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Abstract

In the (N, k)-consensus task, each process in a group

starts with a private input value, communicates with

the others by apply ingoperations to shared objects}

and then halts after choosing a private output value.

Each process is required to choose some process’s in-

put value, and the set of values chosen should have

size at most k. This problem, first proposed by

Chaudhuri in 1990, has been extensively studied us-

ing asynchronous read/write memory. In this paper,

we investigate this problem in a more powerful asyn-

chronous model in which processes may communicate

through objects other than read/write memory, such

as test&set variables.

We prove two general theorems about the solv-

ability of set consensus using objects other than

read/write registers. The first theorem addresses the

question of what kinds of shared objects are needed to

solve (N, k)-consensus, and the second addresses the

question of what kinds of tasks can be solved by N

processes using (M, j)-consensus objects, for A4 < N.

Our proofs exploit a number of techniques from alge-

braic topology.

1 Introduction

An asynchronous concurrent system consists of a set

of processes that communicate by applying opera.-
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tions to shared objects. An object’s type specifies the

operations it provides and their meanings. Examples

of objects include read/write registers, test&set reg-

isters, fetch&add registers, and compare&swap regis-

ters.

A task is a problem where each process starts with

a private input value, communicates by applying op-

erations to shared objects, and halts with a private

output value. A set of input values defines an ini-

tial configuration, while a set of output values defines

a final configuration. A task is specified by a set

of possible initial configurations, and for each initial

configuration, the set of legal final configurations.

Modern multiprocessors are inherently asyn-

chronous: processes can be halted or delayed without

warning by interrupts, pre-empt ion, or cache misses.

In such environments, it is desirable to design proto-

cols that are wait-free: any processes that continues

to run will choose an output value in a fixed num-

ber of steps, regardless of delays or failures by other

processes.

Under what circumstances does a task have a wait-

free solution? It is known that the computational

power of a concurrent system depends on the types of

the shared objects. For example, every object can be

assigned a consensus number [10] which partly char-

acterizes its computational power: in a system of IV

or more concurrent processes, it is impossible to con-

struct a wait-free implementation of an object with

consensus number N from an object with a lower con-

sensus number. On the other hand, any object with

consensus number N is universal in a system of N

processes: it implements any other concurrent object.

More recently, Herlihy and Shavit [11, 12] have given

a general combinatorial characterization of the deci-

sion tasks that can be solved in read/write memory

(which has consensus number one).

Nevertheless, relatively little is known about the

computational power of objects with consensus num-

ber greater than one but less than N. This ques-
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tion has considerable practical interest, since many

modern multiprocessors provide such objects (such as

test&set or memory-to-register swap) as built-in syn-

chronization primitives. In this paper, we make some

progress on this basic question by investigating the

circumstances under which one can solve the (N, k)-

consensus task using objects other than read/write

registers. In the (N, k)-consensus task, each of N

processes starts with an integer input value, and each

chooses some process’s input value, such that the

number of values chosen has size at most k. (When

k = 1, this problem is the well-known consensus

problem [6].) The (N, k)-consensus problem was first

posed in 1990 by Chaudhuri [4] (who called it k-set

agreement), along with a conjecture that it could not

be solved in read/write memory. This conjecture was

finally proved by three independent research teams in

1993 [2, 11, 15]. When the specific values of N and k

are unimportant, we will refer to this problem as set

consensus.

In this paper we prove two general theorems about

the solvability of set consensus using objects other

than read/write registers. The first theorem ad-

dresses the question of what kinds of shared objects

are needed to solve set consensus. Any protocol em-

ploying shared objects of any kind has a characteristic

geometric structure, called a sirnplicial complex [11].

