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Abstruct- A synchronizer is a compiler that transforms a 
program designed to run in a synchronous network into a 
program that runs in an asynchronous network. The behavior of 
a simple synchronizer, which also represents a basic mechanism 
for distributed computing and for the analysis of marked graphs, 
was studied by Even and Rajsbaum under the assumption that 
message transmission delays and processing times are constant. In 
this paper, we study the behavior of the simple synchronizer when 
processing times and transmission delays are random. Our main 
performance measure is the rate of a network, i.e., the average 
number of computational steps executed by a processor in the 
network per unit time. We analyze the effect of the topology 
and the probability distributions of the random variables on the 
behavior of the network. For random variables with exponential 
distribution, we provide tight (i.e., attainable) bounds and study 
the effect of a bottleneck processor on the rate. 

Index Terms- Distributed networks, synchronizer, perform- 
ance analysis, stochastic behavior, marked graphs 

I. INTRODUCTION 

ONSIDER a network of processors that communicate C by sending messages along communication links. The 
network is synchronous if there is a global clock whose beats 
are heard by all the processors simultaneously, and the time 
interval between clock beats is long enough for all messages 
to reach their destinations and for local computational steps 
to be completed before the clock beats again. The network is 
asynchronous if there is no global clock, and the transmission 
times of messages are unpredictable. 

In general, a program designed for a synchronous network 
will not run correctly in an asynchronous network. Instead of 
designing a new program for the asynchronous network, it is 
possible to use a synchronizer [ 11, i.e., a compiler that converts 
a program designed for a synchronous network, to run cor- 
rectly in an asynchronous network. Synchronizers are a useful 
tool because programs for synchronous networks are easier to 
design, debug, and test than are programs for asynchronous 
networks. Furthermore, an important use of synchronizers is 
the design of more efficient asynchronous algorithms [2]. The 
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problem of designing efficient synchronizers has been studied 
in the past (e.g., [ll,  [31, [281). 

The (worst case) time complexity of a distributed algorithm 
is usually computed under the assumption that processing 
times and message transmission delays are equal to some 
constant that represents an upper bound on these durations. 
The goal of this paper is to study the effect of random 
processing times and transmission delays on the performance 
of synchronous programs running in an asynchronous network 
under the control of a simple synchronizer. We compare 
the results with the deterministic case [18], [19], in which 
processing times, as well as message delays, are constant (or 
bounded). 

The operation of the synchronizer is as follows. Each 
processor waits for a message to arrive on each of its incoming 
links before performing the next computational step. When a 
computational step is completed (after a random time), it sends 
one message on each of its outgoing links. The implementation 
of this synchronizer may require, for instance, that every 
message be followed by an end-of-message marker, even if 
the message is empty. These end-of-message markers model 
the flow of information that must exist between every pair of 
processors connected by a link in each computational step [ 11. 
This is how a processor knows it has to wait for a message 
that was sent to it, or if no message was sent. 

We use this synchronizer in our analysis because it is 
very simple, yet it captures the essence of the synchronizer 
methodology; i.e., it ensures that a processor does not initiate 
a new phase of computation before knowing that all the 
messages sent to it during the previous phase have already 
arrived. Moreover, the synchronizer is equivalent to a marked 
graph (e.g., [ 151) in which the initial marking has one token per 
edge. In [3 11 and [32], the relationship between synchronizers 
and marked graphs is studied, and it is shown how the simple 
synchronizer can model the behavior of any marked graph, 
of the synchronizers of [l], and of distributed schedulers in 
[6], [23]. Thus, our work is closely related to problems in 
stochastic Petri nets, where, because of the huge size of the 
state space, the solution techniques often rely on simulation 
(e.g., W I ,  WI, W1). 

Many distributed protocols are based on this simple syn- 
chronizer, e.g., the snapshot algorithm [ 161, clock synchro- 
nization algorithms (e.g. [ 121, [26]), the synchronizers of 
[l], the distributed schedulers in [6] ,  [23], and the optimistic 
synchronizer [20]. The synchronizer is similar to synchronizer 
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a in [ 11, but can be used also in directed networks, as opposed 
to other synchronizers suggested in [ l ]  that require all links 
to be bidirectional. In [18] and [19], the benefits of using the 
synchronizer as an initialization procedure are described. 

Main Results: This paper is devoted to the performance 
analysis of strongly connected directed networks controlled by 
the simple synchronizer, in which transmission delays, as well 
as the time it takes a processor to complete a computational 
step are random variables. Our main performance measure 
is the rate of computation R,, i.e., the average number of 
computational steps executed by a processor in the network 
per unit time. To facilitate the presentation, we first assume 
that the transmission delays are negligible; only at the end of 
the paper, we describe how to extend the results for networks 
with non-negligible delays. 

In Section 111, we study the case in which the random 
variables have general probability distributions. We consider 
two approaches. First, in Section 111-A, we analyze the effect 
of the topology on the rate. We use stochastic comparison 
techniques to compare the rate of networks with different 
topologies. We give examples of networks with different 
topologies, but with the same rate. Then, in Section 111-B, 
we analyze networks with the same topology, but different 
processing times. By defining a partial order on the set 
of distributions, we show that deterministic (i.e., constant) 
processing times maximize the rate of computation. For this 
case, it is shown in [l8] that if the processing times are 
equal to A-', the rate of the network is A, regardless of the 
number of processors in the network or its topology. In the next 
section, we show that in case the processing times are random 
and unbounded, the rate may be degraded by a logarithmic 
factor in the number of processors. This occurs in the case of 
exponentially distributed processing times. However, in this 
section, we show that the exponential is the worst among 
a large and natural class of distributions; i.e., it yields the 
minimum rate within a class of distributions. 

In Section IV, we concentrate on the case of processing 
times that are exponentially distributed random variables with 
mean A-'. We prove that the rate is between A/4log(A + 1) 
and A /  log(S + l), where A (6 ) is the maximum (minimum) 
vertex in-degree or out-degree. Hence, for regular-degree 
(either in or out-degree) networks, the rate is @(A/  log(S+ 1)). 
We compute the exact rate and the stationary probabilities for 
the extreme cases of a directed cycle and a complete graph. 
Finally, we study the effect of having one processor that runs 
slower than the rest of the processors, and we show that in 
some sense, the directed cycle network is more sensitive to 
such a bottleneck processor than a complete network. 

In the last section, we show that it is easy to extend the 
results to networks with non-negligible transmission delays. 
We consider the exponential distribution case, and show that 
adding transmission delays to a regular degree network may 
reduce its rate by at most a constant factor, provided that they 
are not larger (w.r.t. the partial order) than the processing 
times. In networks with processing times exponentially dis- 
tributed with mean 1, and larger delays with mean A - l ,  we 
compare the results with those of [19], where it was shown 
that for the corresponding deterministic case, the rate is A. 

