
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 9, SEPTEMBER 1994 939

On the Performance of Synchronized Programs in
Distributed Networks with Random Processing

Times and Transmission Delays
Sergio Rajsbaum and Moshe Sidi, Senior Member, IEEE

Abstruct- A synchronizer is a compiler that transforms a
program designed to run in a synchronous network into a
program that runs in an asynchronous network. The behavior of
a simple synchronizer, which also represents a basic mechanism
for distributed computing and for the analysis of marked graphs,
was studied by Even and Rajsbaum under the assumption that
message transmission delays and processing times are constant. In
this paper, we study the behavior of the simple synchronizer when
processing times and transmission delays are random. Our main
performance measure is the rate of a network, i.e., the average
number of computational steps executed by a processor in the
network per unit time. We analyze the effect of the topology
and the probability distributions of the random variables on the
behavior of the network. For random variables with exponential
distribution, we provide tight (i.e., attainable) bounds and study
the effect of a bottleneck processor on the rate.

Index Terms- Distributed networks, synchronizer, perform-
ance analysis, stochastic behavior, marked graphs

I. INTRODUCTION

ONSIDER a network of processors that communicate C by sending messages along communication links. The
network is synchronous if there is a global clock whose beats
are heard by all the processors simultaneously, and the time
interval between clock beats is long enough for all messages
to reach their destinations and for local computational steps
to be completed before the clock beats again. The network is
asynchronous if there is no global clock, and the transmission
times of messages are unpredictable.

In general, a program designed for a synchronous network
will not run correctly in an asynchronous network. Instead of
designing a new program for the asynchronous network, it is
possible to use a synchronizer [11, i.e., a compiler that converts
a program designed for a synchronous network, to run cor-
rectly in an asynchronous network. Synchronizers are a useful
tool because programs for synchronous networks are easier to
design, debug, and test than are programs for asynchronous
networks. Furthermore, an important use of synchronizers is
the design of more efficient asynchronous algorithms [2]. The

Manuscript received October 31, 1992; revised June 22, 1993.
S. Rajsbaum is with the Instituto de Matematicas, UNAM, Ciudad Univer-

sitaria, D.F. 045 10 Mexico; e-mail: rajsbaum@redvaxl.dgsca.unam.mx.
M. Sidi is with the Department of Electrical Engineering,

Technion - Israel Institute of Technology, Haifa, Israel 32000; e-mail:
moshe@ee.technion.ac.il.

IEEE Log Number 9401219.

problem of designing efficient synchronizers has been studied
in the past (e.g., [ll, [31, [281).

The (worst case) time complexity of a distributed algorithm
is usually computed under the assumption that processing
times and message transmission delays are equal to some
constant that represents an upper bound on these durations.
The goal of this paper is to study the effect of random
processing times and transmission delays on the performance
of synchronous programs running in an asynchronous network
under the control of a simple synchronizer. We compare
the results with the deterministic case [18], [19], in which
processing times, as well as message delays, are constant (or
bounded).

The operation of the synchronizer is as follows. Each
processor waits for a message to arrive on each of its incoming
links before performing the next computational step. When a
computational step is completed (after a random time), it sends
one message on each of its outgoing links. The implementation
of this synchronizer may require, for instance, that every
message be followed by an end-of-message marker, even if
the message is empty. These end-of-message markers model
the flow of information that must exist between every pair of
processors connected by a link in each computational step [11.
This is how a processor knows it has to wait for a message
that was sent to it, or if no message was sent.

We use this synchronizer in our analysis because it is
very simple, yet it captures the essence of the synchronizer
methodology; i.e., it ensures that a processor does not initiate
a new phase of computation before knowing that all the
messages sent to it during the previous phase have already
arrived. Moreover, the synchronizer is equivalent to a marked
graph (e.g., [151) in which the initial marking has one token per
edge. In [3 11 and [32], the relationship between synchronizers
and marked graphs is studied, and it is shown how the simple
synchronizer can model the behavior of any marked graph,
of the synchronizers of [l], and of distributed schedulers in
[6], [23]. Thus, our work is closely related to problems in
stochastic Petri nets, where, because of the huge size of the
state space, the solution techniques often rely on simulation
(e.g., W I , WI, W1).

Many distributed protocols are based on this simple syn-
chronizer, e.g., the snapshot algorithm [161, clock synchro-
nization algorithms (e.g. [121, [26]), the synchronizers of
[l], the distributed schedulers in [6] , [23], and the optimistic
synchronizer [20]. The synchronizer is similar to synchronizer

1045-9219/94$04.00 0 1994 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on April 23,2020 at 13:35:56 UTC from IEEE Xplore. Restrictions apply.

940 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 9. SELTEMBER 1994

a in [11, but can be used also in directed networks, as opposed
to other synchronizers suggested in [l] that require all links
to be bidirectional. In [18] and [19], the benefits of using the
synchronizer as an initialization procedure are described.

Main Results: This paper is devoted to the performance
analysis of strongly connected directed networks controlled by
the simple synchronizer, in which transmission delays, as well
as the time it takes a processor to complete a computational
step are random variables. Our main performance measure
is the rate of computation R,, i.e., the average number of
computational steps executed by a processor in the network
per unit time. To facilitate the presentation, we first assume
that the transmission delays are negligible; only at the end of
the paper, we describe how to extend the results for networks
with non-negligible delays.

In Section 111, we study the case in which the random
variables have general probability distributions. We consider
two approaches. First, in Section 111-A, we analyze the effect
of the topology on the rate. We use stochastic comparison
techniques to compare the rate of networks with different
topologies. We give examples of networks with different
topologies, but with the same rate. Then, in Section 111-B,
we analyze networks with the same topology, but different
processing times. By defining a partial order on the set
of distributions, we show that deterministic (i.e., constant)
processing times maximize the rate of computation. For this
case, it is shown in [l8] that if the processing times are
equal to A-', the rate of the network is A, regardless of the
number of processors in the network or its topology. In the next
section, we show that in case the processing times are random
and unbounded, the rate may be degraded by a logarithmic
factor in the number of processors. This occurs in the case of
exponentially distributed processing times. However, in this
section, we show that the exponential is the worst among
a large and natural class of distributions; i.e., it yields the
minimum rate within a class of distributions.

In Section IV, we concentrate on the case of processing
times that are exponentially distributed random variables with
mean A-'. We prove that the rate is between A/4log(A + 1)
and A / log(S + l), where A (6) is the maximum (minimum)
vertex in-degree or out-degree. Hence, for regular-degree
(either in or out-degree) networks, the rate is @(A/ log(S+ 1)).
We compute the exact rate and the stationary probabilities for
the extreme cases of a directed cycle and a complete graph.
Finally, we study the effect of having one processor that runs
slower than the rest of the processors, and we show that in
some sense, the directed cycle network is more sensitive to
such a bottleneck processor than a complete network.

In the last section, we show that it is easy to extend the
results to networks with non-negligible transmission delays.
We consider the exponential distribution case, and show that
adding transmission delays to a regular degree network may
reduce its rate by at most a constant factor, provided that they
are not larger (w.r.t. the partial order) than the processing
times. In networks with processing times exponentially dis-
tributed with mean 1, and larger delays with mean A - l , we
compare the results with those of [19], where it was shown
that for the corresponding deterministic case, the rate is A.

In the probabilistic case of a regular-degree network, the rate
is at least O(X/logS). Thus, in both cases (small and large
delays), the rate of a bounded degree network is reduced only
by a constant factor.

