out to prove. By definition of tmax(Ao), the condition t < t.,X(Ao) implies
that 0 < sup, P,,Ao[T > t], so that, by Lemmas 8.1.4 and 7.3.2

0 < supP,A [ T > t]
7r

< sup max P,Ao [ T t St =a]
r e

= max sup P,Ao [ T > t St = a]

= maxPAo [ T > t St = a] . (7.25)

Working by contradiction, assume that there exists a t-schedule a not in normal
form but which maximizes the probability PA [ T > t I St = a]. The non-normality
of a implies that

a. either there exists j and j2 in {1,. . .,t - 1} such that cjl(t)l < Icj2(t)l - 2,

b. or co(t) 0 and there exists j in {1,.. .,t - 1} such that cj(t)l < n - 1.

We first consider case a. In this case:

PAO[T > t St=a] = 1 Icj(t)
j=1

H [Cj ci(t)l cj,(t) l(t)

j E{1,..,t- l};j jl,j2 n n n

Define the sequence (7l,...,7t-l) derived from the sequence (cl(t)l,..., Ict_(t)l)
by replacing cj,(t)l by cj,(t)l + 1 and cj2(t)l by cj2(t) - 1. Note that

t-1 t-1

y j = Ici(t)l . (7.26)
j=1 j=1

By the only-if direction of Lemma 7.5.2 we have that n p- (c(t)I + Ict_(t)l).
By Equation 7.26 we therefore also have n < p- (y +.. .+yt-1). By the if direction
of Lemma 7.5.2 there exists a schedule ' = (s.... . st) whose associated c-sequence
(ci(t), ... ., c_(t)) satisfies Icj(t) = yj, 1 < j < t - 1. We compute:

(lCj(tll + 1) (cj20 ) = cjJ(t)- 1) = ( j(t) + lcj2(t)l- cjl(t)01-

> cijl(t) · cij(t) + ,
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because, by assumption, cij(t)l < cj,(t)f - 2.

Then

PAO [T > t St = a']

t-1 cj(t)

j=1

= , lci(t) ]jci(t i) c+ 11) c 2(t)- 11)
n n njiE{ ... t-1};jjlj 2 n n n

> n ]ci~t~l I cj(t) l ( lcj(t)l (7.27)
n n njE{1...t-1};j~j,j2

= PAo[T>tfSt=a].

In Equation 7.27, the inequality is strict because, by Equation 7.25 and the fact
that

PAO[T > t St = ] = II lci(t)l
j=1

(see Equation 7.14), all the terms Icj(t)l, 1 < j < t - 1 must be non-zero.

But this contradicts the fact that, by assumption, the schedule a maximizes the
probability PAo [T > t I St = a] . This concludes the analysis of case a.

Case b is similar but easier. We could proceed as in a and use Lemma 7.5.2 to
prove non-constructively the existence of an improving schedule. Just for the sake
of enjoyment, we adopt another another proof technique and provide an explicit
modification of the schedule a.

By assumption co(t) 0 and there exists jo in {1,...,t - 1} such that cjo(t)l <
n - 1. Note that the sequence (cjo(u))u>jo is a non-increasing sequence of sets
such that ICjo(jo)l df s(jo)l = n. Hence there must exist a time jl,jo < i < t
such that cjo(jl )l < Ilcj(jl)l - 1. Consider the smallest such ji. By the definition
of the set cjo(jl), (see Definition 7.5.1), this implies the existence of an element
z E s(jo) n s(jl). Let y be any element in co(t). Define

s'(j) -e (s(ji) - {x}) U {y}

and s'(j) = s(j) for all j jl. Let cl(t), . . ., c_(t) be its associated c-sequence. We
easily check that co(t)l = cjo(t)l+1 and that c'(t) = cj(t) for all j, 1 < j < t,j 5$ jo.
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Hence

PAo IT t St = ((s...,')]

t- Ic'(t)i
11 n
j=1

I Icj(t)l Icjo(t)l +

je{l,...,t-1};j;jo n n

> II j(t)
j=1

= PA,[T > t ISt = a].

As in case a, this contradicts the assumption that the schedule a maximizes the
probability PA0 [T > t I St = a] . This concludes the analysis of case b. O

7.6.5 Protocols in Prot(Progo) are optimal against Ao

Recall that the notation PA o[T > t St E Aft] was introduced and defined in
Lemma 7.6.11.

Lemma 7.6.12 For every t, sup, P,,Ao[T > t] = PAo[T t E t]. Further-
more, for t < tmax(Ao), a protocol r maximizes the probability P,Ao[T > t] if and
only if P,[ St E At] =1.

PROOF.
* Let a' be some schedule in Art. Let r' be a protocol such that P, [St = a'] = 1.
Then

supPT,Ao[T> t] > P,,Ao[T > t]

P,A,o[T > t St = a']
= PA[T>t St=a']

PAO[T > t I St E t],

where the last equality is a consequence of lemma 7.6.11.

* Conversely, let r be any protocol. The beginning of the following argument repeats
the proof of Lemma 8.1.4.

Pr,Ao[ T > t] = P,A [T > t St =a]P,,Ao [St = a
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PAO[T > t St= a]P,[ St = ]

maxPA[T > t = a] P,[St = ] (7.28)

= maxPA.[T > t I St = a]

= PA[ T > t I St E t],

where here also the last equality is a consequence of lemma 7.6.11. Hence

sup P,A [ T > t ] < PA. [ T > t ISt E t]

which finishes to establish the first part of the lemma. Furthermore, note that the
inequality 7.28 is an equality exactly when

P [St E {af; maximizes PA.[T > tlSt = o]}] = 1.

By Lemma 7.6.11, for t < tma,(Ao), this happens exactly when P,[St E At] = 1. 0

Lemma 7.6.13 For every ro E Prot(Progo), for every t,t < tma(Ao), P,,[St E
nt]= 1.

PROOF. Let r0 E Prot(Progo). By Lemma 7.6.8, tmax(Ao) = tmin(7ro) = p- n + 1.
Invariants g and h of Lemma 7.4.1 show that for every t, t < p - n + 1, r0 only
selects t-schedules in normal form. O

The next result expresses that, for all t, the protocols in Prot(Progo) maximize the
probability of survival up to time t when the adversary is the random adversary Ao .