In the probabilistic case of a regular-degree network, the rate 
is at least O(X/logS). Thus, in both cases (small and large 
delays), the rate of a bounded degree network is reduced only 
by a constant factor. 

Previous Work: There exist several results related to our 
results in Section 111-B in the literature on stochastic Petri nets. 
For instance, dominance results for rather general stochastic 
Petri nets have been obtained in [5], and, more recently, 
in [SI, by using subadditive ergodic theory (e.g., [21]). It 
should be noted, however, that the proofs we provide for 
the simple synchronizer are different and much simpler, and 
do not require heavy mathematical tools. Other stochastic 
ordering studies exist. Papers on acyclic networks and fork- 
join queues are [29] and [9]-[ 111, respectively. For closed 
queueing networks, the effect of increasing the service rate 
of a subset of stations for systems, such that the distribution 
of the number of works in each station has a product form 
solution, is studied in [35]. 

A model similar to our model in Section IV is considered 
in [13], where it is claimed that the rate is 8(1/logSOut), 
for regular networks with out-degree equal to Sout, identically 
exponentially distributed transmission delays with mean 1, and 
negligible processing times. In [12], only a lower bound of 
@(I/ log Sin) on the rate is given, for regular networks with 
in-degree equal to Sin, with negligible transmission delays, 
and identically exponentially distributed processing times. 
Recently, it has been shown in [7] that subadditive ergodic 
theory can be used to derive more general lower bounds on the 
rate. A bottleneck problem related to ours has been considered 
in [4], where an asymptotic analysis of cyclic queues as 
the number of costumers grows is presented. Asymptotic 
performance of stochastic marked graphs as the number of 
tokens grows is studied in [25]. The class of networks with 
exponentially distributed processing times belongs to the more 
general model of stochastic Petri nets (see [22] for a survey), 
where it is usually assumed that the state space (of exponential 
size, in our case) is given. 

11. THE MODEL 
The network is modeled by a (finite) directed, strongly 

connected graph G(V, E ) ,  where V = { 1,2,  . . . , n} is the set 
of vertices of the graph and E C V x V is the set of directed 
edges. A vertex of the graph corresponds to a processor that 
is running its own program, and a directed edge U --+ w 
corresponds to a communication link from processor U to 
processor v. In this case, we shall say that U is an in-neighbor 
of w ,  and that v is an out-neighbor of U in the network. 
The processors communicate by sending messages along the 
communication links. To facilitate the presentation, we assume 
that the message transmission delays are negligible. At the end 
of this paper, we briefly discuss the case of non-negligible 
transmission delays. 

Initially, all processors are in a quiescent state, in which 
they send no messages and perform no computations. Once a 
processor leaves the quiescent state, it never reenters it and is 
considered awake. When awakened, each processor operates in 
phases as described in the sequel. Assume that at an arbitrary 
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time, t ( w ) ,  processor v leaves the quiescent state and enters its 
first processing state, PSo. This may be caused by a message 
from another processor, or by a signal from the outside world, 
not considered in our model. Then processor 'U remains in Pso 
for ~ ( v )  units of time and then transits to its first waiting state, 
WSo. From this time on, let PSI, and W S k , k  2 0, denote 
the processing state and the waiting state, respectively, for the 
kth phase. Observe that we are concerned with the rate of 
computation of the network; the nature of the computation 
is of no concern to us here. Thus, we take the liberty of 
denoting with the same symbol the kth processing state of 
all the processors. 

The transition rules between states are as follows. If a 
processor I I  transits from state Psk to W S k ,  it sends one 
message on each of its outgoing edges. These messages are 
denoted by Mk. Note that this labeling is not needed for the 
implementation of the protocol; it is used only for its analysis. 
When v sends the Mk messages, we say that v has completed 
its kth processing step. 

If a processor 'U is in state wsk, and has received a message 
( M k )  on each of its incoming edges, it removes one message 
from each of its incoming edges, transits to state Psk+l .  

remains there for Tk+I(v) units of time, and then transits to 
state WSk+l.  Otherwise, if at least on one incoming edge, 
MI,, has not yet arrived, processor v remains in state W S k  
until it receives a message from each of its in-neighbors, and 
then operates as described above. 

The processing times, Tk (U), correspond to the time it takes 
for processor 71 to complete the kth computation step. The 
processing times T k ( i i ) ,  k 2 0, and 71 E V, are positive, 
real-valued random variables defined over some probability 
space. 

For k 2 0, let t f ( w )  (or t k ( u ) ,  whenever G is understood) 
be the kth completion time, i.e., the time at which processor 
w sends messages MI, in network G. Let the in-set of a vertex 
'U in G, ING(?/) (or simply IN(u)), be the set of vertices 
in G that have an edge to v,  including v itself, that is, 
IN(v) = (11  : U -+ 7~ E E }  U { w } .  With this notation, the 
operation of processor v E V is as follows. Once 'U has sent 
a message Mk at time t k ( v ) ,  it waits until all processors 
with an edge to it send message Mk, and then starts its 
( k  + 1)st computation step; that is, after the maximum of 
t k ( u ) ,  TL E IN(?)), it starts the ( k  + 1)st computation step, 
which takes Tkf l (0)  units of time, and then sends out Mk+l. 

For this reason, we shall assume in the rest of the paper that 
for each vertex U ,  the edge w -+ 7~ is in E. The evolution of 
the network can be described by the following recursions: 

It is interesting to note that the completion times t k ( W )  have 
a simple graph theoretic interpretation. For a vertex w ,  let 
SI , ( I I )  be the set of all directed paths of length k ending in 
U .  For k = 0, the only path of length 0 ending in v consists 
of t~ itself. For a path Pk = vo + v1 -+ . . . -+ vk(= U), let 
T(%)  4 t(vo) + ~ t = ~ T i ( v i ) ,  and let T ( S k ( V ) )  4 { T ( P )  : 

P E s k ( W ) } .  Thus, T(Sk(W)) is a set of random variables; 
each one is the sum of k + 1 random variables. Note that these 
random variables are not independent, even if the T ~ ( w ) ' s  are 
independent. The explicit computation of tk(v) is as follows. 

Theorem 2.1: For every v E V ,  k 2 0, tk (v)  = 
maxT(Sk(v) ) .  

Proof: By induction on k. For k = 0, note that the only 
path of length 0 to w is v itself; i.e., So(w) = { w } ,  and 
T(So(w)) = {t(vo) + T ~ ( w ) } .  Hence, we get the following 
equation: 

to(v)  = maxT(So(v))  = t ( w )  + ~ o ( v ) .  