Previous Work: There exist several results related to our
results in Section 111-B in the literature on stochastic Petri nets.
For instance, dominance results for rather general stochastic
Petri nets have been obtained in [5], and, more recently,
in [SI, by using subadditive ergodic theory (e.g., [21]). It
should be noted, however, that the proofs we provide for
the simple synchronizer are different and much simpler, and
do not require heavy mathematical tools. Other stochastic
ordering studies exist. Papers on acyclic networks and fork-
join queues are [29] and [9]-[111, respectively. For closed
queueing networks, the effect of increasing the service rate
of a subset of stations for systems, such that the distribution
of the number of works in each station has a product form
solution, is studied in [35].

A model similar to our model in Section IV is considered
in [13], where it is claimed that the rate is 8(1/logSOut),
for regular networks with out-degree equal to Sout, identically
exponentially distributed transmission delays with mean 1, and
negligible processing times. In [12], only a lower bound of
@(I/ log Sin) on the rate is given, for regular networks with
in-degree equal to Sin, with negligible transmission delays,
and identically exponentially distributed processing times.
Recently, it has been shown in [7] that subadditive ergodic
theory can be used to derive more general lower bounds on the
rate. A bottleneck problem related to ours has been considered
in [4], where an asymptotic analysis of cyclic queues as
the number of costumers grows is presented. Asymptotic
performance of stochastic marked graphs as the number of
tokens grows is studied in [25]. The class of networks with
exponentially distributed processing times belongs to the more
general model of stochastic Petri nets (see [22] for a survey),
where it is usually assumed that the state space (of exponential
size, in our case) is given.

11. THE MODEL
The network is modeled by a (finite) directed, strongly

connected graph G(V, E) , where V = { 1,2, . . . , n} is the set
of vertices of the graph and E C V x V is the set of directed
edges. A vertex of the graph corresponds to a processor that
is running its own program, and a directed edge U --+ w
corresponds to a communication link from processor U to
processor v. In this case, we shall say that U is an in-neighbor
of w , and that v is an out-neighbor of U in the network.
The processors communicate by sending messages along the
communication links. To facilitate the presentation, we assume
that the message transmission delays are negligible. At the end
of this paper, we briefly discuss the case of non-negligible
transmission delays.

Initially, all processors are in a quiescent state, in which
they send no messages and perform no computations. Once a
processor leaves the quiescent state, it never reenters it and is
considered awake. When awakened, each processor operates in
phases as described in the sequel. Assume that at an arbitrary

Authorized licensed use limited to: MIT Libraries. Downloaded on April 23,2020 at 13:35:56 UTC from IEEE Xplore. Restrictions apply.

RAISBAUM AND SIDI: SYNCHRONIZED PROGRAMS IN DISTRIBUTED NETWORKS 94 1

time, t (w) , processor v leaves the quiescent state and enters its
first processing state, PSo. This may be caused by a message
from another processor, or by a signal from the outside world,
not considered in our model. Then processor 'U remains in Pso
for ~ (v) units of time and then transits to its first waiting state,
WSo. From this time on, let PSI, and W S k , k 2 0, denote
the processing state and the waiting state, respectively, for the
kth phase. Observe that we are concerned with the rate of
computation of the network; the nature of the computation
is of no concern to us here. Thus, we take the liberty of
denoting with the same symbol the kth processing state of
all the processors.

The transition rules between states are as follows. If a
processor I I transits from state Psk to W S k , it sends one
message on each of its outgoing edges. These messages are
denoted by Mk. Note that this labeling is not needed for the
implementation of the protocol; it is used only for its analysis.
When v sends the Mk messages, we say that v has completed
its kth processing step.

If a processor 'U is in state wsk, and has received a message
(M k) on each of its incoming edges, it removes one message
from each of its incoming edges, transits to state Psk+l .

remains there for Tk+I(v) units of time, and then transits to
state WSk+l. Otherwise, if at least on one incoming edge,
MI,, has not yet arrived, processor v remains in state W S k
until it receives a message from each of its in-neighbors, and
then operates as described above.

The processing times, Tk (U), correspond to the time it takes
for processor 71 to complete the kth computation step. The
processing times T k (i i) , k 2 0, and 71 E V, are positive,
real-valued random variables defined over some probability
space.

For k 2 0, let t f (w) (or t k (u) , whenever G is understood)
be the kth completion time, i.e., the time at which processor
w sends messages MI, in network G. Let the in-set of a vertex
'U in G, ING(?/) (or simply IN(u)), be the set of vertices
in G that have an edge to v, including v itself, that is,
IN(v) = (11 : U -+ 7~ E E } U { w } . With this notation, the
operation of processor v E V is as follows. Once 'U has sent
a message Mk at time t k (v) , it waits until all processors
with an edge to it send message Mk, and then starts its
(k + 1)st computation step; that is, after the maximum of
t k (u) , TL E IN(?)), it starts the (k + 1)st computation step,
which takes Tkf l (0) units of time, and then sends out Mk+l.

For this reason, we shall assume in the rest of the paper that
for each vertex U , the edge w -+ 7~ is in E. The evolution of
the network can be described by the following recursions:

It is interesting to note that the completion times t k (W) have
a simple graph theoretic interpretation. For a vertex w , let
SI , (I I) be the set of all directed paths of length k ending in
U . For k = 0, the only path of length 0 ending in v consists
of t~ itself. For a path Pk = vo + v1 -+ . . . -+ vk(= U), let
T(%) 4 t(vo) + ~ t = ~ T i (v i) , and let T (S k (V)) 4 { T (P) :

P E s k (W) } . Thus, T(Sk(W)) is a set of random variables;
each one is the sum of k + 1 random variables. Note that these
random variables are not independent, even if the T ~ (w) ' s are
independent. The explicit computation of tk(v) is as follows.

Theorem 2.1: For every v E V , k 2 0, tk (v) =
maxT(Sk(v)) .

Proof: By induction on k. For k = 0, note that the only
path of length 0 to w is v itself; i.e., So(w) = { w } , and
T(So(w)) = {t(vo) + T ~ (w) } . Hence, we get the following
equation:

to(v) = maxT(So(v)) = t (w) + ~ o (v) .

Assume that the theorem holds for k 2 0. From the
recursion above, we have the following condition:

By the inductive hypothesis, we have the following:

which gives the following desired result:

t k + l (U) = m a T (sk+l (U)). 0

The Performance Measures: The most important perfor-
mance measures investigated in this paper are the completion
times tk(v), IC 2 0, v E V. A related performance measure
of interest is the counting process NF(w) (or simply Nt(v))
associated with processor w , which is defined by the following
expression:

Nt(w) sup{k : t k (W) 5 t } ;

that is, Nt(w) is the number of computation steps (minus 1)
completed by up to time t , or the highest index of an h f k

message that has been sent by v up to time t . Similarly,
Nt 4? E:=, Nt(v) denotes the total number of processing
steps (minus n j executed in the network up to time t. The
following claim indicates that no processor can advance (in
terms of executed processing steps) too far ahead of any other
processor.

Claim 2.2: Let d be the diameter of a directed, strongly
connected graph G. Then, for all u,v E V , and t 2 0,

Pro08 Denote by 1 the length of a simple path from U

to w. A simple inductive argument on 1 shows that the fact
that the last message sent by U up to time t is MA.,(,) implies
that Nt(w) 5 Nt(u) + 1. Thus, Nt(w) - Nt(u) 5 1 5 d.
The same argument for a simple path from w to U proves that

Another important performance measure is the computation
rate, RG(v) (or simply R('u)) of processor v in network G,
defined by the following expression:

INdU) - Nt(v)l I d.

