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Abstract

Biological distributed algorithms are decentralized computer algorithms that solve
problems related to real biological systems and provide insight into the behavior
of actual biological species. The biological systems we consider are social insect
colonies, and the problems we study include foraging for food (exploring the colony’s
surroundings), house hunting (reaching consensus on a new home for the colony), and
task allocation (allocating workers to tasks in the colony). The goal is to combine the
approaches used in understanding complex distributed and biological systems in order
to develop (1) more formal and mathematical insights about the behavior of social
insect colonies, and (2) new techniques to design simpler and more robust distributed
algorithms. Our results introduce theoretical computer scientists to new metrics, new
ways to think about models and lower bounds, and new types of robustness properties
of algorithms. Moreover, we provide biologists with new tools and techniques to gain
insight and generate hypotheses about real ant colony behavior.
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Chapter 1

Introduction

1.1 Biological Distributed Algorithms

Recent works in the distributed computing and biology communities have established

parallels between the problems studied in theoretical computer science and behavioral

ecology. This gave rise to the area of biological distributed algorithms : decentralized

computer models and algorithms that solve problems related to real biological systems

and provide insight into the behavior of actual biological species. The biological

systems range from simple cells [1], to slime mold [17], to social insect colonies [28,

50, 51, 76, 83], and the problems are usually well-known theoretical computer science

problems like constructing a maximal independent set [1], finding shortest paths in a

graph [17], task allocation [28], and graph exploration [50, 51, 76].

The key features of both the distributed and biological systems mentioned above

are very similar and common to all self-organizing systems [19, 20, 64]: no central con-

trol that instructs the individuals, common global goal for all individuals to achieve,

potentially limited communication and computation capabilities of the individuals,

various degrees of noise and failures. A global goal and lack of centralized control are

the defining features of most distributed systems. In social insect colonies, despite

the presence of a queen, individuals are also rarely instructed what action to perform

next. Moreover, there are numerous examples of common global goals that social in-

sect colonies need to achieve in order to guarantee the survival of the colony: building

15



a nest, taking care of the brood items, or foraging for food to feed the entire colony.

Communication is beneficial and often necessary to solve many problems in dis-

tributed computing, and is also present in many biological systems. The two main

types of communication employed by distributed algorithm designers are shared mem-

ory and message passing. In shared memory, individuals can read and write values at

a common location (set of memory registers), while in message passing, individuals

send messages to each other over a set of communication channels. In social insect

colonies, similar, although constrained, modes of communication are also used. The

shared-memory communication equivalent in social insect colonies is usually referred

to as stigmergy : a mechanism to sense the environment and infer the need to perform

a task. For example, ants and bees can sense the temperature in the nest, sense

that larvae need to be fed, or follow a pheromone trail from the nest leading to a

food source. The message-passing communication equivalent in social insect colonies

are (random) ant-to-ant interactions through which ants share limited information

by sensing each other’s pheromones. Furthermore, such random interactions between

agents is also very common in some distributed computing models like population

protocols [6, 8] (discussed in more detail in Section 1.2.2).

Finally, various levels of noise and failures are present in both distributed systems

and social insect colonies. In distributed systems, the standard assumptions involve

upper bounds on the number of computing devices that may crash at any time,

where crashes may be of several flavors depending on their severity and possibility of

recovery. In social insect colonies, as in any biological system, failures are common and

inevitable. Moreover, individuals are believed to act using noisy sensory information

and potentially imprecise knowledge of the environment and colony parameters (such

as colony size and amount for work needed).

Despite the numerous similarities between distributed and biological systems, they

differ in many subtle but important aspects. Clearly, a key difference between these

two types of systems is that the former is man-made and designed to achieve well-

specified goals, while the latter is naturally-evolving with largely unknown specifica-

tions. For example, in distributed systems, there are usually assumptions on the total

16



number of processes, the maximum number of failures among them, the speed with

which they take steps, and the ways in which they can interact with each other. The

algorithms that run on these distributed systems are also specified exactly as either

pseudocode or real executable code. Based on these assumptions and algorithms, it

is usually possible to predict and analyze the behavior of the system in terms of the

time it requires to achieve a certain state, or the correctness and precision with which

the system reaches such a state. In biological systems, on the other hand, many of

these assumptions and algorithms are not well-defined or completely unknown.

In biological systems, similarly to computer systems, there are numerous attempts

to study the behavior of certain species analytically, both using centralized [15, 16, 79,

110] and distributed approaches [41, 60, 86, 95]. In contrast to distributed systems, the

mathematical results that describe the behavior of biological systems are less rigorous

and precise, often focusing on some tendency of the colony to converge to a specific

state, but rarely analyzing specific metric functions of the key colony parameters.

Also in contrast to distributed systems, biological systems and models are much more

tolerant to noise and uncertainty. For example, many social insect colonies (and their

corresponding biological models) are capable of surviving and even thriving under

extreme conditions, while distributed systems (in theory or in real applications) often

suffer fatal errors even in mildly unfavorable settings.

Many of the tools and techniques from distributed computing can be useful in un-

derstanding the behavior of social insect colonies more formally and quantitatively.

Generally speaking, formal mathematical models can help abstract away from the

complex biological world and yield a feasible computational analysis of the algo-

rithms social insects use. In particular, models in distributed computing are ab-

stract, discrete, probabilistic, and modular [10, 78, 89]; each individual is modeled

independently from other individuals and from the environment. In these models,

each individual is assumed to run an independent copy of a distributed algorithm.

The resulting behavior of the individuals is analyzed using proof techniques from

probability theory and algorithm complexity, to derive provable guarantees on the

solvability and efficiency of the problems and algorithms, respectively.
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Similarly, the biological approaches, both analytical and experimental, to under-

standing complex systems can be beneficial to designing and analyzing more robust

distributed algorithms. When biologists study the behavior of social insect colonies,

they focus on theoretical (mathematical) models [15, 41, 60, 79, 95] and practical

experiments [21, 29, 91, 103, 104]. The goal of the experiments is usually to form

and practically validate hypotheses about specific aspects of the insects’ behavior.

The theoretical models, are then used to replicate that observed behavior with spe-

cific parameters, rules, and mathematical (differential) equations. These models are

then instantiated with actual parameter values (measured in experiments) and tested

through computer simulations with the goal of establishing a parallel between the

observed and modeled behaviors. The resulting hypotheses about insect behavior are

often simple, natural and robust algorithms that may inspire distributed algorithms

for various computer science problems.

A key property of many biological models is that they have a lot of built-in noise

and uncertainty. In a sense, this is necessitated by the inherently noisy information

that individuals have access to. Other reasons for incorporating uncertainty in these

models is the possibility that individuals do not follow the rules of their algorithms

precisely, and even if they do, we may not be aware of all the components of the al-

gorithm they are running. The resulting models and algorithms may not necessarily

perform correctly under every possible combination of inputs (as is usually necessary

for computer algorithms); however, they are usually tolerant to perturbations of the

parameters of the algorithms. Such robustness properties are not always sought af-

ter by theoretical computer scientists but they are definitely desirable in real-world

distributed systems.

Combining the approaches that biologists and computer scientists use in under-

standing complex (distributed or biological) systems can result in (1) a more formal

and mathematical understanding of the behavior of social insect colonies, and (2) new

techniques to design simpler and more robust distributed algorithms. In this thesis

we exploit this mutual benefit by studying three social insect colony problems (for-

aging, house hunting and task allocation) from a distributed computing perspective.

18



For each of the problems, we highlight different algorithmic characteristics like ro-

bustness properties, tolerance to noise, simplicity in terms of limited communication

and computation, and insights about the actual insect behavior.

1.2 Problem Descriptions and Related Work

In this thesis we study three particular problems that are common to different species

of ants (and bees) and also closely related to well-known problems in theoretical

computer science. The distributed foraging problem refers to exploring a given area

by a set of collaborative individuals in search of food or some other resource. In

computer science, various such exploration problems are well-known in the plane or

any other structures like graphs. The house hunting problem is particular to certain

species of ants and bees and refers to searching and reaching consensus on a new nest

for the colony to move to. House hunting is closely related to distributed consensus

in simple synchronous models such as population protocols. The distributed task

allocation problem involves a set of individuals each of which needs to choose a task

(or multiple tasks) to work on with the goal of achieving a common global goal in the

colony. Task allocation is also a very well-studied problem in distributed computing,

usually known as resource allocation or load balancing.

The three problems described above have the advantage that they are all studied

extensively by both the biology and computer science communities, so they provide

opportunity to highlight tools and techniques from both areas. From a biology per-

spective, all three problems have computational models that suggest a possible mech-

anism/algorithm through which social insects solve these problems. In other words,

we have some guidance in designing algorithms for solving these problems. From a

distributed computing perspective, all three of these are interesting and worth study-

ing in very simple models of complete synchrony, small number of states per agent,

and very limited computation and communication capabilities. Some of these limita-

tions of the models present difficulties in designing and analyzing algorithms but we

believe these issues are inevitable in understanding real social insect colonies.
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Next, we describe each of the three problems in detail and provide an overview of

the relevant related work from both the computer science and biological communities.

Section 1.2.1 defines the foraging problem and its relevance to searching the plane and

grid exploration problems. Section 1.2.2 describes the house hunting problem together

with some related consensus-like problems in various models. Section 1.2.3 defines

the task allocation problem from both a biological and computer science standpoint.

1.2.1 Foraging for Food (Searching the Plane)

While foraging for food is a common problem to almost all species, social insect

colonies are unique in that they use a collaborative and distributed strategy to explore

an area. From a biological standpoint, the foraging problem has many variations

corresponding to the specific species doing the foraging, the type of geographic areas

they explore, and the type of resources they are searching for.

Here, we focus on a simple abstraction of the general foraging problem. Consider

𝑛 probabilistic non-communicating agents collaboratively searching for a target in a

two-dimensional grid. A target is placed within some (unknown) distance 𝐷 measured

in number of hops in the grid from the origin. In this setting, we study the time it takes

for the first agent to reach the target. In studying solutions to the foraging problem,

we consider a selection complexity metric, which captures the bits of memory and the

range of probabilities used by a given algorithm. This combined metric is motivated

by the fact that memory can be used to simulate small probability values, and small

probability values can be used to approximate operations that would otherwise require

more memory. More precisely, for algorithm 𝒜, we define 𝜒(𝒜) = 𝑏+ log ℓ, where 𝑏 is

the number of bits of memory required by the algorithm, and ℓ is the smallest value

such that all probabilities used in 𝒜 are bounded from below by 1/2ℓ. We show that

the choice of the selection metric arises naturally from the analysis of our algorithms

and the lower bound.

The same abstraction of the foraging problem that we consider is also described

and analyzed in recent work by Feinerman et al. [51], where it is called the Ants

Nearby Treasure Search (ANTS) problem. The authors in [51] argue that it provides
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a good approximation of insect foraging, and represents a useful intersection between

biological behavior and distributed computation. The analysis in [51] focuses on

the speed-up performance metric, which measures how the expected time to find the

target improves as 𝑛 increases. The authors describe and analyze search algorithms

that closely approximate the straightforward Ω(𝐷 + 𝐷2/𝑛) lower bound1 for finding

a target placed within distance 𝐷 from the origin.

Furthermore, in [51] the authors present an algorithm to find the target in optimal

expected time 𝒪(𝐷2/𝑛 + 𝐷), assuming that each agent in the algorithm knows the

number 𝑛 of agents (but not 𝐷). For unknown 𝑛, they show that for every constant

𝜖 > 0, there exists a uniform search algorithm that is 𝒪(log1+𝜖 𝑛)-competitive, but

there is no uniform search algorithm that is 𝒪(log 𝑛)-competitive. In [50], Feinerman

et al. provide multiple lower bounds on the advice size (number of bits of information

the ants are given prior to the search), which can be used to store the value 𝑛,

some approximation of it, or any other information. In particular, they show that

in order for an algorithm to be 𝒪(log1−𝜖 𝑛)-competitive, the ants need advice size

of Ω(log log 𝑛) bits. Note that this result also implies a lower bound of Ω(log log 𝑛)

bits on the total size of the memory of the ants, but only under the condition that

close-to-optimal speed-up is required. Our lower bound is stronger in that we show

that there is an exponential gap of 𝐷1−𝑜(1) for the maximum speed-up (with a sub-

exponential number of agents). Similarly, the algorithms in [51] need Ω(log𝐷) bits

of memory, resulting in selection metric value 𝜒 = Ω(log𝐷), as contrasted with our

algorithm that ensures 𝜒 = 𝒪(log log𝐷).

Searching and exploration of various types of graphs by single and multiple agents

are widely studied in the computer science literature. Several works study the case

of a single agent exploring directed graphs [3, 14, 34], undirected graphs [88, 97],

or trees [5, 35]. Out of these, the following papers have restrictions on the memory

used in the search: [5] uses 𝒪(log 𝑛) bits to explore an 𝑛-node tree, [14] studies the

power of a pebble placed on a vertex so that the vertex can later be identified, [35]

1The best the agents can do is split searching all the 𝐷2 grid cells evenly among themselves; in
cases where 𝑛 is relatively large with respect to 𝐷2, it still takes at least 𝐷 steps for some agent to
reach the target.
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shows that Ω(log log 𝑛) bits of memory are needed to explore some 𝑛-node trees, and

[97] presents a log-space algorithm for 𝑠-𝑡-connectivity. There have been works on

graph exploration with multiple agents [4, 47, 54]; while [4] and [54] do not include

any memory bounds, [47] presents an optimal algorithm for searching in a grid with

constant memory and constant-sized messages in a model, introduced in [48], of very

limited computation and communication capabilities. This result is later extended to

a model with constant memory and loneliness detection as the only communication

mechanism [84]. It should be noted that even though these models restrict the agents’

memory to very few bits, the fact that the models allow communication makes it

possible to simulate larger memory.

So far, in the above papers, we have seen that the metrics typically considered

by computer scientists in graph search algorithms are mostly the amount of memory

used and the running time. In contrast, biologists look at a much wider range of

models and metrics, more closely related to the physical capabilities of the agents.

For example, in [7] the focus is on the capabilities of foragers to learn about different

new environments, [58] considers the physical fitness of agents and the abundance

and quality of the food sources, [67] measures the efficiency of foraging in terms of

the energy over time spent per agent, and [99] explores the use of different chemicals

used by ants to communicate with one another.

1.2.2 House Hunting (Consensus)

House hunting is the process through which some species of ants (and bees) choose

a new nest for the colony to move to. The general house hunting process has (1) a

search component, in which ants collectively search for and evaluate candidate nests,

(2) a decision component, in which the ants distributively decide on a single nest

among all candidate nests, and (3) a transportation component, in which all ants

move to the chosen nest. In our abstraction of house hunting, we focus on the second

component, which is inherently close to the distributed consensus problem. Next, we

give some biological background on the house hunting process as performed by the

Temnothorax ants.
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Temnothorax ants live in fragile rock crevices that are frequently destroyed. It is

crucial for colony survival to quickly find and move to a new nest after their home

is compromised. This process is highly distributed and involves several stages of

searching for nests, assessing nest candidates, recruiting other ants to do the same,

and finally, transporting the full colony to the new home.

In the search phase, some ants begin searching their surroundings for possible new

nests. Experimentally, this phase has not been studied much; it has been assumed

that ants encounter candidate nests fairly quickly through random walking. In the

assessment phase, each ant that arrives at a new nest evaluates it based on various

criteria, e.g., whether the nest interior is dark and therefore likely free of holes, and

whether the entrance to the nest is small enough to be easily defended. These criteria

may have different priorities [65, 104] and, in general, it is assumed that nest assess-

ments by an individual ant are not always precise or rational [102]. After some time

spent assessing different nests, going back to the old nest and searching for new nests,

an ant becomes sufficiently satisfied with some nest and moves on to the recruitment

phase, which consists of tandem runs – one ant leading another ant from the old to

a new nest. The recruited ant learns the candidate nest location and can assess the

nest itself and begin performing tandem runs if the nest is acceptable.

At this point many nest sites may have ants recruiting to them, so a decision has

to be made in favor of one nest. The ants must solve the classic distributed computing

problem of consensus. One strategy that ants are believed to use is a quorum threshold

[92, 94] – a threshold of the number of ants in a nest, that, when exceeded, indicates

that the nest should be chosen as the new home. Each time an ant returns to the new

nest, it evaluates (not necessarily accurately) whether a quorum has been reached. If

so, it begins the transport phase – picking up and carrying other ants from the old

to the new nest. These transports are generally faster than tandem runs and they

conclude the house-hunting process by bringing the rest of the colony to the new nest.

We use the biological insights from various experiments to design an abstract

mathematical model of the house hunting process. The model is based on a syn-

chronous model of execution with 𝑛 probabilistic ants and communication limited to
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one ant leading another ant (tandem run or transport), chosen randomly from the

ants at the home nest, to a candidate nest. Ants can search for new nests by choosing

randomly among all 𝑘 candidate nests. We do not model the time for an ant to find

a nest or to lead a tandem run; each of these actions are assumed to take one round.

From a distributed computing perspective, house-hunting is closely related to

the fundamental and well-studied problem of consensus [53, 75]. This makes the

problem conceptually different from other ant colony inspired problems studied by

computer scientists. Task allocation and foraging are both intrinsically related to

parallel optimization. The main goal is to divide work optimally amongst a large

number of ants in a process similar to load balancing. This is commonly achieved

using random allocation or negative feedback [9] against work that has already been

completed. In contrast, the house-hunting problem is a decision problem in which

all ants must converge to the same choice. Both in nature and in our proposed

algorithms, this is achieved through positive feedback [9], by reinforcing viable nest

candidates until a single choice remains.

House hunting is a well-known problem in evolutionary biology, but the corre-

sponding consensus problem is not very popular in theoretical computer science.

However, the type of algorithms we present and their analysis is very similar to pop-

ulation protocols, and in particular, consensus algorithms in population protocols.

Population protocols are simple models of random interactions among agents with

limited memory and computation capabilities [6, 8]. The standard model of communi-

cation in population protocols involves uniformly random interactions between pairs

of computing agents through which the agents can sense each other’s state. This

simple exchange of a small amount of information is similar, although more general,

to tandem runs in the house hunting problem. The consensus and plurality consensus

problems, which resemble house hunting most closely, have been studies extensively

in population protocols and similar gossip models [11, 12, 13, 36]. All of these results

are set in models quite different from house hunting; population protocols tend to op-

timize the number of states per agent, and house hunting assumes extra capabilities

of the agents like counting the number of other agents in the same nest (of the same

24



opinion). However, there are similarities in the tools and techniques used to analyze

the correctness and performance of both types of algorithms. For both population

protocols and house hunting algorithms it is useful to assume (or derive) an initial

gap between the number of agents of a given opinion [11, 12]. The running times

of the resulting algorithms are also similar in the two models; for 𝑛 agents and 𝑘

nests/opinions/colors, optimal consensus is reached in time approximately polyloga-

rithmic in 𝑛 and polynomial in 𝑘 [13, 57].

1.2.3 Task Allocation (Resource Allocation)

Task allocation is the mechanism through which social insect colonies achieve division

of labor, and computer systems allocate resources to various computing jobs. The

goal is to assign a task to each individual by ensuring each job gets the appropriate

number of workers. The challenge is to achieve this goal in a distributed way, without

any central control.

The specific abstraction of the task allocation problem that we study involves a

distributed process of allocating all ants to the tasks with the goal of satisfying the

demand for each task. The demand of each task can be thought of as a work-rate

required to keep the task satisfied. Furthermore, we assume that the demand of

each task can change due to changes in the environment, so we need to repeat the

distributed re-allocation process between any two such changes in demands. Since we

consider all ants to be equal in skill level and preferences, the demand for each task

corresponds to a certain minimum number of ants working at the task at any given

time. Between any two changes in demands, each ant repeatedly decides what task to

work on based on simple feedback from the environment informing the ant of the state

of the task; for example, an ant may learn from the environment only whether a task

needs more work or not, or, additionally, it may learn approximately how much extra

work is needed to satisfy the demand of the task. We are interested in understanding

how different environment feedback models affect the solvability and efficiency of the

task allocation process, and how the efficiency depends on factors such as the total

amount of work needed and the number of extra ants.
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In particular, we consider environment feedback that provides each ant with only

local information about tasks: each ant learns from the environment (1) whether it

is successful at its current task, and (2) what new task it can work on. We define

specific services that provide this information to each ant, and we study the resulting

task allocation process from a distributed computing perspective. We show that, for

all versions of the environment feedback we consider, task allocation is successful in

re-assigning ants to tasks in a way that satisfies the demands of the tasks. We also

analyze the time for this process terminate successfully in the presence or absence

of extra ants in the colony. In particular, we focus on upper bounds of this time

expressed in terms of the colony size, the number of tasks, and the total amount

of new work induced by the change in demands. Our conclusions suggest that for

reasonable definitions of the environment feedback, the time until ants are successfully

re-allocated depends only logarithmically on the amount of work needed and decreases

either linearly or logarithmically as the size of the colony increases.

Biologists have proposed multiple mechanisms that try to explain the structure of

task allocation in ant colonies. Empirical work suggests that each ant chooses among

the task types (brood care, foraging, nest maintenance, defense [40, 100]) based on:

age [100], body size [112], genetic background [68], spatial position [107], experience

[96], social interaction [61], or the need for particular work [16]. Additionally, theo-

retical work includes mathematical models [15, 16, 41, 60, 86, 90] that capture the

essence of task allocation more abstractly. Many of these models are continuous and

are based on global entities such as the rates of transition between tasks or the rates

of completion of tasks, with parameters measured in experiments. Very few [86, 90] of

the existing models examine factors such as group size and interaction rates between

individuals, and very few [41, 60, 86] are individual-based, where group behavior is

not modeled explicitly but emerges as a result of individual behavior.

Another important factor in ant task allocation is the existence of idle ants. Ex-

periments have shown that a large fraction of the colony remains inactive during the

task allocation process. Some hypotheses for this phenomenon include: (1) inactive

ants may be spending time on non-observable activities like digesting food or dis-
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tributing information throughout the colony [85, 108], and (2) inactive workers are

reserve for times of extra needs of the colony [49, 82]. Many of these hypotheses fail

to fully explain the behavior of idle ants or lack empirical evidence.

From a computer science perspective, task allocation has been studied extensively

in different models of distributed computation. These results range from theoretical

results that study the communication complexity of the problem [45] to practical dis-

tributed task allocation algorithms for different applications like multi-robot systems

[31] and social networks [33]. A notable type of distributed task allocation problem

is the Do-All problem [56]: a number of computing processes must cooperatively

perform a number of tasks in the presence of adversity. The adversity can range

from failures of processes, to asynchrony in the system, to malicious adversaries, and

process behavior deviating from the specifications. Solutions to the Do-All problems

and related problems have been shown to have applications is distributed search [74],

distributed simulation [32], and multi-agent collaboration [2].

1.3 Results and Contributions

In this section, we summarize the main results on each one of the three problems.

For the different problems, we prove slightly different types of results and consider

different metrics in order to give examples of a variety of different approaches. For-

aging results focus on the selection complexity metric and how it affects the time for

non-communicating agents to search the plane. House hunting results focus on noise

and uncertainty tolerance of algorithms and the probabilistic guarantees that allow

for such tolerance. Task allocation results focus on developing insight about actual

insect behavior: how the size of the colony and the number of extra ants affect the

time for ants to re-allocate to tasks.

Each of these different aspects of the three problems is applicable to the other

two problems as well. For example, we can study the time for ants to complete

house hunting or task allocation in terms of the selection metric that we considered

for foraging. It is also definitely an interesting question to study foraging in the
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presence of uncertainty, or to extract some biological insights from our house hunting

algorithms. In the following section, we present each of these approaches in the

context of a single problem, and then we propose a number of open questions on how

to apply these approaches to other problems.

1.3.1 Foraging

In our foraging work [76, 77], we generalize the problem of [51] by now also considering

the selection complexity metric 𝜒 = 𝑏 + log ℓ (where 𝑏 is an upper bound on the

number of bits and 1/2ℓ is a lower bound on the probability values that the algorithm

can use). We begin by studying lower bounds. We identify log log𝐷, for a target

at distance within 𝐷 from the origin, as a crucial threshold for the 𝜒 metric when

studying the achievable speed-up 2 in the foraging problem. In more detail, our lower

bound shows that for any algorithm 𝒜 such that 𝜒(𝒜) ≤ log log𝐷 − 𝜔(1), there is a

placement of the target within distance 𝐷 such that the probability that 𝒜 finds the

target in less than 𝐷2−𝑜(1) moves per agent is polynomially small in 𝐷. Since Ω(𝐷2)

rounds are necessary for a single agent to explore the grid, our lower bound implies

that the speed-up of any algorithm for exploring the grid with 𝜒 ≤ log log𝐷 − 𝜔(1)

is bounded from above by min{𝑛,𝐷𝑜(1)}. For comparison, recall that because of the

trivial Ω(𝐷2/𝑛 + 𝐷) lower bound, the optimal speed-up is min{𝑛,𝐷}. At the core

of our lower bound is a novel analysis of recurrence behavior of small Markov chains

with probabilities of at least 1/2ℓ.

Concerning upper bounds, we note that the foraging algorithms in [51] achieve

near-optimal speed-up in 𝑛, but their selection complexity (𝜒(𝒜)) is higher than

the log log𝐷 threshold identified by our lower bound: these algorithms require suf-

ficiently fine-grained probabilities and enough memory to randomly generate and

store, respectively, coordinates up to distance at least 𝐷 from the origin; this requires

𝜒(𝒜) ≥ log𝐷. In this paper, we seek upper bounds that guarantee 𝜒(𝒜) ≈ log log𝐷,

which is the minimum value for which good speed-up is possible. We consider two

2The speed-up of an algorithm is the ratio of the times required for a single agent and for 𝑛 agents
to explore the grid.
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types of algorithms: non-uniform algorithms in 𝐷, which are allowed to use knowl-

edge of 𝐷, and uniform algorithms in 𝐷, which have no information about 𝐷. All

our algorithms are non-uniform in 𝑛; that is, the algorithms have knowledge of 𝑛.

We begin by describing and analyzing a simple algorithm that is non-uniform in

𝐷 and has asymptotically optimal expected running time. The main idea of this

algorithm is to walk up to certain points in the plane while counting approximately,

and thus using little memory. We can show that this approximate counting strategy

is sufficient for searching the plane efficiently. Our non-uniform algorithm uses 𝜒 =

log log𝐷 + 𝒪(1), which matches our lower bound result up to factor 1 + 𝑜(1).

The main idea of our uniform algorithm is to start with some estimate of 𝐷

and keep increasing it while executing a corresponding version of our simple non-

uniform algorithm for each such estimate. Similarly to the non-uniform algorithm,

the uniform algorithm uses value of 𝜒 that is at most log log𝐷 +𝒪(1). Additionally,

we introduce a mechanism to control the trade-off between the algorithm’s running

time and number of bits it uses. With that goal, we let the algorithm take as a

parameter a non-decreasing function 𝑓(𝐷) that represents the running-time overhead

we are willing to accept; for a given function 𝑓(𝐷), the algorithm guarantees to run

in 𝒪((𝐷2/𝑛+𝐷) · 𝑓(𝐷)) moves per agent in expectation. We show that the resulting

value of the selection metric 𝜒 = 𝑏+ log ℓ is log log𝐷 +𝒪(1), regardless of the choice

of 𝑓 , including 𝑓 = Θ(1), in which case the algorithm matches the Ω(𝐷2/𝑛 + 𝐷)

lower bound. We analyze in detail the resulting 𝜒 values for different choices of 𝑓(𝐷)

and discuss what trade-offs can be achieved between the 𝑏 and ℓ components of the

selection metric. For example, we show that for 𝑓(𝐷) = Θ(𝐷𝜖), where 0 < 𝜖 < 1, if ℓ

is sufficiently large, then 𝑏 = log log log𝐷 +𝒪(1) bits are sufficient for the algorithm.

One of the main contributions of our work are (1) defining a new combined metric

𝜒 that captures the nature of the search problem more comprehensively compared

to the standard metrics of time and space complexity. The 𝜒 metric combines the

memory and probability-range metrics in a way that allows us to cover the entire range

of trade-offs between the individual components and lets our results hold regardless

of how an algorithm chooses to trade off the two components of the 𝜒 value. The
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second main contribution is to establish 𝜒 ≈ log log𝐷 as the threshold below which

no algorithm searches the plane efficiently in terms of the speed-up the algorithm

provides as the number of searchers 𝑛 increases. Our lower bound indicates that any

algorithm with a 𝜒 value less than the log log𝐷 − 𝜔(1) threshold cannot search the

plane significantly faster than 𝑛 simple random walks, and our algorithms indicate

that a 𝜒 value of 𝒪(log log𝐷) is sufficient to get the optimal speed-up of Ω(𝑛).

1.3.2 House Hunting

Our main results on the house hunting problem are a lower bound on the number

of rounds required by any algorithm solving the house-hunting problem in the given

model and two house-hunting algorithms [57].

The lower bound states that, under our model, no algorithm can solve the house-

hunting problem in time sub-logarithmic in the number of ants. The main proof idea

is that, in any step of an algorithm’s execution, with constant probability, an ant

that does not know of the location of the eventually-chosen nest remains uninformed.

Therefore, with high probability, Ω(log 𝑛) rounds are required to inform all 𝑛 ants.

This technique closely resembles lower bounds for rumor spreading in a complete

graph [73], where here the rumor is the location of the chosen nest.

Our first algorithm solves the house-hunting problem in asymptotically optimal

time. The main idea is a typical example of positive feedback: each ant leads tandem

runs to some suitable nest as long as the population of ants at that nest keeps increas-

ing; once the ants at a candidate nest notice a decrease in the population, they give

up and wait to be recruited to another nest. With high probability, within 𝒪(log 𝑛)

rounds, this process converges to all 𝑛 ants committing to a single winning nest. Un-

fortunately, this algorithm relies heavily on a synchronous execution and the ability

to precisely count nest populations, suggesting that the algorithm is susceptible to

perturbations of these parameters and most likely does not match real ant behavior.

The goal of our second algorithm is to be more natural and resilient to pertur-

bations of the environmental parameters and ant capabilities. The algorithm uses a

simple positive-feedback mechanism: in each round, an ant that has located a candi-

30



date nest recruits other ants to the nest with probability proportional to the candidate

nest’s current population. We show that, with high probability, this process converges

to all 𝑛 ants being committed to one of the 𝑘 candidate nests within 𝒪(𝑘2 log1.5 𝑛)

rounds. While this algorithm is not optimal, it exhibits a much more natural process

of converging to a single nest.

Furthermore, for our second algorithm, we study various levels of noise and uncer-

tainty and analyze how they affect the correctness and performance of the algorithm.

One of the assumptions in the house hunting model is that ants can count the number

of other ants at a given candidate nest. In fact this information is used extensively

by our second algorithm to determine with what probability each ant should try to

lead tandem runs. As part of our noise and uncertainty study, we analyze how the

algorithm performs with approximate information about the number of ants at a

given nest. In particular, for a nest of size 𝑥, and for arbitrary 𝜖 and 𝑐′ such that

0 < 𝜖 < 1 and 𝑐′ > 2, we assume that the estimated number of ants is in the range

[𝑥(1 − 𝜖), 𝑥(1 + 𝜖)] with probability at least (1 − 1/𝑛𝑐′); moreover, we assume the

population estimate comes from some distribution that guarantees the estimate is

correct in expectation. In this new model, we analyze the correctness and efficiency

of the house hunting algorithm. Compared to the case of no uncertainty, we show

that the new running time increases by a factor of 𝒪(1/(1 − 𝜖)2) and the probability

of solving the problem within this time decreases by 1/𝑛𝑐′−2.

Furthermore, the above analysis of the uncertainty and noise tolerance of the

algorithm is also useful in understanding how to combine the house hunting algorithm

with a density estimation algorithm [83] that each ant uses as a subroutine to estimate

the number of ants at each nest. We are interested in using such an estimate provided

by a black-box subroutine that matches the uncertainty assumptions above. We

show that based on the noise/uncertainty that the house hunting algorithm tolerates,

we can directly plug in the density estimation algorithm in [83] and combining the

resulting correctness and efficiency guarantees.

One of the main contributions of our house hunting work is the first abstract

mathematical model that models this specific ant colony behavior. To put this model
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in context, we provide simple matching lower bound and algorithm that establish

Θ(log 𝑛) as the time necessary and sufficient to solve house hunting. These simple

results can serve as the basis for further theoretical research on the house hunting

problem, in the context of the Temnothorax ants or a more abstract application. The

second main contribution is an extremely natural algorithm that solves house hunting

and is resilient to perturbations of the algorithm’s parameters. The analysis of this

algorithm also has implications on general probabilistic dynamics, like the 3-majority

dynamic [13] for solving consensus in population protocols. Finally, our noise analysis

can be used as the basis of a more comprehensive study on how well randomized

algorithms tolerate perturbations of the probabilities used in the algorithms.

1.3.3 Task Allocation

In our task allocation work, we present a mathematical model of the task alloca-

tion process in ant colonies that considers three different versions of environmental

feedback. The environmental feedback consists of two components: (1) a 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

component that informs each ant whether it is successful at its current task, and

(2) a 𝑐ℎ𝑜𝑖𝑐𝑒 component that provides the ant with an alternative task to work on.

We require that the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 component informs ants that they are successful only

as long as the task at hand requires more workers; otherwise, all excess workers are

considered unsuccessful. The 𝑐ℎ𝑜𝑖𝑐𝑒 component provides each ant with a new task

from one of three possible distributions: (1) a uniformly random task, (2) a uniformly

random unsatisfied task, and (3) a task with probability proportional to its deficit

(the amount of additional work it requires).

For the various options for the 𝑐ℎ𝑜𝑖𝑐𝑒 feedback component, keeping the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

component the same, we study the time to correctly re-allocate ants: the number of

steps ants take until the demands of all tasks are satisfied (Figure 1-1).

The first row of the table represents the time until all ants are re-allocated to

tasks ensuring that the demands of all tasks are met. In all three cases, we show that

the time to re-allocate ants to tasks is logarithmic in the amount of work needed. For

the first option of 𝑐ℎ𝑜𝑖𝑐𝑒, the time is also linear in the number of tasks and inversely
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Figure 1-1: Summary of Results. The values in the table are upper bounds on the time
for workers to achieve a task allocation that fulfills the criteria in the first column,
given a particular option for the 𝑐ℎ𝑜𝑖𝑐𝑒 feedback. The parameters in the table are:
the number |𝑇 | of tasks, the amount Φ of total work needed, the workers-to-work
ratio 𝑐, the success probability 1 − 𝛿 and the fraction of work 1 − 𝜖 to be satisfied.
For option (3), we also consider a variation where the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 component may flip at
most 𝑧 bits of its outputs, and the 𝑐ℎ𝑜𝑖𝑐𝑒 component outputs tasks with probability
lower-bounded by a (1 − 𝑦)-fraction of the specified probabilities.

proportional to the ant-to-work ratio 𝑐. If the ants choose a task uniformly at random

only among the unsatisfied tasks (option (2) for 𝑐ℎ𝑜𝑖𝑐𝑒), then the resulting time to

re-allocate is inversely proportional to ln 𝑐. If the ants choose a task with probability

proportional to the deficit (the work needed) of the task (option (3) for 𝑐ℎ𝑜𝑖𝑐𝑒), the

time to re-allocate is inversely-proportional to 𝑐.

The second row of the table represents the time until all ants are re-allocated

such that at most 𝜖 · Φ of the work remains unsatisfied. In this case, we can see that

the ln Φ term is replaced by ln(1/𝜖), indicating that the time is independent of the

absolute amount of the total amount of work needed.

In the third row, we can see that if we introduce some uncertainty in the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

and 𝑐ℎ𝑜𝑖𝑐𝑒 components, the ants can complete the work only to some extent and the

time to re-allocate increases. More precisely, if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 is allowed to make at most 𝑧

“mistakes” (flip a 0 to a 1 or vice versa), and if the probabilities of 𝑐ℎ𝑜𝑖𝑐𝑒 are decreased

by at most a factor of (1−𝑦), then the ants may leave 𝑧 units of work unsatisfied and

the running time increases as 𝑦 approaches 1. Options (1) and (2) are affected even

more extensively than option (3) in the case of uncertainty (not shown in the table):
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depending on which tasks are affected by the mistakes of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, it is possible for

tasks to lose more and more ants at each step.

One contribution of the task allocation work is an abstract distributed model of the

task allocation process in ant colonies. The model is diverse in that it includes various

possible types of input from the environment to each ant with the goal of matching the

setting of different real ant colonies. Such a model can serve as the basis for further

theoretical and biological research into understanding how ants achieve division of

labor. The second main contribution of this work is the insight we get from our

results that the key parameters that determine the efficiency of task allocation in

ant colonies are (1) the amount of work needed, and (2) the ant-to-work ratio (as

opposed to other parameters like the colony size |𝐴|). Such an insight can serve as

a hypothesis to be tested by biologists with real ant experiments like measuring the

ant-to-work ratio in ant colonies and establishing whether it is the determining factor

in the efficiency of task allocation.

1.4 Significance of the Results

The main significance of our results is structured around the two main goals of bi-

ological distributed algorithms: (1) use tools and techniques from distributed com-

puting to gain insight into real biological behavior, and (2) learn from the models

and algorithms occurring in ant colonies with the goal of designing better distributed

algorithms. Here, we briefly summarize the contribution and significance of the main

results, and we elaborate more on these points in Chapter 5.

1.4.1 Lessons for Theoretical Computer Scientists

The main insight of our results for theoretical computer scientists is to change the

general approach to a problem: more flexible models, more expressive metrics, more

lightweight algorithms, and to shift the complexity from the algorithm to its analysis.

The goal is to have results more widely applicable to real systems, more relevant to

biological systems, and possibly more interesting from a theoretical viewpoint.
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From our foraging work, we see evidence that combined metrics, like the selection

metric 𝜒 are more expressive and capture the nature of the problem better than

considering the standard single metrics of time, space and message complexity, and

then proving trade-offs between them. We believe this approach of combining metrics

can be beneficial to other theoretical problems as well and help derive results that

smoothly cover an entire range of metric values instead of proving a few fixed trade-

offs between metrics.

Our house-hunting work illustrates a situation in which having matching lower

bound and algorithm in a fixed model is not always all we need in order to solve

a problem comprehensively. Designing simple and resilient algorithms sometimes

requires us to treat models more flexibly and focus on how dependent the algorithm

correctness is on the specific model assumptions, like for example, having the precise

value of a parameter. Our house hunting work also introduces a new robustness

property of randomized algorithms: their ability to tolerate perturbations of the

probabilities used in the algorithms. We argue that this is an important property for

randomized algorithms used in engineering and biological systems.

From most of the algorithms in this thesis, we can argue that having each agent

execute the same simple rule in each round (as opposed to executing a complex

multistage algorithm) helps not just in understanding and implementing the algorithm

more easily, but also in making the algorithm more resilient to typical vulnerabilities

of distributed algorithms like faults and asynchrony.

1.4.2 Lessons for Evolutionary Biologists

Finally, we believe biologists can also benefit from the general ideas of the results in

this thesis. Our task allocation work establishes an example of applying a distributed

computing approach in an attempt to answer a well-established question about the

behavior of social insects: what determines the efficiency of task allocation, and what

the role of idle ants in the colony is. We conjecture that abstract distributed models

of insect behavior can help biologists form novel hypotheses about insect behavior and

hopefully even verify these hypotheses by designing and performing new experiments.
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Chapter 2

Foraging

In this chapter, we focus on the foraging problem in which a group of simple non-

communicating agents is exploring the two-dimensional plane in search for a single

target. The main results are two algorithms for exploring the plane and a lower bound

on the selection complexity value necessary for searching the plane efficiently.

In Section 2.1, we present the system model, and formally define the search prob-

lem and the performance and selection metrics used to evaluate the algorithms.

In Section 2.2, we present a very simple algorithm that illustrates our main ap-

proach. The first algorithm is non-uniform in that it has knowledge of an upper bound

𝐷 on the distance at which the target is located. This algorithm runs in optimal time

and with an optimal value of the selection metric.

In Section 2.3, we generalize the main approach to uniform algorithms, which have

no knowledge of an upper bound on the distance to the target. Our uniform algorithm

repeatedly guesses the distance to the target and runs a version of the non-uniform

algorithm at each such guess. We show that this algorithm also runs in optimal time

and with an optimal value of the selection metric.

Finally, in Section 2.4, we present a lower bound that matches our upper bounds

in terms of the selection metric 𝜒, indicating that any algorithm with a lower se-

lection metric value is asymptotically slow compared to the optimal 𝒪(𝐷2/𝑛 + 𝐷)

running time. We conclude the chapter by discussing some assumptions and possible

extensions of our work in Section 2.5.
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2.1 Model

Our model is similar to the models in [50, 51]. We consider an infinite two-dimensional

square grid with coordinates in Z2. The grid is to be explored by 𝑛 ∈ N identical,

non-communicating, probabilistic agents. Each agent is always located at a point on

the grid. Agents can move in one of four directions, to one of the four adjacent grid

points, but they have no information about their current location in the grid. Initially

all agents are positioned at the origin. We also assume that an agent can return to

the origin, and for the purposes of this paper, we assume this action is based on

information provided by an oracle.1 Without making this assumption, any algorithm

automatically needs at least Ω(log𝐷) bits just to implement the capability to return

home. Therefore, while it is a strong assumption, it lets us study the behavior of

algorithms with selection complexity 𝜒 = 𝑜(log𝐷). In our setting, the agent returns

on a shortest path in the grid that keeps closest to the straight line connecting the

origin to its current position. Note that the return path is at most as long as the path

of the agent away from the origin; therefore, since return paths increase the running

time by at most a factor of two, and we are interested in asymptotic complexity, we

ignore the lengths of these paths in our analysis.

Agents. Each agent is modeled as a probabilistic finite state automaton; since

agents are identical, so are their automata. Each automaton is a tuple (𝑆, 𝑠0, 𝛿),

where 𝑆 is a set of states, state 𝑠0 ∈ 𝑆 is the unique starting state, and 𝛿 is a

transition function 𝛿 : 𝑆 → Π, where Π is a set of discrete probability distributions.

Thus, 𝛿 maps each state 𝑠 ∈ 𝑆 to a discrete probability distribution 𝛿(𝑠) = 𝜋𝑠 on 𝑆,

which denotes the probability of moving from state 𝑠 to any other state in 𝑆.

For our lower bound in Section 2.4, it is convenient to use a Markov chain rep-

resentation of each agent. Therefore, we can express each agent as a Markov chain

with transition matrix 𝑃 , such that for each 𝑠1, 𝑠2 ∈ 𝑆, 𝑃 [𝑠1][𝑠2] = 𝜋𝑠1(𝑠2), and start

state 𝑠0 ∈ 𝑆.

1From a biological perspective, there is evidence that social insects use such a capability by
navigating back to the nest based on landmarks in their environment [81].

38



In addition to the Markov chain that describes the evolution of an agent’s state,

we also need to characterize its movement on the grid. Let 𝑀 : 𝑆 → {𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑟𝑖𝑔ℎ𝑡,

𝑙𝑒𝑓𝑡, 𝑜𝑟𝑖𝑔𝑖𝑛, 𝑛𝑜𝑛𝑒} be a labeling function that maps each state 𝑠 ∈ 𝑆 to an action

the agent performs on the grid. For simplicity, we require 𝑀(𝑠0) = 𝑜𝑟𝑖𝑔𝑖𝑛. Using

this labeling function, any sequence of states (𝑠𝑖 ∈ 𝑆)𝑖∈N is mapped to a sequence of

moves in the grid (𝑀(𝑠𝑖))𝑖∈N where 𝑀(𝑠𝑖) = none denotes no move in the grid (i.e.,

𝑠𝑖 does not contribute to the derived sequence of moves) and 𝑀(𝑠𝑖) = origin means

that the agent returns to the origin, as described above.

Executions. An execution of an algorithm for some agent is given by a sequence

of states from 𝑆, starting with state 𝑠0, and coordinates of the associated move-

ments on the grid derived from these states. Formally, an execution is defined as

(𝑠0, (𝑥0, 𝑦0), 𝑠1, (𝑥1, 𝑦1), 𝑠2, (𝑥2, 𝑦2), · · · ), where 𝑠0 ∈ 𝑆 is the start state, (𝑥0, 𝑦0) =

(0, 0), and for each 𝑖 ≥ 0, applying the move 𝑀(𝑠𝑖+1) to point (𝑥𝑖, 𝑦𝑖) results in point

(𝑥𝑖+1, 𝑦𝑖+1). For example, if 𝑀(𝑠𝑖+1) = up, then 𝑥𝑖+1 = 𝑥𝑖 and 𝑦𝑖+1 = 𝑦𝑖 + 1. For

𝑀(𝑠𝑖+1) = none, we define 𝑥𝑖 = 𝑥𝑖+1 and 𝑦𝑖 = 𝑦𝑖+1, and for 𝑀(𝑠𝑖+1) = origin, we

define (𝑥𝑖+1, 𝑦𝑖+1) = (0, 0). In other words, we ignore the movement of the agent on

the way back to the origin, as mentioned earlier in this section.

An execution of an algorithm with 𝑛 agents is just an 𝑛-tuple of executions of

single agents. For our analysis of the lower bound, it is useful to assume a synchronous

model. So, we define a round of an execution to consist of one transition of each agent

in its Markov chain. Note that we do not assume such synchrony for our algorithms.

So far, we have described a single execution of an algorithm with 𝑛 agents. In

order to consider probabilistic executions, note that the Markov chain (𝑆, 𝑃 ) induces a

probability distribution of executions in a natural way, by performing an independent

random walk on 𝑆 with transition probabilities given by 𝑃 for each of the 𝑛 agents.

Problem Statement. The goal is to find a target located at some vertex at distance

(measured in terms of the max-norm) at most 𝐷 from the origin in as few expected

moves as possible. Note that measuring paths in terms of the max-norm gives us
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a constant-factor approximation of the actual hop distance. We will consider both

non-uniform and uniform algorithms with respect to 𝐷; that is, the agents may or

may not know the value of 𝐷. Technically, in the case of non-uniform algorithms,

each different value of 𝐷 corresponds to a different algorithm. We define a family of

non-uniform algorithms {𝒜𝐷}𝐷∈N where each 𝒜𝐷 is an algorithm with parameter 𝐷.

It is easy to see (also shown in [51]) that the expected running time of any algo-

rithm is Ω(𝐷 + 𝐷2/𝑛) even if agents know 𝑛 and 𝐷 and they can communicate with

each other. This bound can be matched if the agents know a constant-factor approx-

imation of 𝑛 [51], but as mentioned in the introduction, the value of the selection

metric 𝜒 (introduced below) in that specific algorithm is Ω(log𝐷). For simplicity,

throughout this paper we will consider algorithms that are non-uniform in 𝑛, i.e., the

agents’ state machine is allowed to depend on 𝑛. One can apply a technique from [51]

that the authors use to make their algorithms uniform in 𝑛, in order to generalize our

results and obtain an algorithm that is uniform in both 𝐷 and 𝑛, at the cost of an

𝒪(log1+𝜖 𝑛)-factor running time overhead.

Metrics. For the problem defined above, we consider both a performance and a

selection metric and study the trade-offs between the two. We will use the term step

of an agent interchangeably with a transition of the agent in the Markov chain. We

define a move of the agent to be a step that the agent performs in its Markov chain

resulting in a state labeled 𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡, or 𝑟𝑖𝑔ℎ𝑡.

For our main performance metric, we focus on the asymptotic running time in

terms of 𝐷 and 𝑛; more precisely, we are interested in the metric 𝑀moves: the minimum

over all agents of the number of moves of the agent until it finds the target. Note

that for this performance metric we exclude states labeled 𝑛𝑜𝑛𝑒 and 𝑜𝑟𝑖𝑔𝑖𝑛 in an

execution of an agent. We already argued that the 𝑜𝑟𝑖𝑔𝑖𝑛 states increase the running

time by at most a factor of two. We consider the transitions to 𝑛𝑜𝑛𝑒 states to be part

of an agent’s local computation. Intuitively, we can think of consecutive transitions

to 𝑛𝑜𝑛𝑒 states to be grouped together with the first transition to a non-𝑛𝑜𝑛𝑒 state

and considered a single move. Both our algorithm bounds and our lower bound are
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expressed in terms of 𝑀moves. For the proof of our lower bound, it is also useful to

define a similar metric in terms of the steps of an agent. We define the metric 𝑀steps

to be the minimum over all agents of the number of steps of the agent until it finds

the target. This metric is used only as a helper tool in our lower bound analysis.

The selection metric of a state automaton (and thus of a corresponding algorithm)

is defined as 𝜒(𝒜) = 𝑏 + log ℓ, where 𝑏 = ⌈log |𝑆|⌉ is the number of bits required to

encode all states from 𝑆 and 1/2ℓ is a lower bound on min{𝑃 [𝑠, 𝑠′] | 𝑠, 𝑠′ ∈ 𝑆∧𝑃 [𝑠, 𝑠′] ̸=

0}, that is, on the smallest non-zero probability value used by the algorithm. We

further motivate this choice in Section 2.2 and Section 2.3, where we describe different

trade-offs between the performance metric and the values of 𝑏 and ℓ.

2.2 Non-uniform Algorithm

In this section we present an algorithm in which the value of 𝐷 is available to the

algorithm. Fix 𝐷 ∈ N and define algorithm 𝒜𝐷 ∈ {𝒜𝐷}𝐷∈N based on the following

general approach: each agent chooses a vertical direction (up or down) with proba-

bility 1/2, walks in that direction for a random number of steps that depends on 𝐷,

then does the same for the horizontal direction, and finally returns to the origin and

repeats this process. In Theorem 2.2.5, we show that the expected minimum over all

agents of the number of moves of the agent to find a target at distance up to 𝐷 from

the origin is at most 𝒪(𝐷2/𝑛 + 𝐷).

Let coin 𝐶𝑝 denote a coin that shows tails with probability 𝑝. Assuming coin 𝐶1/𝐷

is available to the algorithm, we present Algorithm 1, accompanied by a state machine

representation (for simplicity of presentation the state machine does not depict the

states labeled 𝑛𝑜𝑛𝑒). Note that the state machine is not an exact representation of

the code in Algorithm 1 because the algorithm uses only coin flips while the state

machine has more than two outgoing transitions per state. However, by checking the

probabilities associated with each action, it is easy to verify that the behaviors of

the state machine and the algorithm are identical. If we were to construct a state

machine that matches the algorithm precisely, it would require four bits to represent,
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Figure 2-1: State machine representation of Algorithm 1. State names match the
values of the labeling function.

as opposed to three bits in the current state machine.

Later in this section we present Algorithm 𝒜𝐷, which is a slightly modified version

of Algorithm 1 that removes the need for coin 𝐶1/𝐷. In Theorem 2.2.7 we show that

Algorithm 𝒜𝐷 guarantees that 𝜒 = log log𝐷 + 𝒪(1).

Algorithm 1: Non-uniform Search Algorithm.
while true do

if coin 𝐶1/2 shows heads then
while coin 𝐶1/𝐷 shows heads do

move up
else

while coin 𝐶1/𝐷 shows heads do
move down

if coin 𝐶1/2 shows heads then
while coin 𝐶1/𝐷 shows heads do

move left
else

while coin 𝐶1/𝐷 shows heads do
move right

return to the origin

Fix an arbitrary point (𝑥, 𝑦) in the grid, where 𝑥, 𝑦 ∈ Z and |𝑥|, |𝑦| ≤ 𝐷; this

point represents the location of the target. The algorithms presented in this section
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are analyzed with respect to the number of moves until some agent explores grid point

(𝑥, 𝑦) and, thus, finds the target. For Lemmas 2.2.1, 2.2.2, 2.2.3, and 2.2.4 consider

an arbitrary fixed agent.

Let 𝑇 denote the number of moves for the agent to complete an iteration of the

outer loop of the algorithm. Also, let event 𝑆 (for successful) be the event that the

agent finds the target in the given iteration. Similarly, let event 𝑈 (for unsuccessful)

denote the event that the agent does not find the target in the given iteration. Since

the length and success probability of each iteration is the same, we do not index the

length 𝑇 of the iteration and the events 𝑆 and 𝑈 by the index of the iteration. Next,

we bound E[𝑇 ], E[𝑇 | 𝑈 ], and E[𝑇 | 𝑆].

Lemma 2.2.1. E[𝑇 ] ≤ 2𝐷.

Proof. In each iteration, the agent performs one move up or down for each consecutive

toss of coin 𝐶1/𝐷 showing heads, and then one move right or left for each consecutive

toss of coin 𝐶1/𝐷 showing heads. Each of these walks is 𝐷 steps long in expectation,

so it follows that 𝐸[𝑇 ] ≤ 2𝐷.

Lemma 2.2.2. E[𝑇 | 𝑆] ≤ 2𝐷.

Proof. This holds because in a successful iteration the agent makes at most 𝐷 hori-

zontal moves followed by at most 𝐷 vertical moves.

Lemma 2.2.3. E[𝑇 | 𝑈 ] ≤ 2E[𝑇 ].

Proof. First, we bound the probability that the agent does not find the target in a

given iteration. If 𝑦 > 1, with probability 1/2 coin 𝐶1/2 shows tails, so the agent

does not move up, and consequently, it does not find the target in this iteration.

Symmetrically, if 𝑦 < 1, with probability 1/2 the agent does not find the target.

Overall, in a given iteration, with probability at least 1/2, the target is not found.

By the law of total expectation it follows that:

E[𝑇 ] ≥ Pr[𝑈 ] · E[𝑇 | 𝑈 ] ≥
(︂

1

2

)︂
E[𝑇 | 𝑈 ].
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Since all iterations by all agents are identical and independent, instead of analyzing

iterations performed by the 𝑛 agents in parallel, we can consider an infinite sequence

of consecutive iterations performed by a single agent. In the next theorem, we will

assign these iterations to the 𝑛 agents in a round-robin way and analyze the resulting

parallel running time.

Let random variable 𝑁 denote the number of unsuccessful iterations before the

first successful iteration, and let the sequence 𝑇1, 𝑇2, · · · denote the lengths of the

iterations performed by the algorithm. Since the lengths of iterations are identical,

we know that for all 𝑖 ≥ 1, E[𝑇𝑖] = E[𝑇 ].

Lemma 2.2.4. 𝐸[𝑁 ] ≤ 16𝐷.

Proof. We bound the probability for the agent to find the target in a single iteration.

Suppose the target is located in the first quadrant. With probability 1/4, an agent

moves up and right during an iteration of the algorithm. The probability that the

walk up halts after exactly 𝑥 steps is (1−1/𝐷)𝑥(1/𝐷) ≥ (1−1/𝐷)𝐷(1/𝐷) ≥ 1/(4𝐷).

The probability that the walk right halts after 𝑦 ≤ 𝐷 steps is at least (1 −

1/𝐷)𝐷 ≥ 1/4. Hence, in each iteration, an agent finds the target with probability at

least 1/(16𝐷). The same holds for a target located in any of the other quadrants.

Therefore, 𝐸[𝑁 ] ≤ 16𝐷.

Theorem 2.2.5. Let each of 𝑛 agents execute Algorithm 1. For a target located

within distance 𝐷 > 1 from the origin, E[𝑀𝑚𝑜𝑣𝑒𝑠] ≤ (64𝐷2)/𝑛+ 6𝐷 = 𝒪(𝐷2/𝑛+𝐷).

Proof. First, we assign the 𝑁 unsuccessful iterations to the 𝑛 agents round robin.

Therefore, each agent executes a total of at most ⌈𝑁/𝑛⌉ unsuccessful iterations. Fix

the agent that executes the following iterations: 1, 1+𝑛, 1+2𝑛, · · · , 1+(⌈𝑁/𝑛⌉−1)𝑛

and note that no other agent executes more iterations.

Next, we bound the value of E[𝑀𝑚𝑜𝑣𝑒𝑠] by the expected duration of the unsuc-

cessful iterations E[
∑︀⌈𝑁/𝑛⌉−1

𝑖=0 𝑇𝑖·𝑛+1] of the fixed agent plus the expected duration of

a successful iteration by the agent that actually finds the target. Note that this is an

upper bound because it is possible that the successful agent finds the target before
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the fixed agent completes its unsuccessful iterations.

E[𝑀𝑚𝑜𝑣𝑒𝑠] ≤ E

⎡⎣⌈𝑁/𝑛⌉−1∑︁
𝑖=0

𝑇𝑖·𝑛+1

⎤⎦+ E[𝑇𝑁+1]

=
∞∑︁
𝑗=0

⎛⎝E

⎡⎣⌈𝑗/𝑛⌉−1∑︁
𝑖=0

𝑇𝑖·𝑛+1 | 𝑁 = 𝑗

⎤⎦+ E[𝑇𝑗+1 | 𝑁 = 𝑗]

⎞⎠ · Pr[𝑁 = 𝑗]

=
∞∑︁
𝑗=0

⎛⎝⌈𝑗/𝑛⌉−1∑︁
𝑖=0

E[𝑇𝑖·𝑛+1 | 𝑁 = 𝑗] + E[𝑇𝑗+1 | 𝑁 = 𝑗]

⎞⎠ · Pr[𝑁 = 𝑗].

Since 𝑁 = 𝑗 and 𝑖 · 𝑛 + 1 ≤ 𝑗, we know that 𝑇𝑖·𝑛+1 is an unsuccessful iteration.

Therefore, E[𝑇𝑖·𝑛+1 | 𝑁 = 𝑗] = E[𝑇 | 𝑈 ]. For the same reason, E[𝑇𝑗+1 | 𝑁 = 𝑗] =

E[𝑇 | 𝑆].

E[𝑀𝑚𝑜𝑣𝑒𝑠] ≤
∞∑︁
𝑗=0

⎛⎝⌈𝑗/𝑛⌉−1∑︁
𝑖=0

E[𝑇 | 𝑈 ] + E[𝑇 | 𝑆]

⎞⎠ · Pr[𝑁 = 𝑗]

≤
∞∑︁
𝑗=0

(︂(︂
𝑗

𝑛
+ 1

)︂
E[𝑇 | 𝑈 ] + E[𝑇 | 𝑆]

)︂
· Pr[𝑁 = 𝑗]

= E[𝑇 | 𝑈 ]
∞∑︁
𝑗=0

(︂
𝑗

𝑛
+ 1

)︂
· Pr[𝑁 = 𝑗] + E[𝑇 | 𝑆]

= E[𝑇 | 𝑈 ] ·
(︂
E[𝑁 ]

𝑛
+ 1

)︂
+ E[𝑇 | 𝑆]

≤ 4𝐷 ·
(︂

16𝐷

𝑛
+ 1

)︂
+ 2𝐷 by Lemmas 2.2.2, 2.2.3, and 2.2.4

=
64𝐷2

𝑛
+ 6𝐷.

Note, it is technically possible that Pr[𝑁 = ∞] ̸= 0 implying that we may need

an unbounded number of iterations to find the target. However, this is not the case

because it is easy to see that each iteration terminates in a finite and bounded number

of rounds with probability 1, so Pr[𝑁 = ∞] = 0.

We now generalize this algorithm to one that uses probabilities lower bounded

by 1/2ℓ for some given ℓ ≥ 1. This is achieved by the following subroutine, which
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implements a coin that shows tails with probability 1/2𝑘ℓ using a biased coin that

shows tails with probability 1/2ℓ, for ℓ ≥ 1.

Algorithm 2: coin(𝑘, ℓ): Generate coin 𝐶1/2𝑘ℓ using coin 𝐶1/2ℓ .

for 𝑖 = 0 · · · 𝑘 do
if 𝐶1/2ℓ shows heads then

return heads
return tails

Lemma 2.2.6. Algorithm 2 returns tails with probability 1/2𝑘ℓ and uses ⌈log 𝑘⌉ bits

of memory.

