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1. Introduction 

Marked graphs (see e.g. [7]) are a subclass of 
Petri nets, called also Decision Free Petri Nets or 
event graphs. They consist of a directed graph 
with a marking that associates tokens to the edges. 
Two types of events exist in a marked graph 
(MG): processing performed at vertices, and 
transmission delays of tokens along the edges. 
Duration of events can be expressed by a nonneg- 
ative real number or by a random variable (r.v.1. 
In this paper the second method is to study 
stochastic marked graphs (SMGS). It is assumed 
that the random variables are exponential, inde- 
pendent, and identically distributed (i.i.d.1. 

Adding the time factor to MGs enables perfor- 
mance evaluation of concurrent systems. For ex- 
ample, parallel computation models [16], dis- 
tributed computing systems [ 151, manufacturing 
systems [61, tandem queueing networks [3], and 
distributed algorithms [8,9,11]. 
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The main performance measure considered is 
the rate of computation R(u), i.e., the average 
number of computational steps (firings) of a ver- 
tex U, per time unit. It is known that for strongly 
connected graphs, R(u) is the same for every 
vertex u (see e.g. [21X It was shown by Molloy [121 
that the rate can be computed by analyzing a 
Markov chain. However, this method of comput- 
ing the rate is prohibitively inefficient because in 
general, the size of the Markov chain is very big. 
For example, the number of states of the chain 
that corresponds to a complete MG with one 
token on each edge is 2 I “I - 1 [14]. 

In this paper a form of recurrence relations 
(see e.g. [21 and 1111) is used to derive efficiently 
computable bounds on the rate of strongly con- 
nected SMGs. These bounds depend on the de- 
grees of the vertices and on the average number 
of tokens per edge in a cycle, but do not depend 
on the number of vertices itself. For example, for 
the case of regular 6 degree graphs (either in-de- 
gree or out-degree), such that the average num- 
ber of tokens on every cycle is a, R(u) = 
@(a/log 6). The main result is that, for the case 
of bounded degree graphs, R(v) = @CC?), where a^ 
is the minimum average number of tokens in a 
cycle. 
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The rate of a deterministic MG, i.e., one in 
which duration of events is equal to one, is a^ (see 
e.g. [ll]). Since it is known that this is the case of 
maximum rate (see e.g. [13,141), Corollary 3.5 
implies that the random event durations reduce 
asymptotically the rate by at most a factor of 
l/log A, where A is the maximum vertex degree, 
independently of the number of vertices of the 
MG. 

This paper is a generalization of the results for 
exponential distributions of Rajsbaum and Sidi’s 
paper 1141 (see also [4] and [5]) on the perfor- 
mance of synchronizers [l] - methods to adapt a 
synchronous distributed algorithm to run on an 
asynchronous network. Baccelli and Konstan- 
topoulos [3] independently derived upper bounds 
on the rate for MGs with arbitrary integrable 
i.i.d. processing times. Their results, although 
more general, use subadditive ergodic theory and 
multitype branching processes. Our proofs are 
simpler and make explicit the role of the parame- 
ters of the graph on the rate. 

2. The model 

Let G = (V, E) be a finite, directed and 
strongly connected graph G = (V, E). A marking 
s is a function from E to the non-negative inte- 
gers representing a state of the graph, where s(e) 
is the number of tokens on edge e. A marked 
graph MG = (G, so), consists of a graph G and an 
initial marking, sO. A vertex v is enabled in s if 
s(e)> 0 for every edge e =U -+ v going into U. 
An enabled vertex v fires by consuming one to- 
ken from each incoming edge and adding one 
token to each outgoing edge. We assume that 
MG is deadlock-free, i.e., that every vertex fires 
infinitely many times. This is equivalent to assum- 
ing that every cycle has at least one token in sa 
(see e.g. [71X 

In a stochastic marked graph s(e) represents 
the total number of tokens on edge e: the tokens 
traveling along e plus the tokens stored in a 
FIFO buffer at the end of e. The operation of 
firing of a vertex u starts at the first moment in 
which there is at least one token in the buffer of 
each ingoing edge to v. After some processing 

time, instantaneously, the first token from the 
buffer of each incoming edge of v is removed, 
and a token is sent along each outgoing edge of 
v. At this moment the firing terminates. 

Assume that at time 0, the marking is given by 
sa and no tokens are in transit (all tokens are in 
buffers). Let us denote by tk(v), k 2 0, the time 
on which v completes the (k + 1)st firing, and by 
TV the corresponding processing time. Let 
6,(e) be the transmission delay of the token sent 
by v on e at t,(v). The processing times TV 
and the delays 6,(e), are i.i.d. exponential r.v.‘s 
with mean A-‘. Formally, a stochastic marked 
graph, SMG = (MG, r, 6), consists of a marked 
graph MG, together with the sequences of r.v.‘s 
T,Jv) and 6,(e), k > 0, v E V, e E E. 