Nt(U) - I d. U

whenever the limit exists. Similarly, the computation rate of
the network is defined by the following expression:

R A lim -_ Nt
t-oo t

Authorized licensed use limited to: MIT Libraries. Downloaded on April 23,2020 at 13:35:56 UTC from IEEE Xplore. Restrictions apply.

942 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 9, SEPTEMBER 1994

Claim 2.2 implies that for every u , v E V, R(u) = R(v);
therefore, R = n R(v) .

111. GENERAL PROBABILITY DISTRIBUTIONS
In this section, we compare the performance of different net-

works, with general distributions of the processing times T ~ (v) .
We first show that adding edges to a network with an arbitrary
topology slows down the operation of each of the processors
in the network. We show how the theory of graph embedding
can be used to compare the rates of different networks. As
an example, we present graphs, which have the same rate (up
to a constant factor) for general distributions, although they
have different topologies. Finally, we compare networks with
the same (arbitrary) topology, but different distributions of
the processing times. Specifically, we show that determinism
maximizes the rate, and exponential distributions minimize the
rate, among a large class of distributions.

A. Topology Of The Network

Monotonicity: Here we show that adding edges to a net-
work with an arbitrary topology slows down the operation of
each of the processors in the network. The basic methodology
used is the sample path comparison; that is, we compare the
evolution of message transmissions in different networks for
every instance, or realization, of the random variables ~ k (w).
This yields a stochastic ordering between various networks
[331, 1341.

Theorem 3.1: Let G(V, E) be a graph, and let E' 2 V x V
be a set of directed edges. Let N(V, E U E') be the graph
obtained from G by adding edges E'. Assume that processor
v, 1 5 v 5 n awakens in both G and H at the same time t(v).
For every realization of the random variables rk(v) , k 2 0,
1 I v 5 n, the following inequalities hold:

Corollary 3.2: Under the conditions of Theorem 3.1, we
have the condition that NF(v) 2 N p (v) and RG(v) 2
R H (v) (when the limits exist) for all v E V . Also N f 2 N y .

Remark I : Notice that no assumption was made about
the random variables T ~ (v) . In particular, they need not be
independent.

Remark 2: The sample path proof above implies that the
random variable N," is stochastically larger than the random
variable N p , denoted N F > d N p ; i.e., Pr{Ny 2 a } 2
Pr{N,H > a } for all a.

Remark 3: The above implies that if one starts with a sim-
ple, directed cycle (a strongly connected graph with the least
number of edges) and successively adds edges, a complete
graph is obtained, without ever increasing the rate.

Embedding: The theory of graph embedding has been used
to model the notion of one network simulating another on a
general computational task (see for example [30]). Here we
show how the notion of graph embedding can be helpful in
comparing the behavior and the rates of different networks
controlled by the synchronizer.

An embedding of graph G in graph H is specified by a
one-to-one assignment a : VG + VH of the nodes of G to the
nodes of H , and a routing p : EG + Paths(H) of each edge of
G along a distinct path in H . The dilation of the embedding
is the maximum amount by which the routing p "stretches"
any edge of G:

dilation(a,p) = max length(p(u + ,U)).
U-UEEG

The dilation is a measure of the delay incurred by the simu-
lation according to the embedding. The following theorem is
a generalization of Theorem 3.1.

Theorem 3.3: Let (a , p) be an embedding with dilation D
of a graph G(VG, EG) in a graph H(VH, E H) . Assume that
t (v) = t(cr(v)) for all v E VG, and that ~ k (v) and T ~ D (~ (U))

for all IC 2 0, v E VG, have the same distribution. For
every realization of the random variables .,"(U) = T,",(cx(u)),
IC 2 0 , v E VG, the following inequalities hold:

t f (4 I t F (4 ,

for all k 2 0, 1 I v 5 n.

induction is trivial, because the following is true:
Proof: The proof is by induction on k. The basis of the

t f (v) I tFD(a(v)), k 2 0,v E V G .

t f (v) = t (v) + 70(v) = t f (v) . Proof: For each path of length k 2 0 in G , the following
is true:

The induction hypothesis is t f (v) 5 t f (v) . We need to show @ = U0 --f 211 + ." 4 w k (= U),
that tf+:+l(w) 5 tf+l(v). From (l), we have the following
condition: one can use p to construct a path in H of length less than

or equal to IC . D from a(vO) to a (w k) , passing through
t f+1(4 = u E E y p 4 } + Tk+l(v), a(%), a(v2) ; ' ' ' 7 a (v k - 1) :

(2) P(.o + 211) + P (V l + .2) + . . . + p(%-1 * vk). tk+l(v) H = y E ~ + l) { t F (u) l + Tk+l(V).
Moreover, there is such a path of length exactly k . D,

because one can revisit vertices (each vertex has a self-loop)
each time between a pair of vertices cy(vi) and a(vi+l), there
are less than D edges in the path p(w;, v i + l) . Thus, there is
the following path in H :

Since ING(v) & INH(.), it follows that:

m y W.)} I uEF+v){w7
u E I N (U)

and therefore it follows from (2) that tf+:+l(v) 5 tf+l(v), for P& = U0 -+ U1 --$. " + 'I lkD;
all U. U

The previous theorem implies immediately. where U,D = a(vi), 0 5 i I I C .

Authorized licensed use limited to: MIT Libraries. Downloaded on April 23,2020 at 13:35:56 UTC from IEEE Xplore. Restrictions apply.

RAJSBAUM AND SIDI: SYNCHRONIZED PROGRAMS IN DISTRIBUTED NETWORKS 943

We are assuming a realization 7-k (U) = T ~ D (a(U)), for every
U E V,. It follows that for every path P:, there exists a path
P E , such that the following is true:

w:) I Tu%),

and thus the following is also true:

max T (Sf (U)) 5 max T (S,",(a(.))).

By Theorem 2.1, t f (w) 5 t&(a(v)) . 0
Corollary3.4: Under the conditions of Theorem 3.3, we

have the condition that D . N F (v) 2 Nr(cu(u)) and D .
RG(w) 2 R H (a (v)) (when the limits exist) for all v E VG.

Remarks 1-3 hold in this case, too.
A simple corollary of Theorem 3.3 is that if G is a subgraph

of H , NF(w) >d N F (a (v)) . This is because if G is a
subgraph of H , then there is an embedding from G in H
with dilation 1. In addition, if the number of vertices in G and
H are equal, and the dilation of the embedding is D , then G
is a D-spanner of H (e.g., [28]), and we have the following.

Corollary 3.5: If H has a D-spanner G, then R G / D 5
RH 5 RG.

A motivation for the theory of embedding is simulation.
Namely, one expects that if there is an embedding (a , p) from
G in H with dilation D , then the architecture H can simulate T
steps of the architecture G on a general computation in order
of D . T steps, by routing messages according to p . In our
approach, we compare the performance of G and of H under
the synchronizer, without using p. The embedding is used only
for the purpose of proving statements about the performance of
the networks. Consider, for example, the following two results
of the theory of embedding [30].

Proposition 3.6: For all n 2 1, one can embed the order
n shuffle-exchange graph in the order n deBruijn graph with
dilation 2. One can embed the order n deBruijn graph in the
order TI shuffle-exchange graph with dilation 2.

Proposition 3.7: For all ri 2 1, one can embed the order
n cube-connected-cycles graph in the order n butterfly graph
with dilation 2. One can embed the order n butterfly graph in
the order n Cube-Connected-Cycles graph with dilation 2.

By Theorem 3.3, the average rate of the graphs of Proposi-
tion 3.6 (3.7) are equal up to a constant factor of 2, provided
that the processing times of corresponding processors have the
same distributions (regardless of what these distributions are).