Proof. From the code it follows that the action on the second line is performed only

if none of the outcomes of the coin flips are tails. Since each coin shows tails with

probability 1/2ℓ and there is a total if 𝑘 coin flips, the probability of all of them being

tails is 1/2𝑘ℓ. Since the entire state of the algorithm is the loop counter, it can be

implemented using ⌈log 𝑘⌉ bits of memory.

Next, we show how to combine Algorithm 1 and Algorithm 2, and we analyze the

performance and selection complexity of the resulting algorithm. Given a biased coin

𝐶1/2ℓ , we construct algorithm 𝒜𝐷 by replacing the lines where coin 𝐶1/𝐷 is tossed in

Algorithm 1 with a copy of Algorithm 2, with parameters 𝑘 = ⌈log𝐷/ℓ⌉ and ℓ.

Theorem 2.2.7. Let each of 𝑛 agents run algorithm 𝒜𝐷. For a target located within

distance 𝐷 > 1 from the origin, E[𝑀moves] = 𝒪(𝐷2/𝑛+𝐷). Moreover, algorithm 𝒜𝐷

satisfies 𝜒(𝒜𝐷) = log log𝐷 + 𝒪(1).

Proof. By Lemma 2.2.6, Algorithm 2 run with parameters 𝑘 = ⌈(log𝐷)/ℓ⌉ and ℓ′ =

(log𝐷)/𝑘 ≤ ℓ, generates coin flips with probability 1/𝐷 of showing tails. Also,

Algorithm 2 does not generate any moves of the agents on the grid. So, the correctness

and time complexity of the algorithm follow from Theorem 2.2.5. Finally, by Lemma

2.2.6 and the fact that Algorithm 1 uses only 3 bits, it follows that:

𝜒(𝒜𝐷) = 𝑏 + log ℓ = log⌈log𝐷/ℓ⌉ + log ℓ + 3

≤ log log𝐷 − log ℓ + 1 + log ℓ + 3 = log log𝐷 + 𝒪(1).
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2.3 Uniform Algorithm

In this section, we generalize the results from Section 2.2 to derive an algorithm that is

uniform in 𝐷. The main difference is that now each agent maintains an estimate of 𝐷

that it increases until it finds the target. For each estimate, an agent simply executes

a subroutine similar to algorithm 𝒜𝐷. Moreover, the algorithm in this section takes

as a parameter a non-decreasing function 𝑓 : Z+ → [1,∞) and ensures that the

resulting running time E[𝑀𝑚𝑜𝑣𝑒𝑠]
2 is 𝒪((𝐷2/𝑛 + 𝐷) · 𝑓(𝐷)). In other words, given

a desired (asymptotic) approximation ratio to the optimal value of Θ(𝐷2/𝑛 + 𝐷),

we provide an algorithm that solves the problem in the required expected time and

we calculate the necessary value of 𝜒 for such a solution. The analysis of the value

of E[𝑀𝑚𝑜𝑣𝑒𝑠] is presented in a general way and works for any function 𝑓 such that

𝑓(2) ≥ 128 ln 8. For the analysis of the resulting value of the selection metric 𝜒 and

the trade-off between its components, we plug in different values of 𝑓 .

We show that for any sufficiently large function 𝑓 , the selection metric achieved

by the algorithm is 𝜒 = 𝒪(log log𝐷). We also consider specific functions 𝑓 . For

example, we consider 𝑓(𝑥) = Θ(1) and we conclude that in this case the algorithm

uses 𝑏 = 𝒪(log log𝐷) bits, regardless of the value of ℓ. For 𝑓(𝑥) = Θ(𝑥𝜖), where

0 < 𝜖 < 1, however, we show that if ℓ = log𝐷 − log log𝐷, then 𝑏 = 𝒪(log log log𝐷)

bits are sufficient for the algorithm. At the end of the section we also discuss other

options for the function 𝑓 and additional considerations for the approximation factor.

The rest of this section is organized as follows: Section 2.3.1 defines a useful

sequence of estimates of 𝐷 using the function 𝑓 , Sections 2.3.2 and 2.3.3 present

the algorithm and running time analysis, respectively, and Section 2.3.4 includes the

selection metric analysis for the algorithm.

2Note that fixing a uniform algorithm, a distance 𝐷 ∈ N and a target location within distance 𝐷
from the origin is sufficient to define a probability distribution over all executions of the algorithm
with respect to the given target location. The metric 𝑀𝑚𝑜𝑣𝑒𝑠 and its expectation are defined over
that distribution.
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2.3.1 Definition and Properties of 𝑇𝑖 and 𝐷𝑖

We construct two infinite sequences, a sequence 𝒯 = (𝑇1, 𝑇2, · · · ) of non-negative

reals, and a sequence 𝒟 = (𝐷1, 𝐷2, · · · ) of non-negative integers. Here, 𝐷𝑖 represents

the 𝑖’th estimate of 𝐷 and 𝑇𝑖 represents a bound on the expected time an agent spends

searching for the target within distance 𝐷𝑖 (including the overhead in the running

time defined by 𝑓) in order to find a target within this distance with sufficiently

large probability. Such a table of values can be pre-calculated for a given choice of

𝑓 and then utilized by the algorithm. For a given function 𝑓 , the sequences 𝒟 and

𝒯 will be hardwired into the agents’ automaton, so that the only values the agent

has to store in its main memory are the current index 𝑖 and the specific values of

𝐷𝑖 and 𝑇𝑖 corresponding to that index; however, the agent never needs to store the

entire sequences of values. Recall that our definition of 𝑏 depends only on the number

of states of the agents’ automata. Thus, it represents the number of “read-write”

memory bits required to record an agent’s state. The sequences 𝑇𝑖 and 𝐷𝑖 are fixed

and thus can be stored in “read-only” memory. For simplicity, we assume an agent

can compute these values online for simple enough choices of 𝑓 (without violating

the memory and probability restrictions). A detailed analysis and discussion of the

memory used by the algorithm are presented in Section 2.3.4.

We define the following set of constraints on the values of the 𝒟 and 𝒯 sequences:

𝐷0 = 2 (2.1)

For each 𝑖 ∈ N, 𝐷𝑖 > 0 (2.2)

For each 𝑖 ∈ N, 𝑖 ≥ 1, 𝑇𝑖 =
𝐷2

𝑖−1

𝑛
· 𝑓(𝐷𝑖−1) (2.3)

For each 𝑖 ∈ N, 𝑖 ≥ 1, 𝑇𝑖+1 =
𝑇𝑖

4
· 𝑒

𝑓(𝐷𝑖−1)

32
·
𝐷2
𝑖−1

𝐷2
𝑖 (2.4)

Before we proceed to the algorithm, we show that these constraints uniquely

define the sequences 𝒯 and 𝒟, and then we prove that these sequences are strictly

increasing. For the results below, recall that we assume that 𝑓 is non-decreasing and

that 𝑓(2) ≥ 128 ln 8.
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Lemma 2.3.1. Fix 𝑛, 𝐷𝑖−1 and 𝑇𝑖, for any 𝑖 ∈ N. Then, Equations (2.3) and (2.4)

have a unique solution for 𝐷𝑖 and 𝑇𝑖+1.

Proof. We need to show that given 𝐷𝑖−1 and 𝑇𝑖 we can calculate 𝐷𝑖 and 𝑇𝑖+1. Based

on the two defining equations for 𝑇𝑖+1, it suffices to show that the equation below

always has a unique solution:

𝑒
𝑓(𝐷𝑖−1)

32
·
𝐷2
𝑖−1

𝐷2
𝑖 ·

𝐷2
𝑖−1

4𝑛
· 𝑓(𝐷𝑖−1) −

𝐷2
𝑖

𝑛
· 𝑓(𝐷𝑖) = 0.

Note that the left hand side is a continuous function (assuming we extend the

domain to the reals) and 𝐷𝑖−1 > 0 is already fixed. Moreover, the left hand side is of

the form 𝑎𝑒𝑏/𝐷
2
𝑖 − 𝑐𝐷2

𝑖 𝑓(𝐷𝑖) for positive 𝑎, 𝑏, and 𝑐 that are independent of 𝐷𝑖. Since

𝑓 is non-decreasing, 𝑓(𝐷𝑖) can be uniformly bounded from above when considering

𝐷𝑖 → 0 (e.g. by 𝑓(𝐷𝑖−1)). The left hand side remains positive, so it is bounded from

below by 𝑎𝑒𝑏/𝐷
2
𝑖 − 𝑐′𝐷2

𝑖 for positive 𝑎, 𝑏, 𝑐′ if 𝐷𝑖 <= 𝐷𝑖−1.

For 𝐷𝑖 → 0, the left hand side tends to ∞, whereas for 𝐷𝑖 → ∞, it tends to

−∞. Hence, by the mean value theorem, there is always a solution 𝐷𝑖 to the above

equation. Moreover, the left hand side is strictly decreasing in 𝐷𝑖 (for 𝐷𝑖 > 0),

implying that this solution is unique. From the solution for 𝐷𝑖 we can then easily

compute the value of 𝑇𝑖+1.

Lemma 2.3.2. For each 𝑖 ∈ N, 𝑖 ≥ 1, 𝑇𝑖+1 ≥ 2𝑇𝑖.

Proof. Fix some 𝑖 ∈ N and consider two cases based on the values of 𝐷𝑖 and 𝐷𝑖−1.

Also, recall that 𝐷0 ≥ 2.

Case 1: 𝐷𝑖 ≥ 2𝐷𝑖−1. By Equation (2.3) and the fact that 𝑓 is non-decreasing, we

have:

𝑇𝑖+1

𝑇𝑖

=
𝐷2

𝑖 · 𝑓(𝐷𝑖)

𝐷2
𝑖−1 · 𝑓(𝐷𝑖−1)

≥ (2𝐷𝑖−1)
2

𝐷2
𝑖−1

> 2.
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Case 2: 𝐷𝑖 < 2𝐷𝑖−1. By Equation (2.4) and the fact that 𝑓(2) ≥ 128 ln 8:

𝑇𝑖+1 = 𝑒
𝑓(𝐷𝑖−1)

32
·
𝐷2
𝑖−1

𝐷2
𝑖 · 𝑇𝑖

4
≥ 𝑒

𝑓(2)
32
· 1
4 · 𝑇𝑖

4
≥ 2𝑇𝑖.

Note that, based on Lemma 2.3.2 and the assumption that 𝑓 is a non-decreasing

function, it follows from Equation (2.3) that 𝒟 is a strictly increasing sequence.

Before using the sequences 𝒟 and 𝒯 in the uniform search algorithm, we give

an example of these sequences for the very simple case when 𝑓 = Θ(1) (in partic-

ular, we consider 𝑓 = 80 and 𝑛 = 100). Each 𝐷𝑖 in the sequence below represents

a (rounded-up) guess of 𝐷, and the corresponding 𝑇𝑖 represents the (rounded-up)

expected number of rounds the algorithm spends searching at distance 𝐷𝑖.

𝒟 : ( 2, 2.4, 2.9, 3.4, 4.1, 4.9, 5.9, 7.1, 8.4, 10.1, · · · )

𝒯 : ( ⊥, 3.2, 4.6, 6.6, 9.4, 13.5, 19.3, 27.6, 39.6, 56.7, · · · )

2.3.2 Subroutines and Algorithm

To simplify the presentation, we break up the main algorithm into two subroutines.

The first subroutine is similar to Algorithm 1; however, instead of using the actual

distance 𝐷 as a parameter, the following algorithm uses an estimate 𝐷𝑖 of 𝐷.

Algorithm 3: search(𝑖): Visit each point of a square of side length 𝐷𝑖 with
probability at least 1/(16𝐷𝑖).
if if 𝐶1/2 shows heads then

while 𝐶1/𝐷𝑖
= ℎ𝑒𝑎𝑑𝑠 do

move up
else

while 𝐶1/𝐷𝑖
= ℎ𝑒𝑎𝑑𝑠 do

move down
if 𝐶1/2 shows heads then

while 𝐶1/𝐷𝑖
= ℎ𝑒𝑎𝑑𝑠 do

move right
else

while 𝐶1/𝐷𝑖
= ℎ𝑒𝑎𝑑𝑠 do

move left
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Lemma 2.3.3. For a fixed 𝑖 ∈ N and each point (𝑥, 𝑦) where 𝑥, 𝑦 ∈ Z and |𝑥|, |𝑦| ≤

𝐷𝑖, if Algorithm 3 is called at the origin, then it visits point (𝑥, 𝑦) with probability at

least 1/(16𝐷𝑖).

Proof. The proof is identical to the proof of Lemma 2.2.4 (𝐷 is replaced by 𝐷𝑖).

Next, in Algorithm 4, we use Algorithm 3 to efficiently search an infinite grid using

𝑛 agents. Intuitively, the algorithm iterates through different values of the outer-loop

parameter 𝑖, which correspond to the different estimates of 𝐷, increasing according

to the sequence 𝒟. For each such estimate, the algorithm executes a number of

calls to the search subroutine with parameter 𝑖. However, since agents have limited

memory and limited probability values, we can only count the number of such calls

to the search routine approximately. We do so by repeatedly tossing a biased coin

and calling the search algorithm as long as the coin shows heads.

Algorithm 4: Uniform Search Algorithm.
for 𝑖 = 1, · · · do

Let 𝑥 = 𝑇𝑖/𝐷𝑖

while 𝐶1/𝑥 = heads do
search(𝑖)
return to the origin

2.3.3 Running Time Analysis of the Uniform Algorithm

For the rest of this section, fix some 𝐷 ∈ N and a point (𝑥, 𝑦) in the grid, where

𝑥, 𝑦 ∈ Z and |𝑥|, |𝑦| ≤ 𝐷, that represents the location of the target. Having fixed

Algorithm 4, distance 𝐷, and a location for the target within distance 𝐷 from the

origin, the metric 𝑀moves (and its expectation) can now be defined with respect to

the distribution of executions of Algorithm 4.

Throughout the following proofs, we refer to an iteration of the outermost loop

as a phase and we refer to a call to search(𝑖) as an iteration. In Lemma 2.3.4, we

calculate the expected number of moves for an agent to complete phase 𝑖. In Lemma

2.3.8, we calculate the probability that some agent finds the target in some phase
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𝑖. Finally, we use these intermediate results to prove the main result of this section,

Theorem 2.3.9, which shows that the expected number of moves for the first agent

to find a target within distance 𝐷 from the origin is 𝒪((𝐷 + 𝐷2/𝑛) · 𝑓(𝐷)). The

structure of the proof is very similar to that of the non-uniform algorithm in Section

2.2; however, here we consider phases instead of iterations.

For Lemmas 2.3.4, 2.3.5, 2.3.6, 2.3.7, and 2.3.8 fix an arbitrary agent. Denote by

𝑅𝑖 the number of moves for the agent to complete phase 𝑖.

Lemma 2.3.4. E[𝑅𝑖] ≤ 2𝑇𝑖.

Proof. We bound 𝑅𝑖 by summing over all possible numbers of iterations in phase 𝑖

(indexed by 𝑗) and, inside that sum, summing over the possible lengths of each such

iteration (indexed by 𝑘). For this analysis, we can assume that an iteration is always

finished by the agent executing it, even if the agent happens to find the target in the

middle of the iteration. The factor of 2 before the second sum is due to the fact that

each iteration consists of a vertical and a horizontal set of moves.

E[𝑅𝑖] =
∞∑︁
𝑗=0

𝐷𝑖

𝑇𝑖

·
(︂

1 − 𝐷𝑖

𝑇𝑖

)︂𝑗

· 𝑗 · 2
∞∑︁
𝑘=0

1

𝐷𝑖

(︂
1 − 1

𝐷𝑖

)︂𝑘

· 𝑘

=
∞∑︁
𝑗=0

𝐷𝑖

𝑇𝑖

·
(︂

1 − 𝐷𝑖

𝑇𝑖

)︂𝑗

· 𝑗 · 2(𝐷𝑖 − 1)

=

(︂
𝑇𝑖

𝐷𝑖

− 1

)︂
2 (𝐷𝑖 − 1) ≤ 𝑇𝑖

𝐷𝑖

· 2𝐷𝑖 = 2𝑇𝑖.

Let 𝑁𝑖 denote the number of iterations in phase 𝑖 (until the target is found or

until the end of the phase).

Lemma 2.3.5. E[𝑁𝑖] ≤ 𝑇𝑖/𝐷𝑖.

Proof. By the pseudocode:

E[𝑁𝑖] =
∞∑︁
𝑗=0

𝐷𝑖

𝑇𝑖

·
(︂

1 − 𝐷𝑖

𝑇𝑖

)︂𝑗

· 𝑗 =
𝑇𝑖

𝐷𝑖

(︂
1 − 𝐷𝑖

𝑇𝑖

)︂
≤ 𝑇𝑖

𝐷𝑖

.
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Let event 𝑆𝑖 (for successful) be the event that the agent finds the target in phase

𝑖. Similarly, let event 𝑈𝑖 (for unsuccessful) denote the event that the agent does not

find the target in phase 𝑖. Next, we bound E[𝑅𝑖 | 𝑈𝑖] and E[𝑅𝑖 | 𝑆𝑖].

Lemma 2.3.6. E[𝑅𝑖 | 𝑈𝑖] ≤ 4𝑇𝑖.

Proof. For each 𝑘 ≥ 1, let 𝑋𝑘 denote the length of the 𝑘’th iteration of phase 𝑖. Since

the lengths of all iterations in a given phase identically distributed, let E[𝑋] denote

their common expected length. Finally, let 𝑈 denote the event that a given iteration

is unsuccessful. Reasoning identically to Lemma 2.2.3, E[𝑋 | 𝑈 ] ≤ 4𝐷𝑖.

E[𝑅𝑖 | 𝑈𝑖] = E

[︃
𝑁𝑖−1∑︁
𝑘=0

𝑋𝑘+1 | 𝑈𝑖

]︃

=
∞∑︁
𝑗=0

𝑗−1∑︁
𝑘=0

E[𝑋𝑘+1 | 𝑈 ] · Pr[𝑁𝑖 = 𝑗 | 𝑈𝑖]

=
∞∑︁
𝑗=0

𝑗−1∑︁
𝑘=0

E[𝑋 | 𝑈 ] · Pr[𝑁𝑖 = 𝑗 | 𝑈𝑖]

=
∞∑︁
𝑗=0

𝑗 · E[𝑋 | 𝑈 ] · Pr[𝑁𝑖 = 𝑗 | 𝑈𝑖]

= E[𝑋 | 𝑈 ] · E[𝑁𝑖 | 𝑈𝑖].

It remains to show that E[𝑁𝑖 | 𝑈𝑖] ≤ E[𝑁𝑖]. Consider the two probabilities:

Pr[𝑁𝑖 = 𝑗] and Pr[𝑁𝑖 = 𝑗 | 𝑈𝑖]. There are two possible ways that 𝑁𝑖 = 𝑗: either the

phase ends because the agent finds the target, or the phase ends because the coin 𝐶1/𝑥

shows tails. On the other hand, conditioning on 𝑈𝑖, the only way 𝑁𝑖 = 𝑗 is if the coin

𝐶1/𝑥 shows tails. Therefore, Pr[𝑁𝑖 = 𝑗] ≥ Pr[𝑁𝑖 = 𝑗 | 𝑈𝑖], and so E[𝑁𝑖 | 𝑈𝑖] ≤ E[𝑁𝑖].

By Lemma 2.3.5, E[𝑅𝑖 | 𝑈𝑖] = E[𝑋 | 𝑈 ] · E[𝑁𝑖 | 𝑈𝑖] ≤ E[𝑋 | 𝑈 ] · E[𝑁𝑖] ≤ 4𝑇𝑖.

Lemma 2.3.7. E[𝑅𝑖 | 𝑆𝑖] ≤ 4𝑇𝑖 + 2𝐷.

Proof. For each 𝑘 ≥ 1, let 𝑋𝑘 denote the length of the 𝑘’th iteration of phase 𝑖. Since

all iterations in a given phase are identical in length, let E[𝑋] denote their common
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expected length. Finally, let 𝑈 denote the event that a given iteration is unsuccessful.

Reasoning identically to Lemma 2.2.3, E[𝑋 | 𝑈 ] ≤ 4𝐷𝑖. Note that each successful

iteration is of length at most 2𝐷.

We can bound E[𝑅𝑖 | 𝑆𝑖] by summing over all 𝑁𝑖 − 1 unsuccessful iterations in

phase 𝑖 and then adding a successful iteration of length at most 2𝐷.

E[𝑅𝑖 | 𝑆𝑖] ≤ E

[︃
𝑁𝑖−2∑︁
𝑘=0

𝑋𝑘+1 | 𝑆𝑖

]︃
+ 2𝐷.

Reasoning similarly to Lemma 2.3.6, we get E[𝑅𝑖 | 𝑆𝑖] ≤ E[𝑋 | 𝑈 ] · E[𝑁𝑖 − 1 |

𝑆𝑖]+2𝐷. Again, we just need to show that E[𝑁𝑖 | 𝑆𝑖] ≤ E[𝑁𝑖], and the same reasoning

as in Lemma 2.3.6 holds.

By Lemma 2.3.5, we have E[𝑅𝑖 | 𝑆𝑖] ≤ E[𝑋 | 𝑈 ] · E[𝑁𝑖 | 𝑆𝑖] + 2𝐷 ≤ E[𝑋 |

𝑈 ] · E[𝑁𝑖] + 2𝐷 ≤ 4𝑇𝑖 + 2𝐷.

Let 𝑖0 be the minimum phase such that 𝐷 ≤ 𝐷𝑖0 .

Lemma 2.3.8. For each phase 𝑖 ≥ 𝑖0, the probability that an agent finds the target

in phase 𝑖 is at least 1 − 2𝑒−𝑇𝑖/(32𝐷
2
𝑖 ).

Proof. By Lemma 2.3.5, the expected number of iterations in phase 𝑖 is at least 𝑇𝑖/𝐷𝑖.

Fix the number of coin flips performed by the agent in phase 𝑖. Since the coin flips

are independent, we can apply a Chernoff bound (Theorem A.1.4 in the Appendix),

showing that the probability that fewer than 𝑇𝑖/(2𝐷𝑖) searches are executed in total

is at most 𝑒−𝑇𝑖/(12𝐷𝑖).

Condition on the event that there are at least 𝑇𝑖/(2𝐷𝑖) iterations in phase 𝑖. We

can apply Lemma 2.3.3 to bound the probability of finding the target in phase 𝑖

because 𝐷𝑖 ≥ 𝐷𝑖0 ≥ 𝐷, so the probability to miss the target in all iterations of phase

𝑖 is at most:

(︂
1 − 1

16𝐷𝑖

)︂𝑇𝑖/(2𝐷𝑖)

≤ 𝑒−𝑇𝑖/(32𝐷
2
𝑖 ).
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Therefore, the probability that the agent finds the target in phase 𝑖 is at least:

(︀
1 − 𝑒−𝑇𝑖/(12𝐷𝑖)

)︀ (︁
1 − 𝑒−𝑇𝑖/(32𝐷

2
𝑖 )
)︁
≥ 1 − 2𝑒−𝑇𝑖/(32𝐷

2
𝑖 ).

Let random variable 𝑁 denote the number of unsuccessful phases 𝑖 ≥ 𝑖0 before

the first successful phase.

Theorem 2.3.9. Let each of 𝑛 agents execute Algorithm 4. For a target located within

distance 𝐷 > 1 from the origin, E[𝑀moves] = 20(𝐷2/𝑛+ 2𝐷) · 𝑓(𝐷) = 𝒪(𝐷2/𝑛+𝐷) ·

𝑓(𝐷).

Proof. Before we proceed to bound E[𝑀𝑚𝑜𝑣𝑒𝑠], we calculate a few terms that will

appear in the bound of E[𝑀𝑚𝑜𝑣𝑒𝑠]. Let 𝑝𝑖 = 2𝑒−(𝑓(𝐷𝑖−1)/32)(𝐷
2
𝑖−1/𝐷

2
𝑖 ).

By Lemma 2.3.8, the probability that none of the agents find the target in phase

𝑖 is at most

2𝑒−𝑛𝑇𝑖/(32𝐷
2
𝑖 ) ≤ 2𝑒−(𝑓(𝐷𝑖−1)/32)(𝐷

2
𝑖−1/𝐷

2
𝑖 ) = 𝑝𝑖. (2.5)

For 𝑗 ≥ 0, Pr[𝑁 = 𝑗] is at most the probability that none of the 𝑛 agents finds

the target in the 𝑗 phases following phase 𝑖0. So:

Pr[𝑁 = 𝑗] ≤
𝑖0+𝑗−1∏︁
𝑖=𝑖0

𝑝𝑖. (2.6)

Next, note that the value of 𝑝𝑖 appears in the definition of 𝑇𝑖 in Equation (2.4).

So, we can write 𝑇𝑖+1 = 𝑇𝑖/(2𝑝𝑖). Also, for any 𝑗 ≥ 0:

𝑇𝑖0+𝑗 = 𝑇𝑖0

𝑖0+𝑗−1∏︁
𝑖=𝑖0

1

2𝑝𝑖
.
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Finally, note that for any 𝑗, 𝑘 ≥ 1:

𝑘∑︁
𝑖=𝑗

𝑇𝑖 ≤ 𝑇𝑘

𝑘∑︁
𝑖=𝑗

2𝑗−𝑘 ≤ 2𝑇𝑘. (2.7)

We can bound 𝑀𝑚𝑜𝑣𝑒𝑠 by summing over the first 𝑖0 phases, the next 𝑁 unsuccessful

phases, and the last successful phase. We assume an arbitrary fixed agent executes

each one of these phases. Note that although this fixed agent is not guaranteed to be

the one that finds the target, the expected number of moves of the agent that finds

the target is bounded by the expected number of moves of the fixed agent.

Recall that by Lemmas 2.3.4, 2.3.6, and 2.3.7, we have E[𝑅𝑖] ≤ 2𝑇𝑖, E[𝑅𝑖 | 𝑈𝑖] ≤

4𝑇𝑖, and E[𝑅𝑖 | 𝑆𝑖] ≤ 4𝑇𝑖 + 2𝐷, respectively.

E[𝑀𝑚𝑜𝑣𝑒𝑠]

≤
𝑖0−1∑︁
𝑖=1

E[𝑅𝑖] + E

[︃
𝑖0+𝑁−1∑︁
𝑖=𝑖0

𝑅𝑖

]︃
+ E[𝑅𝑖0+𝑁 ]

≤
𝑖0−1∑︁
𝑖=1

2𝑇𝑖 +
∞∑︁
𝑗=0

𝑖0+𝑗−1∑︁
𝑖=𝑖0

E[𝑅𝑖 | 𝑁 = 𝑗] · Pr[𝑁 = 𝑗] +
∞∑︁
𝑗=0

E[𝑅𝑖0+𝑗 | 𝑁 = 𝑗] · Pr[𝑁 = 𝑗]

≤
𝑖0−1∑︁
𝑖=1

2𝑇𝑖 +
∞∑︁
𝑗=0

𝑖0+𝑗−1∑︁
𝑖=𝑖0

E[𝑅𝑖 | 𝑈𝑖] · Pr[𝑁 = 𝑗] +
∞∑︁
𝑗=0

E[𝑅𝑖0+𝑗 | 𝑆𝑖] · Pr[𝑁 = 𝑗]

≤
𝑖0−1∑︁
𝑖=1

2𝑇𝑖 +
∞∑︁
𝑗=0

𝑖0+𝑗−1∑︁
𝑖=𝑖0

4𝑇𝑖 · Pr[𝑁 = 𝑗] +
∞∑︁
𝑗=0

(4𝑇𝑖0+𝑗 + 2𝐷) · Pr[𝑁 = 𝑗]

≤
𝑖0−1∑︁
𝑖=1

2𝑇𝑖 +
∞∑︁
𝑗=0

𝑖0+𝑗∑︁
𝑖=𝑖0

4𝑇𝑖 · Pr[𝑁 = 𝑗] + 2𝐷

≤ 4𝑇𝑖0 +
∞∑︁
𝑗=0

8𝑇𝑖0+𝑗 · Pr[𝑁 = 𝑗] + 2𝐷 by Equation (2.7)

≤ 4𝑇𝑖0 + 8𝑇𝑖0

∞∑︁
𝑗=0

𝑖0+𝑗−1∏︁
𝑖=𝑖0

(︂
1

2𝑝𝑖

)︂ 𝑖0+𝑗−1∏︁
𝑖=𝑖0

𝑝𝑖 + 2𝐷 by Equations (2.5) and (2.6)

≤ 4𝑇𝑖0 + 8𝑇𝑖0

∞∑︁
𝑗=0

2−𝑗 + 2𝐷 ≤ 4𝑇𝑖0 + 16𝑇𝑖0 + 2𝐷

≤ 20

(︂
𝐷2

𝑖0−1

𝑛

)︂
𝑓(𝐷𝑖0−1) + 2𝐷 ≤ 20

(︂
𝐷2

𝑛
+ 2𝐷

)︂
𝑓(𝐷) by Equation (2.3).
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As a technical note, if the right hand side of Equation (2.6) does not go to 0 as

𝑗 goes to infinity, then we cannot use the method above to bound E[𝑀𝑚𝑜𝑣𝑒𝑠] because

Pr[𝑁 = ∞] ̸= 0 implying that we may need an unbounded number of phases to

find the target. However, this is not the case because it is easy to see that each

phase terminates in a finite and bounded number of rounds with probability 1, so

Pr[𝑁 = ∞] = 0.

2.3.4 Selection Metric Analysis

In this section, we analyze the selection metric requirements of Algorithm 4. First,

in Section 2.3.4, we prove some bounds on the 𝜒 selection metric for an arbitrary

function 𝑓 (subject to the constraints listed at the beginning of Section 2.3) used

to define the sequences 𝒟 and 𝒯 . Next, in Sections 2.3.4 and 2.3.4, we substitute

some specific functions for 𝑓 in order to get closed-form results for some different

values of 𝜒. For the memory component, 𝑏, of the selection metric, we consider only

dynamically-changing memory (variables that take on different values throughout the

execution of the algorithm); for example, the loop counter 𝑖 and the corresponding

value 𝑇𝑖/𝐷𝑖 in Algorithm 4 are dynamically changing, while the entire pre-computed

sequences of 𝑇𝑖’s and 𝐷𝑖’s are not dynamically changing because the algorithm uses

them only as a look-up table and does not modify these sequences.

General Analysis

The memory requirements of the algorithm can be split into three parts: (1) bits to

represent the counter value 𝑖, (2) bits to implement the search routine with argument

𝑖, and (3) bits to implement coin 𝐶1/𝑥 for 𝑥 = 𝑇𝑖/𝐷𝑖. Similarly to Section 2.3.3, let

𝑖0 be the minimum phase such that 𝐷 ≤ 𝐷𝑖0 .

Note that, technically, these memory requirements are random variables because

the algorithm does not guarantee that once it reaches phase 𝑖0 it finds the target

with probability 1. In other words, it is possible for the algorithm to reach phases

greater than 𝑖0 before actually finding the target. Therefore, for the purposes of this
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analysis, we will assume that after the algorithm reaches phase 𝑖0 it may run out of

memory, and if it does so, it just stops incrementing the phases. Since it has already

reached the right distance to search, by the analysis in Section 2.3.3, we know that

this restriction does not prevent the algorithm from finding the target.

Part (1) depends on how fast the sequence of 𝐷𝑖’s grow, which depends on our

choice of function 𝑓 . Since 𝑖0 is the maximum phase index that the algorithm can

reach before it finds the target, we need to account for the bits used to represent 𝑖0.

For part (2), we can use the subroutine in Algorithm 2 to implement the specific

coin values we need using only the coin we have, 𝐶1/2ℓ (recall that ℓ is a parameter

that determines the smallest probability the algorithm may use). By Lemma 2.2.6,

it follows that we need at most log log𝐷𝑖0 − log ℓ bits to implement coin 𝐶1/𝐷𝑖0
. The

remaining part of the search subroutine uses only a constant number of bits.

For part (3), we calculate the number of bits to implement coin 𝐶1/𝑥 for 𝑥 = 𝑇𝑖/𝐷𝑖:

𝑇𝑖

𝐷𝑖

=
𝐷2

𝑖−1 · 𝑓(𝐷𝑖−1)

𝑛 ·𝐷𝑖

≤ 𝐷𝑖−1 · 𝑓(𝐷𝑖−1) ≤ 𝐷𝑖0−1 · 𝑓(𝐷𝑖0−1).

The exact number of bits used to implement coin 𝐶1/(𝐷𝑖0−1·𝑓(𝐷𝑖0−1)) depends on

the choice of 𝑓 .

In the following two subsections, we analyze two choices for the function 𝑓 that will

let us calculate specific values for the selection metric 𝜒 and the relationship between

the 𝑏 and ℓ components. Namely, we consider 𝑓 : 𝑓(𝐷𝑖) = 𝑐, for some constant 𝑐 ≥ 128

and 𝑓(𝐷𝑖) = Θ(𝐷𝜖
𝑖) for some 0 < 𝜖 < 1. Our analysis shows that in the first case, the

algorithm uses 𝜒 = 2 log log𝐷 + 𝒪(1), which we also show to be the case in general,

for any (larger than some constant) function 𝑓 . In the second case, the same value

of 𝜒 is sufficient; however, we show the additional property that if ℓ is large enough,

then 𝑏 = log log log𝐷 + 𝒪(1), while 𝜒 = 𝑏 + log ℓ = 𝒪(log log𝐷) is still satisfied.

𝑓(𝐷𝑖) = 𝑐 for some constant 𝑐 ≥ 128

Theorem 2.3.10. For 𝑓(𝐷𝑖) = 𝑐, 𝑐 ≥ 128, Algorithm 4 uses 𝜒 = 2 log log𝐷 +𝒪(1).
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Proof. Substituting 𝑓 in Equations (2.3) and (2.4), we get the following equations:

𝑇𝑖 = 128 ·
𝐷2

𝑖−1

𝑛

𝑇𝑖+1 = 128 · 𝐷
2
𝑖

𝑛

𝑇𝑖+1 =
𝑇𝑖

4
· 𝑒

3𝐷2
𝑖−1

𝐷2
𝑖

Substituting the value of 𝑇𝑖 in the above equations, we get:

128𝐷2
𝑖

𝑛
=

128𝐷2
𝑖−1

4𝑛
· 𝑒

3𝐷2
𝑖−1

𝐷2
𝑖

ln

(︂
𝐷2

𝑖

𝐷2
𝑖−1

)︂
=

3𝐷2
𝑖−1

𝐷2
𝑖

− ln 4

Note that if 𝐷𝑖/𝐷𝑖−1 ≤ 2, then we get that ln(𝐷2
𝑖 /𝐷

2
𝑖−1) ≤ ln 4, and so:

𝐷2
𝑖−1

𝐷2
𝑖

≤ 2 ln 4

3

𝐷𝑖

𝐷𝑖−1
≥
√︂

3

2 ln 4
.

We are guaranteed that 𝐷𝑖/𝐷𝑖−1 ≥
√︀

3/(2 ln 4) > 1. Since 𝐷0 = 2, it is easy to see

that each 𝐷𝑖 is at least 2(
√︀

3/(2 ln 4))𝑖−1. Therefore, 𝑖0−2 = 𝒪(log𝐷𝑖0−1) = 𝒪(log𝐷)

and log log𝐷 + 𝒪(1) bits are sufficient to represent index 𝑖0.

Additionally, as mentioned above, the algorithm uses at most log log𝐷𝑖0 − log ℓ =

log log𝐷 + 𝒪(1) − log ℓ bits to implement coin 𝐶1/𝐷𝑖0
. Similarly, the algorithm

uses log𝒪(log𝐷𝑖0−1)) − log ℓ = log log𝐷 + 𝒪(1) − log ℓ bits to implement coin

𝐶1/(𝐷𝑖0−1·𝑓(𝐷𝑖0−1)). Since we implement each coin only after we are done with the

previous one, the same bits can be reused to toss both coins.

The resulting value of the selection metric is 𝜒 = 𝑏+log ℓ = 2 log log𝐷+𝒪(1).

Note that, for this choice of 𝑓 , the value of 𝑏 used by the algorithm is Θ(log log𝐷)

in the worst case, regardless of the value of ℓ. This is true because larger values of ℓ

can help implement the coins used in the algorithm with fewer bits, but it does not
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affect the fact that Θ(log log𝐷) bits are used to represent index 𝑖0. So, even if large

values of ℓ are available to the algorithm, the memory requirement remains the same.

Next, we generalize the result of Theorem 2.3.10 to any choice of the function 𝑓

that is polynomial in 𝐷.

Corollary 2.3.11. Algorithm 4 uses 𝜒 = 2 log log𝐷+𝒪(1), for any function 𝑓(𝐷𝑖) ≥

128 and 𝑓(𝐷𝑖) ≤ 𝑇 (𝐷𝑖) for any polynomial 𝑇 .

Proof. By Theorem 2.3.10, Algorithm 4 uses 𝜒 = 2 log log𝐷 + 𝒪(1), for 𝑓(𝐷𝑖) =

𝑐, where 𝑐 ≥ 128. For any faster-growing function, the values of subsequent 𝐷𝑖’s

grow faster, and consequently, the target value 𝐷𝑖0 is reached faster. Therefore,

for any function growing faster than a constant, 𝑖0 can be represented with fewer

bits, compared to the case of 𝑓(𝐷𝑖) = 𝑐. Since 𝑓(𝐷𝑖) is at most polynomial in

𝐷𝑖, the number of bits sufficient to implement coins 𝐶1/𝐷𝑖0
and 𝐶1/(𝐷𝑖0

·𝑓(𝐷𝑖0−1)) is

asymptotically the same as in the case of 𝑓(𝐷𝑖) = 𝑐. Therefore, for any 𝑓(𝐷𝑖) ≥ 128

that is at most polynomial in 𝐷𝑖, Algorithm 4 uses 𝜒 = 2 log log𝐷 + 𝒪(1).

𝑓(𝐷𝑖) = Θ(𝐷𝜖) for some 0 < 𝜖 < 1.

Next, we consider 𝑓(𝐷𝑖) = Θ(𝐷𝜖) and we would like to show that for this choice of 𝑓 ,

unlike the case of 𝑓 = Θ(1), the algorithm uses fewer bits of memory, provided that

the value of ℓ is sufficiently large. In particular, we show that if ℓ = log𝐷− log log𝐷,

then 𝑏 = log log log𝐷 + 𝒪(1). Note that these values of 𝑏 and ℓ still satisfy the

selection metric value of 𝜒 = 𝑏 + log ℓ = 𝒪(log log𝐷).

Theorem 2.3.12. For 𝑓(𝐷𝑖) = Θ(𝐷𝜖
𝑖), where 0 < 𝜖 < 1, and ℓ = log𝐷 − log log𝐷,

Algorithm 4 uses 𝑏 = log log log𝐷 + 𝒪(1).

Proof. Substituting 𝑓 in Equations (2.3) and (2.4), we get the following equations:

𝑇𝑖 =
𝐷2

𝑖−1

𝑛
· Θ(𝐷𝜖

𝑖−1)

𝑇𝑖+1 =
𝐷2

𝑖

𝑛
· Θ(𝐷𝜖

𝑖)

𝑇𝑖+1 =
𝑇𝑖

4
· 𝑒

Θ(𝐷𝜖
𝑖−1)

128

𝐷2
𝑖−1

𝐷2
𝑖
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Substituting the value of 𝑇𝑖 in the above equations, we get:

𝐷2
𝑖

𝑛
· Θ(𝐷𝜖

𝑖) =
𝐷2

𝑖−1

𝑛
· Θ(𝐷𝜖

𝑖−1) · 𝑒
Θ(𝐷𝜖

𝑖−1)

128

𝐷2
𝑖−1

𝐷2
𝑖

Θ(𝐷2+𝜖
𝑖 )

Θ(𝐷2+𝜖
𝑖−1)

= 𝑒

Θ(𝐷2+𝜖
𝑖−1

)

𝐷2
𝑖

Θ(ln𝐷𝑖) − Θ(ln𝐷𝑖−1) =
Θ(𝐷2+𝜖

𝑖−1)

𝐷2
𝑖

𝐷
2+𝑜(1)
𝑖 ≥ 𝐷2+𝜖

𝑖−1

𝐷𝑖 ≥ 𝐷
1+Ω(𝜖)
𝑖−1

Given that 𝐷0 = 2, it is easy to see that each 𝐷𝑖 is at least Θ(2(1+Ω(𝜖))𝑖−1
).

Therefore, 𝑖0 − 2 = 𝒪(log log𝐷𝑖0−1) = 𝒪(log log𝐷), so the algorithm uses at most

log log log𝐷 + 𝒪(1) bits to represent index 𝑖0.

Discussion

First, note that some other functions, not considered above, lie asymptotically be-

tween Θ(1) and Θ(𝐷𝜖
𝑖). For example, two such functions are Θ(log𝐷𝑖) and 2Θ(log𝜆 𝐷𝑖)

where 𝜆 ∈ [0, 1]. We can perform similar calculations to those in Sections 2.3.4 and

2.3.4, to show that, for both of these functions, the algorithm uses 𝒪(log log𝐷) bits

to encode the index 𝑖0. In other words, we get the same asymptotic bounds for 𝜒

as in the case of 𝑓(𝐷𝑖) = Θ(1). In contrast, 𝑓(𝐷𝑖) = Θ(𝐷𝜖) is the slowest-growing

function we could identify for which (given a large enough value of ℓ) the memory

used by the algorithm is 𝒪(log log log𝐷) bits, substantially smaller that 𝒪(log log𝐷).

This implies that as the desired approximation to the running time, specified by 𝑓 ,

grows to Θ(𝐷𝜖) or higher (e.g. polynomial in 𝐷), the memory used by the algorithm

decreases to 𝒪(log log log𝐷) bits. Functions larger that polynomial in 𝐷 are not of

particular interest here because for the resulting running time there are much simpler

ways to search the plane, for example, simple random walks.

The selection metric bounds in this section can be shown to be generalizations

of the one we get in [76] where the approximation factor of the running time is
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2𝒪(ℓ). Performing similar calculations to those in Section 2.3.4, we can see that in

the case of 𝑓(𝐷𝑖) = 2𝒪(ℓ), the estimates of 𝐷 grow as 𝐷𝑖/𝐷𝑖−1 ≥ 2𝒪(ℓ). Therefore,

we need a selection metric value of 𝜒 = 𝒪(log log𝐷) for the algorithm to satisfy this

approximation factor, which is asymptotically the same as in [76].

2.4 Lower bound

In this section, we present a lower bound on the number of rounds necessary for

an algorithm to find a target placed within distance 𝐷 from the origin, with non-

negligible probability, if the algorithm satisfies 𝜒(𝒜) ≤ log log𝐷 − 𝜔(1). The rest of

this section is structured as follows: in Section 2.4.1, we state the main theorem with

respect to the metric 𝑀steps and non-uniform algorithms and give an overview of the

proof, in Section 2.4.2, we present the proof in detail, and, finally, in Sections 2.4.3

and 2.4.4, we extend the lower bound to the case of the metric 𝑀moves for non-uniform

and uniform algorithms, respectively.

2.4.1 Theorem for 𝑀steps and non-uniform algorithms

Fix a family of non-uniform algorithms {𝒜𝐷}𝐷∈N and fix some constant 𝑐 > 1. Let

𝑓1, 𝑓2 : N → [1,∞) be arbitrary functions such that 𝑓1(𝐷) = 𝜔(1), 𝑓2(𝐷) = 𝑜(1), and

𝑓2(𝐷) = 𝜔(1/2𝑓1(𝐷) + log log𝐷)/ log𝐷). Also, let 𝑇 be an arbitrary polynomial and

fix a constant 𝑐𝑛 such that 𝑇 (𝐷) ≤ 𝐷𝑐𝑛 for any 𝐷.

Theorem 2.4.1. For each 𝐷 ∈ N, 𝐷 > 1 and each 𝑛 ∈ N, 𝑛 ≤ 𝑇 (𝐷), assume

algorithm 𝒜𝐷 with 𝑛 agents satisfies 𝜒(𝒜𝐷) = 𝑏 + log ℓ ≤ log log𝐷 − 𝑓1(𝐷). Then,

there exists a placement (𝑥, 𝑦), |𝑥|, |𝑦| ≤ 𝐷 of the target, such that, with probability

at least 1 − 1/𝐷𝑐, algorithm 𝒜𝐷 satisfies 𝑀steps > 𝐷2−𝑓2(𝐷) for this placement (𝑥, 𝑦).

Proof Overview: Here we provide a high-level overview of our main proof argu-

ment. We fix an algorithm 𝒜𝐷 for 𝐷 ∈ N, 𝐷 > 1, and focus on executions of this

algorithm of length 𝐷2−𝑜(1) rounds. We prove that since agents have 𝑜(log𝐷) states,

they “forget” about past events too fast to behave substantially differently from a
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biased random walk. Note that a random walk is essentially memoryless since each

new step is independent of the previous steps, so it cannot “remember” what it has

visited already.

More concretely, first we show in Corollary 2.4.3 that after 𝐷𝑜(1) initial rounds

each agent is located in some recurrent class 𝐶 of the Markov chain. We use this

corollary to prove, in Corollary 2.4.4, that after the initial 𝐷𝑜(1) rounds each agent

either does not return to the origin, or it keeps returning every 𝐷𝑜(1) rounds, so it

does not explore much of the grid. Therefore, throughout the rest of the proof we

can ignore the states labeled “origin”.

Assume (for the purposes of this overview) there is a unique stationary distribution

of 𝐶.3 Since there are few states and non-zero transition probabilities are bounded

from below, standard results on Markov chains imply that taking 𝐷𝑜(1) steps from any

state in the recurrent class will result in a distribution on the states of the class that is

(almost) indistinguishable from the stationary distribution (Corollary 2.4.6); in other

words, any information agents try to preserve in their state will be lost quickly with

respect to 𝐷.

The next step in the proof is a coupling argument. We split up the rounds in the

execution into groups such that within each group, rounds are sufficiently far apart

from one another for the above “forgetting” to take place. For each group, we show

that drawing states independently from the stationary distribution introduces only a

negligible error (Lemma 2.4.7 and Corollary 2.4.8). Doing so, we can apply a Chernoff

bound to each group, yielding that an agent will not deviate substantially from the

expected path it takes when, in each round, it draws a state according to the sta-

tionary distribution and executes the corresponding move on the grid (Lemma 2.4.10

and Corollary 2.4.12). Taking a union bound over all groups, it follows that, with

high probability, each agent will not deviate from a straight line (the expected path

associated with the recurrent class it ends up in) by more than distance 𝑜(𝐷/|𝑆|),

where 𝑆 is the number of states of the Markov chain. It is crucial here that the

3This holds only if the induced Markov chain on the recurrent class is aperiodic, but the reasoning
is essentially the same for the general case. We handle this technicality at the beginning of Section
2.4.2.
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corresponding region in the grid, restricted to distance 𝐷 from the origin, has size

𝑜(𝐷2/|𝑆|) and depends only on the component of the Markov chain the agent ends

up in. Therefore, since there are no more than |𝑆| components, taking a union bound

over all agents shows that with high probability together they visit an area of 𝑜(𝐷2).

2.4.2 Proof

Fix some 𝐷 ∈ N, 𝐷 > 1; this also fixes an algorithm 𝒜𝐷 ∈ {𝒜𝐷}𝐷∈N. Assume

𝜒(𝒜𝐷) = 𝑏 + log ℓ ≤ log log𝐷 − 𝑓1(𝐷). Also, fix constants 𝑐′ ≥ 𝑐 + 𝑐𝑛 + 5 and

𝑑 > 2(𝑐′ + 2).

We define the following parameters that depend on algorithm 𝒜𝐷 (and its Markov

chain representation) and will be used throughout the rest of this section.

∙ Let 𝑝0 denote the smallest non-zero probability in the Markov chain describing

𝒜𝐷. By assumption, 𝑝0 ≥ 1/2ℓ.

∙ Let 𝑏 denote the number of bits required to represent the Markov chain describ-

ing 𝒜𝐷. By assumption, 2𝑏 ≥ |𝑆|, where 𝑆 is the set of states in the Markov

chain.

∙ Let 𝑅0 = 𝑐′|𝑆|𝑝−|𝑆|0 ln𝐷 = 𝐷𝑜(1), and let 𝛽 = 2𝑑|𝑆|2𝑝−2|𝑆|
2

0 ln𝐷 = 𝐷𝑜(1). These

parameters will be used to denote “chunks” of rounds by the end of which we

show that the Markov chain reaches some well-behaved states.

∙ Let ∆ = 𝐷2−𝑓2(𝐷). The values of the functions 𝑓1 and 𝑓2 are chosen carefully in

order to ensure that ∆ = 𝑜(𝐷2/(𝛽|𝑆|2 log𝐷)). This parameter will be used to

represent the total running time of the algorithm of choice.

Consider the probability distribution of executions of 𝒜𝐷 of length 𝑅0+∆ rounds.

We break the proof down into three main parts. Sections 2.4.2 and 2.4.2 use standard

Markov chain techniques to derive some results for our constrained (in terms of num-

ber of states and range of probabilities) Markov chain, and Section 2.4.2 applies these

results to the movement of the agents in the grid. First, in Section 2.4.2, we show
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that, with high probability, after a certain number of initial rounds each agent is in

a recurrent class of its Markov chain. Until we resume the proof of Theorem 2.4.1,

we also condition on this recurrent class not containing any states labeled 𝑜𝑟𝑖𝑔𝑖𝑛.

Next, in Section 2.4.2, we show that if we break down the execution into sufficiently

large blocks of rounds, then we can assume that, with high probability, the steps

associated with rounds in different blocks do not depend on each other. Finally, in

Section 2.4.2, we focus on the movement of the agents in the grid, derived from these

“almost” independent steps, and we show that with high probability, among all points

at distance 𝒪(𝐷) from the origin, the agents will only explore a total area of 𝑜(𝐷2).

Initial steps in the Markov chain

In this subsection we prove some properties of the states of the Markov chain of each

agent after some number of initial rounds. Let random variable 𝐶(𝑟) denote the

recurrent class of the Markov chain in which an agent is located immediately after 𝑟

rounds; if the agent is in a transient state immediately after 𝑟 rounds, then 𝐶(𝑟) = ⊥.

First, we show that for any state 𝑠 of the Markov chain, if state 𝑠 is always

reachable, then, with high probability, the agent visits state 𝑠 within 𝐷𝑜(1) rounds.

Lemma 2.4.2. Let 𝑠 be an arbitrary state. Then, with probability at least 1− 1/𝐷𝑐′,

one of the following is true: (1) the agent visits state 𝑠 within 𝑅0 rounds, or (2) the

agent is located in some state 𝑠′ immediately after 𝑟 ≤ 𝑅0 rounds such that 𝑠 is not

reachable from 𝑠′.

Proof. We will prove by induction on 𝑖 ∈ Z+ that, with probability at least 1 − (1 −

𝑝
|𝑆|
0 )𝑖, one of the following is true: (1) the agent visits state 𝑠 within |𝑆|𝑖 rounds, or

(2) the agent is located in some state 𝑠′ immediately after 𝑟 ≤ |𝑆|𝑖 rounds such that

𝑠 is not reachable from 𝑠′.

In the base case, for 𝑖 = 1, if state 𝑠 is not reachable from the initial state, then

part (2) holds; otherwise, the probability that state 𝑠 is reached within |𝑆| rounds

is at least 𝑝
|𝑆|
0 . For the inductive hypothesis assume that with probability at least

1 − (1 − 𝑝
|𝑆|
0 )𝑖, one of the following is true: (1) the agent visits state 𝑠 within |𝑆|𝑖
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rounds, or (2) the agent is located in some state 𝑠′ immediately after 𝑟 ≤ |𝑆|𝑖 rounds

such that 𝑠 is not reachable from 𝑠′. Following the same argument as in the base

case, if state 𝑠 is no longer reachable, then part (2) holds; otherwise, with probability

at least 𝑝
|𝑆|
0 , state 𝑠 is reached within |𝑆| rounds. Overall, with probability at least

1−(1−𝑝
|𝑆|
0 )𝑖+1, one of the following is true: (1) the agent visits state 𝑠 within |𝑆|(𝑖+1)

rounds, or (2) the agent is located in some state 𝑠′ immediately after 𝑟 ≤ |𝑆|(𝑖 + 1)

rounds such that 𝑠 is not reachable from 𝑠′.

Evaluating this probability for 𝑖 = 𝑅0/|𝑆|, we get:

1 −
(︁

1 − 𝑝
|𝑆|
0

)︁𝑅0/|𝑆|
= 1 −

(︁
1 − 𝑝

|𝑆|
0

)︁𝑝−|𝑆|
0 𝑐′ ln𝐷

≥ 1 − 𝑒−𝑐
′ ln𝐷 = 1 − 1

𝐷𝑐′
.

Therefore, with probability at least 1 − 1/𝐷𝑐′ , one of the following is true: (1) the

agent visits state 𝑠 within 𝑅0 rounds, or (2) the agent is located in some state 𝑠′

immediately after 𝑟 ≤ 𝑅0 rounds such that 𝑠 is not reachable from 𝑠′.

In the following corollary we show that within 𝑅0 rounds, with high probability,

an agent is located in some recurrent class of the Markov chain.

Corollary 2.4.3. With probability at least 1 − 1/𝐷𝑐′, it is true that 𝐶(𝑅0) ̸= ⊥.

Proof. First, we derive a Markov chain from the original Markov chain as follows. We

identify all recurrent states in the original Markov chain and we merge them all into

a single recurrent state 𝑠𝐶 of the derived Markov chain (see Figure 2-2).

By definition of a recurrent class and because there is only one such class, for each

state 𝑠 in the derived Markov chain, the recurrent state 𝑠𝐶 is always reachable from

𝑠. By Lemma 2.4.2, with probability at least 1 − 1/𝐷𝑐′ , the agent visits 𝑠𝐶 within

𝑅0 rounds. This implies that in the original Markov chain, with probability at least

1 − 1/𝐷𝑐′ , the agent visits some recurrent state 𝑠 ∈ 𝐶(𝑅0), such that 𝐶(𝑅0) ̸= ⊥,

within 𝑅0 rounds.

In Corollary 2.4.3, we showed that, with high probability, within 𝑅0 rounds the

agent is located in some recurrent class 𝐶(𝑅0) ̸= ⊥. Since the agent does not leave

that class in subsequent rounds, we will refer to it by 𝐶 (a random variable). Finally,
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Figure 2-2: On the left: simple example of Markov chain with start state 𝐴. The
recurrent classes are {𝐺} and {𝐶,𝐷,𝐸, 𝐹}. On the right: all recurrent states merged
into a single state 𝑠𝐶 .

we show that, with high probability, either recurrent class 𝐶 does not contain any

states labeled 𝑜𝑟𝑖𝑔𝑖𝑛, or the agent keeps returning to the origin often.

Corollary 2.4.4. With probability at least 1 − 1/𝐷𝑐′−3, at least one of the following

is true: (1) for all rounds 𝑟, where 𝑅0 ≤ 𝑟 ≤ ∆ + 𝑅0, the agent visits a state labeled

origin at least once between rounds 𝑟 and 𝑟 + 𝑅0, or (2) none of the states in 𝐶 are

labeled 𝑜𝑟𝑖𝑔𝑖𝑛.

Proof. Consider any fixed execution prefix of length 𝑅0 rounds and condition on the

event that the agent is in some state 𝑠 in recurrent class 𝐶 at the end of the prefix.

If 𝐶 contains no states labeled 𝑜𝑟𝑖𝑔𝑖𝑛, then (2) holds.

Otherwise, each state 𝑠′ ∈ 𝐶 labeled 𝑜𝑟𝑖𝑔𝑖𝑛 is reachable from state 𝑠 in each round

𝑟 ≥ 𝑅0. By Lemma 2.4.2, with probability at least 1− 1/𝐷𝑐′ , the agent visits state 𝑠′

within 𝑅0 rounds. Since the agent does not leave 𝐶, we can repeat this argument for

each group of 𝑅0 rounds in the execution. In an execution of length 𝑅0 + ∆ rounds,

there are 𝑜(𝐷2) groups of 𝑅0 rounds. By a union bound, with probability at least

1− 1/𝐷𝑐′−2, for all rounds 𝑟, where 𝑅0 ≤ 𝑟 ≤ ∆ +𝑅0, the agent visits a state labeled

origin at least once between rounds 𝑟 and 𝑟 + 𝑅0.

By the law of total probability, since all execution prefixes of 𝑅0 rounds are dis-
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joint, the conclusion above holds for all executions. Combining this result and Corol-

lary 2.4.3 by a union bound shows that, with probability at least 1−1/𝐷𝑐′−3, at least

one of the two statements of the corollary holds.

Until we resume the proof of Theorem 2.4.1, we consider executions after round

𝑅0 and condition on the event that the agent is in some recurrent class 𝐶 which does

not contain any states labeled 𝑜𝑟𝑖𝑔𝑖𝑛. In the proof of Theorem 2.4.1 at the end of

this section, we refer to Corollary 2.4.4 in order to incorporate the probability of this

event into the final probability bound. For convenience, we refer to the remaining ∆

rounds of the execution as round numbers 1 to ∆. This numbering is used throughout

Sections 2.4.2 and 2.4.2; at the end of Section 2.4, when we resume the proof of

Theorem 2.4.1, we incorporate the initial rounds to conclude the final result about

the entire execution.

Moves drawn from the stationary distribution

Fix an arbitrary recurrent class 𝐶 of the Markov chain. Let 𝑡 denote the period of

the Markov chain (an aperiodic chain has period 𝑡 = 1). We apply Theorem A.2.1

in the Appendix to 𝐶 and denote by 𝐺1, · · · , 𝐺𝑡 the equivalence classes based on the

period 𝑡 whose existence is guaranteed by the theorem.

Consider blocks of rounds of size 𝛽 = 2𝑑|𝑆|2𝑝−2|𝑆|
2

0 ln𝐷 = 𝐷𝑜(1). We assume that

𝛽 is a multiple of 𝑡. Otherwise, we can use 𝑡⌈𝛽/𝑡⌉ = 𝒪(𝛽) assuming 𝑡 ∈ 𝒪(𝛽); this is

true because 𝑡 ≤ |𝑆| and 𝑝
−2|𝑆|2
0 ln𝐷 ≥ 1 because of the restriction on 𝜒. We define

groups of rounds such that each group contains one round from each block. Formally,

for 1 ≤ 𝑖 ≤ 𝛽 and 𝑗 ∈ N0, group 𝐵𝑖 contains round numbers 𝑖 + 𝑗𝛽 ≤ ∆. Observe

that, based on this definition, immediately after each round from a given group, the

agent is in some state from the same class 𝐺 ⊆ 𝐶 that is recurrent and closed under

𝑃 𝑡, where 𝑃 is the probability matrix of the original Markov chain. By [52][Chapter

XV.7], there is a unique stationary distribution 𝜋 of the Markov chain on 𝐺 induced

by 𝑃 𝑡 (see Figure 2-3 for an illustration of 𝑃 𝑡 and the equivalence classes 𝐺1, · · · , 𝐺𝑡).

The following lemma bounds the value of 𝜋(𝑠′) for each state 𝑠′ ∈ 𝐺 in the Markov
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chain on 𝐺 induced by 𝑃 𝑡.
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Figure 2-3: On the left: a recurrent class, with transition matrix 𝑃 and period 2, of
the Markov chain from Figure 2-2. On the right: Markov chain induced by 𝑃 2. The
equivalence classes here are {𝐶,𝐹} and {𝐷,𝐸}.