The topological properties of this complex are deter-

mined by the types of the shared objects. In our first

result, we show that a protocol cannot implement set

consensus if the protocol’s associated complex lacks

holes of sufficiently small dimension (i.e., if certain

low-dimensional homology groups are trivial),

The second theorem addresses the question of what

kinds of tasks can be solved by N processes using

(&f, j)-consensus objects, for M < N. We show that

the complex associated with any N-process proto-

col using (M, j)-consensus objects starting from a

fixed set of inputs has no holes of dimension less

than j . [(N – 1)/i14] (i.e., these low-order homol-

ogy groups are trivial). When j = 1, then A4 is the

object’s consensus number [10]. This theorem gives

an intriguing topological interpretation to consensus

numbers. At one extreme, when Al = 1, the com-

plex has no holes at all (i.e., it has trivial homology

in all dimensions), reflecting a prior result of Herlihy

and Shavit [1 1]. For consensus numbers above one,

however, the complex may have holes. If the consen-

sus number is low, then holes appear only in higher

dimensions, but as the consensus number grows, the

holes spread into increasingly lower dimensions. Fi-

nally, when the consensus number M = N, the com-

plex becomes disconnected.

Together, these theorems imply, for example, that

it is impossible to implement (n + 1, k)-consensus us-

ing (m, j)-consensus objects if n/k > m/j, an obser-

vation also made by Borowsky and Gafni [3], One

intriguing consequence of this result is that there ex-

ist objects whose computational powers are incompa-

rable: there is no wait-free implementation of X by

Y, and vice-versa. For example, (2, I )-consensus can-

not implement (6, 2)-consensus because 5/2 > 2/1.

Conversely, Herlihy and Shavit [11] have shown that

one cannot implement (2, 1)-consensus using (N, 2)-

consensus for any N.

It should be noted that our theorems extend to

any variation of (N, ,%)-consensus which also places

a lower bound on the number of values chosen. For

example, a related task might require that if processes

have unique inputs, then the number of values chosen

lies between f and k > t ~ 1.

Our arguments make extensive use of concepts,

such as simplicial complexes and homology groups,

taken from undergraduate-level algebraic topology.

We believe this topological approach has a great deal

of promise for the theory of distributed and concur-

rent computation, and that it merits further investi-

gation. It has already yielded a number of results,

including, for read/write memory, a general charac-

terization of tasks having wait-free solutions [11, 12],

the impossibility of set consensus [1 1], and the im-

possibility of renaming [1] with a small number of

names [11]. In the synchronous model, Chaudhuri,

Herlihy, Lynch, and Tuttle [5] used this approach to

give tight upper and lower bounds on the complexity

of solving set consensus using message-passing. This

paper is the first application of these techniques to

objects other than read/write registers.

2 Model

Our model is the same as [11].

An initial or final state of a process is modeled

as a vertex, a pair consisting of a process id and a

value (either input or output). A set of d + 1 mu-

tually compatible initial or final states is modeled as

a d-dimensional simplex, (or d-simplex). It is con-

venient to visualize a vertex as a point in Euclidian

space, and a simplex as the convex hull of a set of

affinely-independent vertexes, the higher-dimensional

analogue of a solid triangle or tetrahedron. The com-

plete set of possible initial (or final) states is repre-

sented by a set of simplexes, closed under intersection,

called a simplicial comp/ex (or complex). A principal

simplex in a complex C is one not contained in a sim-

plex of higher dimension. The dimension of C is the

smallest dimension of any principal simplex. Where
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Figure 1: Full-Information Complexes for multi-round Test&Set Protocols
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convenient, we use superscripts to denote the dimen-

sion of a simplex or complex.

Ataskspecijicataon for N= n+lprocesses is given

by an input complex T“, an output complex 0“, and

a map A carrying each input simplex of Zn to a set of

simplexes of 0“. This map associates with each ini-

tial state of the system (an input simplex) the set of

legal final states (output simplexes). When m < n,

A(Sm ) indicates the legal final states in executions

where only m + 1 out of n + 1 processes take steps

(the rest fail before taking any steps). A solution

to a task is a protocol in which the processes com-

municate by applying operations to objects in shared

memory, and eventually halt with mutually compati-

ble decision values. A watt-free solution is one which

tolerates the failure of up to n out of n + 1 processes.

Any protocol that solves a task can also be associ-

ated with a full-information complex, in which each

vertex is labeled with a process id and that process’s

final state (called its wew). Each simplex thus cor-

responds to an equivalence class of executions that

“look the same” to the processes at its vertexes.