Corollary 7.6.14 For every 7o E Prot(Progo), for every t, max, P,AO[T > t]
P,rO,AO[T > t] .

PROOF. The equality is trivially true if t > tmax(Ao): in this case both terms of
the equation are equal to 0. On the other hand, if t < tma,(.Ao), the equality is a
direct consequence of Lemmas 7.6.12 and 7.6.13. O

We can finally provide the proof of Lemma 7.4.7, stating that r0 is optimal against
adversary Ao.
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Corollary 7.6.15 For every 7ro E Prot(Progo), max, EA,,a [T] = E,,o.A[T ].

PROOF. Let %r0 be an arbitrary protocol in Prot(Progo). By Lemma 8.1.2, for every
protocol r, 7,.A4 [T] = Et>1 P, AO[T > t]. Hence,

sup E7 ,Ao[T] = sup E P,,Ao [T > t]
r t >l

< SUP P,,Ao [T > t]
t>l r

- ZP7 ,
t>1

,Ao [T > t]

= E,A [T].

Equality 7.293 is a consequence of Corollary 7.6.14

(7.29)

[



Chapter 7. An Optimal Randomized Algorithm

7.7 A0 is optimal against 7ro

This section is devoted to the proof of Lemma (7.4.8). It uses in detail the code
describing Progo given in Page 151 to which the reader is referred.

Notations: We use the convention established in page 156 and for each program
variable X let X(t) denote the value held by X at the end of round t. Hence J(t)
is the value held by the program variable J at the end of round t. Recall also that
St(t) = St(t + 1) = ... = St(n - p + 1) so that we abuse language and let St also
denote the value St(t) held by the program variable St at the end of round t.

For every t, 1 < t < p - n + 1 and every k, 1 < k < t, we let Ak(t + 1) denote the
value ICk(t)l - ICk(t + 1)1. As usual, we use lower-case to denote realizations of a
random variable and write 6k(t + 1) for a realization of Ak(t + 1).

By invariants g, h and i given in Lemma 7.4.1, for every program prog in Progo,
the value k(t + 1) of \k(t + 1) is uniquely determined for given values of J(t) and
J(t + 1), and hence for given values of St and J(t + 1).

Remember also that Up6,(f(ck(t)) denotes the uniform distribution on the set P6k(t)(ck(t))
of subsets of ck(t) which are of size 6 k(t).

The next two lemmas, 7.7.1 and 7.7.2, characterize what is at each time t the
probability distribution induced on P,(p) by the choice St+l made for round t + 1
by a program in Progo. This distribution depends on the t-schedule ta selected by
the program in the first t rounds and on the value allocated to J(t + 1).

As discussed in Section 7.4.4, J(t + 1) is an internal variable of the program and
is not measurable in the probability space (, 5) presented in Section 7.2. (In this
space, only events describable in terms of the schedule Sl,..., Sp and in terms of the
fault sequence F 1,..., Fp are measurable.) To be able to measure probabilistically
the values allocated to this variable we therefore need to use the probability space
(Q', 5', Pprog) defined in Section 7.4.4. In a figurative sense, programs in Progo appear
as black boxes when analyzed in the probability space (, 5): this probability space
allows only to measure the output (S, ... , Sp) of the programs. In contrast, the
probability space (',5 ') allows to look inside each program prog in Prot(Progo)
and to analyze the internal actions it undertakes.

Lemma 7.7.1 Let t, Lp/nj < t < p - n + 1, be arbitrary, let prog E Progo, let a be
a t-schedule and J,J C [t] such that Pprog[St = , J(t + 1) = J] > O. Then the
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random variables St+l n ck(t), 1 < k < t are independent and such that

P,,, St+ n Ck(t)= St = a, J(t +1) = J] = UP6](tl 1)(ck[ ] c 

where k(t + 1) and Ck(t) are the values of Ak(t + 1) and Ck(t) uniquely determined
by the conditions St = a and J(t + 1) = J.

PROOF. Consider round t + 1, and let a denote the t-schedule St selected up to
this point.
Conditioned on St = a, for every k,0 < k < t, the program variable Ck is
determined and equal to Ck(t) - by definition of Ck(t). Hence, in the randomized
invocations S := uniform(a; CK) or S := uniform(a + 1; CK) of lines 16, 22 and 35
of the code of Progo, the variable CK is equal to cK(t). Note also that no further
change is brought in round t to a variable CK once one of the lines 18, 24 or 37 is
executed. Hence the value allocated to S in these invocations is equal to CK(t + 1).
These two facts imply that the randomized invocation of line 16 can be rewritten
CK(t + 1) := uniform(a; cK(t)), and that the randomized invocations of lines 22
and 35 can be rewritten CK(t + 1) := uniform(a + 1; cK(t)).

By invariant g of Lemma 7.4.1, the sets Ck(t), 0 < k < t form a partition of [p] and
hence are disjoint. Hence the random draws associated to the various randomized
invocations CK(t + 1) := uniform(a; cK(t)) and CK(t + 1) := uniform(a + 1; cK(t))
are independent and uniformly distributed. Therefore the random variables ck(t) -
C'k(t + 1), 0 < k < t, are also independent of each other.

The value J of J(t + 1) determines precisely what are the values of k, 1 < k < t
for which ICK(t + 1)l = a + 1 and what are the values of k, 1 < k < t for which
ICK(t + 1)1 = a. After further conditioning on J(t + 1) = J, each random
variable ck(t) - Ck(t + 1), is drawn uniformly from the set P6k(t+1)(k(t)) of subsets
of ck(t) which are of size k(t + 1). (Recall that the value k(t + 1) of Ak(t + 1) is
uniquely determined for the values a of St and J of J(t + 1).) Hence, conditioned
on {St = a, J(t + 1) = 3}, the family (co(t) - Co(t + l),...,ct(t) - Ct(t + 1)) is
distributed according to the product distribution

t

(C P6k(t+ )(Ck(t)) ·
k=O

On the one hand, by invariant f of Lemma 7.4.1, the random set St+1 is equal to
the disjoint union UtV=o(ck(t) n St+l). On the other hand, by construction, (see the
code in Page 151l), it is equal to the disjoint union U=o(Ck(t) - Ck(t + 1)). Hence,
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for all k, O < k < t, Ck(t) n St+, is equal to Ck(t) - Ck(t + 1). This (trivially) implies
that the random variables Ck(t) n S+l,,o < k < t, are independent and that, for
every k,O < k < t, Ck(t) n St+l has the same distribution as Ck(t) - Ck(t + 1). In
particular, for every k, 0 < k < t,

