
Costs of task allocation with local feedback: effects of colony
size and extra workers in social insects and other multi-agent
systems

Tsvetomira Radeva1*, Anna Dornhaus2‡, Nancy Lynch1‡, Radhika Nagpal3‡, Hsin-Hao
Su1

1 Electrical Engineering and Computer Science Department, Massachusetts Institute of
Technology, Cambridge MA, USA
2 Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson
AZ, USA
3 School of Engineering and Applied Sciences, Harvard University, Cambridge MA, USA

‡These authors are joint senior authors on this work.
* Corresponding author (email: radeva@csail.mit.edu (TR))

Abstract

Adaptive collective systems are common in biology and beyond. Typically, such systems
require a task allocation algorithm: a mechanism or rule-set by which individuals select
particular roles. Here we study the performance of such task allocation mechanisms
measured in terms of the time for individuals to allocate to tasks. We ask: (1) Is task
allocation fundamentally difficult, and thus costly? (2) Does the performance of task
allocation mechanisms depend on the number of individuals? And (3) what other
parameters may affect their efficiency? We use techniques from distributed computing
theory to develop a model of a social insect colony, where workers have to be allocated
to a set of tasks; however, our model is generalizable to other systems. We show, first,
that the ability of workers to quickly assess demand for work in tasks they are not
currently engaged in crucially affects whether task allocation is quickly achieved or not.
This indicates that in social insect tasks such as thermoregulation, where temperature
may provide a global and near instantaneous stimulus to measure the need for cooling,
for example, it should be easy to match the number of workers to the need for work. In
other tasks, such as nest repair, it may be impossible for workers not directly at the
work site to know that this task needs more workers. We argue that this affects whether
task allocation mechanisms are under strong selection. Second, we show that colony size
does not affect task allocation performance under our assumptions. This implies that
when effects of colony size are found, they are not inherent in the process of task
allocation itself, but due to processes not modeled here, such as higher variation in task
demand for smaller colonies, benefits of specialized workers, or constant overhead costs.
Third, we show that the ratio of the number of available workers to the workload
crucially affects performance. Thus, workers in excess of those needed to complete all
tasks improve task allocation performance. This provides a potential explanation for the
phenomenon that social insect colonies commonly contain inactive workers: these may
be a ‘surplus’ set of workers that improves colony function by speeding up optimal
allocation of workers to tasks. Overall our study shows how limitations at the individual
level can affect group level outcomes, and suggests new hypotheses that can be explored
empirically.

PLOS 1/31

Author summary

Many complex systems have to allocate their units to different functions: cells in an
embryo develop into different tissues, servers in a computer cluster perform different
calculations, and insect workers choose particular tasks, such as brood care or foraging.
Here we demonstrate that this process does not automatically become easier or harder
with system size. If more workers are present than needed to complete the work
available, some workers will always be idle; despite this, having surplus workers makes
redistributing them across the tasks that need work much faster. Thus, unexpectedly,
such surplus, idle workers may potentially significantly improve system performance.
Our work suggests that interdisciplinary studies between biology and distributed
computing can yield novel insights for both fields.

Introduction 1

Many systems in biology and engineering, from cells to mobile networks and human 2

societies, consist of several or many interacting units that contribute ‘work’ towards a 3

central goal [1–6]. Each of these systems employs a ‘task allocation mechanism’, i.e., 4

individual workers choose, or are allocated to, a specific part of the total workload, a 5

task, which they then attempt to complete. The simplest such task allocation 6

mechanism might be one where each individual picks a task randomly; another simple 7

(from an algorithm standpoint) mechanism might be one where each individual is 8

preprogrammed to always pick a defined task. For example, in a simple multicellular 9

organism such as the alga Gonium [7], each cell processes nutrients that it happens to 10

encounter, and each cell is equally likely to reproduce. Conversely, a car may be made 11

up of lots of elements that need to work together to make the car run, but these 12

elements have no flexibility with regard to how they contribute to this goal: each part 13

fulfills its preprogrammed and unchangeable function. However, most biological systems, 14

and many engineered ones, do not behave according to either of these extremes. Instead, 15

individuals have to choose how to contribute, and may use various types of information 16

about the need for different types of work to make this choice (note that we are using 17

the term ‘choice’ in the sense of possessing an algorithm that leads to task selection, 18

and do not imply free will). The goals of any such task allocation mechanism are to 19

achieve efficiency and robustness of system function. For example, in a developing 20

embryo, multiple cells have to select which organs or tissues to develop into [8]. The 21

task allocation mechanism used has to ensure that the right cells are allocated to all 22

necessary organs; at the same time, it has to tolerate the occasional loss of cells. 23

Similarly, in cloud computing, the demand for different types of computation may 24

change dynamically over time, and so might the availability of individual 25

processors [9, 10]. The ideal task-allocation mechanism used here again has to achieve a 26

match of allocated processors with current needs, which likely requires repeated 27

re-allocation. 28

Is task allocation a difficult problem, and does it matter which algorithm is chosen? 29

If task allocation is an easy problem, then the match of work to workers should be close 30

enough to the theoretical optimum that the efficiency and robustness of the evolved 31

biological systems and designed/engineered systems are not substantially reduced. 32

However, there is evidence from theoretical computer science that indicates that task 33

allocation (referred to as ‘resource allocation’) is difficult [11–13] in that it requires a 34

non-negligible amount of resources (such as time, memory, and/or communication 35

messages). In particular, [12] shows that if individuals also differ in how well they can 36

perform different types of work, then in the model they consider, task allocation is an 37

NP-hard problem. Another line of evidence for the idea that task allocation is difficult 38

PLOS 2/31

is the number of workers in distributed systems that are in fact not allocated to any 39

tasks [14]. In social insect colonies in particular, a large fraction of workers do not 40

appear to work [15]; in addition, at any point in time, there is another substantial group 41

of individuals who are thought to be actively looking for work [16]. This may indicate 42

either that these workers are in excess of the number needed to perform tasks, or that 43

they are result of a task allocation mechanism that either costs time (in the form of 44

workers looking for work) or produces inadequate allocation (unemployed workers that 45

could be employed). Either way, this would indicate that task allocation is not an easy 46

problem (several other hypotheses, unrelated to task allocation, have also been 47

proposed [15]). In distributed computing, extra computing devices (in addition to the 48

number necessary to complete the tasks) are often used to achieve fault tolerance and 49

increase efficiency by replicating information and computation over multiple 50

devices [9, 10]. Both of these phenomena might indicate that task allocation is neither 51

effective nor fast: if task allocation were easy to achieve quickly, then there would not be 52

a need for costly buffering. If task allocation is a difficult problem, we would expect to 53

see complex systems employ imperfect mechanisms that lead to approximate solutions, 54

or which sometimes fail to allocate workers to tasks correctly, or we might see additional 55

strategies that compensate for mistakes of imperfect task allocation, or trade-offs 56

between the resources invested and the quality of task allocation achieved. Thus, in 57

these cases we expect the chosen task allocation mechanism to contribute significantly 58

to system performance or biological fitness. It will not then be possible to understand 59

the evolution of system organization, or to design an efficient and robust system, 60

without also understanding the constraints imposed by the process of task allocation. 61