For example, Figure 1 shows full-information com-

plexes for four simple four-process protocols. In the

first (degenerate) protocol, each process halts with-

out communicating with any other. Because each

process has only one possible decision value, the full-

information complex consists of a single simplex. Be-

cause there are four processes, this simplex is a tetra-

hedron. In the second protocol, the first two processes

share a test&set variable, as do the second two. This

complex consists of four tetrahedrons, corresponding

to the four possible outcomes of the two test&set op-

erations. In the next two protocols (encompassing 42

and 43 tetrahedrons), the processes respectively it-

erate two and three-round test&set protocols, using

fresh variables for each round. This sequence of pic-

t ures is suggestive: full-information complexes gener-

ated by protocols in which processes communicate by

test&set variables may have an arbitrary number of

“holes” (unlike protocols employing only read/write

variables), but they still appear to remain connected.

Our theorems confirm and generalize this intuition,

A simplicial map carries vertexes of one complex to

vertexes of another so that simplexes are preserved.

Let X“ be the full-information complex for a pro-

tocol II. If S is an input simplex of dimension less

than or equal to n, let 7“ (S) c Y“ denote the com-

plex of final states reachable from the initial state S.

II solves the decision task (Z”, On, A) if and only if

there exists a simplicial map 6 : X“ + 0“, called a

decision map, such that for every input simplex S,

6(%” (S)) C A(S). We prove our impossibility re-

sults by exploiting the topological properties of the
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full-information complex and the output complex to

show that no such map exists.

Many complexes of interest have a simple but im-

port ant topological property: they have no “holes”

in certain dimensions. Formally, this concept is cap-

tured by the notion of a homology group. (Readers

completely unfamiliar with the notion may wish to

consult any one of a number of standard textbooks

[7, 8, 9, 13, 16].) For our purposes, it suffices to note

that an n-dimensional complex C“ has n + 1 homol-

ogy groups, Ho(Cn ), . . . . H. (C”), one for each dimen-

sion. For i > 0, if H, (Cn ) = O, the trivial single-

element group, then Cn has no holes of that dimen-

sion. When i = O, there are two alternative ways to

define Ho(C” ). In this paper, Ho (Cn ) always denotes

the reduced O-th homology group [16, p. 172], which is

trivial if and only if Cn is connected.

Our principal tool for computing homology groups

for full-information complexes is the Mayer- Vietorw

sequence [16, p. 186]. A sequence of groups Gi is said

to be exact if there exist group homomorphisms 4, :

Gi -+ Gi+l such that the image of ~, is the kernel of

@i+l. It is easily checked that if Gi+l = Gi_l = O,

then Gi = O. The Mayei=Vietoris sequence states

that if A and B are complexes of dimension n such

thatdrll?+t?,

~.. -+ Hq(dnl?) -+ Hq(.d) @Hg(B) +

Hq(Au B)+ Hq-l(An B)+

is an exact sequence.

A complex is connected if there is a path of edges (l-

simplexes) between every pair of vertices. It is szmply

connected if it is connected and every closed path can

be continuously deformed to a point. (Any simply

connected complex has a trivial first homology group

([8, Ch. 12], but not vice-versa [8, P.150].)

3 Impossibility

Consider a system of N = n + 1 processes sharing

read/write variables and a collection of objects O.

Fix an input simplex Sm with distinct input values for

each process, and let Y(Sn ) be the full information

complex of a protocol II in which the processes start

in initial state S’m and communicate via objects O. If

U is a subset of the set of process ids in S“, let Y(U)

be the full information complex for executions of the

protocol in which only the processes in U take steps.

Our first main result is the following.

Theorem 3.1 Let II be a protocol such

● for IU[ ~ c, 7(U) is connected,

that



● for 1111> 2c, 3(U) M simply connected, and

● for ]Ul > g . c, Hq(7(u)) = o,

then II cannot solve (n + 1, [n/cJ)-consensus.