Lemma 2.4.5. Assume |𝐺| > 1. Then, for each 𝑠′ ∈ 𝐺, and each constant 𝑐′′ ≥

2−𝑓1(𝐷):

1

𝐷𝑐′′
≤ 𝜋(𝑠′) ≤ 1 − 1

𝐷𝑐′′

Proof. Since any state 𝑠′ ∈ 𝐺 ⊆ 𝐶 is reachable from any state 𝑠′′ ∈ 𝐺 ⊆ 𝐶 by a

sequence of at most |𝐶| − 1 < |𝑆| state transitions, then it follows that, for each

𝑠′ ∈ 𝐺:

𝜋(𝑠′) =
∑︁
𝑠′′∈𝐺

𝑃 𝑡(𝑠′′, 𝑠′)𝜋(𝑠′′) ≥ 𝑝
|𝑆|
0

∑︁
𝑠′′∈𝐺

𝜋(𝑠′′) = 𝑝
|𝑆|
0

Since |𝐺| > 1, this implies that 𝜋(𝑠′) ≤ 1 − 𝑝
|𝑆|
0 for each 𝑠′ ∈ 𝐺.

Finally, we use the assumption 𝑏 + log ℓ ≤ log log𝐷 − 𝑓1(𝐷) in order to bound

𝑝
|𝑆|
0 :

𝑝
|𝑆|
0 ≥

(︂
1

2ℓ

)︂2𝑏

≥ 2−ℓ2
𝑏 ≥ 2−2

log ℓ+𝑏 ≥ 2−2
log log𝐷−𝑓1(𝐷)

= 𝐷−2
−𝑓1(𝐷) ≥ 1

𝐷𝑐′′
.

We say that two discrete probability distributions 𝜋1 and 𝜋2, with the same do-
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main, are 𝐷-approximately equivalent iff ‖𝜋1 − 𝜋2‖ ≤ 1/𝐷𝑑 where ‖ · ‖ denotes the

∞-norm on the given space.

Let 𝜋𝑠 denote the probability distribution on 𝐺 of the possible states of the agent

immediately after round 𝑟 + 𝛽, conditioned on the agent being in state 𝑠 ∈ 𝐺 imme-

diately after 𝑟 rounds.

Next, we show that the distribution 𝜋𝑠 and the stationary distribution 𝜋 of the

Markov chain are 𝐷-approximately equivalent. We obtain the following corollary of

Lemma 2 from [101] (also stated as Lemma A.2.2 in the Appendix) applied to the

Markov chain induced by the matrix 𝑃 𝑡 restricted to class 𝐺.

Corollary 2.4.6. For each state 𝑠 ∈ 𝐺, 𝜋𝑠 and 𝜋 are 𝐷-approximately equivalent.

Proof. We can apply Lemma A.2.2 in order to show that the stationary distribu-

tion 𝜋 and the actual distribution 𝜋𝑠 are very close to each other (𝐷-approximately

equivalent).

Since 𝛽 is a multiple of 𝑡, we can consider the probability matrix 𝑃 𝑡, which by

Theorem A.2.1 induces a Markov chain on 𝐺. Also, since the Markov chain induced

by 𝑃 𝑡𝑘0 is aperiodic and since 𝐶 is a recurrent class, we can apply Lemma A.2.3.

It essentially states that there exists an integer 𝑟 such that there is a walk of length

exactly 𝑟 between any pair of states in the Markov chain. Moreover, we are guaranteed

that 𝑟 ≤ 2|𝑆|2.

Next, we apply Lemma A.2.2 to this chain with the following parameters: 𝑘0 = 𝑟/𝑡,

𝑄(𝑠) = 1 (i.e., 𝑄(𝑠′) = 0 for all 𝑠′ ∈ 𝐺 ∖ {𝑠}), and 𝑘 = 𝛽/𝑡. We also need that

𝑃 𝑡𝑘0(𝑠′, 𝑠) ≥ 𝜖 for each 𝑠′ ∈ 𝐺 and a suitable 𝜖 > 0. We can choose 𝜖 = 𝑝
2|𝑆|2
0

guaranteeing that 𝑃 𝑡𝑘0(𝑠′, 𝑠) = 𝑃 𝑟(𝑠′, 𝑠) ≥ 𝑝𝑟0 ≥ 𝑝
2|𝑆|2
0 = 𝜖.

By Lemma A.2.2, it follows that:

‖𝜋𝑠 − 𝜋‖ ≤ (1 − 𝜖)⌊𝑘/𝑘0⌋ =
(︁

1 − 𝑝
2|𝑆|2
0

)︁𝑑𝑝−2|𝑆|2
0 ln𝐷

≤ 𝑒−𝑑 ln𝐷 =
1

𝐷𝑑
.

Therefore, distributions 𝜋𝑠 and 𝜋 are 𝐷-approximately equivalent.

Having established that the distribution of states in the Markov chain is very close
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to the stationary distribution of the Markov chain, in the next lemma, we quantify

this difference by introducing a new distribution 𝜋′ that denotes the “gap” between

the actual distribution and the stationary distribution of the Markov chain.

Lemma 2.4.7. Let 1 ≤ 𝑖 ≤ 𝛽 and 𝜏 = 𝑖 mod 𝑡 for some integer 𝜏 . Then, for each

state 𝑠 ∈ 𝐺 there exists a probability distribution 𝜋′𝑠 such that:

∀𝑟 ∈ 𝐵𝑖, 𝑟 ≤ ∆ − 𝛽 :
1

𝐷𝑐′+2
𝜋′𝑠 +

(︂
1 − 1

𝐷𝑐′+2

)︂
𝜋 = 𝜋𝑠

Proof. If 𝐺 = {𝑠}, then, trivially, 𝜋(𝑠) = 𝜋𝑠(𝑠) = 1 and we choose 𝜋′𝑠(𝑠) = 1. For the

rest of the proof, assume that |𝐺| > 1. We use the equation in the statement of the

lemma to define 𝜋′𝑠:

∀𝑠′ ∈ 𝐺 : 𝜋′𝑠(𝑠
′) = 𝐷𝑐′+2

(︂
𝜋𝑠(𝑠

′) −
(︂

1 − 1

𝐷𝑐′+2

)︂
𝜋(𝑠′)

)︂
.

We need to show that 𝜋′𝑠 is indeed a probability distribution; that is, we show that

the sum of 𝜋′𝑠(𝑠′) for all states 𝑠′ ∈ 𝐺 is one, and that for each 𝜋′𝑠(𝑠
′), it is true that

0 ≤ 𝜋′𝑠(𝑠
′) ≤ 1.

∑︁
𝑠′∈𝐺

𝜋′𝑠(𝑠
′) = 𝐷𝑐′+2

(︃∑︁
𝑠′∈𝐺

𝜋𝑠(𝑠
′) −

(︂
1 − 1

𝐷𝑐′+2

)︂∑︁
𝑠′∈𝐺

𝜋(𝑠′)

)︃
= 𝐷𝑐′+2 −𝐷𝑐′+2 + 1 = 1.

It remains to show that for each 𝑠′ ∈ 𝐺, it is true that 0 ≤ 𝜋′𝑠(𝑠
′) ≤ 1. For 𝑠′ ∈ 𝐺:

𝜋′𝑠(𝑠
′) = 𝐷𝑐′+2

(︂
𝜋𝑠(𝑠

′) −
(︂

1 − 1

𝐷𝑐′+2

)︂
𝜋(𝑠′)

)︂
≤ 𝐷𝑐′+2‖𝜋𝑠 − 𝜋‖ + 𝜋(𝑠′)

≤ 1

𝐷𝑑−𝑐′−2 + 1 − 1

𝐷𝑐′′
≤ 1.

Here we use the fact that, by Corollary 2.4.6, 𝜋𝑠 and 𝜋 are 𝐷-approximately

equivalent, the bound on 𝜋(𝑠′) from Lemma 2.4.5, and the assumptions 𝑑 > 2(𝑐′ + 1)
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and 𝑐′′ = 2−𝑓1(𝐷) < 1. Similarly,

𝜋′𝑠(𝑠
′) ≥ 𝜋(𝑠′)

𝐷𝑐′+2
−𝐷𝑐′+2‖𝜋𝑠 − 𝜋‖ ≥ 1

𝐷𝑐′′𝐷𝑐′+2
− 1

𝐷𝑑−𝑐′−2 ≥ 0,

where the last step follows since 𝑑 > 2(𝑐′ + 2) and 𝑐′′ = 2−𝑓1(𝐷) < 1.

We now show that within each class 𝐵𝑖, approximating the random walk of an

agent in the Markov chain by drawing its state after 𝑟 ∈ 𝐵𝑖 rounds independently

from the stationary distribution 𝜋 does not introduce a substantial error. Consider

the following modification to the original Markov chain.

Consider a modified Markov chain 𝑀 in which we add two auxiliary states 𝐴𝑠 and

𝐵𝑠 for each state 𝑠 of the original Markov chain, such that the transition from 𝑠 to

𝐴𝑠 is with probability 1 − 1/𝐷𝑐′ and the transition from 𝑠 to 𝐵𝑠 is with probability

1/𝐷𝑐′ . Additionally, all other outgoing transitions from state 𝑠 in the original Markov

chain are removed. From state 𝐴𝑠 we add transitions to other states according to 𝜋,

and from 𝐵𝑠 we add transitions to other states according to 𝜋′𝑠 (see Figure 2-4).

In the original Markov chain, for each round 𝑟 ∈ 𝐵𝑖, immediately after which the

agent is in state 𝑠, the state immediately after round 𝑟+𝛽 is determined based on the

distribution 𝜋𝑠. In the modified Markov chain 𝑀 , the state immediately after round

𝑟+𝛽 is determined by 𝜋 from state 𝐴𝑠, and by 𝜋′𝑠 from state 𝐵𝑠. By Lemma 2.4.7, it

is clear that the distribution of states visited in rounds 𝑟 ∈ 𝐵𝑖 in the original Markov

chain is the same as the distribution in the corresponding rounds of the modified

Markov chain.

Let ℰ𝑖 denote the event that for all rounds 𝑟 ∈ 𝐵𝑖 and 𝑟 ≤ ∆ in which the Markov

chain 𝑀 is in some state 𝑠, the next state reached from 𝑠 is state 𝐴𝑠 (so the state

immediately after round 𝑟 + 𝛽 is chosen from 𝜋).

Corollary 2.4.8. For each 𝑖, 1 ≤ 𝑖 ≤ 𝛽, 𝑃 [ℰ𝑖] ≥ 1 − 1/𝐷𝑐′.

Proof. Consider the coin flips in all rounds 𝑟 ∈ 𝐵𝑖 in which the Markov chain 𝑀 is

in some state 𝑠; these coin flips determine whether the next state is 𝐴𝑠 or 𝐵𝑠. By the

definition of the modified Markov chain 𝑀 , with probability at least 1 − 1/𝐷𝑐′ , the
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next state is 𝐴𝑠. By a union bound, the probability that the next state is 𝐴𝑠 for all

rounds 𝑟 ∈ 𝐵𝑖 (whose number is ∆/𝛽 where 𝛽 = 𝐷𝑜(1) < 𝐷2) is:

1 − ∆

𝐷𝑐′+2
≥ 1 − 1

𝐷𝑐′+2−2+𝑓2(𝐷)
≥ 1 − 1

𝐷𝑐′
,

where the last step follows since 𝑓2(𝐷) is positive. Therefore, 𝑃 [ℰ𝑖] ≥ 1 − 1/𝐷𝑐′ .

𝐷

𝐸

1
2

1
2

1
2

1
2

𝐷

𝐸

𝐴𝐷 𝐵𝐷

𝐴𝐸 𝐵𝐸

1 − 1
𝐷𝑐′

1
𝐷𝑐′

1 − 1
𝐷𝑐′

1
𝐷𝑐′

𝜋(𝐸)

𝜋(𝐷)

𝜋′𝐷(𝐸)

𝜋′𝐷(𝐷)

𝜋(𝐸)

𝜋(𝐷)

𝜋′𝐸(𝐸)

𝜋′𝐸(𝐷)

Figure 2-4: On the left: equivalence class {𝐸,𝐷} induced by 𝑃 2 from Figure 2-3. On
the right: derived Markov chain 𝑀 , ignoring the exact probabilities on the left.

In this section, we showed that the distribution that determines an agent’s be-

havior is very close to the stationary distribution of the recurrent class in which the

agent is located. In the next section, we will use this result to argue that if the agent

does not explore the grid well when behaving according to the stationary distribution,

then it does not explore the grid considerably better when behaving according to the

actual distribution of the algorithm.

Movement on the grid

Next, we focus on the implications of the results in the previous sections on the agents’

movement in the grid. In order to use Corollary 2.4.8, we will base the results of this

subsection on the behavior of the derived Markov chain 𝑀 . However, since we are

only reasoning about rounds from blocks 𝐵𝑖 for some 𝑖, as we already mentioned, by

Lemma 2.4.7, the distribution of states in the derived Markov chain 𝑀 is the same as
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in the original Markov chain. Therefore, the results about the movement of the agents

on the grid based on Markov chain 𝑀 also apply to the movement of the agents on

the grid in the original Markov chain.

Let indicator random variable 𝑋↑𝑟 have value 1 if the state of the agent after 𝑟

rounds is labeled 𝑢𝑝, and 0 otherwise. Note that these random variables depend only

on the state transitions the agent performs in the derived Markov chain 𝑀 . Also

let 𝑋↑≤𝑟 =
∑︀𝑟

𝑟′=1 𝑋
↑
𝑟′ denote the total number of steps 𝑢𝑝 in the grid up to round 𝑟.

Similarly, we can define random variables 𝑋→≤𝑟, 𝑋
↓
≤𝑟, and 𝑋←≤𝑟 to refer to the number

of steps 𝑟𝑖𝑔ℎ𝑡, 𝑑𝑜𝑤𝑛, and 𝑙𝑒𝑓𝑡 in the grid up to round 𝑟.

Recall that ℰ𝑖 denotes the event that for all rounds 𝑟 ∈ 𝐵𝑖, the state in Markov

chain 𝑀 immediately after round 𝑟+𝛽 is drawn from the stationary distribution. By

Corollary 2.4.8, ℰ𝑖 occurs with probability at least 1 − 1/𝐷𝑐′ .

First, we show that, with high probability, for all rounds 𝑟 ∈ 𝐵𝑖, the number

of moves 𝑢𝑝 of the agent in those rounds does not differ by more than 𝑜(𝐷/(|𝑆|𝛽))

from the expected number of such moves conditioning on event ℰ𝑖. Denote by 𝑝↑𝑖 the

probability for the agent to move up when its state is distributed according to 𝜋.

Lemma 2.4.9. For each 𝑖, where 1 ≤ 𝑖 ≤ 𝛽, and each round 𝑟 ≤ ∆, conditioning on

event ℰ𝑖, with probability at least 1 − 1/𝐷𝑐′−1, it is true that:⃒⃒⃒⃒
⃒⃒⃒⃒ ∑︁
𝛽+1≤𝑟′≤𝑟

𝑟′∈𝐵𝑖

𝑋↑𝑟′ − E

⎡⎢⎢⎣ ∑︁
𝛽+1≤𝑟′≤𝑟

𝑟′∈𝐵𝑖

𝑋↑𝑟′

⃒⃒⃒⃒
⃒ ℰ𝑖
⎤⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒ = 𝑜

(︂
𝐷

|𝑆|𝛽

)︂
.

Proof. Conditioned on ℰ𝑖, we know that the considered variables 𝑋↑𝑟′ from 𝐵𝑖 are

independently and identically distributed: The state after 𝑟′ rounds is drawn inde-

pendently from some stationary distribution 𝜋 that does not depend on 𝑟′, and the

probability for the agent to move up in the grid equals the probability that this state

is labeled 𝑢𝑝.
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By linearity of expectation,

𝜇𝑖 = E

⎡⎢⎢⎣ ∑︁
𝛽+1≤𝑟′≤𝑟

𝑟′∈𝐵𝑖

𝑋↑𝑟′

⃒⃒⃒⃒
⃒ ℰ𝑖
⎤⎥⎥⎦ =

∑︁
𝛽+1≤𝑟′≤𝑟

𝑟′∈𝐵𝑖

E
[︁
𝑋↑𝑟′

⃒⃒
ℰ𝑖
]︁

=
∑︁

𝛽+1≤𝑟′≤𝑟
𝑟′∈𝐵𝑖

𝑝↑𝑖 = 𝑝↑𝑖

⌊︂
𝑟

𝛽
− 1

⌋︂
.

Next, we would like to apply a Chernoff bound to the random variable with

expectation 𝜇𝑖. Technically, we need to consider two cases, depending on whether

𝜇𝑖 ≤ 3𝑐′ ln𝐷 or not. Instead, for simplicity, we will define a new random variable 𝑍↑𝑟

that captures both of these cases.

Let 𝑌 ↑𝑦 be a binary random variable such that for each 1 ≤ 𝑦 ≤ ⌈3𝑐′ ln𝐷 − 𝜇𝑖⌉:

𝑃 [𝑌 ↑𝑦 = 1] =
max{0, 3𝑐′ ln𝐷 − 𝜇𝑖}

⌈3𝑐′ ln𝐷 − 𝜇𝑖⌉
.

Also, note that for all 1 ≤ 𝑦 ≤ ⌈3𝑐′ ln𝐷 − 𝜇𝑖⌉ the 𝑌 ↑𝑦 variables are identical and

independent.

Let 𝑍↑𝑟 be a random variable such that:

𝑍↑𝑟 =
∑︁

𝛽+1≤𝑟′≤𝑟
𝑟′∈𝐵𝑖

𝑋↑𝑟′
⃒⃒⃒
ℰ𝑖 +

⌈3𝑐′ ln𝐷−𝜇𝑖⌉∑︁
𝑦=1

𝑌 ↑𝑦 .

By linearity of expectation:

𝐸[𝑍↑𝑟 ] = 𝜇𝑖 + ⌈3𝑐′ ln𝐷 − 𝜇𝑖⌉ ·
max{0, 3𝑐′ ln𝐷 − 𝜇𝑖}

⌈3𝑐′ ln𝐷 − 𝜇𝑖⌉
= max{𝜇𝑖, 3𝑐

′ ln𝐷}.

Now, we can see that by defining the random variables 𝑌 ↑𝑦 in the specific way we

did, the random variable 𝑍↑𝑟 has the expectation that we need: the maximum of the

expectation we care about (𝜇𝑖) and the threshold value 3𝑐′ ln𝐷.

By a Chernoff bound (Theorem A.1.5) with 𝛿 =
√︁

3𝑐′ ln𝐷/𝐸[𝑍↑𝑟 ], it follows that:

𝑃
[︀⃒⃒
𝑍↑𝑟 − 𝐸[𝑍↑𝑟 ]

⃒⃒
> 𝛿𝐸[𝑍↑𝑟 ]

]︀
≤ 2𝑒−𝛿

2𝜇𝑖/3 =
2

𝐷𝑐′
≤ 1

𝐷𝑐′−1 .
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If 𝐸[𝑍↑𝑟 ] = 𝜇𝑖, using the fact that 𝑟 ≤ ∆ = 𝑜(𝐷2/(𝛽|𝑆|2 log𝐷)), we get:

𝛿𝐸[𝑍↑𝑟 ] =
√︀

3𝑐′ ln𝐷𝜇𝑖 = 𝒪

⎛⎝√︃𝑝↑𝑖 ∆ log𝐷

𝛽

⎞⎠ = 𝑜

(︂
𝐷

|𝑆|𝛽

)︂
.

Otherwise, if 𝐸[𝑍↑𝑟 ] = 3𝑐′ ln𝐷, then 𝛿𝐸[𝑍↑𝑟 ] = 3𝑐′ ln𝐷 = 𝑜(𝐷/(|𝑆|𝛽)). Since we

are considering the number of moves 𝑢𝑝 in the grid, we know that:

𝑃

⎡⎢⎢⎣ ∑︁
𝛽+1≤𝑟′≤𝑟

𝑟′∈𝐵𝑖

𝑋↑𝑟′ ≥ 0

⃒⃒⃒⃒
⃒ ℰ𝑖
⎤⎥⎥⎦ = 1.

Therefore, in either case, we conclude that, with probability at least 1 − 1/𝐷𝑐′−1:⃒⃒⃒⃒
⃒⃒⃒⃒ ∑︁
𝛽+1≤𝑟′≤𝑟

𝑟′∈𝐵𝑖

𝑋↑𝑟′ − E

⎡⎢⎢⎣ ∑︁
𝛽+1≤𝑟′≤𝑟

𝑟′∈𝐵𝑖

𝑋↑𝑟′

⃒⃒⃒⃒
⃒ ℰ𝑖
⎤⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒ = 𝑜

(︂
𝐷

|𝑆|𝛽

)︂
.

Next, we show that, with high probability, for all rounds up to round 𝑟 (not just

the rounds 𝑟 ∈ 𝐵𝑖), the number of moves 𝑢𝑝 performed by the agent does not differ

by more than 𝑜(𝐷/|𝑆|) from some fraction of 𝑟.

Lemma 2.4.10. There exists 𝑝↑ ∈ [0, 1], such that for each round 𝑟 ≤ ∆, with

probability at least 1 − 1/𝐷𝑐′−2, it holds that
⃒⃒⃒
𝑋↑≤𝑟 − 𝑟𝑝↑

⃒⃒⃒
= 𝑜(𝐷/|𝑆|).

Proof. Recall that for each 𝑖, where 1 ≤ 𝑖 ≤ 𝛽, 𝐵𝑖 is the collection of step numbers

𝑖 + 𝑗𝛽 ≤ ∆ for 𝑗 ∈ N0. Therefore:

𝑟∑︁
𝑟′=𝛽+1

𝑋↑𝑟′ =

𝛽∑︁
𝑖=1

∑︁
𝛽+1≤𝑟′≤𝑟

𝑟′∈𝐵𝑖

𝑋↑𝑟′ .

By Lemma 2.4.9, we know that for each 𝑖, conditioned on ℰ𝑖, with probability at
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least 1 − 1/𝐷𝑐′−1 it holds that:⃒⃒⃒⃒
⃒⃒⃒⃒ ∑︁
𝛽+1≤𝑟′≤𝑟

𝑟′∈𝐵𝑖

𝑋↑𝑟′ − E

⎡⎢⎢⎣ ∑︁
𝛽+1≤𝑟′≤𝑟

𝑟′∈𝐵𝑖

𝑋↑𝑟′

⃒⃒⃒⃒
⃒ ℰ𝑖
⎤⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒ = 𝑜

(︂
𝐷

|𝑆|𝛽

)︂

To complete our line of reasoning, we need to incorporate the preceding 𝛽 rounds

as well. Note that the expected number of 𝑢𝑝 moves in 𝛽 rounds is at most 𝛽. Since

the modified Markov chains corresponding to each block of rounds 𝐵𝑖 are independent

from each other, it follows that:

E

[︃
𝑋↑≤𝑟

⃒⃒⃒ 𝛽⋀︁
𝑖=1

ℰ𝑖

]︃
≤

𝛽∑︁
𝑖=1

E

⎡⎢⎢⎣ ∑︁
𝛽+1≤𝑟′≤𝑟

𝑟′∈𝐵𝑖

𝑋↑𝑟′

⃒⃒⃒⃒
⃒ ℰ𝑖
⎤⎥⎥⎦+ 𝛽 = 𝑟

𝛽∑︁
𝑖=1

𝑝↑𝑖
𝛽

+ 𝛽

Setting 𝑝↑ =
∑︀𝛽

𝑖=1 𝑝
↑
𝑖 /𝛽, the above expectation is at most 𝑟𝑝↑ + 𝛽.

By a union bound,
⋀︀

𝑖 ℰ𝑖 occurs with probability at least 1 − 1/𝐷𝑐′−1 because

there are 𝛽 = 𝑜(𝐷) such events and each one of them holds with probability at least

1 − 1/𝐷𝑐′ , by Corollary 2.4.8. By another union bound, with probability at least

1 − 1/𝐷𝑐′−2, both
⋀︀

𝑖 ℰ𝑖 occurs and Lemma 2.4.9 holds for all 𝑖. By the definition of

𝛽, it follows that 𝛽 = 𝑜(𝐷/|𝑆|). Also, since, the expected number of moves 𝑢𝑝 in 𝛽

rounds is at most 𝛽, and the actual number of such moves differs by at most 𝛽 from

the expectation, it follows that:

⃒⃒⃒
𝑋↑≤𝑟 − 𝑟𝑝↑

⃒⃒⃒
=

⃒⃒⃒⃒
⃒𝑋↑≤𝑟 − E

[︃
𝑋↑≤𝑟

⃒⃒⃒ 𝛽⋀︁
𝑖=1

ℰ𝑖

]︃⃒⃒⃒⃒
⃒+

⃒⃒⃒⃒
⃒E
[︃
𝑋↑≤𝑟

⃒⃒⃒ 𝛽⋀︁
𝑖=1

ℰ𝑖

]︃
− 𝑟𝑝↑

⃒⃒⃒⃒
⃒

≤
𝛽∑︁

𝑖=1

𝑜

(︂
𝐷

|𝑆|𝛽

)︂
+ 𝛽 + 𝛽 = 𝑜

(︂
𝐷

|𝑆|

)︂
.

We can repeat these arguments for the other directions (right, down, and left).

Corollary 2.4.11. 1. There exists 𝑝→ ∈ [0, 1], such that for each round 𝑟 ≤ ∆,

with probability at least 1 − 1/𝐷𝑐′−2, it holds that
⃒⃒
𝑋→≤𝑟 − 𝑟𝑝→

⃒⃒
= 𝑜(𝐷/|𝑆|).
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2. There exists 𝑝↓ ∈ [0, 1], such that for each round 𝑟 ≤ ∆, with probability at least

1 − 1/𝐷𝑐′−2, it holds that
⃒⃒⃒
𝑋↓≤𝑟 − 𝑟𝑝↓

⃒⃒⃒
= 𝑜(𝐷/|𝑆|).

3. There exists 𝑝← ∈ [0, 1], such that for each round 𝑟 ≤ ∆, with probability at

least 1 − 1/𝐷𝑐′−2, it holds that
⃒⃒
𝑋←≤𝑟 − 𝑟𝑝←

⃒⃒
= 𝑜(𝐷/|𝑆|).

Define 𝑋≤𝑟 ∈ Z2 to be the random variable describing the sum of all moves

the agent performs in the grid up to round 𝑟, i.e., its position in the grid (in each

dimension) after 𝑟 rounds. For this random variable, we show that the position of the

agent after 𝑟 rounds does not differ by more than 𝑜(𝐷/|𝑆|) from some fraction of 𝑟.

Corollary 2.4.12. There exists 𝑝 ∈ [−1, 1]2, such that for each 𝑟 ≤ ∆, with proba-

bility at least 1 − 1/𝐷𝑐′−3, ‖𝑋≤𝑟 − 𝑟𝑝 ‖ = 𝑜(𝐷/|𝑆|).

Proof. Observe that 𝑋≤𝑟 = (𝑋↑≤𝑟 − 𝑋↓≤𝑟, 𝑋
→
≤𝑟 − 𝑋←≤𝑟). Hence, setting 𝑝 = (𝑝↑ −

𝑝↓, 𝑝→ − 𝑝←), by Lemma 2.4.10, Corollary 2.4.11 and a union bound, it follows that

‖𝑋≤𝑟 − 𝑟𝑝 ‖ = 𝑜(𝐷/|𝑆|) with probability at least 1 − 1/𝐷𝑐′−3.

We are now ready to resume the proof of Theorem 2.4.1.

Proof of Theorem 2.4.1. Let 𝒞 be the set of recurrent classes of the original Markov

chain of each agent. By Corollary 2.4.3, it holds for each agent that, with probability

at least 1 − 1/𝐷𝑐′−3, the agent is located in some recurrent class 𝐶(𝑎) ∈ 𝒞 within

𝑅0 rounds. By Corollary 2.4.4, with probability at least 1 − 1/𝐷𝑐′−3, either the

agent visits a state labeled origin every 𝑅0 rounds, or none of the states in 𝐶 are

labeled 𝑜𝑟𝑖𝑔𝑖𝑛. In the first case, then the agent does not visit a point in the grid at

distance more than 𝑅0 = 𝐷𝑜(1) from the origin. In the second case, we can apply

Corollary 2.4.12 to conclude that, with probability at least 1 − 1/𝐷𝑐′−3, the position

of the agent does not deviate by more than distance 𝑜(𝐷/|𝑆|) from a straight line

in the grid starting at the origin and ending at point ∆𝑝 (𝑝 depends only on 𝐶(𝑎)).

Therefore, by a union bound with the results from Corollary 2.4.3, it follows that

with probability at least 1 − 1/𝐷𝑐′−4, either an agent does not venture further away

from the origin than distance 𝑜(𝐷/|𝑆|), or its position does not deviate by more than

distance 𝑜(𝐷/|𝑆|) from one of at most |𝒞| straight lines or the origin. By a union
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bound, this holds for all agents jointly with probability at least 1−1/𝐷𝑐′−4−𝑐𝑛 = 1/𝐷𝑐

(recall that by assumption 𝑛 ≤ 𝑇 (𝐷) ≤ 𝐷𝑐𝑛).

Since for any straight line only a segment of length 𝒪(𝐷) is in distance 𝒪(𝐷)

from the origin, the union of all grid points that are (i) in distance at most 𝐷 from

the origin and (ii) in distance at most 𝑜(𝐷/|𝑆|) from one of the |𝒞| straight lines has

cardinality 𝒪(𝐷) · 𝑜(𝐷/|𝑆|) · |𝒞| ≤ 𝑜(𝐷2/|𝑆|) · |𝑆| = 𝑜(𝐷2). Hence, there is a set

𝐺 ⊂ Z2 of 𝑜(𝐷2) grid points that only depends on the algorithm 𝒜𝐷 such that, with

probability at least 1 − 1/𝐷𝑐, all grid points in distance 𝐷 from the origin that are

visited within the first 𝑅0 + ∆ steps of an execution of 𝒜𝐷 are in 𝐺. Since there are

Θ(𝐷2) grid points in distance 𝐷 from the origin, this implies that the target can be

placed in such a way that, with probability at least 1−1/𝐷𝑐, no agent will find it.

In the above proof, note that if the target is placed uniformly at random in the

square with side length 2𝐷 centered at the origin, then it is no longer true that no

algorithm finds it in the specified amount of time. In fact, any algorithm that explores

at least one grid point has a Ω(1/𝐷2) probability of finding a uniformly-placed target.

Thus, the correctness of Theorem 2.4.1 relies on the fact that the target is placed in

the grid adversarially.

2.4.3 Theorem for 𝑀moves and non-uniform algorithms

First, we show that Theorem 2.4.1 also holds with respect to the metric 𝑀moves. In the

following corollary, we show that either each move of an agent on the grid corresponds

to at most 𝐷𝑜(1) transitions in its Markov chain, or the agent does not move on the

grid after some point on. Therefore, since Theorem 2.4.1 guarantees that, with high

probability, no agent finds the target in 𝐷2−𝑜(1) steps, then it must be true that, with

high probability, no agent finds the target in 𝐷2−𝑜(1) moves.

Fix a constant 𝑐 > 0 and let 𝑓3 : Z+ → [1,∞) be an arbitrary function such that

𝑓3(𝐷) = 𝑜(1) and 𝑓3(𝐷) ≤ 𝑓2 − 2−𝑓1(𝐷) + 3 log log𝐷/ log𝐷 for any 𝐷. Recall that 𝑇

is an arbitrary polynomial such that 𝑇 (𝐷) ≤ 𝐷𝑐𝑛 for any 𝐷.
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Corollary 2.4.13. For each 𝐷 ∈ N, 𝐷 > 1 and each 𝑛 ∈ N, 𝑛 ≤ 𝑇 (𝐷), assume

algorithm 𝒜𝐷 with 𝑛 agents satisfies 𝜒(𝒜𝐷) = 𝑏 + log ℓ ≤ log log𝐷 − 𝑓1(𝐷). Then,

there exists a placement (𝑥, 𝑦), |𝑥|, |𝑦| ≤ 𝐷 of the target, such that, with probability

at least 1− 1/𝐷𝑐, algorithm 𝒜𝐷 satisfies 𝑀moves > 𝐷2−𝑓3(𝐷) for this placement (𝑥, 𝑦).

Proof. The setup for this proof is the same as in Theorem 2.4.1, so we use the same

constants and other values defined in Section 2.4.2. Also, the results from Section

2.4.2 hold with respect to these constants and values, so we can reuse them here.

Consider any fixed execution prefix of length 𝑅0 rounds in which an agent is in

some state 𝑠 in some recurrent class 𝐶. By Corollary 2.4.3, this is true with probability

at least 1 − 1/𝐷𝑐′ . If 𝐶 contains only states labeled 𝑛𝑜𝑛𝑒, then the agent does not

make any progress in the grid after it reaches its recurrent class, so it does not visit

more than 𝑅0 grid points.

Otherwise, if 𝐶 contains a state 𝑠′, labeled 𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡, or 𝑟𝑖𝑔ℎ𝑡, we show that

it is reachable from state 𝑠 after 𝑟 rounds such that 𝑅0 ≤ 𝑟 ≤ 2𝑅0. By Lemma 2.4.2,

with probability at least 1 − 1/𝐷𝑐′ , the agent visits state 𝑠′ within 𝑅0 rounds. In an

execution of length 𝑅0 + ∆, there are 𝑜(𝐷2) groups of 𝑅0 rounds. By a union bound,

with probability at least 1−1/𝐷𝑐′−2, the agent visits a state labeled 𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡, or

𝑟𝑖𝑔ℎ𝑡 at least ∆/𝑅0 times. By the law of total probability, since all execution prefixes

of length 𝑅0 are disjoint, this conclusion holds for all executions. By a union bound,

this result and Corollary 2.4.3 hold jointly with probability at least 1 − 1/𝐷𝑐′−3.

By Theorem 2.4.1, there is a placement of the target such that, with probability

at least 1 − 1/𝐷𝑐′−4, no agent finds it within 𝐷2−𝑓2(𝐷) steps. With probability at

least 1 − 1/𝐷𝑐′−3, 𝑅0 steps correspond to at least one move. By a union bound,

with probability at least 1 − 1/𝐷𝑐′−4, ∆ = 𝐷2−𝑓2(𝐷) steps correspond to at least

∆/𝑅0 = 𝐷2−𝑓2(𝐷)/𝑅0 ≥ 𝐷2−𝑓3(𝐷) moves. Therefore, no agent finds the target in

𝐷2−𝑓3(𝐷) moves with probability at least 1 − 1/𝐷𝑐′−5 ≥ 1 − 1/𝐷𝑐.

2.4.4 Theorem for 𝑀moves and uniform algorithms

Finally, we extend Corollary 2.4.13 to also hold for uniform algorithms.
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Corollary 2.4.14. For any 𝐷 ∈ N, 𝐷 > 1, any 𝑛 ∈ N, 𝑛 ≤ 𝑇 (𝐷), and any uniform

algorithm 𝒜 with 𝑛 agents, assume that 𝜒(𝒜) = 𝑏 + log ℓ ≤ log log𝐷− 𝑓1(𝐷). Then,

there exists a placement (𝑥, 𝑦), |𝑥|, |𝑦| ≤ 𝐷 of the target, such that, for any constant

𝑐 > 1, with probability at least 1 − 1/𝐷𝑐, algorithm 𝒜 satisfies 𝑀moves > 𝐷2−𝑓3(𝐷) for

this placement (𝑥, 𝑦).

Proof. Note that the proofs of Theorem 2.4.1 and Corollary 2.4.13 are with respect

to the Markov chain induced by the non-uniform algorithm. This Markov chain

may have information about 𝐷 encoded in it but throughout the proofs, the only

way the value of 𝐷 is used is through the constraint on the selection metric 𝜒 =

𝑏 + log ℓ ≤ log log𝐷 − 𝑓1(𝐷). Therefore, even if we consider a uniform algorithm,

instead of a non-uniform algorithm, the results and the proofs still hold because the

same restriction on 𝜒 applies to the uniform algorithm.

Finally, note that following similar reasoning, we can show that the lower bound

holds for algorithms uniform and non-uniform in 𝑛 because the only restriction we

use is on 𝜒 which is not related to 𝑛.

2.5 Discussion

One contribution of our work on foraging is considering a new compound metric, 𝜒,

which captures the nature of the search problem more comprehensively compared

to the standard metrics of time and space complexity. The 𝜒 metric does include

components of the space metric (the number of bits each agent is allowed to use),

however, it combines this standard metric with a measure of the range of probability

values an algorithm is allowed to use. As mentioned in Chapter 1, these two metrics

are related to each other in that more bits allow us to implement coins with more bias,

and also sufficiently biased coins can give algorithms similar power as large memory.

Instead of considering the memory and probability metrics separately, and potentially

analyzing a fixed trade-off between them, we combine them in a single metric in

order to cover the entire range of trade-offs between the memory and probability
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range components. The goal is for our results to hold regardless of how an algorithm

chooses to trade off the two components of the 𝜒 metric.

The main contribution of our results is establishing 𝜒 ≈ log log𝐷 as the threshold

for an algorithm to search the plane efficiently. In particular, we consider efficiency

in terms of the speed-up as the number of searchers 𝑛 increases. As mentioned in

Chapter 1, simple random walks are not very efficient in terms of exploring the plane

in parallel; in particular, 𝑛 random walks speed up the search process of a single

random walk only by a factor of log 𝑛, where the optimal and desired speed-up is

linear in 𝑛. For comparison, our lower bound indicates that any algorithm with a 𝜒

value less than the log log𝐷 − 𝜔(1) threshold cannot search the plane significantly

faster than 𝑛 random walks. On the other hand, our algorithms indicate that a 𝜒

value of 𝒪(log log𝐷) is sufficient to get the optimal speed-up of Ω(𝑛) and also achieve

the optimal running time of Θ(𝐷2/𝑛 + 𝐷) for searching the plane.

2.6 Open Problems

Various aspects of the algorithms presented in the previous sections can be improved.

For example, as mentioned earlier, we can make the algorithms also uniform in 𝑛 by

following the strategy in [51]; this modification will result in a 𝑂(log 𝑛) factor overhead

in the running time. Furthermore, since our algorithms do not rely on communication

or carefully synchronized rounds, it seems natural to analyze the fault tolerance prop-

erties the algorithms satisfy. We believe the correctness of the algorithms will not

be affected by faults, as long as the faults are not adversarially targeted at a specific

area of the grid; for example, if each agent that gets within distance of one hop to

the target is crashed, then clearly our algorithms (or any other algorithms) cannot

guarantee anything. Finally, it would also be interesting to consider various forms of

communication between the agents and analyze the properties of the resulting algo-

rithms. A recent attempt at understanding such behavior is [84], where the agents

use only a loneliness detection capability in order to explore the grid with constant

memory and constant probabilities.
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Another potential extension of our work includes using the techniques from our

lower bound to prove lower bounds with similar restrictions in other graphs. For ex-

ample, consider multiple non-communicating agents with limited memory and prob-

abilities trying to explore a tree or some other data structure with some regularity

properties. Such a result may be useful in designing systems where a data structure

needs to be explored by multiple threads without the need (or capability) to support

inter-thread communication.

Foraging in general is a very rich problem that can be studied in various settings

and with a range of different assumptions. For example, besides from the exploration

phase in which ants search for a target, it is interesting to also consider the exploita-

tion phase of foraging in which ants bring items back to the nest. One direction is to

explore different pheromone structures (like trees rooted at the nest leading to various

food sources) that ants use in order to retrieve food. Pheromones represent a com-

munication capability that is also interesting to study from the point of view of the

power it gives algorithms and also the cost associated with using it (the production

and dispersion of pheromones).

Finally, a natural extension to the general foraging problem is to consider multiple

targets and potentially targets that appear and disappear dynamically throughout the

execution. Some assumptions include choosing a distribution according to which the

targets appear and disappear, spatially and temporally, or considering an adversary

who determines when and where this happens. Also, this extension of the problem

may require different metrics to analyze the efficiency of algorithms, for example, the

rate at which food is brought back to the nest in terms of the rate at which it appears

and disappears.
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Chapter 3

House Hunting

In this chapter, we study the house hunting problem, in which an ant colony needs

to reach consensus on a new nest for the colony to move to. The main results of the

chapter are a mathematical model of the house-hunting process, a lower bound on

the number of rounds required by any algorithm solving the house-hunting problem

in the given model, and two house-hunting algorithms.

The model (Section 3.1) is based on a synchronous model of execution with 𝑛

probabilistic ants and communication limited to one ant leading a randomly chosen

ant (tandem run or transport) to a candidate nest. Ants can also search for new nests

by choosing randomly among all 𝑘 candidate nests.

The lower bound (Section 3.2) states that, under this model, no algorithm can

solve the house-hunting problem in time sub-logarithmic in the number of ants. The

main proof idea is that, in any step of an algorithm’s execution, with constant proba-

bility, an ant that does not know of the location of the eventually-chosen nest remains

uninformed. Therefore, with high probability, Ω(log 𝑛) rounds are required to inform

all 𝑛 ants. This technique closely resembles lower bounds for rumor spreading in a

complete graph, where the rumor is the location of the chosen nest [73].

The first algorithm (Section 3.3) solves the house-hunting problem in asymptoti-

cally optimal time. The main idea is a typical example of positive feedback: each ant

leads tandem runs to some suitable nest as long as the population of ants at that nest

keeps increasing; once the ants at a candidate nest notice a decrease in the popula-
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tion, they give up and wait to be recruited to another nest. With high probability,

within 𝒪(log 𝑛) rounds, this process converges to all 𝑛 ants committing to a single

winning nest. Unfortunately, this algorithm relies heavily on a synchronous execution

and on the ability to precisely count nest populations, suggesting that the algorithm

is susceptible to perturbations of our model and most likely does not match real ant

behavior.

The goal of the second algorithm (Section 3.4) is to be more natural and resilient

to perturbations of the environmental parameters and ant capabilities. The algorithm

uses a simple positive-feedback mechanism: in each round, an ant that has located

a candidate nest recruits other ants to the nest with probability proportional to its

current population. We show that, with high probability, this process converges to

all 𝑛 ants being committed to one of the 𝑘 candidate nests within 𝒪(𝑘3 log1.5 𝑛)

rounds. While the algorithm’s complexity analysis does not match the lower bound,

the algorithm exhibits a much more natural process of converging to a single nest. In

Section 3.5, we discuss in more detail how to combine this algorithm with a subroutine

that provides ants with an estimate of the population of a candidate nest. We show

that the algorithm remains correct under such uncertainty on the environment. Such

robustness criteria are necessary in nature and generally desirable for distributed

algorithms.

3.1 Model

Here we present a simple model of Temnothorax ants behavior that is tractable to

rigorous analysis, yet rich enough to provide a starting point for understanding real

ant behavior.

The environment consists of a home nest, denoted 𝑛0, along with 𝑘 candidate new

nests, identified as 𝑛𝑖 for 𝑖 ∈ {1, · · · , 𝑘}. Each nest 𝑛𝑖 is assigned a quality 𝑞(𝑖) ∈ 𝑄,

from some set 𝑄. Throughout this chapter we let 𝑄 = {0, 1}, with quality 0 indicating

an unsuitable nest, and 1 a suitable one. Additionally, we assume that there is always

at least one nest with 𝑞(𝑖) = 1.
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The colony consists of 𝑛 identical probabilistic finite state machines, representing

the ants. We assume 𝑛 is somewhat larger than 𝑘 (𝑘 = 𝒪(𝑛/ log 𝑛)). Also, we assume

that the ants do not know the value of 𝑘 but they know the value of 𝑛. This last

assumption is based on evidence that real Temnothorax ants and other species are

able to estimate the size of the colony [30, 39].

The general behavior of the state machines is unrestricted but their interactions

with the environment and with other ants are limited to the high-level functions

search(), go(), and recruit(), defined below.

We assume a synchronous model of execution, starting at time 0 when all the

ants are located at the home nest. Each round 𝑟 ≥ 1 denotes the transition from

time 𝑟 − 1 to time 𝑟. At each time 𝑟, each ant 𝑎 is located at a nest, denoted by

ℓ(𝑎, 𝑟) ∈ {0, 1, · · · , 𝑘}. We assume that for each ant 𝑎, ℓ(𝑎, 0) = 0. For 𝑟 ≥ 1, the

value of ℓ(𝑎, 𝑟) is set by the calls to search(), go(), or recruit() made by the ant in

round 𝑟 according to the rules below. Also, we assume that an ant 𝑎 with ℓ(𝑎, 𝑟) = 𝑖

and 𝑖 ≥ 1 (that is, an ant located at candidate nest 𝑛𝑖) has access to the value of 𝑞(𝑖).

Let 𝑐(𝑖, 𝑟) = |{𝑎 | ℓ(𝑎, 𝑟) = 𝑖}| denote the number of ants located in nest 𝑛𝑖 at

time 𝑟.

In each round 𝑟, each ant 𝑎 performs a call to exactly one of the following functions:

∙ search(): Returns a pair (𝑗, 𝑐𝑗), where 𝑗 ∈ {1, · · · , 𝑘} is a nest index, and 𝑐𝑗

is a positive integer. Sets ℓ(𝑎, 𝑟) := 𝑗. Index 𝑗 is chosen uniformly at random

from {1, · · · , 𝑘}. This function represents ant 𝑎 searching for a nest and returns

the nest index of a randomly chosen nest and the number of ants at that nest.

∙ go(i): Takes as input the index 𝑖 ∈ {0, · · · , 𝑘} of a nest, and returns a pair

(𝑗, 𝑐𝑗), where 𝑗 ∈ {0, · · · , 𝑘} is a nest index and 𝑐𝑗 is a positive integer. Sets

ℓ(𝑎, 𝑟) := 𝑗. Index 𝑖 is such that there exists a time 𝑟′ ≤ 𝑟 in which ℓ(𝑎, 𝑟′) = 𝑖.

Also, we require that 𝑗 = 𝑖. The function represents ant 𝑎 revisiting a candidate

nest 𝑛𝑖 and returns the number of ants at nest 𝑛𝑖 at time 𝑟 (as well as index 𝑖).

∙ recruit(b, i): Takes as input a boolean 𝑏 ∈ {0, 1} and a nest index 𝑖 ∈

{1, · · · , 𝑘}, and returns a pair (𝑗, 𝑐𝑗), where 𝑗 ∈ {1, · · · , 𝑘} is a nest index,
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and 𝑐𝑗 is a positive integer1. Sets ℓ(𝑎, 𝑟) := 𝑗. The nest index 𝑖 is such that

there exists a time 𝑟′ ≤ 𝑟 in which ℓ(𝑎, 𝑟′) = 𝑖.

The recruitment strategy is defined in Algorithm 5.

In the recruitment strategy, the goal is for each actively recruiting ant to choose a

random ant to recruit. Ants do so by first forming a random permutation 𝑃 . Then,

in the order of the permutation, each recruiting ant (with input 𝑏 = 1) chooses a

uniformly random ant to recruit. The recruitment is successful if the chosen ant has

not already recruited an ant itself and has not been recruited by another ant. In

Algorithm 5, we use the set 𝑅 of all ants that call recruit(·, ·), the set 𝑆 ⊆ 𝑅 of

ants that call recruit(1, ·) and the random permutation 𝑃 of all ants in 𝑅. Then,

using the simple sequential rule described above, we add ants to the set 𝑀 of all

successful recruitment pairs, and to the set 𝑁 of all ants that participate in successful

recruitment pairs. Finally, we assign the return value 𝑗 to each ant as follows: the

first ant 𝑎′ in each pair in 𝑀 and any ant not present in 𝑁 receive the same output

𝑗 as their input 𝑖; the second ant 𝑎 in any pair (𝑎′, 𝑎) ∈ 𝑀 receives as output 𝑗 the

nest index 𝑖 from the input to recruit(·, i) by ant 𝑎′.

The permutation 𝑃 simply serves as tie-breaker to avoid conflicts between re-

cruitments. It is important to note that this process is not a distributed algorithm

executed by the ants, but just a modeling tool to formalize the idea of ants recruit-

ing other ants randomly without introducing any inconsistencies between the ordered

pairs of recruiting and recruited ants. Algorithm 5 can be thought of as a centralized

process run by the environment that places ants temporarily (for the duration of the

round) in the home nest and pairs them appropriately. We believe our results also

hold under other natural models for randomly pairing ants. For example, another

way to pair ants is to let each recruiting ant choose a uniformly random ant and

consider the recruitment successful only if the chosen ant is not recruiting as well.

This rule results in fewer recruitment pairs compared to Algorithm 5 because it does

not allow for a recruiting ant to choose another recruiting ant. The algorithms in this

1Note that an ant is not allowed to recruit to the home nest (corresponding to input 𝑖 = 0).
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chapter can easily be adapted to work with this alternative recruitment rule without

affecting their asymptotic running time.

Algorithm 5: Generate return values 𝑗 for all ants that call recruit(·, ·).
𝑅: the set of ants that call 𝑟𝑒𝑐𝑟𝑢𝑖𝑡(·, ·)
𝑃 : a uniform random permutation of all ants in 𝑅 (𝑃 : N → 𝑅)
𝑃 (𝑥): 𝑥’th ant in 𝑃 , for 𝑥 ∈ {1, · · · , |𝑃 |}
𝑆: the set of ants 𝑆 ⊆ 𝑅 that call 𝑟𝑒𝑐𝑟𝑢𝑖𝑡(1, ·)
𝑀 : a set of ordered pairs of ants, initially ∅
𝑁 : a set of ants, initially ∅
for 𝑥 = 1 to |𝑃 | do

if 𝑃 (𝑥) ∈ 𝑆 ∖𝑁 then
𝑦 := uniform random integer in {1, · · · , |𝑃 |}
if 𝑃 (𝑦) ̸∈ 𝑁 then

𝑀 := 𝑀 ∪ (𝑃 (𝑥), 𝑃 (𝑦))
𝑁 := 𝑁 ∪ {𝑃 (𝑥), 𝑃 (𝑦)}

for 𝑥 = 1 to |𝑃 | do
if ∃𝑦, (𝑃 (𝑦), 𝑃 (𝑥)) ∈ 𝑀 then

return 𝑗 to ant 𝑃 (𝑥) where 𝑗 is input to 𝑟𝑒𝑐𝑟𝑢𝑖𝑡(·, 𝑗) called by 𝑃 (𝑦)
else return 𝑗 to ant 𝑃 (𝑥) where 𝑗 is input to 𝑟𝑒𝑐𝑟𝑢𝑖𝑡(·, 𝑗) called by 𝑃 (𝑥)

Finally, we need to specify the 𝑐𝑗 components of the return pairs for the functions

above. Note that each function returns a pair (𝑗, 𝑐𝑗) with various restrictions on the

nest index 𝑗, determined by each function separately. Once the ℓ(𝑎, 𝑟) values have

been set for each ant 𝑎 in round 𝑟, for each return pair (𝑗, 𝑐𝑗), we let 𝑐𝑗 = 𝑐(𝑗, 𝑟).

An ant recruits successfully if it is the recruiting ant (first element) in one of the

pairs in 𝑀 .

Our model for recruitment encompasses both the tandem runs and direct transport

behavior observed in Temnothorax ants. Since direct transport is only about three

times faster than tandem walking [93], and since we focus on asymptotic behavior,

we do not model these two types of actions separately.

Next, we prove a general statement about the recruitment process that will be

used in the proofs of our lower bound and algorithms.

Lemma 3.1.1. Let 𝑎 be an arbitrary ant that executes 𝑟𝑒𝑐𝑟𝑢𝑖𝑡(1, ·) in some round 𝑟.

Then, with probability at least 1/16, for some ant 𝑎′, (𝑎, 𝑎′) ∈ 𝑀 .
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Proof. Let 𝑅 denote the set of ants that call 𝑟𝑒𝑐𝑟𝑢𝑖𝑡(·, ·) in round 𝑟, and let 𝑃 be the

random permutation of ants in 𝑅. The probability distribution we consider is over

the permutation 𝑃 and the random choices of the ants in round 𝑟. Fix an arbitrary

ant 𝑎 that calls recruit(1, ·) in round 𝑟, and an arbitrary constant 𝑐 > 1.

Let 𝐸 denote the event that for some ant 𝑎′, (𝑎, 𝑎′) ∈ 𝑀 ; that is, ant 𝑎 successfully

recruits some ant in round 𝑟.

First, note that if |𝑅| < 2, then ant 𝑎 is forced to recruit itself, so Pr [𝐸] = 1. For

the rest of the proof we assume |𝑅| ≥ 2.

Let 𝐸 ′ denote the event that ant 𝑎 is located in the first half of 𝑃 and 𝑎′ is located

in the second half of 𝑃 . More precisely, let the first half refer to ants in positions 1

to ⌈|𝑅|/2⌉, and let the second half refer to ants in positions ⌈|𝑅|/2⌉ to |𝑅| (note that

the two halves overlap by one ant). So Pr [𝐸 ′] ≥ 1/4.

By the definition above, conditioning on event 𝐸 ′, there are at most ⌈|𝑅|/2⌉ −

1 ants in 𝑃 before ant 𝑎. Also, by the definition of the recruitment process, the

probability that a fixed ant chooses another fixed ant is 1/|𝑅|. Therefore, we have:

Pr [𝐸] ≥ Pr [𝐸 | 𝐸 ′] · Pr [𝐸 ′]

≥
(︂

1

4

)︂
Pr [𝑎 and 𝑎′ not recruited successfully by an ant before 𝑎 in 𝑃 | 𝐸 ′]

≥
(︂

1

4

)︂(︂
1 − 2

|𝑅|

)︂⌈|𝑅|/2⌉−1
≥
(︂

1

4

)︂(︂
1 − 2

|𝑅|

)︂|𝑅|/2
≥ 1

16
.

Problem Statement: An algorithm 𝒜 solves the HouseHunting problem with

𝑘 nests in 𝑇 ∈ N rounds with error probability 𝛿, for 0 < 𝛿 ≤ 1, if with probability

at least 1 − 𝛿, taken over all executions of 𝒜, there exists a nest 𝑖 ∈ {1, · · · , 𝑘} such

that 𝑞(𝑖) = 1 and ℓ(𝑎, 𝑟) = 𝑖 for all ants 𝑎 and for all times 𝑟 ≥ 𝑇 .
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3.2 Lower Bound

In this section, we present a lower bound on the number of rounds required for an

algorithm to solve the house-hunting problem. The key idea of the proof is similar

to the lower bounds on spreading a rumor in a complete graph [73] where neighbors

contact each other randomly. Assuming a house-hunting process with a single good

nest, its location represents the rumor to be spread among all ants and communication

between random neighbors is analogous to the recruiting process.

Assume only a single nest, 𝑛𝑤, has quality 1, and so it is the only option for the

ants to relocate to. A lower bound for this particular configuration is sufficient to

imply a worst-case lower bound over all nest and quality configurations.

Define an ant 𝑎 to be informed at time 𝑟 if ℓ(𝑎, 𝑟′) = 𝑤 for some 𝑟′ ≤ 𝑟 (ant 𝑎 has

visited the good nest 𝑛𝑤); otherwise, define it to be ignorant at time 𝑟.

For each ant 𝑎, let �̄�𝑎
𝑟 be a random variable such that �̄�𝑎

𝑟 = 1 if ant 𝑎 is ignorant

at time 𝑟, and �̄�𝑎
𝑟 = 0 if ant 𝑎 is informed at time 𝑟.

Lemma 3.2.1. For 𝑘 ≥ 2, for each and 𝑎, and each time 𝑟, Pr
[︀
�̄�𝑎

𝑟+1 = 1 | �̄�𝑎
𝑟 = 1

]︀
≥

1/4.

Proof. Fix an arbitrary time 𝑟 and an arbitrary ant 𝑎 that is ignorant at time 𝑟.

In round 𝑟 + 1, ant 𝑎 calls exactly one of the three functions: search(), go(·), or

recruit(·, ·). Since 𝑎 is ignorant at time 𝑟, calling go(·) in round 𝑟 + 1 implies that

𝑎 is ignorant at time 𝑟 + 1 (because the ant does not visit a new nest).

Suppose 𝑎 calls search(). For 𝑘 ≥ 2, the probability that ant 𝑎 is ignorant at

time 𝑟 + 1 is (𝑘 − 1)/𝑘 ≥ 1/2.

Suppose 𝑎 calls recruit(·, ·). Let 𝑅 be the set of ants that call recruit(·, ·) in round

𝑟 + 1. Since the number of ants that call recruit(1,w) in round 𝑟 + 1 (recruiting to

the winning nest) is at most |𝑅|, and since the probability for a fixed ant to choose

another fixed ant in the recruitment process is 1/|𝑅|, it follows that the probability

that ant 𝑎 is ignorant at time 𝑟 + 1 is at least:

(︂
1 − 1

|𝑅|

)︂|𝑅|
≥ 1

4
assuming |𝑅| ≥ 2.
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Note that if |𝑅| < 2, ant 𝑎 has to recruit itself, so it remains ignorant at time 𝑟 + 1.

Thus, for each possible function that ant 𝑎 calls in round 𝑟+1, the probability that

it is ignorant at time 𝑟 + 1 is at least 1/4. Therefore, by the law of total probability,

Pr
[︀
�̄�𝑎

𝑟+1 = 1 | �̄�𝑎
𝑟 = 1

]︀
≥ 1/4.

Next, we prove a corollary that uses Lemma 3.2.1 to bound the probability that

an ant is ignorant at any given time in the execution.

Corollary 3.2.2. For 𝑘 ≥ 2, for each ant 𝑎, and each time 𝑟, Pr
[︀
�̄�𝑎

𝑟 = 1
]︀
≥ (1/4)𝑟.

Proof. Fix an arbitrary ant 𝑎. The proof is by induction on the times in the execution.

In the base case, for 𝑟 = 0, the corollary holds because initially all ants are ignorant.

Suppose the corollary holds for time 𝑟; so, Pr
[︀
�̄�𝑎

𝑟 = 1
]︀
≥ (1/4)𝑟. By Lemma 3.2.1,

Pr
[︀
�̄�𝑎

𝑟+1 = 1 | �̄�𝑎
𝑟 = 1

]︀
≥ 1/4. Therefore, Pr

[︀
�̄�𝑎

𝑟+1 = 1
]︀
≥ (1/4)𝑟+1.

Theorem 3.2.3. For any constant 𝑐 > 1, let 𝒜 be an algorithm that solves the

HouseHunting problem with 𝑘 ≥ 2 nests in 𝑇 rounds with error probability 1/𝑛𝑐.

Then, 𝑇 = Ω(log 𝑛).

Proof. Fix an arbitrary constant 𝑐 > 1. Let 𝑎 be an arbitrary ant and let 𝑟 = 𝑐 log4 𝑛.

By Corollary 3.2.2, Pr
[︀
�̄�𝑎

𝑟 = 1
]︀
≥ (1/4)𝑟 = 1/𝑛𝑐. Therefore, with probability at least

1/𝑛𝑐, ant 𝑎 is ignorant at time 𝑟, so the probability that all ants are informed by time

𝑟 is at most 1− 1/𝑛𝑐. Since, by assumption, algorithm 𝒜 solves the HouseHunting

problem in 𝑇 rounds with error probability 1/𝑛𝑐, this implies that 𝑇 ≥ 𝑟 = Ω(log 𝑛).
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3.3 Optimal Algorithm

We present an algorithm that solves the HouseHunting problem and is asymptot-

ically optimal. In the first round of the algorithm, each ant searches randomly for a

nest. Then, each ant that found a good nest repeatedly tries to recruit other ants to

its nest while keeping track of how the population of the nest changes. Nests with

a non-decreasing population continue competing while nests with a decreasing pop-

ulation drop out. Due to the uniformity in the recruitment strategy, nests drop out

at a constant rate in expectation, meaning that a single winning nest will be iden-

tified in 𝒪(log 𝑘) rounds (in expectation and with high probability). Finally, once a

single good nest is identified, it takes 𝒪(log 𝑛) rounds (in expectation and with high

probability) to recruit all remaining ants to it. Therefore, assuming 𝑘 = 𝒪(𝑛), the

algorithm solves the house hunting problem in asymptotically optimal time (matching

the Ω(log 𝑛) bound in Section 3.2).