Here we aim to contribute to an understanding of what limits flexible and robust 62

task allocation. To do this, we develop a model of task allocation in social insect 63

colonies. We are specifically interested first in how group size, i.e. the number of 64

individuals that may be allocated to work, affects the difficulty of correct task 65

allocation, and second, in the effects of having more workers available than work (which 66

would lead to inactive workers). We also discuss the effect of the number of distinct task 67

types to which workers have to be allocated. We quantify performance of three 68

generalized task allocation mechanisms that differ in the amount of information 69

available to workers about the demand for work in different tasks. We are thinking of 70

our model as representing individual insect workers making choices among such tasks as 71

foraging or brood care. However, our model is kept general in many respects, and is 72

thus likely to apply to many similar systems where individuals are making choices about 73

tasks using local information. 74

Group size is typically thought to be a central factor in determining complex system 75

function [17]: multicellular organisms [18], human societies and organizations [19,20], 76

and social and computer networks [21] all have been argued to develop more complexity, 77

acquire new functionalities, and be competitively superior at larger group sizes, and all 78

of this has also been argued for social insect colonies [22]. In many cases, although not 79

unequivocally [19,22], larger group size has been associated with more specialized, and 80

possibly less flexible, individuals within the group; this may result from the smaller 81

variance typically experienced by larger groups because of the ‘law of large numbers’ [23]. 82

Larger groups may also benefit from ‘economies of scale’ when there are fixed costs that 83

do not scale linearly with the number of individuals [24]; for example, broadcast signals 84

reach more individuals in larger groups at the same cost [25]. Biological accounts of the 85

evolution of larger groups, at any level of organization, typically focus on these benefits 86

of group size [17]. In computer science, on the other hand, research has often focused on 87

the costs of group size [13, 26]. Generally speaking, algorithms that require interactions 88

between individuals take much longer to execute in larger groups, because the number 89

of possible interactions increases faster than linearly with group size (with N2 for 90

PLOS 3/31

pairwise interactions, exponentially when any number of interactants is possible). 91

Indeed this effect of group size on ‘naive’ distributed problem-solving algorithms is so 92

great that the group size is typically equated with ‘problem size’, and the performance 93

of algorithms is measured mainly in terms of how strongly they depend on group size or 94

other measures closely related to group size [13,27]. This makes sense if one assumes 95

that the effect of group size will outweigh the effects of any constant factors on the 96

performance of the algorithm, even for moderately large groups. 97

As stated above, we are using social insect colonies as a model system to study the 98

effect of group size on the difficulty of task allocation. Social insects such as bees, ants, 99

wasps, and termites typically live in colonies that contain one or a few queens, who are 100

the source of colony reproduction, and many, anywhere from a handful to millions of 101

workers, who do not reproduce but complete all other tasks [28–30]. These tasks include 102

foraging (finding and collecting food), nest building and repair, brood care (caring for 103

immature individuals; Hymenopteran insects such as bees and ants spend ≈ 10− 30% of 104

their lifespan in an immature stage in which they cannot move and have to be cleaned, 105

fed, defended, and kept at a tolerable temperature much like the most dependent 106

mammals in their infant stage), colony defense, and various other tasks that may 107

include thermoregulation (such as by ventilation or heating), nest cleaning, undertaking 108

(removing dead individuals), etc. [15]. The need for work in these different tasks 109

typically fluctuates in daily and seasonal patterns as well as stochastically [31]. 110

Social insect colonies are self-organized, meaning that neither the queens nor any 111

other workers ‘direct’ the task choices of other workers, although interactions between 112

individuals such as communication signals and aggression may affect task 113

selection [29, 32]. There are more than 10000 species of ants alone, and different species 114

of social insects may use different task allocation mechanisms. Any task allocation 115

mechanism consists of two parts: the traits of individuals that predispose them to 116

particular tasks, and the behavioral rules that lead them to select a particular task at a 117

given moment (the individual-level algorithm; [33]). In social insects, body size, age, 118

physiological and nutritional status, sensory abilities, and other internal factors are 119

thought to create variation among individuals in task preferences and skills; in addition, 120

individual experience, interactions with other workers, spatial and hierarchical position 121

in the colony, and random encounters with tasks will do so as well, in the short and long 122

term [14,32,34]. In different species, some or all of these factors may play a role in task 123

allocation, and to differing degrees. The behavioral rule set, i.e. the algorithm, by which 124

individuals choose a task to work on in the moment, is typically thought to involve a 125

comparison between an individual’s task preferences and the need for a particular task; 126

this is sometimes referred to as the ‘task stimulus response threshold mechanism’ 127

(because workers are thought to have different thresholds at which they decide to work 128

on a task, depending on the level of ‘task stimulus’ which communicates demand for 129

work in the task, [35]). However, it is worth noting that the actual precise algorithm is 130

seldom defined in the insect literature; e.g. ‘thresholds’ may actually be continuous 131

probabilistic functions, and it is unclear how multiple task stimuli are evaluated (in 132

random order, or at the same time, and do they interact or not). It is also typically 133

unclear how the factors listed above interact to produce variation in preferences across 134

tasks or across individuals; e.g. are the preferences for different tasks independent of 135

one another or not [36]. All of this may also vary across species. 136

Despite this uncertainty about the precise mechanism, the fact that social insects 137

achieve task allocation is well studied. Workers in a colony specialize to a large or small 138

degree on different tasks, and may switch tasks as needed [37], although this may come 139

at additional cost [38]. Colonies are typically able to effectively compensate for worker 140

loss ([36], although see [39]) or changes in demand for different tasks [14]. However, it 141

is also the case that inactive workers are common: at any point, often > 50%, 142

PLOS 4/31

sometimes > 70%, of the colony appear not to be performing any tasks [15]. This may 143

be in part due to need for rest, selfish reproduction by workers [40,41], or immaturity of 144

workers [42]; but it has also been suggested that completely inactive and ‘walking’ 145

(without apparently getting anything done) workers may either be looking for work and 146

failing to find it [16], or in fact be a surplus of workers not necessary to complete the 147

work of the colony [14]. Inactive workers, i.e. units within a complex system that are 148

not contributing, may also be common elsewhere, both in biology and 149

engineering [43,44]. Here we examine the effect of such a buffer of apparently redundant 150

workers on task allocation efficiency. 151

This study aims to contribute to understanding why social insects evolved the task 152

allocation mechanisms that they did, and, more generally, what limits effective task 153

allocation in distributed sytems. We contribute to these aims by measuring the 154

performance of task allocation mechanisms under different assumptions. To achieve this, 155

we derive how quickly task allocation can be achieved using distributed computing 156

theory methods to analyze algorithm performances. We use a generalized task 157

allocation mechanism with three different assumptions about how individual workers 158

can acquire information about the need for more work in specific tasks (what we call 159

the ’deficit’). This approach then leads us to insights about whether and how task 160

allocation is limited by group size, the relationship of group size to the total need for 161

work (what we call the ’demand’), the information available to workers, the number of 162

tasks, and how precisely the colony must match the allocation of workers to demands 163

for work across tasks. The rest of this paper is organized as follows: in the Methods 164

section, we describe the tools and techniques we use from distributed computing theory, 165

together with a formal model of the task allocation system we consider; in the Results 166

section, we mathematically derive bounds (that is upper limits) on the time for ants to 167

allocate themselves to tasks in the various versions of our formal model, and also 168

provide some intuitive explanations and numerical examples of the results; in the 169