B. Probability Distributions

Deterministic Processing Times: Now we compare net-
works, say, G(V. E) and H(V, E) , having the same (arbitrary)
topology, but operate with different distributions of the random
variables ~ (v) . To that end, we assume that the processing
times .,"(U), k 2 0, I I E V are independent and have finite
mean E[$(II)] = X;l.

We say that A , is the potential rate of U, because this
would be the rate of w if it would not have to wait for
messages from its in-neighbors. The processing times in H
are distributed as in G, except for a subset V' & V of
processors, for which the processing times are assumed to be
deterministic; i.e., .,"(U) = X;',v E V' , for k 2 0. We let

.,"(U) = .,"(U) = T~(v), k 2 0, v V', be any specific
realization of the random variables in G. Again, it is assumed
that the processors are awakened at the same time in both
networks.

Theorem3.8: Under the above conditions, we have the
following condition:

t m L Wf(741:

for all processors v, and k 2 0. The expectation is taken over
the respective distributions of processing times of processors
of G in V'.

Proof: The proof is by induction on k. For the basis,
k = 0, we make the following observations:

E[tf(v)] = t f (v) = t (w) + ~ (w) = t F (v) ,

for U $! V', and

E[tf(v)] = t (v) + X i 1 = t f (w) ,

for I I E V'.

to show that tf+l(v) 5 E[tf+:+,(v)], for all w E V.
The induction hypothesis is tF(w) 5 E[tf(v)], and we need

From (l) , we have the following condition:

for w E V. Jensen's inequality implies the following:

By the induction hypothesis, we have the following equation:

E[tf+1(4l 2 u y $ m U) l + E[.f+l(Idl = tF+1(v),

because E [T ~ + ~ (u)] = T ~ + ~ (V) for w $! V', and E [~ f + ~ (v)] =
0

Remark 4: Theorem 3.8 holds also if the processing times
.,"(U) of processors 'U of H in V', are deterministic, but not
necessarily the same for every k.

When all processing times in the network H are deter-
ministic, the computation of the network rate is no longer
a stochastic problem, but a combinatorial one. Thus, a conclu-
sion of Theorem 3.8 is that in this case, the computation rate
of H , obtained via combinatorial techniques ([18] and [19]),
yields an upper bound on the average rate of G. Furthermore,
if the times t f (w) are computed, they give a lower bound on
E[tf(v)] for every k 2 0.

More Variable Processing Times: More generally, we
study the effect of substituting a random variable in the
network (e.g., the processing time of a given processor,
for a given computational step) with a given distribution,
for a random variable with another distribution on the rate
of the network, and define an ordering among probability
distributions.

Recall that a function h is convex if, for all 0 < t < 1, 5 1 ,
2 2 , h(tz1 + (1 - t) ~) 5 th(z1) + (1 - t)h(zp). A random
variable X with distribution Fdy is said to be more variable
than a random variable Y with distribution FIT , denoted
X>,Y or F<Y>,FIJ, if E[h(X)] 2 E[h(Y)] for all increasing

A;' = .,",,(w), for U E v'.

Authorized licensed use limited to: MIT Libraries. Downloaded on April 23,2020 at 13:35:56 UTC from IEEE Xplore. Restrictions apply.

944 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 9. SEPTEMBER 1994

convex functions h. The partial order 5, is called convex order
(e.g., [33], [34]). Intuitively, X will be more variable than Y
if Fx gives more weight to the extreme values than F y . For
instance, if E[X] = E[Y], then Var(X) 2 Var(Y), because
h(z) = x2 is a convex function.

Here we compare networks, say, G(V, E) and H(V, E)
having the same arbitrary topology, but some of the processing
times in G are more variable than the corresponding processing
times in W , i.e., for some k 's and some U ' S , .E(.) 2c T,"(w),

while all other processing times have the same distributions in
both graphs. When tG(v) = t H (w) and all processing times in
G (H) are independent of each other, the following holds.

Theorem 3.9: Under the above conditions, the following
holds for all processors U , and k 2 0:

with any NBUE distribution. The following theorem follows
from the fact that the deterministic distribution is the min-
imum, whereas the exponential distribution is the maximum
with respect to the ordering I C , among all NBUE distributions

Theorem 3.11: For every U E V, k 2 0, it holds that

Some examples of distributions that are less variable than
the exponential (with appropriate parameters) are the Gamma,
Weibull, and Uniform. We should conclude this section by
pointing out that the interested reader can find similar results
for rather general stochastic Petri nets in [5] and [8].

W I .

G t , (.)5ctf(45,tfe(.).

IV. EXPONENTIAL DISTRIBUTIONS
Fctf (U). In this section, we assume that the processing times T~(w),

k 2 0, w E V are independent and exponentially distributed

upper and lower bounds on the expected values of t k (w) , and

proof: From 2. 3 we have the 'On- with mean X-1. We first consider general topologies and derive
dition:

t k (w) = max{T(Pk) : Pk E Sk(w)},

where Pk = vug i ul -+ . . . + uk(= w) is a directed path of
length k ending in v, and T(Pk) = t(wo) f E,"=, T,(v,).

From the fact that the 7's are positive and m a and are
convex increasing functions, it follows that tk(w) is a convex
increasing function of its arguments {T,(u) : 0 5 z 5 k , u E
Pk,Pk E Sk(w)}. Now we can use Proposition 8.5.4 in [33].

Proposition 8.5.4: If XI, X2. . . . , X, are independent r.v.,
and Yl,Y2,.. . ,Yn are independent r.v., and X,>,Y,,i =
1 , 2 , . . . , n , then g (X 1 , X 2 , . . . ? X n) >,g(Yl,Yz;..,Yn) for
all increasing convex function g that are convex in each of
its arguments.

The proof of the theorem now follows, because, by as-
sumption, the 7's in G are independent, the 7's in H are
independent, and T:(W)<~T:(W), k 2 0. w E V,. Note that
the random variables T(%) are not independent.

Corollary 3.10: Under the above conditions NF(w) 5
Np(w), RG(u) < RH(w) and RG 2 RH.

In the next section, we show that if the processing times
are independent and have the same exponential distribution
with mean A-'. then the rate of any network is at least
AlVl/ log IV(. We conclude this subsection by characterizing
a set of distributions for which the same lower bound holds.

Assume that the expected time until a processor finishes
a processing step, given that it has already been working on
that step for Q: time units, is less than or equal to the original
expected processing time for that step. Namely, we assume that
the distributions of the processing times T ~ (u) , for all w E V,
k 2 0, are new better than used in expectation (NBUE) (e.g.,
[33], [34]), so that if T is a processing time, then we have the
following equation:

E[. - a17 > U] 5 E[T], 'da 2 0.

thus obtain upper and lower bounds on the rate of the network.
These bounds depend on the in-degrees and out-degrees of
processors in the network, but not on the number of processors
itself. Then, exploring the Markov chain of the underlying
process, we derive the exact rates of two extreme topologies:
the directed ring and the fully connected (complete) network.
For these two topologies, we study also the effect of having a
single slower processor within the network.

A. Upper and Lower Bounds

of (into) %r in G, and let the following be true:
Denote by dOut(v)(din(w)) the number of edges going out

Aout = maxdout(v); Ain = maxd;,(v);
VEV UEV

bout = min dout(w), Sin = min din(v).
V E V V E V

Lemma 4.1 (Lower Bound):
1) For every k 2 0, there exists a processor v E V for

which the following condition exists:

2) For every k 2 0, and every ZI E V, the following holds:

Pro08 We present a detailed proof for part (1) only; the
proof of part (2) is discussed at the end of this paper. We start
by proving that for every IC 2 0, there exists a (not necessarily
simple) path WO ---t w1 -+ . . . + v k , such that the following
expression is true:

Let Gd(V, E) be a network with deterministic processing
times; let G,(V, E) be a network with corresponding process-
ing times with the same mean, but independent, exponentially
distributed; and let G(V, E) be a network with corresponding
processing times with the same mean and independent, but

E[t,+l(w,+l)] - E[t,(w,)] 2 A-' log60ut, 0 5 i < k .