Assume that the theorem holds for k 2 0. From the 
recursion above, we have the following condition: 

By the inductive hypothesis, we have the following: 

which gives the following desired result: 

t k + l  ( U )  = m a  T (  sk+l (U)). 0 

The Performance Measures: The most important perfor- 
mance measures investigated in this paper are the completion 
times tk(v), IC 2 0, v E V. A related performance measure 
of interest is the counting process NF(w) (or simply Nt(v)) 
associated with processor w ,  which is defined by the following 
expression: 

Nt(w) sup{k : t k ( W )  5 t } ;  

that is, Nt(w) is the number of computation steps (minus 1) 
completed by up to time t ,  or the highest index of an h f k  

message that has been sent by v up to time t .  Similarly, 
Nt 4? E:=, Nt(v )  denotes the total number of processing 
steps (minus n j  executed in the network up to time t. The 
following claim indicates that no processor can advance (in 
terms of executed processing steps) too far ahead of any other 
processor. 

Claim 2.2: Let d be the diameter of a directed, strongly 
connected graph G. Then, for all u,v  E V ,  and t 2 0, 

Pro08 Denote by 1 the length of a simple path from U 

to w. A simple inductive argument on 1 shows that the fact 
that the last message sent by U up to time t is MA.,(,) implies 
that Nt(w) 5 Nt(u)  + 1. Thus, Nt(w) - Nt(u)  5 1 5 d. 
The same argument for a simple path from w to U proves that 

Another important performance measure is the computation 
rate, RG(v)  (or simply R('u)) of processor v in network G, 
defined by the following expression: 

INdU) - Nt(v)l I d. 

Nt(U) - I d. U 

whenever the limit exists. Similarly, the computation rate of 
the network is defined by the following expression: 

R A  lim -_ Nt 
t-oo t 
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Claim 2.2 implies that for every u , v  E V, R(u) = R(v);  
therefore, R = n R(v) .  

111. GENERAL PROBABILITY DISTRIBUTIONS 
In this section, we compare the performance of different net- 

works, with general distributions of the processing times T ~ ( v ) .  
We first show that adding edges to a network with an arbitrary 
topology slows down the operation of each of the processors 
in the network. We show how the theory of graph embedding 
can be used to compare the rates of different networks. As 
an example, we present graphs, which have the same rate (up 
to a constant factor) for general distributions, although they 
have different topologies. Finally, we compare networks with 
the same (arbitrary) topology, but different distributions of 
the processing times. Specifically, we show that determinism 
maximizes the rate, and exponential distributions minimize the 
rate, among a large class of distributions. 

A. Topology Of The Network 

Monotonicity: Here we show that adding edges to a net- 
work with an arbitrary topology slows down the operation of 
each of the processors in the network. The basic methodology 
used is the sample path comparison; that is, we compare the 
evolution of message transmissions in different networks for 
every instance, or realization, of the random variables ~ k (  w). 
This yields a stochastic ordering between various networks 
[331, 1341. 

Theorem 3.1: Let G(V, E )  be a graph, and let E' 2 V x V 
be a set of directed edges. Let N(V, E U E') be the graph 
obtained from G by adding edges E'. Assume that processor 
v, 1 5 v 5 n awakens in both G and H at the same time t(v). 
For every realization of the random variables rk(v) ,  k 2 0, 
1 I v 5 n, the following inequalities hold: 

Corollary 3.2: Under the conditions of Theorem 3.1, we 
have the condition that NF(v )  2 N p ( v )  and RG(v) 2 
R H ( v )  (when the limits exist) for all v E V .  Also N f  2 N y .  

Remark I :  Notice that no assumption was made about 
the random variables T ~ ( v ) .  In particular, they need not be 
independent. 

Remark 2: The sample path proof above implies that the 
random variable N," is stochastically larger than the random 
variable N p ,  denoted N F > d N p ;  i.e., Pr{Ny 2 a }  2 
Pr{N,H > a }  for all a. 

Remark 3: The above implies that if one starts with a sim- 
ple, directed cycle (a strongly connected graph with the least 
number of edges) and successively adds edges, a complete 
graph is obtained, without ever increasing the rate. 

Embedding: The theory of graph embedding has been used 
to model the notion of one network simulating another on a 
general computational task (see for example [30]). Here we 
show how the notion of graph embedding can be helpful in 
comparing the behavior and the rates of different networks 
controlled by the synchronizer. 

An embedding of graph G in graph H is specified by a 
one-to-one assignment a : VG + VH of the nodes of G to the 
nodes of H ,  and a routing p : EG + Paths( H )  of each edge of 
G along a distinct path in H .  The dilation of the embedding 
is the maximum amount by which the routing p "stretches" 
any edge of G: 

dilation(a,p) = max length(p(u + ,U)). 
U-UEEG 

The dilation is a measure of the delay incurred by the simu- 
lation according to the embedding. The following theorem is 
a generalization of Theorem 3.1. 

Theorem 3.3: Let (a ,  p )  be an embedding with dilation D 
of a graph G(VG, EG) in a graph H(VH, E H ) .  Assume that 
t ( v )  = t(cr(v)) for all v E VG, and that ~ k ( v )  and T ~ D ( ~ ( U ) )  

for all IC 2 0, v E VG, have the same distribution. For 
every realization of the random variables .,"(U) = T,",(cx(u)), 
IC 2 0 ,  v E VG, the following inequalities hold: 

t f ( 4  I t F ( 4 ,  

for all k 2 0, 1 I v 5 n. 

induction is trivial, because the following is true: 
Proof: The proof is by induction on k. The basis of the 

t f ( v )  I tFD(a(v)), k 2 0,v  E V G .  

t f ( v )  = t ( v )  + 70(v) = t f ( v ) .  Proof: For each path of length k 2 0 in G ,  the following 
is true: 

The induction hypothesis is t f ( v )  5 t f ( v ) .  We need to show @ = U0 --f 211 + ." 4 w k ( =  U), 
that tf+:+l(w) 5 tf+l(v). From (l), we have the following 
condition: one can use p to construct a path in H of length less than 

or equal to IC . D from a(vO) to a ( w k ) ,  passing through 
t f+1(4  = u E E y p 4 }  + Tk+l(v), a(%), a(v2) ;  ' '  ' 7 a ( v k - 1 ) :  

( 2 )  P(.o + 211) + P ( V l  + .2) + . . . + p(%-1 * vk). tk+l(v) H = y E ~ + l ) { t F ( u ) l  + Tk+l(V). 
Moreover, there is such a path of length exactly k . D, 

because one can revisit vertices (each vertex has a self-loop) 
each time between a pair of vertices cy(vi) and a(vi+l), there 
are less than D edges in the path p(w;, v i + l ) .  Thus, there is 
the following path in H :  

Since ING(v) & INH(.), it follows that: 

m y  W.)} I uEF+v){w7 
u E I N  (U) 

and therefore it follows from (2) that tf+:+l(v) 5 tf+l(v), for P& = U0 -+ U1 --$ . "  + 'I lkD; 
all U. U 

The previous theorem implies immediately. where U,D = a(vi), 0 5 i I I C .  
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We are assuming a realization 7-k ( U )  = T ~ D  (a(  U)), for every 
U E V,. It follows that for every path P:, there exists a path 
P E ,  such that the following is true: 

w:) I Tu%),  

and thus the following is also true: 

max T (  Sf ( U)) 5 max T (  S,",( a(.))). 