Discussion section, we emphasize the implications of our results for actual ant and bee 170

species and we address some caveats and open questions. 171

Methods 172

In this paper, we use modeling and analysis techniques from the field of theoretical 173

distributed computing to study the difficulty of task allocation in insect colonies. 174

Distributed computing is a field that typically studies networked computers that jointly, 175

but in a self-organized manner, solve a computational problem [13]. Similar to biological 176

complex systems, the individual computers may pass messages to each other, but will be 177

otherwise acting independently. We believe that many of the insights and tools from the 178

field of distributed computing theory will be directly useful and informative for biology, 179

and some recent studies have started to apply them to biological problems ([12, 45–49]). 180

In distributed computing theory and in this paper, models are generally abstract, 181

discrete and probabilistic; moreover, they are modular in that each individual is modeled 182

independently from other individuals, from the environment (including the tasks), and 183

from the information about tasks the environment may provide to individuals. In these 184

models, we design distributed algorithms and assign an independent copy of the 185

algorithm to run at each individual. We analyze the algorithms mathematically, using 186

proof techniques from probability theory and algorithm complexity, to derive guarantees 187

on the solvability and efficiency of task allocation (measured as the time for workers to 188

allocate themselves correctly to tasks). The specific results we present have both a 189

worst-case and an average-case flavor. The worst-case aspect of the results refers to the 190

possible initial values of the parameters in the system; in other words, we do not 191

measure the performance of our algorithms with respect to the expected average 192

PLOS 5/31

performance given some distribution of starting environments, but instead consider how 193

well the algorithm will do with the worst possible starting conditions (e.g. with respect 194

to the distribution of demands across different task types). The average-case aspect of 195

the results is with respect to the probability distribution of the actual decisions of the 196

workers and the probabilistic feedback they receive from the environment. We elaborate 197

more on this distinction in the Informal Definitions and descriptions section. 198

Our approach 199

The specific abstraction of the task allocation problem that we study involves a 200

distributed process of allocating all workers to tasks with the goal of satisfying the 201

demand for each task. The demand for each task can be thought of as a work-rate 202

required to keep the task satisfied. We consider all workers to be equal in skill level and 203

preferences. While this is an abstraction, we focus here on simply the challenge of 204

allocating generalist workers among tasks. We do not attempt to model how the demand 205

for a task is computed or measured empirically. Instead, we assume that as a result of 206

workers trying to maximize the fitness of the colony, there is some optimal number of 207

workers performing each task, and this is what the workers should attempt to match. 208

At each time step, each worker decides what task to work on based on simple 209

feedback from the environment informing the worker of the state of the tasks. In 210

particular, we consider two specific types of environment feedback: (1) whether the 211

worker is successful at its current task, and (2) which task does the work choose next. 212

We analyze whether this general algorithm is able to successfully allocate the workers so 213

that all tasks are satisfied, and the time for this process to terminate. In particular, we 214

focus on upper bounds for the time to satisfy all tasks (i.e. how long it is expected to 215

take given the worst possible starting conditions) as a function of colony size, the 216

number of tasks, and the total amount of work in the presence or absence of extra 217

workers (beyond the minimum to satisfy all tasks) in the colony. 218

Informal definitions and descriptions 219

Model: We consider a setting in which all workers are identical and each worker can 220

supply one unit of work to each task type (brood care, foraging, nest maintenance, etc.). 221

For brevity, for the rest of the paper, we will refer to tasks types as tasks. 222

At the start of the re-allocation process, each task is characterized by an 223

integer-valued demand, and we consider a task to be satisfied when the number of units 224

of work provided to the task is at least as much as the demand of the task. In order to 225

guarantee that it is possible to satisfy the demands of all tasks, we assume that the 226

number of workers is at least as large as the total sum of all demands. 227

We also assume the workers perform actions in lock step and that each such step is 228

sufficiently long so that the workers can re-evaluate the state of the environment at the 229

end of each round, which includes the effect of the work performed by other workers in 230

that round. Based on that information, at the end of each step, each worker decides 231

what action to perform (what task to work on) in the next step. We measure the 232

efficiency of the re-allocation process as the number of steps necessary for the workers 233

to re-allocate to the tasks in a way that matches or exceeds the demands (we term this 234

’successful reallocation’). 235

Feedback about task demands: We abstract away from actual low-level 236

mechanisms that workers use to acquire knowledge about the environment; instead, we 237

focus on the information content of the environment feedback. Therefore, we can model 238

feedback that is minimal and probabilistic. Our goal is to provide only limited 239

information about the state of the environment. 240

PLOS 6/31

In particular, we consider environment feedback that consists of two components: 241

success and choice. The first component, success, informs each worker whether it is 242

successful at the task it is currently working on (i.e. whether its work was needed there), 243

and the second component, choice, provides each worker with an alternative task to 244

work on, in case it is not successful at its current task. From a biological perspective, 245

the separation between these two components is motivated by the two main ways a 246

worker interacts with its environment: (1) from attempting to work on some task, a 247

worker learns whether its work is needed, and (2) from randomly interacting with tasks 248

in the nest, it may perceive need for work in tasks it is not active in. We consider the 249

following specifications for success and choice. 250

Success feedback: We assume that for a given time step and a given task, if the 251

number of workers working on this task is less than or equal to the demand of the task, 252

then all workers working on the task are ‘successful’. Otherwise, if more workers are 253

working on the task than the demand requires, then we assume success informs only as 254

many workers as needed to satisfy the demand that they are successful, and it informs 255

the rest of the workers working on the task that they are unsuccessful. Since workers 256

are identical and do not store any work history (similarly to a Markov process), it is not 257

important which workers are the successful ones and which workers are the unsuccessful 258

ones among all the workers working on some task, as long as the number of successful 259

workers does not exceed the demand of the task. 260

A good analogy to the success feedback is the game of musical chairs: the number 261

of chairs corresponds to the demand of the task, and the number of workers working on 262

the task corresponds to the number of people playing the game. In musical chairs, all 263

players who manage to find a seat when the music stops continue to the next round; 264

similarly, the workers that manage to complete some amount of work that contributed 265

to decreasing the demand are considered successful. 266

As a result, success provides each worker with implicit information about the 267

amount of work needed for the task without directly informing the worker of the exact 268

value of that amount. 269

Choice feedback: For the second component, choice, of the environment feedback, 270

we assume workers determine an alternative task to work on by encountering tasks 271

randomly. We model three probability distributions for the choice component. 272

The simplest way to model a worker encountering a random task in the nest is to 273

assume choice provides the worker with (1) a uniformly random task (that is, each task 274

is equally likely to be chosen). We think of the uniform distribution as a very natural 275

way to choose a task without any information about the set of tasks or their demands. 276