We assume the statement holds for k 2 0, and prove it for
k + 1. The proof of the basis is identical. Let w k + l be the
processor for which the processing time during the (k + 1)th

r--..I , .

Authorized licensed use limited to: MIT Libraries. Downloaded on April 23,2020 at 13:35:56 UTC from IEEE Xplore. Restrictions apply.

RAJSBAUM AND SIDI. SYNCHRONIZED PROCRAMS IN DISTRIBUTED NETWORKS 945

computational step is maximum, among the out-neighbors of
v k , i.e., as followsi

Because vk+l will not start the (I C + 1)st computational
step before W k finishes the kth computational step, we have
the condition that tk+l(Wk+l) - t k (v k) 2 ~lc+l(vlc+l). The
quantity ~ k + l (v k + l) is equal to the maximum of at least Sout
independent and identically distributed exponential random
variables with mean A-'. It is well known (e.g., [13], [17])
that the mean of the maximum of c such random variables is
at least A-' log c. It follows that:

We can choose W O to be the one with latest waking time t (w o) ,
and thus E[to(wo)] = t (v) + A-'. Therefore, for every IC 2 0,
there exists a processor w such that the following is true:

E[tk(w)] 2 maxt(v) + X - l [l + I C . 10g6~,t],
U E V

completing the proof of (I) . The proof of part (2) evolves
along the same lines, except that we start from 'uk and move

Remark 5: From its proof, one can see that Lemma 4.1
holds for any distribution F of the processing times, for which
the expected value m, of the maximum of c independent
r.v. with distribution F exists. In this case, it implies that
R, 5 l/m,, with c = bout or c = 6in.

Remark 6: Lemma 4.1 implies that for the exponential
case, the slowdown of the rate is at least logarithmic in the
maximum degree of G. By Remark 5 , there are distributions
(not NBUE by Theorem 3.1 l) , for which the slowdown is
larger; an example is F (z) = 1 - 1/z2. z 2 1, for which the
slowdown is at least the square root of the maximum degree
of G [17, p. 581.

backward along a path. U

Lemma 4.2 (Upper Bound):
1) For every IC 2 1, for every processor v , we get the

following:

2) For every k 2 1, for every processor w, we get the
following:

4
UEL' x E[tk-l(v)] 5 maxt(u) + log IV(+ -(1 + logAo,t).

Proof: Again, we restrict ourselves to the proof of part
(1). Recall that Theorem 2.1 states that for every v E V , k 2 0,
tk(w) = maxT(Sk(v)). Also, for a path Pk = W O + v1 +

. . . + v k , T(Pk) = t (vo) + q (v i) , but for the moment,
let t (7 1) = 0 for every U.

By Proposition D.2 of the Appendix, we have the following
condition:

for every c > 4, because log 2/ log Ain 5 1. It follows that:

for every c 2 4, and

y log a,,
ldt + f -1) log A,,, 4 logA;,dc

0

Combining Lemma 4.1 and Lemma 4.2, we obtain Theorem

Theorem 4.3:
4.3.

B. Exact Computations

Theorem 4.3 implies the following bounds for the rate of
a directed cycle C,(A = S = 2) and of a complete graph
K n (A = 6 = n) , where n is the number of processors:

0.36X 5 Rcn(w) 5 A,

x < R K - (w) 5 -. x
4logn - log n

In this section, we shall compute the exact values for the rates
of C, and K,. To that end, we consider the Markov chain
associated with the network. This Markov chain is denoted
by X (t) = (X,(t).Xz(t),...,X,(t)) , where X, (t) is the
number of messages stored in the buffer of edge i at time
t , and m is the number of edges in the network. Note that
a processor with a positive number of messages on each of
its incoming edges is in a processing state. When such a
processor completes its processing (after an exponential time),
one message is deleted from each of its incoming edges and
one message is put on each of its outgoing edges. We denote
by SO the state in which X,(O) = 1, 1 5 i 5 ni. Thus, the
network can be represented as a marked graph (e.g., [15]).

The number of states in the Markov chain is finite, say,
N , because a transition of the chain does not change the total
number of messages in a circuit in the network. Moreover, if
the network is strongly connected, then the Markov chain is
irreducible. Therefore, the limiting probabilities P,, 1 5 z 5
N , of the states s, of the chain exist; they are all positive; and
their sum is equal to 1 (e.g., [14], [33]). However, as we shall
see, N can be exponential in n; therefore, it is infeasible to
compute the rate by directly solving the Markov chain. Here
we show how to solve the Markov chain for two network
classes without having to produce the entire chain. We hope
this combinatorial approach could be applied to other networks
as well.

Let G x denote the transition diagram (directed graph) of
the Markov chain X . Consider a breadth-first search (BFS)
tree of G<Y, rooted at S O . The level L(w) of a vertex v will be

Authorized licensed use limited to: MIT Libraries. Downloaded on April 23,2020 at 13:35:56 UTC from IEEE Xplore. Restrictions apply.

946 IEEE TRANSACI'IONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 . NO. 9, SEFTEMBER 1994

equal to the distance from SO to 'U. Thus, L(s0) = 0. Denote by
L,, i 2 0, the set of vertices at level i , and by L the number
of levels of G x .

A Simple Directed Cycle: We study the performance of a
simple directed cycle of n processors C, = p l -+ pa 4 ... -+

p, -+ p l . It is not difficult to observe that the Markov chain
associated with C, corresponds to that of a closed queuing
network. We return to this approach later. Here we choose to
use a combinatorial approach.

Theorem 4.4:
1) All the states associated with C, have the same limiting

2) For any graph G that is not a simple directed cycle, (1)

Proof: 1) The proof follows from two observations. First,
by symmetry, all the states in one level have the same
probability. Second, the in-degree of any state in the transition
diagram is equal to its out-degree. Then a simple inductive
argument can be used to prove part (1).

2) If G is not a cycle, then it has a node U , s.t. d;,(w) 2 1.
Let wl, w2 be two nodes with edges to w. Consider the state s,
reached from so, by the processing completion (or, in marked
graphs terminology, firing) of vertex U. The outdegree of
s = n - 1, because apart from U, all vertices are still enabled.
But the indegree of s is at most n - 2, because by the firing of
v1 or of w 2 , it is not possible to reach s, because there are no
messages on the edges from w1 and 112 to v, in s. Therefore,
we have proved that d,,(s) # dOut(s).

Consider the balance equation that holds at state s: PI +P2+
. . . + Pk = n - 1 . Ps, where Pz, 1 5 i 5 k are the limiting
probabilities of the states that have an edge to s, IC = d;,(s),
P, is the limiting probability of s, and n - 1 = dout(s). We
have just proved that k # n- 1. It follows that it is not possible
that all the probabilities of the last equation are equal. 0

The next theorem states that each processor of C, works at
least at half of its potential rate A, regardless of the value of n.

Theorem 4.5: The rate R (v) of a processor in C, is as
follows:

probability.

does not hold.

(2n - l) !
n!(n - I)! ' N =

and the limiting probability of each state is 1/N, where N is
the number of states in the associated chain.