This algorithm relies heavily on the synchrony in the execution and the precise

counting of the number of ants at a given nest, which makes it sensitive to perturba-

tions of these values, and therefore, not a natural algorithm that resembles real ant

behavior. However, the algorithm demonstrates that the HouseHunting problem

is solvable in optimal time in the model of Section 3.1.

3.3.1 Algorithm Pseudocode and Description

The pseudocode of the algorithm (Algorithm 6) is slightly more involved than the sim-

ple intuitive description above. The additional complexity is necessary for synchroniz-

ing the ants in different states (ants from competing nests vs. ants from dropped-out

nests) and detecting termination conditions (such as the point in the execution in

which a single competing nest remains). First, we present an informal view of the

execution of the algorithm, and then we describe the pseudocode in detail through

the perspective of a single ant.
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Informal Description of the Algorithm Execution

In the first round of the execution of the algorithm, all ants search for nests, and

depending on the quality of the nests they find, the ants split into two groups: active

ants, which found good nests, and passive ants, which found bad nests. Since the

search process is random, it is possible that all ants arrive at bad nests and enter the

passive state (which would cause the algorithm to fail). However, this is very unlikely,

as guaranteed by our assumption that 𝑘 = 𝒪(𝑛/ log 𝑛).

After the initial round of searching, active ants may be split between many good

nests; we call these competing nests. The main goal of the algorithm is to quickly

reduce the set of competing nests to a single nest. One straightforward way to achieve

this is to somehow let each nest toss an unbiased coin and remain competing if

the outcome is heads. Therefore, at each step, about half of the competing nests

would drop out, resulting in a single competing nest in 𝒪(log 𝑘) rounds. However,

this strategy would require some shared randomness capability of ants at the same

competing nest, which may be hard to achieve.

In our algorithm, we try to achieve a similar drop-out rate as above by using

a different simple strategy consisting of a sequence of recruitment phases. In each

recruitment phase, we let all active ants from all competing nests try to recruit each

other. Due to the uniformity of the recruitment process, each competing nest has a

constant probability to decrease (or increase) in population. To see why this is true,

consider an extreme case where there are two competing nests, one with 𝑛−1 ants and

one with only one ant. By Lemma 3.1.1, the single ant in the small nest has a constant

probability of recruiting another ant successfully, which indicates that the small nest

increases in population and so the large nest must decrease in population. Similarly,

we can show that with constant probability the small nest decreases in population

while the large one increases. Following this intuition, in our algorithm, nests with

decreasing populations drop out and nests with non-decreasing populations continue

competing. Since it is not possible for all nests to experience a decrease at the same

time, there is always at least one competing nest. Since each nest has a constant
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probability to drop out, similarly to above, we expect a single competing nest to be

identified in 𝒪(log 𝑘) steps. This strategy reduces the number of competing nests

quickly by depending only on the ants’ “luck” during the recruitment process.

Note that the above strategy works well if we consider only ants from competing

nests. Otherwise, if we have passive ants participate in the recruitment process to-

gether with active ants, it is possible that all competing nests experience increases

in population, resulting in a slower drop-out rate. Therefore, in our algorithm, we

require all passive ants to not participate in the recruitment process until a single

competing nest remains.

Finally, at some point in the execution, only one competing nest remains. How-

ever, a number of ants may be passive and not aware that the competition is over. In

the final stage of our algorithm, the active ants need to detect that a single competing

nest is identified and then recruit all passive ants to the winning nest. To do so, each

active ant needs a mechanism to detect that its competing nest is the only competing

nest, which indicates that the only ants remaining outside of this competing nest are

passive ants. Then, each active ant needs to call the recruit function in the same

round as passive ants in order to recruit them to the winning nest. In the worst case,

the winning nest has a very small population of active ants, so (following similar

reasoning as in the lower bound), it takes 𝒪(log 𝑛) rounds until all passive ants are

recruited to the winning nest.

As we will see in the pseudocode, in order to implement the high-level mechanisms

mentioned above and achieve proper interleaving of the actions of active and passive

ants, we consider phases of the algorithm execution consisting of three rounds each.

Roughly speaking, in the first round of each phase, active ants try to recruit each

other with the goal of reducing the number of competing nests. In the second round

of a phase, active ants that got recruited to a new nest determine whether to be

active or passive in the new nest. In the third round of each phase, active ants check

whether their nest is the only remaining competing nest. Once a single competing

nest is identified, active ants start recruiting in every round, and in this process all

passive ants are recruited to the winning nest.
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Algorithm 6: Optimal House-Hunting Algorithm
𝑠𝑡𝑎𝑡𝑒 : {𝑠𝑒𝑎𝑟𝑐ℎ, 𝑎𝑐𝑡𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒, 𝑓𝑖𝑛𝑎𝑙}, initially 𝑠𝑒𝑎𝑟𝑐ℎ
𝑛𝑒𝑠𝑡, 𝑛𝑒𝑠𝑡𝑟 : nest index 𝑖 ∈ {0, · · · , 𝑘}, initially 0
𝑐𝑜𝑢𝑛𝑡, 𝑐𝑜𝑢𝑛𝑡𝑟, 𝑐𝑜𝑢𝑛𝑡ℎ, 𝑐𝑜𝑢𝑛𝑡𝑛 : integer in {0, · · · , 𝑛}, initially 0

(𝑛𝑒𝑠𝑡, 𝑐𝑜𝑢𝑛𝑡) := search() (R1)
if 𝑞(𝑛𝑒𝑠𝑡) = 0 then

𝑠𝑡𝑎𝑡𝑒 := 𝑝𝑎𝑠𝑠𝑖𝑣𝑒
else

𝑠𝑡𝑎𝑡𝑒 := 𝑎𝑐𝑡𝑖𝑣𝑒

while 𝑠𝑡𝑎𝑡𝑒 = 𝑎𝑐𝑡𝑖𝑣𝑒 do
(𝑛𝑒𝑠𝑡𝑟, 𝑐𝑜𝑢𝑛𝑡𝑟) := recruit(1,nest) (R1)
case 𝑛𝑒𝑠𝑡𝑟 = 𝑛𝑒𝑠𝑡 and 𝑐𝑜𝑢𝑛𝑡𝑟 ≥ 𝑐𝑜𝑢𝑛𝑡 do

go(nest) (R2)
(·, 𝑐𝑜𝑢𝑛𝑡ℎ) := go(0) (R3)
if 𝑐𝑜𝑢𝑛𝑡ℎ = 𝑐𝑜𝑢𝑛𝑡𝑟 then

𝑠𝑡𝑎𝑡𝑒 := 𝑓𝑖𝑛𝑎𝑙
case 𝑛𝑒𝑠𝑡𝑟 = 𝑛𝑒𝑠𝑡 and 𝑐𝑜𝑢𝑛𝑡𝑟 < 𝑐𝑜𝑢𝑛𝑡 do

𝑠𝑡𝑎𝑡𝑒 := 𝑝𝑎𝑠𝑠𝑖𝑣𝑒
go(0) (R2)
go(nest) (R3)

case 𝑛𝑒𝑠𝑡𝑟 ̸= 𝑛𝑒𝑠𝑡 do
(·, 𝑐𝑜𝑢𝑛𝑡𝑛) := go(nestr) (R2)
if 𝑐𝑜𝑢𝑛𝑡𝑛 < 𝑐𝑜𝑢𝑛𝑡𝑟 then

𝑠𝑡𝑎𝑡𝑒 := 𝑝𝑎𝑠𝑠𝑖𝑣𝑒
go(nest) (R3)

𝑛𝑒𝑠𝑡 := 𝑛𝑒𝑠𝑡𝑟
𝑐𝑜𝑢𝑛𝑡 := 𝑐𝑜𝑢𝑛𝑡𝑟

while true do
case 𝑠𝑡𝑎𝑡𝑒 = 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 do

go(nest) (R1)
(𝑛𝑒𝑠𝑡𝑟, ·) := recruit(0,nest) (R2)
if 𝑛𝑒𝑠𝑡𝑟 ̸= 𝑛𝑒𝑠𝑡 then

𝑛𝑒𝑠𝑡 := 𝑛𝑒𝑠𝑡𝑟
𝑠𝑡𝑎𝑡𝑒 := 𝑓𝑖𝑛𝑎𝑙

go(nest) (R3)
case 𝑠𝑡𝑎𝑡𝑒 = 𝑓𝑖𝑛𝑎𝑙 do

(𝑛𝑒𝑠𝑡, ·) := recruit(1,nest) (R1, R2, R3)
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Detailed Description of the Pseudocode

Each call to the functions from Section 3.1 (in bold) takes exactly one round. The

remaining lines of the algorithm are considered to be local computation and are

executed in the same round as the preceding function call. Thus, the algorithm

matches the structure required by the model.

Consider an ant 𝑎 that executes Algorithm 6. In the first round, the ant searches

randomly for a nest. If the nest has quality 0, the ant moves to the 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 state;

otherwise, it moves to the 𝑎𝑐𝑡𝑖𝑣𝑒 state. This search is executed only once.

The rest of the code consists of two while loops, each of which takes exactly three

rounds to complete an iteration; each round is labeled as either R1, R2, or R3 in the

pseudocode. The actions in the three rounds in each subroutine are carefully inter-

leaved in such a way that ants in the active and passive states do not call recruit()

in the same round until the end of the competition process when a single winning

nest remains. To ensure that the loop iterations of active and passive ants take the

same number of rounds (three rounds each) and interleave properly, we insert padding

go(·) calls (these are the calls to go(·) in the algorithm in which the output is not

assigned to any variable). These function calls also ensure that active and passive

ants are never located in the same nests until the last stage of the algorithm when a

single competing nest remains.

The first while loop is executed only by active ants. An active ant 𝑎 tries to recruit

other active ants to its competing nest by executing recruit(1,nest). Based on the

resulting nest (𝑛𝑒𝑠𝑡𝑟) and count (𝑐𝑜𝑢𝑛𝑡𝑟) values (“r” stands for “after recruitment”),

we consider three cases:

∙ Case 1: 𝑛𝑒𝑠𝑡𝑟 is the same as ant 𝑎’s competing nest and the number of ants

in that nest has not decreased. In this case, the nest remains competing. As a

result, ant 𝑎 updates the new count and spends an extra round at the nest that

has a special purpose with respect to Cases 2 and 3 below. Finally, ant 𝑎 checks

if the number (𝑐𝑜𝑢𝑛𝑡ℎ, “h” stands for “home”) of ants at the home nest is the

same as the number of ants at its competing nest; if this is the case, it means
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that all ants from competing nests have been recruited to a single winning nest

and ant 𝑎 switches to the 𝑓𝑖𝑛𝑎𝑙 state.

∙ Case 2: 𝑛𝑒𝑠𝑡𝑟 is the same as ant 𝑎’s competing nest but the number of ants has

decreased. In this case, the nest drops out. Ant 𝑎 sets its state to 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 and

spends a round at the home nest, which coincides with the round an active ant

spends at its competing nest in Case 1.

∙ Case 3: 𝑛𝑒𝑠𝑡𝑟 is different from ant 𝑎’s competing nest. This indicates that the

ant got recruited to another nest. Although it already knows the number of

ants (𝑐𝑜𝑢𝑛𝑡𝑟) at the new nest, ant 𝑎 updates that count (𝑐𝑜𝑢𝑛𝑡𝑛, “n” stands for

“new count”). The reason for this is to determine whether this new nest is about

to compete or drop out. If 𝑐𝑜𝑢𝑛𝑡𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑛, the nest is competing because the

active ants in Case 1 are spending the same round at the competing nest; if

𝑐𝑜𝑢𝑛𝑡𝑟 > 𝑐𝑜𝑢𝑛𝑡𝑛, the nest is dropping out because the ants in Case 2 already

determined a decrease in the number of ants and are spending this round at the

home nest.

The second while loop is executed only by ants in the passive and final states. We

consider two cases based on ant 𝑎’s state.

∙ Passive: Ant 𝑎 spends a round at its (non-competing) nest, then it tries to get

recruited. This call to recruit(0,nest) never coincides with a recruit(1,nest)

of an active ant, so a passive ant can only get recruited by an ant in the 𝑓𝑖𝑛𝑎𝑙

state calling recruit(1,nest). Once successfully recruited, ant 𝑎 moves to the

𝑓𝑖𝑛𝑎𝑙 state and commits to the winning nest.

∙ Final: Ant 𝑎 is aware that a single competing nest remains, so it recruits

to it in every round. This call to recruit(1,nest) coincides with the call to

recruit(0,nest) of passive ants, so once a single nest remains, passive ants are

recruited to it in every third round.

Figure 3-1 illustrated the state transitions of Algorithm 6.
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search
𝑛𝑒𝑠𝑡, 𝑐𝑜𝑢𝑛𝑡

passive
𝑛𝑒𝑠𝑡 := 𝑛𝑒𝑠𝑡𝑟

active
𝑛𝑒𝑠𝑡 := 𝑛𝑒𝑠𝑡𝑟

𝑐𝑜𝑢𝑛𝑡 := 𝑐𝑜𝑢𝑛𝑡𝑟

final

𝑞(𝑛𝑒𝑠𝑡) = 1𝑞(𝑛𝑒𝑠𝑡) = 0

𝑛𝑒𝑠𝑡𝑟 = 𝑛𝑒𝑠𝑡

𝑛𝑒𝑠𝑡𝑟 ̸= 𝑛𝑒𝑠𝑡

𝑛𝑒𝑠𝑡𝑟 = 𝑛𝑒𝑠𝑡, 𝑐𝑜𝑢𝑛𝑡𝑟 ≥ 𝑐𝑜𝑢𝑛𝑡

𝑛𝑒𝑠𝑡𝑟 ̸= 𝑛𝑒𝑠𝑡, 𝑐𝑜𝑢𝑛𝑡𝑛 ≥ 𝑐𝑜𝑢𝑛𝑡𝑟

𝑛𝑒𝑠𝑡𝑟 = 𝑛𝑒𝑠𝑡, 𝑐𝑜𝑢𝑛𝑡𝑟 < 𝑐𝑜𝑢𝑛𝑡

𝑛𝑒𝑠𝑡𝑟 ̸= 𝑛𝑒𝑠𝑡, 𝑐𝑜𝑢𝑛𝑡𝑛 < 𝑐𝑜𝑢𝑛𝑡

𝑐𝑜𝑢𝑛𝑡ℎ = 𝑐𝑜𝑢𝑛𝑡

forever

Figure 3-1: State diagram illustration of Algorithm 6. The states in the diagram
denote the four possible states of an ant in the algorithm. The variables in the
diagram are the following. For any ant, 𝑛𝑒𝑠𝑡 and 𝑐𝑜𝑢𝑛𝑡 are the nest id and population
of the current nest of an ant. For an active ant, 𝑛𝑒𝑠𝑡𝑟 and 𝑐𝑜𝑢𝑛𝑡𝑟 are the nest id and
population of the nest after executing recruit(1,nest) in R1, 𝑐𝑜𝑢𝑛𝑡𝑛 is the population
of the new nest an ant got recruited to in R2, and 𝑐𝑜𝑢𝑛𝑡ℎ is the population at the
home nest in R3. For a passive ant, 𝑛𝑒𝑠𝑡𝑟 is the nest id of the nest after executing
recruit(0,nest).

3.3.2 Correctness Proof and Time Bound

As written, Algorithm 6 never terminates; after all ants are committed to the same

nest and in the 𝑓𝑖𝑛𝑎𝑙 state, they continue to recruit in every round. This issue can

easily be handled if ants check whether the number of ants at the home nest is the

same as the number of ants at the competing nest. However, for simplicity, we choose

not to complicate the pseudocode and consider the algorithm to terminate once all

ants have reached the 𝑓𝑖𝑛𝑎𝑙 state and, thus, committed to the same unique nest.

Proof Overview: The correctness proof and time bound of Algorithm 6 are struc-

tured as follows. By defining a slightly different but equivalent recruitment process,

we show, in Lemma 3.3.1, that a competing nest is equally likely to continue com-

peting as it is to drop out. Consequently, as we show in Lemma 3.3.2 and Corollary

3.3.3, each competing nest has at least a constant probability of dropping out, indi-
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cating that the expected number of competing nests decreases by a constant fraction

(Lemma 3.3.4). We put these lemmas together in Theorem 3.3.5 to show that, with

high probability, Algorithm 6 solves the HouseHunting problem in 𝒪(log 𝑛) rounds:

𝒪(log 𝑘) rounds to converge to a single nest and 𝒪(log 𝑛) rounds until all passive ants

are recruited to it.

Let 𝑅2 be the set of round numbers 𝑟 such that 𝑟 ≡ 2 (mod 3). By the pseudocode,

these rounds are exactly the rounds in which active ants recruit other active ants2.

We define a nest to be competing at time 𝑟 if there is at least one ant in the nest

at time 𝑟 and the ants located in the nest are active at time 𝑟 (By the pseudocode,

and since we assume a synchronous execution, at any given time the ants in a given

nest are either all active or all passive). Let 𝐾(𝑟) denote the set of competing nests

at time 𝑟.

For each nest 𝑛𝑖 and each time 𝑟, let 𝐶(𝑖, 𝑟) = {𝑎 | ℓ(𝑎, 𝑟) = 𝑖} denote the set of

ants located in nest 𝑛𝑖 at time 𝑟. Let 𝐶(𝑟) be the union of all 𝐶(𝑖, 𝑟) where 𝑛𝑖 ∈ 𝐾(𝑟)

(𝑛𝑖 is a competing nest at time 𝑟). For each nest 𝑛𝑖 ∈ 𝐾(𝑟) such that 𝑟 + 1 ∈ 𝑅2,

each ant 𝑎 ∈ 𝐶(𝑖, 𝑟) calls recruit(1, i) in round 𝑟 + 1. That is, for each competing

nest 𝑛𝑖, 𝐶(𝑖, 𝑟) is the set of active ants that recruit to nest 𝑛𝑖, and 𝐶(𝑟) is the set of

all active ants.

Consider a fixed execution of Algorithm 6 and an arbitrary fixed time 𝑟−1 in that

execution such that 𝑟 ∈ 𝑅2. We consider the state variables at time 𝑟− 1 to be fixed,

and we consider the probability distribution induced by the random permutation 𝑃

and the recruitment choices of the ants in round 𝑟.

For each ant 𝑎, let random variable 𝑋𝑎
𝑟 take on values −1, 0 or 1 as follows. If

ant 𝑎 gets recruited by another ant in round 𝑟, then 𝑋𝑎
𝑟 = −1; if ant 𝑎 successfully

recruits another ant, then 𝑋𝑎
𝑟 = 1; otherwise, 𝑋𝑎

𝑟 = 0. In the special case where an

ant 𝑎 recruits itself, we define 𝑋𝑎
𝑟 to be 0.

For each nest 𝑛𝑖, let random variable 𝑌 𝑖
𝑟 denote the net change in the number

of ants at nest 𝑛𝑖 after recruiting in round 𝑟: 𝑌 𝑖
𝑟 =

∑︀
𝑎∈𝐶(𝑖,𝑟−1)𝑋

𝑎
𝑟 . That is, an ant

2Note that the rounds in 𝑅2 do not correspond to the rounds labeled R2 in the pseudocode;
actually, the rounds in 𝑅2 correspond to the rounds labeled R1. To avoid any confusion, the rest of
the section does not refer to the labels of the rounds in the pseudocode.
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that recruits successfully contributes a net change of 1 (one new ant) to the nest’s

population, an ant that is recruited away contributes a net change of −1 to the nest’s

population, and an ant that is neither recruited away nor recruits successfully, does

not contribute to the net change in the nest’s population.

Informally speaking, random variable 𝑌 𝑖
𝑟 (the change in population of nest 𝑛𝑖) is

simply the sum of identically distributed {−1, 0, 1} random variables that take on non-

zero values with constant probability, and the sum of these variables is negative with

constant probability. However, proving this fact requires a more rigorous argument

because the 𝑋𝑎
𝑟 variables are not independent. We define a slightly different but

equivalent recruitment process that we use in the proof of Lemma 3.3.1.

Consider a random variable 𝑉 that generates a vector 𝑣 of length |𝐶(𝑟−1)|, where

initially 𝑣(𝑗) = 0 for each 𝑗 ∈ [1, |𝐶(𝑟− 1)|]. The values in the vector are updated as

follows: at each position 𝑗 ∈ [1, |𝐶(𝑟 − 1)|], starting at position 1 and continuing in

order, we choose a uniformly random integer 𝑗′ between 1 and |𝐶(𝑟 − 1)|. If 𝑗 ̸= 𝑗′,

𝑣(𝑗) = 0, and 𝑣(𝑗′) = 0, we set 𝑣(𝑗) := 1 and 𝑣(𝑗′) := −1. This process is similar to

the random choices of the ants in the recruitment process in round 𝑟.

Let 𝑃 be a random variable that generates a uniformly random permutation 𝑝 :

𝐶(𝑟− 1) → [1, |𝐶(𝑟− 1)|]; that is 𝑃 assigns to each ant in 𝐶(𝑟− 1) a random integer

between 1 and |𝐶(𝑟 − 1)|. Based on the definition of the random variables 𝑉 and

𝑃 , for each ant 𝑎 ∈ 𝐶(𝑟 − 1), the random variables 𝑉 (𝑃 (𝑎)) and 𝑋𝑎
𝑟 are distributed

identically3. This is true because the two random components that determine the

value of 𝑋𝑎
𝑟 in the recruitment process (the random permutation and the random

choices of the ants) are independent from each other, so we can consider them in either

order. In particular, the alternative recruitment process described above fixes some

random “recruitment” choices first, and then assigns ants randomly to these choices.

In contrast, the original recruitment process in Algorithm 5 fixes a random ordering

of the ants first and then assigns random choices to the ants based on this ordering.

Both of these recruitment strategies result in the same probability distribution.

3This definition of 𝑃 (mapping from ants to integers) differs slightly from the random permutation
(mapping from integers to ants) used in Algorithm 5; however, in both definitions, the functions are
simply bijections resulting in equivalent pairing between ants and integers.
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First, we show that any competing nest is equally likely to experience an increase

or a decrease in population. Based on the pseudocode, this implies that each com-

peting nest is equally likely to continue competing or to drop out.

Lemma 3.3.1. For each nest 𝑛𝑖 ∈ 𝐾(𝑟 − 1), Pr [𝑌 𝑖
𝑟 < 0] = Pr [𝑌 𝑖

𝑟 > 0].

Proof. Fix a nest 𝑛𝑖 ∈ 𝐾(𝑟 − 1) and consider a fixed vector 𝑣 generated by random

variable 𝑉 . Since 𝑣 has an equal number of 1’s and −1’s (by construction), for each

integer 𝑚 ∈ [0, |𝐶(𝑖, 𝑟 − 1)|], the number of choices of |𝐶(𝑖, 𝑟 − 1)| indices in 𝑣 in

which the values of 𝑣 sum up to 𝑚 is equal to the number of choices in which the

values sum up to −𝑚. Therefore, since 𝑃 generates a uniform random permutation,

random variables
∑︀

𝑎∈𝐶(𝑖,𝑟−1) 𝑣(𝑃 (𝑎)) and −
∑︀

𝑎∈𝐶(𝑖,𝑟−1) 𝑣(𝑃 (𝑎)) are distributed iden-

tically. By the law of total probability, random variables
∑︀

𝑎∈𝐶(𝑖,𝑟−1) 𝑉 (𝑃 (𝑎)) and

−
∑︀

𝑎∈𝐶(𝑖,𝑟−1) 𝑉 (𝑃 (𝑎)) are also distributed identically. We know that the two recruit-

ment processes result in the same distribution, so it follows that 𝑌 𝑖
𝑟 and −𝑌 𝑖

𝑟 are

distributed identically, implying that Pr [𝑌 𝑖
𝑟 < 0] = Pr [𝑌 𝑖

𝑟 > 0].

Next, we bound the probability that the population of a competing nest remains

the same after one round of recruiting, assuming it is not the only competing nest.

Lemma 3.3.2. For each nest 𝑛𝑖 ∈ 𝐾(𝑟 − 1), if |𝐾(𝑟 − 1)| > 1, then Pr [𝑌 𝑖
𝑟 = 0] ≤

1535/1536.

Proof. Fix some nest 𝑛𝑖 ∈ 𝐾(𝑟 − 1). Let random variable 𝐿 = |{𝑎 | 𝑎 ∈ 𝐶(𝑖, 𝑟 −

1), 𝑋𝑎
𝑟 ̸= 0}| and random variable 𝑀 = |{𝑎 | 𝑎 ∈ 𝐶(𝑟 − 1), 𝑋𝑎

𝑟 ̸= 0}|. That is, 𝐿

denotes the number of ants in 𝐶(𝑖, 𝑟− 1) with non-zero 𝑋𝑎
𝑟 variables, and 𝑀 denotes

the number of ants in 𝐶(𝑟 − 1) with non-zero 𝑋𝑎
𝑟 variables.

Condition on 𝐿 = 2ℓ and 𝑀 = 2𝑚 for some even integers 2ℓ, 2𝑚 ∈ [0, · · · , |𝐶(𝑟−

1)|] and assume that ℓ ̸= 0 and ℓ < 𝑚 (we combine all possible cases using the law

of total probability at the end of the proof). The only way 𝑌 𝑖
𝑟 can be 0 is if the ants

from nest 𝑛𝑖 have exactly ℓ (out of all 𝑚) 𝑋𝑎
𝑟 variables equal to 1’s, and exactly ℓ

(out of all 𝑚) 𝑋𝑎
𝑟 variables equal to −1’s.
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Pr[𝑌 𝑖
𝑟 = 0] ≤

(︀
𝑚
ℓ

)︀2(︀
2𝑚
2ℓ

)︀ =

(︁
𝑚!

(𝑚−ℓ)!ℓ!

)︁2
(2𝑚)!

(2𝑚−2ℓ)!(2ℓ)!

=

(︁
𝑚(𝑚−1)···(𝑚−ℓ+1)

ℓ(ℓ−1)···1

)︁2
2𝑚(2𝑚−1)···(2𝑚−2ℓ+1)

2ℓ(2ℓ−1)···1

.

Consider the above expression broken down into factors, each of which consisting

of one term from the numerator and two terms from the denominator, as follows:

(︀
𝑚
ℓ

)︀2(︀
2𝑚
2ℓ

)︀ =

(︃
𝑚2

ℓ2

2𝑚(2𝑚−1)
2ℓ(2ℓ−1)

)︃⎛⎝ (𝑚−1)2
(ℓ−1)2

(2𝑚−2)(2𝑚−3)
(2ℓ−2)(2ℓ−3)

⎞⎠ · · ·

(︃
(𝑚−ℓ+1)2

1
(2𝑚−2ℓ+2)(2𝑚−2ℓ+1)

2·1

)︃

=

(︃
𝑚
ℓ

2𝑚−1
2ℓ−1

)︃(︃
𝑚−1
ℓ−1

2𝑚−3
2ℓ−3

)︃
· · ·

(︃
𝑚−ℓ+1

1
2𝑚−2ℓ+1

1

)︃
.

For each of the terms above, we can verify that, since ℓ < 𝑚, the denominator is

at least as large as the numerator, so each term is upper-bounded by 1. Therefore,

focusing only on the last term, whose value is maximized for 𝑚− ℓ = 1, we have:

Pr [𝑌 𝑎
𝑟 = 0] =

(︀
𝑚
ℓ

)︀2(︀
2𝑚
2ℓ

)︀ ≤ 𝑚− ℓ + 1

2𝑚− 2ℓ + 1
≤ 2

3
. (3.1)

Finally, by the law of total probability:

Pr
[︀
𝑌 𝑖
𝑟 = 0

]︀
=

|𝐶(𝑟−1)|∑︁
ℓ=0

|𝐶(𝑟−1)|∑︁
𝑚=0

Pr
[︀
𝑌 𝑖
𝑟 = 0 | 𝐿 = ℓ,𝑀 = 𝑚

]︀
· Pr [𝐿 = ℓ,𝑀 = 𝑚]

≤
∑︁

ℓ,𝑚∈[0,|𝐶(𝑖,𝑟−1)|]
ℓ̸=0,ℓ ̸=𝑚, even ℓ,𝑚

Pr
[︀
𝑌 𝑖
𝑟 = 0 | 𝐿 = ℓ,𝑀 = 𝑚

]︀
· Pr [𝐿 = ℓ,𝑀 = 𝑚]

+ Pr
[︀
𝑌 𝑖
𝑟 = 0 | 𝑀 = 𝐿 or 𝐿 = 0

]︀
· Pr [𝑀 = 𝐿 or 𝐿 = 0] .

Next, we use Equation 3.1, and we consider the remaining values of 𝐿 and 𝑀 .

Note that 𝐿 = 0 implies that 𝑌 𝑖
𝑟 = 0, and similarly, 𝐿 = 𝑀 implies that 𝑌 𝑖

𝑟 = 0. Also,

since the number of −1’s and 1’s associated with the 𝑋𝑎
𝑟 values of ants in 𝐶(𝑟− 1) is

the same, 𝑀 must be even. Finally, 𝐿 being an odd integer implies that 𝑌 𝑖
𝑟 ̸= 0.
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Pr
[︀
𝑌 𝑖
𝑟 = 0

]︀
≤
(︂

2

3

)︂ ∑︁
ℓ,𝑚∈[0,|𝐶(𝑖,𝑟−1)|]
ℓ ̸=0,ℓ ̸=𝑚, even ℓ,𝑚

Pr [𝐿 = ℓ,𝑀 = 𝑚] + Pr [𝑀 = 𝐿 or 𝐿 = 0]

=

(︂
2

3

)︂
(1 − Pr [𝑀 = 𝐿 or 𝐿 = 0]) + Pr [𝑀 = 𝐿 or 𝐿 = 0]

=

(︂
2

3

)︂
+

(︂
1

3

)︂
Pr [𝑀 = 𝐿 or 𝐿 = 0] .

By the assumptions of the lemma that 𝑛𝑖 ∈ 𝐾(𝑟 − 1) and |𝐾(𝑟 − 1)| > 1, it

follows that there must be two fixed ants 𝑎, 𝑎′ ∈ 𝐶(𝑟 − 1) such that 𝑎 ∈ 𝐶(𝑖, 𝑟 − 1)

and 𝑎′ ̸∈ 𝐶(𝑖, 𝑟−1). Note that 𝑋𝑎
𝑟 ̸= 0 implies 𝐿 ̸= 0, and 𝑋𝑎′

𝑟 ̸= 0 implies 𝑀 ̸= 𝐿. So,

Pr [𝑀 = 𝐿 or 𝐿 = 0] ≤ 1−Pr
[︀
𝑋𝑎

𝑟 ̸= 0 and 𝑋𝑎′
𝑟 ̸= 0

]︀
. Reasoning similarly to Lemma

3.1.1, we can bound Pr
[︀
𝑋𝑎

𝑟 ̸= 0 and 𝑋𝑎′
𝑟 ̸= 0

]︀
≥ 1/512.

Plugging into the expression for Pr [𝑌 𝑖
𝑟 = 0], we get Pr [𝑌 𝑖

𝑟 = 0] ≤ 1535/1536.

Next, we show that if a nest is not the only competing nest, then it has a constant

probability of experiencing a decrease in population.

Corollary 3.3.3. For each nest 𝑛𝑖 ∈ 𝐾(𝑟− 1), if |𝐾(𝑟− 1)| > 1, then Pr [𝑌 𝑖
𝑟 < 0] ≥

1/3072.

Proof. By Lemmas 3.3.1 and 3.3.2:

Pr
[︀
𝑌 𝑖
𝑟 < 0

]︀
= 1 − Pr

[︀
𝑌 𝑖
𝑟 > 0

]︀
− Pr

[︀
𝑌 𝑖
𝑟 = 0

]︀
= 1 − Pr

[︀
𝑌 𝑖
𝑟 < 0

]︀
− Pr

[︀
𝑌 𝑖
𝑟 = 0

]︀
by Lemma 3.3.1

≥
(︂

1

2

)︂
(1 − Pr

[︀
𝑌 𝑖
𝑟 = 0

]︀
)

≥ 1

3072
by Lemma 3.3.2.

Next, we show that the number of competing nests decreases by a constant fraction

in expectation after each 3-round iteration of the algorithm.
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Lemma 3.3.4. If |𝐾(1)| ≥ 1, then E [|𝐾(𝑟 + 2)|] ≤ (3071/3072)|𝐾(𝑟 − 1)|.

Proof. By Corollary 3.3.3, for each nest 𝑛𝑖 ∈ 𝐾(𝑟−1), Pr [𝑌 𝑖
𝑟 < 0 | |𝐾(𝑟 − 1)| > 1] ≥

1/3072. By the pseudocode, the number of competing nests does not change in rounds

𝑟 + 1 and 𝑟 + 2, so E [|𝐾(𝑟 + 2)| | |𝐾(𝑟 − 1)| > 1] ≤ (3071/3072)|𝐾(𝑟 − 1)|.

Note that |𝐾(1)| ≥ 1 implies that at least one good nest is found after the initial

round of searching. In subsequent rounds, it is not possible for all competing nests to

experience a decrease in population, so for each 𝑟 ≥ 2, it is true that |𝐾(𝑟 − 1)| ≥ 1.

Therefore:

E [|𝐾(𝑟 + 2)|] = E [|𝐾(𝑟 + 2)| | |𝐾(𝑟 − 1)| > 1] · Pr [|𝐾(𝑟 − 1)| > 1]

+ E [|𝐾(𝑟 + 2)| | |𝐾(𝑟 − 1)| = 1] · Pr [|𝐾(𝑟 − 1)| = 1] .

Note that E [|𝐾(𝑟 + 2)| | |𝐾(𝑟 − 1)| = 1] = 0 because once we have a single com-

peting nest at time 𝑟 − 1, that nest transitions to the final state in the next round,

resulting in 0 competing nests at time 𝑟 + 2. So, we have:

E [|𝐾(𝑟 + 2)|] = E [|𝐾(𝑟 + 2)| | |𝐾(𝑟 − 1)| > 1] · Pr [|𝐾(𝑟 − 1)| > 1]

≤
(︂

3071

3072

)︂
|𝐾(𝑟 − 1)|.

Finally, we analyze the total running time of Algorithm 6 for an arbitrary proba-

bilistic execution.

Theorem 3.3.5. For any constant 𝑐 > 1, with probability at least 1−1/𝑛𝑐, Algorithm

6 solves the HouseHunting problem in 𝒪(log 𝑛) rounds.

Proof. In the first round, all ants search for nests, so the expected number of ants

located at each good nest is 𝑛/𝑘. Assuming 𝑘 ≤ 𝑛/(12(𝑐 + 1) log 𝑛) = 𝒪(𝑛/ log 𝑛),

by a Chernoff bound, it follows that, with probability at least 1 − 1/𝑛𝑐+1, at least

𝑛/(2𝑘) ants visits each good nest. Therefore, Pr [|𝐾(1)| ≥ 1] ≥ 1 − 1/𝑛𝑐+1.

By Lemma 3.3.4, E [|𝐾(𝑟 + 2)| | |𝐾(1)| ≥ 1] ≤ (3071/3072)|𝐾(𝑟 − 1)| for each

round 𝑟 ∈ 𝑅2. Since |𝐾(𝑟 − 1)| ≤ 𝑘 for each round 𝑟 ∈ 𝑅2, by the law of iterated
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expectation, for 𝑟 = log1.0003 𝑘 + (𝑐 + 1) log1.0003 𝑛 = 𝒪(log 𝑛), it follows that:

E [|𝐾(𝑟)| | |𝐾(1)| ≥ 1] ≤ 1/𝑛𝑐+1.

By a Markov bound, Pr [|𝐾(𝑟)| ≥ 1 | |𝐾(1)| ≥ 1] ≤ 1/𝑛𝑐+1. In other words, after

𝒪(log 𝑛) rounds, with probability at least 1 − 1/𝑛𝑐+1, there are no competing nests.

Conditioning on at least one good nest being found after the first round of searching,

and using the fact that it is not possible for all good nests to drop out in any given

round, there is at least one nest either competing or in the final state after 𝒪(log 𝑛)

rounds. Therefore, conditioning on at least one good nest being found after the first

round of searching, after 𝒪(log 𝑛) rounds, with probability at least 1 − 1/𝑛𝑐+1, there

is exactly one nest in the final state. Union-bounding over the first round of searching

and the subsequent competition rounds, with probability at least 1− 1/𝑛𝑐, there is a

single nest in the final state after 𝒪(log 𝑛) rounds.

After there is exactly one nest in the final state, by the pseudocode, all ants

committed to it start recruiting the passive ants during every third round. Each

recruited ant also transitions to the final state, resulting in at most 𝒪(log 𝑛) rounds

until all ants are committed to the winning nest.

3.4 Simple Algorithm

We now give a very simple algorithm (Algorithm 7) that solves the HouseHunting

problem in 𝒪(𝑘3 log1.5 𝑛) rounds with high probability. In contrast to Algorithm 6,

the algorithm in this section is much simpler and capable of using only approximate

information from the environment to solve the house hunting problem (which we will

see in Section 3.5). The main idea of the algorithm is that all ants initially search

for nests and those that find good nests simply continuously recruit to their nests

with probability proportional to nest population in each round. Ants in larger nests

recruit at higher rates, and eventually their populations swamp the populations of

smaller nests. This process is similar to the well-known Polya’s urn model [27].
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3.4.1 Algorithm Pseudocode and Description

In the first round of Algorithm 7, all ants search for nests; this search is executed

only once, in the first round of the algorithm execution. The algorithm proceeds

in subsequent rounds of recruitment by all ants, where each ant is either actively

recruiting by calling recruit(1, ·), or trying to get recruited by calling recruit(0, ·).

In each round, each ant chooses whether to recruit or not with probability (𝑐𝑜𝑢𝑛𝑡 ·

𝑞(𝑛𝑒𝑠𝑡))/𝑛, where 𝑐𝑜𝑢𝑛𝑡 and 𝑞(𝑛𝑒𝑠𝑡) are the assessed population and quality of the

nest, and 𝑛 is the total number of ants. Recall that we assume the quality of a nest

is a binary value in {0, 1}, so if a nest is not good, ants simply do not recruit to it.

Each iteration of the while loop takes exactly one round, which consist of a call to

recruit(·,nest) by each ant.

Algorithm 7: Simple House-Hunting Algorithm
𝑛𝑒𝑠𝑡 : nest index in {0, · · · , 𝑘}, initially 0
𝑐𝑜𝑢𝑛𝑡 : integer in {0, · · · , 𝑛}, initially 0
𝑏 : binary value in {0, 1}, initially 0
(𝑛𝑒𝑠𝑡, 𝑐𝑜𝑢𝑛𝑡) := search()
while true do

𝑏 := 1 with probability (𝑞(𝑛𝑒𝑠𝑡) · 𝑐𝑜𝑢𝑛𝑡)/𝑛, 0 otherwise
(𝑛𝑒𝑠𝑡, 𝑐𝑜𝑢𝑛𝑡) := recruit(b,nest)

3.4.2 Main Result and Proof Overview

We will prove the following main result about the correctness and running time of

Algorithm 7.

Theorem 3.4.1. For any constant 𝑐 > 1, with probability at least 1−1/𝑛𝑐, Algorithm

7 solves the HouseHunting problem in 222(𝑐 + 7)(𝑐 + 3)𝑘3 log1.5 𝑛 = 𝒪(𝑘3 log1.5 𝑛)

rounds.

Proof Overview: The proof consists of three main parts. First, in Section 3.4.3,

we introduce a few properties of the recruitment step of Algorithm 7: in Lemmas

3.4.2, 3.4.3, 3.4.4, and 3.4.5, we analyze the expected change of the population of a
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single nest after a single round of recruiting. The remainder of the proof is broken

down into two parts that correspond to the two main stages of the execution of

the algorithm: the symmetry-breaking stage (Section 3.4.4) and the drop-out stage

(Section 3.4.5). In the symmetry-breaking stage, we consider a fixed number of rounds

(in 𝒪(𝑘3 log1.5 𝑛)) and we show that within that number of rounds we can break the

initial symmetry between each pair of the nests (that is, the population gap between

the nests is large). In Lemma 3.4.6, we compute the expected growth of the population

gap between any two nests in a single round. Then, in Lemma 3.4.15, we use a general

result about Markov chains (Lemma 3.4.14) to show that in 𝒪(𝑘3 log1.5 𝑛) rounds the

gap between any two nests is fairly large with high probability. After the symmetry-

breaking stage, we enter the drop-out stage, which also consists of a fixed number

of rounds (in 𝒪(𝑘 log 𝑛)), and we show that at least one nest of each pair of nests

drops out completely within that number of rounds. In particular, in Lemmas 3.4.17

and 3.4.18 we show that once a nest drops below a certain threshold, it decreases in

population fairly quickly with high probability. Finally, we bring all results together

by concluding (in Lemma 3.4.19 and Theorem 3.4.1) that, with high probability, at

the end of the drop-out stage, at least one nest from each pair of nests has no ants.

Union-bounding over all possible pairs of nests, we show that, with high probability,

all the ants are located in a single nest.

For each nest 𝑛𝑖 and each time 𝑟, let random variable 𝑝(𝑖, 𝑟) = 𝑐(𝑖, 𝑟)/𝑛 denote

the proportion of ants at nest 𝑛𝑖 at time 𝑟. Define Σ(𝑟) =
∑︀𝑘

𝑖=1 𝑝(𝑖, 𝑟)2. Since∑︀𝑘
𝑖=1 𝑝(𝑖, 𝑟) = 1, by the Cauchy-Schwarz inequality Σ(𝑟) ≥ 1/𝑘.

Note that for a fixed time 𝑟 (and fixed 𝑝(𝑖, 𝑟) for 𝑖 ∈ [0, 𝑘]), in round 𝑟 + 1 each

ant uses the population at time 𝑟 to determine its recruitment probability. By the

pseudocode, ants located at a good nest 𝑛𝑖 at time 𝑟 recruit with probability 𝑝(𝑖, 𝑟)

in round 𝑟 + 1. Also, Σ(𝑟) is the expected proportion of ants that call recruit(1, ·)

in round 𝑟 + 1 (each ant from nest 𝑛𝑖 recruits with probability 𝑝(𝑖, 𝑟), and there is a

𝑝(𝑖, 𝑟) fraction of all the ants in nest 𝑛𝑖).

Let 𝑐 > 1 be a fixed arbitrary constant, and let 𝑑 = 4/3. For the sake of analysis,

assume that 𝑘 ≤ 64((𝑐 + 7)𝑛/ log 𝑛)1/4.
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3.4.3 Properties of the Recruitment Process

We first study how the population of a single nest changes in a single round. Intu-

itively, in round 𝑟, we expect a 𝑝(𝑖, 𝑟 − 1) fraction of the ants in nest 𝑛𝑖 to recruit to

nest 𝑛𝑖, and approximately a Σ(𝑟 − 1) fraction of the ants in nest 𝑛𝑖 to be recruited

away from nest 𝑛𝑖. Therefore, we expect the fraction of ants in nest 𝑛𝑖 to change

by approximately 𝑝(𝑖, 𝑟 − 1)(𝑝(𝑖, 𝑟 − 1) − Σ(𝑟 − 1)). We show this in Lemma 3.4.5,

modulo constant terms and factors. Before we are ready to prove Lemma 3.4.5, we

prove a few results that describe the expected outcome of a single ant recruiting.

For the rest of this section, consider a fixed execution of Algorithm 7 and an

arbitrary fixed time 𝑟 − 1 > 0 in that execution. We consider the state variables

at time 𝑟 − 1 to be fixed, and we consider the probability distribution induced by

choosing the random bit 𝑏 for each ant, and the recruitment process (the random

permutation and the random choices of the ants) in round 𝑟.

For each ant 𝑎, let random variable 𝑋𝑎
𝑟 take on values:

∙ 1 if 𝑎 is the first element of a pair in the set of successful recruitments 𝑀 , except

if the pair is (𝑎, 𝑎) (that is, 𝑎 recruits itself),

∙ −1 if 𝑎 is the second element of a pair in the set of successful recruitments 𝑀 ,

except if the pair is (𝑎, 𝑎),

∙ 0 if 𝑎 does not appear in any recruitment pair in the set of successful recruit-

ments 𝑀 , or if (𝑎, 𝑎) ∈ 𝑀 .

Note that 𝑋𝑎
𝑟 can be 1 even if an ant recruits one of its own nest mates. The

recruited nest mate will have a corresponding value of −1, resulting in no net gain of

ants in the nest. When an ant recruits itself we define 𝑋𝑎
𝑟 to be 0.

Let random variable 𝑏(𝑎, 𝑟) ∈ {0, 1} denote the recruitment bit of ant 𝑎 in round

𝑟 (denoted as 𝑏 in the pseudocode), and let 𝛼(𝑎, 𝑟) = Pr [𝑋𝑎
𝑟 = 1 | 𝑏(𝑎, 𝑟) = 1] and

𝛽(𝑎, 𝑟) = Pr [𝑋𝑎
𝑟 = −1]. That is, 𝛼 denotes the probability that an ant succeeds

in recruiting another ant assuming the first ant is recruiting, and 𝛽 denotes the

probability that an ant is recruited. Next, we bound the value of 𝛼(𝑎, 𝑟).
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Lemma 3.4.2. For each pair of ants 𝑎 and 𝑎′, 𝛼(𝑎, 𝑟) = 𝛼(𝑎′, 𝑟) ≥ 1/16.

Proof. Fix an arbitrary pair of ants 𝑎 and 𝑎′. For each ant 𝑎 with 𝑏(𝑎, 𝑟) = 1, the

probability it recruits successfully is:

𝛼(𝑎, 𝑟) = Pr [𝑋𝑎
𝑟 = 1 | 𝑏(𝑎, 𝑟) = 1]

=
𝑛∑︁

𝑚=1

(Pr [𝑋𝑎
𝑟 = 1 | 𝑏(𝑎, 𝑟) = 1, 𝑎 is at position 𝑚 in 𝑃 ]

· Pr [𝑎 is at position 𝑚 in 𝑃 ])

=

(︂
1

𝑛

)︂ 𝑛∑︁
𝑚=1

Pr [𝑋𝑎
𝑟 = 1 | 𝑏(𝑎, 𝑟) = 1, 𝑎 is at position 𝑚 in 𝑃 ]

=

(︂
1

𝑛

)︂ 𝑛∑︁
𝑚=1

𝑛∑︁
𝑎*=1

(Pr [𝑋𝑎
𝑟 = 1 | 𝑏(𝑎, 𝑟) = 1, 𝑎 is at position 𝑚 in 𝑃, 𝑎 recruits 𝑎*]

· Pr [𝑎 recruits 𝑎*])

=

(︂
1

𝑛2

)︂ 𝑛∑︁
𝑚=1

𝑛∑︁
𝑎*=1

Pr [𝑋𝑎
𝑟 = 1 | 𝑏(𝑎, 𝑟) = 1, 𝑎 is at position 𝑚 in 𝑃, 𝑎 recruits 𝑎*] .

Note that the last expression is the same for ants 𝑎 and 𝑎′ because 𝑏(𝑎, 𝑟) =

𝑏(𝑎′, 𝑟) = 1, and the two ants are identical with respect to their positions in 𝑃 and their

random choices. Therefore, 𝛼(𝑎, 𝑟) = 𝛼(𝑎′, 𝑟). By Lemma 3.4.2, 𝛼(𝑎, 𝑟) ≥ 1/16.

Because of Lemma 3.4.2, we can define 𝛼(𝑟) = 𝛼(𝑎, 𝑟) for all ants 𝑎 in round 𝑟.

Lemma 3.4.3. For each ant 𝑎, 𝛽(𝑎, 𝑟) = 𝛼(𝑟) · Σ(𝑟 − 1) ≥ 1/(16𝑘).

Proof. Fix an arbitrary ant 𝑎. The probability that ant 𝑎 is recruited in round 𝑟 is:

𝛽(𝑎, 𝑟) = Pr [𝑋𝑎
𝑟 = −1]

=
𝑛∑︁

𝑎′=1

Pr [𝑎′ successfully recruits 𝑎]

=
𝑘∑︁

𝑖=1

∑︁
{𝑎′|ℓ(𝑎′,𝑟−1)=𝑖}

Pr [𝑎′ successfully recruits 𝑎]

=
𝑘∑︁

𝑖=1

∑︁
{𝑎′|ℓ(𝑎′,𝑟−1)=𝑖}

𝑝(𝑖, 𝑟 − 1)𝛼(𝑟)

(︂
1

𝑛

)︂
,
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where 𝑝(𝑖, 𝑟− 1) is the probability that ant 𝑎′ chooses to recruit (calls recruit(1, i)),

𝛼(𝑟) is the probability that ant 𝑎′ succeeds in recruiting another ant, and 1/𝑛 is the

probability that ant 𝑎′ chooses ant 𝑎 as part of the recruitment process. So, we have:

𝛽(𝑎, 𝑟) =
𝑘∑︁

𝑖=1

𝑛𝑝(𝑖, 𝑟 − 1)2𝛼(𝑟)

(︂
1

𝑛

)︂

=
𝑘∑︁

𝑖=1

𝑝(𝑖, 𝑟 − 1)2𝛼(𝑟)

= 𝛼(𝑟) · Σ(𝑟 − 1).

Finally, by Lemma 3.4.2 and by the fact that Σ(𝑟 − 1) ≥ 1/𝑘, 𝛽(𝑎, 𝑟) ≥ 1/(16𝑘).

Because of Lemma 3.4.3, we can define 𝛽(𝑟) = 𝛽(𝑎, 𝑟) for all ants 𝑎 in round 𝑟.

Next, we bound the expected value of the recruitment contribution 𝑋𝑎
𝑟 of each

ant 𝑎 to its nest.

Lemma 3.4.4. For each nest 𝑛𝑖, and each ant 𝑎 such that ℓ(𝑎, 𝑟 − 1) = 𝑖, E [𝑋𝑎
𝑟 ] =

𝛼(𝑟)(𝑝(𝑖, 𝑟 − 1) − Σ(𝑟 − 1)).

Proof. Fix an arbitrary nest 𝑛𝑖, and an ant 𝑎 such that ℓ(𝑎, 𝑟 − 1) = 𝑖. By defini-

tion, E [𝑋𝑎
𝑟 ] = Pr [𝑋𝑎

𝑟 = 1] − Pr [𝑋𝑎
𝑟 = −1]. By Lemmas 3.4.2 and 3.4.3, E [𝑋𝑎

𝑟 ] =

𝛼(𝑟)𝑝(𝑖, 𝑟 − 1) − 𝛽(𝑟) = 𝛼(𝑟)(𝑝(𝑖, 𝑟 − 1) − Σ(𝑟 − 1)).

Next, we use Lemma 3.4.4 to calculate the expected change in the value of 𝑝(𝑖, 𝑟)

after one round of recruiting.

Lemma 3.4.5. For each nest 𝑛𝑖, E [𝑝(𝑖, 𝑟)] = 𝑝(𝑖, 𝑟−1)(1+𝛼(𝑟)(𝑝(𝑖, 𝑟−1)−Σ(𝑟−1))).

Proof. Fix an arbitrary nest 𝑛𝑖 and an arbitrary ant 𝑎′ in nest 𝑛𝑖 at time 𝑟 − 1.
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By linearity of expectation:

E [𝑝(𝑖, 𝑟)] = 𝑝(𝑖, 𝑟 − 1) +

(︂
1

𝑛

)︂ ∑︁
{𝑎|ℓ(𝑎,𝑟−1)=𝑖}

E [𝑋𝑎
𝑟 ]

= 𝑝(𝑖, 𝑟 − 1) +

(︂
𝑐(𝑖, 𝑟 − 1)

𝑛

)︂
E
[︁
𝑋𝑎′

𝑟

]︁
= 𝑝(𝑖, 𝑟 − 1)(1 + E

[︁
𝑋𝑎′

𝑟

]︁
),

The (1/𝑛) factor in front of the sum converts the expression in the sum from an

absolute number of ants to a fraction of ants (as required by the definition of 𝑝(𝑖, 𝑟)).

In the second equality, 𝑎′ is a fixed ant in nest 𝑛𝑖 and the equality follows from the

fact that 𝑋𝑎
𝑟 is identically distributed for each ant in the same nest.

By Lemma 3.4.4, for ant 𝑎′ in nest 𝑛𝑖, E
[︀
𝑋𝑎′

𝑟

]︀
= 𝛼(𝑟)(𝑝(𝑖, 𝑟 − 1) − Σ(𝑟 − 1)), so:

E [𝑝(𝑖, 𝑟)] = 𝑝(𝑖, 𝑟 − 1)(1 + 𝛼(𝑟)(𝑝(𝑖, 𝑟 − 1) − Σ(𝑟 − 1))).

3.4.4 Symmetry Breaking between Two Nests

In this section, we focus on the relative gap between the populations of any two nests.

First, in Lemma 3.4.6 we bound the expected increase in this gap after one round of

recruiting. Then, we define a new random variable that helps us analyze the growth

in the gap and prove some properties of this random variable in Lemmas 3.4.9 and

3.4.11 (and Lemmas 3.4.12 and 3.4.13). Finally, in Lemma 3.4.15, we show that,

with high probability, in 𝒪(𝑘3 log1.5 𝑛) rounds, the gap between the populations of

the nests grows sufficiently. The remaining results in this section (Lemmas 3.4.10 and

3.4.14, and Claims 3.4.7 and 3.4.8) are auxiliary results.

For the following results (Lemmas 3.4.6, 3.4.9, 3.4.10, 3.4.11), consider a fixed

execution of Algorithm 7 and an arbitrary fixed time 𝑟− 1 > 0 in that execution. We

consider the state variables at time 𝑟− 1 to be fixed, and we consider the probability

distribution over the randomness in round 𝑟.

112



Recall that 𝑑 = 4/3.

Lemma 3.4.6. Let 𝑛𝑖 and 𝑛𝑗 be a pair of nests such that 𝑝(𝑖, 𝑟 − 1), 𝑝(𝑗, 𝑟 − 1) ≥

Σ(𝑟 − 1)/𝑑. Then, E [|𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)|] ≥ |𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1)|(1 + Σ(𝑟 − 1)/32).

Proof. Fix an arbitrary pair of nests 𝑛𝑖 and 𝑛𝑗 such that 𝑝(𝑖, 𝑟 − 1), 𝑝(𝑗, 𝑟 − 1) ≥

Σ(𝑟 − 1)/𝑑. Without loss of generality, assume 𝑝(𝑖, 𝑟 − 1) ≥ 𝑝(𝑗, 𝑟 − 1). Then, by

Lemma 3.4.5, it follows that:

E [𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)]

= 𝑝(𝑖, 𝑟 − 1)(1 + 𝛼(𝑟)(𝑝(𝑖, 𝑟 − 1) − Σ(𝑟 − 1)))

− 𝑝(𝑗, 𝑟 − 1)(1 + 𝛼(𝑟)(𝑝(𝑗, 𝑟 − 1) − Σ(𝑟 − 1)))

= (𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1))(1 + 𝛼(𝑟)(𝑝(𝑖, 𝑟 − 1) + 𝑝(𝑗, 𝑟 − 1) − Σ(𝑟 − 1))).

By the assumption that 𝑝(𝑖, 𝑟 − 1), 𝑝(𝑗, 𝑟 − 1) ≥ Σ(𝑟 − 1)/𝑑, it follows that:

E [|𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)|]

≥ E [𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)]

≥ (𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1))

(︂
1 + 𝛼(𝑟)

(︂
2Σ(𝑟 − 1)

𝑑
− Σ(𝑟 − 1)

)︂)︂
≥ (𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1))

(︂
1 +

(︂
Σ(𝑟 − 1)

16

)︂(︂
2

𝑑
− 1

)︂)︂
= (𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1))

(︂
1 +

Σ(𝑟 − 1)

32

)︂
since 𝑑 =

4

3
,

where the second inequality follows from Lemma 3.4.2.

Next, we analyze how the gap between any two nests increases for all possible

values of the populations of the nests (not just when they are at least Σ(𝑟 − 1)/𝑑),

and also, how long it takes for the gap to grow sufficiently. In particular, let 𝑚 =

128
√︀

(𝑐 + 7) log 𝑛/𝑛; we are interested in growing the gap to at least 𝑚.

The following random variables 𝐼(𝑖, 𝑗, 𝑟) and 𝑌 (𝑖, 𝑗, 𝑟) are defined with respect to a

pair of nests 𝑛𝑖 and 𝑛𝑗 and the probability distribution over all possible executions of

Algorithm 7. Both random variables are derived from the random variables 𝑝(𝑖, 𝑟) for
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𝑖 ∈ {1, · · · , 𝑘}. Recall that the variables 𝑝(𝑖, 𝑟), for 𝑖 ∈ {1, · · · , 𝑘} (and consequently

the derived variable Σ(𝑟)) depend only on the state at the time 𝑟 − 1.

For each time 𝑟 and each pair of nests 𝑛𝑖 and 𝑛𝑗, let indicator random variable

𝐼(𝑖, 𝑗, 𝑟) be defined as follows:

𝐼(𝑖, 𝑗, 𝑟) =

⎧⎪⎨⎪⎩1, if min{𝑝(𝑖, 𝑟), 𝑝(𝑗, 𝑟)} < Σ(𝑟)/𝑑,

0, otherwise.

Random variable 𝐼(𝑖, 𝑗, 𝑟) captures whether or not at least one of the nests 𝑛𝑖 or

𝑛𝑗 has a population less than Σ(𝑟)/𝑑. If this is the case, then we will show that, in

the drop-out stage (Section 3.4.5), the small nest drops out fairly quickly. It could

be the case that both 𝑛𝑖 and 𝑛𝑗 are small, in which case they both drop out quickly.

Also, let random variable 𝑌 (𝑖, 𝑗, 𝑟) be defined as follows:

𝑌 (𝑖, 𝑗, 𝑟) = |𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)| + 𝑚 · 𝐼(𝑖, 𝑗, 𝑟).

We use random variable 𝑌 (𝑖, 𝑗, 𝑟) to represent the gap between the two nests while

both nests are fairly large. When at least one nest drops below the Σ(𝑟)/𝑑 threshold,

the value of 𝑌 (𝑖, 𝑗, 𝑟) defaults to the target value 𝑚. The goal is to show that at some

point either the population gap becomes at least 𝑚, or at least one of the nests has

population less than Σ(𝑟)/𝑑; we show this with high probability in Lemma 3.4.15.

The following simple claim follows by the definition of 𝑌 (𝑖, 𝑗, 𝑟).

Claim 3.4.7. For each pair of nests 𝑛𝑖 and 𝑛𝑗, if 𝑌 (𝑖, 𝑗, 𝑟) < 𝑚 then 𝐼(𝑖, 𝑗, 𝑟) = 0,

𝑝(𝑖, 𝑟), 𝑝(𝑗, 𝑟) ≥ Σ(𝑟)/𝑑, and |𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)| < 𝑚.