Other distributions imply some knowledge about parameters of the distribution. For 277

example, the normal distribution implies we have some information about the mean and 278

variance of the distribution. Even more importantly, since our random variable is 279

discrete, the normal distribution is not a good choice because we do not assume any 280

‘ordering’ of the tasks. Thus, the ‘uniform’ distribution here simply means that each 281

task is chosen with equal probability. Alternatively, we might think workers recognize 282

tasks that need work, and choice might provide (2) a uniformly random task only 283

among the unsatisfied tasks. Finally, we might think that tasks provide information on 284

their level of demand, and thus workers may be able to choose (3) a task that needs 285

more work compared to other tasks. Option (1) implies that workers initially choose a 286

task with no information on the demand for work in different tasks. Options (2) and (3) 287

imply that workers can sense which tasks need work before engaging in them, e.g. 288

through a task stimulus produced by unsatisfied tasks such as pheromone produced by 289

hungry (unfed) brood (indicating need for brood care). Since we assume that in all 290

cases workers will discover whether their contribution was actually needed through the 291

’success feedback’ mechanism, options (1) and (2) imply that tasks are ultimately 292

PLOS 7/31

checked for demand one at a time, i.e. with a cost of one round per task checked, while 293

in option (3) workers can sense demand for all tasks at once. 294

See Table 1 for an example execution of the task allocation system. 295

Table 1. Sample execution of a task allocation in our model.

Inactive Workers Task 1 Task 2 Task 3 Task 4
?? ? ? ?? ? ? ? ?

Time 0 : • • • • • • • • • • •• ◦◦ • ◦ ◦◦ ◦ • ◦ ◦
Time 1 : • • • • • • • • •• •◦ • ◦ ◦◦ • • ◦ ◦
Time 2 : • • • • •• •◦ • • ◦◦ • • • ◦
Time 3 : • • •• •◦ • • ◦◦ • • • • • ◦
Time 4 : •• •• • • •• • • • •

Sample execution of a task allocation in our model. The stars denote the demand of
each task, the empty circles denote unsatisfied units of work, and the solid circles denote
workers working on specific tasks. The execution begins at time 0 when only two workers
are working on tasks 2 and 4. Then, at time 1 some workers join tasks 1 and 3. At time
2, more workers join all tasks. At time 3, too many workers join Task 3 and only one of
them is successful because the demand for the task is 1. Finally, at time 4 all tasks are
satisfied. The remaining workers indicate that the size of the colony is greater that the
total sum of the demands of all tasks.

Performance measure: In all three of the options for the choice component, 296

keeping the success component the same, we are interested in upper bounds on (that is, 297

the maximum value of, and thus the worst-case for) the time until workers are correctly 298

re-allocated such that the demands of the tasks are satisfied. It is important to note 299

that our results have both a worst-case flavor (in terms of the initial configuration of 300

the system) and average-case flavor (in terms of the probability distribution defined by 301

the choice component). 302

The worst-case analysis refers to the initial assignment of workers to tasks as well as 303

the demands of the tasks. So, when we say that for some scenario the running time is at 304

most t, informally, it implies that for any possible initial configuration of task demands 305

and assignment of workers to tasks, starting from that configuration, it takes time at 306

most t to re-allocate the workers correctly. It is not always clear whether there exists an 307

initial configuration (assignment of workers to tasks and task demands) that results in a 308

re-allocation of exactly time t; it is also not straightforward to identify the initial 309

configuration that requires the most rounds for workers to re-allocate correctly (the 310

‘worst-case’ initial configuration). In other words, we do not average the time to 311

re-allocate over all possible initial configurations. Averaging over all possible initial 312

configurations would be a challenging task given that the space of such initial 313

configurations is very large; moreover, we would have to assume all initial configurations 314

are equally likely to arise, which may not necessarily be a reasonable assumption. 315

The average-case (or more generally, probabilistic) analysis refers to the fact that we 316

use the distribution of outputs of the choice component. So, when we say that for some 317

scenario with probability at least p the running time is at most t, informally, it implies 318

that we took into account all possible outputs of choice and their likelihood in order to 319

calculate t. In other words, it is possible that the workers do not re-allocate within time 320

t (or ever), but the probability of that happening is less that 1− p (usually extremely 321

small). Analyzing the running time in such a probabilistic way is a manageable task 322

because we know exactly what the distribution of outputs of choice is for each of the 323

three options and at each step. 324

PLOS 8/31

Formal definitions 325

See S1 Text for a more detailed version of this section. 326

Let A denote the set of workers and T denote the set of tasks. Each task i ∈ T has 327

an integer demand di that represents the minimum number of workers required to work 328

on task i in order to satisfy the task. Let wi denote the total number of worker units of 329

work currently supplied to task i. Let ~w and ~d denote the vectors of wi and di values, 330

respectively, for each 1 ≤ i ≤ |T |. The ~d vector is static, while ~w changes over time 331

depending on the different tasks workers choose to work on. Clearly, in order for all 332

demands to be met, there should be sufficiently many workers in the colony. We assume 333

that there exists a real c ≥ 1 such that |A| = c ·
∑

i∈T di. 334

Feedback: We consider two feedback components, success and choice, that provide 335

each worker with a boolean in {0, 1} and a task in T ∪ {⊥}, respectively, determined 336

based on ~w and ~d. The output values of success and choice are determined according 337

to some probability distributions. 338

Workers : Each worker a ∈ A has a state q ∈ Q = {q⊥, q1, q2, · · · , q|T |} at each 339

point in time, where q⊥ indicates that worker a is not working on any task and each 340

state qi, for i ∈ {1, · · · , |T |}, indicates that worker a is working on task i. Each worker 341

is modeled as a finite state machine with transition function 342

δ : Q× ({0, 1} × (T ∪ {⊥}))→ Q; in other words, each worker’s new state is determined 343

by its old state and its inputs from the success and choice components. Let q be the 344

current state of some worker a, and let q′ be the resulting state of worker a after 345

applying δ. In each step, q′ is determined as follows: q′ = q if success outputs 1, and 346

q′ = qi if success outputs 0 and choice outputs i ∈ T ∪ {⊥}. 347

Execution: The execution of any algorithm solving the task allocation problem 348

starts at time 0 and proceeds in synchronous rounds, such that each round r + 1, for 349

r ≥ 0, denotes the transition from time r to time r + 1. In each round r + 1, the 350

success and choice components provide each worker with a boolean and a task. Each 351

worker component performs a state transition using its δ transition function and 352

performs some amount of work on the task associated with its state. 353

Problem statement: A task i ∈ T is satisfied at time r if di ≤ wi(r). An algorithm 354

satisfies all tasks by time r ≥ 0 if for each r′ ≥ r, all tasks i ∈ T are satisfied at time r′. 355