The argument is a generalization of the argument

used to prove impossibility of (N, k)-consensus in

read/write memory. Because the full-information

complex for read/write protocols has no holes, one

can show that it contains an n-dimensional subdi-

vided simplex whose decision values define a Sperner

coloring (defined below), and hence that some sim-

plex is colored with n + 1 distinct colors, making

(n + 1,n)-consensus impossible. If the complex has

higher-dimensional holes, then we can still construct

a subdivided simplex with a Sperner coloring, except

that we need a higher-dimensional complex to avoid

the holes.

The proof of the following lemma (omitted) is

based on the Hurewicz Isomorphism Theorem [16,

p398], which states that if C is simply connected with

Hq (C) = O for q < k, then any continuous map of a

(k - 1)-sphere to C can be extended to a continuous

map of the k-disk.

Lemma 3.2 Let Sk be a k-simplex fork ~ [n/c], Sk

the boundary of Sk (the set of faces], and U(Sk) an

iterated barycentric subdivision. Any simplicial map

of the subdivided boundary

@: (@) -+7(s”)

can be extended to the interior:

@ : r(s~) -+ %(s”)

●If W={ QiO, . . .. Qil}. forio < . ..<il. then

# carries S’(W) to F(GiO U ~~U GiL_l U {Qi,}).

(In particular, if W = {Qi}, then #(SO ({ Qi})) is

$( Q~).)

● @ restricted to each face of S1 (W) is a span for

that face.

Lemma 3.3 If U is the set of all [n/c] +

1 principal processes, then there exists a span

@ : @fl/’J (u)) -+ F(s’).

Proofi We show, by induction on 1, that every 1-

subsimplex St(W) has a span #w, and that these

spans agree on their common intersections. When

W = {Qi}, define ~{~1] to send SO({Qi}) to Y(Qi).

Suppose W = {Qi, Qj} for i < j. Because

3= (Gi U {Qj }) is connected, there exists a path from

the vertex ~(Q,) to .F(Qj) in $c(Gi U {Qj}). We use

this path to define a subdivision u and a simplicial

map

~W : o(S’(W)) -+ ~c(Gi U {Qj})

such that g$w(Q, ) = d{ptl (Qi), and #w (Qj) =

@{P,}(Qj). Notice that any two different maps

#tP,,P, I and 4{ P,,P.I agree on the intersection of their
domains.

Inductively, assume the claim holds for every 1<

Ln/cj, and consider the simplex Sln/cJ (u). Every

face of this simplex has a span, and the spans agree on

their common intersections, so together these spans

induce a simplicial map # from a subdivision of

s[n/c~ (U) into 3(S”). Because Hq(Y(Sn)) = O for

g < [n/c], Lemma 3.2 implies that ~ can be extended

to a simplicial map

@ : T(SLn/’j (/7)) + P(Gou. ~tJG[~/cj-Iu{QL~/cj })

where T is an iterated barycentric subdivision refining
■

u.

Let Qi = Pi.c, for O ~ i ~ [n/c], and let
Like all known impossibility proofs for (N, k)-

consensus, our proof relies on Sperner’s Lemma. Let

G, = {P,.=,.. ., P(,+l).=_l}
bury” (Sk ) denote the r-th barycentric subdivision of

simplex Sk.

for O ~ i < [n/cJ. We call each Q, a princzpal pro-

cess. Let W be a set of 1 + 1 principal processes, and

let S~ ( W) be a simplex with vertices labeled with

process identifiers from W. Abusing notation, we use

Q, to denote the vertex labeled with Qi in S1(W),

and .F(Qi) the unique vertex of the full-information

complex associated with the solo execution of Qi.

Definition 3.1 A span for Se ( W) is a simplicial map

# : a(S1 ( W)) -+ 3“ (Sn ), with the following proper-

ties.

Definition 3.2 The carrier of a vertex ii in

bury’ (Sk ) is the smallest-dimensional s~ ~ Sk con-

taining ;.

Lemma 3.4 (Sperner’s Lemma) Z~ x M a map

sending each vertex G of bury” (Sk) to a vertex in its

carrier, then there is at least one k-simplex Rk =

(70,... , ~k) in bary’ (Sk) s~ch that the X(Fi) are alz

distinct.