Next, in Lemma 3.4.9 we will show that, assuming 𝑌 (𝑖, 𝑗, 𝑟 − 1) is small (that is,

the gap between the nests is less than 𝑚 and both nests are fairly large), the expected

value of the difference between 𝑌 (𝑖, 𝑗, 𝑟) and 𝑌 (𝑖, 𝑗, 𝑟−1) is Ω(1/𝑘3
√
𝑛). In the proof,

we consider two cases: (1) the gap between the nests at time 𝑟− 1 is relatively small,

and (2) the gap between the nests is fairly large (but still smaller than 𝑚). We use

some standard results about the binomial distribution, applied to a restricted case of
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our recruitment process, in case (1), and Lemma 3.4.6 in case (2), in order to show

that in both cases the gap between the nests grows by Ω(1/𝑘3
√
𝑛) in expectation.

Before we proceed with the lemma, we define two methods of generating the

recruitment pairs in round 𝑟. Method 1 is the original recruitment process defined in

Section 3.1, and Method 2 is a slight variation of that recruitment process. We will

show in Claim 3.4.8 that both methods result in the same distribution of successful

recruitment pairs, and hence, the same distribution of executions. Then, we will

use Method 2 in Lemma 3.4.9 to lower bound the expected gap between the new

populations of nests 𝑛𝑖 and 𝑛𝑗, which will also imply a lower bound on the expected

gap in the original case (Method 1).

Method 1: Let 𝑅 be the set of ants that call recruit(·, ·) in round 𝑟 (in Algorithm

7, 𝑅 is always the entire set of ants). Let random variable 𝐵 : 𝑅 → {0, 1} be a

mapping (from ants to booleans) that represents the recruitment bits of the ants

in round 𝑟. Let random variable 𝐺 : 𝑅 → 𝑅 be a mapping (from ants to ants)

such that 𝐺 = 𝑔 uniformly at random among all fixed mappings 𝑔 : 𝑅 → 𝑅; here,

𝐺 represents the recruitment choices of the ants in round 𝑟. Finally, let random

variable 𝑃 : 𝑅 → [1, |𝑅|] be a bijection (from ants to unique integers) such that

𝑃 = 𝑝 uniformly at random among all fixed bijections 𝑝 : 𝑅 → [1, |𝑅|]; here 𝑃

represents the random permutation that determines the order in which ants recruit

in round 𝑟. The random variables 𝐵, 𝐺, and 𝑃 are independent from each other,

and together they determine the set 𝑀 of successful recruitment pairs in round 𝑟 (as

shown in Algorithm 5).

Method 2: Consider the triple (𝐺,𝐵, 𝑃 ) defined in Method 1 and the resulting

set 𝑀 of successful recruitment pairs. Let random variable 𝐾 = {(𝑎, 𝑎′) | (𝑎, 𝑎′) ∈

𝑀, ℓ(𝑎, 𝑟−1), ℓ(𝑎′, 𝑟−1) ∈ {𝑛𝑖, 𝑛𝑗}, ℓ(𝑎, 𝑟−1) ̸= ℓ(𝑎′, 𝑟−1), 𝐵(𝑎) = 𝐵(𝑎′) = 1}. That

is 𝐾 is the subset of 𝑀 that contains all “key” pairs where one ant is from nest 𝑛𝑖, the

other ant is from nest 𝑛𝑗, and both ants are actively recruiting in round 𝑟. Let random

variable 𝑃 ′ : 𝑅 → [1, |𝑅|] be a bijection (from ants to unique integers) such that for

each pair (𝑎, 𝑎′) ∈ 𝐾, independently from all other pairs in 𝐾, with probability 1/2,

𝑃 ′(𝑎) = 𝑃 (𝑎′) and 𝑃 ′(𝑎′) = 𝑃 (𝑎); with the remaining probability 1/2, 𝑃 ′(𝑎) = 𝑃 (𝑎)
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and 𝑃 ′(𝑎′) = 𝑃 (𝑎′). For each ant 𝑎 not involved in a pair in 𝐾, 𝑃 ′(𝑎) = 𝑃 (𝑎). That

is, for each pair of ants in (𝑎, 𝑎′) ∈ 𝐾, with probability 1/2, 𝑃 ′ switches the positions

of the ants 𝑎 and 𝑎′ assigned by 𝑃 . Similarly to Method 1, we determine the set 𝑀 ′

of successful recruitments using the random variables (𝐺,𝐵, 𝑃 ′).

Claim 3.4.8. The set 𝑀 of recruitment pairs resulting from the triple of random

variables (𝐺,𝐵, 𝑃 ) generated by Method 1 is identically distributed to the set 𝑀 ′ of

recruitment pairs resulting from the triple of random variables (𝐺,𝐵, 𝑃 ′) generated

by Method 2.

Proof of Claim. Let 𝑔, 𝑏, and 𝑝1 be fixed values of the random variables 𝐺, 𝐵, and

𝑃 , respectively. Consider an arbitrary fixed recruitment pair (𝑎1, 𝑎2) in the set of key

recruitment pairs generated by (𝑔, 𝑏, 𝑝1). Let 𝑝2 be the fixed mapping from ants to

integers such that 𝑝2(𝑎1) = 𝑝1(𝑎2), 𝑝2(𝑎2) = 𝑝1(𝑎1) and 𝑝2(𝑎
′) = 𝑝1(𝑎

′) for all 𝑎′ ̸= 𝑎1

and 𝑎′ ̸= 𝑎2. That is, 𝑝2 is identical to 𝑝1 except for flipping the positions of ants 𝑎1

and 𝑎2. Therefore, since 𝑏(𝑎1) = 𝑏(𝑎2) = 1, the pair (𝑎2, 𝑎1) must be in the set of key

recruitment pairs generated by (𝑔, 𝑏, 𝑝2).

Consider random variable 𝑃 ′ with respect to flipping the positions of ants 𝑎1

and 𝑎2 (and no other pairs of ants). Based on the definitions above, we have that

Pr [𝑃 ′ = 𝑝1 | 𝐺 = 𝑔,𝐵 = 𝑏, 𝑃 = 𝑝1] = 1/2 (resulting from 𝑃 ′ not switching the po-

sitions of 𝑎1 and 𝑎2) and Pr [𝑃 ′ = 𝑝1 | 𝐺 = 𝑔,𝐵 = 𝑏, 𝑃 = 𝑝2] = 1/2 (resulting from

𝑃 ′ switching the positions of 𝑎1 and 𝑎2). By the definition of 𝑃 , we know that

Pr [𝑃 = 𝑝1 | 𝐺 = 𝑔,𝐵 = 𝑏] = Pr [𝑃 = 𝑝2 | 𝐺 = 𝑔,𝐵 = 𝑏]. Therefore, by the law of

total probability:

Pr [𝑃 ′ = 𝑝1 | 𝐺 = 𝑔,𝐵 = 𝑏]

= Pr [𝑃 ′ = 𝑝1 | 𝐺 = 𝑔,𝐵 = 𝑏, 𝑃 = 𝑝1] · Pr [𝑃 = 𝑝1 | 𝐺 = 𝑔,𝐵 = 𝑏]

+ Pr [𝑃 ′ = 𝑝1 | 𝐺 = 𝑔,𝐵 = 𝑏, 𝑃 = 𝑝2] · Pr [𝑃 = 𝑝2 | 𝐺 = 𝑔,𝐵 = 𝑏]

=

(︂
1

2

)︂
Pr [𝑃 = 𝑝1 | 𝐺 = 𝑔,𝐵 = 𝑏] +

(︂
1

2

)︂
Pr [𝑃 = 𝑝2 | 𝐺 = 𝑔,𝐵 = 𝑏]

= Pr [𝑃 = 𝑝1 | 𝐺 = 𝑔,𝐵 = 𝑏]
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So, with respect to a single recruitment pair, 𝑃 and 𝑃 ′ are distributed identically.

By definition, 𝑃 ′ is formed by a sequence of independent flips of recruitment pairs,

so overall, conditioning on 𝐺 = 𝑔 and 𝐵 = 𝑏, 𝑃 and 𝑃 ′ are distributed identically.

By the law of total probability, we have that (𝐺,𝐵, 𝑃 ′) and (𝐺,𝐵, 𝑃 ) are distributed

identically. The claim follows since the recruitment pairs are given by a deterministic

function of these random variables.

Next, we use Method 2 to lower bound the expected difference between 𝑌 (𝑖, 𝑗, 𝑟)

and 𝑌 (𝑖, 𝑗, 𝑟 − 1). Let 𝑑′ = 28.

Lemma 3.4.9. For each pair of nests 𝑛𝑖 and 𝑛𝑗 such that 𝑌 (𝑖, 𝑗, 𝑟 − 1) < 𝑚, it is

true that:

E [𝑌 (𝑖, 𝑗, 𝑟)] ≥ 𝑌 (𝑖, 𝑗, 𝑟 − 1) +
1

16𝑑′𝑘3
√
𝑛
.

Proof. Fix an arbitrary pair of nests 𝑛𝑖 and 𝑛𝑗 such that 𝑌 (𝑖, 𝑗, 𝑟−1) < 𝑚. By Claim

3.4.7, 𝑝(𝑖, 𝑟 − 1), 𝑝(𝑗, 𝑟 − 1) ≥ Σ(𝑟 − 1)/𝑑. We consider two cases based on the value

of 𝑌 (𝑖, 𝑗, 𝑟 − 1).

Case 1: 𝑌 (𝑖, 𝑗, 𝑟− 1) < 2/(𝑑′𝑘2
√
𝑛). In this case, we will actually show a stronger

result: E [𝑌 (𝑖, 𝑗, 𝑟)] ≥ 𝑌 (𝑖, 𝑗, 𝑟 − 1) + 1/(𝑑′𝑘2
√
𝑛).

We show that determining the successful recruitment pairs based on Method 2

results in an expected growth of the gap between nests 𝑛𝑖 and 𝑛𝑗. By Claim 3.4.8,

the result carries over to the original recruitment process (Method 1) as well.

Let 𝑔, 𝑏, and 𝑝 be fixed values of the random variables 𝐺, 𝐵, and 𝑃 , respectively.

Note that fixing 𝐺, 𝐵, and 𝑃 also fixes the set 𝐾 of key pairs; let 𝑘′ be that fixed

value of 𝐾. Random variable 𝑃 ′ is the only remaining source of randomness that we

analyze next; it determines the order of the ants in each pair in the set 𝑘′ of key pairs.

Therefore, we can examine each fixed recruitment pair not in 𝑘′ and determine the

change in nest populations that this pair causes. That is, for each pair (𝑎, 𝑎′) ̸∈ 𝑘′,

such that ℓ(𝑎, 𝑟 − 1) = 𝑥 and ℓ(𝑎′, 𝑟 − 1) = 𝑦, the population of nest 𝑛𝑥 increases by

one ant with respect to its value at time 𝑟−1, and the population of nest 𝑛𝑦 decreases

by one ant with respect to its value at time 𝑟 − 1. Let 𝑝′(𝑖, 𝑟) and 𝑝′(𝑗, 𝑟) denote the
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populations of nests 𝑛𝑖 and 𝑛𝑗, respectively, after evaluating all fixed recruitment

pairs not in 𝑘′. Without loss of generality, assume 𝑝′(𝑖, 𝑟) ≥ 𝑝′(𝑗, 𝑟).

Consider the 𝑥’th recruitment pair in 𝑘′ (the ordering of the recruitment pairs is

not important here, we use an index 𝑥 only for identifying the pairs). Let random

variable 𝑍𝑥 = −1 if the first ant in the pair is located in nest 𝑛𝑗 at time 𝑟 − 1, and

let 𝑍𝑥 = 1 if the first ant from the pair is located in nest 𝑛𝑖 at time 𝑟 − 1. Random

variable 𝑍𝑥 represents the order of the ants in the 𝑥’th recruitment pair.

Note that, based on the definition of 𝑃 ′, each 𝑍𝑥 is identically and independently

distributed, taking on values −1 and 1 with probability 1/2 each. The sum 𝑍, of

the 𝑍𝑥 random variables is a (shifted) binomial random variable with |𝑘′| trials and

success probability 1/2, and it represents the net number of ants from nest 𝑛𝑗 that

join nest 𝑛𝑖. It is well-known that |𝑍| ≥
√︀
|𝑘′| with constant probability. This can

be proved, for example, using the Paley-Zygmunt inequality (Theorem A.1.8 in the

Appendix). We have E [𝑍2] = |𝑘′| and E [𝑍4] = |𝑘′| + 3|𝑘′|(|𝑘′| − 1) = 3|𝑘′|2 − 2|𝑘′|.

So, by the Paley-Zygmunt inequality:

Pr

[︃
|𝑍| ≥

√︀
|𝑘′|
2

]︃
= Pr

[︂
𝑍2 ≥ |𝑘′|

4

]︂
= Pr

[︂
𝑍2 ≥ E [𝑍2]

4

]︂

≥
(︂

1 − 1

4

)︂2
(︃
E [𝑍2]

2

E [𝑍4]

)︃
≥
(︂

1

2

)︂
|𝑘′|2

3|𝑘′|2 − 2|𝑘′|
≥ 1

6
.

By symmetry, we have that Pr
[︁
𝑍 ≥

√
𝑘′/2

]︁
≥ 1/12. This inequality holds for

any fixed triple (𝑔, 𝑏, 𝑝) of values corresponding to random variables (𝐺,𝐵, 𝑃 ), and

consequently, for any resulting value |𝑘′| of random variable |𝐾|. By the law of total

probability, we have:

Pr

[︃
𝑍 ≥

√︀
|𝑘′|
2

⃒⃒⃒⃒
⃒𝐾 = 𝑘′

]︃
≥ 1

12
. (3.2)

Next, we bound random variable |𝐾|, starting with its expectation. The proba-
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bility distribution here is based on all random variables 𝐵, 𝐺, and 𝑃 .

E [|𝐾|] ≥ 𝑛𝑝(𝑖, 𝑟 − 1)2𝑝(𝑗, 𝑟 − 1)2𝛼(𝑟)

≥ 𝑛

16𝑑4𝑘4
by Lemma 3.4.2 and since 𝑝(𝑖, 𝑟 − 1), 𝑝(𝑗, 𝑟 − 1) ≥ Σ(𝑟 − 1)

𝑑
≥ 1

𝑑𝑘
.

The success of each recruitment is negatively correlated with the success of the

other recruitments, so we can apply a Chernoff bound (see Theorem 4.3 in [46]) to

show that |𝐾| concentrates around its expectation. By the assumption that 𝑘 ≤

64((𝑐 + 7)𝑛/ log 𝑛)1/4 we have E [|𝐾|] = Ω(log 𝑛) and hence:

Pr

[︂
|𝐾| ≥ E [|𝐾|]

2
≥ 𝑛

32𝑑4𝑘4

]︂
≥ 1

2
. (3.3)

By Equations (3.2) and (3.3), and the law of total probability, we get:

Pr

[︂
𝑍 ≥

√
𝑛

8
√

2𝑑2𝑘2

]︂
≥

∞∑︁
|𝑘′|=𝑛/(32𝑑4𝑘4)

Pr

[︃
𝑍 ≥

√︀
|𝑘′|
2

⃒⃒⃒⃒
⃒|𝐾| = |𝑘′|

]︃
· Pr [|𝐾| = |𝑘′|]

≥
(︂

1

12

)︂ ∞∑︁
|𝑘′|=𝑛/(32𝑑4𝑘4)

Pr [|𝐾| = |𝑘′|]

≥
(︂

1

12

)︂
Pr
[︁
|𝐾| ≥ 𝑛

32𝑑4𝑘4

]︁
≥ 1

24
.

Recall that 𝑝′(𝑖, 𝑟) ≥ 𝑝′(𝑗, 𝑟) and 𝑝(·, ·) = 𝑐(·, ·)/𝑛.

Pr

[︂
|𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)| ≥ 1

8
√

2𝑑2𝑘2
√
𝑛

]︂
≥ Pr

[︂
𝑝′(𝑖, 𝑟) − 𝑝′(𝑗, 𝑟)) +

𝑍

𝑛
≥ 1

8
√

2𝑑2𝑘2
√
𝑛

]︂
≥ Pr

[︂
𝑍

𝑛
≥ 1

8
√

2𝑑2𝑘2
√
𝑛

]︂
≥ 1

24
.

By the law of total expectation and by the assumption that 𝑑′ = 28, we have:

E [|𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)|] ≥ 1

192
√

2𝑑2𝑘2
√
𝑛
≥ 3

𝑑′𝑘2
√
𝑛
.

By Claim 3.4.8, the recruitment pairs generated by Method 2 are distributed

identically as the recruitment pairs generated by Method 1. Therefore, the expected
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difference between the populations of nests 𝑛𝑖 and 𝑛𝑗 is also distributed identically in

the two methods. So, in Method 1 we have:

E [𝑌 (𝑖, 𝑗, 𝑟)] ≥ E [|𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)|] ≥ 3

𝑑′𝑘2
√
𝑛
.

By the assumption that 𝑌 (𝑖, 𝑗, 𝑟 − 1) < 2/(𝑑′𝑘2
√
𝑛), we have that E [𝑌 (𝑖, 𝑗, 𝑟)] ≥

𝑌 (𝑖, 𝑗, 𝑟 − 1) + 1/(𝑑′𝑘2
√
𝑛).

Case 2: 𝑌 (𝑖, 𝑗, 𝑟 − 1) ≥ 2/(𝑑′𝑘2
√
𝑛). In this case, since 𝐼(𝑖, 𝑗, 𝑟 − 1) = 0, it must

be the case that |𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1)| ≥ 2/(𝑑′𝑘2
√
𝑛). By the assumption that

𝑝(𝑖, 𝑟 − 1), 𝑝(𝑗, 𝑟 − 1) ≥ Σ(𝑟 − 1)/𝑑, we can apply Lemma 3.4.6. Recall that by the

Cauchy-Schwarz inequality Σ(𝑟 − 1) ≥ 1/𝑘.

E [|𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)|] ≥ |𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1)|
(︂

1 +
Σ(𝑟 − 1)

32

)︂
≥ |𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1)| +

(︂
2

𝑑′𝑘2
√
𝑛

)︂(︂
1

32𝑘

)︂
≥ |𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1)| +

1

16𝑑′𝑘3
√
𝑛
.

By the definition of 𝑌 (𝑖, 𝑗, 𝑟):

E [𝑌 (𝑖, 𝑗, 𝑟)] ≥ E [|𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)|]

≥ |𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1)| +
1

16𝑑′𝑘3
√
𝑛

= 𝑌 (𝑖, 𝑗, 𝑟 − 1) +
1

16𝑑′𝑘3
√
𝑛

since 𝐼(𝑖, 𝑗, 𝑟 − 1) = 0.

Next, we prove a helper lemma that lets us show that the population of any given

large nest (with population proportion larger than Σ(𝑟 − 1)/𝑑) concentrates around

its expectation.

Lemma 3.4.10. For each nest 𝑛𝑖 such that 𝑝(𝑖, 𝑟 − 1) ≥ Σ(𝑟 − 1)/𝑑,

Pr [|𝑝(𝑖, 𝑟) − E [𝑝(𝑖, 𝑟)] | ≤ 𝑚/(128𝑘)] ≥ 1 − 1/𝑛𝑐+6.
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Proof. Consider the successful recruitment pairs in round 𝑟 that involve ants from

nest 𝑛𝑖. The recruitment pairs that involve two ants from nest 𝑛𝑖 do not result in

any change in the population of nest 𝑛𝑖, so we ignore them for the purposes of this

bound. Consider the remaining two types of recruitment pairs: (1) the pairs in which

the first ant is from nest 𝑛𝑖, and (2) the pairs in which the second ant is from nest

𝑛𝑖. Let the number of pairs of the first type be 𝑍1(𝑟) and the number of pairs of the

second type be 𝑍2(𝑟) (both random variables). Note that each of the variables 𝑍1(𝑟)

and 𝑍2(𝑟) can be expressed as a sum of negatively-correlated 0/1 random variables,

where each variable in each sum corresponds to one recruitment pair. For example,

𝑍1(𝑟) is a sum of negatively-correlated 0/1 random variables because the more likely

it is for some ant from nest 𝑛𝑖 to be the first ant in a recruitment pair, the less likely

this is for another ant from nest 𝑛𝑖. Therefore, we can bound each of 𝑍1(𝑟) and 𝑍2(𝑟)

by a Chernoff bound (Theorem 4.3 in [46]).

The number of recruitment pairs of the first type is equal to the total number of

successful recruitment pairs involving ants from nest 𝑛𝑖 minus the recruitment pairs

involving two ants from nest 𝑛𝑖. So, by linearity of expectation, we have:

E [𝑍1(𝑟)] ≥ 𝑐(𝑖, 𝑟 − 1)𝑝(𝑖, 𝑟 − 1)𝛼(𝑟) − 𝑐(𝑖, 𝑟 − 1)𝑝(𝑖, 𝑟 − 1)2𝛼(𝑟)

= 𝑐(𝑖, 𝑟 − 1)𝑝(𝑖, 𝑟 − 1)𝛼(𝑟)(1 − 𝑝(𝑖, 𝑟 − 1))

≥ 𝑛𝑝(𝑖, 𝑟 − 1)2

16
(1 − 1 + 𝑝(𝑗, 𝑟 − 1)) since 𝑝(𝑖, 𝑟 − 1) + 𝑝(𝑗, 𝑟 − 1) ≤ 1

≥ 𝑛Σ(𝑟 − 1)2

16𝑑2

(︂
Σ(𝑟 − 1)

𝑑

)︂
since 𝑝(𝑖, 𝑟 − 1), 𝑝(𝑗, 𝑟 − 1) ≥ Σ(𝑟 − 1)

𝑑

≥ 𝑛

16𝑑3𝑘3
since Σ(𝑟 − 1) ≥ 1

𝑘
.

Similarly (invoking the same results as above), the expected number of recruitment

pairs of the second type is:

E [𝑍2(𝑟)] ≥ 𝑐(𝑖, 𝑟 − 1)Σ(𝑟 − 1)𝛼(𝑟) − 𝑐(𝑖, 𝑟 − 1)𝑝(𝑖, 𝑟 − 1)2𝛼(𝑟) ≥ 𝑛

16𝑑3𝑘3
.

121



Recall that 𝑚 = 128
√︀

(𝑐 + 7) log 𝑛/𝑛. By a Chernoff bound:

Pr
[︁
|𝑍1(𝑟) − E [𝑍1(𝑟)] | > 𝑚𝑛

256𝑘

]︁
≤ 1

𝑛𝑐+7
,

Pr
[︁
|𝑍2(𝑟) − E [𝑍2(𝑟)] | > 𝑚𝑛

256𝑘

]︁
≤ 1

𝑛𝑐+7
.

By the definitions of 𝑍1(𝑟) and 𝑍2(𝑟), we have 𝑐(𝑖, 𝑟) = 𝑐(𝑖, 𝑟− 1) +𝑍1(𝑟)−𝑍2(𝑟).

By linearity of expectation and the triangle inequality:

|𝑐(𝑖, 𝑟) − E [𝑐(𝑖, 𝑟)] |

= |𝑐(𝑖, 𝑟 − 1) + 𝑍1(𝑟) − 𝑍2(𝑟) − 𝑐(𝑖, 𝑟 − 1) − E [𝑍1(𝑟)] + E [𝑍2(𝑟)] |

≤ |𝑍1(𝑟) − E [𝑍1(𝑟)] | + |𝑍2(𝑟) − E [𝑍2(𝑟)] |.

Union-bounding over the events |𝑍1(𝑟) − E [𝑍1(𝑟)] | > 𝑚𝑛/(256𝑘) and |𝑍2(𝑟) −

E [𝑍2(𝑟)] | > 𝑚𝑛/(256𝑘), we get that Pr [|𝑐(𝑖, 𝑟) − E [𝑐(𝑖, 𝑟)] | < 𝑚𝑛/(128𝑘)] ≥ 1 −

1/𝑛𝑐+6. Since 𝑐(𝑖, 𝑟) = 𝑛𝑝(𝑖, 𝑟), the lemma holds.

In the next lemma, we show that, assuming 𝑌 (𝑖, 𝑗, 𝑟 − 1) is small (that is, the

gap between the nests is less than 𝑚 and both nests are fairly large), the probability

that 𝑌 (𝑖, 𝑗, 𝑟) is greater than 5𝑚 is very small (less than 1/𝑛2). In other words, it is

extremely unlikely that 𝑌 (𝑖, 𝑗, 𝑟) grows a lot in a single round.

Lemma 3.4.11. For each pair of nests 𝑛𝑖 and 𝑛𝑗 such that 𝑌 (𝑖, 𝑗, 𝑟 − 1) < 𝑚,

Pr [𝑌 (𝑖, 𝑗, 𝑟) ≥ 5𝑚] ≤ 1/𝑛2.

Proof. Fix an arbitrary pair of nests 𝑛𝑖 and 𝑛𝑗 such that 𝑌 (𝑖, 𝑗, 𝑟−1) < 𝑚. By Claim

3.4.7, 𝑝(𝑖, 𝑟 − 1), 𝑝(𝑗, 𝑟 − 1) ≥ Σ(𝑟 − 1)/𝑑 and |𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1)| < 𝑚. Assume

without loss of generality that 𝑝(𝑖, 𝑟 − 1) ≥ 𝑝(𝑗, 𝑟 − 1).
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By Lemma 3.4.5 applied to both nests 𝑛𝑖 and 𝑛𝑗, we have:

|E [𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)] |

= |(𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1))(1 + 𝛼(𝑟)(𝑝(𝑖, 𝑟 − 1) + 𝑝(𝑗, 𝑟 − 1) − Σ(𝑟 − 1)))|

≤ |2(𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1))| since 𝑝(𝑖, 𝑟 − 1) + 𝑝(𝑗, 𝑟 − 1) ≤ 1, 𝛼(𝑟) ≤ 1

≤ 2𝑚 since 0 ≤ 𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1) ≤ 𝑚.

By Lemma 3.4.10 and by a union bound, with probability at least 1 − 1/𝑛2, it is

true that |𝑝(𝑖, 𝑟) − E [𝑝(𝑖, 𝑟)] | ≤ 𝑚 and |𝑝(𝑗, 𝑟) − E [𝑝(𝑗, 𝑟)] | ≤ 𝑚.

By the triangle inequality, we have:

|𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)|

= |𝑝(𝑖, 𝑟) − E [𝑝(𝑖, 𝑟)] − 𝑝(𝑗, 𝑟) + E [𝑝(𝑗, 𝑟)] + E [𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)] |

≤ |𝑝(𝑖, 𝑟) − E [𝑝(𝑖, 𝑟)] | + |𝑝(𝑗, 𝑟) − E [𝑝(𝑗, 𝑟)] | + |E [𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)] |.

Combining the results above, we get that with probability at least 1 − 1/𝑛2,

|𝑝(𝑖, 𝑟)− 𝑝(𝑗, 𝑟)| ≤ 4𝑚. As a result of round 𝑟, it is also possible that one of the nests

drops below the Σ(𝑟)/𝑑 threshold, resulting in 𝐼(𝑖, 𝑗, 𝑟) = 1. This can add at most 𝑚

more to the value of 𝑌 (𝑖, 𝑗, 𝑟). Therefore, we have Pr [𝑌 (𝑖, 𝑗, 𝑟) ≥ 5𝑚] ≤ 1/𝑛2.

For the following results, we consider the probability distribution over all possible

executions of Algorithm 7.

Next, we use Lemmas 3.4.9 and 3.4.11 in order to prove two properties of the

𝑌 (𝑖, 𝑗, 𝑟) variables over an arbitrary probabilistic execution of Algorithm 7: (1) (pos-

itive drift) whenever the random variable is below the target value, it increases in

expectation by at least some fixed amount, and (2) (bounded jumps) the first time

the random variable exceeds the target value, it does not “overshoot” the target value

by too much.

Lemma 3.4.12 (Positive drift). For each time 𝑟−1 > 0, each pair of nests 𝑛𝑖 and 𝑛𝑗,

and each fixed value 𝑚′ < 𝑚, E [𝑌 (𝑖, 𝑗, 𝑟) | 𝑌 (𝑖, 𝑗, 𝑟 − 1) = 𝑚′] ≥ 𝑚′ + 1/(16𝑑′𝑘3
√
𝑛).
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Proof. Fix an arbitrary time 𝑟−1 > 0, a pair of nests 𝑛𝑖 and 𝑛𝑗, and a value 𝑚′ < 𝑚.

Note that Lemma 3.4.9 holds for an arbitrary time 𝑟−1, such that 𝑌 (𝑖, 𝑗, 𝑟−1) < 𝑚,

regardless of the execution preceding time 𝑟−1. By Lemma 3.4.9 and the law of total

probability, we have that E [𝑌 (𝑖, 𝑗, 𝑟) | 𝑌 (𝑖, 𝑗, 𝑟 − 1) = 𝑚′] ≥ 𝑚′ + 1/(16𝑑′𝑘3
√
𝑛).

Let 𝜏(𝑖, 𝑗) be the first time 𝑟 in which 𝑌 (𝑖, 𝑗, 𝑟) ≥ 𝑚 (or ∞, otherwise).

Lemma 3.4.13 (Bounded jumps). For each pair of nests 𝑛𝑖 and 𝑛𝑗,

Pr [𝑌 (𝑖, 𝑗, 𝜏(𝑖, 𝑗)) ≥ 5𝑚] ≤ 1/𝑛.

Proof. Fix an arbitrary pair of nests 𝑛𝑖 and 𝑛𝑗. Note that Lemma 3.4.11 holds for an

arbitrary time 𝑟−1, such that 𝑌 (𝑖, 𝑗, 𝑟−1) < 𝑚, regardless of the execution preceding

time 𝑟 − 1. Next, we sum over all possible fixed values for 𝜏(𝑖, 𝑗) (from 1 to ∞):

Pr [𝑌 (𝑖, 𝑗, 𝜏(𝑖, 𝑗)) ≥ 5𝑚]

=
∞∑︁
𝑟=1

Pr [𝑌 (𝑖, 𝑗, 𝑟) ≥ 5𝑚 | 𝜏(𝑖, 𝑗) = 𝑟] · Pr [𝜏(𝑖, 𝑗) = 𝑟]

≤
∞∑︁
𝑟=1

Pr [𝑌 (𝑖, 𝑗, 𝑟) ≥ 5𝑚 | 𝜏(𝑖, 𝑗) = 𝑟]

=
∞∑︁
𝑟=1

(Pr [𝑌 (𝑖, 𝑗, 𝑟) ≥ 5𝑚 | 𝑌 (𝑖, 𝑗, 𝑡) < 𝑚 for all 𝑡 ∈ [1, 𝑟 − 1]]

· Pr [𝑌 (𝑖, 𝑗, 𝑡) < 𝑚 for all 𝑡 ∈ [1, 𝑟 − 1]])

=
∞∑︁
𝑟=1

(Pr [𝑌 (𝑖, 𝑗, 𝑟) ≥ 5𝑚 | 𝑌 (𝑖, 𝑗, 𝑟 − 1) < 𝑚]

· Pr [𝑌 (𝑖, 𝑗, 𝑡) < 𝑚 for all 𝑡 ∈ [1, 𝑟 − 1]])

=
∞∑︁
𝑟=1

(Pr [𝑌 (𝑖, 𝑗, 𝑟) ≥ 5𝑚 | 𝑌 (𝑖, 𝑗, 𝑟 − 1) < 𝑚]

·
𝑟−1∏︁
𝑡=1

Pr [𝑌 (𝑖, 𝑗, 𝑡) < 𝑚 | 𝑌 (𝑖, 𝑗, 𝑡− 1) < 𝑚]).

By Lemma 3.4.11, Pr [𝑌 (𝑖, 𝑗, 𝑟) ≥ 5𝑚 | 𝑌 (𝑖, 𝑗, 𝑟 − 1) < 𝑚] ≤ 1/𝑛2. Next, we upper

bound Pr [𝑌 (𝑖, 𝑗, 𝑡) < 𝑚 | 𝑌 (𝑖, 𝑗, 𝑡− 1) < 𝑚]:
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Pr [𝑌 (𝑖, 𝑗, 𝑡) < 𝑚 | 𝑌 (𝑖, 𝑗, 𝑡− 1) < 𝑚]

= 1 − Pr [𝑌 (𝑖, 𝑗, 𝑡) ≥ 𝑚 | 𝑌 (𝑖, 𝑗, 𝑡− 1) < 𝑚]

≤ 1 − Pr

[︂
𝑝(𝑖, 𝑡) <

Σ(𝑡− 1)

𝑑

⃒⃒⃒⃒
𝑌 (𝑖, 𝑗, 𝑡− 1) < 𝑚

]︂
.

Similarly to Lemma 3.4.10, we can express 𝑐(𝑖, 𝑡) as 𝑐(𝑖, 𝑡−1)+𝑍1(𝑡)−𝑍2(𝑡), where

random variables 𝑍1(𝑡) and 𝑍2(𝑡) represent the number of new ants joining nest 𝑛𝑖 in

round 𝑡 and the number of ants recruited away from nest 𝑛𝑖 in round 𝑡, respectively.

In Lemma 3.4.10, we applied a Chernoff bound to each of these variables because each

one can be expressed as the sum of negatively-correlated binary random variables.

Note that under certain conditions, the Chernoff bound is tight up to constants (see

Theorem A.1.7 (reverse Chernoff bound) in the Appendix), so here, we will apply a

reverse Chernoff bound to each of 𝑍1(𝑡) and 𝑍2(𝑡).

So far, we have:

E [𝑍1(𝑡) | 𝑌 (𝑖, 𝑗, 𝑡− 1) < 𝑚] ≥ 𝑛

16𝑑3𝑘3
,

E [𝑍2(𝑡) | 𝑌 (𝑖, 𝑗, 𝑡− 1) < 𝑚] ≥ 𝑛

16𝑑3𝑘3
.

By Theorem A.1.7 and the assumption that 𝑘 ≤ 64((𝑐 + 7)𝑛/ log 𝑛)1/4, we get:

Pr [𝑍1(𝑡) < 1 | 𝑌 (𝑖, 𝑗, 𝑡− 1) < 𝑚] ≥ 1√
𝑛
,

Pr

[︂
𝑍2(𝑡) > 𝑛(𝑝(𝑖, 𝑡− 1) − Σ(𝑡− 1)

𝑑
) | 𝑌 (𝑖, 𝑗, 𝑡− 1) < 𝑚

]︂
≥ 1√

𝑛
.

By a union bound we have that, conditioning on 𝑌 (𝑖, 𝑗, 𝑡−1) < 𝑚, with probability

at least 1/𝑛, both 𝑍1(𝑡) < 1 and 𝑍2(𝑡) > 𝑛(𝑝(𝑖, 𝑟−1)−Σ(𝑟−1)/𝑑), indicating that with

probability at least 1/𝑛, it is true that 𝑐(𝑖, 𝑡) = 𝑐(𝑖, 𝑡−1)+𝑍1(𝑡)−𝑍2(𝑡) ≤ 𝑛Σ(𝑡−1)/𝑑.
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Therefore, since 𝑝(𝑖, 𝑡) = 𝑐(𝑖, 𝑡)/𝑛, we have:

Pr [𝑌 (𝑖, 𝑗, 𝑡) < 𝑚 | 𝑌 (𝑖, 𝑗, 𝑡− 1) < 𝑚]

≤ 1 − Pr

[︂
𝑝(𝑖, 𝑡) <

Σ(𝑡− 1)

𝑑

⃒⃒⃒⃒
𝑌 (𝑖, 𝑗, 𝑡− 1) < 𝑚

]︂
≤ 1 − 1

𝑛
.

Finally, we get:

Pr [𝑌 (𝑖, 𝑗, 𝜏(𝑖, 𝑗)) ≥ 5𝑚] ≤
∞∑︁
𝑟=1

(︂
1

𝑛2

)︂ 𝑟−1∏︁
𝑡=1

(︂
1 − 1

𝑛

)︂
≤ 1

𝑛
.

In order to bound the expected value of 𝜏(𝑖, 𝑗), we use a lemma from [13], which in

turn uses Doob’s Optional Stopping Theorem ([38]). Here, we restate the lemma from

[13]. Intuitively, the following lemma analyzes the expected time until some arbitrary

random variable (derived as a function of the state of a Markov chain) exceeds a fixed

target value. The lemma requires the random variable to satisfy the positive drift

and bounded jumps properties.

Lemma 3.4.14 (Lemma 3.2 in [13]). Let {𝑋𝑟}𝑟 be a Markov chain with finite state

space Ω, and let 𝑓 : Ω → [0, 𝑛] be a function mapping states of the chain to non-

negative integers. Let {𝑌𝑟}𝑟 be the stochastic process over 𝑁 defined by 𝑌𝑟 = 𝑓(𝑋𝑟).

Let 𝑚 ∈ 𝑁 be a “target value”, and let:

𝜏 = inf{𝑟 ∈ N : 𝑌𝑟 ≥ 𝑚}

be the random variable denoting the first time 𝑌𝑟 reaches or exceeds the value 𝑚.

Assume that, for every state 𝑥 ∈ Ω with 𝑓(𝑥) ≤ 𝑚− 1, it holds that:

1. (Positive drift) E [𝑌𝑟+1 | 𝑋𝑟 = 𝑥] ≥ 𝑓(𝑥) + 𝜆 for some 𝜆 > 0.

2. (Bounded jumps) Pr [𝑌𝜏 ≥ 𝛼𝑚 | 𝑋0 = 𝑥] ≤ 𝛼𝑚
𝑛

for some 𝛼 > 1.
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Then, for every state 𝑥 ∈ Ω, it holds that:

E [𝜏 | 𝑋0 = 𝑥] ≤ 2𝛼𝑚

𝜆
.

Next, we would like to apply this lemma to our random variable 𝑌 (𝑖, 𝑗, 𝑟) in order

to bound the value of 𝜏(𝑖, 𝑗). To establish a parallel between Lemma 3.4.14 and our

setting, each state 𝑋𝑟 of the Markov chain in the lemma corresponds to a mapping

from the set of ants to the set of integers {0, · · · , 𝑘}; this mapping represents the

location (nest) of each ant at time 𝑟. In our setting, the function 𝑓 translates the

algorithm state to the value of the variable 𝑌 (𝑖, 𝑗, 𝑟) for a each pair of nests 𝑛𝑖 and

𝑛𝑗 (that is, 𝑌𝑟 corresponds to 𝑌 (𝑖, 𝑗, 𝑟) for nests 𝑛𝑖 and 𝑛𝑗).

We already showed that Lemmas 3.4.12 and 3.4.13 yield the positive drift and

bounded jumps properties for random variable 𝑌 (𝑖, 𝑗, 𝑟), as required by Lemma 3.4.14.

Next, we apply Lemma 3.4.14 to random variable 𝑌 (𝑖, 𝑗, 𝑟), and use a Markov bound

to show that, with high probability, the population gap between each pair of nests

exceeds the 𝑚 threshold within 𝒪(𝑘3 log1.5 𝑛) rounds.

Lemma 3.4.15. Let 𝑟1 = 214𝑑′(𝑐+ 7)(𝑐+ 3)𝑘3 log1.5 𝑛. For each pair of nests 𝑛𝑖 and

𝑛𝑗, Pr [𝑌 (𝑖, 𝑗, 𝑟1) ≥ 𝑚] ≥ 1 − 1/𝑛𝑐+3.

Proof. Fix an arbitrary pair of nests 𝑛𝑖 and 𝑛𝑗. By Lemmas 3.4.12 and 3.4.13, we

can apply Lemma 3.4.14 in order to bound the value of 𝜏(𝑖, 𝑗). In particular, we can

use parameters 𝑚 = 128
√︀

(𝑐 + 7) log 𝑛/𝑛, 𝜆 = 1/(16𝑑′𝑘3
√
𝑛), and 𝛼 = 5. Therefore,

E [𝜏(𝑖, 𝑗)] ≤ 𝛼𝑚

𝜆
≤ 213𝑑′(𝑐 + 7)𝑘3

√︀
log 𝑛.

By a Markov bound, Pr
[︀
𝜏(𝑖, 𝑗) ≥ 214𝑑′(𝑐 + 7)𝑘3

√
log 𝑛

]︀
≤ 1/2. Using (𝑐+3) log 𝑛

repeated independent trials, where each trial is a sequence of 214𝑑′(𝑐+7)𝑘3
√

log 𝑛 algo-

rithm rounds4, we can boost this probability to Pr [𝜏(𝑖, 𝑗) ≥ 𝑟1] ≤ 1/𝑛𝑐+3, indicating

that Pr [𝑌 (𝑖, 𝑗, 𝑟1) ≥ 𝑚] ≥ 1 − 1/𝑛𝑐+3.

4The trials are independent because at the beginning of each trial we do not assume anything
about the value of 𝑌 (𝑖, 𝑗, 𝑟) at the end of the previous trial; it can be arbitrarily small.
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Recall that 𝑑′ = 28.

Corollary 3.4.16. Let 𝑟1 = 214𝑑′(𝑐 + 7)(𝑐 + 3)𝑘3 log1.5 𝑛. For all pairs of nests 𝑛𝑖

and 𝑛𝑗, Pr [𝑌 (𝑖, 𝑗, 𝑟1) ≥ 𝑚] ≥ 1 − 1/𝑛𝑐+2.

Proof. Follows by a union bound from Lemma 3.4.15 since there are at most
(︀
𝑘
2

)︀
<

𝑘2 < 𝑛 pairs of nests.

Corollary 3.4.16 is the key result of Section 3.4.4, and we will use it in Theo-

rem 3.4.1 to analyse the final runtime of Algorithm 7. We will also use the helper

Lemma 3.4.10 in the next section to reason about the concentration properties of the

populations of nests.

3.4.5 Drop-out Stage

In this section, we focus on the gap between each pair of nests once the gap has

reached the 𝑚 = Ω(
√︀

log 𝑛/𝑛) threshold. First, in Lemmas 3.4.17 and 3.4.18 we

show that, once a nest drops below the Σ(𝑟)/𝑑 threshold, it loses all its ants within

𝒪(𝑘 log 𝑛) rounds. Then, we show in Lemma 3.4.19 that, once the gap between two

nests is at least 𝑚, the gap grows with high probability until one of the nests drops

below the threshold of Σ(𝑟)/𝑑. In Corollary 3.4.20, we use a union bound in order to

extend the result of Lemma 3.4.19 to all pairs of nests. Finally, in Theorem 3.4.1, we

show that with high probability, after 𝒪(𝑘 log 𝑛) rounds there is at most one surviving

nest, indicating that the house hunting problem is solved in 𝒪(𝑘3 log1.5 𝑛) rounds (to

grow the gap between all pairs of nests) plus 𝒪(𝑘 log 𝑛) rounds (until all but one nest

drop out).

For the results in this section, except the proof of Theorem 3.4.1, consider a fixed

execution of Algorithm 7 and an arbitrary fixed time 𝑟− 1 > 0 in that execution. We

consider the state variables at time 𝑟− 1 to be fixed, and we consider the probability

distribution over the randomness in the next 𝑟2+1 rounds, where 𝑟2 = 64(𝑐+6)𝑘 log 𝑛.

First, we show that once a nest becomes small (with population proportion less

than Σ(𝑟 − 1)/𝑑), with high probability it remains small in the subsequent rounds.

128



Lemma 3.4.17. For each nest 𝑛𝑖 with 𝑝(𝑖, 𝑟 − 1) < Σ(𝑟 − 1)/𝑑, with probability at

least 1 − 1/𝑛𝑐+5, 𝑝(𝑖, 𝑟′) < Σ(𝑟 − 1)/𝑑 for all times 𝑟′ ∈ [𝑟, 𝑟 + 𝑟2].

Proof. Fix an arbitrary nest 𝑛𝑖 with 𝑝(𝑖, 𝑟 − 1) < Σ(𝑟 − 1)/𝑑. First, we show that

𝑝(𝑖, 𝑟) < Σ(𝑟−1)/𝑑 with probability at least 1−1/𝑛𝑐+6. Consider two possible cases:

Case 1: 𝑝(𝑖, 𝑟− 1) < Σ(𝑟− 1)/(2𝑑). Then, even if all ants successfully recruit, the

nest cannot more than double in size, so 𝑝(𝑖, 𝑟) < Σ(𝑟 − 1)/𝑑.

Case 2: 𝑝(𝑖, 𝑟 − 1) ≥ Σ(𝑟 − 1)/(2𝑑). The expected number of ants from nest 𝑛𝑖

that attempt to recruit in round 𝑟 is:

𝑐(𝑖, 𝑟 − 1)𝑝(𝑖, 𝑟 − 1) ≥ 𝑛(Σ(𝑟 − 1))2

4𝑑2
since 𝑝(𝑖, 𝑟 − 1) ≥ Σ(𝑟 − 1)/(2𝑑).

The recruitment bits are set independently for each ant, so we can apply a Chernoff

bound to bound the number of attempted recruitments by the ants in nest 𝑛𝑖. By the

assumption that 𝑘 ≤ 64((𝑐 + 7)𝑛/ log 𝑛)1/4 and by a Chernoff bound, we have that

with probability at least 1 − 1/𝑛𝑐+7, at most 𝑛(Σ(𝑟 − 1))2/(4.5𝑑2) ants attempt to

recruit in round 𝑟.

The expected the number of ants to be recruited away from nest 𝑛𝑖 is at most:

𝑐(𝑖, 𝑟 − 1) (1 − 𝑝(𝑖, 𝑟 − 1)) Σ(𝑟 − 1)𝛼(𝑟)

≥ 𝑛Σ(𝑟 − 1)

2𝑑

(︂
1 − Σ(𝑟 − 1)

𝑑

)︂
Σ(𝑟 − 1) since

Σ(𝑟 − 1)

𝑑
> 𝑝(𝑖, 𝑟 − 1) ≥ Σ(𝑟 − 1)

2𝑑

≥ 𝑛(Σ(𝑟 − 1))2

2𝑑
− 𝑛(Σ(𝑟 − 1))3

2𝑑2

≥ 𝑛(Σ(𝑟 − 1))2

8𝑑
.

Ants from nest 𝑛𝑖 do not get recruited away from nest 𝑛𝑖 independently, but they

are negatively correlated (the more likely it is for some ant to get recruited away

from nest 𝑛𝑖, the less likely it is for another ant to get recruited away form nest 𝑛𝑖).

Since 𝑘 ≤ 64((𝑐 + 7)𝑛/ log 𝑛)1/4, and by a Chernoff bound, with probability at least

1 − 1/𝑛𝑐+7, at least 𝑛(Σ(𝑟 − 1))2/(2.5𝑑2) ants are recruited away from nest 𝑛𝑖.

By a union bound, with probability at least 1 − 1/𝑛𝑐+6, the number of ants at-
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tempting to recruit is less than the number of ants recruited away from nest 𝑛𝑖, so

the total population of 𝑛𝑖 decreases, indicating 𝑝(𝑖, 𝑟) < Σ(𝑟 − 1)/𝑑.

By a union bound over all 𝑟2 + 1 < 𝑛 rounds, with probability at least 1− 1/𝑛𝑐+5,

𝑝(𝑖, 𝑟′) < Σ(𝑟 − 1)/𝑑 for all times 𝑟′ ∈ [𝑟, 𝑟 + 𝑟2].

In the next lemma, we quantify how fast the population of a nest decreases once

it drops below the Σ(𝑟 − 1)/𝑑 threshold.

Lemma 3.4.18. For nest 𝑛𝑖 with 𝑝(𝑖, 𝑟 − 1) < Σ(𝑟 − 1)/𝑑, with probability at least

1 − 1/𝑛𝑐+4, 𝑐(𝑖, 𝑟 + 𝑟2) = 0.

Proof. Fix an arbitrary nest 𝑛𝑖. We calculate the expected change in the number of

ants in nest 𝑛𝑖 in round 𝑟 by first calculating E [𝑋𝑎
𝑟 ] for some ant 𝑎 in nest 𝑛𝑖. By

Lemma 3.4.4:

E [𝑋𝑎
𝑟 ] = 𝛼(𝑟)(𝑝(𝑖, 𝑟 − 1) − Σ(𝑟 − 1))

≤
(︂

1

16

)︂(︂
Σ(𝑟 − 1)

𝑑
− Σ(𝑟 − 1)

)︂
since 𝑝(𝑖, 𝑟 − 1) < Σ(𝑟 − 1)/𝑑

≤ − 1

64𝑘
since 𝑑 =

4

3
.

Therefore, by linearity of expectation and since the 𝑋𝑎
𝑟 variables of the ants in

nest 𝑛𝑖 are distributed identically:

E [𝑝(𝑖, 𝑟)] = 𝑝(𝑖, 𝑟 − 1) +
1

𝑛

∑︁
{𝑎|ℓ(𝑎,𝑟−1)=𝑖}

E [𝑋𝑎
𝑟 ]

≤ 𝑝(𝑖, 𝑟 − 1)(1 + E [𝑋𝑎
𝑟 ])

≤ 𝑝(𝑖, 𝑟 − 1)

(︂
1 − 1

64𝑘

)︂
.

By Lemma 3.4.17, 𝑝(𝑖, 𝑟′) < Σ(𝑟 − 1)/𝑑 for all times in 𝑟′ ∈ [𝑟, 𝑟 + 𝑟2] with

probability at least 1 − 1/𝑛𝑐+5. Therefore, it is true that E [𝑐(𝑖, 𝑟 + 𝑟2)] < 1/𝑛𝑐+5.

By a Markov bound, nest 𝑛𝑖 has at least one ant with probability at most 1/𝑛𝑐+5.

Union-bounding over the events (1) 𝑝(𝑖, 𝑟′) < Σ(𝑟−1)/𝑑 for all times in 𝑟′ ∈ [𝑟, 𝑟+𝑟2],
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and (2) conditioning on (1), nest 𝑛𝑖 has no ants at time 𝑟 + 𝑟2, we have that, with

probability at least 1 − 1/𝑛𝑐+4, 𝑐(𝑖, 𝑟 + 𝑟2) = 0.

Next, we show that once the gap between two nests is fairly large (larger than 𝑚),

at least one of the nests contains no ants within 𝒪(𝑘 log 𝑛) rounds.

Lemma 3.4.19. For each pair of nests 𝑛𝑖 and 𝑛𝑗 such that 𝑌 (𝑖, 𝑗, 𝑟 − 1) ≥ 𝑚, it is

true that either 𝑝(𝑖, 𝑟 + 𝑟2) = 0 or 𝑝(𝑗, 𝑟 + 𝑟2) = 0 (or both) with probability at least

1 − 1/𝑛𝑐+3.

Proof. Fix an arbitrary pair of nests 𝑛𝑖 and 𝑛𝑗. We consider two cases based on the

𝐼(𝑖, 𝑗, 𝑟 − 1) component of 𝑌 (𝑖, 𝑗, 𝑟 − 1).

Case 1: 𝐼(𝑖, 𝑗, 𝑟 − 1) = 1. Without loss of generality assume 𝑝(𝑖, 𝑟 − 1) < Σ(𝑟 −

1)/𝑑. By Lemma 3.4.18, nest 𝑛𝑖 drops out within 𝑟2 rounds with probability at least

1 − 1/𝑛𝑐+4.

Case 2: 𝐼(𝑖, 𝑗, 𝑟−1) = 0. Therefore, it must be true that |𝑝(𝑖, 𝑟−1)−𝑝(𝑗, 𝑟−1)| ≥

𝑚. Assume without loss of generality that 𝑝(𝑖, 𝑟 − 1) ≥ 𝑝(𝑗, 𝑟 − 1).

By Lemma 3.4.5 applied to both 𝑛𝑖 and 𝑛𝑗, and since 𝑝(𝑖, 𝑟), 𝑝(𝑗, 𝑟) ≥ Σ(𝑟− 1)/𝑑:

E [𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)] ≥ (𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1))

(︂
1 +

Σ(𝑟 − 1)

32

)︂
≥ (𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1))

(︂
1 +

1

32𝑘

)︂
since Σ(𝑟 − 1) ≥ 1/𝑘.

By Lemma 3.4.10:

Pr
[︁
|𝑝(𝑖, 𝑟) − E [𝑝(𝑖, 𝑟)] | ≤ 𝑚

128𝑘

]︁
≥ 1 − 1

𝑛𝑐+6
,

Pr
[︁
|𝑝(𝑗, 𝑟) − E [𝑝(𝑗, 𝑟)] | ≤ 𝑚

128𝑘

]︁
≥ 1 − 1

𝑛𝑐+6
.

Therefore, with probability at least 1−1/𝑛𝑐+5 we have that |𝑝(𝑖, 𝑟)−E [𝑝(𝑖, 𝑟)] | ≤

𝑚/(128𝑘) and |𝑝(𝑗, 𝑟) − E [𝑝(𝑗, 𝑟)] | ≤ 𝑚/(128𝑘).

By the reverse triangle inequality:

|𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)| ≥ |E [𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)] | − |E [𝑝(𝑖, 𝑟)] − 𝑝(𝑖, 𝑟)| − |E [𝑝(𝑗, 𝑟)] − 𝑝(𝑗, 𝑟)|.
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So, with probability at least 1 − 1/𝑛𝑐+5, we have:

|𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)|

≥ (𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1))

(︂
1 +

1

32𝑘

)︂
− 2𝑚

128𝑘

> (𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1))

(︂
1 +

1

64𝑘

)︂
since 𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1) ≥ 𝑚.

So, we have that with probability at least 1−1/𝑛𝑐+5, the value of |𝑝(𝑖, 𝑟)−𝑝(𝑗, 𝑟)|

increases by at least a (1 + 1/(64𝑘)) factor in one round. Union-bounding over all

𝑟2 + 1 < 𝑛 rounds, we get that with probability at least 1 − 1/𝑛𝑐+4, 𝑝(𝑖, 𝑟 + 𝑟2) = 0

or 𝑝(𝑗, 𝑟 + 𝑟2) = 0.

Next, we union-bound over all pairs of nests to show that, with high probability,

in 𝑟2 + 1 rounds there is exactly one nest with a non-zero population.

Corollary 3.4.20. Suppose that for all pairs of nests 𝑛𝑖 and 𝑛𝑗, it is true that

𝑌 (𝑖, 𝑗, 𝑟 − 1) > 𝑚. Then, with probability at least 1 − 1/𝑛𝑐+2, there exists exactly

one nest 𝑛𝑥 such that 𝑝(𝑥, 𝑟 + 𝑟2) > 0.

Proof. By Lemma 3.4.19, for each pair of nests 𝑛𝑖 and 𝑛𝑗 with 𝑌 (𝑖, 𝑗, 𝑟 − 1) > 𝑚,

with probability at least 1 − 1/𝑛𝑐+3, at least one of the nests is empty after 𝑟2 + 1

rounds. We know that 𝑌 (𝑖, 𝑗, 𝑟 − 1) > 𝑚 for all pairs of nests 𝑛𝑖 and 𝑛𝑗. Since there

are at most
(︀
𝑘
2

)︀
< 𝑘2 < 𝑛 pairs of nests, by a union bound, with probability at least

1 − 1/𝑛𝑐+2, for all pairs of nests 𝑛𝑖 and 𝑛𝑗, it is true that either 𝑝(𝑖, 𝑟 + 𝑟2) = 0 or

𝑝(𝑗, 𝑟+ 𝑟2) = 0. Therefore, with probability at least 1−1/𝑛𝑐+2, 𝑝(𝑥, 𝑟+ 𝑟2) > 0 for at

most one nest 𝑛𝑥. Since it is not possible for all nests to have a population proportion

of 0, it must be the case, that, with probability at least 1 − 1/𝑛𝑐+2, there exists one

nest 𝑛𝑥 such that 𝑝(𝑥, 𝑟 + 𝑟2) ̸= 0, and all other nests have a population of 0.

Finally, we are ready to resume the proof of Theorem 3.4.1. We assume an ar-

bitrary probabilistic execution of Algorithm 7. Recall that 𝑟1 = 214𝑑′(𝑐 + 7)(𝑐 +

3)𝑘3 log1.5 𝑛 and 𝑟2 = 64(𝑐 + 6)𝑘 log 𝑛.
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Proof of Theorem 3.4.1. By the assumption that 𝑘 ≤ 64((𝑐 + 7)𝑛/ log 𝑛)1/4, with

probability at least 1− 1/𝑛𝑐+1, in the first round of the algorithm (a round of search-

ing), at least one ant finds a nest with quality 1. Since only ants at nests with quality

1 choose to recruit, at any point, at least one ant is recruiting to a good nest.

Next, we consider the events: (1) 𝑌 (𝑖, 𝑗, 𝑟1) > 𝑚 for all pairs of nests 𝑛𝑖 and 𝑛𝑗,

and (2) conditioning on (1), there exists exactly one nest 𝑛𝑥 such that 𝑝(𝑥, 𝑟1+𝑟2) > 0.

By Corollaries 3.4.16 and 3.4.20, and by the law of total probability, we get that with

probability at least 1 − 1/𝑛𝑐+1, there is exactly one nest with a non-zero population

by time 𝑟1 + 𝑟2 ≤ 222(𝑐 + 7)(𝑐 + 3)𝑘3 log1.5 𝑛 = 𝒪(𝑘3 log1.5 𝑛).

Finally, we consider the events: (1) at least one good nest is found in the first

round of searching, and (2) conditioning on (1), there is exactly one nest with non-

zero population by time 𝑟1 + 𝑟2. By the law of total probability, we get that with

probability at least 1−1/𝑛𝑐, there is exactly one nest with non-zero population by time

𝑟1 + 𝑟2. Therefore, the house hunting problem is solved in 𝒪(𝑘3 log1.5 𝑛) rounds.

3.5 House Hunting under Uncertainty

In the previous section we showed that Algorithm 7 solves the house-hunting problem

in 𝒪(𝑘3 log1.5 𝑛) rounds. This result is somewhat far from the optimal running time of

𝒪(log 𝑛), as demonstrated by our lower bound in Section 3.2 and optimal algorithm

in Section 3.3. The reason why we introduced Algorithm 7 in the first place was to

show that house hunting is solvable by a very simple and natural algorithm that is

not susceptible to small perturbations of the environment parameters. In particular,

the environment parameter we consider is the number of ants at each candidate nest,

and the perturbations are small deviations of these populations from the exact values.

The rest of this section is organized as follows. In Section 3.5.1, we consider a

model of uncertainty where a strong adversary determines the population estimates

of each ant arbitrarily from some range of values. We give counterexamples to show

that Algorithm 6 is not correct and Algorithm 7 is not efficient in this model. Then,

in Section 3.5.2, we define a weaker adversary that chooses a family of distributions
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from which the population estimates are drawn. We show that Algorithm 7 is correct

in this model and we analyze its running time. Finally, in Section 3.5.3, we describe

a density estimation algorithm [83] to provide ants with population estimates, and

show how to compose this algorithm with Algorithm 7.

3.5.1 Algorithms 6 and 7 under a Strong Adversary

Strong adversarial model. Consider the following modification of the model in

Section 3.1: the functions search(), go(·), and recruit(·, ·) return a pair (𝑗, 𝑐𝑗) where

𝑗 is a nest id, 𝑐𝑗 is the number of ants at nest 𝑛𝑗, and 𝑐𝑗 is an arbitrary integer in the

range 𝑐𝑗 ∈ [(1− 𝜖)𝑐𝑗, (1 + 𝜖)𝑐𝑗] for some 𝜖, 0 < 𝜖 < 1. That is, instead of returning the

actual population of the nest, the functions return an arbitrary value in some range

around the actual population.