The specification of success and some of the specifications of choice in this section 356

are inspired by the biological model by Pacala et al. [50] and simplified for the sake of 357

easier analysis. 358

Success component: The success component determines whether each worker is 359

successful at the task it is currently working on and allows excess workers working on a 360

satisfied task to switch to another task. Throughout this paper, we consider success 361

components that satisfy the following conditions in each execution and at each time r of 362

the execution: for each task i ∈ T , 363

|{a | a is in state qi at time r and receives 1 from the success component in round r + 364

1}| = min(di, wi(r)). Also, each worker in state q⊥ at time r receives 0 from success in 365

round r + 1. 366

Choice component: The choice component returns a candidate task to each worker 367

as an alternative task to work on. We consider three different specifications of choice: 368

PLOS 9/31

1. choice returns a task drawn from all the tasks in T uniformly at random (with 369

probability 1/|T |). 370

2. choice returns a task drawn from the set of unsatisfied tasks, 371

U(r) = {i | di > wi(r)}, uniformly at random. If there is no such task, then 372

choice returns ⊥. 373

3. choice returns a task i drawn from the set of all unsatisfied tasks with probability 374

(di − wi(r))/
∑

j∈U(r)(dj − wj(r)). This option corresponds to the scenario where 375

workers can somehow sense the need to work on each task, and are more likely to 376

work on tasks with high deficit di − wi(r) compared to the total deficit of all 377

unsatisfied tasks
∑

j∈U(r)(dj − wj(r)). 378

Results 379

First, we present the formal statement of our results, together with simple proof 380

overviews. We start by introducing a few general facts about the task allocation system, 381

like properties of the success and choice feedback, and simple results about the the 382

general growth of the level of satisfaction of each task. Next, we describe the main 383

results corresponding to each of the three options for the choice components. For each 384

such option, we present the formal result on how much time is required for workers to 385

correctly re-allocate, and then describe informally the main arguments of the proofs. 386

The full proofs of all the results are available in S2 Text. Readers uninterested in the 387

specific mathematical arguments can skip to the Non-technical Summary of Results 388

section. Finally, in the Numerical results section, we provide numerical examples that 389

illustrate our results with respect to concrete values of the parameters. 390

General facts 391

In this section, we give some basic definitions and results that will be used in the 392

subsequent analyses of the convergence times for the various choice options. 393

A task is satisfied at time r if di ≤ wi(r). Let S(r) denote the set of satisfied tasks
at time r. Let U(r) = T \ S(r) denote the set of unsatisfied tasks at time r. For each
task i ∈ T and each time r, let Φi(r) = max{0, (di − wi(r))} be the deficit of task i at
time r. If i ∈ U(r), then Φi(r) = di − wi(r). We define the total deficit at time r:

Φ(r) =
∑
i∈T

Φi(r).

Define a worker to be inactive in round r, for r > 0, if it is in state q⊥ at time r − 1 or 394

if it receives 0 from success in round r. In other words, a worker is inactive if it is not 395

working on any task, or if it unsuccessful at the current task it is working on. 396

For a full list of the parameters used in the model and analysis, see Table 2. 397

Based on the basic properties of the success and choice components, we can 398

establish the following facts: 399

1. The number of work units supplied to a given task i ∈ T is non-decreasing. 400

2. For each r ≥ 0, |U(r)| ≥ |U(r + 1)| and |S(r)| ≤ |S(r + 1)| (follows from fact 1). 401

In other words, the number of unsatisfied tasks never increases and the number of 402

satisfied tasks never decreases. 403

3. For each r ≥ 0, Φi(r) ≥ Φi(r + 1). The deficit of each task never increases. 404

PLOS 10/31

Table 2. Summary of parameters in the task allocation model and analysis.

Symbol Parameter
definition

Plausible
range

Explanation for range References

|T | number of
tasks

[2, 20] At low end if conceived of as
the number of distinct worker
task groups; at higher end if
all ‘identifiable’ worker activi-
ties are included.

[15,51–53]

Φ initial
deficit

[5, 500] Considerable variation across
species and situations; what
is empirically measured is the
number of workers actually re-
allocated or activated.

[31,54–57]

|A| number of
workers

[2, 20
million]

Most species are in the 10-500
range for total colony size.

[22]

D total task
demands

[2, 20
million]

We assumed here that the
demand for work, measured
in insect workloads, is in the
same range as the colony size
(see section 4.3 for discussion).

[22]

c extra
workers
(|A|/D)

[1, 2] Since D has not been empiri-
cally measured, neither has c.
If we assume ‘inactive’ work-
ers may be in excess of work
that needs to be performed,
values in the entire range are
plausible.

[15, 52,58–60]

1− δ success
probability

[0.5, 0.95] To our knowledge, no at-
tempts to estimate delta or
epsilon exist. Our estimates
are simply based on the as-
sumption that in some cases,
e.g. defense, colonies would
need to be ‘very’ certain
that approximately the cor-
rect number of workers are al-
located to the task at hand;
in other cases, such as forag-
ing, colonies may only need
moderate certainty that task
allocation is successful.

1− ε fraction of
deficit to
be satisfied

[0.7, 0.9] ε reflects the degree to which
the demand for work in a task
is exactly matched. Given the
high degree of stochasticity ob-
served in task allocation in so-
cial insects, we assumed here
that 1−ε is not required to be
‘very’ close to 1 in most cases.

[54, 61]

PLOS 11/31

4. By the assumption that |A| = c ·
∑

i∈T di, the number of inactive workers in 405

round r + 1 is at least c · Φ(r). So, the more total deficit, the more inactive 406

workers we have. 407

5. If the probability to satisfy a task in round r + 1 is at least p, then 408

E[|U(r + 1)|] ≤ |U(r)| · (1− p) and E[Φ(r + 1)] ≤ Φ(r) · (1− p). In other words, if 409

we know the probability with which each task gets satisfied in a given round, we 410

can calculate the expected number of unsatisfied tasks and the expected total 411

deficit in the next round. 412

6. If choice always returns an unsatisfied task to each worker, then the workers 413

re-allocate successfully in at most |T | rounds. 414

Next, we analyze the three variations of the choice component. 415

Uniformly random tasks 416

In this section, we consider the first option for the choice component, where in each 417

round choice returns a task i with probability 1/|T |. This section includes only proof 418

overviews and approximate running times. For detailed proofs of the results in this 419

section, refer to S2 Text. 420

One of the main results for this option of the choice component states that for any 421

success probability 1− δ that we choose, the time until workers re-allocate correctly is 422

at most O(|T |c−1)(ln Φ(0) + ln(1/δ)). We can see the time is linearly proportional to 423

the number of tasks |T |, logarithmically proportional to the total amount of work 424

needed (Φ(0)) and the inverse of the failure probability, and inversely proportional to c, 425

the ratio of the colony size to the total sum of demands of tasks. 426

Theorem 1. For any δ, 0 < δ < 1, with probability at least 1− δ, all tasks are satisfied 427