Proof: If M is the number of states in which at least one
message is in an edge, going into a processor, say, w, then
the running rate will be M/N times the expected firing rate.
This is because w will be enabled when it has more than 0
messages in its input edge, and because all states have the
same probability (Theorem 4.4), the percentage of the time
that is enabled is simply MIN.

The number of ways of putting n objects in k places is as
follows:

(n + k - I)!
P(n,k) =

n!(k - l)!

It is not difficult to see that N = P(n,n) and M =
N - P(n, n - 1). Thus, we have the following equation:

n - 1 =I-- M
N 2n- 1 '
-

which gives the desired results. 0
A Complete Graph: Let K, be a complete graph with n

processors. Recall that N is the number of states in the
associated Markov chain, and let SO be the state in which
each edge has one token. A state is at level I , 0 5 1 5 n - 1,
if it can be reached from SO by the firing of 1 processors. The
limiting probability of a state at level 1 is denoted by P(1).

Theorem 4.6: The rate of a processor in K, is as follows:

x
log n '

R(v) = X/X, N -
2 = 1

Proo$ A simpler proof can be derived, as in the proof
of Theorem 4.10; here we give a combinatorial proof that also
yields the number and the limiting probabilities of the states
of the associated Markov chain.

We consider a Markov chain T, similar to the Markov chain
associated with network K,. The root of T, S O , is the state with
a message in each edge. A state s will have one son for each
one of the enabled processors at state s; a son of s corresponds
to the state arrived at from s by the firing (completion of a
processing step) of one of the enabled processors in state s.
Note that in chain T, there are several vertices corresponding
to the same state of the chain associated with K, .

In T, the number of states in level 1 is n! / (n - l) ! , because
each time a processor fires, it cannot fire again until the rest
of the processors have fired. Thus, the number N T , of states
in T is as follows:

The number of states in which a given processor is enabled at
level E, en(l) (edges from level 1 to level E + l), is as follows:

1 n!
n (n - 1 - I) ! '

en(1) = -

because at level I , there are n! / (n - 1 - l)! enabled proces-
sors, and, by symmetry, each processor is enabled the same
number of times at each level.

Let us denote by PT the limiting probability of a state of
T in level E. One can show that PT = (n - 1 - l)!/K, where
the following is true:

" 1
n-1

K=C- PT = n ! X : .
l=o (n - i=l '

It follows that the percentage of time that a processor is
enabled is as follows:

n!

1 n-1

ut = ut(l) = ~

1=0 c2, + '
where ut(l) = en(l)PT, and its rate is X . ut. 0

Authorized licensed use limited to: MIT Libraries. Downloaded on April 23,2020 at 13:35:56 UTC from IEEE Xplore. Restrictions apply.

RAJSBAUM AND SIDI: SYNCHRONIZED PROGRAMS IN DISTRIBUTED NETWORKS 947

Corollary 4.7: For a network K,, we have the following
conditions:

N = 2" - 1,

I!(n - I - I)!
n! Cy=, 7

Pro08 As noted before, it may be that two states of T
correspond to the same state, say, s, of K,. In fact, if a state
of T is reached from SO by firing a sequence of processors
of length I C , then all I C ! permutations of the processors in this
sequence constitute a valid firing sequence, which leads to the
same state s. Thus, the limiting probability of a state s at
level 1 is as follows:

1 ' Pl =

l!(n - 1 -' I)!
n! 7 4 = l!P,T = 1

The number of different states at level 1 is n!/l!(n - l) ! , and
the total number of different states is as follows:

n-1

U
Corollary 4.8: Asymptotically, the rate of any network of

n processors is between Xn/2 and Anllogn.
Observe that the best possible rate of a processor is 2/3

of the potential rate, in the case of a cycle of two processors.
Adding more processors can only lower this rate, but not below
1/2. Yet the rate of the network grows linearly with n. In the
case of a complete graph, the rate of a processor reduces as n
grows, but also here the total number of computational steps
executed per unit time (n/ log n) grows with n.

C. Bottlenecks
Suppose that the potential rate of all processors of a graph

is A, except for one, which has a lower rate p. We shall now
show that such a bottleneck has a stronger effect in a network
that is a directed cycle, than in one that is a complete graph.

Consider the case of a simple directed cycle with n vertices
CB,, where n - 1 processors have rate X and one processor
has rate p. Using standard techniques of queuing theory, we
prove the following.

Theorem 4.9: The following is the rate of a processor in
CB,:

x
; p = - #

n + i - 2)Pi P

Proof: Let Xi, 1 5 i 5 n be the number of messages
in the buffer of the incoming edge to processor i. The total
number of messages in the cycle is equal to n. Since this is a
closed queueing system, we have the condition that the limiting
probability of the system being in state (q , z z , . . . ,z,) is

given by the following product form [33]:

Pr(X1 = x1,X2 = x 2 , . . . , X n = 2,) =

n

if ' S x ; = n.
L J '
j = 1

and is equal to 0 otherwise, where K is a normalization con-
stant that guarantees that the sum of all the above probabilities
is equal to 1. Thus, the following is the probability of having
1 messages on the incoming edge to processor n:

where p = A/p and S' = {(x1,x2:..,zn-1) : xj 2 0 , l 5
j 5 n - l , C , = , x3 = n - I } . Hence, n-1

Pr(X, = 1) = K'

where K' is the normalization factor determined by the con-
dition El"=, Pr(Xn = I) = 1. Finally, we get the following:

Pr(X, = E) = , 0 5 1 S n .
2 n - j - 2

Now observe that the rate is simply p n [l - Pr(X, = O)],
because the rate of the processor is p while,there are messages

U
Several conclusions can be derived from Theorem 4.9. First,

observe that the rate of the cycle cannot exceed p n ; thus, the
slow processor bounds the rate of the network. Moreover, for
a fixed n and a very slow processor (p + 0 or p -+ m), the

rate of the network is p n [1 - (2nn- ') p- j ; namely, as p

increases, the rate approaches its upper boun pn.
Next we consider the case where the graph is a complete

graph KB,. We continue to assume that the rate of n - 1
processors is X and the nth processor is slower, operating at
rate p. We shall show that for fixed p and A, as the number
of processors n grows to infinity, the influence of the slow
processor diminishes, and in the limit, the rate of the network
is the same as that of a network with all processors running
with the same rate A.

$heorem 4.10: The rate ofaprocessor in KB, is at least

in the incoming edge to processor n.

p + l o g , ' P =

Authorized licensed use limited to: MIT Libraries. Downloaded on April 23,2020 at 13:35:56 UTC from IEEE Xplore. Restrictions apply.

948 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 9, SEFTEMBER 1994

Proofi Suppose that the network is in state SO at a given
time, and that after some time T I , it returns to that state.
Then, after some time T2, it returns again, and so on. Then,
{Ti3 i = 1 , 2 , . . .} is a sequence of non-negative independent
random variables with a common distribution F , and expected
value E[T,].

Denote by N (t) the number of events (returning to SO)

by time t . The counting process { N (t) , t 2 0) is a renewal
process. Therefore, with probability 1, we have the following
equation:

(See, e.g., [33].) Moreover, since each time the process returns
to so, each processor of the network has completed exactly one
computational step, it follows that the rate of the network is
l/E[T;]. We proceed to bound E[Ti].

The expected time of Ti that it takes to return to SO is of
the following form:

+ , . . 1 1
+ (n - 2)X + p

Q '

(7L-l)X+p
1 1 1

1 + X'

for some 1 5 j 5 n, depending on when the slow processor
completes a computational step. If the system leaves SO
because the slow processor completed a computational step,
E[T,] is al . In general, if the j th (1 5 j 5 n) processor to
complete a computational step, after leaving so, is the slow
processor, then E[T,] is aJ .