Pprog [Ck(t) nS,+ St+ = a, J(t + 1) = ] =U 6,(t+,)(C(t))[ ] 

Lemma 7.7.2 Let t, Lp/nj] t < p - n + 1, be arbitrary, let prog E Progo, let a be
a t-schedule and , J C [t] such that Ppr,,[ S = a, J(t + 1) = ] > O. Then

Pprog [s+ = St = , J(t + 1) = ] 7 UPk(t+l)(k(t))Ck(t) n ]
k=O

where k(t + 1) and Ck(t) are the values of Ak(t + 1) and Ck(t) uniquely determined
by the conditions St = a and J(t + 1) = 3.

PROOF.

Pprog [ St+ = St = a, J(t + 1) = ]

Pprog [Uko(ck(t) ln t+) = Uk=O(ck(t) n ) St = a, J(t + 1) = ]
t

- I Pprog [Ck(t) n St+ = k(tl) S S= a, J(t + 1) = ] (7.30)
k=O

j UP6 1(t+l(c)(t))[ Ck(t) n ] . (7.31)
k=O

Equation 7.30 comes from the fact that the random variables Ck(t) n St+l are inde-
pendent. Equation 7.31 is a direct consequence of Lemma 7.7.1. 0

The next lemma is a simple consequence of the preceding ones and expresses what
is the probability that the set next selected by a protocol in Prot(Progo) does not
contain an element already faulty.

Lemma 7.7.3 Let t, Lp/nJ t < p - n + 1 and j, 1 < j < t be arbitrary. Let prog E
Progo, let a be a t-schedule and J, C [t] such that Pp,og[St = a, J(t+1) = > 0.
Let fj E cj(t) be an arbitrary element. Then

Pprog [St+l fj I S = , J(t + 1) = J] = U6 (+l)(c(t))[ ·0 f ] 
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PROOF. Recall that for every k, 5k(t + 1.) and Ck(t) are the values of Ak(t + 1) and
Ck(t) uniquely determined by the conditions St = a and J(t + 1) = J.

By invariant f of Lemma 7.4.1, St+l is equal to the disjoint union St+l = Uk(St+l n
Ck(t)). By assumption, fj is in cj(t). Hence fj is in St+1 if and only if it is in
St+ n cj(t). This justifies the first following equality. The second one is a direct
consequence of Lemma 7.7.1. Hence

Pprog St+ fj IS t = , J(t + 1)= ]

= Pprog [(St+l n ej(t)) fj I St=a, J(t + 1)=J]

= UP6j (t +l)(j(O)) [ i ]

The following lemma is the crux of this section and reveals the role played by the
uniform probability distributions used in the design of Progo. Particularly revelatory
is the computation allowing to pass from Equation 7.36 to Equation 7.37.

Lemma 7.7.4 Let t, 1 t < p - n + 1. Then the value of the probability

Pro [T > t + I T > t, St = a, Ft = ]

is the same for all protocols ro E Prot(Progo) "l, for all t-schedules a E Aft and for

all t-fault-sequences adapted to a such that P,o T > t, St = a, Ft = ] > O.

PROOF. Throughout the proof we consider 7r, a and X such that P, 0[T > t, St =
a, JFt = 6] > 0 and we let prog be an element in Progo such that r 0 = rprog.

Recall that we let fi,..., f, denote the realizations of F 1,..., Ft. Hence the con-
dition Ft = means that (F,..., Ft) is determined and equal to (f,,..., f) = .
Similarly, St = a means that the t-schedule (S 1,..., St) is determined and equal
to (sl,...,st) = a. The random sets Cj(u), 1 < j u < t are then also uniquely
determined and we let cj(u) denote their realizations. Recall that, by Lemma 7.5.1,
{T > t} = nt=,{Fk E Ck(t)}. Hence, by conditioning on {T > t,St = a, =},
we restrict ourselves to the case where fk is in Ck(t) for every k, 1 < k < t. This
fact, along with the fact that the family (ck(t))l<k<t is a partition of [p] implies that
for every S,,S C [p], and every k, 1 < k < t, the condition fk E S is equivalent to
fk E (S n ck(t)).

1 See Page 150 for a definition of Prot (Prog).
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Case I. Assume that t < p/nj. Then P,, [T > t+ 1 T > t, St = ,t = ] = 1

and hence the result holds trivially.

Case II. Assume that t > p/nj. We have:

P,[T > t + T > t, St = a,Ft = ]

= P1 [St+1 aFl,, St+, Ft| T>tSt t

= P. [St, fl St+ 0 f T t, St = F t = q]

= P,, (St,, n c(t)) fl,..., (St+ln ct(t)) ft T > t,St=a, t 32)

= P,, [(St+, n ci(t)) fi,..., (St+, n ct(t)) ft St = ] (7.33)

= Zprog [(St+, n cl(t)) fi,..., (t+, n c(t)) f St = a, J(t + 1) = ]

Pprog [J(t + 1)= St = a] (7.34)

= E II Prog [(St+ n k(t)) f St = J(t + 1) = J]
f k=l

Pprog [J(t + 1) = J St = a] (7.35)

y Up,,(,+l)(c(t))[ . fk ] Pprog [J(t + 1) St = ] (7.36)
J k=l

= E Ck(t ±1)1 Pprog [ J(t + 1) = St = oj (7.37)
j k=1 Ick(t)l

n k II=ck(t+)} . Ppro [ J(t +)= St ] (7.38)
Ik= Ik(t)l IT

k= 1 Ick(t + 1)1

Ik=llck(t)l

Equation 7.32 stems from the fact that, as we saw at the beginning of this proof,

for every k, 1 < k < t, fk is an element of ck(t) and hence the condition St+, fk is

equivalent to (St+l n ck(t)) 0 fk.