We are now ready to prove Theorem 3.1.
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Proofi CoIor each vertex Z of @(u(Slnlcj (u))) with

the value that the process decides at the end of the ex-

ecution. Let pi bethe value decided by Pi, If we “re-

set” eachpj c G~ top~.~, then the result is aSperner

coloring of a(SlnlcJ (U)), and therefore some simplex

has all [n/cJ + 1 colors. It follows that some simplex in

the original coloring must have had [n/cJ + 1 distinct

colors. Since the colors are distinct, @ carries these

vertexes in a(sL’’tcJ (u)) to vertexes labeled with dis-

tinct processes in 7(S” ), and therefore there is some

execution in which [n/c] + 1 processes all choose dis-

tinct values, and therefore (n+ 1, [n/c] )-consensus is

impossible. ■

4 Topology of Set Consensus

In this section we characterize the tasks that can

be solved by n+l processes using a combination of

(m, j)-consensus objects andread/write objects. An

(m, j)-consensus object can be accessed by at most

m processes, and the set of values returned by the

object is of size at most j. For our bounds to be

meaningful, we assume that j is as small as possible;

e.g. ifat least j processes access the object then there

are executions where j different values are returned.

Under this assumption, an (m, j)-consensus object is

not an (m, j + I)-consensus object.

Because an (m, j)-consensus object is non-

deterministic, we assume that the choice of responses

is controlled by an adversary. We will show that

an adversary can force any protocol II using (m, j)-

consensus objects to have a full-information complex

with no holes in the lower dimensions. Without loss

of generality (for impossibility results), we can con-

strain the adversary to choose responses according to

any convenient strategy consistent with the (m, j)-

consensus specification. If the constrained adver-

sary can force the full information protocol not to

have holes in the lower dimensions, then so can any

stronger adversary. We henceforth restrict our atten-

tion to the following deterministic adversary: each of

the first j processes receives its own input back, and

the remaining m – j processes get the very first pro-

cess’s input. A process can tell if it is one of the first j

processes (it gets its own input back), and otherwise

it observes the identity of the first process to access

the object.

Fix an input simplex Sn. Let Cn (m, j) be the full-

information complex for any protocol using (m, j)-

consensus objects and starting in Sn. The main result

of this section is the following: Cn (m, j) is simply

connected with

ff,(~(rn, j)) = O for q < j . [~J .

For brevity, we refer to H~(Cn (m, j)) for g <j. \n/m]

as the low-order homology groups.

The proof of this claim is by contradiction. Assume

that some low-order homology group is initially non-

trivial, When the protocol is finished, the reachable

complex is a single simplex, all of whose homology

groups vanish. Because the low-order groups even-

tually henceforth vanish, there exists a criticai state

in which some low-order group is non-trivial, but any

step by any process will cause them to vanish hence-

forth. We then derive a contradiction by showing that

the low-order groups of the reachable complex from

the critical state must already be trivial.

4.1 Reachable Complexes

Starting from the initial state defined by the input

simplex Sn, we can run the protocol and after some

time “freeze” the system. The state at this moment

specifies the local state of each process and the con-

tents of the shared memory. All the executions of

the system starting at this state define a complex as

follows.

Definition 4.1 A simplex R“’ of the full informa-

tion complex C“ is reachable from state s in a history

if there is some execution starting from s in which

each process in ids(Rm ) is decided and has the view

specified in Rm. The reachable complex from state s,

F(s) is the complex of reachable simplexes from s.

Our approach is based on an inductive application

of the Mayer- Vietoris sequence. Let F be a subcom-

plex of the reachable complex, and W an arbitrary

index set. Consider a set {C; : i E W} of subcom-

plexes of 3 that cover Y: F = U~GWC; . Define, for

every U ~ W,

Cu = nci.

i~u

Define CO = ~.

Lemma 4.1 For any subsets U and V of W,

Cu n G = CUUV.