Consider an edge e = w -+ v E I/. Observe that 
v consumes the (s,(e) + l)st first token from e 
only after having consumed all the s,(e) tokens 
initially in e. To fire for the next time, v has to 
wait for w to fire for the first time, and for the 
token to arrive to v. Thus, tSO(,,(v) 2 t,(w) + 
6,(e). In general, to fire at tk(v), v waits for the 
token produced by u at time tk_-SOcUj ,Ju), for 
every u, such that u + v E E. When these tokens 
arrive, v starts the firing that will take rk(v) time. 
Namely, the evolution of the system can be de- 
scribed by the following recursions: 

+Tk(v), k&O, VEV. (1) 

To simplify the presentation, we make the 
inessential assumption that the transmission de- 
lays are negligible; it is not difficult to extend the 
results of this paper to the case of non-negligible 
delays. The recursions (1) become: 

t/c(v) = e=y&{Lo(e)w} +Tk(v)7 

kaO0, VEV. (2) 
To ensure that v does not start firing for the k th 
time before completing the previous firing, we 
assume, for ease of notation, that there is an edge 
v + v for every vertex v, with one token, sa(v -+ 
v) = 1. Initially no tokens are in transit, hence, 
for k < 0, let t,(v) = 0. 

The explicit form of the recursions (2) has a 
simple graph-theoretic representation. A path 
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starting in u is maximal, if for every w + u E E, The following decomposition procedure is used 
sO(w + u) > 0. For a vertex U, let S,(U) be the set in the sequel. Let P = v,, + v1 -+ . . . + v, be a 
of all maximal, directed paths ending in v, and path of G. If P is simple, nothing is done. Other- 
having k tokens (in s,). Note that, since every wise, remove a simple cycle from P as follows. 
cycle has a positive number of tokens, every maxi- Let j < 1 be the least index such that for some 
mal directed path of k tokens is of finite length i <j, vj = vi. Clearly, C, = vi + vi+, + . . . + L> 

(number of edges). For instance, for k = 0, if is a simple cycle. Remove from P all the edges of 
every edge entering v has a positive number of C, to obtain a shorter path. Repeat this proce- 
tokens in the initial marking, then S,(v) includes dure until the path is simple, obtaining simple 

only v itself. And for every k, S,(v) is not empty, cycles C,, . . . , C,, and a simple (possibly empty) 
since there is always a path of length k which path P’. Observe that using the decomposition of 

uses only the loop v + u. P we get that s,(P) G{+ Id. 
For a path P E S,(v), P = v0 + v1 + . . . + vI 

(=~),defineapreftiofPasp~=v,-+~,+ ... 
+ ui, i G E, and let s,(Pi) be equal to the number 
of tokens in Pi. Now we define the r.v. T(P) = 

Z=CIQP,) (vi>. Thus, T(P) is the sum of I + 1 
r.v.‘s, the first a rO(vO) and the last a TV. 
Consider the set of r.v.‘s (T(P): P E S,(v)}. Note 
that the r.v.‘s in this set are in general not inde- 
pendent. The graph-theoretic interpretation of 
the firing times is given by the next theorem, 
which can be proved using the recursions (2). 

Theorem 3.1 (Lower bound). (i) For every k >, 0 
there exists a vertex v for which 

k-s^-f^ 
EL(v)1 2 hd log %ut. 

(ii) For every k 2 0 and every vertex v, 

k-:-f 
E[tk(v)] 2 Ad log ai”* 

Theorem 2.1. For every v E V, k > 0, t,(v) = 
max(T(P): P E S,(v)}. 

The performance measures investigated in this 
paper are the firing times t,(v), k > 0, v E V, and 
the related computation rate of v, R(v), of a 
vertex v in G, defined by R(v) = lim, +mk/tk(v>. 

3. Upper and lower bounds 

The bounds presented here are a function of 
the following quantities. Denote by d,,,(u) 
(d,(u)) the number of edges going out of (into) v 
(the original number of edges plus 1, for the loop 
added), and let A,,, = max, E Vdout(~), A, = 
max U E vdi”(v), a,,, = min, E v d,,,(u), 6in = 
min u E V d,(u). For a directed cycle C of 1eng;h I 
and s,(C) tokens, let A(C) = s,(C)//. Let A = 
max(A(C): C is a cycle}, a^ = min{A(C): C is a 
cycle}, f^= max(s,(P): P is a simple path), and 
s^ = max(s,(e>: e E E). The quantities a^ and A, 
can be computed in time 0( I V 1. 1 E 1) using an 
algorithm of Karp [lo]. 

Proof. We present a detailed proof of part (i); the 
proof of part (ii) is discussed at the end. Define a 
random walk uO+ vi +u2+ ... on G as fol- 
lows. Let u0 be any enabled vertex in the initial 
marking and consider any execution of the MG. 
Let ui be a vertex such that va + u1 E E, and 

7 sO(UO+U,)(vl) in the execution was the largest 
processing time of a token sent by u0 for the first 
time; call this r.v. 7i, e.g., 7, = max,_,,, 
7 sO(UO ~ .,(v). In general, assume that the random 
walk has been defined up to ui, i 2 0, and call it 
Pi. Let s,<P,> = fi, i.e., the number of tokens in 
the random walk defined so far. The vi+i is a 
vertex such that ui + vi+ 1 (possibly ui+ 1 = vi> and 
on the given execution rf,+sO(Ur _ U,+,)(~i+ i) was 
the largest processing time of a token sent by ui 
at its step f,: 