Example 3.5.1 (Counterexample for Algorithm 6 with uncertainty). Consider an

arbitrary 𝜖 > 1/2 and an arbitrary nest 𝑛𝑖. In the first round of the execution of

Algorithm 6 (a round of searching), by a Chernoff bound, with high probability (at

least 1 − 1/𝑛𝑐 for some constant 𝑐 > 1), 1 < 𝑐(𝑖, 1) < 𝑛; that is, the population of

nest 𝑛𝑖 is more than one ant but not all ants. Since a nest cannot more than double

in size in the second round (or in any other round), we know that in each execution

⌈𝑐(𝑖, 2)/2⌉ ≤ 𝑐(𝑖, 1). In the second round, the adversary is allowed to return any

values in the range [𝑐(𝑖, 2)(1 − 𝜖), 𝑐(𝑖, 2)(1 + 𝜖)] as the population estimates of ants

in nest 𝑛𝑖 (potentially different estimates for different ants). The smallest integer in

this range is ⌈𝑐(𝑖, 2)(1−𝜖)⌉ < ⌈𝑐(𝑖, 2)/2⌉ ≤ 𝑐(𝑖, 1). In the second round, the adversary

returns ⌈𝑐(𝑖, 2)(1 − 𝜖)⌉ to each ant in nest 𝑛𝑖. Then, all ants nest 𝑛𝑖 see a decrease

in population compared to 𝑐(𝑖, 1) and the nest drops out of the competition. The

adversary can do this for each nest and thus cause all nests to drop out in the second

round of the execution. In this counterexample, we have shown that for any 𝜖 > 1/2,

with high probability, the adversary can cause all nests to drop out in the second round

of the execution. Thus, with high probability, at any time in the execution, there are

at least two nests that contain some ants. This contradicts the problem statement,
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which states that, with high probability, starting at some time in the execution there

exists a unique nest that contains all ants.

Example 3.5.2 (Counterexample for Algorithm 7 with uncertainty). Consider an

arbitrary 𝜖 ≥ 1/2. For simplicity, consider the case where there are only two nests

and the number of ants is even. In the first round, by a Chernoff bound, with high

probability (at least 1−1/𝑛𝑐 for some constant 𝑐 > 1) the resulting populations 𝑐(1, 1)

and 𝑐(2, 1) are both within a small constant factor of 𝑛/2. So, with high probability,

the ranges [(1 − 𝜖)𝑐(1, 1), (1 + 𝜖)𝑐(1, 1)] and [(1 − 𝜖)𝑐(2, 1), (1 + 𝜖)𝑐(2, 1)] both include

𝑛/2. In the next round, suppose the adversary returns 𝑛/2 as the population estimate

to all the ants. Since the two nests are close in population and all ants recruit with the

same probability, again by a Chernoff bound, we can show that with high probability

the nest populations still remain within a small constant factor of 𝑛/2. By a union

bound, we can repeat this reasoning over polynomially many rounds in 𝑛 to show

that, with high probability, the populations of both nests remain within a constant

factor of 𝑛/2, so the adversary can cause all ants to recruit with probability 1/2 in

all polynomially many rounds. Therefore, after polynomially many rounds, there is

still not a single winning nest, indicating that for an arbitrary 𝜖 ≥ 1/2, with high

probability, the running time of Algorithm 7 is 𝒪(𝑝𝑜𝑙𝑦(𝑛)) (an exponential increase

compared to the 𝒪(log1.5 𝑛) running time for two nests and no uncertainty).

Both examples above assume 𝜖 is fairly large (at least 1/2). This leaves the

possibility that Algorithms 6 and 7 work well if 𝜖 is very small (small amount of

uncertainty). Consider an extreme case where 𝜖 < 1/𝑛; that is, the estimate 𝑐𝑗 of the

population of nest 𝑛𝑗 is within less than one ant away from the actual population 𝑐𝑗.

Since 𝑐𝑗 is an integer, we are always guaranteed that 𝑐𝑗 = 𝑐𝑗, and both algorithms

behave identically to the model with no uncertainty. At this point, we have no

counterexamples or analysis to identify the exact thresholds (between 1/𝑛 and 1/2)

of 𝜖 for which the algorithms tolerate uncertainty. However, in Theorem 3.5.3, we

show that in the weak adversarial model, even for large 𝜖 (at least 1/2), Algorithm 7

is correct and only a constant factor slower compared to the case of no uncertainty.
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3.5.2 Algorithm 7 under a Weak Adversary

In this section, we restrict the power of the adversary in such a way that the population

estimates are not chosen arbitrarily from a range but from a family of distributions

that satisfy certain properties. Then, we analyze the correctness and running time of

Algorithm 7 under this weak adversarial model.

3.5.2.1 Weak adversarial model

First, we define a family of probability distributions that we use in the definition of

the weak adversarial model. An (𝜖, 𝑐′, 𝑛)-family ℱ of distributions, where 0 < 𝜖 < 1,

𝑐′ > 2, 𝑛 ∈ N, is a set of distributions ℱ = {𝐹𝑥}𝑥∈N, where each 𝐹𝑥 is an 𝑥-variate

distribution. For each 𝑎 ∈ [1, 𝑥] let 𝐹 𝑎
𝑥 denote the marginal probability distribution

of the 𝑎’th element of 𝐹𝑥. Then, for each 𝑎 ∈ [1, 𝑥], the following are satisfied:

1.
∑︀

𝑦∈[(1−𝜖)𝑥,(1+𝜖)𝑥] 𝐹
𝑎
𝑥 (𝑦) ≥ 1 − 1/𝑛𝑐′ ,

2. 𝐹 𝑎
𝑥 has mean 𝑥,

3. the domain of 𝐹 𝑎
𝑥 is [0, 𝑛].

In other words, sampling from distribution 𝐹𝑥 in the (𝜖, 𝑐′, 𝑛)-family of distribu-

tions results in a vector of 𝑥 values, each of which is: (1) in the range [(1−𝜖)𝑥, (1+𝜖)𝑥]

with probability at least 1−1/𝑛𝑐′ , (2) equal to 𝑥 in expectation, and (3) guaranteed to

be in the range [0, 𝑛]. The different values in the vector are not assumed to be chosen

independently. Note that (1) is similar to the definition of the strong adversary in

Section 3.5.1; however, here the distributions from which the adversary chooses the

population estimates are determined ahead of time, at the beginning of the execution,

and depend only on the size of the nest.

Consider the following modification of the model in Section 3.1. For each nest 𝑛𝑗

with population 𝑐𝑗, and for any constant 𝑐′ > 2 and any 𝜖, such that 0 < 𝜖 < 1, let

𝐹𝑐𝑗 be a distribution from a (𝜖, 𝑐′, 𝑛)-family of distributions, and let 𝑦 be a vector of

size 𝑐𝑗 sampled from 𝐹𝑐𝑗 . For each ant 𝑎 in nest 𝑛𝑗, the functions search(), go(·),

and recruit(·, ·) return a pair (𝑗, 𝑐𝑗) where 𝑐𝑗 is the element of the vector 𝑦 that

corresponds to ant 𝑎.
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In other words, with probability at least 1 − 1/𝑛𝑐′ , the estimate 𝑐𝑗 of each ant is

within a range (that depends on 𝜖) around the exact value 𝑐𝑗, the estimate is correct in

expectation, and it is upper bounded by the number 𝑛 of ants. The adversary chooses

the distribution from which the population estimates 𝑐𝑗 are drawn with knowledge

of the actual population 𝑐𝑗 of the nest. Therefore, for different nest populations, the

adversary chooses different distributions. Also, we have not made any independence

assumptions, so it is possible that the adversary chooses population estimates that

are correlated between different ants. One example of such correlation is returning a

larger population estimate to some ant provided that another ant in the same nest

has a large population estimate. This type of correlation is what we observe in the

density estimation algorithm that we will discuss in Section 3.5.3; the more two ants

collide with each other, the more both of their estimates of the population increase.

3.5.2.2 Algorithm 7 in the weak adversarial model

Next, we analyze Algorithm 7 under the weak adversarial model defined above.

We prove the following main result.

Theorem 3.5.3. For any constants 𝑐 and 𝑐′, such that 2 < 𝑐′ < 𝑐, any 𝜖, such that

0 < 𝜖 < 1, and any (𝜖, 𝑐′, 𝑛)-family ℱ of distributions, with probability at least 1 −

1/𝑛𝑐− 1/𝑛𝑐′−2, Algorithm 7 using ℱ solves the HouseHunting problem in the weak

adversarial model in (222(𝑐+7)(𝑐+3)𝑘3 log1.5 𝑛)/(1−𝜖)2 = 𝒪(1/(1−𝜖)2)𝒪(𝑘3 log1.5 𝑛)

rounds.

Proof overview: The proof follows the same structure as the proof in the case

of no uncertainty in Section 3.4.2. In particular, (almost) all results from Section

3.4.2 hold if we condition on the event that the population estimates of all ants for all

rounds in the execution (of a fixed length) lie in the range of a [(1−𝜖), (1+𝜖)] factor of

the true populations. Then, in the proof of Theorem 3.5.3, we bound the probability

of this event (by a union bound) to be at least 1 − 1/𝑛𝑐′−2. Finally, we combine

this result (by the law of total probability) with the result about the correctness and

running time of Algorithm 7 to get that with probability at least 1 − 1/𝑛𝑐 − 1/𝑛𝑐′−2

the HouseHunting problem is solved in the weak adversarial model.
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Next, we fix the following parameters. Fix arbitrary constants 𝑐 and 𝑐′, such that

2 < 𝑐′ < 𝑐, and fix 𝑑 = 4/3, and 𝑑′ = 28. Also, fix an arbitrary 𝜖, 0 < 𝜖 < 1 and an

(𝜖, 𝑐′, 𝑛)-family ℱ of distributions.

The following assumptions and definitions are similar to the ones in Section 3.4.2.

We assume 𝑘 ≤ 64((𝑐 + 7)𝑛/((1 − 𝜖)2 log 𝑛))1/4 (a factor of 1/(1 − 𝜖)2 larger than the

case of no uncertainty). Let random variable 𝑐(𝑖, 𝑟) be the population of nest 𝑛𝑖 at

time 𝑟, 𝑝(𝑖, 𝑟) = 𝑐(𝑖, 𝑟)/𝑛 and Σ(𝑟) =
∑︀𝑘

𝑖=1 𝑝(𝑖, 𝑟)2. Note that in the proofs in Section

3.4.2, the value (or random variable) 𝑝(𝑖, 𝑟) is used to represent two different concepts:

the population proportion of nest 𝑛𝑖 at time 𝑟, and the recruitment probability of ants

in nest 𝑛𝑖 in round 𝑟 + 1. The weak adversarial model affects only the second usage

of 𝑝(𝑖, 𝑟) in the proofs.

In the weak adversarial model, all the ants located in some nest 𝑛𝑖 at some time 𝑟

obtain estimates 𝑒(·, 𝑖, 𝑟+1) of the value of 𝑝(𝑖, 𝑟) in round 𝑟+1 drawn from the 𝐹𝑐(𝑖,𝑟)

distribution (and converted to population proportions by dividing by 𝑛). Based on the

properties of the (𝜖, 𝑐′, 𝑛)-family of distributions and the fact that 𝑐(𝑖, 𝑟) = 𝑛𝑝(𝑖, 𝑟),

we have that, for each ant 𝑎:

1. Pr [𝑒(𝑖, 𝑎, 𝑟 + 1) ∈ [(1 − 𝜖) · 𝑝(𝑖, 𝑟), (1 + 𝜖) · 𝑝(𝑖, 𝑟)]] ≥ 1 − 1/𝑛𝑐′ ,

2. E [𝑒(𝑖, 𝑎, 𝑟 + 1)] = 𝑝(𝑖, 𝑟),

3. 𝑒(𝑎, 𝑖, 𝑟 + 1) ≤ 1.

Note that we do not make independence assumptions, so it is possible that the

adversary chooses population estimates that are correlated between different ants.

In particular, we assume that in a given round 𝑟 and a given nest 𝑛𝑖, there may be

correlations between the population estimates of the ants in nest 𝑛𝑖, but no correla-

tions between the population estimates of ants in different nests and across different

rounds. The independence between estimates across rounds is crucial for our analy-

sis, while the independence between estimates in different nests is just a simplifying

assumption. This assumption is inspired by thinking of the population estimates as

being determined by a distributed randomized algorithm that runs independently at

each nest and in each round.
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First, we prove a simple property that follows from the assumptions above that

we will use in the subsequent proofs.

For each time 𝑟 and each ant 𝑎 such that ℓ(𝑎, 𝑟) = 𝑖, let 𝐸(𝑎, 𝑖, 𝑟 + 1) denote the

event that 𝑒(𝑎, 𝑖, 𝑟 + 1) ∈ [(1 − 𝜖)𝑝(𝑖, 𝑟), (1 + 𝜖)𝑝(𝑖, 𝑟)].

Lemma 3.5.0. For each time 𝑟, each nest 𝑛𝑖, and each ant 𝑎 such that ℓ(𝑎, 𝑟) = 𝑖:

𝑝(𝑖, 𝑟) − 1

𝑛𝑐′−1 ≤ E [𝑒(𝑎, 𝑖, 𝑟 + 1) | 𝐸(𝑎, 𝑖, 𝑟)] ≤ 𝑝(𝑖, 𝑟) +
1

𝑛𝑐′−1 .

Proof. By the law of total expectation, we have:

E [𝑒(𝑎, 𝑖, 𝑟 + 1) | 𝐸(𝑎, 𝑖, 𝑟 + 1)]

=
E [𝑒(𝑎, 𝑖, 𝑟 + 1)] − E

[︀
𝑒(𝑎, 𝑖, 𝑟 + 1) | �̄�(𝑎, 𝑖, 𝑟 + 1)

]︀
· Pr

[︀
�̄�(𝑎, 𝑖, 𝑟 + 1)

]︀
Pr [𝐸(𝑎, 𝑖, 𝑟 + 1)]

.

We have that E [𝑒(𝑎, 𝑖, 𝑟 + 1)] = 𝑝(𝑖, 𝑟), E
[︀
𝑒(𝑎, 𝑖, 𝑟 + 1) | �̄�(𝑎, 𝑖, 𝑟 + 1)

]︀
≤ 1, and

𝑃𝑟 [𝐸(𝑎, 𝑖, 𝑟 + 1)] ≥ 1 − 1/𝑛𝑐′ , so:

𝑝(𝑖, 𝑟) − 1

𝑛𝑐′−1 ≤ E [𝑒(𝑎, 𝑖, 𝑟 + 1) | 𝐸(𝑎, 𝑖, 𝑟 + 1)] ≤ 𝑝(𝑖, 𝑟) +
1

𝑛𝑐′−1 .

Next, we restate the results from Section 3.4.2 and emphasize the differences in the

proofs under the weak adversarial model. Most of the lemma and claim statements

are similar or identical to the ones in Section 3.4.2. Here, we state the new results and

refer to the corresponding results in Section 3.4.2. The lemma/theorem numbering

in this section corresponds to the one in Section 3.4.2.

The main differences between the results in this section and the results in Section

3.4.2 can be classified as two types. First, in all statements and proofs in Section

3.4.2 that use only expected values and linearity of expectation (Lemmas 3.4.4, 3.4.5,

3.4.6, and 3.4.9), we use the bounds in Lemma 3.5.0 instead of the original values of

the expectations of the 𝑝(𝑖, 𝑟) values. This introduces additive error terms of 1/𝑛𝑐′−2

that carry over throughout the statements and proofs until they get subsumed in
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Lemma 3.5.9. Second, for stronger probabilistic results, we first condition on the

event 𝐸(𝑎, 𝑖, 𝑟) for all ants 𝑎 in nest 𝑛𝑖, then fix arbitrarily the population estimates

chosen by the adversary, and use the lower bound 𝑝(𝑖, 𝑟)(1 − 𝜖) of these estimates in

our calculations. Finally, we sum over all possible values of the population estimates

using the law of total probability. The resulting (1 − 𝜖) factors thus appear in the

running time of the algorithm as a 1/(1 − 𝜖)2-factor increase.

For the following results, consider a fixed execution of Algorithm 7 (in the weak

adversarial model) and an arbitrary fixed time 𝑟 − 1 > 0 in that execution. We

assume the state variables at time 𝑟 − 1 to be fixed, and we consider the probability

distribution over the randomness in round 𝑟. Moreover, assume that for each ant 𝑎,

𝑒(𝑎, 𝑖, 𝑟) ∈ [(1 − 𝜖)𝑝(𝑖, 𝑟 − 1), (1 + 𝜖)𝑝(𝑖, 𝑟 − 1)] (note that we are not fixing the value

of 𝑒(𝑎, 𝑖, 𝑟), just its range).

Here we define random variable 𝑋𝑎
𝑟 the same way as in Section 3.4.2. That is, for

each ant 𝑎 and each time 𝑟, let random variable 𝑋𝑎
𝑟 take on values:

∙ 1 if 𝑎 is the first element of a pair in the set of successful recruitments 𝑀 , except

if the pair is (𝑎, 𝑎) (that is, 𝑎 recruits itself),

∙ −1 if 𝑎 is the second element of a pair in the set of successful recruitments 𝑀 ,

except if the pair is (𝑎, 𝑎),

∙ 0 if 𝑎 does not appear in any recruitment pair in the set of successful recruit-

ments 𝑀 , or if (𝑎, 𝑎) ∈ 𝑀 .

Also, as in Section 3.4.2 we define 𝛼(𝑎, 𝑟) = Pr [𝑋𝑎
𝑟 = 1 | 𝑏(𝑎, 𝑟) = 1] and 𝛽(𝑎, 𝑟) =

Pr [𝑋𝑎
𝑟 = −1] (where 𝑏(𝑎, 𝑟) is the recruitment bit of ant 𝑎 in round 𝑟).

Lemma 3.5.2 (Corresponds to Lemma 3.4.2). For each pair of ants 𝑎 and 𝑎′,

𝛼(𝑎, 𝑟) = 𝛼(𝑎′, 𝑟) ≥ 1/16.

Proof sketch. The probability 𝛼(𝑎, 𝑟) is defined with respect to ants that are actively

recruiting in round 𝑟, regardless of how they set their recruitment bits. Therefore,

the same arguments from Lemma 3.4.2 hold here as well.
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Lemma 3.5.3 (Corresponds to Lemma 3.4.3). For each nest 𝑛𝑖:

𝛽(𝑖, 𝑟) = 𝛼(𝑟)
𝑘∑︁

𝑖=1

∑︁
{𝑎|ℓ(𝑎,𝑟)=𝑖}

𝑝(𝑖, 𝑟 − 1)𝑒(𝑎, 𝑖, 𝑟).

Proof sketch. The calculations in the proof are similar to the proof of Lemma 3.4.3.

Lemma 3.5.4 (Corresponds to Lemma 3.4.4). For each nest 𝑛𝑖, we have:

𝛼(𝑟)

(︂
𝑝(𝑖, 𝑟 − 1) − Σ(𝑟 − 1) − 2

𝑛𝑐′−1

)︂
≤ E [𝑋𝑎

𝑟 ] ,

𝛼(𝑟)

(︂
𝑝(𝑖, 𝑟 − 1) − Σ(𝑟 − 1) +

2

𝑛𝑐′−1

)︂
≥ E [𝑋𝑎

𝑟 ] .

Proof. By definition, E [𝑋𝑎
𝑟 ] = Pr [𝑋𝑎

𝑟 = 1] − Pr [𝑋𝑎
𝑟 = −1]. By Lemmas 3.4.2 and

3.5.3:

E [𝑋𝑎
𝑟 ] = 𝛼(𝑟)𝑒(𝑎, 𝑖, 𝑟) − 𝛼(𝑟)

𝑘∑︁
𝑖=1

∑︁
{𝑎|ℓ(𝑎,𝑟−1)=𝑖}

𝑝(𝑖, 𝑟 − 1)𝑒(𝑎, 𝑖, 𝑟).

By Lemma 3.5.0 and by linearity of expectation, it follows that

E [𝑋𝑎
𝑟 ] ≤ 𝛼(𝑟)

(︃
𝑝(𝑖, 𝑟 − 1) +

1

𝑛𝑐′−1 −
𝑘∑︁

𝑖=1

𝑝(𝑖, 𝑟 − 1)

(︂
𝑝(𝑖, 𝑟 − 1) − 1

𝑛𝑐′−1

)︂)︃

= 𝛼(𝑟)

(︃
𝑝(𝑖, 𝑟 − 1) +

1

𝑛𝑐′−1 − Σ(𝑟 − 1) +
𝑘∑︁

𝑖=1

𝑝(𝑖, 𝑟 − 1)

(︂
1

𝑛𝑐′−1

)︂)︃

= 𝛼(𝑟)

(︂
𝑝(𝑖, 𝑟 − 1) − Σ(𝑟 − 1) +

2

𝑛𝑐′−1

)︂
.

Similarly, we can show that E [𝑋𝑎
𝑟 ] ≥ 𝛼(𝑟)(𝑝(𝑖, 𝑟 − 1) − Σ(𝑟 − 1) − 2/𝑛𝑐′−1).

Lemma 3.5.5 (Corresponds to Lemma 3.4.5). For each nest 𝑛𝑖, we have:

E [𝑝(𝑖, 𝑟)] ≤ 𝑝(𝑖, 𝑟 − 1)(1 + 𝛼(𝑟)

(︂
𝑝(𝑖, 𝑟 − 1) − Σ(𝑟 − 1) +

2

𝑛𝑐′−1

)︂
E [𝑝(𝑖, 𝑟)] ≥ 𝑝(𝑖, 𝑟 − 1)(1 + 𝛼(𝑟)

(︂
𝑝(𝑖, 𝑟 − 1) − Σ(𝑟 − 1) − 2

𝑛𝑐′−1

)︂
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Proof Sketch. The proof of Lemma 3.4.5 uses only linearity of expectation and Lemma

3.4.4. Therefore, by following the same calculations and applying Lemma 3.5.4, the

lemma holds.

Lemma 3.5.6 (Corresponds to Lemma 3.4.6). Let 𝑛𝑖 and 𝑛𝑗 be a pair of nests such

that 𝑝(𝑖, 𝑟 − 1), 𝑝(𝑗, 𝑟 − 1) ≥ Σ(𝑟 − 1)/𝑑. Then:

E [|𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)|] ≥ |𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1)|
(︂

1 +
Σ(𝑟 − 1)

32
− 4

𝑛𝑐′−1

)︂
.

Proof Sketch. The proof of Lemma 3.4.6 uses only linearity of expectation and Lemma

3.4.5. Therefore, by following the same calculations and applying Lemma 3.5.5, the

lemma holds.

Let 𝑚 = 128
√︀

(𝑐 + 7) log 𝑛/(𝑛(1 − 𝜖)2) (the value of 𝑚 is a factor of 1/
√︀

(1 − 𝜖)2

larger than in the case of no uncertainty). As in Section 3.4.2, we define random

variables 𝐼(𝑖, 𝑗, 𝑟) and 𝑌 (𝑖, 𝑗, 𝑟) for each time 𝑟 and each pair of nests 𝑛𝑖 and 𝑛𝑗:

𝐼(𝑖, 𝑗, 𝑟) =

⎧⎪⎨⎪⎩1, if min{𝑝(𝑖, 𝑟), 𝑝(𝑗, 𝑟)} < Σ(𝑟)/𝑑,

0, otherwise.

𝑌 (𝑖, 𝑗, 𝑟) = |𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)| + 𝑚 · 𝐼(𝑖, 𝑗, 𝑟).

Claim 3.5.7 (Corresponds to Claim 3.4.7). For each pair of nests 𝑛𝑖 and 𝑛𝑗, if

𝑌 (𝑖, 𝑗, 𝑟) < 𝑚 then 𝐼(𝑖, 𝑗, 𝑟) = 0, 𝑝(𝑖, 𝑟), 𝑝(𝑗, 𝑟) ≥ Σ(𝑟)/𝑑, and |𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)| < 𝑚.

In Section 3.4.2, we define the equivalent Methods 1 and 2 for the recruitment

process. Here, we can use the same definitions, the only difference being that the

distribution of random variable 𝐵 (the recruitment bits of the ants) here is different.

However, note that the only property of the distribution of 𝐵 we used is the fact that

𝐵 is independent from 𝐺, 𝑃 and 𝑃 ′, which is also true here in the weak adversarial

model. Therefore, Claim 3.4.8 holds here as well:
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Claim 3.5.8 (Corresponds to Claim 3.4.8). The set 𝑀 of recruitment pairs resulting

from the triple of random variables (𝐺,𝐵, 𝑃 ) generated by Method 1 is identically

distributed to the set 𝑀 ′ of recruitment pairs resulting from the triple of random

variables (𝐺,𝐵, 𝑃 ′) generated by Method 2.

Lemma 3.5.9 (Corresponds to Lemma 3.4.9). For each pair of nests 𝑛𝑖 and 𝑛𝑗 such

that 𝑌 (𝑖, 𝑗, 𝑟 − 1) < 𝑚, it is true that:

E [𝑌 (𝑖, 𝑗, 𝑟)] ≥ 𝑌 (𝑖, 𝑗, 𝑟 − 1) +
1

32𝑑′𝑘3
√
𝑛
.

Proof Sketch. The same arguments as in Lemma 3.4.9 work here as well with small

modifications and by carrying the error terms of the expectations.

Case 1: When we bound the value of |𝐾| (the number of key pairs where the

first ant is from nest 𝑛𝑖, the second ant is from nest 𝑛𝑗 and both ants are actively

recruiting), we use the fact that ants from nests 𝑛𝑖 and 𝑛𝑗 recruit with probabilities

𝑝(𝑖, 𝑟−1) and 𝑝(𝑗, 𝑟−1). Here, we need to use the estimates of these values: 𝑒(·, 𝑖, 𝑟−1)

and 𝑒(·, 𝑗, 𝑟−1), respectively. Fix arbitrarily the values of 𝑒(·, 𝑖, 𝑟−1) and 𝑒(·, 𝑗, 𝑟−1)

for all ants in nests 𝑛𝑖 and 𝑛𝑗. We know that for each ant in nest 𝑛𝑖, this fixed value is

at least (1−𝜖)𝑝(𝑖, 𝑟−1), and for each ant in nest 𝑛𝑗, the value is at least (1−𝜖)𝑝(𝑗, 𝑟−1).

Once we have fixed the population estimates, the recruitment bits of all ants from

nests 𝑛𝑖 and 𝑛𝑗 are determined independently from each other, so we can use the same

arguments as in the proof of Lemma 3.4.9 to conclude that the expected number of

key pairs is at least 𝑛𝑝(𝑖, 𝑟 − 1)2𝑝(𝑗, 𝑟 − 1)2(1 − 𝜖)2𝛼(𝑟).

Note that we can still apply a Chernoff bound to bound the number of key pairs

because determining the ants’ recruitment bits is still done independently. Therefore,

the number of key pairs can still be represented as a sum of binary pairwise negatively-

correlated random variables and we can apply a Chernoff bound (Theorem 4.3 in [46]).

Since the above arguments hold for any fixed estimates of the populations, by the

law of total probability, they also hold for the distribution of population estimates.

In order for the rest of the calculations to hold in this case, we need to use the

new assumption that 𝑘 ≤ 64((𝑐 + 7𝑛/((1 − 𝜖)2 log 𝑛)))1/4.
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Case 2: Similarly to the proof of Lemma 3.4.9, we use Lemma 3.5.6 to bound

the expectation of |𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)|. Recall that 𝑐′ > 2 and 𝑘 ≤ 64((𝑐 + 7𝑛/((1 −

𝜖)2 log 𝑛)))1/4.

E [|𝑝(𝑖, 𝑟) − 𝑝(𝑗, 𝑟)|] ≥ |𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1)|
(︂

1 +
Σ(𝑟 − 1)

32
− 4

𝑛𝑐′−1

)︂
≥ |𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1)| +

(︂
2

𝑑′𝑘2
√
𝑛

)︂(︂
1

32𝑘
− 4

𝑛𝑐′−1

)︂
≥ |𝑝(𝑖, 𝑟 − 1) − 𝑝(𝑗, 𝑟 − 1)| +

1

32𝑑′𝑘3
√
𝑛
.

Lemma 3.5.10 (Corresponds to Lemma 3.4.10). For each nest 𝑛𝑖 such that 𝑝(𝑖, 𝑟 −

1) ≥ Σ(𝑟 − 1)/𝑑, Pr [|𝑝(𝑖, 𝑟) − E [𝑝(𝑖, 𝑟)] | ≤ 𝑚/(128𝑘)] ≥ 1 − 1/𝑛𝑐+6.

Proof Sketch. The same arguments as in the proof of Lemma 3.4.10 work here with

some small quantitative differences. When we bound the expected values of 𝑍1(𝑟)

and 𝑍2(𝑟) (the number of new ants joining nest 𝑛𝑖 and the number of ants recruited

form nest 𝑛𝑖, respectively), we need to use the lower bound (1 − 𝜖)𝑝(𝑖, 𝑟 − 1) of

the recruitment probability 𝑒(·, 𝑖, 𝑟), similarly to the proof of Lemma 3.5.9. The

calculations still hold due to the increased new value of 𝑚.

Similarly to the proof of Lemma 3.5.9, we can apply a Chernoff bound to the

random variables 𝑍1(𝑟) and 𝑍2(𝑟) because they can still be expressed as sums of

pairwise negatively correlated binary random variables.

Lemma 3.5.11 (Corresponds to Lemma 3.4.11). For each pair of nests 𝑛𝑖 and 𝑛𝑗

such that 𝑌 (𝑖, 𝑗, 𝑟 − 1) < 𝑚, Pr [𝑌 (𝑖, 𝑗, 𝑟) ≥ 5𝑚] ≤ 1/𝑛2.

Proof Sketch. The proof of Lemma 3.4.11 holds here as well.

For the following results, we consider the probability distribution over all possible

executions of Algorithm 7 in the weak adversarial model. Since the following results

apply to the entire probabilistic execution (as opposed to a distribution based on a

single-round transition), we need the independence between the population estimates
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of the ants across different rounds. In particular, we condition on the single-round

results and then use the law of total probability to show they hold for the entire

probabilistic execution.

Let 𝐸(𝑟) denote the event that for all nests 𝑛𝑖 and all ants 𝑎 such that ℓ(𝑎, 𝑟) = 𝑖,

𝑒(𝑎, 𝑖, 𝑟) ∈ [(1 − 𝜖)𝑝(𝑖, 𝑟 − 1), (1 + 𝜖)𝑝(𝑖, 𝑟 − 1)].

Lemma 3.5.12 (Corresponds to Lemma 3.4.12). For each time 𝑟 − 1 > 0, each

pair of nests 𝑛𝑖 and 𝑛𝑗, and each fixed value 𝑚′ < 𝑚, conditioning on event 𝐸(𝑟),

E [𝑌 (𝑖, 𝑗, 𝑟) | 𝑌 (𝑖, 𝑗, 𝑟 − 1) = 𝑚′] ≥ 𝑚′ + 1/(32𝑑′𝑘3
√
𝑛).

Proof Sketch. The proof of Lemma 3.4.11 holds here as well, after adding the extra

conditioning on event 𝐸(𝑟).

Lemma 3.5.13 (Corresponds to Lemma 3.4.13). For each pair of nests 𝑛𝑖 and 𝑛𝑗,

conditioning on 𝐸(𝑟′) for all rounds 𝑟′ ∈ [1, 𝜏(𝑖, 𝑗)], Pr [𝑌 (𝑖, 𝑗, 𝜏(𝑖, 𝑗)) ≥ 5𝑚] ≤ 1/𝑛.

Proof Sketch. The same arguments as in the proof of Lemma 3.4.13 work here with

some small quantitative differences. When we bound the expected values of 𝑍1(𝑡)

and 𝑍2(𝑡) (the number of new ants joining nest 𝑛𝑖 and the number of ants recruited

form nest 𝑛𝑖, respectively), we need to use the lower bound (1 − 𝜖)𝑝(𝑖, 𝑟 − 1) of

the recruitment probability 𝑒(·, 𝑖, 𝑟), similarly to the proof of Lemma 3.5.9. The

calculations still hold due to the increased new value of 𝑚.

Lemma 3.5.15 (Corresponds to Lemma 3.4.15). For each pair of nests 𝑛𝑖 and 𝑛𝑗,

conditioning on event 𝐸(𝑟′) for all rounds 𝑟′ ∈ [1, 𝑟1], Pr [𝑌 (𝑖, 𝑗, 𝑟1) ≥ 𝑚] ≥ 1−1/𝑛𝑐+3,

where 𝑟1 = (214𝑑′(𝑐 + 7)(𝑐 + 3)𝑘3 log1.5 𝑛)/(1 − 𝜖)2.

Proof Sketch. The proof of Lemma 3.4.15 holds here as well, using the new increased

values of 𝑚 and 𝑟1, and conditioning on event 𝐸(𝑟′) for all rounds 𝑟′ ∈ [1, 𝑟1]. In

order to apply Lemma 3.4.14 from [11], we need the independence of the population

estimates of the ants across different rounds.

Corollary 3.5.16 (Corresponds to Corollary 3.4.16). Let 𝑟1 = 214𝑑′(𝑐 + 7)(𝑐 +

3)𝑘3 log1.5 𝑛. For all pairs of nests 𝑛𝑖 and 𝑛𝑗, conditioning on event 𝐸(𝑟′) for all

rounds 𝑟′ ∈ [1, 𝑟1], Pr [𝑌 (𝑖, 𝑗, 𝑟1) ≥ 𝑚] ≥ 1 − 1/𝑛𝑐+2.
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Let 𝑟2 = 64(𝑐 + 6)𝑘 log 𝑛/(1 − 𝜖)2. For the following results, except the proof of

Theorem 3.5.3, consider a fixed execution of Algorithm 7 and an arbitrary fixed time

𝑟− 1 > 0 in that execution. We consider the state variables at time 𝑟− 1 to be fixed,

and we consider the probability distribution over the randomness in the next 𝑟2 + 1

rounds.

Lemma 3.5.17 (Corresponds to Lemma 3.4.17). For each nest 𝑛𝑖 with 𝑝(𝑖, 𝑟 − 1) <

Σ(𝑟− 1)/𝑑, conditioning on event 𝐸(𝑟′) for all rounds 𝑟′ ∈ [𝑟, 𝑟 + 𝑟2], with probability

at least 1 − 1/𝑛𝑐+5, 𝑝(𝑖, 𝑟′) < Σ(𝑟 − 1)/𝑑 for all times 𝑟′ ∈ [𝑟, 𝑟 + 𝑟2].

Proof Sketch. The same arguments as in the proof of Lemma 3.4.13 work here by

using (1 − 𝜖)𝑝(𝑖, 𝑟 − 1) as a bound for the recruitment probability 𝑒(·, 𝑖, 𝑟), similarly

to the proof of Lemma 3.5.9. The calculations still hold due to the new assumption

of the relationship between 𝑛 and 𝑘 (𝑘 ≤ 64((𝑐 + 7𝑛/((1 − 𝜖)2 log 𝑛)))1/4).

Lemma 3.5.18 (Corresponds to Lemma 3.4.18). For each nest 𝑛𝑖 with 𝑝(𝑖, 𝑟 − 1) <

Σ(𝑟− 1)/𝑑, conditioning on event 𝐸(𝑟′) for all rounds 𝑟′ ∈ [𝑟, 𝑟 + 𝑟2], with probability

at least 1 − 1/𝑛𝑐+4, 𝑐(𝑖, 𝑟 + 𝑟2) = 0.

Proof Sketch. The proof of Lemma 3.4.18 holds here as well.

Lemma 3.5.19 (Corresponds to Lemma 3.4.19). For each pair of nests 𝑛𝑖 and 𝑛𝑗

such that 𝑌 (𝑖, 𝑗, 𝑟−1) ≥ 𝑚, conditioning on event 𝐸(𝑟′) for all rounds 𝑟′ ∈ [𝑟, 𝑟+ 𝑟2],

with probability at least 1−1/𝑛𝑐+3, either 𝑝(𝑖, 𝑟+ 𝑟2) = 0 or 𝑝(𝑗, 𝑟+ 𝑟2) = 0 (or both).

Proof Sketch. The proof of Lemma 3.4.19 holds here as well.

Corollary 3.5.20 (Corresponds to Corollary 3.4.20). Suppose that for all pairs of

nests 𝑛𝑖 and 𝑛𝑗, it is true that 𝑌 (𝑖, 𝑗, 𝑟 − 1) > 𝑚. Then, conditioning on event 𝐸(𝑟′)

for all rounds 𝑟′ ∈ [𝑟, 𝑟 + 𝑟2], with probability at least 1 − 1/𝑛𝑐+2, there exists exactly

one nest 𝑛𝑥 such that 𝑝(𝑥, 𝑟 + 𝑟2) > 0.

Finally, we are ready to resume the proof of Theorem 3.4.1. We assume an ar-

bitrary probabilistic execution of Algorithm 7. Recall that 𝑟1 = (214𝑑′(𝑐 + 7)(𝑐 +

3)𝑘3 log1.5 𝑛)/(1 − 𝜖)2 and 𝑟2 = 64(𝑐 + 6)𝑘 log 𝑛/(1 − 𝜖)2.
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Proof of Theorem 3.5.3. Following the same arguments as in the proof of Theorem

3.4.1, we can conclude that, with probability at least 1− 1/𝑛𝑐, conditioning on event

𝐸(𝑟′) for all rounds 𝑟′ ∈ [1, 𝑟1+𝑟2], there is exactly one nest with non-zero population

by time 𝑟1 + 𝑟2.

Consider the events: (1) event 𝐸(𝑟′) for all rounds 𝑟′ ∈ [1, 𝑟1 + 𝑟2], and (2)

conditioning on event 𝐸(𝑟′) for all rounds 𝑟′ ∈ [1, 𝑟1 + 𝑟2], there is exactly one nest

with non-zero population by time 𝑟1 + 𝑟2. By a union bound over all ants 𝑎 and all

rounds 𝑟′ ∈ [1, 𝑟1 + 𝑟2] (note that 𝑟1 + 𝑟2 < 𝑛), the probability of event (1) is at

least 1− 1/𝑛𝑐′−2. By the law of total probability (with respect to events (1) and (2)),

with probability at least 1 − 1/𝑛𝑐 − 1/𝑛𝑐′−2, there is exactly one nest with non-zero

population by time 𝑟1 + 𝑟2. Therefore, with probability at least 1 − 1/𝑛𝑐 − 1/𝑛𝑐′−2

the house hunting problem is solved in 𝒪(1/(1 − 𝜖)2)𝒪(𝑘3 log1.5 𝑛) rounds.

3.5.3 Composing Algorithm 7 and Density Estimation [83]

We showed that Algorithm 7 is correct and fairly efficient in the weak adversarial

model. One way to apply this result is to compose Algorithm 7 with a “subroutine”

for population estimation whose guarantees match the assumptions of the weak ad-

versarial model. Next, we briefly describe such a population estimation subroutine

[83], referred to as a density estimation algorithm, and state its guarantees. Then,

we compose this density estimation algorithm with Algorithm 7 and use Theorem

3.5.3 to conclude that the resulting composition solves the HouseHunting problem

correctly and efficiently.

3.5.3.1 Density Estimation [83]

Consider 𝑛 ants, positioned uniformly at random at the points of a torus with area

𝐴. The density of ants is defined to be 𝑑 = 𝑛/𝐴. The density estimation algorithm

involves each ant counting how many times it collides with other ants while randomly

walking in the grid. The goal is for each ant to compute a good estimate of 𝑑 based

only on the number of such collisions (and the number of random steps it took).

Musco et al. [83] show that if each ant walks for 𝑡 steps and computes the number of

collisions 𝑥, then the following theorem holds.

147



Theorem 3.5.21. After running for 𝑡 rounds, assuming 𝑡 ≤ 𝐴, the density estimation

algorithm returns 𝑑 such that:

1. 𝑑 = 𝑥/𝑡 is an unbiased estimator of 𝑑 (E
[︁
𝑑
]︁

= 𝑑),

2. For arbitrary 𝜖 and 𝛿, such that 0 < 𝜖, 𝛿 < 1, if 𝑡 = Θ
(︁

log(1/𝛿) log log(1/𝛿) log(1/𝑑𝜖)
𝑑𝜖2

)︁
,

then Pr
[︁
(1 − 𝜖)𝑑 ≤ 𝑑 ≤ (1 + 𝜖)𝑑

]︁
≥ 1 − 𝛿.

The above result does not imply that the density estimates of different ants are

determined independently from each other. In fact, these estimates are positively

correlated because the more two ants collide with each other, the higher both of their

density estimates are.

Note that this result also implies that if each ant knows the area 𝐴 and calculates

the density estimate 𝑑 using the random walking strategy, it can estimate the total

number of ants 𝑛 located in the area/nest. Therefore, assuming each candidate nest

is of known area, this algorithm can be used to estimate the population of ants at the

nest (the estimate is 𝑑 ·𝐴). From a biological perspective, it is reasonable to assume

that ants know the approximate area of a nest because they use that information to

assess the quality of the nest.

3.5.3.2 Composing Density Estimation and House Hunting

In order to match the guarantees of the density estimation algorithm with the

assumptions of the weak adversary, we need to make the following assumptions. For

any constants 𝑐 and 𝑐′, such that 2 < 𝑐′ < 𝑐, for any 𝜖, such that 0 < 𝜖 < 1, and

for any 𝛿 such that 0 < 𝛿 < 1 and 𝛿 ≤ 1/𝑛𝑐′ , consider an instance of the density

estimation algorithm with the following properties:

∙ Density estimation runs for 𝑡 = Θ
(︁

log(1/𝛿) log log(1/𝛿) log(1/𝑑𝜖)
𝑑𝜖2

)︁
rounds5. This as-

sumption ensures that density estimation runs for sufficiently many rounds, so

that Pr
[︁
𝑑 ∈ [(1 − 𝜖)𝑑, (1 + 𝜖)𝑑]

]︁
≥ 1 − 𝛿.

∙ The population estimate 𝐴 · 𝑑 is at most 𝑛. This assumption is not necessarily

satisfied in each execution of density estimation, however, we only need it for
5These are rounds from the density estimation execution, which we consider separately from the

rounds in the house hunting execution. In fact, later we ignore the density estimation rounds.
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convenience in composing density estimation with house hunting6. Moreover,

from a biological perspective, ants are aware of the colony size at any given

point, so they would not estimate the population of a nest to be larger than the

total colony size.

Suppose that an instance of density estimation, satisfying the assumptions above,

runs for each nest in each round of house hunting. That is, in each round and for each

each nest 𝑛𝑗 with population 𝑐𝑗, the density estimation subroutine returns a collection

of values (one for each ant in nest 𝑛𝑗), chosen from the multivariate distribution 𝐹𝑐𝑗

in the (𝜖, 𝑐′, 𝑛)-family of distributions. The resulting density estimates are returned to

the ants via the calls to the functions search(), go(·), and recruit(·, ·). The return

value 𝑑 of density estimation corresponds to the return value 𝑐𝑗 of these functions. The

assumptions above, together with the guarantees of density estimation, ensure that

for each nest 𝑛𝑗 with population 𝑐𝑗, the return value (𝑗, 𝑐𝑗) of the functions satisfies:

(1) Pr [𝑐𝑗 ∈ [(1 − 𝜖)𝑐𝑗, (1 + 𝜖)𝑐𝑗]] ≥ 1 − 1/𝑛𝑐′ , (2) E [𝑐𝑗] = 𝑐𝑗, and (3) 𝑐𝑗 ≤ 𝑛. These

guarantees match the three assumptions of the weak adversarial model (in particular,

the definition of the (𝜖, 𝑐′, 𝑛)-family of distributions). Moreover, this composition of

density estimation and house hunting ensures that the population estimates of ants

in different nests and different rounds are independent because they are the result

of independent executions of density estimation. Since the estimates resulting from

a single execution of density estimation are not guaranteed to be independent, we

assume arbitrary correlation between the estimates of ants in the same nest and the

same round.

To compose the density estimation algorithm and Algorithm 7, we ignore the

running time of density estimation and assume an instance of it (satisfying the as-

sumptions above) runs at the beginning of each round of the execution of Algorithm

7 for each candidate nest and each ant. The resulting density estimates can then

be used as population estimates in the same round of the execution of Algorithm 7.
6To compose density estimation and house hunting without this assumption, we can choose some

constant upper bounds for 𝜖 and for each 𝑝(𝑖, 𝑟), for example, 𝜖 < 1/8 and 𝑝(𝑖, 𝑟) < 3/4. In this case,
the ants’ population estimates are guaranteed to be at most 𝑛 with high probability. Furthermore,
once a nest has a population of at least 3𝑛/4, the recruitment probabilities of the ants in the nest
are high enough to ensure convergence within 𝒪(log 𝑛) rounds.

149



Thus, the following result is a direct corollary of Theorem 3.5.3.

Corollary 3.5.22. For any constants 2 < 𝑐′ < 𝑐, and any 𝜖, such that 0 < 𝜖, 𝛿 < 1,

with probability at least 1 − 1/𝑛𝑐 − 1/𝑛𝑐′−2, Algorithm 7, composed with the density

estimation algorithm in [83], solves the HouseHunting problem in (222(𝑐 + 7)(𝑐 +

3)𝑘3 log1.5 𝑛)/(1 − 𝜖)2 = 𝒪(𝑘3 log1.5 𝑛/(1 − 𝜖)2) rounds.

3.6 Discussion

In the previous section, we discussed the differences between Algorithms 6 and 7

in terms of their resilience to perturbations in the algorithm parameters. Here, we

interpret the running times of our two algorithms in terms of efficiency and optimality,

and suggest a possible implication of our results.

3.6.1 Running times of our House Hunting Algorithms

First, note that Algorithm 6 is optimal with respect to the model in Section 3.1, as

evidenced by the lower bounds in Section 3.2. However, Algorithm 6 exhibits some

unnatural and non-ant-like properties, like extreme dependence on synchrony and

exact counting of ants at candidate nests. One way to address this mismatch is to

weaken our model to not provide ants with the exact number of ants at a nest, as we

did in Section 3.5. As we weaken the model, potential extensions of our work would

include better lower bounds for the new models.

Next, consider the running time of Algorithm 7. The algorithm performs well

in an environment with uncertainty, however, our analysis of its running time is

not tight. Although we have no results indicating what the optimal time for house

hunting is in the weaker model that includes uncertainty, based on simulations, we

know that our analysis of the running time of Algorithm 7 exceeds its actual running

time by at least a factor of 𝑘. In fact, we believe the running time of Algorithm

7 is 𝒪(𝑘 log 𝑛) for the following informal reasons. Consider the populations of ants

at nests after the first round and the corresponding recruitment probabilities. Each
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nest is expected to receive about 𝑛/𝑘 ants in expectation, resulting in recruitment

probabilities of approximately 1/𝑘 for each ant. Therefore, the expected time until

some nest becomes large (contains a constant fraction of the population) and starts

recruiting ants at a constant rate is approximately 𝒪(𝑘). As we saw in the analysis of

the lower bound, the log 𝑛 factor is usually necessary to ensure that eventually all the

ants are located in the same nest. It is also useful in establishing results with high

probability. The next section outlines a few modifications to Algorithm 7 to improve

its efficiency, at the expense of strengthening the model.

3.6.2 Connection to Population Protocols

Finally, it is worth mentioning a (potentially-surprising) connection between our Al-

gorithm 7 and algorithms for reaching consensus in population protocols. Briefly, in

population protocols, each of the 𝑛 agents interacts with a uniformly selected group

of other agents in each round. Various problems have been studied in this setting

[8], including consensus and leader election. The typical metrics considered in the

analysis of population protocols are time and space complexity, where the space com-

plexity is usually expressed in the number of states each agent needs to encode and

execute the algorithm. The 3-majority dynamic is a consensus protocol in which ini-

tially each agent starts with an opinion and the goal is for all agents to converge to

the same opinion (not unlike agreeing on a single nest). In each round, each agent

interacts with three agents and adopts the majority opinion among them, or an arbi-

trary opinion if all three are different. The best known analysis of this dynamic has

running time of 𝒪(𝑘3 log 𝑛) [13] rounds until all agents agree on a single opinion. A

similar result [11] states that in 𝒪(𝑘 log 𝑛) rounds all agents converge to the majority

opinion, provided an initial gap of approximately Ω(
√
𝑛𝑘 log 𝑛) votes in favor of the

majority opinion.

It is not obvious how to translate between our model and the population protocols

model; however, it is interesting to note that both Algorithm 7 and the 3-majority

dynamic have the same expected change of a single opinion over a single round:

E [𝑐(𝑖, 𝑟 + 1)] = Θ(𝑐(𝑖, 𝑟)(1+𝑐(𝑖, 𝑟)−Σ(𝑟))). Other properties of the random variables
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corresponding to the populations of nests are also similar, for example, they are

pairwise negatively correlated. We believe our analysis can be used to improve the

running time of the 3-majority dynamic from cubic in 𝑘 to quadratic in 𝑘. It remains

to see whether a running time of 𝒪(𝑘 log 𝑛) rounds is achievable for both algorithms.

3.7 Open Problems

Extensions to the House Hunting Model. For the sake of analysis, we have

made many simplifying assumptions about the house-hunting process. We are con-

fident that some of these assumptions can be weakened to make the model more

realistic and natural. Some obvious modifications include assuming ants know only

an approximation of 𝑛, allowing values of 𝑘 larger than 𝒪(𝑛/ log 𝑛), and allowing

non-binary nest qualities, variability in the ants’ quality sensing, along with some

measure of algorithmic performance based on the quality of the chosen nest. Distin-

guishing between direct transport and tandem runs may also be interesting, paired

with a more fine-grained runtime analysis.

Additionally, real ants can only assess nest quality and population approximately.

For example, they may estimate nest size (one measure of quality) by randomly walk-

ing within the nest and counting how many times they cross their previous path [80].

They seem to estimate nest population by measuring encounter rates with other ants,

with a higher encounter rate indicates a higher population at the nest [59, 93]. We

already discussed the correctness and performance of the house hunting algorithm

under uncertainty in estimating the population of a nest. Adding noisy measure-

ments to the other components of our model and designing algorithms that handle

this noise would be a very interesting future direction. It may even be possible to

explicitly model lower level behavior and implement subroutines for nest assessment,

recruitment, and search which give various runtime and error guarantees.

Extensions to the House Hunting Algorithms. We believe that Algorithm

7 may be a good starting point for work on more realistic house-hunting models.
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Below we discuss some interesting possible extensions to the algorithm. Some seem

to simply require a more involved analysis, while others seem to require trade-offs in

the algorithm’s running time and its level of simplicity.

∙ Solving house hunting faster: We conjecture that the 𝒪(𝑘3 log1.5 𝑛) run-

time of Algorithm 7 can be improved to 𝒪(𝑘 log 𝑛), which is required because,

on average each nest initially contains 𝑛/𝑘 ants, so ants only recruit with prob-

ability 1/𝑘. Therefore, 𝒪(𝑘) time is required to amplify population gaps by a

constant factor. Ideally, ants would all recruit with a probability lower bounded

by a constant, but still linearly dependent on the nest populations. This would

allow convergence in 𝒪(log 𝑛) rounds. If ants keep track of the round number,

they can map this to an estimate 𝑘(𝑟) of how many competing nests remain, al-

lowing them to recruit at rate 𝒪(𝑐(𝑖, 𝑟)/𝑛·𝑘(𝑟)). We believe that such a strategy

should yield a relatively natural algorithm converging in 𝒪(log𝑐 𝑛) rounds.

∙ Extend algorithm analysis to population protocols: As mentioned in

Section 3.6, the expected behavior of Algorithm 7 is very close to a well-known

population protocol for solving consensus: the 3-majority dynamic. We conjec-

ture that our analysis extends to the 3-majority dynamic as well, improving its

running time by a factor of 𝑘. It remains to see if a running time of 𝒪(𝑘 log 𝑛)

is achievable for both our algorithm and the 3-majority dynamic.

∙ Non-binary nest qualities: Assuming a real-valued nest quality in the

range (0, 1) affects the correctness of Algorithm 7 because ants no longer have

the notion of a good nest. However, it should be possible to incorporate the

quality of the nest into the recruitment probability in order make the algorithm

converge to a high-quality nest, without significantly affecting the runtime.

∙ Approximate nest assessment and knowledge of n: Another direction

in making the house hunting algorithm closer to real ants is incorporating nest

assessment subroutines (similar to density estimation [83]) and using nest qual-

ities in the algorithm. A nest assessment subroutine would provide each ant
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with an approximation of the quality of the nest (area, amount of light, etc.)

and this value can be incorporated in the probability of recruitment for each

ant. An extra challenge in this process would be to provide ants only with

approximate information about the size of the colony 𝑛.

∙ Other uncertainty models: In Section 3.5, we defined the weak adversarial

model with the goal of matching the guarantees of the density estimate al-

gorithm in [83], and thus, being able to compose house hunting with density

estimation. However, we can also define various other adversarial models that

determine the level of uncertainty in house hunting. For example, one possi-

bility is an adversary that guarantees the population estimates are correct in

expectation and are independent for all the ants (unlike the weak adversarial

model in which population estimates are allowed to be correlated). Our conjec-

ture is that in this alternative model, the proof and running time of Algorithm

7 remain the same as in the model with no uncertainty, and do not suffer the

1/(1 − 𝜖)2-factor increase in running time as in the weak adversarial model.

∙ Fault tolerance: Algorithm 7 should support some degree of fault tolerance.

A small number of ants suffering from crash-faults or even malicious faults,

should not affect the overall populations of recruiting ants and the algorithm’s

performance. Some similar results in this direction include [13], where the

authors analyze the 3-majority dynamic in the presence of adaptive adversarial

faults (an agent suffering from a fault changes its opinion arbitrarily). Their

results show that the convergence time of the 3-majority dynamic is not affected

significantly as long as the number of faults in each round is bounded by 𝑜(
√
𝑛).

∙ Asynchrony: Finally, note that Algorithm 7 currently works in synchronous

rounds and relies on that assumption to get the correct number of ants at a

given nest. However, we believe that, as long as the distribution of ants in can-

didate nests throughout time stays close to the distribution in the synchronous

model, Algorithm 7 can be extended to work in a partially-synchronous model,

potentially at the cost of increasing the running time.
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Robustness of Randomized Algorithms. Finally, our analysis of Algorithm 7

under uncertainty can serve as the basis of a general study of the robustness prop-

erties of (distributed and centralized) randomized algorithms. Our results in Sec-

tion 3.5 generalized the house hunting model to accommodate perturbations of the

probabilities with which ants choose to recruit. Although tolerance to probability

perturbations is not a commonly studied robustness property, it can be crucial in the

applicability of algorithms to real-world systems, both in engineering and biology.

From our analysis in Section 3.5, and in particular, converting the results with no

uncertainty to the weak adversarial model, we notice a few patterns that may help

analyze other randomized algorithms under such an adversarial model. Consider a

general uncertainty model where each probability 𝑝 used in a randomized algorithm

is instead replaced with an estimate 𝑝′ that lies in the range [𝑝(1 − 𝜖), 𝑝(1 + 𝜖)] with

probability at least 1− 𝛿, for some 𝜖 and 𝛿 in (0, 1). In this general scenario, consider

the properties of the randomized algorithm in comparison to the properties of the

algorithm in the original model with no uncertainty.

For statements about the expected values of random variables, we can state a

result like Lemma 3.5.0 to show that the expected value in the adversarial model is

the same as in the original model plus/minus a small error term that depends on 𝛿.

Depending on the exact properties of the randomized algorithm, this error term may

get subsumed by other terms in the analysis, as in Lemma 3.5.15 in our case. For

stronger probabilistic statements, for example, high-probability statements, we can

use the lower or upper bounds (that is, 𝑝(1−𝜖) and 𝑝(1+𝜖), respectively) of the value

of 𝑝′. This introduces 𝜖 terms in the resulting properties of the algorithm, and most

likely, in the running time of the algorithm. In our case, in Theorem 3.5.3 in Section

3.5, the running time increases by a 1/(1 − 𝜖)2 factor.

We conjecture that the above patterns for adapting proofs to an uncertainty model

may apply to the analysis of a large class of randomized algorithms. Moreover, the

degree to which different algorithms tolerate uncertainty can serve as the basis of a

new robustness hierarchy of randomized algorithms.
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Chapter 4

Task Allocation

In this chapter, we study the task allocation problem in ant colonies, where each ant

in the colony needs to choose a task to work on without communicating with other

ants and using only limited information from the environment. The results in this

chapter include a new model for task allocation with various forms of environment

feedback, analysis of three simple task allocation strategies, insight on how these

strategies perform under uncertainty, and a discussion on the relevance of our results

to real biological systems. This work was done in collaboration with evolutionary

biologist Anna Dornhaus who studies the behavior of social insect colonies from both

a theoretical and an experimental perspective.

In Section 4.1, we use modeling and analysis techniques from theoretical dis-

tributed computing to define an abstract model of task allocation. We define three

versions of environment feedback that each ant receives in order to get information

about satisfied and unsatisfied tasks. In Section 4.2, we give a few definitions and

helper results about the general structure of the task allocation process.

In Section 4.3, we focus on the first type of environment feedback that ants receive.

In particular, each ant learns about a uniformly random task in each round. Feedback

of this type may be the result of an ant discovering tasks by randomly walking in the

nest. We analyze the convergence time of task allocation in this model and conclude

that ants require time linear in the number of tasks to allocate correctly, and this

value decreases as the ants-to-work ratio increases.
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In Section 4.4, we analyze the second type of environment feedback where each

ant learns about a uniformly random unsatisfied task in each round. In real ant

colonies, an ant may discover such a task by randomly walking in the nest and ignoring

completed tasks. In this case, we show that task allocation converges much faster, in

time logarithmic in the total amount of work needed. We also show that this running

time decreases as the logarithm of the ants-to-work ratio increases.

In Section 4.5, we consider environment feedback that informs each ant of a task

prioritized by its deficit; in other words, tasks that need more work are likely to

be selected more often. A feedback strategy of this type may be the result of a

chemical concentration associated with each task that corresponds to the amount of

work needed. Again, we show that task allocation converges in time logarithmic in

the total amount of work needed and decreases as the ants-to-work ratio increases.

Furthermore, we analyze the task allocation process in the presence of uncertainty in

the environment feedback.

Finally, in Section 4.6, we provide some numerical examples of our results with

parameters chosen from empirical findings about various insect species. We also

discuss the implications of our results to the understanding of real insect behavior.

4.1 Model

Let 𝐴 denote the set of ants and 𝑇 denote the set of tasks. Each task 𝑖 ∈ 𝑇 has an

integer demand 𝑑𝑖 that represents the minimum number of ants required to work on

task 𝑖 in order to satisfy the task. Let 𝑤𝑖 denote the total number of ant units of

work currently supplied to task 𝑖. Let �⃗� and 𝑑 denote the vectors of 𝑤𝑖 and 𝑑𝑖 values,

respectively, for each 1 ≤ 𝑖 ≤ |𝑇 |. The 𝑑 vector is static, while �⃗� changes over time

depending on the different tasks ants choose to work on.

Clearly, in order for all demands to be met, there should be sufficiently many ants

in the colony. We assume that |𝐴| ≥ 𝑐 ·
∑︀

𝑖∈𝑇 𝑑𝑖 for 𝑐 ≥ 1.

The structure of the task allocation system we consider is illustrated in Figure 4-1.