We used in the beginning of the proof the formula {T > t} = nt=l{Fk E Ck(t)}.
We now find it convenient to use the alternate expression {T > t} = l{=,S,, n

{F,,..., F_} = 0}. (Both expressions are presented in Lemma 7.5.1). The event

{'t = T > t} is equal to the event {Yt = , nu=,lIS {fn If,..., = 0}}
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which,when conditioned on St = a, is itself equal to the event {Ft = B, n=, {s, n
(f,.. fu_- } = 0} }. Note that the relation n=l{su n ffi,... fu1} = 0} only
expresses a relation between the deterministic quantities s, fl,...,st. Hence the
probabilistic event {Ft = , =l1{s n {fi,..., fu} = 0}} is actually equal to
{ Ft = b}. As, by Lemma 7.3.1, conditioned on St = a, the random variables Ft and
St+, are independent, we therefore similarly have that, conditioned on St = a, the
random variable St+l is independent from the event {Ft = , T > t}. This justifies
Equation 7.33.

In Equation 7.34, we condition on the value taken by J(t + 1), i.e., on the outcome
of an internal action of the program prog associated to ro. As discussed at the
beginning of this section, the random variable J(t + 1) is not measurable in the
a-field associated to protocols, and we must therefore consider the probability space
(9I', ', Pprog) allowing to measure the randomized invocations made by prog. This
explains why we consider Pprog in place of P,,o.

By Lemma 7.7.1 the random variables St+1 n ck(t), 1 < k < t are independent. This
justifies Equation 7.35. Using Lemma 7.7.3 along with the fact that St+, fk is
equivalent to (St+l n ck(t)) ¢ fk justifies Equation 7.36.

Note that we replaced in Equation 7.32 the conditions St+l fk by the conditions
(St+l n Ck(t)) f and that we replaced back each condition (St+, n 'k(t)) fk by
St+, f while establishing Equation 7.36. The reason for the introduction of the
sets Ck(t) is to be able to use the (conditional) independence of the random variables
St+l n Ck(t) and to obtain the product introduced in Equation 7.35.

Recall that we defined 5 k(t + 1) to be equal to the value jck(t)l - Ck(t + 1)1. Hence
UPk(,+l(c(t))[fk f '*] is equal to U,c(+l,(,, ( (t))[ fk E ] which is equal to Ick(t +
1)1/Ick(t)J. This establishes Equation 7.37. Note that, for each k, the value Ck(t+ 1)
does depend on the values a and J taken by St and J(t + 1). Nevertheless, by
Lemma 7.4.5, the product n1 Ick(t + 1)1 (resp. rI=l Ick(t)I) is the same for all
programs prog E Progo and all values a, 3 and X taken by St, J(t + 1) and Tt.
We can therefore factor the term Hn=l ICk(t + )/rl.=, Ick(t)l out of the summation
over J. This justifies Equation 7.38.

This establishes that P,,o[T > t + T > t, St = a, t = 7 b] is the same for
all protocols r E Prot(Progo), all t-schedules a E Aft and all t-fault-sequences d
adapted to a. []

Note that if k < p/nj then Ck(U) = Sk for all times u,k < u < p/nj. Therefore
Ick(t + 1)l/lck(t)l = 1 for all t and k, 1 < k < t < [p/nJ.

Assume now that t > p- n + 1. Let a be a t-schedule and let s E P,(p) be such
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that (a, s) is a t+ 1-schedule. Let r0 be a protocol in Prot(Progo) n Pgenerating(a).
By Lemma 7.6.8, tm,,(Ao) = p - n + 1. By definition of tmax(Ao) this implies that
PAO[T > t + 1 I S,+1 = (a, s)] = 0 and by consequence that (a,s) ~ FeasAo. Hence,
as is established at the beginning of the proof of Lemma 7.6.10, r1=H cj(t + 1)1 =
0. Using the convention 0/0 = 0 (see Convention 8.1.1, page 198) we see that

(-Ik=- Ck(t + 1)l)/(tk= 1 lCk(t)l) = 0. On the other hand, again by Lemma 7.6.8 and
Convention 8.1.1, Po[T > t + 1 T > t, St = a, t = ] = 0 if t > p- n + 1.

This shows that the equality

P[ Tt+1 TtSt=aFe:=1k H Ick(t + 1)1
-lk:1 Ick(t)l

holds for every t, t > 1.

This result, along with Formula 7.13 in Lemma 7.6.10 establishes the following
remarkable factl2

where the values c(t), 1 < j < t, and cj(t + 1), 1 < j < t, are the c-values related to
the (t + l)-schedule (a, s).

This result constitutes the core technical result of this chapter, whose consequences
ultimately lead to the fundamental equality

sup E,,Ao[T] = E,?r,Ao[T] = inf E,,oA[T],

establishing Theorem 7.4.6.

Lemma 7.7.5 Let t, 1 < t < p - n + 1. Then, for every pro E Prot(Progo), the
probability Po,A[ T > t + 1 I T > t] is independent of the adversary A.

12 Recall that, by convention, we set 0/0 = 0.

For every t, t > 1, every t + 1-schedule (a, s) E JNt+l, every t-fault-sequence X

adapted to a and every protocol r0 E Prot(Progo) n Pgenerating(o):

PA,[T> t+ T> t,S+ = (a,s)]

- f Ic,(t + 1)
j= ljc(t)l

= P,,O[T > t + 1 T > t, St = o, St = 0]
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PROOF.

Pro, A IT'>t+ T>t]

- EP,T > t + 1 T > t,S=,= ]P,,o,[St= a,ft= ]
a,+

P,,[ T > t + 1 T > t,St =a,f= ] P, [St = a. = k7.39)
P[ T > t + 1 T > t, St = a, t =]

Equation 7.39 holds because, by Lemma 7.7.4, the value P,o [ T > t + 1 T >
t, St = a, oft = ] is the same for all a and 0 (adapted to a). Furthermore, the
fact that the value P,0[ T > t+ 1 T > t, St = a, Ft = ] does not depend on
X immediately implies that it similarly does not depend on A, which concludes the
proof. I[

Lemma 7.7.6 Let t, 1 < t < p - n + 1. Then, for every 7ro E Prot(Progo), the
probability P,,OA[ T > t] is independent of the adversary A.