by time O(|T |c−1)(ln Φ(0) + ln(1/δ)). 428

Proof Idea: We know that the number of inactive workers in round r + 1 is at least 429

c · Φ(r) (by fact 4). By the definition of choice in this section, each inactive worker 430

starts working on each task i with probability 1/|T |. Therefore, we can show that, in 431

each round, the expected number of new workers to join each unsatisfied task is at least 432

c · Φ(r)/|T |. 433

First, consider the case when c ≤ 2|T | and consider some time r. After some workers 434

join task i in round r + 1, it is not guaranteed that the entire new set of workers 435

remains working on task i because some workers may be unsuccessful if task i does not 436

require that many workers. Assuming c ≤ 2|T |, since the total deficit is Φ(r) and there 437

are |T | tasks, we can show that in expectation the total deficit in the next round is at 438

least c · Φ(r)/|T | (which can be 0 if all tasks are satisfied). Therefore, in expectation, at 439

least c · Φ(r)/|T | of the new workers that join tasks will remain working on them. This 440

implies that the expected total deficit Φ(r) decreases by approximately c · Φ(r)/|T | in 441

round r + 1. 442

Next, we consider the case of c > 2|T |. We can express c as a multiple of |T |: 443

c = c′ · |T | for some c′ > 2. We can show that in each round, the probability to satisfy 444

each task is at least some constant, and consequently (using fact 5 above), we conclude 445

that the expected number of unsatisfied tasks and the total deficit decrease by a 446

constant fraction in each round. 447

Finally, we start at time 0, when the total deficit is Φ(0), and inductively apply the 448

conclusions above in the cases of c ≤ 2|T | and c > 2|T |. By facts 2 and 3, we know that 449

both |U | and Φ are non-increasing, so we just need to analyze how fast they decrease. 450

For the case of c ≤ 2|T |, the expected total deficit Φ(r) decreases by approximately 451

c · Φ(r)/|T | in each round r + 1. So it will take approximately (|T |/c) ln Φ(0) rounds 452

PLOS 12/31

until the total deficit decreases to 0. To turn this into a more formal probabilistic claim, 453

we can add approximately ln(1/δ) rounds, for some 0 < δ < 1, in order to ensure that 454

the tasks are satisfied not only in expectation, but with probability at least 1− δ. This 455

trick works by applying a simple Markov bound (see S2 Text). 456

The second main result for this option of the choice component studies the time 457

until workers re-allocate in such a way that, for any success probability 1− δ and any 458

fraction ε that we choose, a (1− ε)-fraction of the total work Φ(0) is satisfied with 459

probability at least 1− δ. The time to re-allocate in this case is at most 460

O(|T |c−1)(ln(1/ε) + ln(1/δ)). Similarly to the first result in this section, the time is 461

linearly proportional to the number of tasks |T |, logarithmcally proportional to the 462

inverse of the failure probability, and inversely proportional to c, the ratio of the colony 463

size to the total sum of demands of tasks. However, here, we do not have a dependence 464

on Φ(0), but only a logarithmic dependence on 1/ε. 465

Theorem 2. For any δ and ε, 0 < δ, ε < 1, with probability at least 1− δ, the deficit at 466

time O(|T |c−1)(ln(1/ε) + ln(1/δ)) is at most ε · Φ(0). 467

Proof Idea: Following the same structure as the proof above, we can also compute 468

the number of rounds until the tasks are satisfied approximately. Suppose we only want 469

a (1− ε) fraction of Φ(0) to be satisfied for 0 < ε < 1. Recall that for c ≤ 2|T |, the 470

expected total deficit Φ(r) decreases by approximately c · Φ(r)/|T | in each round r + 1. 471

So it will take only (|T |/c)(ln(1/ε) + ln(1/δ)) rounds to ensure this is true with 472

probability at least 1− δ (again, the ln(1/δ) factor is to ensure the probability 473

guarantee). 474

For the case of c > 2|T |, we proceed similarly. Recall that in this case c′ = c/|T | and 475

the expected number of unsatisfied tasks and the total deficit decrease by a constant 476

fraction in each round (this constant depends on c′). So, with probability at least 1− δ, 477

all tasks are satisfied by time approximately (1/c′)(min{ln |T |, ln Φ(0)}+ ln(1/δ)). The 478

reason for having a minimum is to take advantage of the smaller value between |T | and 479

Φ(0). And similarly, if we only want to satisfy the tasks approximately the ln Φ(0) term 480

turns into ln(1/ε). 481

Uniformly random unsatisfied tasks 482

In this section, we consider the second option for the choice component where in each 483

round choice returns a task i ∈ U(r) with probability 1/|U(r)|. This section includes 484

only proof overviews and approximate running times. For detailed proofs of the results 485

in this section, refer to S2 Text. 486

One of the main results for this option of the choice component states that for c ≥ 1 487

and any success probability 1− δ that we choose, the time until workers re-allocate 488

correctly is at most O(ln Φ(0) + ln(1/δ)). We can see the time is logarithmically 489

proportional to the total amount of work needed (Φ(0)) and the inverse of the failure 490

probability. Since c may be extremely close to 1, we do not get any effect of c in this 491

result. 492

Theorem 3. For c ≥ 1 and for any δ, 0 < δ < 1, with probability at least 1− δ, all 493

tasks are satisfied by time min{|T |,O(ln Φ(0) + ln(1/δ))}. 494

Proof Idea: Suppose c ≥ 1 and consider some time r. We can show that in round 495

r + 1 at least one of the following happens: (1) the total deficit decreases by a constant 496

fraction, or (2) the number of unsatisfied tasks decreases by a constant fraction. To show 497

the first property holds, we consider tasks with a fairly high deficit, which are not likely 498

to get satisfied in one round. We show that the number of new workers joining such 499

tasks is enough to decrease the total deficit by a constant fraction. To show the second 500

PLOS 13/31

property (the number of unsatisfied tasks decreases by a constant fraction), we focus on 501

tasks with fairly low deficit which are likely to get satisfied within one round. We can 502

show that these tasks are enough to decrease the total number of unsatisfied tasks by a 503

constant fraction in one round. For showing both (1) and (2), we first prove a bound on 504

the probability to satisfy any given task in a single round and then use fact 5 to get a 505

bound on the expected number of unsatisfied tasks and the expected total deficit. 506