By Theorem 2.1, t f ( w )  5 t&(a(v)) .  0 
Corollary3.4: Under the conditions of Theorem 3.3, we 

have the condition that D .  N F ( v )  2 Nr(cu(u))  and D .  
RG(w) 2 R H ( a ( v ) )  (when the limits exist) for all v E VG. 

Remarks 1-3 hold in this case, too. 
A simple corollary of Theorem 3.3 is that if G is a subgraph 

of H ,  NF(w) >d N F ( a ( v ) ) .  This is because if G is a 
subgraph of H ,  then there is an embedding from G in H 
with dilation 1. In addition, if the number of vertices in G and 
H are equal, and the dilation of the embedding is D ,  then G 
is a D-spanner of H (e.g., [28]), and we have the following. 

Corollary 3.5: If H has a D-spanner G, then R G / D  5 
RH 5 RG. 

A motivation for the theory of embedding is simulation. 
Namely, one expects that if there is an embedding (a ,  p )  from 
G in H with dilation D ,  then the architecture H can simulate T 
steps of the architecture G on a general computation in order 
of D . T steps, by routing messages according to p .  In our 
approach, we compare the performance of G and of H under 
the synchronizer, without using p. The embedding is used only 
for the purpose of proving statements about the performance of 
the networks. Consider, for example, the following two results 
of the theory of embedding [30]. 

Proposition 3.6: For all n 2 1, one can embed the order 
n shuffle-exchange graph in the order n deBruijn graph with 
dilation 2. One can embed the order n deBruijn graph in the 
order TI shuffle-exchange graph with dilation 2. 

Proposition 3.7: For all ri 2 1, one can embed the order 
n cube-connected-cycles graph in the order n butterfly graph 
with dilation 2. One can embed the order n butterfly graph in 
the order n Cube-Connected-Cycles graph with dilation 2. 

By Theorem 3.3, the average rate of the graphs of Proposi- 
tion 3.6 (3.7) are equal up to a constant factor of 2, provided 
that the processing times of corresponding processors have the 
same distributions (regardless of what these distributions are). 

B. Probability Distributions 

Deterministic Processing Times: Now we compare net- 
works, say, G(V. E )  and H(V, E ) ,  having the same (arbitrary) 
topology, but operate with different distributions of the random 
variables ~ ( v ) .  To that end, we assume that the processing 
times .,"(U), k 2 0, I I  E V are independent and have finite 
mean E[$(II)] = X;l. 

We say that A ,  is the potential rate of U, because this 
would be the rate of w if it would not have to wait for 
messages from its in-neighbors. The processing times in H 
are distributed as in G, except for a subset V' & V of 
processors, for which the processing times are assumed to be 
deterministic; i.e., .,"(U) = X;',v E V' ,  for k 2 0. We let 

.,"(U) = .,"(U) = T~(v), k 2 0, v V', be any specific 
realization of the random variables in G. Again, it is assumed 
that the processors are awakened at the same time in both 
networks. 

Theorem3.8: Under the above conditions, we have the 
following condition: 

t m  L Wf(741: 

for all processors v, and k 2 0. The expectation is taken over 
the respective distributions of processing times of processors 
of G in V'. 

Proof: The proof is by induction on k. For the basis, 
k = 0, we make the following observations: 

E[tf(v)] = t f (v)  = t ( w )  + ~ ( w )  = t F ( v ) ,  

for U $! V', and 

E[tf(v)] = t ( v )  + X i 1  = t f ( w ) ,  

for I I  E V'. 

to show that tf+l(v) 5 E[tf+:+,(v)], for all w E V. 
The induction hypothesis is tF(w) 5 E[tf(v)], and we need 

From ( l ) ,  we have the following condition: 

for w E V. Jensen's inequality implies the following: 

By the induction hypothesis, we have the following equation: 

E[tf+1(4l 2 u y $ m U ) l  + E[.f+l(Idl = tF+1(v), 

because E [ T ~ + ~ ( u ) ]  = T ~ + ~ ( V )  for w $! V', and E [ ~ f + ~ ( v ) ]  = 
0 

Remark 4: Theorem 3.8 holds also if the processing times 
.,"(U) of processors 'U of H in V', are deterministic, but not 
necessarily the same for every k. 

When all processing times in the network H are deter- 
ministic, the computation of the network rate is no longer 
a stochastic problem, but a combinatorial one. Thus, a conclu- 
sion of Theorem 3.8 is that in this case, the computation rate 
of H ,  obtained via combinatorial techniques ([18] and [19]), 
yields an upper bound on the average rate of G. Furthermore, 
if the times t f ( w )  are computed, they give a lower bound on 
E[tf(v)] for every k 2 0. 

More Variable Processing Times: More generally, we 
study the effect of substituting a random variable in the 
network (e.g., the processing time of a given processor, 
for a given computational step) with a given distribution, 
for a random variable with another distribution on the rate 
of the network, and define an ordering among probability 
distributions. 

Recall that a function h is convex if, for all 0 < t < 1, 5 1 ,  
2 2 ,  h(tz1 + (1 - t ) ~ )  5 th(z1) + (1 - t)h(zp). A random 
variable X with distribution Fdy is said to be more variable 
than a random variable Y with distribution FIT ,  denoted 
X>,Y or F<Y>,FIJ, if E[h(X)] 2 E[h(Y)] for all increasing 

A;' = .,",,(w), for U E v'. 
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convex functions h. The partial order 5,  is called convex order 
(e.g., [33], [34]). Intuitively, X will be more variable than Y 
if Fx gives more weight to the extreme values than F y .  For 
instance, if E[X] = E[Y], then Var(X) 2 Var(Y), because 
h(z)  = x2 is a convex function. 