Proof:

Cuncv=(nci)n(nci)= n ci=cUUV.

icu iEV iEUUV

Definition 4.2 A real-valued map 8 on natural

numbers is slowly decreasing if

e(u+l) <e(u) ~ e(u+l)+l.
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We now reduce the problem of showing that T has

trivial low-order homology groups to showing that

property for intersections of the C~.

For each u, 1 s u s IWI, let U~U),. . ., U~U) be sub-

sets of W such that each [U~U)l = u, and for each

distinct U\”) and U~U), {i} = U~) –U\”). (Equiv-

alently, there is a set U, IuI = u – 1, such that

U(”) = uI”)u{i}.) We omit superscripts whenever

convenient.

Lemma 4.2 Let $(u) be a slowly-decreasing map

such that

(’it) Hq(Ci-J) = O for q < 19(IUI),

%ijL(u))=o fo?-q < o(u).
~=~ ‘

Proof: We argue by reverse induction on u and in-

duction on/. In the base case for u, when u = IWI,

we have t = O and only one set U. = W;

H~(Cw) = O for q < 6(IWI).

follows from the hypothesis (ii).

Assume the claim for sets of size u + 1, we prove it

for u such that O(u) >0. The base case for 1 = O also

follows from hypothesis (ii), We assume the claim for

/ – 1 and show it for 1.

Consider the Mayer-Vietoris sequence for Cu, and

u::; cut :

By hypothesis (ii), H~(Cul) = O for q < 9(u), and by

the induction hypothesis for /,

l–l

Hq(UCU, ) =0 for g< O(u).

i=o

Let VO,. ... Vi-l be sets such that ~ = Ul UU~.

t–l t!– 1 t-1

cut m(u CU,) = u(ci7, ncut) = (J GJtl

i=o i=O i=O

where the last equality follows from Lemma 4.1. No-

tice that I~ I = u +1, and for each distinct U and Vj,

{i} = U – Tj, so by the induction hypothesis for u:

e–l

Hq(lJCv, ) =0 forq < d(u+ l),
i=o

or
L–1

H~-~(UCv,) =0 for q< 19(u+l)+l.

i=O

Because d is slowly decreasing, d(u) ~ O(U + 1) + 1,

and thus these groups are trivial for q < t?(u).

Since IU I = u + 1, by hypothesis (i) (J~~~ Cvt is

not empty. From exactness of the Mayer-Vietoris se-

quence, Hq(U~=oCV, ) = O for q < O(u). ■

4.2 Critical States

Let p be an arbitrary property of a state.

Definition 4.3 A state .s is critical for a property p

if p does not hold fors, but any step by any undecided

process will enter a state s’ where p henceforth holds,

i.e., for any state s“ reachable from s’ (including s’

itself), ~ holds for s“.

A final state of a protocol is one in which every

process is halted. Thus ifs is a final state then X(s)

is a single simplex.

Lemma 4.3 Let @ be a property that holds in euery

final state of a protocol. If the property does not hold

in a state, then some execution from that state leads

to a critical state for p.

Proofi The execution tree at a state s is defined as

follows. The root is s. For each state s’ in the tree,

the children correspond to the states reached by the

execution of each pending operation in St.

Starting in the state s where the property is false,

consider the tree of executions starting in s. Color

red the nodes of this tree where the property holds

and black the rest. Every leaf has red color and s

has black color. Therefore there exists a black node

s’ with all of its children colored red. This state s’ is

critical. ■

4.3 Pending Operations

A process which has not decided in s has a pend-

ing operation, which it is about to perform. Since

we consider only deterministic protocols, P‘s pend-

ing operation is uniquely defined. Let Pi be an unde-

cided process at a state s, about to execute operation

pi, and W the set of indexes of pending operations.

Define Ci (s), i c W, to be the reachable complex im-

mediately after Pi executes pi. A simplex S is in Ci (s)

if there exists an execution from s, starting with op-

eration pi by Pi, such that for each vertex (Q, v) E S,

process Q has view v.
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Define CU(S) = fiiEu Ci(s), for any U S W’, and

c@(s) = ~(s), the entire reachable complex. Intu-

itively, each vertex in Cu (s) corresponds to an execu-

tion starting in s in which no process can tell which

process in U went first. More formally, if a vertex

(Q, v) is in Cu, then for each i c U there is an execu-

tion starting with pi in which Q’s view is v. Observe

that Lemma 4.1 hoIds for the Cu (s).