The probability of E[TJ] being equal to a3 is not necessarily
the same for every j , but for the case X 2 p, it holds that
cyJ < aJ+l. Thus, the following equation:

1 n-1

k=O

gives an upper bound on the time E[T] that it takes to return
to SO, and l/ct.,, is a lower bound on the rate of a processor
in the network.

We have the following condition:

1 P-5 1 1
fi P X

n-1

a, = I / (x ~ + p) 5 - + - I - + - logn.
i=O

We see that E[Ti] = O($ + log n), and thus that the rate is

For fried p! R, is @ (A / logn); but observe that the rate
of the network cannot exceed p. However, when the number
of processors n, increases to infinity, the rate of the network
decreases in proportion to 1/ log n, as if the slower processor
were not in the network.

at least I+;,ogn. 0

V. NON-NEGLIGIBLE TRANSMISSION DELAYS

We briefly discuss the case of non-negligible transmission
delays. In this model, the processing times are random, as
before, but the transmission delays are also random. Denote
the transmission delay of message Mk, IC 2 0, along edge
U -+ U, by Tk(u . 'U) , and let T ~ (u , u) = 0, for all U E V. It
follows that the behavior of the system is described by the
following recursions:

to(.) = t(.) + To(.)

tk+l(V) InaX { t k (U) + 7 k (U , 7))) + 7 k + l (u) k 2 0.
UEIN(V)

Note that this system is not equal to the one of [13], in which
the processing times are negligible, and the delays are non-
negligible, with a self-loop in each processor (to model its
processing delay).

Let Pk = 110 + v1 -+ ... + wk(= U) be a path of length k.
It is easy to see how to modify the definition of ? ' (p k) :

k-1

T(%) ' t (w 0) + C[Tt(u*) + T % (V ~ 7 v t + 1)] + Tk(uk).
2=0

Thus, a theorem similar to Theorem 2.1 holds, and the corre-
sponding results for general distributions follow.

Consider the case in which the processing times, as well
as the transmission delays, are exponentially distributed, with
the same mean, say, 1. It is easy to see that Lemma 4.1 still
holds, and that Lemma 4.2 holds up to a factor of 2. Namely,
by Theorem 3.9, a regular network with non-negligible delays
runs at the same rate as the same network, up to a constant
factor, provided that the delays are less than or equal (in the
convex order) to the processing times. In [181, we show that for
a network with negligible delays and deterministic processing
times equal to 1, the rate of any network is equal to 1. Thus, in
this case, random processing times degrade the rate by at most
a logarithmic factor in the maximum degree of a processor.

Now consider the case in which all processing times have a
mean of 1, but the delays have mean A-' greater than 1, both
exponentially distributed. The rate in the deterministic case is
equal to X 1191; thus, by Theorem 3.3, in our case, the rate
is at most A. One can prove (by using Proposition D.2), that
also in the case of non-negligible delays, the rate is degraded
by at most a logarithmic factor in the maximum degree of a
processor, with respect to the (optimal) deterministic case, for
any NBUE distribution.

As for the exact computations for networks with average
processing times and delays exponentially distributed with
mean 1, the rate of a simple cycle can be computed by using
the same tools of queuing theory that we used in the case of
negligible delays. Computing the rate of a complete network
Kn is not as straightforward; the structure of the Markov
process is more complicated, but by the arguments made
above, we have the condition that the rate is between 1/8 log n
and 1/ log n. However, using the ideas of embedding, let us
show that the rate of Kn is at least 1/4logn. Let KA be a
complete network with negligible delays. Construct G, from
KA by inserting one vertex in each of its edges. By Theorem
3.1 (or by Theorem 3.9), the rate of any processor in G is at

Authorized licensed use limited to: MIT Libraries. Downloaded on April 23,2020 at 13:35:56 UTC from IEEE Xplore. Restrictions apply.

RAJSBAUM AND SIDI: SYNCHRONIZED PROGRAMS IN DISTRIBUTED NETWORKS 949

least the following:

1 - - 1
log(n + n(n - 1)) 2logn’

One can show that the rate of any processor v in K, is greater
than or equal to half the rate of the corresponding processor in
G using the fact that there is an embedding of K, into G of
dilation 2. Therefore, the rate of ‘U in K , is at least 114 log n.

VI. CONCLUSION

In this paper, we have studied the behavior of synchronizers
in networks with random transmission delays and processing
times. We attempted to present a self-contained general study
of the synchronizer performance from the view point of dis-
tributed algorithms, rather than providing a deep mathematical
study of the underlying stochastic process. In particular, we
were interested in comparing the behavior of synchronizers
with random delays, as opposed to the usual approach of
analyzing distributed algorithms with bounded delays. Our
main conclusion is that if the delays belong to the natural class
of NBUE distributions, the rate of the network is degraded only
by a small, local (vertex degree) factor.

We presented several properties of the behavior of the syn-
chronizer for general probability distributions, and described
techniques useful to compare the rate of the synchronizer
running in networks with different topologies. For exponential
distributions, we showed that the expected duration of a round
of computation depends on the logarithm of a vertex degree,
and hence that the rate of computation does not diminish
with the number of processors in the network. We presented
techniques to prove upper and lower bounds on the rate, and
to obtain exact computations. We hope that the combinatorial
approach of these techniques, which was applied to rings,
complete networks, and regular degree networks, will be used
in the future to obtain results for other topologies as well.

APPENDIX

The following proposition (similar to pp. 672 in [13]) is
used to prove the lower bounds on the rate of a network.

Proposition 7. I (0.2): Let { X ;) be a sequence of indepen-
dent exponential random variables with mean A-’. For every
positive integer k and any c 2 4log2, we have the following
condition:

Proof: Fix /3 E (0, A), and let y be a positive scalar. A
direct calculation yields the following equation:

In particular, we can choose y sufficiently large so that
E[efi(s.-Y) 1 - < 1. If p = X/2, then y 2 2X-1 log2 satisfies
the last equation. Using the independence of the random

variables X i , we obtain the following:

Using the Markov inequality, we obtain the following:

This in turn implies the following equation:

Let c = 2m and CO = 27. Then, if c 2 C O , we have m 2 y
and the following equation:

< e - 3 m k - - e - a c k
- 1

where a = p/2. For our choice of p, we have a = A / - , and
CO = 4x-1 log2. 0

ACKNOWLEDGMENT

We would like to thank G. Singh and G. Sideman for helpful
comments.

REFERENCES

[I] B. Awerbuch, “Complexity of network synchronization,” J. ACM, vol.
32, no. 4, pp. 804-823, Oct. 1985.

[2] -, “Reducing complexities of distributed max-flow and breadth-
first-search algorithms by means of network synchronization,” Networks,
vol. 15, pp. 425-437, 1985.

[3] B. Awerbuch and D. Peleg, “Network synchronization with polyloga-
rithmic overhead,” Proc. 31sr IEEE FOCS, 1990.

[4] 0. J. Boxma, “Sojourn times in cyclic queues: The influence of the
slowest server,” in G. Iazeolla, P. J. Courtois, and 0. J . Boxma, Eds.,
Computer Performance and Reliabiliiy. New York: Elsevier (North-
Holland), 1988.

[5] F. Baccelli, “Ergodic theory of stochastic Petri networks,” Raport INRIA
1037, 1989.

[6] V. C. Barbosa and E. Gafni, “Concurrency in heavily loaded
neighborhood-constrained systems,” ACM Trans. Programming Lan-
guages Sysr., vol. 1 1 , pp. 562-584, Oct. 1989.