Here we compare networks, say, G(V, E )  and H(V,  E )  
having the same arbitrary topology, but some of the processing 
times in G are more variable than the corresponding processing 
times in W ,  i.e., for some k 's  and some U ' S ,  .E(.) 2c T,"(w), 

while all other processing times have the same distributions in 
both graphs. When tG(v)  = t H ( w )  and all processing times in 
G ( H )  are independent of each other, the following holds. 

Theorem 3.9: Under the above conditions, the following 
holds for all processors U ,  and k 2 0: 

with any NBUE distribution. The following theorem follows 
from the fact that the deterministic distribution is the min- 
imum, whereas the exponential distribution is the maximum 
with respect to the ordering I C ,  among all NBUE distributions 

Theorem 3.11: For every U E V, k 2 0, it holds that 

Some examples of distributions that are less variable than 
the exponential (with appropriate parameters) are the Gamma, 
Weibull, and Uniform. We should conclude this section by 
pointing out that the interested reader can find similar results 
for rather general stochastic Petri nets in [5] and [8]. 

W I .  

G t ,  (.)5ctf(45,tfe(.). 

IV. EXPONENTIAL DISTRIBUTIONS 
Fctf (U). In this section, we assume that the processing times T~(w), 

k 2 0, w E V are independent and exponentially distributed 

upper and lower bounds on the expected values of t k ( w ) ,  and 

proof: From 2. 3 we have the 'On- with mean X-1. We first consider general topologies and derive 
dition: 

t k ( w )  = max{T(Pk) : Pk E Sk(w)}, 

where Pk = vug i ul -+ . . . + uk(= w) is a directed path of 
length k ending in v, and T(Pk)  = t(wo) f E,"=, T,(v,). 

From the fact that the 7's are positive and m a  and are 
convex increasing functions, it follows that tk(w) is a convex 
increasing function of its arguments {T,(u) : 0 5 z 5 k , u  E 
Pk,Pk E Sk(w)}. Now we can use Proposition 8.5.4 in [33]. 

Proposition 8.5.4: If XI, X2. . . . , X, are independent r.v., 
and Yl,Y2,.. .  ,Yn are independent r.v., and X,>,Y,,i = 
1 , 2 , . . . , n ,  then g ( X 1 , X 2 , . . . ? X n )  >,g(Yl,Yz;..,Yn) for 
all increasing convex function g that are convex in each of 
its arguments. 

The proof of the theorem now follows, because, by as- 
sumption, the 7's in G are independent, the 7's in H are 
independent, and T:(W)<~T:(W), k 2 0. w E V,. Note that 
the random variables T(%)  are not independent. 

Corollary 3.10: Under the above conditions NF(w) 5 
Np(w), RG(u) < RH(w) and RG 2 RH.  

In the next section, we show that if the processing times 
are independent and have the same exponential distribution 
with mean A-'. then the rate of any network is at least 
AlVl/ log IV(. We conclude this subsection by characterizing 
a set of distributions for which the same lower bound holds. 

Assume that the expected time until a processor finishes 
a processing step, given that it has already been working on 
that step for Q: time units, is less than or equal to the original 
expected processing time for that step. Namely, we assume that 
the distributions of the processing times T ~ ( u ) ,  for all w E V, 
k 2 0, are new better than used in expectation (NBUE) (e.g., 
[33], [34]), so that if T is a processing time, then we have the 
following equation: 

E[. - a17 > U] 5 E[T], 'da 2 0. 

thus obtain upper and lower bounds on the rate of the network. 
These bounds depend on the in-degrees and out-degrees of 
processors in the network, but not on the number of processors 
itself. Then, exploring the Markov chain of the underlying 
process, we derive the exact rates of two extreme topologies: 
the directed ring and the fully connected (complete) network. 
For these two topologies, we study also the effect of having a 
single slower processor within the network. 

A. Upper and Lower Bounds 

of (into) %r in G, and let the following be true: 
Denote by dOut(v)(din(w)) the number of edges going out 

Aout = maxdout(v); Ain = maxd;,(v); 
VEV UEV 

bout = min dout(w), Sin = min din(v). 
V E V  V E V  

Lemma 4.1 (Lower Bound): 
1) For every k 2 0, there exists a processor v E V for 

which the following condition exists: 

2) For every k 2 0, and every ZI E V, the following holds: 

Pro08 We present a detailed proof for part (1) only; the 
proof of part (2) is discussed at the end of this paper. We start 
by proving that for every IC 2 0, there exists a (not necessarily 
simple) path WO ---t w1 -+ . . . + v k ,  such that the following 
expression is true: 

Let Gd(V, E )  be a network with deterministic processing 
times; let G,(V, E )  be a network with corresponding process- 
ing times with the same mean, but independent, exponentially 
distributed; and let G(V, E )  be a network with corresponding 
processing times with the same mean and independent, but 

E[t,+l(w,+l)] - E[t,(w,)] 2 A-' log60ut, 0 5 i < k .  

We assume the statement holds for k 2 0, and prove it for 
k + 1. The proof of the basis is identical. Let w k + l  be the 
processor for which the processing time during the ( k  + 1)th 

r .  . . ..... .--..I , . 
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computational step is maximum, among the out-neighbors of 
v k ,  i.e., as followsi 

Because vk+l will not start the ( I C  + 1)st computational 
step before W k  finishes the kth computational step, we have 
the condition that tk+l(Wk+l) - t k ( v k )  2 ~lc+l(vlc+l). The 
quantity ~ k + l ( v k + l )  is equal to the maximum of at least Sout 
independent and identically distributed exponential random 
variables with mean A-'. It is well known (e.g., [13], [17]) 
that the mean of the maximum of c such random variables is 
at least A-' log c. It follows that: 

We can choose W O  to be the one with latest waking time t ( w o ) ,  
and thus E[to(wo)] = t ( v )  + A-'. Therefore, for every IC 2 0, 
there exists a processor w such that the following is true: 

E[tk(w)] 2 maxt(v) + X - l [ l  + I C .  10g6~,t], 
U E V  

completing the proof of ( I ) .  The proof of part (2) evolves 
along the same lines, except that we start from 'uk and move 

Remark 5: From its proof, one can see that Lemma 4.1 
holds for any distribution F of the processing times, for which 
the expected value m, of the maximum of c independent 
r.v. with distribution F exists. In this case, it implies that 
R, 5 l/m,, with c = bout or c = 6in. 