PROOF. P,,A[T > t] = P,,.,A[T > t T > t -1]... P,,A[T > 2 1 T > 1]. The result
then follows from Lemma 7.7.5. 0

We are now finally able to prove Lemma (7.4.8).

Corollary 7.7.7 For every ro E Prot(Progo), the expectation E,r,A[T] is indepen-
dent of the adversary A.

PROOF.

E,.,A[T] = Pro,A[T > t] (7.40)
t>l
tmax(A)

- P,A[T > t] (7.41)
t=1

tmin(a)

= P,,A[T > t] (7.42)
t=l

Equality 7.40 is justified by Lemma 8.1.2. Equality 7.41 by the fact that P,,,,A[T >
t] = 0 if t > trna(A). By Lemma 7.6.8, for all A, tmax(A) = tmin(7ro) = p-n + 1. This
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justifies Equality 7.42. By Lemma 7.7.6, for every t, 1 < t < tmin(r0o), each of the
terms P,, A[T > t] is independent of A. Hence the whole sum t=min(7r0 ) P,,,AT t]
is independent of A. 0



Chapter 8

General Mathematical Results

8.1 Some useful notions in probability theory

Notation: 1) For every finite set 4, 4 $ 0, we let Up denote the uniform distribution
of the set . We will find it convenient to extend this definition to 4 = 0 and let
U0(A) be identically equal to 0 for every set A. (Hence U0 is not a probability
distribution.)
2) For every set X we let P(X) denote the power set of X. For every integer 6 we
let P(X) denote the set of subsets of X of size 6:

p,(X) df {Y C X; Y = }).

Hence, Po(X) = {0} and P,(X) = 0 for all 6 > IXI. To simplify the notations we
write P,(p) in place of P,([N]).
3) For every integers k and 1, k < 1, we let [11] denote the set {1,...,1} and let
Pk(l) ' {s; s C [], II = k}.

We can mix the two previous definitions and consider Up,(x), the uniform distribu-
tion on P6 (X). The following lemma investigates some special cases associated to
this situation.

Lemma 8.1.1 1) Up,(x) O0 if 6 > XI. 2) Uo(x) = 60, the Dirac measure on 0.
Equivalently, Up(x) is the probability measure selecting the empty set with probability
1.

PROOF. Assume that 6 > IXI. Then, for every set A, Up,(x)(A) = UO(A) = 0. On
the other hand, Up,o(x) = U{0} is the uniform distribution on the singleton set {0},
i.e., the distribution selecting 0 with probability one. [1
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Convention 8.1.1 Let (Q, , P) be some probability space. For all A and B in 6
we set P[BIA] = 0 whenever P[A] = O. We accordingly set to 0 the ratio 0/0.

Definition 8.1.1 Let (, , P) be a probability space. For every sets A and B in
6 we say that A and B are P-equivalent if P[AAB] = O, where AAB denotes the
symmetric difference of A and B. An element A of 5 is called a P-atom if, for
every B in O, B is a subset of A only if B is P-equivalent to A or to 0.

Definition 8.1.2 Let ( 1, 61, P1) be some probability space and let X (1, 1, P1) -

(A2, 62 ) be a random variable. Then the law of X is the probability distribution on

(Q 2 , 2) defined by:
VB E Q2, P2 [B] df Pi[X E B].

We write
L£(x) = P2 .

For A E 1, P[A] 0, the random variable XIA is by definition a random variable
X' whose law P3 is given by:

VB E 62 , P3 [B] = P[X'E B]

- P[X E B A].

Following Convention 8.1.1, we set XIA 0 if P[A] = 0.

Lemma 8.1.2 Let T be any non-negative random variable defined on some proba-
bility space (, 5, P). Then

E[T] = PIT > t] dt.

If T is integer valued, the preceding translates into

o

E[T] = E P[T > t].
t=l

PROOF. For every interval [0,T[ we let XY[O,T denote the function equal to 1 on
[0, T[ and 0 elsewhere. Also, for simplicity of notation, we think of the expectation
E as being an operator and let Ef denote E[f].

ET = E Jdt (8.1)
/0
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= E X[O,T[(t) dt

= J dP(x) J X[o,T(x)[(t)dt (8.2)

= J odt fdP(x) X[o,T()[(t) (8.3)

= P[T > t] dt.

Equation 8.1 comes from the simple observation that T = foTdt. Equation 8.2 is
a particular case of the general formula E[f] = ff(z)dP(x). Equation 8.3 is an
application of Fubini's theorem. In the case where T is integer valued,

E[T] = I P[T > t]dt

= EZ j P[T > t] dt
n=l -1

= ZP[T > n]
n=l1

The following lemma states a well-known property of the uniform distribution.

Lemma 8.1.3 Let A be a finite set and let B be a non empty subset of A. Then
UA[ . I B] = ZAnB.

Lemma 8.1.4 Let (, ,P) be some probability space, let S : (Q,g) (E,P(E))
be a random variable defined on Q. Then for every B E 5,

P[B] < max P[B I S = s].
sEE

PROOF. P(E) being the a-field attached to E the set {S = s} is measurable for
every s in E. Hence P[B I S = s] is well-defined if P[S = s] 0. On the other
hand, by Convention 8.1.1, P[B I S = s] is set to 0 when P[S = s] = 0. Hence
P[B I S = s] is well-defined for all s in E.

P[B] = E P[B I S= s]P[S= s]
sEE

< max P[B IS = s] E P[S = s]
sEE sEE

maxP[BIS = s].
sEE
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Lemma 8.1.5 Let B and A be any real-valued random variables. Then

Vx ER, P[B > x B < A] < P[B > x]. 1

PROOF. The result is obvious if P[ B < A ] = 0. We can therefore restrict ourselves
to the case P[ B < A] > 0. Assume first that A is a constant a.

If a < x the result is trivially true, so we assume that a > x. Set p = P[B > a] and
3 = P[B > x]. Then:

P[B > x B<a] = P[x[<B<a]
P[B<a]

C - def

For E [0, 1], The function X is not increasing on [0, 1). Hence:

P[B > x B < a] < (0)
= P[B > ].