Finally, we start at time 0, when the total deficit is Φ(0) and the number of 507

unsatisfied tasks is at most |T |, and inductively apply the two results above. By facts 2 508

and 3, we know that both |U | and Φ are non-increasing, so we just need to analyze how 509

fast they decrease. If it is the case that the expected total deficit Φ(r) decreases by a 510

constant factor in each round, then it will take approximately ln Φ(0) rounds until the 511

total deficit decreases to 0. If it is the case that the number of unsatisfied tasks decrease 512

by a constant factor in each round, then it will take approximately ln |U(0)| rounds 513

until the total deficit decreases to 0. Since Φ(0) ≥ |U(0)|, we know either Φ(0) or |U(0)| 514

will decrease to 0 in approximately 2 ln Φ(0) rounds. To turn this into a more formal 515

probabilistic claim, we can add approximately ln(1/δ) rounds, for some 0 < δ < 1, in 516

order to ensure that the tasks are satisfied not only in expectation, but with probability 517

at least 1− δ. This trick works by applying a simple Markov bound (see S2 Text). The 518

minimum in the final bound follows by fact 6 in the General Facts section. 519

The second main result for this option of the choice component states that for c > 1 520

and any success probability 1− δ that we choose, the time until workers re-allocate 521

correctly is at most O(1/ ln c)(ln |T |+ ln(1/δ)). Similarly to the result above, the time 522

is logarithmically proportional to the total amount of work (Φ(0)) needed initially, and 523

the inverse of the failure probability. Now, c is strictly greater than 1, so we see that the 524

time is also inversely proportional to the natural logarithm of c. 525

Theorem 4. For c > 1 and for any δ, 0 < δ < 1, with probability at least 1− δ, all 526

tasks are satisfied by time min{|T |,O((1/ ln c)(ln |T |+ ln(1/δ)))}. 527

Proof Idea: Suppose c > 1 and consider some time r. Unlike the case of c ≥ 1, where 528

in round r + 1 either the total deficit or the number of unsatisfied tasks decreases by a 529

constant fraction, here we can show that the number of unsatisfied tasks decreases by at 530

least a constant fraction in round r + 1. We consider all tasks with a fairly low deficit, 531

which are likely to get satisfied in a single round. The total deficit at time r is Φ(r), and 532

the total number of inactive workers in round r+ 1 is at least c ·Φ(r). The fact that the 533

number of inactive workers is at least a constant fraction greater than the total deficit 534

lets us show that the expected number of low-deficit tasks is at least a constant fraction 535

of all unsatisfied tasks. Therefore, by satisfying these low-deficit tasks the number of 536

unsatisfied tasks decreases by a constant fraction in expectation. Again, we can show 537

this by proving a bound on the probability to satisfy any given task and then using fact 538

5. The value of that constant fraction by which the number of unsatisfied tasks 539

decreases is what determines the dependence of the running time on 1/ ln c in this case. 540

Finally, we start at time 0, when the total deficit is Φ(0) and the number of 541

unsatisfied tasks is |U(0)|, and inductively apply the result above to show that the 542

workers will re-allocate correctly within O(ln |U(0)|+ ln(1/δ)) rounds. Note that 543

ln |U(0)| ≤ ln |T | and ln |U(0)| ≤ Φ(0). The minimum in the final bound follows by fact 544

6 in the General Facts section. 545

We can combine the results of the two theorems in this section. Clearly, if c is 546

extremely close to 1, the 1/ ln c term becomes very large, and in the limit the running 547

time becomes ∞. Therefore, we can take the minimum of the running times in the cases 548

of c ≥ 1 and c > 1 to get the overall running time of the algorithm. Essentially, the 549

running time is determined mostly by the case of c > 1, except for the small range of 550

values for c when c is very close to 1. 551

PLOS 14/31

Unsatisfied tasks prioritized by deficit 552

In this section, we consider the third option for the choice component where in each 553

round choice returns a task i ∈ U(r) with probability (di − wi(r))/Φ(r). This section 554

includes only proof overviews and approximate running times. For detailed proofs of the 555

results in this section, refer to S2 Text. 556

One of the main results for this option of the choice component states that for c ≥ 1 557

and any success probability 1− δ that we choose, the time until workers re-allocate 558

correctly is at most O(ln Φ(0) + ln(1/δ)). We can see the time is logarithmically 559

proportional to the total amount of work needed (Φ(0)) and the inverse of the failure 560

probability. Since c may be extremely close to 1, we do not get any effect of c in this 561

result. 562

Theorem 5. For c ≥ 1 and for any δ, 0 < δ < 1, with probability at least 1− δ, all 563

tasks are satisfied by time min{|T |,O(log Φ(0) + log(1/δ))}. 564

Proof Idea: Since an inactive worker starts working on a task i with probability 565

(di − wi(r))/Φ(r), and since there are at least Φ(r) inactive workers in round r + 1, the 566

expected number of new workers to join task i in round r + 1 is at least a constant 567

fraction of di − wi(r), which is exactly the deficit of the task at time r. We can show 568

that each task is satisfied in round r+ 1 with probability 1/2, and so, by fact 5 the total 569

number of unsatisfied tasks and the total deficit decreases by half in expectation. 570

Finally, we start at time 0, when the total deficit is Φ(0) and inductively apply the 571

observation above to show that the workers will re-allocate correctly in approximately 572

log Φ(0) rounds. The minimum in the final bound follows by fact 6 in the General Facts 573

section. 574

The second main result for this option of the choice component states that for c > 1 575

and any success probability 1− δ that we choose, the time until workers re-allocate 576

correctly is at most O(1/c)(ln Φ(0) + ln(1/δ)). Similarly to the result above, the time is 577

logarithmically proportional to the total amount of work needed (Φ(0)) and the inverse 578

of the failure probability. Now, c is strictly greater than 1, so we see that the time is 579

also inversely proportional to the natural logarithm of c. 580

Theorem 6. For c > 1 and for any δ, 0 < δ < 1, with probability at least 1− δ, all 581

tasks are satisfied by time min{|T |,O(1/c)O(ln Φ(0) + ln(1/δ))}. 582

Proof Idea: For the case of c > 1, similarly to the case of c ≥ 1, we show that each 583

task is satisfied with a constant probability, so the number of unsatisfied tasks and the 584

total deficit decrease by a constant fraction in each round. The value of that constant 585

fraction is what let us show that the running time depends on 1/c. The minimum in the 586

final bound follows by fact 6 in the General Facts section. 587

We can combine the results the two theorems in this section. Clearly, if c is 588

extremely close to 1, the 1/c term becomes very large, and in the limit the running time 589

becomes ∞. Therefore, we can take the minimum of the running times in the cases of 590

c ≥ 1 and c > 1. 591

Introducing noise: Suppose the success component is not completely reliable and 592

it can flip the 0/1 bits of at most 0 ≤ z ≤ |A| workers in round r + 1. Moreover, we 593

assume the information needed to determine the outputs of the choice component in the 594

same round is based on the state variables at time r. That is, the choice component 595

does not incorporate the z potential mistakes into its outputs. Also, suppose the choice 596

component is also not completely reliable and can change the probability of outputting 597

task i from exactly Φi(r)/Φ(r) to any value larger than (1− y)(Φi(r)/Φ(r)) for any 598

0 ≤ y < 1 while still maintaining a probability distribution over all the tasks. 599

PLOS 15/31

Although it is no longer possible to guarantee that all tasks are satisfied, we can 600

show that the deficit does not exceed z, and the time to achieve this increases as y 601

approaches 1. For any success probability 1− δ that we choose and any noise 602

parameters y and z (within the permitted ranges), we study the time until workers 603

re-allocate in such a way that at most z units of work remain unsatisfied. Similarly to 604

above, the time is logarithmically proportional to the total amount of work needed 605