Remark 6: Lemma 4.1 implies that for the exponential 
case, the slowdown of the rate is at least logarithmic in the 
maximum degree of G. By Remark 5 ,  there are distributions 
(not NBUE by Theorem 3.1 l ) ,  for which the slowdown is 
larger; an example is F ( z )  = 1 - 1/z2. z 2 1, for which the 
slowdown is at least the square root of the maximum degree 
of G [17, p. 581. 

backward along a path. U 

Lemma 4.2 (Upper Bound): 
1 )  For every IC 2 1, for every processor v ,  we get the 

following: 

2) For every k 2 1, for every processor w, we get the 
following: 

4 
UEL' x E[tk-l(v)] 5 maxt(u) + log IV( + -(1 + logAo,t). 

Proof: Again, we restrict ourselves to the proof of part 
(1). Recall that Theorem 2.1 states that for every v E V ,  k 2 0, 
tk(w) = maxT(Sk(v)). Also, for a path Pk = W O  + v1 + 

. . . + v k ,  T(Pk)  = t (vo) + q ( v i ) ,  but for the moment, 
let t ( 7 1 )  = 0 for every U. 

By Proposition D.2 of the Appendix, we have the following 
condition: 

for every c > 4, because log 2/ log Ain 5 1. It follows that: 

for every c 2 4, and 

y log a,, 
ldt + f -1) log A,,, 4 logA;,dc 

0 

Combining Lemma 4.1 and Lemma 4.2, we obtain Theorem 

Theorem 4.3: 
4.3. 

B. Exact Computations 

Theorem 4.3 implies the following bounds for the rate of 
a directed cycle C,(A = S = 2) and of a complete graph 
K n ( A  = 6 = n) ,  where n is the number of processors: 

0.36X 5 Rcn(w) 5 A, 

x < R K - ( w )  5 -. x 
4logn - log n 

In this section, we shall compute the exact values for the rates 
of C, and K,. To that end, we consider the Markov chain 
associated with the network. This Markov chain is denoted 
by X ( t )  = (X,(t).Xz(t),...,X,(t)) , where X, ( t )  is the 
number of messages stored in the buffer of edge i at time 
t ,  and m is the number of edges in the network. Note that 
a processor with a positive number of messages on each of 
its incoming edges is in a processing state. When such a 
processor completes its processing (after an exponential time), 
one message is deleted from each of its incoming edges and 
one message is put on each of its outgoing edges. We denote 
by SO the state in which X,(O) = 1, 1 5 i 5 ni. Thus, the 
network can be represented as a marked graph (e.g., [15]). 

The number of states in the Markov chain is finite, say, 
N ,  because a transition of the chain does not change the total 
number of messages in a circuit in the network. Moreover, if 
the network is strongly connected, then the Markov chain is 
irreducible. Therefore, the limiting probabilities P,, 1 5 z 5 
N ,  of the states s, of the chain exist; they are all positive; and 
their sum is equal to 1 (e.g., [14], [33]). However, as we shall 
see, N can be exponential in n; therefore, it is infeasible to 
compute the rate by directly solving the Markov chain. Here 
we show how to solve the Markov chain for two network 
classes without having to produce the entire chain. We hope 
this combinatorial approach could be applied to other networks 
as well. 

Let G x  denote the transition diagram (directed graph) of 
the Markov chain X .  Consider a breadth-first search (BFS) 
tree of G<Y, rooted at S O .  The level L(w) of a vertex v will be 
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equal to the distance from SO to 'U. Thus, L(s0) = 0. Denote by 
L,, i 2 0, the set of vertices at level i ,  and by L the number 
of levels of G x .  

A Simple Directed Cycle: We study the performance of a 
simple directed cycle of n processors C, = p l  -+ pa 4 ... -+ 

p, -+ p l .  It is not difficult to observe that the Markov chain 
associated with C, corresponds to that of a closed queuing 
network. We return to this approach later. Here we choose to 
use a combinatorial approach. 

Theorem 4.4: 
1) All the states associated with C, have the same limiting 

2) For any graph G that is not a simple directed cycle, (1) 

Proof: 1) The proof follows from two observations. First, 
by symmetry, all the states in one level have the same 
probability. Second, the in-degree of any state in the transition 
diagram is equal to its out-degree. Then a simple inductive 
argument can be used to prove part (1). 

2) If G is not a cycle, then it has a node U ,  s.t. d;,(w) 2 1. 
Let wl, w2 be two nodes with edges to w. Consider the state s, 
reached from so, by the processing completion (or, in marked 
graphs terminology, firing) of vertex U. The outdegree of 
s = n - 1, because apart from U, all vertices are still enabled. 
But the indegree of s is at most n - 2,  because by the firing of 
v1 or of w 2 ,  it is not possible to reach s, because there are no 
messages on the edges from w1 and 112 to v, in s. Therefore, 
we have proved that d,,(s) # dOut(s). 

Consider the balance equation that holds at state s: PI +P2+ 
. . .  + Pk = n - 1 . Ps, where Pz, 1 5 i 5 k are the limiting 
probabilities of the states that have an edge to s, IC = d;,(s), 
P, is the limiting probability of s, and n - 1 = dout(s). We 
have just proved that k # n- 1. It follows that it is not possible 
that all the probabilities of the last equation are equal. 0 

The next theorem states that each processor of C, works at 
least at half of its potential rate A, regardless of the value of n. 

Theorem 4.5: The rate R ( v )  of a processor in C, is as 
follows: 

probability. 

does not hold. 

(2n - l ) !  
n!(n - I)! ' N =  

and the limiting probability of each state is 1/N, where N is 
the number of states in the associated chain. 

Proof: If M is the number of states in which at least one 
message is in an edge, going into a processor, say, w, then 
the running rate will be M/N times the expected firing rate. 
This is because w will be enabled when it has more than 0 
messages in its input edge, and because all states have the 
same probability (Theorem 4.4), the percentage of the time 
that is enabled is simply MIN. 

The number of ways of putting n objects in k places is as 
follows: 

( n  + k - I)! 
P(n,k)  = 

n!(k - l)! 

It is not difficult to see that N = P(n,n) and M = 
N - P(n, n - 1). Thus, we have the following equation: 

n - 1  =I-- M 
N 2n- 1 '  
- 

which gives the desired results. 0 
A Complete Graph: Let K,  be a complete graph with n 

processors. Recall that N is the number of states in the 
associated Markov chain, and let SO be the state in which 
each edge has one token. A state is at level I ,  0 5 1 5 n - 1, 
if it can be reached from SO by the firing of 1 processors. The 
limiting probability of a state at level 1 is denoted by P(1). 