We then turn to the case where A is a general random variable.2 We will let dPA
denote the distribution of A so that, for any measurable set U, dPA[U] = P[A E U].
Then:

P[ A > B > x ] =dPA(a)

P[ B > x B < a] P[B < a] dPA(a)

< |P[B > ] P[B < a] dPA(a)

(We use here the result valid for A = a constant)

= P[B > x] l P[B < a] dPA(a)

= P[B > x] P[B < A].

Then we just need to divide by P[B < A] to get the result we are after. C

'Recall that, using Convention 8.1.1, we set 0/0 = 0 whenever this quantity arises in the com-
putation of conditional probabilities.

2 Note that we cannot simply extend the previous proof in this case: A can sometimes be less
then x and then it is not true anymore that {B > A} C {x < B}. We used this when saying that
P[ x < B < a] = P[z < B] - P[B > a].



8.1. Some useful notions in probability theory

If A is a discrete variable, its distribution is absolutely continuous with respect to
the counting measure, so that the expression fa P[a > B > x]dPA(a) reduces to

Ea P[a > B > x]P[A = a].

We recall in the following definition the notion of stochastic (partial) ordering: this
ordering is defined within the set of real random variables.

Definition 8.1.3 Let X and Y be two real random variables. Then the following
conditions are equivalent:

1. For all x E R, P[X > x] < P[Y > x].

2. For all continuous and bounded function f, Jf(x)dPx(x) Jf(x)dPy(x)

(i.e., d'x < dPy).

We then say that the X is stochastically smaller then Y (or alternatively smaller in
law) and we write that: X <c Y.

Note that if X < Y in the usual sense (i.e., almost surely), then X is also stochasti-
cally smaller then Y. Actually, among all the usual orders that are usually consid-
ered on the set of random variables (e.g., almost surely, for some LP-norm, for the
essential norm L°) the stochastic ordering is the weakest.

Formulated in this language, Lemma 8.1.5 just says that

(B I B < A) <L B.

The result of Lemma 8.1.5 can be generalized into:

Lemma 8.1.6 Let Al , A2 and B be any real-valued random variables. 3 Assume
that Al <c A2 . Then

(B I B < Al) <L (B I B < A 2).

PROOF. The proof is similar to the one of Lemma 8.1.5. (Lemma 8.1.5 corresponds
to the case A., _ oo.) O

Lemma 8.1.7 Let A, B and C be any real-valued random variables. Then

P[B > C I B < A] < P[B > C].

3As is customary in measure theory, we allow the random variables to take the oo value.
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PROOF. We integrate the inequality of Lemma 8.1.5:

P[B > C B < A] = JP[B > x B < A] dPc(x)

< fP[B > x] dPc(x) = P[B > C].

El

Lemma 8.1.8 Let Al
that A 1 <L: A 2 . Then

, A2 and B be any real-valued random variables. Assume

P[A > B] < P[A2 > B].

PROOF. P[A1 > B] = JP[A > x] dPB(x) < JP[A 2 > x] dPB(x) = P[A 2 > B].

8.2 Max-Min Inequalities

Lemma 8.2.1 Let f(x, y) be a reel function of two variables defined over a domain
X x Y. Then

sup inf f(x, y) < inf sup f(x, y).
-EX YEY yEY EX

PROOF. Let x0 and y be two arbitrary elements in X and Y respectively. Obvi-
ously, f(xo, Yo) < sup, f(x, yo). This inequality is true for every Yo so that infy f(xo, y)
< infy sup. f(x, y). Note that infy sup, f(x, y) is a constant. The last inequality is
true for every x0 so that sup_ infy f(xo, y) < infy sup, f(x, y). O

Lemma 8.2.2 Let f(x, y) be a reel function of two variables defined over a domain
X x Y. For every xo E X and yo E Y we have infyEy f(xo, y) < supEX f(x, yo).
Furthermore, the previous inequality is an equality only if

max inf f(x, y) = min sup f(x, y) = f(xo, yo).
xEX yEY yEY EX

PROOF.

inf f(xo, Y) <
yEY

sup inf f(x, y)
zEX yEY

inf sup f(x, y)
YEY xEX

sup f(x, yo).
xEX

(by Lemma 8.2.1)
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If infYEY f(xc., y) = supEX f(x, Yo) the previous inequalities are equalities so that
infyEy f(x 0, y) = supZEx infyEy f(x, y). This shows that the previous sup is achieved
(for x = x0) and hence that supEx infYEy f(x, y) = maxEx infYEy f(x, y). Simi-
larly infyEy supEX f(x, y) = minyEY sup-EX f(x, y). To finish, note that, obviously,
infyey f(xo, y) < f(xo, Yo) < supEx f(x, yo). Hence the equality infyEy f(xo,y) =
supXrEXf(x,yo) occurs only if maxExinfEy f(x,y) = minYeysupex f(x,y) =
f(x0 Yo ). [

The following result strengthens the preceding one.

Proposition 8.2.3 Let f(x, y) be a reel function of two variables defined over a
domain X x Y. Define 01 = {x' E X; infyEy f(x', y) = supEX infyEy f(x, y)} and
similarly 02 = {y' Y; supEX f(x, y') = infyEy supE f(x, y)}. Then there exists
Xo E X and Yo E Y such that

inf f(xo, y) = sup f(x, yo)
yEY xEX

if and only if
max inf f(x, y) = min sup f(x, y).
xEX y Y E yEY EX

Furthermore, if this condition is satisfied, 01 and 02 are both non-empty and for
every xo E 01 and every yo E 02 we have

inf f(xo, y) = sup f(x, yo) = f(xo, yo) = max inf f(x, y) = min sup f(x, y).
Y z SEX yE YEY EX

PROOF. By Lemma 8.2.2, there exists x E X and y E Y such that

inf f(xo, y) = sup f(x, yo)
yEY vEX

only if maxXex infYEy f(x, y) = minyEy supx f(x, y). Conversely assume that
max.EX infyEy f(x, y) = minyEy sup-EX f(x, y). Part of the assumption is that
supEX infyEy f(x, y) = maxEx infyEy f(x, y) which means that 01 is non-empty.
Symmetrically, 02 is non-empty. Let x and yo be any two elements of 01 and 02
respectively. By definition, infy f(xo, y) = maxxEx infyEy f(x, y) and sup. f(x, yo) =
minyEy supEX f(x, y). By assumption these two values are equal so that infy f(xo, y)
= sup. f(x, yc). By Lemma 8.2.2, this common value is equal to f(xo, Yo). E

Lemma 8.2.4 Let X and Y be two sets such that for every (x,y) E X x Y,
(a,,y(t))tEN is a sequence of non-negative numbers. For every x E X we define

tmin(x) df SUp t; inf a,y(t) > O ).
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Similarly, for every y E Y we define

tma(y) d sup { t; sup ay(t) > 0 }.