[7] F. Baccelli, P. Konstantopoulos, “Estimates of cycle times in stochastic
Petri nets,’’ in I. Karatzas, Ed., Proc. Rurgers Con5 Stochastic Analysis.
New York: Springer-Verlag, 1991.

[8] F. Baccelli and Z. Liu, “Comparison properties of stochastic decision-
free Petri nets,” INRIA Res. Raport 1433, May 1991.

[9] F. Baccelli and A. M. Makowski, “Queueing models for systems with
synchronization constraints,” Proc. IEEE, vol. 77, pp. 138-161, Jan.
1989.

[IO] F. Baccelli, A. M. Makowski, and A. Shwartz, “The fork-join queue and
related systems with synchronization constraints: Stochastic ordering
and computable bounds,” Advances in Applied Probabilip, vol. 21, pp.
629-660, Sept. 1989.

c . ” . ., . ,

Authorized licensed use limited to: MIT Libraries. Downloaded on April 23,2020 at 13:35:56 UTC from IEEE Xplore. Restrictions apply.

950 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 9, SEPTEMBER 1994

[I 11 F. Baccelli, W. A. Massey, and A. Towsley, “Acyclic fork-join queueing
networks,” J. ACM, vol. 36, pp. 615-642, July 1989.

[12] P. Berman and J. Simon, “Investigations of fault-tolerant networks of
computers,” Proc. 20th ACM STOC, 1988.

[131 D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compura-
tion.

[141 K. L. Chung, Markov Chains with Slationary Transition Probabilities,
2nd ed. New York: Springer-Verlag, 1967.

[I51 F. Commoner, A. W. Holt, S. Even, and A. Pnueli, “Marked directed
graphs,” J. Comput. Syst. Sci., vol. 5, no. 5, Oct. 1971.

[I61 K. M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” ACM Trans. Comput. Syst., vol. 3,
no I , Feb. 1985.

Englewood Cliffs, NJ: Prentice-Hall, 1989.

[17] H. A. David, Order Statistics. New York: Wiley, 1970.
[18] S. Even and S. Rajsbaum, “Lack of global clock does not slow

down the computation in distributed networks,” Tech. Rep. 522, Dept.
of Comput. Sci., Technion, Haifa, Israel, Oct. 1988, to appear in
Mathemar. Sysf. Theory (first part of this paper appears under the title,
“Unison in distributed networks” in R. M. Capocelli, Ed., Sequences:
Combinatorica, Compression. Security, and Transmission. New York:
Springer-Verlag. 1990.)

[19] S. Even and S. Rajsbaum, “The use of a synchronizer yields maximum
rate in distributed networks,” Proc. 22nd ACM STOC, 1990.

[20] J. Garofalakis, S. Rajsbaum, P. Spirakis, and B. Tampakas, “Tentative
and definite distributed computations: An optimistic approach to network
synchronization,” in Roc. 6th Int. Workshop on Distributed Algorithms,
Haifa, Israel, Nov. 1992, Lecture Notes in Computer Science 647. New
York: Springer-Verlag, pp. 1 1 0 - 1 19 (to appear in Theoretical Comput.
Sci.).

[21j J . F. C. Kingman, “Subadditive ergodic theory,”Ann. Prob., vol. I , no.
6, pp. 883-909, 1973.

1221 M. A. Marsan. “Stochastic Petri nets: An elementarv introduction.” in
Advances in Petri Nets 1989, Lecture Notes in Computer Science 424.
New York Springer-Verlag, 1989, pp. 1-29.
J. Malka, S. Moran, and S. Zaks, “Analysis of a distributed scheduler
for communication networks,” Tech. Rep. 495, Dept. of Comput. Sci.,
Technion, Haifa, Israel, Feb. 1988 (also in Lecture Noles on Computer
Science 319.
M. K. Molloy, “Performance analysis using stochastic Petri nets,” IEEE
Trans. Comput., vol. 31, no. 9, pp. 913-917, Sept. 1982.
M. K. Molloy, “Fast bounds for stochastic Petri nets,” International
Workshop on Timed Petri Nets, Torino, Italy, July 1985, pp. 244249.
Y. Ofek and I. Gopal, “Generating a global clock in a distributed
system,” IBM Res. Rep., 1987.
D. Peleg and A. A. Schaffer, “Graph spanners,” J. Graph Theory, vol.
13. pp. 99-116, 1989.
D. Peleg and J. D. Ullman, “An optimal synchronizer for the hypercube,”
SIAM J. Computing, vol. 18, pp. 740-747, Aug. 1989.
N. Pekergin and J.-M. Vincent, “Stochastic bounds on execution times
of task graphs,” Rep. EHEI, 1989.
A. L. Rosenberg, “Shuffle-oriented interconnection networks,” COINS
Tech. Rep. 88-84, Univ. of Massachusetts, 1988.
S. Rajsbaum, “Upper and lower bounds for stochastic marked graphs,”
lnjorm. Processing Lett., vol. 49, pp. 291-295, 1994.

New York: Springer Verlag, 1988, pp. 351-360).

[32] Y. Malka and S. Rajsbaum, “Analysis of distributed algorithms based
on recurrence relations,” in Proc. 5th Int. Workshop on Distributed Algo-
rithms, Lecture Notes in Computer Science 579. New York: Springer-
Verlag, 1992, pp. 242-253.

[33] S. M. Ross, Stochastic Processes. New York: Wiley, 1983.
[34] D. Stoyan, Comparison Methods for Queues and Other Stochastic

Models, (English translation).
[35] J. G . Shanthikumar and D. D. Yao, ‘The effect of increasing service rates

in a closed queueing network,” J. Appl. Prob., vol. 23, pp. 474-483,
1986.

New York: Wiley, 1984.

S. Rajsbaum received the degree in computer engi-
neering from the National Autonomous University
of Mexico (UNAM) in 1986, and the Ph.D. degree
in computer science from the Technion-Israel In-
stitute of Technology, Haifa, Israel, in 1991.

Since 1991, he has been an Associate Profes-
sor at the Institute of Mathematics. UNAM. He
is currently a Visiting Scientist at the Laboratory
for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, USA. His general
research interests are distributed computation, the-

oretical computer science, and graph theory. In particular, he has worked
on real-time computing, algorithm design and analysis, and o n the study of
graph tournaments.

M. Sidi (S’77-M’82-SM’87) received the B.Sc.,
M.Sc., and D.Sc. degrees in electrical engineering
from the Technion-Israel Institute of Technology,
Haifa, Israel, in 1975, 1979, and 1982, respectively.

In 1982, he joined the faculty of the Department
of Electrical Engineering at the Technion. During
the academic year 1983-1984, he was a postdoctoral
associate at the Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, USA. During
1986-1987, he was a Visiting Scientist at the IBM

T.J. Watson Research Center, Yorktown Heights, NY, USA. His current
research interests are in queueing systems and computer communication
networks.

Dr. Sidi received the New England Academic Award in 1989. He
coauthored the book, Multiple Access Protocols: Performance and Analysis
(Springer-Verlag 1990). Currently, he serves as the Area Editor for
communication networks in IEEE TRANSACTIONS ON COMMUNICATIONS,
as an Editor of IEEEIACM TRANSACTIONS ON NETWORKING, and as the
Associate Editor for communication networks and computer networks of
IEEE TRANSACTIONS ON INFORMATION THEORY.

Authorized licensed use limited to: MIT Libraries. Downloaded on April 23,2020 at 13:35:56 UTC from IEEE Xplore. Restrictions apply.