Theorem 4.6: The rate of a processor in K,  is as follows: 

x 
log n ' 

R(v) = X/X, N - 
2 = 1  

Proo$ A simpler proof can be derived, as in the proof 
of Theorem 4.10; here we give a combinatorial proof that also 
yields the number and the limiting probabilities of the states 
of the associated Markov chain. 

We consider a Markov chain T, similar to the Markov chain 
associated with network K,. The root of T, S O ,  is the state with 
a message in each edge. A state s will have one son for each 
one of the enabled processors at state s; a son of s corresponds 
to the state arrived at from s by the firing (completion of a 
processing step) of one of the enabled processors in state s. 
Note that in chain T, there are several vertices corresponding 
to the same state of the chain associated with K, .  

In T, the number of states in level 1 is n! / (n  - l ) ! ,  because 
each time a processor fires, it cannot fire again until the rest 
of the processors have fired. Thus, the number N T ,  of states 
in T is as follows: 

The number of states in which a given processor is enabled at 
level E,  en(l) (edges from level 1 to level E + l), is as follows: 

1 n! 
n (n  - 1 - I ) ! '  

en(1) = - 

because at level I ,  there are n! / (n  - 1 - l)!  enabled proces- 
sors, and, by symmetry, each processor is enabled the same 
number of times at each level. 

Let us denote by PT the limiting probability of a state of 
T in level E. One can show that PT = (n - 1 - l)!/K, where 
the following is true: 

" 1  
n-1 

K=C- PT = n ! X : .  
l=o ( n  - i=l ' 

It follows that the percentage of time that a processor is 
enabled is as follows: 

n! 

1 n-1 

ut = ut(l) = ~ 

1=0 c2, + ' 
where ut(l) = en(l)PT, and its rate is X . ut. 0 
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Corollary 4.7: For a network K,, we have the following 
conditions: 

N = 2" - 1, 

I!(n - I - I)! 
n! Cy=, 7 

Pro08 As noted before, it may be that two states of T 
correspond to the same state, say, s, of K,. In fact, if a state 
of T is reached from SO by firing a sequence of processors 
of length I C ,  then all I C !  permutations of the processors in this 
sequence constitute a valid firing sequence, which leads to the 
same state s. Thus, the limiting probability of a state s at 
level 1 is as follows: 

1 '  Pl = 

l!(n - 1 -' I)! 
n! 7 4 = l!P,T = 1 

The number of different states at level 1 is n!/l!(n - l ) ! ,  and 
the total number of different states is as follows: 

n-1 

U 
Corollary 4.8: Asymptotically, the rate of any network of 

n processors is between Xn/2 and Anllogn. 
Observe that the best possible rate of a processor is 2/3 

of the potential rate, in the case of a cycle of two processors. 
Adding more processors can only lower this rate, but not below 
1/2. Yet the rate of the network grows linearly with n.  In the 
case of a complete graph, the rate of a processor reduces as n 
grows, but also here the total number of computational steps 
executed per unit time (n/ log n) grows with n. 

C. Bottlenecks 
Suppose that the potential rate of all processors of a graph 

is A, except for one, which has a lower rate p. We shall now 
show that such a bottleneck has a stronger effect in a network 
that is a directed cycle, than in one that is a complete graph. 

Consider the case of a simple directed cycle with n vertices 
CB,, where n - 1 processors have rate X and one processor 
has rate p. Using standard techniques of queuing theory, we 
prove the following. 

Theorem 4.9: The following is the rate of a processor in 
CB,: 

x 
; p = - #  

n + i - 2  )Pi P 

Proof: Let Xi, 1 5 i 5 n be the number of messages 
in the buffer of the incoming edge to processor i. The total 
number of messages in the cycle is equal to n. Since this is a 
closed queueing system, we have the condition that the limiting 
probability of the system being in state ( q , z z , . . .  ,z,) is 

given by the following product form [33]: 

Pr(X1 = x1,X2 = x 2 , . . . , X n  = 2,) = 

n 

if ' S x ;  = n. 
L J  ' 
j = 1  

and is equal to 0 otherwise, where K is a normalization con- 
stant that guarantees that the sum of all the above probabilities 
is equal to 1. Thus, the following is the probability of having 
1 messages on the incoming edge to processor n: 

where p = A/p and S' = {(x1,x2:..,zn-1) : xj 2 0 , l  5 
j 5 n - l , C , = ,  x3 = n - I } .  Hence, n-1 

Pr(X, = 1)  = K' 

where K' is the normalization factor determined by the con- 
dition El"=, Pr(Xn = I )  = 1. Finally, we get the following: 

Pr(X, = E )  = , 0 5 1 S n .  
2 n - j - 2  

Now observe that the rate is simply p n [ l  - Pr(X, = O)], 
because the rate of the processor is p while,there are messages 

U 
Several conclusions can be derived from Theorem 4.9. First, 

observe that the rate of the cycle cannot exceed p n ;  thus, the 
slow processor bounds the rate of the network. Moreover, for 
a fixed n and a very slow processor ( p  + 0 or p -+ m), the 

rate of the network is p n  [ 1 - ( 2nn- ') p- j ; namely, as p 

increases, the rate approaches its upper boun pn. 
Next we consider the case where the graph is a complete 

graph KB,. We continue to assume that the rate of n - 1 
processors is X and the nth processor is slower, operating at 
rate p. We shall show that for fixed p and A, as the number 
of processors n grows to infinity, the influence of the slow 
processor diminishes, and in the limit, the rate of the network 
is the same as that of a network with all processors running 
with the same rate A. 

$heorem 4.10: The rate ofaprocessor in KB, is at least 

in the incoming edge to processor n. 

p + l o g , '  P = 
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Proofi Suppose that the network is in state SO at a given 
time, and that after some time T I ,  it returns to that state. 
Then, after some time T2, it returns again, and so on. Then, 
{Ti3 i = 1 , 2 , .  . .} is a sequence of non-negative independent 
random variables with a common distribution F ,  and expected 
value E[T,]. 

Denote by N ( t )  the number of events (returning to SO) 

by time t .  The counting process { N ( t ) ,  t 2 0 )  is a renewal 
process. Therefore, with probability 1, we have the following 
equation: 

(See, e.g., [33].) Moreover, since each time the process returns 
to so, each processor of the network has completed exactly one 
computational step, it follows that the rate of the network is 
l/E[T;]. We proceed to bound E[Ti]. 

The expected time of Ti that it takes to return to SO is of 
the following form: 

+ , . .  1 1 
+ ( n  - 2)X + p 

Q '  

(7L-l)X+p 
1 1 1 

1 + X' 

for some 1 5 j 5 n, depending on when the slow processor 
completes a computational step. If the system leaves SO 
because the slow processor completed a computational step, 
E[T,] is al .  In general, if the j th  (1 5 j 5 n)  processor to 
complete a computational step, after leaving so,  is the slow 
processor, then E[T,] is aJ .  