Then
sup tmin(X) < inf tmax(y) .

2:~ Y

PROOF. Define Y' to be the set Y' df {y E Y; tma(y) < oo}. The result is obvious if
tmx,(y) = oo for every y E Y. We therefore consider the case where tmx(y) < oo for
some y in Y, i.e., when Y' is non empty. Furthermore, the equality infYEy tmax(y) =
infyEy, tmax(y) shows that we can restrict our analysis to within Y' in place of Y. Let
xl and Y1 be two arbitrary elements from X and Y' respectively. The definition of
tmax(yl) implies that a,l,y, (tmax(yi) + 1) = 0 and hence that infy ar,,y (tm.a(yi) + 1) =
0. By definition of tmin(xl) this implies that tmin(xi) < tma(yl). The elements x1 and
yi being arbitrary, we obtain that

sup tmin(X) < inf tmax(y) ·
X Y

By assumption, all the numbers a ,y(t) are non-negative and infy tma(y) < oo so
that 0 < sup, tmi(x) < infy tma(y) < oc. The inequality sup , tmi,(x) < oo shows
that supx tmin(X) = max, tmi(x). Similarly, the inequality 0 < infy ta(y) implies
that infy tma(y) = miny tm,,(y). Therefore, in the case where tm,x(y) < oo, the
max-min inequality can be strengthened into

maxtmin(x) < min tax(y) (
Y

8.3 Some Elements of Game Theory

Recall that, for all column vector X, XT denotes the transpose of X. For any integer
k we let Tk denote the k-dimensional fundamental simplex and Tk' denote the set of
extreme points of this simplex:

k - (1, **,n) e [O ]-; Ai = 1.

(1, . ., ), (O , ...., ..., (O. O ..., 1)
The following theorem is the celebrated result of Von Neumann which initiated the
field of game theory.
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Theorem 8.3.1 (Von Neumann) For any k x I real matrix M = (Mij)ij, the
equality

max min XTMY = min max XTMY
XETk YET t YETi XETk

is valid. Furthermore, this common value is equal to:

maxmin XTMY and minmaxXTMY.
XETk YET[ YET, XET'

Note that, (X,Y) - XTMY is continuous on the colmpact Tk x T. Hence for
every X we can find an element Yx in T such that infyET XTMY = XTMYx.
Furthermore we easily check that we we can select Yx in such a way that X -~ Yx
defines a continuous function on Tk. This immediately implies that

sup inf XTMY = sup XTMYx
Xerk YET XETIk

= max X T MYx
XE Tk

= max min XTMY .
XETk Yej

We similarly easily establish that inf SE supXE XTMY = minyET, maxxET, XTMY.
Note also that the inequality supx infy XTMY < infy supx XTMY is a direct
consequence of Lemma 8.2.1. A proof of the converse can easily be derived with the
use of the duality result in Linear Programming.

The game theory interpretation of this result is as follows. Consider two players
Player(1) and Player(2) involved in a game (G, H, A) with a performance function
f. G is the set of rules of the game describing how the game is played between the
two players, which actions (and in which order) are to be undertaken by the players
and in particular which information is traded between the two players during the
execution of a game. is the set of allowable strategies of Player(1), A is the set of
allowable strategies of Player(2): II (resp. A) is a subset of the set of strategies of
Player(1) (resp. Player(2)) compatible with the rules of the game G. Note that, by
definition, a strategy of either player is defined independently of the strategy chosen
by the other player. f : II x A -, R is a performance function measuring "how well"
a given strategy r of Player(1) does when implemented again a given strategy A
of Player(2). We assume that the game is a zero-sum noncooperative game which
means that one of the two players, say Player(1), wants to chose its strategy so as
to maximize the performance f(7r, A) and that the other player, Player(2), wants
to chose its strategy so as to minimize the performance.

We consider the sequential case where one player chooses first a strategy and where
the other player then chooses his. Hence, if Player(l) plays first, for every e > 0,
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the two competing players can choose their respective strategies r and A so as to
bring f(7r,A) to within E of sup, infA f(r, A). Conversely, if Player(2) plays first,
for every E > 0, the two competing players can choose their respective strategies r
and A so as to bring f(7r, A) to within E of infA sup, f (r, A). By Lemma 8.2.1,

sup inf f(ir, A) < inf sup f(r, A), (8.4)
A Ar

which expresses that, for either player, selecting its strategy last can only be benefi-
cial. Generally, the inequality is strict, i.e., there is a definite advantage in choosing
its strategy last.

An interpretation of this inequality is that, eventhough no explicit exchange of in-
formation is performed between the two players when they select their respective
strategies, the player selecting its strategy last can be assumed to know the strat-
egy selected by the player selecting its strategy first. The reason for it is that, for
every given choice 7r made by Player(l), there is a Player(2) that "always assumes"
that Player(1) chooses r and that makes an optimized decision A based on this
assumption. Such a Player(2) is by construction optimal if Player(l) does chose rr.
Based on this remark we say that an optimal Player(2) knows implicitly the iden-
tity of Player(1) in the expression sup, infA f(r, A). Symmetrically, we say that
an optimal Player(1) knows implicitly the identity of Player(2) in the expression
infA sup, f(7r, A).

In this setting, the strict inequality in Equation 8.4 expresses precisely that allocat-
ing to one or the other player the possibility of spying on the competitor's strategy
affects the performance of the game. This interpretation of Inequality 8.4 will be
very useful in the rest of the discussion.