The environment component contains state information about all tasks, their demands
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𝑇, 𝑑, �⃗�

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑐ℎ𝑜𝑖𝑐𝑒

𝑎1
𝑞𝑖 ∈ 𝑄

𝑎𝑛
𝑞𝑖 ∈ 𝑄

· · ·

𝑑, �⃗� 𝑑, �⃗�

𝑠𝑢
𝑐𝑐
𝑒𝑠
𝑠(
𝑏)
, 𝑏

∈
{0
, 1
}

𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑏), 𝑏 ∈
{0, 1}𝑐ℎ

𝑜𝑖
𝑐𝑒

(𝑖
),
𝑖 ∈

𝑇
∪
{⊥

}

𝑐ℎ
𝑜𝑖𝑐𝑒(𝑖), 𝑖 ∈

𝑇
∪
{⊥

}

𝑤𝑜𝑟𝑘(𝑖), 𝑖 ∈ 𝑇 ∪ {⊥}
𝑤𝑜𝑟𝑘(𝑖), 𝑖 ∈ 𝑇 ∪ {⊥}

Figure 4-1: The task allocation system consists of an environment component, the
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑐ℎ𝑜𝑖𝑐𝑒 feedback components, and 𝑛 ant components.

and the work supplied to each task at the current point in time. The environment

component informs the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑐ℎ𝑜𝑖𝑐𝑒 feedback components of the demands and

the work provided to tasks. The 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 component provides each ant component

with information 𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑏), 𝑏 ∈ {0, 1} about the success of the ant at the task 𝑖 it

is currently working on. The 𝑐ℎ𝑜𝑖𝑐𝑒 component provides each ant component with

information 𝑐ℎ𝑜𝑖𝑐𝑒(𝑖), 𝑖 ∈ 𝑇 ∪{⊥} about some (alternative) task 𝑖, where ⊥ indicates

“no task”. Finally, each ant component updates the environment with the work it has

completed on task 𝑖 ∈ 𝑇 ∪{⊥} through 𝑤𝑜𝑟𝑘(𝑖). An ant component output 𝑤𝑜𝑟𝑘(⊥)

indicates that the ant did not complete any work.

Environment: The environment consists of the set of tasks, their demands and the

number of ants currently working on each task. The environment outputs the 𝑑 and

�⃗� vectors to the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑐ℎ𝑜𝑖𝑐𝑒 components, providing them with information

about the work supplied to tasks and their demands. The input to the environment

component is the work that each ant provides to each task denoted by 𝑤𝑜𝑟𝑘(𝑖), 𝑖 ∈
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𝑇 ∪ {⊥}. As a result, the environment updates the �⃗� vector accordingly.

Ants: Each ant 𝑎 ∈ 𝐴 has a state 𝑞 ∈ 𝑄 = {𝑞⊥, 𝑞1, 𝑞2, · · · , 𝑞|𝑇 |} at each point in

time, where 𝑞⊥ indicates that ant 𝑎 is not working on any task and each state 𝑞𝑖, for

𝑖 ∈ {1, · · · , |𝑇 |}, indicates that ant 𝑎 is working on task 𝑖. Each ant is modeled as

a finite state machine with transition function 𝛿 : 𝑄× ({0, 1} × (𝑇 ∪ {⊥})) → 𝑄; in

other words, each ant’s new state is determined by its old state and its inputs from

the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑐ℎ𝑜𝑖𝑐𝑒 components. Let 𝑞 be the current state of some ant 𝑎, and

let 𝑞′ be the resulting state of ant 𝑎 after applying 𝛿. In each step, 𝑞′ is determined

as follows: 𝑞′ = 𝑞 if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 outputs 1, and 𝑞′ = 𝑞𝑖 if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 outputs 0 and 𝑐ℎ𝑜𝑖𝑐𝑒

outputs 𝑖 ∈ 𝑇 ∪ {⊥}. The new state 𝑞′ of the ant directly determines its output to

the environment component.

Feedback: The environment feedback components 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑐ℎ𝑜𝑖𝑐𝑒 provide

each ant with a boolean and a task in 𝑇 ∪ {⊥}, determined based on �⃗� and 𝑑. The

input to the feedback components is the 𝑑 and �⃗� vectors. The output of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 is a

boolean {0, 1}, and the output of 𝑐ℎ𝑜𝑖𝑐𝑒 is some task in 𝑇 ∪ {⊥}. Since randomness

usually plays a role in the environment, the output values of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑐ℎ𝑜𝑖𝑐𝑒 may

be determined randomly.

Execution: The execution of any algorithm solving the task allocation problem

starts at time 0 and proceeds in synchronous rounds, such that each round 𝑟 + 1,

for 𝑟 ≥ 0, denotes the transition from time 𝑟 to time 𝑟 + 1. In each round 𝑟 + 1,

the environment component provides outputs to 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑐ℎ𝑜𝑖𝑐𝑒 containing the

demand and work vectors 𝑑 and ⃗𝑤(𝑟). The 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑐ℎ𝑜𝑖𝑐𝑒 components provide

each ant component with a boolean (𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑏), 𝑏 ∈ {0, 1}) and a task (𝑐ℎ𝑜𝑖𝑐𝑒(𝑖), 𝑖 ∈

𝑇∪{⊥}) output. Each ant component performs a state transition using its 𝛿 transition

function and updates the environment component with the work (𝑤𝑜𝑟𝑘(𝑖), 𝑖 ∈ 𝑇 ∪

{⊥}) it performed. An execution 𝛼 is a sequence of alternating (1) states of the

environment, and mappings from ants to (2) 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 outputs, (3) 𝑐ℎ𝑜𝑖𝑐𝑒 outputs,

and (4) work inputs. Formally, 𝛼 = (𝑄0, 𝑆1, 𝐶1,𝑊1, 𝑄1, 𝑆2, 𝐶2,𝑊2, · · · ), where, for
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each 𝑟 ≥ 0, 𝑄𝑟 is the state of the environment at time 𝑟, 𝑆𝑟+1 is a mapping of type

𝐴 → {0, 1}, 𝐶𝑟+1 is a mapping of type 𝐴 → 𝑇 ∪ {⊥}, and 𝑊𝑟+1 is a mapping of type

𝐴 → 𝑇 ∪ {⊥}. The 𝑆𝑟+1 mapping refers to the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 outputs to all ants in round

𝑟 + 1, the 𝐶𝑟+1 mapping refers to the 𝑐ℎ𝑜𝑖𝑐𝑒 outputs to all ants in round 𝑟 + 1, and

𝑊𝑟+1 mapping refers to the inputs to the environment from all ants in round 𝑟 + 1.

Problem Statement: A state 𝑠𝑟 of the environment component at time 𝑟 ≥ 0

satisfies some task 𝑖 ∈ 𝑇 if 𝑑𝑖 ≤ 𝑤𝑖(𝑟). An execution 𝛼 satisfies all tasks if there

exists a time 𝑟 ≥ 0 such that for each 𝑟′ ≥ 𝑟, state 𝑠𝑟′ of the environment satisfies

task 𝑖 for all 𝑖 ∈ 𝑇 . A probabilistic execution 𝛼 satisfies all tasks with probability

1 − 𝛿, for any 0 < 𝛿 < 1, if, with probability at least 1 − 𝛿, there exists a time 𝑟 ≥ 0

such that for each 𝑟′ ≥ 𝑟, state 𝑠𝑟′ of the environment satisfies task 𝑖 for all 𝑖 ∈ 𝑇 .

The specification of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and some of the specifications of 𝑐ℎ𝑜𝑖𝑐𝑒 in this section

are inspired by the biological model by Pacala et al. [86] and simplified for the sake

of easier analysis.

Success Component The first component, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, determines whether each ant

is successful at the task it is currently working on. We consider 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 components

that satisfy the following conditions in each execution and at each time 𝑟 of the

execution. Let 𝑆(𝑖, 𝑟) be the following set:

{𝑎 | 𝑎 is in state 𝑞𝑖 at time 𝑟 and receives 𝑠𝑢𝑐𝑐𝑒𝑠𝑠(1) in round 𝑟 + 1}.

For each task 𝑖 ∈ 𝑇 , |𝑆(𝑖, 𝑟)| = min(𝑑𝑖, 𝑤𝑖(𝑟)). Also, each ant in state 𝑞⊥ at time 𝑟

receives 𝑠𝑢𝑐𝑐𝑒𝑠𝑠(0) in round 𝑟+1. The 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 component provides information that

allows excess ants working on a satisfied task to switch to another task.

Choice Component The 𝑐ℎ𝑜𝑖𝑐𝑒 component returns a candidate task to each ant

as an alternative task to work on. We consider three different specifications of 𝑐ℎ𝑜𝑖𝑐𝑒:

1. 𝑐ℎ𝑜𝑖𝑐𝑒 returns a task drawn from all the tasks in 𝑇 uniformly at random.
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2. 𝑐ℎ𝑜𝑖𝑐𝑒 returns a task drawn from the set of unsatisfied tasks, 𝑈(𝑟) = {𝑖 | 𝑑𝑖 >

𝑤𝑖(𝑟)}, uniformly at random. If there is no such task, then 𝑐ℎ𝑜𝑖𝑐𝑒 returns ⊥.

3. 𝑐ℎ𝑜𝑖𝑐𝑒 returns a task 𝑖 drawn from the set of all unsatisfied tasks with probability

(𝑑𝑖−𝑤𝑖(𝑟))/
∑︀

𝑗∈𝑈(𝑟)(𝑑𝑗−𝑤𝑗(𝑟)). This option corresponds to the scenario where

ants can somehow sense the need to work on each task, and are more likely to

work on tasks with high deficit 𝑑𝑖 − 𝑤𝑖(𝑟) compared to the total deficit of all

unsatisfied tasks
∑︀

𝑗∈𝑈(𝑟)(𝑑𝑗 − 𝑤𝑗(𝑟)).

4.2 General Definitions and Lemmas

In this section, we give some basic definitions and results that will be used in the

subsequent analyses of the convergence times for the various 𝑐ℎ𝑜𝑖𝑐𝑒 options.

Definitions. All definitions are with respect to a fixed execution 𝛼. For each task

𝑖 ∈ 𝑇 ∪ {⊥} and each time 𝑟, let 𝐴𝑖(𝑟) denote the set of ants in state 𝑞𝑖 at time 𝑟. A

task is satisfied at time 𝑟 if 𝑑𝑖 ≤ 𝑤𝑖(𝑟). Let 𝑆(𝑟) denote the set of satisfied tasks at

time 𝑟. Let 𝑈(𝑟) = 𝑇 ∖ 𝑆(𝑟) denote the set of unsatisfied tasks at time 𝑟.

We begin by showing some basic properties of the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 component. These

results hold regardless of the particular 𝑐ℎ𝑜𝑖𝑐𝑒 component specification. Consider an

arbitrary execution 𝛼 of the task allocation system with the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 component and

any one of the three 𝑐ℎ𝑜𝑖𝑐𝑒 components.

Lemma 4.2.1. For each task 𝑖 ∈ 𝑇 , each time 𝑟, each time 𝑟′, such that 𝑟′ ≥ 𝑟, and

each 𝑑 ∈ N, such that 𝑑 ≤ 𝑑𝑖, if 𝑤𝑖(𝑟) ≥ 𝑑, then 𝑤𝑖(𝑟
′) ≥ 𝑑.

Proof. Consider fixed task 𝑖 ∈ 𝑇 , time 𝑟, and value 𝑑 ≤ 𝑑𝑖, and suppose that 𝑤𝑖(𝑟) ≥

𝑑. The proof is by induction on 𝑟′ for 𝑟′ ≥ 𝑟. In the base case 𝑟′ = 𝑟, and by

assumption 𝑤𝑖(𝑟) ≥ 𝑑. Suppose in some round 𝑟′ > 𝑟 it is true that 𝑤𝑖(𝑟
′) ≥ 𝑑. We

need to show that 𝑤𝑖(𝑟
′+1) ≥ 𝑑. By the definition of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 applied to round 𝑟′+1,

the number of the ants working on task 𝑖 at time 𝑟′ that receive 1 from 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 in

round 𝑟′ + 1 is min{𝑤𝑖(𝑟
′), 𝑑𝑖} ≥ 𝑑. By the definition of the transition function 𝛿, an
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ant that receives 𝑠𝑢𝑐𝑐𝑒𝑠𝑠(1) in round 𝑟′ + 1 keeps working on its current task (task

𝑖) at time 𝑟′ + 1, so 𝑤𝑖(𝑟
′ + 1) ≥ 𝑑.

Corollary 4.2.2. For each time 𝑟, |𝑈(𝑟)| ≥ |𝑈(𝑟 + 1)| and |𝑆(𝑟)| ≤ |𝑆(𝑟 + 1)|.

For each task 𝑖 ∈ 𝑇 and each time 𝑟, let Φ𝑖(𝑟) = max{0, (𝑑𝑖−𝑤𝑖(𝑟))} be the deficit

of task 𝑖 at time 𝑟. If 𝑖 ∈ 𝑈(𝑟), then Φ𝑖(𝑟) = 𝑑𝑖 −𝑤𝑖(𝑟). We define the total deficit at

time 𝑟:

Φ(𝑟) =
∑︁
𝑖∈𝑇

Φ𝑖(𝑟).

Lemma 4.2.3. For each time 𝑟 and each task 𝑖 ∈ 𝑇 , Φ𝑖(𝑟) ≥ Φ𝑖(𝑟 + 1).

Proof. Consider fixed task 𝑖 ∈ 𝑇 and time 𝑟. If 𝑤𝑖(𝑟) ≥ 𝑑𝑖, then by Lemma 4.2.1,

𝑤𝑖(𝑟 + 1) ≥ 𝑑𝑖, so Φ𝑖(𝑟) = Φ𝑖(𝑟 + 1) = 0. Otherwise, by Lemma 4.2.1, 𝑤𝑖(𝑟 + 1) ≥

𝑤𝑖(𝑟), so Φ𝑖(𝑟) = 𝑑𝑖 − 𝑤𝑖(𝑟) ≥ max{0, 𝑑𝑖 − 𝑤𝑖(𝑟 + 1)} = Φ𝑖(𝑟 + 1). In either case,

Φ𝑖(𝑟) ≥ Φ𝑖(𝑟 + 1).

Corollary 4.2.4. For each time 𝑟, Φ(𝑟) ≥ Φ(𝑟 + 1).

Define an ant to be inactive in round 𝑟, for 𝑟 > 0, if it is in state 𝑞⊥ at time 𝑟− 1

or if it receives 𝑠𝑢𝑐𝑐𝑒𝑠𝑠(0) in round 𝑟. In other words, an ant is inactive if it is not

working on any task, or if it unsuccessful at the current task it is working on. So, the

number of inactive ants in some round 𝑟 + 1 is |𝐴⊥(𝑟)| +
∑︀

𝑖∈𝑆(𝑟)(𝑤𝑖(𝑟) − 𝑑𝑖).

Recall that |𝐴| ≥ 𝑐 ·
∑︀

𝑖∈𝑇 𝑑𝑖 for 𝑐 ≥ 1.

Lemma 4.2.5. The number of inactive ants in round 𝑟 + 1 is at least 𝑐 · Φ(𝑟).

Proof. Similarly to the proof of Lemma 4.2.5, the total number of ants |𝐴| can be

decomposed into the number of ants not working on any task, the number of ants

working on satisfied tasks, and the number of ants working on unsatisfied tasks:

|𝐴| =
∑︁

𝑖∈𝑈(𝑟)

𝑤𝑖(𝑟) +
∑︁
𝑖∈𝑆(𝑟)

𝑤𝑖(𝑟) + |𝐴⊥(𝑟)|.
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Based on the assumption that |𝐴| ≥ 𝑐 ·
∑︀

𝑖∈𝑇 𝑑𝑖, we know that |𝐴|/𝑐 ≥
∑︀

𝑖∈𝑆(𝑟) 𝑑𝑖+∑︀
𝑖∈𝑈(𝑟) 𝑑𝑖. Also, by the definition of Φ(𝑟), it is true that Φ(𝑟) ≤

∑︀
𝑖∈𝑇 𝑑𝑖 ≤ |𝐴|/𝑐.

The number of inactive ants in round 𝑟 + 1 is:

|𝐴(𝑟)⊥| +
∑︁
𝑖∈𝑆(𝑟)

(𝑤𝑖(𝑟) − 𝑑𝑖) = |𝐴| −
∑︁

𝑖∈𝑈(𝑟)

𝑤𝑖(𝑟) −
∑︁
𝑖∈𝑆(𝑟)

𝑤𝑖(𝑟) +
∑︁
𝑖∈𝑆(𝑟)

𝑤𝑖(𝑟) −
∑︁
𝑖∈𝑆(𝑟)

𝑑𝑖

= |𝐴| −
∑︁

𝑖∈𝑈(𝑟)

𝑤𝑖(𝑟) −
∑︁
𝑖∈𝑆(𝑟)

𝑑𝑖

≥ |𝐴| −
∑︁

𝑖∈𝑈(𝑟)

𝑤𝑖(𝑟) −

⎛⎝ |𝐴|
𝑐

−
∑︁

𝑖∈𝑈(𝑟)

𝑑𝑖

⎞⎠
= |𝐴|

(︂
𝑐− 1

𝑐

)︂
+
∑︁

𝑖∈𝑈(𝑟)

(𝑑𝑖 − 𝑤𝑖(𝑟))

≥ (𝑐− 1)Φ(𝑟) + Φ(𝑟) = 𝑐 · Φ(𝑟).

Next, we show a simple lemma that will be useful in analyzing 𝑐ℎ𝑜𝑖𝑐𝑒 components

that always provide ants with an unsatisfied task (options (2) and (3)).

Lemma 4.2.6. Suppose that in each round 𝑟 + 1 such that 𝑈(𝑟) ̸= ∅, 𝑐ℎ𝑜𝑖𝑐𝑒 returns

a task 𝑖 ∈ 𝑈(𝑟) to each ant. Then, all tasks are satisfied by time 𝑇 .

Proof. By Corollary 4.2.2, |𝑈(𝑟)| ≥ |𝑈(𝑟+1)| for any 𝑟. Therefore, it suffices to show

that if 𝑈(𝑟) ̸= ∅, then |𝑈(𝑟)| > |𝑈(𝑟 + 1)|. Assume to the contrary that for some

time 𝑟, such that |𝑈(𝑟)| ̸= 0, |𝑈(𝑟)| = |𝑈(𝑟 + 1)|. By the definition of an unsatisfied

task, 𝑤𝑖(𝑟 + 1) < 𝑑𝑖 for each 𝑖 ∈ 𝑈(𝑟). By Lemma 4.2.5, the number of inactive ants

in round 𝑟+ 1 is at least Φ(𝑟), and, by assumption, 𝑐ℎ𝑜𝑖𝑐𝑒 returns an unsatisfied task

to each inactive ant. We have the following contradiction:

Φ(𝑟) ≤
∑︁

𝑖∈𝑈(𝑟)

(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) by the specification of 𝑐ℎ𝑜𝑖𝑐𝑒,

<
∑︁

𝑖∈𝑈(𝑟)

(𝑑𝑖 − 𝑤𝑖(𝑟)) since 𝑤𝑖(𝑟 + 1) ≤ 𝑑𝑖 for each 𝑖 ∈ 𝑈(𝑟),

= Φ(𝑟) by the definition of Φ(𝑟).

164



The following lemma lets us bound the expected values of the total deficit and

the number of unsatisfied tasks given that the probability of satisfying each task is

bounded from below.

Lemma 4.2.7. Suppose that for each unsatisfied task 𝑖 ∈ 𝑈(𝑟) it is true that Pr[𝑤𝑖(𝑟+

1) ≥ 𝑑𝑖] ≥ 𝑝. Then, E[|𝑈(𝑟 + 1)|] ≤ |𝑈(𝑟)| · (1 − 𝑝) and E[Φ(𝑟 + 1)] ≤ Φ(𝑟) · (1 − 𝑝).

Proof. The expected number of unsatisfied tasks at time 𝑟 + 1 is:

E [|𝑈(𝑟 + 1)|] ≤ |𝑈(𝑟)| −
∑︁

𝑖∈𝑈(𝑟)

Pr[𝑤𝑖(𝑟 + 1) ≥ 𝑑𝑖]

≤ |𝑈(𝑟)| − |𝑈(𝑟)| · 𝑝

≤ |𝑈(𝑟)| · (1 − 𝑝).

By assumption, Pr[Φ𝑖(𝑟 + 1) ≤ 0] = Pr[𝑑𝑖 − 𝑤𝑖(𝑟 + 1) ≤ 0] ≥ 𝑝. Therefore:

E[Φ(𝑟 + 1)] =
∑︁
𝑖∈𝑇

E[Φ𝑖(𝑟 + 1)]

=
∑︁
𝑖∈𝑇

E[Φ𝑖(𝑟 + 1) | Φ𝑖(𝑟 + 1) ≤ 0] · Pr[Φ𝑖(𝑟 + 1) ≤ 0]

+ E[Φ𝑖(𝑟 + 1) | Φ𝑖(𝑟 + 1) > 0] · Pr[Φ𝑖(𝑟 + 1) > 0]

≤ E[Φ𝑖(𝑟 + 1) | Φ𝑖(𝑟 + 1) > 0] · Pr[Φ𝑖(𝑟 + 1) > 0] Φ𝑖(𝑟 + 1) ≥ 0

≤ Φ𝑖(𝑟) · (1 − 𝑝) Φ𝑖(𝑟 + 1) ≤ Φ𝑖(𝑟).

Next, we analyze the three variations of the 𝑐ℎ𝑜𝑖𝑐𝑒 component. In Section 4.3,

we analyze the convergence time of task allocation when 𝑐ℎ𝑜𝑖𝑐𝑒 returns a uniformly

random task, in Section 4.4, we analyze the convergence time of task allocation when

𝑐ℎ𝑜𝑖𝑐𝑒 returns a uniformly random unsatisfied task, and in Section 4.5, we analyze

the convergence time of task allocation when 𝑐ℎ𝑜𝑖𝑐𝑒 returns an unsatisfied task with

probability proportional to its deficit.
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4.3 Uniformly Random Tasks

In this section, we consider the first option for the 𝑐ℎ𝑜𝑖𝑐𝑒 component, where in each

round 𝑐ℎ𝑜𝑖𝑐𝑒 returns a task 𝑖 with probability 1/|𝑇 |.

For Lemma 4.3.1, 4.3.2 and 4.3.3, assume 𝛼 is a fixed execution and 𝑟 ≥ 0 is

some fixed time in 𝛼. We consider the state variables at time 𝑟 and the outputs of

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 in round 𝑟 + 1 to be fixed, and we consider the probability distribution over

the randomness introduced by the 𝑐ℎ𝑜𝑖𝑐𝑒 outputs in round 𝑟 + 1.

By Lemma 4.2.5, we know that the number of inactive ants in round 𝑟 + 1 is

at least 𝑐 · Φ(𝑟). By the definition of 𝑐ℎ𝑜𝑖𝑐𝑒 in this section, each inactive ant starts

working on each task 𝑖 with probability 1/|𝑇 |. In the next lemma, we show that, in

each round, the expected number of new ants to join each unsatisfied task is at least

𝑐 · Φ(𝑟)/|𝑇 |.

Lemma 4.3.1. For each task 𝑖 ∈ 𝑈(𝑟), E[𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)] ≥ 𝑐 · Φ(𝑟)/|𝑇 |.

Proof. Note that, in the expression we want to prove, 𝑤𝑖(𝑟 + 1) is a random variable,

whereas Φ(𝑟) and 𝑤𝑖(𝑟) are fixed values. By Lemma 4.2.5, the number of inactive

ants in round 𝑟+1 is at least 𝑐 ·Φ(𝑟). Therefore, for each task 𝑖, the expected number

of ants that are inactive in round 𝑟 + 1 and working on task 𝑖 at time 𝑟 + 1 is:

E[𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)] ≥ 𝑐 · Φ(𝑟)

|𝑇 |
.

After some ants join task 𝑖 in round 𝑟+1, it is not guaranteed that the entire new

set of ants remains working on task 𝑖 because some ants may be unsuccessful if task

𝑖 does not require that many workers. Assuming 𝑐 ≤ |𝑇 |, since the total deficit is

Φ(𝑟) and there are |𝑇 | tasks, we show that the sum of deficits of the top 𝑐 tasks is at

least 𝑐 ·Φ(𝑟)/|𝑇 | (which can be 0 if all tasks are satisfied). Therefore, in expectation,

at least 𝑐 · Φ(𝑟)/|𝑇 | of the new ants that join these tasks will remain working on

them. In the next lemma, we show that the expected total deficit Φ(𝑟) decreases by

approximately 𝑐 · Φ(𝑟)/|𝑇 | in round 𝑟 + 1.
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Lemma 4.3.2. For 𝑐 ≤ |𝑇 |, E[Φ(𝑟 + 1)] ≤ (1 − 𝑐/4|𝑇 |)Φ(𝑟).

Proof. The expected decrease in one round of the value of Φ(𝑟) is:

E[Φ(𝑟) − Φ(𝑟 + 1)] ≥
∑︁
𝑖∈𝑇

E[Φ𝑖(𝑟) − Φ𝑖(𝑟 + 1)] by Lemma 4.2.3,

=
∑︁
𝑖∈𝑇

E [min {(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) , (𝑑𝑖 − 𝑤𝑖(𝑟))}]

≥ 1

4

∑︁
𝑖∈𝑇

min {E [𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)] , (𝑑𝑖 − 𝑤𝑖(𝑟))}

≥ 1

4

∑︁
𝑖∈𝑇

min

{︂
𝑐 · Φ(𝑟)

|𝑇 |
, (𝑑𝑖 − 𝑤𝑖(𝑟))

}︂
by Lemma 4.3.1.

The fourth inequality above is derived by applying Corollary A.1.2 is to random

variable 𝑋 = 𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟) and the fixed value 𝑑𝑖 − 𝑤𝑖(𝑟) ≥ 1. Random variable

𝑋 can be expressed as a sum of 𝑘 independent binary random variables, where 𝑘 is

the number of inactive ants in round 𝑟 + 1 and each ant contributes 1 to the sum if

it receives 𝑐ℎ𝑜𝑖𝑐𝑒(𝑖) in round 𝑟, and 0 otherwise.

Suppose in contradiction that:

∑︁
𝑖∈𝑇

min

{︂
𝑐 · Φ(𝑟)

|𝑇 |
, (𝑑𝑖 − 𝑤𝑖(𝑟))

}︂
<

𝑐 · Φ(𝑟)

|𝑇 |
.

It must be the case that for each 𝑖 ∈ 𝑇 , 𝑑𝑖 − 𝑤𝑖(𝑟) < 𝑐 · Φ(𝑟)/|𝑇 |. Since 𝑐 ≤ |𝑇 |,∑︀
𝑖∈𝑇 (𝑑𝑖 − 𝑤𝑖(𝑟)) < Φ(𝑟), a contradiction.

We have E[Φ(𝑟)−Φ(𝑟+1)] ≥ (1/4)(𝑐·Φ(𝑟)/|𝑇 |), so E[Φ(𝑟+1)] ≤ (1−𝑐/4|𝑇 |)Φ(𝑟).

Next, we consider the case of 𝑐 > |𝑇 |. We can express 𝑐 as a multiple of |𝑇 |:

𝑐 = 𝑐′ · |𝑇 | for some 𝑐′ > 1. Note that 𝑐′ is not necessarily a constant. We show

that in each round, the probability to satisfy each task is at least some constant,

and consequently, the expected number of unsatisfied tasks decreases by a constant

fraction in each round.

Lemma 4.3.3. For 𝑐 > |𝑇 |, E[|𝑈(𝑟 + 1)|] ≤ |𝑈(𝑟)|𝑒−𝑐′(1−1/𝑐′)2/2 and E[Φ(𝑟 + 1)] ≤

Φ(𝑟)𝑒−𝑐
′(1−1/𝑐′)2/2.
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Proof. By Lemma 4.2.5, the number of inactive ants in round 𝑟+1 is at least 𝑐 ·Φ(𝑟).

Therefore, for each 𝑖 ∈ 𝑈(𝑟), E[𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)] ≥ 𝑐 · Φ(𝑟)/|𝑇 | = 𝑐′ · Φ(𝑟). By a

Chernoff bound it follows that:

Pr [(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) < Φ𝑖(𝑟)]

≤ Pr [(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) < Φ(𝑟)]

≤ Pr

[︂
(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) <

(︂
1

𝑐′

)︂
E [𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)]

]︂
≤ 𝑒−

E[𝑤𝑖(𝑟+1)−𝑤𝑖(𝑟)](1− 1
𝑐′ )

2

2

≤ 𝑒−
𝑐′·Φ(𝑟)(1− 1

𝑐′ )
2

2|𝑈(𝑟)| since Φ(𝑟) ≥ 1,

≤ 𝑒−
𝑐′(1− 1

𝑐′ )
2

2 .

Therefore, Pr[𝑤𝑖(𝑟 + 1) ≥ 𝑑𝑖] ≥ 1 − 𝑒−𝑐
′(1−1/𝑐′)2/2, so by Lemma 4.2.7, it follows

that E[|𝑈(𝑟 + 1)|] ≤ |𝑈(𝑟)| · 𝑒−𝑐′(1−1/𝑐′)2/2 and E[Φ(𝑟 + 1)] ≤ Φ(𝑟) · 𝑒−𝑐′(1−1/𝑐′)2/2.

Finally, we fix some arbitrary deterministic 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 components in each round,

and we analyze the total running time of task allocation for an arbitrary probabilistic

execution of the resulting system. In the next theorem, we start at time 0, when

the total deficit is Φ(0), and inductively apply Lemmas 4.3.2 and 4.3.3 and iterated

expectation.

Theorem 4.3.4. For 𝑐 ≤ |𝑇 | and for any 𝛿, 0 < 𝛿 < 1, with probability at least 1−𝛿,

all tasks are satisfied by time (4/𝑐)|𝑇 |(ln Φ(0) + ln(1/𝛿)).

Proof. First, we show by induction that for each 𝑟 ≥ 0 the following holds at time 𝑟:

E[Φ(𝑟)] ≤ Φ(0)

(︂
1 − 𝑐

4|𝑇 |

)︂𝑟

. (4.1)

In the base case, 𝑟 = 0. By Corollary 4.2.4, Φ(𝑟) ≤ Φ(0).

For the inductive step, we assume the statement is true for some fixed 𝑟 ≥ 0,

and we show it is true for 𝑟 + 1. First, consider a fixed prefix 𝛼 of the execution of

length 𝑟 and some fixed outputs of the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 component in round 𝑟 + 1. Recall
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that by assumption, the outputs to all ants of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 are determined by an arbitrary

deterministic component. By Lemma 4.3.2, E[Φ(𝑟 + 1)] ≤ Φ(𝑟) (1 − 𝑐/4|𝑇 |). Note

that this expectation has a different meaning from the one in Equation (4.1) that we

want to show. Here, the expectation is taken only over the randomness induced by

the 𝑐ℎ𝑜𝑖𝑐𝑒 component outputs in round 𝑟+1 (starting from a fixed time at the end of

the execution prefix 𝛼), and Φ(𝑟) is a fixed value. Next, we need to state a bound on

E[Φ(𝑟 + 1)] over all random choices from the beginning of the probabilistic execution

up to time 𝑟 in terms of the random variable Φ(𝑟). Since all prefixes of length 𝑟 are

disjoint, by the law of total expectation, for all prefixes of length 𝑟 in the probabilistic

execution, it is true that E[Φ(𝑟 + 1) | Φ(𝑟)] ≤ Φ(𝑟) (1 − 𝑐/4|𝑇 |).

Now we use the law of iterated expectation and the inductive hypothesis to obtain

a bound on E[Φ(𝑟 + 1)].

E[Φ(𝑟 + 1)] = E[E[Φ(𝑟 + 1) | Φ(𝑟)]] by iterated expectation,

≤ E
[︂
Φ(𝑟)

(︂
1 − 𝑐

4|𝑇 |

)︂]︂
by the above bound,

= E[Φ(𝑟)]

(︂
1 − 𝑐

4|𝑇 |

)︂
by linearity of expectation,

≤ Φ(0)

(︂
1 − 𝑐

4|𝑇 |

)︂𝑟+1

by the inductive hypothesis.

Thus, we have shown that, for every 𝑟 ≥ 0, E[Φ(𝑟)] ≤ Φ(0) (1 − 𝑐/4|𝑇 |)𝑟.

For 𝑟 = (4/𝑐)|𝑇 |(ln Φ(0) + ln(1/𝛿)) we get:

E[Φ(𝑟)] ≤ Φ(0)

(︂
1 − 𝑐

4|𝑇 |

)︂𝑟

≤ Φ(0) · 𝑒−
4𝑐|𝑇 |(ln Φ(0)+ln(1/𝛿))

4𝑐|𝑇 |) by (1 − 𝑎)𝑏 ≤ 𝑒−𝑎𝑏 for 𝑎, 𝑏 ∈ R and 𝑎, 𝑏 > 0,

≤ Φ(0) · 𝑒−(lnΦ(0)+ln(1/𝛿))

≤ Φ(0)

(︂
1

Φ(0)

)︂
𝛿 ≤ 𝛿.

By a Markov bound, we get Pr[Φ(𝑟) ≥ (1/𝛿)E[Φ(𝑟)]] ≤ 𝛿. Therefore, with probability

at least 1−𝛿, the total deficit is strictly less than 1 by time (4/𝑐)|𝑇 |(ln Φ(0)+ln(1/𝛿)).
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This implies that all tasks are satisfied by that time.

Corollary 4.3.5. For 𝑐 ≤ |𝑇 | and for any 𝛿 and 𝜖, 0 < 𝛿, 𝜖 < 1, with probability at

least 1 − 𝛿, the deficit at time (4/𝑐)|𝑇 |(ln(1/𝜖) + ln(1/𝛿)) is at most 𝜖 · Φ(0).

The proof is similar to the proof of Theorem 4.3.4; we show that E[Φ(𝑟 + 1)] ≤

Φ(0) · 𝜖 · 𝛿 instead of E[Φ(𝑟 + 1)] ≤ 𝛿.

Theorem 4.3.6. For 𝑐 > |𝑇 | and for any 𝛿, 0 < 𝛿 < 1, with probability at least 1−𝛿,

all tasks are satisfied by time (2/(𝑐′(1 − 1/𝑐′)2))(min{ln |𝑇 |, ln Φ(0)} + ln(1/𝛿)).

Proof. Initially, |𝑈(0)| ≤ |𝑇 |. By Lemma 4.3.3, E[|𝑈(𝑟 + 1)|] ≤ |𝑈(𝑟)| · 𝑒−
𝑐′(1− 1

𝑐′ )
2

2

and E[Φ(𝑟 + 1)] ≤ Φ(𝑟) · 𝑒−
𝑐′(1− 1

𝑐′ )
2

2 . Similarly to Theorem 4.3.4, we can inductively

apply Lemma 4.3.3 and iterated expectation to show that for each 𝑟 ≥ 0, it is true

that E[|𝑈(𝑟 + 1)|] ≤ |𝑇 | · 𝑒−𝑟𝑐′(1−1/𝑐′)2/2 and E[Φ(𝑟 + 1)|] ≤ Φ(0) · 𝑒−𝑟𝑐′(1−1/𝑐′)2/2. For

𝑟 = (2/(𝑐′(1 − 1/𝑐′)2))(min{ln |𝑇 | + ln Φ(0)} + ln(1/𝛿)) at least one of the following

is true:

E[|𝑈(𝑟)|] ≤ |𝑇 | · 𝑒−(2/(𝑐′(1−1/𝑐′)2))(ln |𝑇 |+ln(1/𝛿)) ≤ 𝛿

E[Φ(𝑟)] ≤ Φ(0) · 𝑒−(2/(𝑐′(1−1/𝑐′)2))(lnΦ(0)+ln(1/𝛿)) ≤ 𝛿.

Therefore, by a Markov bound, with probability at least 1−𝛿, |𝑈(𝑟)| < 1 or Φ(𝑟) < 1,

implying that all tasks are satisfied by time (2/(𝑐′(1 − 1/𝑐′)2))(min{ln |𝑇 |, ln Φ(0)} +

ln(1/𝛿)).

Corollary 4.3.7. For 𝑐 > |𝑇 | and for any 𝛿 and 𝜖, 0 < 𝛿, 𝜖 < 1, with probability at

least 1− 𝛿, the deficit at time (2/(𝑐′(1− 1/𝑐′)2))(ln(1/𝜖) + ln(1/𝛿)) is at most 𝜖 ·Φ(0).

The proof is similar to the proof of Theorem 4.3.6; we ignore the case when

|𝑇 | < Φ(0) and we show that E[Φ(𝑟 + 1)] ≤ Φ(0) · 𝜖 · 𝛿 instead of E[Φ(𝑟 + 1)] ≤ 𝛿.

We can combine the results of Theorems 4.3.4 and 4.3.6 by slightly weakening

Theorem 4.3.6. Clearly, if 𝑐′ is extremely close to 1 (that is, 𝑐 is extremely close to

|𝑇 |), the 1/(𝑐′(1− 1/𝑐′)2) term in Theorem 4.3.6 becomes very large, and in the limit

the running time becomes ∞. Therefore, we can take the result of Theorem 4.3.4 for
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𝑐 ≤ 2|𝑇 | and the result of Theorem 4.3.6 for 𝑐 > 2|𝑇 |, in which case 𝑐′ > 2 and the

2/(𝑐′(1 − 1/𝑐′)2) can be bounded by 4.

Corollary 4.3.8. For any 𝛿, 0 < 𝛿 < 1, with probability at least 1 − 𝛿, all tasks are

satisfied by time 𝒪(𝑐−1) · 𝒪(|𝑇 |(ln Φ(0) + ln(1/𝛿))).

Similarly, we can combine Corollaries 4.3.5 and 4.3.7.

Corollary 4.3.9. For any 𝛿 and 𝜖, 0 < 𝛿, 𝜖 < 1, with probability at least 1 − 𝛿, the

deficit at time 𝒪(𝑐−1) · 𝒪(|𝑇 |(ln(1/𝜖) + ln(1/𝛿))) is at most 𝜖 · Φ(0).

4.4 Uniformly Random Unsatisfied Tasks

Here, we consider the second option for the 𝑐ℎ𝑜𝑖𝑐𝑒 component, defined in Section 4.1,

where in each round 𝑐ℎ𝑜𝑖𝑐𝑒 returns a task 𝑖 ∈ 𝑈(𝑟) with probability 1/|𝑈(𝑟)|.

The results in this section follow the same structure as the results in Section

4.3. In this section, we do not include as much detail in some of the results. For

example, in the proof of Theorem 4.4.5, we skip the detailed application of law of

total expectation and iterated expectation since they follow the same pattern as in

the proof of Theorem 4.3.4.

For Lemma 4.4.1 and 4.4.2, assume 𝛼 is a fixed execution and 𝑟 ≥ 0 is some

fixed time in 𝛼. We consider the state variables at time 𝑟 and the outputs of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

in round 𝑟 + 1 to be fixed, and we consider the probability distribution over the

randomness introduced by the 𝑐ℎ𝑜𝑖𝑐𝑒 outputs in round 𝑟 + 1.

Lemma 4.4.1. For each unsatisfied task 𝑖 ∈ 𝑈(𝑟), E[𝑤𝑖(𝑟+1)−𝑤𝑖(𝑟)] ≥ Φ(𝑟)/|𝑈(𝑟)|.

Proof. By Lemma 4.2.5, the number of inactive ants in round 𝑟 + 1 is at least Φ(𝑟).

Since the number of unsatisfied tasks is |𝑈(𝑟)|, for each unsatisfied task 𝑖, it is true

that E[𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)] ≥ Φ(𝑟)/|𝑈(𝑟)|.

We show that in round 𝑟 + 1 at least one of the following happens: (1) the

total deficit decreases by a constant fraction, or (2) the number of unsatisfied tasks

decreases by a constant fraction. To show the first property, we consider tasks with
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a fairly high deficit, which are not likely to get satisfied in one round. We show that

the number of new ants joining such tasks is enough to decrease the total deficit by

a constant fraction. To show the second property (the number of unsatisfied tasks

decreases by a constant fraction), we focus on tasks with fairly low deficit which are

likely to get satisfied within one round. We show that these tasks are enough to

decrease the total number of unsatisfied tasks by a constant fraction in one round.

Lemma 4.4.2. For 𝑐 ≥ 1, at least one of the following is true:

E[Φ(𝑟 + 1)] ≤
(︂

15

16

)︂
Φ(𝑟) (4.2)

E[|𝑈(𝑟 + 1)|] ≤
(︂

1 − 1 − 𝑒−1/8

2

)︂
|𝑈(𝑟)| (4.3)

Proof. We define task 𝑖 ∈ 𝑈(𝑟) to have a high deficit if Φ𝑖(𝑟) > Φ(𝑟)/(2|𝑈(𝑟)|). Since

the deficit is always an integer, Φ𝑖(𝑟) ≥ ⌈Φ(𝑟)/(2|𝑈(𝑟)|)⌉. Otherwise, if Φ𝑖(𝑟) ≤

Φ(𝑟)/(2|𝑈(𝑟)|) for a task 𝑖 ∈ 𝑈(𝑟), task 𝑖 is defined to have a low deficit. Let 𝐻(𝑟)

be the set of high-deficit tasks and let 𝐿(𝑟) = 𝑈(𝑟) ∖ 𝐻(𝑟) be the set of low-deficit

tasks. We consider two cases based on the value of |𝐻(𝑟)|.

Case 1: |𝐻(𝑟)| ≥ |𝑈(𝑟)|/2. The expected decrease of Φ(𝑟) after one round is:

E[Φ(𝑟) − Φ(𝑟 + 1)] ≥
∑︁

𝑖∈𝐻(𝑟)

E[Φ𝑖(𝑟) − Φ𝑖(𝑟 + 1)] by Lemma 4.2.3,

=
∑︁

𝑖∈𝐻(𝑟)

E [min {(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) , (𝑑𝑖 − 𝑤𝑖(𝑟))}]

≥
∑︁

𝑖∈𝐻(𝑟)

E
[︂
min

{︂
(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) ,

⌈︂
Φ(𝑟)

2|𝑈(𝑟)|

⌉︂}︂]︂

≥
∑︁

𝑗∈𝐻(𝑟)

1

4
min

{︂
E [𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)] ,

⌈︂
Φ(𝑟)

2|𝑈(𝑟)|

⌉︂}︂

≥
∑︁

𝑗∈𝐻(𝑟)

1

4
min

{︂
Φ(𝑟)

|𝑈(𝑟)|
,

⌈︂
Φ(𝑟)

2|𝑈(𝑟)|

⌉︂}︂
by Lemma 4.4.1,

=
|𝐻(𝑟)|

4
· Φ(𝑟)

2|𝑈(𝑟)|

≥ |𝑈(𝑟)|
8

· Φ(𝑟)

2|𝑈(𝑟)|
≥ Φ(𝑟)

16
.
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In this case, Equation (4.2) is satisfied.

Case 2: |𝐻(𝑟)| < |𝑈(𝑟)|/2, so |𝐿(𝑟)| ≥ |𝑈(𝑟)|/2. In this case, many of the tasks

have low deficit and each one of them is fairly close to being satisfied.

Consider a low-deficit task 𝑖 ∈ 𝐿(𝑟). By Lemma 4.4.1, E [𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)] ≥

Φ(𝑟)/|𝑈(𝑟)|. Also, by definition, Φ(𝑟) ≥ |𝑈(𝑟)|, so E [𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)] ≥ 1. Apply-

ing a Chernoff bound, we get:

Pr

[︂
(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) <

Φ(𝑟)

2|𝑈(𝑟)|

]︂
≤ Pr

[︂
(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) <

(︂
1

2

)︂
E [𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)]

]︂
≤ 𝑒−E[𝑤𝑖(𝑟+1)−𝑤𝑖(𝑟)]/8 since E[𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)] ≥ 1,

≤ 𝑒−1/8.

Thus, the probability task 𝑖 is satisfied at time 𝑟 + 1 is:

Pr [𝑤𝑖(𝑟 + 1) ≥ 𝑑𝑖] = Pr [(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) ≥ (𝑑𝑖 − 𝑤𝑖(𝑟))]

≥ Pr

[︂
(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) ≥ Φ(𝑟)

2|𝑈(𝑟)|

]︂
since 𝑖 ∈ 𝐿(𝑟),

≥ 1 − 𝑒−1/8 by the inequality above.

The number of newly satisfied tasks in round 𝑟 is at least
∑︀

𝑖∈𝐿(𝑟) Pr[𝑤𝑖(𝑟+1) ≥ 𝑑𝑖]

in expectation. Therefore, the expected number of unsatisfied tasks at time 𝑟 + 1 is:

E [|𝑈(𝑟 + 1)|] ≤ |𝑈(𝑟)| −
∑︁
𝑖∈𝐿(𝑟)

Pr[𝑤𝑖(𝑟 + 1) ≥ 𝑑𝑖]

≤ |𝑈(𝑟)| − |𝑈(𝑟)|
2

(︀
1 − 𝑒−1/8

)︀
≤ |𝑈(𝑟)|

(︂
1 − 1 − 𝑒−1/8

2

)︂
.

In this case, Equation (4.3) holds.

Next, we consider the case of 𝑐 > 1. Let 𝑑 and 𝑘 be arbitrary constants such that

0 < 𝑑 < 1 − 1/𝑐 (so 𝑐(1 − 𝑑) > 1) and 𝑘 = (1 − 1/𝑐(1 − 𝑑))(1 − 𝑒−𝑐𝑑
2/2).
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Lemma 4.4.3. For 𝑐 > 1 and for each unsatisfied task 𝑖 ∈ 𝑈(𝑟), Pr[(𝑤𝑖(𝑟 + 1) −

𝑤𝑖(𝑟)) < (1 − 𝑑)𝑐 · Φ(𝑟)/|𝑈(𝑟)|] ≤ 𝑒−𝑐𝑑
2/2.

Proof. By Lemma 4.2.5, the number of inactive ants in round 𝑟+1 is at least 𝑐 ·Φ(𝑟).

Therefore, for each 𝑖 ∈ 𝑈(𝑟), E[𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)] ≥ 𝑐 · Φ(𝑟)/|𝑈(𝑟)|. By a Chernoff

bound it follows that:

Pr

[︂
(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) <

(1 − 𝑑)𝑐Φ(𝑟)

|𝑈(𝑟)|

]︂
≤ Pr [(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) < (1 − 𝑑)E [𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)]]

≤ 𝑒−
E[𝑤𝑖(𝑟+1)−𝑤𝑖(𝑟)]𝑑

2

2

≤ 𝑒−
𝑐·Φ(𝑟)𝑑2

2|𝑈(𝑟)| since Φ(𝑟)/|𝑈(𝑟)| ≥ 1,

≤ 𝑒−
𝑐𝑑2

2 .

Unlike Theorem 4.4.5, where in round 𝑟 + 1 either the total deficit or the number

of unsatisfied tasks decreases by a constant fraction, here we show that the number of

unsatisfied tasks decreases by at least a constant fraction in round 𝑟+ 1 (this roughly

corresponds to Case 2 in Theorem 4.4.5). We consider all tasks with a fairly low

deficit, which are likely to get satisfied in a single round. The total deficit at time

𝑟 is Φ(𝑟), and the total number of inactive ants in round 𝑟 + 1 is at least 𝑐 · Φ(𝑟).

The fact that the number of inactive ants is at least a constant fraction greater than

total deficit lets us show that the expected number of low-deficit tasks is at least a

constant fraction of all unsatisfied tasks. Therefore, by satisfying these low-deficit

tasks the number of unsatisfied tasks decreases by a constant fraction in expectation.

Lemma 4.4.4. For 𝑐 > 1, E[|𝑈(𝑟 + 1)|] ≤ |𝑈(𝑟)|(1 − 𝑘).

Proof. Define task 𝑖 ∈ 𝑈(𝑟) to have a low deficit if Φ𝑖(𝑟) ≤ (1 − 𝑑)𝑐Φ(𝑟)/|𝑈(𝑟)|,

and let 𝐿(𝑟) ⊆ 𝑈(𝑟) denote the set of low-deficit tasks at time 𝑟. Similarly, let task

𝑖 ∈ 𝑈(𝑟) have a high deficit if Φ𝑖(𝑟) > (1 − 𝑑)𝑐Φ(𝑟)/|𝑈(𝑟)|, and let 𝐻(𝑟) ⊆ 𝑈(𝑟)

denote the set of high-deficit tasks at time 𝑟. Therefore, |𝑈(𝑟)| = |𝐿(𝑟)| + |𝐻(𝑟)|.
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Since the total deficit at time 𝑟 is Φ(𝑟), and each high-deficit task has deficit at

least (1 − 𝑑)𝑐Φ(𝑟)/|𝑈(𝑟)|, it must be the case that:

|𝐻(𝑟)| ≤ Φ(𝑟)

(1 − 𝑑)𝑐Φ(𝑟)/|𝑈(𝑟)|
=

|𝑈(𝑟)|
𝑐(1 − 𝑑)

.

Therefore,

|𝐿(𝑟)| = |𝑈(𝑟)| − |𝐻(𝑟)| ≥ |𝑈(𝑟)|
(︂

1 − 1

𝑐(1 − 𝑑)

)︂
.

For a task 𝑖 with low deficit, the probability that it is satisfied at time 𝑟 + 1 is:

Pr [𝑤𝑖(𝑟 + 1) ≥ 𝑑𝑖] = Pr [(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) ≥ (𝑑𝑖 − 𝑤𝑖(𝑟))]

≥ Pr

[︂
(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) ≥ (1 − 𝑑)𝑐Φ(𝑟)

|𝑈(𝑟)|

]︂
≥ 1 − 𝑒−

𝑐𝑑2

2 by Lemma 4.4.3.

Therefore, the expected number of unsatisfied tasks at time 𝑟 + 1 is:

E [|𝑈(𝑟 + 1)|] = |𝑈(𝑟)| −
∑︁
𝑖∈𝐿(𝑟)

Pr [𝑤𝑖(𝑟 + 1) ≥ 𝑑𝑖]

≤ |𝑈(𝑟)| − |𝑈(𝑟)|
(︂

1 − 1

𝑐(1 − 𝑑)

)︂(︁
1 − 𝑒−

𝑐𝑑2

2

)︁
= |𝑈(𝑟)|

(︂
1 −

(︂
1 − 1

𝑐(1 − 𝑑)

)︂(︁
1 − 𝑒−

𝑐𝑑2

2

)︁)︂
= |𝑈(𝑟)| (1 − 𝑘) .

Finally, we analyze the total running time of task allocation for an arbitrary

probabilistic execution of the resulting system. Fix some arbitrary deterministic

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 components in each round. In the next theorem, we start at time 0, when

the total deficit is Φ(0) and the number of unsatisfied tasks is at most |𝑇 |, and

inductively apply Lemmas 4.4.2 and 4.4.4 and iterated expectation.
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Theorem 4.4.5. For 𝑐 ≥ 1 and for any 𝛿, 0 < 𝛿 < 1, with probability at least 1 − 𝛿,

all tasks are satisfied by time min{|𝑇 |, 32(ln Φ(0) + ln |𝑇 | + ln(1/𝛿))}.

Proof. By Corollary 4.2.2 and 4.2.4, both the number of unsatisfied tasks and the

total deficit are monotonically non-increasing. Initially, the total deficit is Φ(0) and

|𝑈(0)| ≤ |𝑇 |. Informally, by Lemma 4.4.2, in each round, either the number of

unsatisfied tasks or the total deficit decreases by a constant fraction. So, if we consider

𝑟 rounds, then either in at least 𝑟/2 rounds the total deficit decreases by a constant

fraction, or in at least 𝑟/2 rounds the number of unsatisfied tasks decreases by a

constant fraction. Formally, similarly to Theorem 4.3.4, we can inductively apply

either Equation 4.2 or Equation 4.3 together with iterated expectation to show that

for each 𝑟 ≥ 0, at least one of the following is true:

E[|𝑈(𝑟)|] ≤ |𝑇 |
(︂

1 − 1 − 𝑒−1/8

2

)︂𝑟/2

E[|Φ(𝑟)|] ≤ Φ(0)

(︂
1 − 1

16

)︂𝑟/2

.

Therefore, for 𝑟 = 32(ln Φ(0) + ln |𝑇 | + ln(1/𝛿)), at least one of the following is

true:

E[|𝑈(𝑟)|] ≤ |𝑇 |
(︂

1 − 1 − 𝑒−1/8

2

)︂16(lnΦ(0)+ln |𝑇 |+ln(1/𝛿))

≤ 𝛿

E[|Φ(𝑟)|] ≤ Φ(0)

(︂
1 − 1

16

)︂16(lnΦ(0)+ln |𝑇 |+ln(1/𝛿))

≤ 𝛿.

By a Markov bound, with probability at least 1 − 𝛿, either |𝑈(𝑟)| < 1 or Φ(𝑟) <

1, implying that all tasks are satisfied by time 𝑟. Since 𝑐ℎ𝑜𝑖𝑐𝑒 always returns an

unsatisfied task, by Lemma 4.2.6, all tasks are satisfied by time |𝑇 |. So, overall, with

probability at least 1− 𝛿, all tasks are satisfied by time min{|𝑇 |, 32(ln Φ(0) + ln |𝑇 |+

ln(1/𝛿))}.

Corollary 4.4.6. For 𝑐 ≥ 1 and for any 𝛿 and 𝜖, 0 < 𝛿, 𝜖 < 1, with probability at least

1 − 𝛿, the deficit at time min{|𝑇 |, 32(ln |𝑇 | + ln(1/𝜖) + ln(1/𝛿))} is at most 𝜖 · Φ(0).
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Theorem 4.4.7. For 𝑐 > 1 and for any 𝛿, 0 < 𝛿 < 1, with probability at least 1 − 𝛿,

all tasks are satisfied by time min{|𝑇 |, (2/ ln 𝑐)(ln |𝑇 | + ln(1/𝛿))}.

Proof. Initially, |𝑈(0)| ≤ |𝑇 |. By Lemma 4.4.4, E[|𝑈(𝑟+1)|] ≤ |𝑈(𝑟)|(1−𝑘). Similarly

to Theorem 4.3.4, we can inductively apply Lemma 4.4.4 and iterated expectation

to show that for each 𝑟 ≥ 0, it is true that E[|𝑈(𝑟 + 1)|] ≤ |𝑇 |(1 − 𝑘)𝑟. For 𝑟 =

(ln(1 − 𝑘)−1)−1(ln |𝑇 | + ln(1/𝛿)) we have:

E[|𝑈(𝑟)|] ≤ |𝑇 |(1 − 𝑘)(ln(1−𝑘)
−1)−1(ln |𝑇 |+ln(1/𝛿)) ≤ 𝛿.

Therefore, by a Markov bound, with probability at least 1 − 𝛿, |𝑈(𝑟)| < 1, implying

that all tasks are satisfied by time (ln(1 − 𝑘)−1)−1(ln |𝑇 | + ln(1/𝛿)). Since 𝑐ℎ𝑜𝑖𝑐𝑒

always returns an unsatisfied task, by Lemma 4.2.6, all tasks are satisfied by time

|𝑇 |, and the lemma follows.

We can combine the results of Theorems 4.4.5 and 4.4.7. Clearly, if 𝑐 is extremely

close to 1, the 2/ ln 𝑐 term becomes very large, and in the limit the running time

becomes ∞. Therefore, we can take the minimum of the running times of Theorems

4.4.5 and 4.4.7 to get the overall running time of the algorithm.

Corollary 4.4.8. For any 𝛿, 0 < 𝛿 < 1, with probability at least 1 − 𝛿, all tasks are

satisfied by time min{|𝑇 |,𝒪(ln−1 𝑐) · 𝒪(min{|𝑇 |, ln Φ(0) + ln |𝑇 | + ln(1/𝛿))}}.

Corollary 4.4.9. For any 𝛿 and 𝜖, 0 < 𝛿, 𝜖 < 1, with probability at least 1 − 𝛿, the

deficit at time min{|𝑇 |,𝒪(ln−1 𝑐) · 𝒪(ln(1/𝜖) + ln |𝑇 | + ln(1/𝛿))} is at most 𝜖 · Φ(0).

4.5 Unsatisfied Tasks Prioritized by Deficit

In this section, we consider the third option for the 𝑐ℎ𝑜𝑖𝑐𝑒 component, defined in

Section 4.1, where in each round 𝑐ℎ𝑜𝑖𝑐𝑒 returns a task 𝑖 ∈ 𝑈(𝑟) with probability

(𝑑𝑖 − 𝑤𝑖(𝑟))/Φ(𝑟). In Section 4.5.1, we analyze the time for ants to re-allocate when

alternative tasks in each round are determined based on option (3). Then, in Section

177



4.5.2, we present an alternative model where each of the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑐ℎ𝑜𝑖𝑐𝑒 compo-

nents provides noisy information to the ants. For the resulting noisy variant of option

(3), we analyze the time for ants to re-allocate, satisfying the demands of the tasks

approximately.

4.5.1 Option (3) with no Uncertainty

For Lemmas 4.5.1 and 4.5.2, assume 𝛼 is a fixed execution and 𝑟 ≥ 0 is some fixed time

in 𝛼. We consider the state variables at time 𝑟 and the outputs of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 in round

𝑟 + 1 to be fixed, and we consider the probability distribution over the randomness

introduced by the 𝑐ℎ𝑜𝑖𝑐𝑒 outputs in round 𝑟 + 1.

Since an inactive ant starts working on a task 𝑖 with probability (𝑑𝑖−𝑤𝑖(𝑟))/Φ(𝑟),

and since there are at least Φ(𝑟) inactive ants in round 𝑟+ 1, the expected number of

new ants to join task 𝑖 in round 𝑟+1 is at least a constant fraction of 𝑑𝑖−𝑤𝑖(𝑟), which

is exactly the deficit of the task at time 𝑟. In the next lemma, we show that each

task is satisfied in round 𝑟 + 1 with a constant probability, and so the total number

of unsatisfied tasks decreases by at least a constant fraction.

Lemma 4.5.1. For 𝑐 ≥ 1, E[|𝑈(𝑟 + 1)|] ≤ |𝑈(𝑟)|/2 and E[Φ(𝑟 + 1)] ≤ Φ(𝑟)/2.

Proof. We start by bounding the probability Pr[𝑤𝑖(𝑟 + 1) ≥ 𝑑𝑖] from below, for some

task 𝑖 ∈ 𝑈(𝑟). We can express (𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) as a binomial variable that is the

sum of 𝑛 independent identical random variables, each with probability 𝑝 of success.

By Lemma 4.2.5, the number of inactive ants in round 𝑟 + 1 is at least Φ(𝑟), so

𝑛 ≥ Φ(𝑟), and by the definition of 𝑐ℎ𝑜𝑖𝑐𝑒, we know that 𝑝 = (𝑑𝑖 − 𝑤𝑖(𝑟))/Φ(𝑟). By

[72], the median 𝑚 of (𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) is:

⌊︂
𝑛(𝑑𝑖 − 𝑤𝑖(𝑟))

Φ(𝑟)

⌋︂
≤ 𝑚 ≤

⌈︂
𝑛(𝑑𝑖 − 𝑤𝑖(𝑟))

Φ(𝑟)

⌉︂
.

Since we want to lower-bound Pr[𝑤𝑖(𝑟 + 1)−𝑤𝑖(𝑟) ≥ 𝑑𝑖 −𝑤𝑖(𝑟)], we can consider

𝑛 = Φ(𝑟) because the probability that task 𝑖 is satisfied only increases if we increase

𝑛. Therefore, 𝑚 = 𝑑𝑖 − 𝑤𝑖(𝑟), and by the definition of the median it follows that

Pr[𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟) ≥ 𝑑𝑖 − 𝑤𝑖(𝑟)] ≥ 1/2.
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By Lemma 4.2.7, E[|𝑈(𝑟 + 1)|] ≤ |𝑈(𝑟)|/2 and E[Φ(𝑟 + 1)] ≤ Φ(𝑟)/2.

Next, we consider the case of 𝑐 > 1. Similarly to Section 4.4, we show that each

task is satisfied with a constant probability, so the number of unsatisfied tasks and

the total deficit decrease by a constant fraction in each round.

Lemma 4.5.2. For 𝑐 > 1, E[|𝑈(𝑟 + 1)|] ≤ |𝑈(𝑟)| · 𝑒−𝑐(1−1/𝑐)2/2 and E[Φ(𝑟 + 1)] ≤

Φ(𝑟) · 𝑒−𝑐(1−1/𝑐)2/2.