The probability of E[TJ] being equal to a3 is not necessarily 
the same for every j ,  but for the case X 2 p, it holds that 
cyJ < aJ+l. Thus, the following equation: 

1 n-1 

k=O 

gives an upper bound on the time E[T] that it takes to return 
to SO, and l/ct.,, is a lower bound on the rate of a processor 
in the network. 

We have the following condition: 

1 P-5 1 1 
fi  P X 

n-1 

a, = I / ( x ~  + p)  5 - + - I - + - logn. 
i=O 

We see that E[Ti]  = O( $ + log n),  and thus that the rate is 

For fried p! R, is @ ( A /  logn); but observe that the rate 
of the network cannot exceed p. However, when the number 
of processors n, increases to infinity, the rate of the network 
decreases in proportion to 1/ log n, as if the slower processor 
were not in the network. 

at least I+;,ogn. 0 

V. NON-NEGLIGIBLE TRANSMISSION DELAYS 

We briefly discuss the case of non-negligible transmission 
delays. In this model, the processing times are random, as 
before, but the transmission delays are also random. Denote 
the transmission delay of message Mk, IC 2 0, along edge 
U -+ U, by Tk(u . 'U) ,  and let T ~ ( u , u )  = 0, for all U E V. It 
follows that the behavior of the system is described by the 
following recursions: 

to(.) = t(.) + To(.) 

tk+l(V) InaX { t k ( U )  + 7 k ( U ,  7))) + 7 k + l ( u )  k 2 0. 
UEIN(V)  

Note that this system is not equal to the one of [13], in which 
the processing times are negligible, and the delays are non- 
negligible, with a self-loop in each processor (to model its 
processing delay). 

Let Pk = 110 + v1 -+ ... + wk(= U) be a path of length k. 
It is easy to see how to modify the definition of ? ' ( p k ) :  

k-1 

T(%)  ' t ( w 0 )  + C[Tt(u*) + T % ( V ~ 7 v t + 1 ) ]  + Tk(uk). 
2=0 

Thus, a theorem similar to Theorem 2.1 holds, and the corre- 
sponding results for general distributions follow. 

Consider the case in which the processing times, as well 
as the transmission delays, are exponentially distributed, with 
the same mean, say, 1. It is easy to see that Lemma 4.1 still 
holds, and that Lemma 4.2 holds up to a factor of 2. Namely, 
by Theorem 3.9, a regular network with non-negligible delays 
runs at the same rate as the same network, up to a constant 
factor, provided that the delays are less than or equal (in the 
convex order) to the processing times. In [ 181, we show that for 
a network with negligible delays and deterministic processing 
times equal to 1, the rate of any network is equal to 1. Thus, in 
this case, random processing times degrade the rate by at most 
a logarithmic factor in the maximum degree of a processor. 

Now consider the case in which all processing times have a 
mean of 1, but the delays have mean A-' greater than 1, both 
exponentially distributed. The rate in the deterministic case is 
equal to X 1191; thus, by Theorem 3.3, in our case, the rate 
is at most A. One can prove (by using Proposition D.2), that 
also in the case of non-negligible delays, the rate is degraded 
by at most a logarithmic factor in the maximum degree of a 
processor, with respect to the (optimal) deterministic case, for 
any NBUE distribution. 

As for the exact computations for networks with average 
processing times and delays exponentially distributed with 
mean 1, the rate of a simple cycle can be computed by using 
the same tools of queuing theory that we used in the case of 
negligible delays. Computing the rate of a complete network 
Kn is not as straightforward; the structure of the Markov 
process is more complicated, but by the arguments made 
above, we have the condition that the rate is between 1/8 log n 
and 1/ log n. However, using the ideas of embedding, let us 
show that the rate of Kn is at least 1/4logn.  Let KA be a 
complete network with negligible delays. Construct G, from 
KA by inserting one vertex in each of its edges. By Theorem 
3.1 (or by Theorem 3.9), the rate of any processor in G is at 
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least the following: 

1 - - 1 
log(n + n(n - 1)) 2logn’  

One can show that the rate of any processor v in K,  is greater 
than or equal to half the rate of the corresponding processor in 
G using the fact that there is an embedding of K,  into G of 
dilation 2. Therefore, the rate of ‘U in K ,  is at least 114 log n. 

VI. CONCLUSION 

In this paper, we have studied the behavior of synchronizers 
in networks with random transmission delays and processing 
times. We attempted to present a self-contained general study 
of the synchronizer performance from the view point of dis- 
tributed algorithms, rather than providing a deep mathematical 
study of the underlying stochastic process. In particular, we 
were interested in comparing the behavior of synchronizers 
with random delays, as opposed to the usual approach of 
analyzing distributed algorithms with bounded delays. Our 
main conclusion is that if the delays belong to the natural class 
of NBUE distributions, the rate of the network is degraded only 
by a small, local (vertex degree) factor. 

We presented several properties of the behavior of the syn- 
chronizer for general probability distributions, and described 
techniques useful to compare the rate of the synchronizer 
running in networks with different topologies. For exponential 
distributions, we showed that the expected duration of a round 
of computation depends on the logarithm of a vertex degree, 
and hence that the rate of computation does not diminish 
with the number of processors in the network. We presented 
techniques to prove upper and lower bounds on the rate, and 
to obtain exact computations. We hope that the combinatorial 
approach of these techniques, which was applied to rings, 
complete networks, and regular degree networks, will be used 
in the future to obtain results for other topologies as well. 

APPENDIX 

The following proposition (similar to pp. 672 in [13]) is 
used to prove the lower bounds on the rate of a network. 

Proposition 7. I (0.2): Let { X ;  ) be a sequence of indepen- 
dent exponential random variables with mean A-’. For every 
positive integer k and any c 2 4log2, we have the following 
condition: 

Proof: Fix /3 E (0, A), and let y be a positive scalar. A 
direct calculation yields the following equation: 

In particular, we can choose y sufficiently large so that 
E[efi(s.-Y) 1 -  < 1. If p = X/2, then y 2 2X-1 log2 satisfies 
the last equation. Using the independence of the random 

variables X i ,  we obtain the following: 

Using the Markov inequality, we obtain the following: 

This in turn implies the following equation: 

Let c = 2m and CO = 27. Then, if c 2 C O ,  we have m 2 y 
and the following equation: 

< e - 3 m k  - - e - a c k  
- 1 

where a = p/2. For our choice of p, we have a = A / - ,  and 
CO = 4x-1 log2. 0 
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