Consider now the case where Player(1) is provided with a set I of size k and
Player(2) is provided with a set J of size 1. Assume that to each pair (i,j) in I x J
is associated a cost Mij in R. Let ((G, II, A), f) be a game with a performance func-
tion where I = I, A = J, f(i, j) = Mij and where the rules are the trivial rules: "do
nothing". In the case where Player(1) and Player(2) both choose their strategies
optimally and where Player(1) chooses first, the performance associated to the game
is maxi mini Mij. Conversely, if Player(2) plays first, the performance associated
to the game is mini maxi Mi,j. As discussed above, maxi mini Mij < mini max/ Mij
and, generally, the inequality is strict, i.e., there is a definite advantage in making
its choice last.

We consider now the case where the players are allowed to make random choices.
The following theorem formalizes the fact that, in a game of cards played by two
players, knowing the opponent's strategy confers no advantage for winning any single
hand, provided that the hand finishes in a bounded number of transactions.
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We abuse language and identify a probability distribution with the procedure con-
sisting of drawing an element at random according to this probability distribution.

Theorem 8.3.2 Consider a two-players game (G, II, A) having the property that
there exists two finite sets I and J such that II is the set of probability distributions
on I and such that A is the set of probability distributions on J. Let T be a function
on I x J. (T is often called the cost function.) For every r in II and every A in
A we let E,,A[T] denote the expected value of T when Player(1) selects an element
in I according to the distribution 7r and when Player(2) selects an element in J
according to the distribution A. Then

max min E,,A[T] = min max Er,A[T].
rErH AEA AEA rEH

The sets I and J are often called the set of pure strategies. The sets II and A are
often called the set of mixed strategies.

PROOF. A probability distribution on I is represented by a k-tuple (A1,..., Ak) of
non-negative numbers summing up to one. Equivalently, Tk is the set of probability
distributions on I and similarly 7T is the set of probability distributions on J. By
assumption I[ can be identified to Tk and a strategy 7r in II can be represented by
element X in Tk. Similarly, A can be identified to T and a strategy A in A can be
represented by element Y in T. For every (i,j) E I x J we write Mi j = T(i,j) and
we let M represent the associated matrix: by construction M is symmetric. Using
these associations, consider the case where Player(l) chooses the strategy X E Tk
and where Player(2) chooses the strategy Y E T. The quantity XTMY represents
the expected value of the cost T obtained under these strategies. Theorem 8.3.2 is
therefore a direct application of Theorem 8.3.1. 0

A game as one described in Theorem 8.3.2 is is often called a matrix game.

Explicit/Implicit knowledge. In the course of the previous discussion we intro-
duced the notion of implicit knowledge. We present here an abstract summarizing
this concept.

We say that a player, say Player(2), receives explicitly some information x during
the course of an execution when the rules of the game (i.e., when considering al-
gorithms, the Il/A-structure) specify that that Player(2) be informed of x. We
can say figuratively that Player(2) "receives a message" carrying the information x.
Note that, in this situation, Player(2) receives the information x independently of
the strategy that it follows.
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Consider now a function of two variables f(x, A), (x, A) E X x A and consider the
expression inf A f(x, A). We can consider this situation as a game parameterized
by x played by Player(2): Player(2) tries to decide A so as to minimize f(z,A).
Eventhough there might be no mechanism letting Player(2) explicitly know what
the parameter x is, when considering the expression infA f(x, A) we can assume
that an optimal (and lucky) Player(2) selects non-deterministically an A bringing
the function f(x, A) arbitrarily close to infA f(x, A): we then say that an optimal
Player(2) knows implicitly the parameter x selected. This knowledge is not a real
knowledge and is of course nothing more then a heuristic meaning that some choice
of A corresponds ("by chance") to the choice that some informed Player(2) would
make. Note that, in contrast to the case of explicit knowledge, Player(2) is said to
"have the implicit knowledge" when it chooses a "good" strategy A.

We provide two examples of this situation. When considering the formula

inf sup f(2r, A)
AEA rEI

we will say that Player(2) knows implicitly the value r. Also when considering the
formula

inf PA[C I B]
A

we will say that Player(2) knows implicitly that the sample space is restricted to
within B.
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adversary designer, 25, 126, 136
deterministic adversary, 39
fair, see failr
restricted, 79
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algorithm
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arbitrary, see randomized invocation
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probabilistic automaton, 94
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conditioning by adversary, 54
probabilistic conditioning, 54

decision tree, 138
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dependence

sole dependence, 55
dynamics
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natural dynamics, 54

execution, 41, 141
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t-odd execution, 141
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Tt, 141
t-fault-sequence, 141
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FeasA, 149, 174, 175

G, see sigma field
game theory, 16, 204
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pure/mixed strategy, 127, 140, 207
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Von Neumann, see Von Neumann
zero sum noncooperative, 205

global v.s. local point of view, 139
Graham-Yao

Byzantine Generals, 36, 130, 132

information, 147
implicit v.s. explicit, 53, 129, 137,
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knowledge, 55
see also information

Kolmogorov, 43

Li(t), 165
law, 198
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mutual exclusion, 67

K(k), 67
no-lockout, 61, 71
normal form, 168, 180
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P(k): participating processes, 67
P(X), P6(X): power set of X, 197
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Pgenerating, 145, 148

rprog, see protocol
Player(1) & Player(2), 16, 25, 126
precondition, 48
probability distribution

7r, 141

7prog, 150
PA, 144
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P,,A, 43, 142
Pprog 162, 189

Progo, 150

proof methodology, 127
Prot(Prog o), 150
protocol

7r, 141

7rprog, 150

protocol designer, see algorithm de-
signer

randomized invocation, 150, 162
arbitrary, 150
uniform, 150

rectangle, 42
round, 66

schedule, 141

St, 141, 151
St, 141
t-schedule, 141

schema
event, 43, 52.
probability, 43

sigma-field
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{t, 141
St, 141

specifications
see also problem

Strong Byzantine, 128, 148
structure

II/A-structure, 37, 65, 141
action, 37, 65
state, 37, 65
update function, 37, 65
view, 34, 37, 65, 141

Tk, Tk, 204

t(k), 67
target property, 48
time

discrete, 136
survival time T, 143
tmax, 204

tmax.(A), 177, 182, 186, 195
tmin, 204

tmin(7r), 177, 195
topt, 143
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