Proof. By Lemma 4.2.5, the number of inactive ants in round 𝑟+1 is at least 𝑐 ·Φ(𝑟).

Therefore, for each 𝑖 ∈ 𝑈(𝑟), E[𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)] ≥ 𝑐 · Φ(𝑟)(𝑑𝑖 − 𝑤𝑖(𝑟))/Φ(𝑟) =

𝑐 · (𝑑𝑖 − 𝑤𝑖(𝑟)). By a Chernoff bound it follows that:

Pr [(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) < (𝑑𝑖 − 𝑤𝑖(𝑟))]

≤ Pr

[︂
(𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)) <

(︂
1

𝑐

)︂
E [𝑤𝑖(𝑟 + 1) − 𝑤𝑖(𝑟)]

]︂
≤ 𝑒−

E[𝑤𝑖(𝑟+1)−𝑤𝑖(𝑟)](1− 1
𝑐)

2

2

≤ 𝑒−
𝑐·(𝑑𝑖−𝑤𝑖(𝑟))(1− 1

𝑐)
2

2|𝑈(𝑟)| since (𝑑𝑖 − 𝑤𝑖(𝑟)) ≥ 1,

≤ 𝑒−
𝑐(1− 1

𝑐)
2

2 .

By Lemma 4.2.7, E[|𝑈(𝑟 + 1)|] ≤ |𝑈(𝑟)| · 𝑒−𝑐(1−1/𝑐)2/2 and E[Φ(𝑟 + 1)] ≤ Φ(𝑟) ·

𝑒−𝑐(1−1/𝑐)
2/2.

Finally, we fix some arbitrary deterministic 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 components in each round

and we analyze the total running time of task allocation for an arbitrary probabilistic

execution of the resulting system. In the next theorem, we start at time 0, when the

number of unsatisfied tasks is at most |𝑇 |, and inductively apply Lemmas 4.5.1 and

4.5.2 and iterated expectation.

Theorem 4.5.3. For 𝑐 ≥ 1 and for any 𝛿, 0 < 𝛿 < 1, with probability at least 1 − 𝛿,

all tasks are satisfied by time min{|𝑇 |,min{log |𝑇 |, log Φ(0)} + log(1/𝛿)}.

Proof. Initially, |𝑈(0)| ≤ |𝑇 |. By Lemma 4.5.1, E[|𝑈(𝑟+ 1)|] ≤ |𝑈(𝑟)|/2 and E[Φ(𝑟+

1)] ≤ Φ(𝑟)/2. Similarly to Theorem 4.3.4, we can inductively apply Lemma 4.5.1
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and iterated expectation to show that for each 𝑟 ≥ 0, it is true that E[|𝑈(𝑟 + 1)|] ≤

|𝑇 |(1/2)𝑟 and E[Φ(𝑟 + 1)] ≤ Φ(0)(1/2)𝑟. For 𝑟 = min{log |𝑇 | + log Φ(0)} + log(1/𝛿)

we have that at least one of the following is true:

E[|𝑈(𝑟)|] ≤ |𝑇 | · 2−(min{log |𝑇 |,Φ(0)}+log(1/𝛿)) ≤ 𝛿

E[Φ(𝑟)] ≤ Φ(0) · 2−(min{log |𝑇 |,Φ(0)}+log(1/𝛿)) ≤ 𝛿.

Therefore, by a Markov bound, with probability at least 1 − 𝛿, either |𝑈(𝑟)| < 1 or

Φ(0) < 1, implying that all tasks are satisfied by time min{log |𝑇 |, log Φ(0)}+log(1/𝛿).

Since 𝑐ℎ𝑜𝑖𝑐𝑒 always returns an unsatisfied task, by Lemma 4.2.6, all tasks are satisfied

by time |𝑇 |, and the lemma follows.

Corollary 4.5.4. For 𝑐 ≥ 1 and for any 𝛿 and 𝜖, 0 < 𝛿, 𝜖 < 1, with probability at

least 1 − 𝛿, the deficit at time min{|𝑇 |, log(1/𝜖) + log(1/𝛿)} is at most 𝜖 · Φ(0).

Theorem 4.5.5. For 𝑐 > 1 and for any 𝛿, 0 < 𝛿 < 1, with probability at least 1−𝛿, all

tasks are satisfied by time min{|𝑇 |, (2/(𝑐(1− 1/𝑐)2))(min{ln |𝑇 |, ln Φ(0)}+ ln(1/𝛿))}.

Proof. Initially, |𝑈(0)| ≤ |𝑇 |. By Lemma 4.5.2, E[|𝑈(𝑟 + 1)|] ≤ |𝑈(𝑟)| · 𝑒−
𝑐(1− 1

𝑐)
2

2

and E[Φ(𝑟 + 1)] ≤ Φ(𝑟) · 𝑒−
𝑐(1− 1

𝑐)
2

2 . Similarly to Theorem 4.3.4, we can inductively

apply Lemma 4.5.1 and iterated expectation to show that for each 𝑟 ≥ 0, it is true

that E[|𝑈(𝑟 + 1)|] ≤ |𝑇 |(𝑒−𝑟𝑐(1−1/𝑐)2/2) and E[Φ(𝑟 + 1)] ≤ Φ(0)(𝑒−𝑟𝑐(1−1/𝑐)
2/2). For

𝑟 = (2/(𝑐(1 − 1/𝑐)2))(min{ln |𝑇 |, ln Φ(0)} + ln(1/𝛿)) we have that at leas one of the

following is true:

E[|𝑈(𝑟)|] ≤ |𝑇 | · 𝑒−(2/(𝑐(1−1/𝑐)2))(min{ln |𝑇 |,lnΦ(0)}+ln(1/𝛿)) ≤ 𝛿

E[Φ(𝑟)] ≤ Φ(0) · 𝑒−(2/(𝑐(1−1/𝑐)2))(min{ln |𝑇 |,lnΦ(0)}+ln(1/𝛿)) ≤ 𝛿.

Therefore, by a Markov bound, with probability at least 1−𝛿, either |𝑈(𝑟)| < 1 or

Φ(𝑟) < 1, implying that by time (2/(𝑐(1 − 1/𝑐)2))(min{ln |𝑇 |, ln Φ(0)} + ln(1/𝛿)) all

tasks are satisfied. Since 𝑐ℎ𝑜𝑖𝑐𝑒 always returns an unsatisfied task, by Lemma 4.2.6,

all tasks are satisfied by time |𝑇 |, and the lemma follows.
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Corollary 4.5.6. For 𝑐 > 1 and for any 𝛿 and 𝜖, 0 < 𝛿, 𝜖 < 1, with probability at

least 1 − 𝛿, the deficit at time min{|𝑇 |, (2/(𝑐(1 − 1/𝑐)2))(log(1/𝜖) + log(1/𝛿))} is at

most 𝜖 · Φ(0).

We can combine the results of Theorems 4.5.3 and 4.5.5. Clearly, if 𝑐 is extremely

close to 1, the 1/(𝑐(1 − 1/𝑐)2) term becomes very large, and in the limit the running

time becomes ∞. Therefore, we can take the minimum of the running times of

Theorems 4.5.3 and 4.5.5 to get the overall running time of the algorithm.

Corollary 4.5.7. For any 𝛿, 0 < 𝛿 < 1, with probability at least 1 − 𝛿, all tasks are

satisfied by time min{|𝑇 |,𝒪(𝑐−1) · 𝒪(log Φ(0) + log(1/𝛿))}.

For 𝑐 = 2 +
√

3 ≈ 3.7, we have 2/(𝑐(1−1/𝑐)2) = 1, so we can think of the running

time being bounded by Theorem 4.5.3 for 𝑐 ∈ [1, 2 +
√

3] and bounded by Theorem

4.5.5 for 𝑐 > 2 +
√

3.

Corollary 4.5.8. For any 𝛿 and 𝜖, 0 < 𝛿, 𝜖 < 1, with probability at least 1 − 𝛿, the

deficit at time min{|𝑇 |,𝒪(𝑐−1) · 𝒪(log(1/𝜖) + log(1/𝛿))} is at most 𝜖 · Φ(0).

4.5.2 Option (3) under Uncertainty

Suppose the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 component is not completely reliable and it can flip the 0/1 bits

of at most 0 ≤ 𝑧 ≤ |𝐴| ants in round 𝑟 + 1. Moreover, we assume the information

needed to determine the outputs of the 𝑐ℎ𝑜𝑖𝑐𝑒 component in the same round is based

on the state variables at time 𝑟. That is, the outputs of 𝑐ℎ𝑜𝑖𝑐𝑒 in round 𝑟 + 1 do not

incorporate the outputs of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (with the 𝑧 potential mistakes) in round 𝑟 + 1.

Also, suppose the 𝑐ℎ𝑜𝑖𝑐𝑒 component is also not completely reliable and can change

the probability of outputting task 𝑖 from exactly Φ𝑖(𝑟)/Φ(𝑟) to any value larger than

(1−𝑦)(Φ𝑖(𝑟)/Φ(𝑟)) for any 0 ≤ 𝑦 < 1 while still maintaining a probability distribution

over all the tasks.

In other words, we have an alternative model where we consider two types of

uncertainty: the number of successful ants and the probabilities with which tasks are

assigned to ants are not exact but bounded.
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Next, we analyze the time for ants to re-allocate in this modified model. The

statements and proofs below are very similar to the ones in Section 4.5.1 with the

following two main differences. First, it is no longer possible to guarantee that all tasks

are satisfied but we can show that the deficit does not exceed 𝑧. Second, whenever

the 𝑐ℎ𝑜𝑖𝑐𝑒 component is supposed to return a given task with some probability 𝑝, we

use the lower bound 𝑝(1 − 𝑦) for that probability; this results in a running time that

increases as 𝑦 approaches 1.

For Lemmas 4.5.9 and 4.5.10, assume 𝛼 is a fixed execution and 𝑟 ≥ 0 is some

fixed time in 𝛼. We consider the state variables at time 𝑟 and the outputs of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

in round 𝑟 + 1 to be fixed, and we consider the probability distribution over the

randomness introduced by the 𝑐ℎ𝑜𝑖𝑐𝑒 outputs in round 𝑟 + 1.

For each task 𝑖 ∈ 𝑇 , let 𝑧0𝑖 be the number of 0’s flipped to 1’s, and let 𝑧1𝑖 be

the number of 1’s flipped to 0’s by 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 in round 𝑟 + 1. Let 𝑧0 =
∑︀

𝑖∈𝑇 𝑧0𝑖 and

𝑧1 =
∑︀

𝑖∈𝑇 𝑧1𝑖 , so 𝑧0 + 𝑧1 ≤ 𝑧.

Note that, based on the definitions above, the number of workers 𝑤𝑖(𝑟) working

at task 𝑖 decreases by 𝑧1𝑖 before the unsuccessful ants choose a new task to join. Also,

the number of inactive ants is at least Φ(𝑟) − 𝑧0𝑖 because 𝑧0𝑖 ants are informed they

are successful while they are actually not successful.

Lemma 4.5.9. For 𝑐 ≥ 1, E[Φ(𝑟 + 1)] ≤ (1/4)((3 + 𝑦)Φ(𝑟) + 𝑧).

Proof. Let random variable 𝑋𝑖(𝑟 + 1) denote the number of ants that join task 𝑖 in

round 𝑟 + 1. The probability for an ants to receive task 𝑖 from 𝑐ℎ𝑜𝑖𝑐𝑒 in round 𝑟 + 1

is 𝑝𝑖 ∈ [(1 − 𝑦)(Φ𝑖(𝑟)/Φ(𝑟)), (1 + 𝑦)(Φ𝑖(𝑟)/Φ(𝑟))]. By Lemma 4.2.5, the number of

inactive ants in round 𝑟 + 1 is at least Φ(𝑟); however, now they may be fewer if

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 flipped some 0’s to 1’s, so the number of inactive ants is at least Φ(𝑟) − 𝑧0.
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So, E[𝑋𝑖(𝑟 + 1)] ≥ 𝑝𝑖 · (Φ(𝑟) − 𝑧0) and the expected value of Φ(𝑟 + 1) is:

E[Φ(𝑟) − Φ(𝑟 + 1)] =
∑︁
𝑖∈𝑇

E[min{𝑋𝑖(𝑟 + 1) − 𝑧1𝑖 , (𝑑𝑖 − 𝑤𝑖(𝑟))}]

≥
∑︁
𝑖∈𝑇

(︂
1

4

)︂
min{E[𝑋𝑖(𝑟 + 1)] − 𝑧1𝑖 , (𝑑𝑖 − 𝑤𝑖(𝑟))}

≥
∑︁
𝑖∈𝑇

(︂
1

4

)︂
min

{︀
𝑝𝑖 · (Φ(𝑟) − 𝑧0) − 𝑧1𝑖 ,Φ𝑖(𝑟)

}︀
≥
(︂

1

4

)︂∑︁
𝑖∈𝑇

(1 − 𝑦) · Φ𝑖(𝑟) − 𝑝𝑖 · 𝑧0 − 𝑧1𝑖

≥
(︂

1

4

)︂(︀
(1 − 𝑦) · Φ(𝑟) − 𝑧0 − 𝑧1

)︀
≥
(︂

1

4

)︂
((1 − 𝑦) · Φ(𝑟) − 𝑧) .

Lemma 4.5.10. For 𝑐 > 1, E[Φ(𝑟)−Φ(𝑟+1)] ≥ (1−𝑒−(𝑐(1−1/𝑐)
2)/2)((1−𝑦) ·Φ(𝑟)−𝑧).

Proof. Let that random variable 𝑋𝑖(𝑟 + 1) denote the number of ants that join task

𝑖 in round 𝑟 + 1. We assumed that the outputs of 𝑐ℎ𝑜𝑖𝑐𝑒 are based only on 𝑤𝑖(𝑟),

so the probability for an ants to receive task 𝑖 from 𝑐ℎ𝑜𝑖𝑐𝑒 in round 𝑟 + 1 is 𝑝𝑖 ∈

[(1−𝑦)(Φ𝑖(𝑟)/Φ(𝑟)), (1+𝑦)(Φ𝑖(𝑟)/Φ(𝑟))] regardless of the outputs of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 in round

𝑟+ 1. By Lemma 4.2.5, the number of inactive ants in round 𝑟+ 1 is at least 𝑐 ·Φ(𝑟).

However, after the mistakes of the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 component, the number of inactive ants

is at least 𝑐 · Φ(𝑟) − 𝑧0 ≥ 𝑐 · (Φ(𝑟) − 𝑧0). So, E[𝑋𝑖(𝑟 + 1)] ≥ 𝑝𝑖𝑐 · (Φ(𝑟) − 𝑧0).

By a Chernoff bound, it follows that:

Pr
[︀
𝑋𝑖(𝑟 + 1) < 𝑝𝑖(Φ(𝑟) − 𝑧0)

]︀
≤ Pr

[︂
𝑋𝑖(𝑟 + 1) <

(︂
1

𝑐

)︂
E[𝑋𝑖(𝑟 + 1)]

]︂
< 𝑒−

𝑐(1− 1
𝑐 )2

2 .
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By linearity of expectation it follows that:

E[Φ(𝑟) − Φ(𝑟 + 1)] =
∑︁
𝑖∈𝑇

E[Φ𝑖(𝑟) − Φ𝑖(𝑟 + 1)]

≥
∑︁
𝑖∈𝑇

E[Φ𝑖(𝑟) − Φ𝑖(𝑟 + 1) | 𝑋𝑖(𝑟 + 1) > 𝑝𝑖(Φ(𝑟) − 𝑧0)]

· Pr[𝑋𝑖(𝑟 + 1) > 𝑝𝑖(Φ(𝑟) − 𝑧0)]

≥
∑︁
𝑖∈𝑇

min{𝑝𝑖(Φ(𝑟) − 𝑧0) − 𝑧1𝑖 ,Φ𝑖(𝑟)}

· Pr[𝑋𝑖(𝑟 + 1) > 𝑝𝑖(Φ(𝑟) − 𝑧0)]

≥
∑︁
𝑖∈𝑇

(︀
𝑝𝑖(Φ(𝑟) − 𝑧0) − 𝑧1𝑖

)︀
·
(︂

1 − 𝑒−
𝑐(1− 1

𝑐 )2

2

)︂
≥
(︂

1 − 𝑒−
𝑐(1− 1

𝑐 )2

2

)︂∑︁
𝑖∈𝑇

(1 − 𝑦)Φ𝑖(𝑟) − 𝑝𝑖𝑧
0 − 𝑧1𝑖

≥
(︂

1 − 𝑒−
𝑐(1− 1

𝑐 )2

2

)︂
((1 − 𝑦)Φ(𝑟) − 𝑧).

Finally, we fix some arbitrary deterministic 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 components in each round

and we analyze the total running time of task allocation for an arbitrary probabilistic

execution of the resulting system. In the next theorem, we start at time 0 and

inductively apply Lemmas 4.5.9 and 4.5.10 and iterated expectation.

Theorem 4.5.11. For 𝑐 ≥ 1, for any 𝛿, 0 < 𝛿 < 1, and for 𝑟 = (1/ ln(4/(3 +

𝑦)))(ln Φ(0) + ln(1/𝛿)), Pr[Φ(𝑟) ≤ 𝑧] ≥ 1 − 𝛿.

Proof. By Lemma 4.5.9, E[Φ(𝑟 + 1)] ≤ (1/4)((3 + 𝑦)Φ(𝑟) + 𝑧). Similarly to Theorem

4.3.4, we can inductively apply Lemma 4.5.9 and iterated expectation to show that

for each 𝑟 ≥ 0, it is true that:

E[Φ(𝑟 + 1)] ≤ Φ(0)

(︂
3 + 𝑦

4

)︂𝑟

+ 𝑧

(︂
(4/(1 − 𝑦))𝑟 − 1

(4/(1 − 𝑦))𝑟

)︂
≤ Φ(0)

(︂
3 + 𝑦

4

)︂𝑟

+ 𝑧.
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For 𝑟 = (1/ ln(4/(3 + 𝑦)))(ln Φ(0) + ln(1/𝛿)) we have that:

E[Φ(𝑟) − 𝑧] ≤ Φ(0) ·
(︂

3 + 𝑦

4

)︂(1/ ln(4/(3+𝑦)))(lnΦ(0)+ln(1/𝛿))

≤ 𝛿.

Therefore, by a Markov bound, Pr[Φ(𝑟) − 𝑧 ≥ 1] ≤ 𝛿, so Pr[Φ(𝑟) − 𝑧 < 1] ≥ 1 − 𝛿,

implying that with probability at least 1 − 𝛿, Φ(𝑟) − 𝑧 ≤ 0, and so Pr[Φ(𝑟) ≤ 𝑧] ≥

1 − 𝛿.

Let 𝑘 = (1 − 𝑦)(1 − 𝑒−(𝑐(1−1/𝑐)
2)/2).

Theorem 4.5.12. For 𝑐 > 1, for any 𝛿, 0 < 𝛿 < 1, and for round 𝑟 = (ln(1 −

𝑘)−1)−1(ln Φ(0) + ln(1/𝛿)), Pr[Φ(𝑟) ≤ 𝑧] ≥ 1 − 𝛿.

Proof. Similarly to Theorem 4.5.11, we can inductively apply Lemma 4.5.10 and

iterated expectation to show that for each 𝑟 ≥ 0, it is true that:

E[Φ(𝑟 + 1)] ≤ Φ(0)

(︂
1 − (1 − 𝑦)

(︂
1 − 𝑒−

𝑐(1− 1
𝑐 )2

2

)︂)︂𝑟

+ 𝑧 = Φ(0) · (1 − 𝑘)𝑟 + 𝑧.

For 𝑟 = (ln(1 − 𝑘)−1)−1(ln Φ(0) + ln(1/𝛿)) we have that:

E[Φ(𝑟) − 𝑧] ≤ Φ(0) · (1 − 𝑘)𝑟 ≤ Φ(0) · 𝑒−(lnΦ(0)+ln(1/𝛿)) ≤ 𝛿.

Therefore, by a Markov bound, Pr[Φ(𝑟) − 𝑧 ≥ 1] ≤ 𝛿, so Pr[Φ(𝑟) − 𝑧 < 1] ≥ 1 − 𝛿,

implying that with probability at least 1 − 𝛿, Φ(𝑟) − 𝑧 ≤ 0, and so Pr[Φ(𝑟) ≤ 𝑧] ≥

1 − 𝛿.

Corollary 4.5.13. For any 𝛿, 0 < 𝛿 < 1, and for 𝑟 = min{1/ ln(4/(3 + 𝑦)), (ln(1 −

𝑘)−1)−1}(ln Φ(0) + ln(1/𝛿)) = 𝒪(max{𝑐−1, ln−1(𝑦−1)})(ln Φ(0) + ln(1/𝛿)), Pr[Φ(𝑟) ≤

𝑧] ≥ 1 − 𝛿.
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4.6 Discussion

4.6.1 Summary of Results

Table 1-1 (reproduced below) summarizes our results. One of the main goals of these

results is to highlight the dependence of the time for ants to re-allocate on various

colony and environment parameters. In all three options for the 𝑐ℎ𝑜𝑖𝑐𝑒 component,

we see that the time for ants to re-allocate is logarithmic in the amount of work Φ and

does not directly depend on the colony size |𝐴|. Furthermore, in each of those three

cases, the time for ants to re-allocate decreases as the ants-to-work ratio, 𝑐, increases.

This relationship is not exactly the same in all three cases: in options (1) and (3) the

dependence is inversely proportional and linear in 𝑐, while in option (2) it is inversely

proportional and logarithmic in 𝑐. Figure 4-2 summarizes and illustrates our results

in the three options for the 𝑐ℎ𝑜𝑖𝑐𝑒 component with respect to 𝑐. Note that due to the

weaker dependence of option (2) on the value of 𝑐, initially it performs better than

option (1), but as 𝑐 increases, option (1) corresponds to better running times.

option (1) option (2) option (3)
satisfy all Φ work 𝒪(|𝑇 |(1

𝑐
)) min{|𝑇 |, min{|𝑇 |,𝒪(1

𝑐
)

with prob. ≥ 1 − 𝛿 (ln Φ + ln(1
𝛿
)) (min{1,𝒪( 1

ln 𝑐
)}· (ln Φ + ln(1

𝛿
))}

(ln Φ + ln(1
𝛿
)))}

satisfy Φ(1 − 𝜖) work 𝒪(|𝑇 |(1
𝑐
)) min{|𝑇 |, min{|𝑇 |,𝒪(1

𝑐
)

with prob. ≥ 1 − 𝛿 (ln(1
𝜖
) + ln(1

𝛿
)) (min{1,𝒪( 1

ln 𝑐
)}· (ln(1

𝜖
) + ln(1

𝛿
))}

(ln(1
𝜖
) + ln(1

𝛿
)))}

satisfy Φ − 𝑧 work did not did not min{|𝑇 |, (ln Φ + ln(1
𝛿
))

under uncertainty analyze analyze 𝒪(max{1
𝑐
, 1
ln(1/𝑦)

})}

Naturally, all three of these results also depend on the probability 1−𝛿 with which

we require the tasks to be satisfied. In the results where work needs to be satisfied

only approximately (the second row of the table), we no longer see a dependence

on Φ; in this case, the significant parameter that affects the running time is 𝜖 – the

fraction of work that may be unsatisfied at the end of the task re-allocation.

Additionally, in option (1), we see a linear dependence on the number |𝑇 | of tasks

due to the slow sampling of unsatisfied tasks in this case. In options (2) and (3),
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Figure 4-2: The three plots indicate the times until workers re-allocate successfully for
options (1), (2), and (3) of the 𝑐ℎ𝑜𝑖𝑐𝑒 component as a function of 𝑐. For options (1) and
(3) the plotted function is approximately 1/𝑐, and for option (2), the plotted function
is approximately min{1, 1/ ln 𝑐}. We multiply these functions by the corresponding
time to re-allocate for 𝑐 = 1. For options (2) and (3), the running times technically
also depend on |𝑇 |, but for simplicity we do not depict the min function.

we have a minimum over |𝑇 | and the remaining expressions indicating that when the

number of tasks is very small, the other parameters (the total amount of work Φ, the

probability 1− 𝛿 of satisfying the tasks, and the fraction 1− 𝜖 of work to be satisfied)

are irrelevant for the efficiency of task allocation.

Since task allocation is the fastest under option (3), we also analyze the perfor-

mance of the algorithm under uncertainty. We assume an adversary can arbitrarily

flip at most 𝑧 bits of the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 component outputs, and the probabilities with which

the 𝑐ℎ𝑜𝑖𝑐𝑒 component outputs tasks is lower-bounded by a (1 − 𝑦) factor of the orig-

inal probabilities. In order to satisfy at least Φ − 𝑧 units of work, ants need to pay

an extra multiplicative factor of at most 1/ ln(1/𝑦).

4.6.2 Biological Implications

Modeling, in general, can serve different purposes in the scientific process [63, 109].

From a biological viewpoint, our goal is to examine whether task allocation is a

difficult problem, and what factors affect the various task allocation strategies.
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4.6.2.1 Is task allocation a difficult problem in biological systems?

From a biological perspective, a problem is considered difficult if it requires a signifi-

cant amount of some resource (for example, energy or time) to solve the problem. If

task allocation is an easy problem, then the match of work to workers can be achieved

without significant costs in terms of the resource of choice (in our setting, time). In

complex systems where task allocation is difficult, on the other hand, the choice

of task allocation algorithm is crucial for system performance; in biological systems

where this is the case, we would expect task allocation mechanisms to be under strong

(evolutionary) selection, and their evolution to reflect the specific ecological context

of the system. In social insect colonies, for example, task allocation mechanisms

appear to differ between species – this could be the case because different species

have developed different, equally good, solutions, or because different species have

different requirements (because they differ in the frequency with which demand for

work in different tasks changes). There is some evidence that even brief mismatches

of work to workers (incorrect task allocation) can be detrimental in certain species,

for example, because brood do not develop well when briefly not thermoregulated1

[62]. This implies that certain species are likely to use fast task allocation strategies

like options (2) and (3) rather than slower ones like option (1).

In order to gain insight into the difficulty of the task allocation problem, we

estimate the time to correct allocation for several species and contexts (Figure 4-

3) by substituting specific values into the running time expressions we derived in

Sections 4.3 – 4.5. Some of the values of the parameters that we use correspond to

empirical observations from real experiments (see Figure 4-4 for a more information

on the values and the corresponding experiments).

For example, we estimate that when a honey bee colony is attacked by a large

predator, and 5000 (±30%) bees should ideally be allocated to defense, the time to

achieve this within our generalized task allocation algorithm would be around 5− 10

rounds if all bees can directly sense the need for more defenders (options (2) or (3)),

1Brood of some species requires a specific temperature to be constantly maintained in the nest.
Bees, for example, can regulate the nest temperature by flapping their wings.
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Insect name |𝑇 | 𝑐 Φ 1 − 𝛿 1 − 𝜖 (1) (2) (3)
Honey bee 10 1.3 5000 0.95 0.7 708.5 10 6.3

(Apis mellifera)
predator attack (258.4) (10) (4.7)

Honey bee 10 1.3 150 0.8 0.7 407.3 10 4.9
(Apis mellifera)

change in foraging (173.1) (10) (3.4)
conditions
Rock ants 4 1.7 5 0.5 0.7 43.3 4 2.7

(Temnothorax rugutulus)
change in foraging (35.7) (4) (2.4)

conditions
Rock ants 4 1.7 25 0.9 0.9 103.9 4 4

(Temnothorax rugutulus)
emigration after (86.7) (4) (4)
nest breakdown

Bumble bee 8 1.5 5 0.9 0.75 166.9 8 4.6
(Bombus impatiens)

(157.4) (8) (4.3)

Figure 4-3: Numerical Results. For each option, we calculate the number of rounds
until the entire initial deficit Φ is satisfied and, in parentheses, the number of rounds
until a (1 − 𝜖) · Φ fraction of the deficit is satisfied. These are not intended to be
exact time estimates; the values for 𝑐, 𝛿, and 𝜖 have not been estimated empirically
for any species, nor is it clear how long a round precisely should be. The intent,
here, is to check whether task allocation might take a significant amount of time in
realistic scenarios. These numerical estimates also serve to illustrate how the different
parameters affect the time to successful reallocation in a realistic context of other
parameter values.

and 700 rounds if they cannot (and only arrive in the defense task because they

randomly tested different tasks in different rounds, option (1)). Since this particular

situation requires a quick collective response, the difference between option (1) and

options (2) or (3) appears significant, regardless of whether a round takes minutes or

seconds to complete.

In another example, a change in foraging conditions in the case of rock ants

(Temnothorax ) may imply that only five additional workers need to be allocated to

the task of foraging; however, in that system it appears likely that individuals need on

the order of a minute rather than seconds to assess both the state of their environment

and whether their own task performance is successful. If that is the case, a delay of
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40 rounds may also be a significant and costly delay to appropriately exploit novel

food sources, for example.

In all cases, the crucial factors in the task allocation process are whether or not

individuals can assess the demand across different tasks simultaneously (instead of

only in the one task they are working on), and what time period a round corresponds

to (i.e. how long it takes a worker to assess whether its current work is needed).

Overall, our calculations show that realistic parameter estimates can lead to poten-

tially significant costs of slow task allocation. Our calculations are coarse since the

precise values of many of the parameters are not known (however, see Figure 4-4 for

references on parameter estimates). More empirical work in this area would be useful.

4.6.2.2 Colony size does not directly affect the efficiency of task allocation

Contrary perhaps to conventional wisdom in both biology and computer science, we

do not find a direct dependence of the time to solve the task allocation problem

on the colony size. This holds even if all the work has to be satisfied only with a

certain probability, and only close to the total needed work. This result is perhaps

expected because we modeled neither the type of noise that would lead to a benefit of

large numbers (where the relative amount of variation in environments decreases with

colony size), nor did we implement any economies of scale (no broadcast signals or any

other communication mechanisms). Although this reasoning is sensible in hindsight,

it was not what we had initially expected nor what is suggested in the literature [44].

4.6.2.3 The workers-to-work ratio affects the efficiency of task allocation

We discover that to understand the dependence of task allocation on the number

of workers in the colony, actually what we really need to know is the total amount

of work that needs to be done. This total amount of work available (or necessary)

has not been studied explicitly either empirically or in models of social insect task

allocation, with a few exceptions [41]. So, we do not have a good understanding

of how the total amount of work behaves with respect to the colony size intra- or

inter-specifically.

190



Here we have simply assumed that the ratio of the colony size and the total amount

of work is constant, but this may well not generally be the case. Previous studies

and conceptual papers have suggested either that larger colonies are relatively less

productive, perhaps suggesting that less work is available per worker, or that they

are more productive because they are capitalizing on some economies of scale; it is

unclear what the latter would imply for the amount of work per worker available. One

interesting new hypothesis here is that the evolution of task allocation across social

insects may, in part, be driven by the factors that limit productivity (for example,

the colony raising brood at near the queen’s maximal egg laying rate). In this case

the total amount of work may increase less than linearly with increasing colony size,

and thus task allocation may become easier, even trivial, at higher colony sizes. Our

modeling study thus suggests a new hypothesis (one for the purposes of modeling

more generally, [55]), by providing the insight that a previously ignored parameter

(the workers-to-work ratio 𝑐) impacts the outcome of a well-studied process.

4.6.2.4 Extra workers make task allocation faster

Inactive workers are common in social insect colonies. Possible reasons for this inactiv-

ity include selfish workers [26, 69], immature workers [24], or temporarily unemployed

workers due to fluctuating total demand [25]. We have shown that the workers-to-

work ratio 𝑐 generally leads to faster task allocation. This is a novel hypothesis for the

existence of inactive workers in social insect colonies and other complex systems [25].

That is, colonies may produce more workers than needed to complete available work

simply in order to speed up the process of (re-)allocating workers to work, and thus

potentially reducing costs of temporary mismatches of workers with needed work.

In other words, inactive (surplus) workers in colonies may increase colony flexibility

and task allocation efficiency in environments where task demands often change and

workers frequently have to be reallocated. The benefit of extra workers does not

depend on colony size, thus we would expect both large and small colonies to have

as many extra workers as they can afford. Although the dependence on 𝑐 varies with

task allocation algorithm, higher 𝑐 is always beneficial.
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4.7 Open Problems

We have explored a range of models that vary in the feedback ants receive from the

environment in each step. Since the goal of this work is to match real insect behavior,

although abstractly, it would be interesting to design other models of interaction

between ants and tasks (through the environment or not) that match specific ant

species behavior.

In particular, the threshold-based model [15] is a widely-accepted model of task

allocation among biologists. In the threshold-based model, each ant has a value (or

a set of values) that represents its preference/willingness to start work on a given

task. As the ant encounters different tasks, it uses this value as a threshold to

determine what task to work on. This model has many variations in terms of how

many thresholds each ant has, whether they change with time or not, whether the

changes are short-lived or long-lived, what distribution the thresholds come from.

A specific problem related to the threshold-based model is to determine what is

the optimal distribution from which to choose the thresholds of each ant for each task

such that the ants will be able to satisfy the most amount of work. Note that if all ants

are fairly unwilling to start working, then many tasks will remain unsatisfied. An even

more specific question is to determine how efficient task allocation is under simple

known distributions; for example, each threshold is chosen uniformly at random from

some range.

Threshold-based models introduce some differences among the ant workers in

terms of their task preferences. However, an even more realistic extensions is to

assume different ants can contribute different amounts of work/energy to different

tasks. As noted in [28], this problem is NP-hard in its most general form. A challeng-

ing open problem is to develop heuristics and approximations to the general solution;

for example, ants may not be able to satisfy the demands of all the tasks, but they can

satisfy a large fraction of them. One approach is to represent the tasks and their de-

mands as a linear program and then use the distributed multiplicative weights update

method for solving linear programs [43].
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Finally, so far we have abstracted away from the process through which ants

discover tasks and their demands. In real ant colonies, tasks differ in the method

through which an ant can sense task demands. For example, if the nest is overheating,

all ants in the nest can instantaneously sense the need for cooling down. However,

if some larvae in some specific nest location are underfed, it may take an ant some

time to discover the need to feed them. A real-world model of task allocation would

include different subroutines for ants to search for tasks and evaluate their demands.

These subroutines can also include a spatial component where ants walk randomly

(or using some other rule) in the nest discovering and evaluating tasks.
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Symbol Parameter
definition

Plausible
range

Explanation for range References

|𝑇 | number of
tasks

[2, 20] At low end if conceived of as the
number of distinct worker task
groups; at higher end if all iden-
tifiable worker activities are in-
cluded.

[22, 111,
66, 112]

Φ initial
deficit

[5, 500] Considerable variation across
species and situations; what
is empirically measured is the
number of workers actually
re-allocated or activated.

[106, 37,
42, 40, 70]

|𝐴| number of
workers

[2, 20
million]

Most species are in the 10 − 500
range for total colony size.

[44]

𝑐 fraction
of extra
workers

[1, 2] Since the total amount of work
has not been empirically mea-
sured, neither has 𝑐. If we assume
inactive workers may be in ex-
cess of work that needs to be per-
formed, values in the entire range
are plausible.

[22, 66, 71,
98, 105]

1 − 𝛿 success
probability

[0.5, 0.95] To our knowledge, no attempts to
estimate 𝛿 exist. Our estimates
for Figure 4-3 are simply based
on the assumption that in some
cases, e.g. defense, colonies would
need to be very certain that ap-
proximately the correct number
of workers are allocated to the
task at hand; in other cases, such
as foraging, colonies may only
need moderate certainty that task
allocation is successful.

1 − 𝜖 fraction of
deficit to
be satisfied

[0.7, 0.9] 𝜖 reflects the degree to which the
demand for work in a task is ex-
actly matched. Given the high
degree of stochasticity observed
in task allocation in social insects,
we assumed here that 1− 𝜖 is not
required to be very close to 1 in
most cases.

[37, 23]

Figure 4-4: Summary of parameters used in the task allocation model and analysis.
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Chapter 5

Contributions and Significance

In this chapter, we summarize the main implications of the results in the previous

chapters, both with respect to contributions to theoretical distributed computing and

evolutionary biology. The rest of this chapter is structured around the two main goals

of biological distributed algorithms: (1) use tools and techniques from distributed

computing to gain insight into real biological behavior, and (2) learn from the models

and algorithms occurring in ant colonies with the goal of designing better distributed

algorithms.

Our results in foraging and house hunting generally refer to the second goal above,

and their significance can best be described in terms of the lessons we have learned

as theoretical computer scientists from the structure and behavior of insect colonies.

These lessons include focusing on new more meaningful metrics besides the standard

time and message complexity, looking to biology for natural lower bounds that do not

exploit the weaknesses of the models to an extreme, and striving for simple algorithms

with new robustness properties. Our results in task allocation refer to the first goal

above, and can best be attributed to providing biologists with a new direction for

hypothesis generation about insect behavior.
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5.1 Lessons for Theoretical Distributed Computing

Scientists

The standard approach to problems in distributed computing usually has the following

structure: given a fixed mathematical model of computation, we define a problem,

design algorithms that correctly solve the problem, analyze the performance of the

algorithms with respect to time, space and message complexity metrics, and prove

lower bounds on the minimum amount of resources (again, in terms of the same

metrics) needed to solve the problem in the given model. We suggest a few changes in

this structure, supported by evidence from our results on foraging and house hunting.

The goals are to have results more widely applicable to real systems, more relevant to

biological systems, and possibly more interesting and meaningful from a theoretical

viewpoint.

5.1.1 New Metrics

As computer scientists, we are used to analyzing the efficiency of algorithms in terms

of time, space, and message complexity. In our foraging work, however, we defined a

new combined metric and showed that it captures more comprehensively the nature

of the search problem, compared to any other known single metric. What advantage

does a combined metric give us over simply considering different metrics in isolation

and proving trade-offs between them?

Consider studying a problem (proving a lower bound and designing a matching

algorithm) with respect to two metrics 𝐴 and 𝐵. A standard approach in such cases

is to consider results with different trade-offs between the two metrics. As a result,

we know how hard it is to solve the problem for some fixed values of the metrics 𝐴

and 𝐵 but usually not for a general combination of 𝐴 and 𝐵. Instead, consider a

combined metric, say 𝐴+𝐵 (more generally, a function of 𝐴 and 𝐵), and suppose we

show (with matching algorithm and lower bound) that there is some value of 𝐴 + 𝐵

that is necessary and sufficient to solve the problem. Now, by simply varying the
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amount each metric contributes to the compound metric, we automatically have a

smooth scale of values of the metrics 𝐴 and 𝐵 for which the problem is solvable.

Clearly, lower bounds and algorithms for such a combined metric are harder to prove

than results for fixed values of the metrics; however, they also provide us with much

better understanding of the nature of the problem.

Examples from biology can be used as inspiration and motivation for designing

combined metrics that suit well-known computer science problems better than stan-

dard single metrics. In evolutionary terms, when an individual mutates, its fitness

is evaluated based on some compound function of all its (newly developed and old)

traits. Considering complex metrics that capture all these traits together can give

us better understanding of the problem at hand and the necessary steps to solve it

efficiently. In our foraging work, we identify the selection metric as the function that

combines two different metrics (memory and probability range) and fits the problem

well. A possible conclusion is that in this setting the selection metric is the “right

way” to combine an individual’s traits in order to evaluate its fitness.

5.1.2 New Models and Lower Bounds

Another standard approach in distributed computing theory is to treat a mathemat-

ical model as a fixed entity that can be fully “stretched and exploited” by the lower

bounds and algorithms. Results are considered desirable and tight if the algorithms

make use of every single capability provided by the model, and the lower bounds

make use of every restriction in the capabilities of the computing entities. Such an

approach is influenced by the strict mathematical formalism that underpins theo-

retical computer science, but it makes results less relevant to real engineering and

biological systems.

In our house hunting work, we encountered an example of this situation where

we have a model together with matching lower bound and algorithm. However, the

algorithm uses the capabilities outlined in the model in very unnatural ways (un-

characteristic of any real biological system), which results in a fragile algorithm that

does not perform correctly under the slightest noise in the environmental parameters
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being modeled. One remedy to this issue is to change the model to reflect the noisy

behaviors we want to consider. A potential risk in this approach is that the resulting

model is so specific that it fits only a small class of problems, and is too involved to

design and analyze algorithms mathematically.

We argue that in such situations, it is important to treat the model as a flexible

entity and strive for simple, natural and robust algorithms. As an example, Algorithm

7 may not be optimal but it is resilient to perturbations of the parameters of the

algorithm, and its correctness is not critically dependent on any one particular system

model assumption. The only potential drawback of such algorithms is that they shift

the complexity from the algorithm to the analysis of the correctness and efficiency of

the algorithm. However, this is not necessarily a disadvantage considering how much

easier it is to implement and maintain such algorithms in practice at the one-time

cost of a more complicated mathematical proof.

5.1.3 Robust and Simple Algorithms

Finally, we elaborate some more on the specific robustness characteristics of algo-

rithms that we consider desirable. All the models and algorithms presented in this

thesis are as simple as possible, each exhibiting different robustness properties. Next,

we list some of these properties.

∙ No communication, or extremely limited communication. The as-

sumption that agents in a distributed system cannot communicate, or at least

cannot communicate directly with one another, poses many difficulties in algo-

rithm design and sidesteps the usual choice between message passing and shared

memory models. Although such a model is not suitable for many distributed

computing applications where agents/nodes have to exchange some information,

it does allow algorithm designers to ignore an entire set of potential issues like

message delays, implementing reliable channels, distinguishing between slow

messages and crashed nodes, etc. All of these issues are really vulnerabilities

of the algorithms with respect to uncertainty in the environment that make
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algorithms less robust in real-world (engineering or biological) applications.

Our results suggest that limiting communication, or (if possible) removing com-

munication altogether, brings algorithms one step closer to natural robustness

and resilience against real-world perturbations. Our foraging work assumes ab-

solutely no communication and shows that a general problem like searching the

plane is solvable in optimal time with very limited other resources (selection

metric) without having to rely on sending and receiving large and complicated

messages between the searchers.

Our house-hunting work does use some communication in the form of tandem

runs (recruitment), however, it is extremely rudimentary and allows for only

small amount of information to be exchanged between communicating agents.

The results confirm that even such limited communication is sufficient to solve

consensus, also as evidenced by real ants in nature. Models of limited commu-

nication have already attracted the attention of researchers working on pop-

ulation protocols and the stone age model [48] where they solve traditionally

difficult problems like consensus, leader election, MIS, and other graph prob-

lems. The density estimation algorithm in [83] uses only the encounter rates

between agents as communication, which is suggested to be the case with many

ant species [59].

Finally, our work on task allocation employs a new form of indirect communica-

tion between agents, using the environment as a medium. While this is reminis-

cent of the shared-memory type of communication, here the agents cannot read

an write arbitrary bits of information. Instead, the environment provides each

agent with probabilistic and approximate information about the current state

of the system. Learning how to solve problems under such indirect communi-

cation models is challenging but it can save the algorithm designer from issues

like atomicity properties of the shared-memory registers, corrupted registers, or

Byzantine agents writing malicious information.

∙ Approximate, probabilistic, and limited environment input. In dis-
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tributed computing theory, we often make assumptions on the amount of infor-

mation agents have about the state of the system. For example, do agents know

the total number of agents, do they know the diameter of the graph, do they

have a common notion of time, etc. When we tackle a new problem, we usually

start by assuming agents have all the information they need to solve the prob-

lem, and then we work on removing these assumptions one by one. Sometimes,

of course, some information is critical to solving a problem, so we usually state,

through a lower bound or an impossibility result, that the problem is unsolvable

or hard to solve without some specific knowledge of some parameter. One such

example, as we mentioned in Chapter 1 is designing a foraging algorithm that

works without knowledge of the total number 𝑛 of foragers. A lower bound [50]

states that without knowing 𝑛, we have to pay a log 𝑛 factor in the running

time of the algorithm.

Our house-hunting work suggests that it is also worth answering the question of

how well an algorithm performs with approximate information of the parameter

of choice. This assumption can be thought of as an intermediate step between

knowing the precise value of the parameter and not having any knowledge of

it. We show that, under the right assumptions, not knowing the exact number

of ants at a candidate nest does not affect the correctness and efficiency of the

house-hunting algorithm significantly. In fact, assuming approximate knowledge

of environmental parameters is a standard assumption in biology and other life

sciences, which takes our house-hunting algorithm one step closer to being rele-

vant to real-world ant colonies. We conjecture that making similar assumptions

in theoretical distributed computing models can result in simpler algorithms

that are easier to maintain under various fluctuations of the environment, and

may also lead to new tools and techniques for interesting theoretical analysis.

∙ Simple algorithms, composed of a single rule. In recent years, we have

seen a large number of complex algorithms in distributed computing theory that

involve dozens of lines of pseudocode, attempting to address every single possible
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event that can occur in the system, and meticulously listing the steps needed

to react to that event. The resulting algorithms are not only hard to read,

understand, and analyze, but they are usually fragile in terms of considering

all the possible combinations of states in which each of the agents may be with

respect to the current state of the environment. For these algorithms, it is

usually difficult to prove correctness in an asynchronous environment where at

any given point in time any agent may be executing any step of the complex

algorithm. For the same reasons, dealing with faults can also be challenging for

such algorithms.

Most of the algorithms in this thesis (perhaps with the exception of the opti-

mal house-hunting algorithm) involve either a single rule, or a few simple rules,

that each agent executes in each round (without knowledge of the round num-

ber). Even if we consider an asynchronous execution, we still know at any given

point in time what step of its algorithm each agent is executing. Our results

demonstrate that even such simple algorithms can solve difficult problems cor-

rectly and efficiently, shifting the burden of complexity from the algorithm to

the mathematical analysis. The main advantage of such lightweight algorithms

is that they tolerate faults in a natural way simply since all the agents are al-

ways performing the same kind of operation; even if some of them crash, other

identical agents will take their place. Furthermore, combining algorithm sim-

plicity with the lack of complex communication, we also have an easier way of

dealing with asynchrony: all agents are executing the same rule and they do

not depend on hearing from each other, so the exact time frame in which each

agent executes the rule is less relevant.

∙ New robustness property of randomized algorithms. In our house

hunting work, we considered a variation of the model by introducing uncertainty

in the population estimates of ants. While this uncertainty model is bio-inspired

(real ants are not believed to count precisely), it introduces the idea of changing

the system model so that the probabilities used in a randomized algorithm are
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perturbed by adversaries of variable strengths. For example, suppose some

action is performed with probability 𝑝 in the algorithm. In the new system

model, we assume that this action is performed with probability 𝑝′ such that

for some 𝜖 ∈ (0, 1), 𝑝′ ∈ [(1 − 𝜖)𝑝, (1 + 𝜖)𝑝], and the probability 𝑝′ may be

chosen adversarily in the given range. Alternatively, we can assume that for

some 𝛿 ∈ (0, 1), 𝑝′ is in the given range with probability at least 1 − 𝛿 and

it is sampled from a distribution satisfying certain properties (for example, the

expected value of 𝑝′ is 𝑝). These different assumptions of the uncertainty models

lead to different properties of the resulting randomized algorithms, potentially

affecting their correctness and running times. To our knowledge, our house

hunting work is the first to introduce this type of uncertainty.

We believe this style of uncertainty properties is important in making random-

ized distributed algorithms more relevant to both biological and engineering

systems. In practical systems, randomized algorithms are implemented by us-

ing pseudorandom number generators that provide approximations of the prob-

abilities used in the algorithms. In order to understand the correctness and

efficiency guarantees of the resulting algorithms, it is crucial to understand how

the potentially small (adversarial or probabilistic) perturbations of the proba-

bilities affect the algorithms. In biological systems, individuals are believed to

have even more limited access to randomization and less accurate estimates of

real-world parameters, which imply even larger perturbations of the intended

probabilities used in the algorithms. Thus, in order to understand the algo-

rithms that evolved to solve various problems, we need to be able to design and

analyze algorithms that are resilient to such uncertainty.

5.2 Lessons for Evolutionary Biologists

Biologists working on understanding social insect colonies are constantly baffled by

observing behavior that is either not explained by current hypotheses, or contrary to

existing hypotheses. One example of such behavior, as mentioned in Chapter 1, is
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the existence of idle ants in an ant colony in the presence of unsatisfied tasks. The

general structure of tackling such issues is first forming hypotheses and then testing

these hypotheses through theoretical models or practical experiments. We believe we,

as theoretical computer scientists, can help biologists in both of these steps.

Our work on task allocation is a great example of how theoretical results can help

biologists generate a hypothesis about a specific ant colony behavior. By designing

general and abstract models of task allocation and analyzing the resulting processes,

we identified the ant-to-work ratio (together with the total amount of work needed)

as the key parameter that determines the efficiency of task allocation, and that can

explain the existence of idle ants in the colony (higher ant-to-work ratio implies both

more efficient task allocation and more idle ants). This specific parameter has not

been included in previous biological models of task allocation and has not even been

measured experimentally in real ant colonies. While this hypothesis is not supported

by any empirical findings yet, we believe our results are a good start to at least

attempt a new direction in understanding the task allocation process in general and

the idle ants phenomenon in particular.

In conclusion, we believe biologists can benefit from considering tools and tech-

niques from distributed computing. The analysis of distributed algorithms can help

biologists generate new hypotheses about observed ant behavior, and distributed com-

puting models can help test and verify other existing hypotheses. Biologists have

already shown interest in some distributed models of insect colonies [60, 86]. These

models are usually continuous and rely on solving and analyzing complex differential

equations; we hope that examples like our work on task allocation will encourage

biologists to try simpler discrete models and techniques from theoretical distributed

computing and complexity analysis. Finally, we hope that these new models and

hypotheses about ant behavior can be verified with experiments and eventually lead

to new discoveries about the behavior of ants and the reasons for this behavior.
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Appendix A

Mathematical Preliminaries

This appendix includes basic mathematical results that we use throughout the earlier

chapters.

A.1 Basic Probability Definitions and Results

In this section we state standard results from probability theory including some well-

known concentration bounds. First, we show how to bound the expected value of a

minimum in terms of the minimum of expected values.

Lemma A.1.1. For each 𝑘 ≥ 1, let 𝐼1, · · · , 𝐼𝑘 be identically distributed independent

binary random variables, and let 𝑋 =
∑︀𝑘

𝑖=1 𝐼𝑖. For an arbitrary constant 𝑐 > 0:

E[min{𝑋, 𝑐}] ≥ 1

2
· min{⌊E[𝑋]⌋, 𝑐}.

Proof. Let 𝑚 be the median of 𝑋. By definition, Pr[𝑋 ≥ 𝑚] ≥ 1/2. Since 𝑋 is a

binomial random variable, 𝑚 ≥ ⌊E[𝑋]⌋ [72]. Let 𝑚′ = min{⌊E[𝑋]⌋, 𝑐}, so we have

𝑚 ≥ 𝑚′ and Pr[𝑋 ≥ 𝑚′] ≥ 1/2.

E[min{𝑋, 𝑐}] ≥ E[min{𝑋,𝑚′}] ≥ Pr[𝑋 ≥ 𝑚′] ·𝑚′ ≥ 𝑚′

2
=

1

2
· min{⌊E[𝑋]⌋, 𝑐}.
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Corollary A.1.2. For each 𝑘 ≥ 1, let 𝐼1, · · · , 𝐼𝑘 be identically distributed independent

binary random variables, and let 𝑋 =
∑︀𝑘

𝑖=1 𝐼𝑖. For an arbitrary constant 𝑐 ≥ 1:

E[min{𝑋, 𝑐}] ≥ 1

4
· min{E[𝑋], 𝑐}.

Proof. If E[𝑋] ≥ 1, then ⌊E[𝑋]⌋ ≥ E[𝑋]/2 and the corollary holds by Lemma A.1.1.

If E[𝑋] < 1 and E[𝐼𝑖] = 𝑝 for each 1 ≤ 𝑖 ≤ 𝑘, it follows that 𝑘𝑝 = E[𝑋] < 1.

E[min{𝑋, 𝑐}] ≥ E[min{𝑋, 1}] ≥ Pr[𝑋 = 1] =
𝑘∑︁

𝑖=1

𝑝(1 − 𝑝)(𝑘−1)

= 𝑝

𝑘∑︁
𝑖=1

𝑒−1 since 𝑘𝑝 < 1

≥ 𝑒−1 · E[𝑋]

≥ 1

4
· E[𝑋]

≥ 1

4
· min{E[𝑋], 𝑐}.

Next, we state some well-known concentration bounds.

Theorem A.1.3 (Reverse Markov bound). Let 𝑋 be an arbitrary random variable

such that 𝑋 ≤ 𝐵 for some 𝐵 ∈ R. Then, for each 𝑎 ∈ R and 𝑎 < 𝐵:

Pr[𝑋 ≤ 𝑎] ≤ E[𝐵 −𝑋]

𝐵 − 𝑎
.

Theorem A.1.4 (Chernoff bound). Let 𝑋1, · · · , 𝑋𝑘 be independent random variables

such that for 1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 ∈ {0, 1}. Let 𝑋 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑘 and let 𝜇 = E[𝑋].

Then, for any 0 ≤ 𝛿 ≤ 1, it is true that:

Pr[𝑋 > (1 + 𝛿)𝜇] ≤ 𝑒−𝛿
2𝜇/2,

Pr[𝑋 < (1 − 𝛿)𝜇] ≤ 𝑒−𝛿
2𝜇/3,

Pr[|𝑋 − 𝜇| > 𝛿𝜇] ≤ 2𝑒−𝛿
2𝜇/3.
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Theorem A.1.5 (Two-sided Chernoff bound). Let 𝑋1, · · · , 𝑋𝑘 be independent ran-

dom variables such that for 1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 ∈ {0, 1}. Let 𝑋 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑘 and

let 𝜇 = E[𝑋]. Then, for any 0 ≤ 𝛿 ≤ 1, it is true that:

Pr[|𝑋 − 𝜇| > 𝛿𝜇] ≤ 2𝑒−𝛿
2𝜇/3

Theorem A.1.6. Let 𝑋1, · · · , 𝑋𝑛 be arbitrary binary random variables. Also, let

𝑋*1 , · · · , 𝑋*𝑛 be random variables that are mutually independent and such that for all 𝑖,

𝑋*𝑖 is independent of 𝑋1, · · · , 𝑋𝑖−1. Assume that for all 𝑖 and all 𝑥1, · · · , 𝑥𝑖−1 ∈ {0, 1},

𝑃 [𝑋𝑖 = 1|𝑋1 = 𝑥1, · · · , 𝑋𝑖−1 = 𝑥𝑖−1] ≥ 𝑃 [𝑋*𝑖 = 1].

Then, for all 𝑘 ≥ 0, we have,

Pr

[︃
𝑛∑︁

𝑖=1

𝑋𝑖 < 𝑘

]︃
≤ 𝑃

[︃
𝑛∑︁

𝑖=1

𝑋*𝑖 < 𝑘

]︃
,

and the latter term can be bounded by Chernoff bounds for independent random vari-

ables.

Theorem A.1.7 (Reverse Chernoff bound). Let 𝑋1, · · · , 𝑋𝑘 be independent random

variables such that for 1 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 ∈ {0, 1}. Let 𝑋 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑘, let

𝜇 = E[𝑋], and let 𝑝𝑖 = Pr[𝑋𝑖 = 1]. If 𝑝𝑖 ≤ 1/4 for all 𝑖 ∈ [1, 𝑘], then for any 𝑡 > 0,

it is true that:

Pr[𝑋 − 𝜇 > 𝑡] ≥
(︂

1

4

)︂
𝑒−2𝑡

2/𝜇.

Theorem A.1.8 (Paley-Zygmunt inequality [87]). Let 𝑋 ≥ 0 be a random variable

with finite variance. For each 0 ≤ 𝜃 ≤ 1:

Pr[𝑋 > 𝜃E[𝑋]] ≥ (1 − 𝜃)2
(︂
E[𝑋]2

E[𝑋2]

)︂
.
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A.2 Markov Chains

In this section, we state some basic results on Markov chains.

Theorem A.2.1 (Feller [52]). In an irreducible Markov chain with period 𝑡 the states

can be divided into 𝑡 mutually exclusive classes 𝐺0, · · · , 𝐺𝑡−1 such that it is true that

(1) if 𝑠 ∈ 𝐺 then the probability of being in state 𝑠 in some round 𝑟 ≥ 1 is 0 unless

𝑟 = 𝜏 + 𝑣𝑡 for some 𝑣 ∈ N, and (2) a one-step transition always leads to a state in

the right neighboring class (in particular from 𝐺𝑡−1 to 𝐺0). In the chain with matrix

𝑃 𝑡 each class 𝐺 corresponds to an irreducible closed set.

The next theorem establishes a bound on the difference between the stationary

distribution of a Markov chain and the distribution resulting after 𝑘 steps.

Lemma A.2.2 (Rosenthal [101]). Let 𝑃 (𝑥, ·) be the transition probabilities for a

time-homogeneous Markov chain on a general state space 𝒳 . Suppose that for some

probability distribution 𝑄(·) on 𝒳 , some positive integers 𝑘 and 𝑘0, and some 𝜖 > 0,

∀𝑥 ∈ 𝒳 : 𝑃 𝑘0(𝑥, ·) ≥ 𝜖𝑄(·),

where 𝑃 𝑘0 represents the 𝑘0-step transition probabilities. Then for any initial distri-

bution 𝜋0, the distribution 𝜋𝑘 of the Markov chain after 𝑘 steps satisfies

‖𝜋𝑘 − 𝜋‖ ≤ (1 − 𝜖)⌊𝑘/𝑘0⌋,

where ‖ · ‖ is the ∞-norm and 𝜋 is any stationary distribution. (In particular, the

stationary distribution is unique.)

The next result uses general results from number theory to bound the lengths of

paths in a Markov chain.

Lemma A.2.3. In any irreducible, aperiodic Markov chain with |𝑆| states, there

exists an integer 𝑘 ≤ 2|𝑆|2 such that there is a walk of length 𝑘 between any pair of

states in the Markov chain.
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Proof. By the definition of periodicity, for each state of the Markov chain, it is true

that the greatest common divisor of the lengths of all the cycles that pass through that

state is 1. Let the total number of distinct cycles in the Markov chain be 𝑚 and let

(𝑎1, · · · , 𝑎𝑚) denote the lengths of these cycles where 𝑎1 ≤ · · · ≤ 𝑎𝑚. The Frobenius

number 𝐹 (𝑎1, · · · , 𝑎𝑚) of the sequence (𝑎1, · · · , 𝑎𝑚) is the largest integer such that it

is not possible to express it as a linear combination of (𝑎1, · · · , 𝑎𝑚) and non-negative

integer coefficients. By a simple bound on the Frobenius number [18], we know that

𝐹 (𝑎1, · · · , 𝑎𝑚) ≤ (𝑎1 − 1)(𝑎2 − 1) − 1. Since 𝑎1 and 𝑎2 refer to cycle lengths in our

Markov chain we know that 𝑎1, 𝑎2 ≤ |𝑆|. So, it is true that 𝐹 (𝑎1, · · · , 𝑎𝑚) ≤ |𝑆|2 and

we can express every integer greater than 𝐹 (𝑎1, · · · , 𝑎𝑚) as a non-negative integer

linear combination of (𝑎1, · · · , 𝑎𝑚).

Let 𝑖 and 𝑗 be arbitrary states in the Markov chain and let 𝑑(𝑖, 𝑗) be the shortest

path between 𝑖 and 𝑗. Let 𝑘 = 2|𝑆|2. By the argument above, we know that there is

a walk starting at state 𝑖 and ending at state 𝑖 of length 𝑘−𝑑(𝑖, 𝑗) ≥ |𝑆|2. Appending

the shortest path between 𝑖 and 𝑗 to the end of that walk results in a walk from 𝑖 to

𝑗 of length exactly 𝑘.
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