Lemma 4.4 Let s be a state of the protocol, and W

be the set of indexes of pending operations in s. Then

the Ci(S) cover Y(s): F(s) = UiEwCi(s).

Lemma 4.5 Let IUl = u. For any state s,

~[dim(Ys))J+wJ+’
Proofi A process Pi is potentially disabled with re-

spect to C’u {s) if there is an execution a in which

every process that decides chooses a vertex in CU(s),
but there is no extension of a in which Pi decides

a vertex in CU (s). The dimension of CU(s) is just

a way of counting the minimal number of processes

that cannot become disabled with respect to CU(s).
We now undertake a case analysis to analyze how

processes become disabled.

We may assume without loss of generality that

all read/write registers are single-reader and single-

writer, since they are sufficient to construct wait-free

implementations of multi-reader/multi-writer regis-

ters (e.g., [14]). Suppose U includes a process P

about to write a register, while Q is about to read

that register. Q is disabled, since it can observe

the relative order of the two operations. Each such

read/write conflict disables one process.

A used (m, j)-consensus object is one that haa al-

ready been accessed by an operation in s. If the

object has already been accessed a times, and it is

accessed c times by operations in U, the largest num-

ber of operations that can become disabled is c (when

a=j–landc~ 2).

A new (m, j)-consensus object is one that has never

been accessed. If a new object is accessed by more

than j processes in U, then a maximum of m – j + 1

processes may become disabled: the first j receive

their own values, and the remaining j learn the iden-

tity of the first process to access the object. Of the j

that receive their own values, only j – 1 may continue

to run, since any process that observes the results of

all j observes that the remaining processes in U did

not go first.

Therefore, the most effective way to disable pro-
cesses is to have at least j + 1 processes access each

consensus variable, disabling at most [u/(j + l)J ~

(m – j + 1) processes:

H>n–~m.
j+l

Dividing both sides by m, taking floors, and mul-

tiplying by j yields:

The result follows from the identity

Hu
j. — <u–l.

j+l

Lemma 4.6 IJ for all U ~ W,

~g(cu(s)) = O for q <j.
ldim(:(s))l

then

Hq(f(s)) = O for q < j
[dim:(s))]

Proof: The function

t9(u)=j.1-n/m]-u+l

is slowly decreasing, and by Lemma 4.5,

ddirn(:(s))l‘e(’u’)
If O(IUI) ~ O, then j . ldim(Cu(s))/m] ~ O, hence

dim(Cu (s)) z O and CU(s) is non-empty. The hy-

pothesis implies that

Hq(CU(S)) = O for q < 8( IUI),

so Cu (s) satisfies the conditions of Lemma 4.2:

Hq(~ Cu, (S)) = O for q < 8(lUi l).

i=O

When Ui is a singleton set, U~=oCi (s) = X(s), and

llg(~(s)) = O for g < 0(1) = j.
[dim~(s))J

9

[
dim CU(8)) .

Lemma 4.7 H~(CCJ(s)) = O for q < j- ‘m
1
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Proofi (Sketch) Suppose not. Pick the smallest n

for which the lemma fails to hold. Define the predi-

cate

p(s) = (VU) H~(CCJ(s)) = O for g < j .
ldim(:(s))l

where U ranges over all sets of processes with pending

operations. In any final state, Cu (s) = Co(s), which

is a single simplex, so p holds. By Lemma 4.3 there

exists a state s* critical for p for the protocol II. Let

U* be a set that violates p.

A set of operations is commuting if executing them

in any order returns the same results to the calling

processes and leave the objects in the same state.

A set of operations is weakly commuting if apply-

ing them in any order leaves the objects in the same

state (although the operations may return different

results depending on the order). For example, pend-

ing read and write operations to the same object

are weakly commuting, as are pending operations to

a used (m, j)-consensus object. Pending operations

on distinct objects commute. Commuting implies

weakly commuting.