Hence, fi+I = sJP~+~> = fi + sO(vi --j v~+~). Since 

‘i+l will not start the fi+ith firing before vi 
finishes the f,th firing, it follows that tf,+l(vi+I) z 
tf,(vi) + ?i+l. The quantity Ti+i is equal to the 
maximum of at least S,,, independent and identi- 
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tally distributed r.v.‘s with mean A-‘. It is well 
known that the mean of c such r.v.‘s is equal to 
Xf=,l/i = A -I log c (natural logarithm). It fol- 
lows that 

E[t&+@iil)] ~E[Qj+)] +A-’ log %,t, 

and thus E[tf,+{~i+l)l & E[t,(u,)l + A-% + 
1) log a,,,, where by (21, E[tJu,J] = A-‘. Hence, 
for fi <k Gfi+l, we get 

E[t,(u,)] >E[if,(ui)] >A-‘+A-‘i log 6,,,. 

(3) 

Using the $ec?mposition procedure, one can see 
that fi Q iA + f. Thus 

E[t&)] >A-‘+A-‘- 
6-f log 

d 

6 
out * 

Since k-s^<fi and A-‘>O, 

k-&f” 
E[t/s(vi+l)I aA_’ A log a,“,’ 

This completes the proof of part (il. The proof 
of part (ii) evolves along similar lines, except that 
we start from ui and move backward along the 
path. 0 

The inequalities of the previous theorem ca? 
sometimes be improved for the case in which A 
is large enough, by considering a cycle C for 
which A(C) = 8, and a walk which goes around 
C; namely, E[~Ju)] 2 A-‘k/2. Therefore, we 
have the following: 

Corollary 3.2. 

R(v) <A min 
A n 

log max(a,,, , sin) ’ a . 
I 

The following proposition (similar to [5, p. 
672]), is used in the proofs of the upper bounds 
on the firing times. 

Proposition 3.3. Let (Xi) be a sequence of inde- 
pendent exponential r.v.‘s with mean A-‘. For 
every positive integer k and any c > 4 log 2, 

Theorem 3.4 (Upper Bound). (i) For every k > 0, 
for every vertex v, 

4 

i 

k 
E[tk_,(v)]<A 1+IVIlogAin+~logAi” . 

a 1 

(ii) For every k > 0 and every vertex v, 

4 

i 

k 
<log I VI + h 1 + I VI log A,,, + ,log A,,, . 

a i 

Proof. Again we restrict to the proof of part (i). 
Recall that Theorem 2.1 states that for every 
L! E V, k > 0, t,_,(v) = max{T(P): P E S,_,(v)}. 
Also, for a path P E S,_,(v), T(P) is equal to the 
sum of I, E = length(P), i.i.d. random variables, 
By Proposition 3.3, 

i 

cl 
Pr T(P) 2 hlog Ai, G e-(c1/4)‘0g Ain, 

1 

for every c > 4, since log 2/lag Ai” < 1. Using 
the decomposition procedure, we have that 1 is 
equal to the length of a simple path plus the 
length of some simple cycles. By the definition of 
a^, and since a simple path has length at most 
II/I-l,thenZ<k/a^+)V)-l=K.Now,there 
are at most AZ paths of length K ending in v. It 
follows that 

CK 
Pr t&1( 0) 2 ylOg Ai” 

< A? e -(CK/4) lOE A,, 
III 

=e 
-K(c/4-1) log Ai, ) c>4. 

Letting t = (d/A) log Ain, dt = (K/A) log A, 
dc. To compute a bound on the expectation we 
use the previous inequality for c > 4; for c =G 4, 
only the fact that the probability is at most 1: 

E[ t,_,( b)] < ~‘4~‘a)‘og ““1 dt 

J 
m K 

+ 
4 

e-K(‘/4_1)l’Jg Ainhlog A, dc 

=Flog din+;. 
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Namely, 

4k 
E[ tk-r( u)] G zlog Ai” + 

4(lVI-1) 

A 
log Ai” 

4 

+7 q 

Corollary 3.5. 

A2 
R(v) > 

4 log min( A,,, , A,) ’ 

Consider the meaning of the previous results. 
For regular in- or out-degree 6 graphs, for which 
fi =d, the bounds are tight up to a constant 
factor of l/4: 

Corollary 3.6. For regulac in-degree or out-degree 
6 graphs, for which a^ =A, R(u) = O(ha^/log 6). 

The case of bounded degree graphs is of par- 
ticular interest, because it is practically infeasible 
to construct networks with vertex degrees that 
grow as 1 I/ 1 grows. In this case, R(u) = R(ha^), 
by Corollary 3.5. Also, R(v) T O(Aa^), by Corol- 
lary 3.2. Therefore, even if A > a^, for bounded 
degree graphs the bounds are asymptotically tight 
(up to a constant factor of l/4 of the logarithm 
of the bound on the degrees): 

Corollary 3.7. For bounded degree graphs, R(v) = 
@(A&). 
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