Suppose we execute the operations in U in some

order. A winner set is the set of process ids from any

simplex in Cu (s), and a loser set is the complement

of a winner set in U. A winner set is maximal if it

is not contained in any larger winner set, and the

complementary loser set is mmimal. Winner sets are

closed under intersection, and loser sets under union.

Any winner set can be expressed as the intersection

of maximal winner sets, any loser set as the union of

minimal loser sets.

We consider two cases: (1) the pending operations

in U are weakly commuting, and (2) some object’s

pending operations in U are not weakly commuting.

In the first case, for each winner set Wi and com-

plementary L;, let si be the state reached from s* by

executing the operations in Wi followed by the op-

erations in Li. Let IIi be the protocol starting in St

identical to H except that the processes in Li do not

participate. Let Di be the reachable complex for IIi

in s;.

(b(s’) = (y,
where the index i ranges over all maxtmal winner sets

Wi

We claim that for any winner set Wi (not just max-

imal ones),

H~(Di) = O for q < j .
[1

dim (’Di )

m“

If Li is empty, then II; = II, and 3(si) = ‘Di, and

the claim follows because s* is critical. Otherwise it

follows because n is minimal. From Lemma 4.6,

Hq(Cu. (s*)) = O for q < j .
[

dim(Cu. (s*))

1
7

m

and Cu. (s* ) satisfies p, a contradiction.

In the second case, there exists an object x whose

set of pending operations Uz G U is not weakly com-

muting. Each ordering of Uz defines a set of winners

and losers as above. For each maximal winner set Wi

(and minimal Li), let IIi be the protocol starting in

s* identical to II except that the processes in Li do

not participate. Let Dfi) (s*) be the reachable com-

plex for 11~ from s*, D(i) (s* ) the reachable complex

for 11~ in executions in khich Pj E U* – Li takes the

first step, and

Because the operations in U. do not commute, each

loser set Li is non-empty, so IIi is a protocol for

strictly fewer than n + 1 processes. Because n is min-

imal, each ‘D$) satisfies p:

Hq(’D$)) = O for q < j .

1 1

dim (D$) )

m

Let M = U* –Li. The ‘D~~ (s*) cover Cu. (s*) for

maximal winner sets Wi, so Lemma 4.6 implies that

Hq(Cu. (s*)) = O for q < j ,

ldim(Df’(s*))J

and Cu. (s* ) satisfies p, a contradiction. ■

We are now ready to present the paper’s second

main result.

Theorem 4.8 C“ (m, j) is simply connected with

Proof: By Lemma 4.7, for all U ~ W,

Hq(CCJ(S)) = O for q < j.
ldim(:(s))l

so by Lemma 4.6,

[1Hq(Cn(m, j)) =Oforq <j. ~ .

The proof that Cm (m, j) is simply connected is sim-

ilar to the proof of Lemma 4.2, replacing the Mayer-

Vietoris sequence with the with Siefert/Van Kampen

theorem ([8, 4.12]). ■
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5 Conclusions

We have presented for the first time combinatorial

properties of an asynchronous system in which pro-

cesses communicate by objects more powerful than

readjwrite registers. We have proved two general the-

orems about the solvability of set consensus.

The first theorem characterizes a wide class of pro-

tocols that cannot solve set consensus. Suppose a

protocol has a full information complex 7(U) when

only the processes in U participate. If F(U) is con-

nected for Ill I ~ c, simply connected for IU I > 2c, and

has HQ(X(U)) = O for q < lU1/c, then that protocol

cannot solve (n + 1, [n/cj )-consensus. The proof of

the result is general enough to point out a property

that any solvable task should satisfy: there will al-

ways be at least one execution where the number of

decided values is at least [n/cj + 1.

The second theorem states that the full infor-

mation complex C“ (m, j) for any protocol using

(m, j)-consensus objects is simply connected for n >

2 lm/jJ, with no “holes” in the lower dimensions:

HlIq(Yn(m, j)) = O for g < j . ~ .

One implication of these two theorems is that (n+

1, k)-consensus is impossible if k < j . [n/m], which

implies n/k > m/j.
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