(Φ(0)) and the inverse of the failure probability. Additionally, for the case of c ≥ 1 (in 606

particular when c is very close to 1) the time is inversely proportional to ln(1/y), a 607

value that gets extremely large as y gets very close to 1. In the case of c > 1, the time is 608

inversely proportional to c and does not have the dependence on y. 609

Theorem 7. For c ≥ 1, for any δ, 0 < δ < 1, and for 610

r = min{|T |,O(1/ ln(1/y))(ln Φ(0) + ln(1/δ))}, Pr[Φ(r) ≤ z] ≥ 1− δ. 611

Proof Idea: Similarly to the proofs in the previous sections, we need to get a 612

statement on how quickly the expected value of the total deficit decreases. Here, we get 613

a similar result; however, the rate of decrease of the total deficit also depends on the 614

parameters of the noise y and z. In particular, we can show that in each round, the 615

expected total deficit decreases by a 1− (3 + y)/4 fraction (note that this extremely 616

small as y gets close to 1) and it may never go lower than z. The minimum in the final 617

bound follows by fact 6 in the General Facts section. 618

With the above result in mind, we can apply the usual strategy of starting at time 0 619

when the total deficit is Φ(0) and inductively applying the claim above. The time until 620

the workers re-allocate correctly (with the exception of at most z units of work) is 621

approximately (1/ ln(1/y))(ln Φ(0) + ln(1/δ)). 622

Theorem 8. For c > 1, for any δ, 0 < δ < 1, and for 623

r = min{|T |,O(1/c)(ln Φ(0) + ln(1/δ))}, Pr[Φ(r) ≤ z] ≥ 1− δ. 624

Proof Idea: Similarly to the previous sections, we can show a similar result for c > 1. 625

We show that the probability to satisfy each task in each round is some constant that 626

depends on c and that determines the 1/c factor in the running time. Then, we show 627

that the expected total deficit decreases by a constant fraction (that also depends on c) 628

and it may never go lower than z. Note that, unlike the case of c ≥ 1, here the ‘extra 629

workers’ help cancel the effect of y on the running time. Finally, we start at time 0 630

when the total deficit is Φ(0) and inductively apply the claim above. The time until the 631

workers re-allocate correctly (with the exception of at most z units of work) is 632

approximately (1/c)(ln Φ(0) + ln(1/δ)). The minimum in the final bound follows by fact 633

6 in the General Facts section. 634

As in the previous sections, we can combine the above two theorems by taking a 635

minimum. 636

Non-technical summary of results 637

For the various options for the choice feedback component (keeping the success 638

component the same), we study the time to correctly re-allocate all workers: the 639

number of steps workers need to take until the demands of all tasks are satisfied or 640

over-satisfied. In particular, we show three types of results, which differ in precisely 641

what conditions are set on this performance measure (rows in Table 3). 642

First, we consider the case where the demand D has to be fully satisfied with a high 643

probability (1− δ). For this case, in options (2) and (3), we see that if the number of 644

task types (|T |) is small, the time to allocation only depends on this parameter (see also 645

Table 4). If the number of task types is high, we see a positive (logarithmic) dependence 646

of the time to correctly re-allocate all workers on the deficit across all tasks (i.e. the 647

PLOS 16/31

Table 3. Summary of results.

option (1) option (2) option (3)
satisfy all O(|T |(1/c)) min{|T |, min{|T |,O(1/c)
Φ work (ln Φ + ln(1/δ)) (min{1,O(1/ ln c)}· (ln Φ + ln(1/δ))}

with prob. (ln Φ + ln(1/δ)))}
1− δ

satisfy O(|T |(1/c)) min{|T |, min{|T |,O(1/c)
Φ(1− ε) work (ln(1/ε) + ln(1/δ)) (min{1,O(1/ ln c)}· (ln(1/ε) + ln(1/δ))}

with prob. (ln(1/ε) + ln(1/δ)))}
1− δ

satisfy did not did not min{|T |,
Φ− z work analyze analyze (ln Φ + ln(1/δ))

under O(max{1/c,
uncertainty 1/ ln(1/y)})}

The values in the table are upper bounds on the time for workers to achieve a task
allocation that fulfills the criteria in the first column, given a particular option for the
choice feedback. Results are presented in ‘big O’ (asymptotic) notation, which only
gives the type of dependence on particular parameters, without specifying constant
factors. This helps emphasize the parameters the results depend on, and does not give
any information on the exact values of the running times. For precise values of these
results, see the Numerical results section and S2 Text.

Fig 1. Time for workers to re-allocate as a function of c.
The three plots indicate the times until workers re-allocate successfully for options (1),
(2), and (3) of the chocie component as a function of c. The x-axis denotes the value of
c, and the y axis denotes the time for workers to re-allocate. For options (1) and (3) the
plotted function is approximately 1/c multiplied by the corresponding time to re-allocate
for c = 1. For option (2), the plotted function is approximately 1/ ln c, truncated at the
time for workers to re-allocate for c = 1.

value of Φ). That is, correct allocation takes longer if more workers have to be 648

re-allocated; this relationship is not linear but saturates over time. In the case of option 649

(1) (where workers can only check for demand in different tasks sequentially rather than 650

instantaneously), we also see a linear positive dependence on the number of tasks |T |. 651

Finally, as the workers-to-work-ratio (c) increases, the time to re-allocate all workers 652

decreases: this means that if there are ‘extra workers’ (workers in excess of the total 653

demand for work), task allocation becomes faster. In options (1) and (3), that 654

dependence is approximately 1/c, and in option (2), the dependence is slightly weaker: 655

1/ ln c (Fig 1). However, note that extra ants do not contribute towards a faster task 656

allocation until c is large enough (approximately until c ≥ e). 657

Second, we studied the time until the demand D in different tasks is satisfied 658

approximately (to within a (1− ε) fraction) rather than exactly as above (but still with 659

high probability of 1− δ). In general, the effect of different parameters on performance 660

is similar to the case where task demands are satisfied exactly. However, we show that 661

in this case, for all options of choice, surprisingly, the time to re-allocate all workers 662

does not depend on the total deficit (Φ) at all. Instead, it depends on the value of ε. In 663

particular, the smaller ε gets, the more accurately we need to re-allocate all workers, 664

leading to a longer time to do so, until the same time as for the exact case is reached (as 665

in the first row in Table 4). 666

The results in both cases (exact and approximate matching of task demands) are the 667

PLOS 17/31

Fig 2. Time for workers to allocate as a function of c and 1− δ.
The two plots indicate the times until workers re-allocate successfully for options (1),
(2), and (3) of the chocie component as a function of c and 1 − δ respectively, with
specific parameter values assumed (compare the left plot to Fig 1). For both plots, we
assume |T | = 4, Φ = 10, and ε = 0. Additionally, for the plot on the left, we assume
1− δ = 0.99, and for the plot on the right, we assume c = 1. For the plot on the left,
the y-intercept for option (1) (corresponding to c = 1) is approximately 221 (and thus
this is also the value for option 1 at 1− δ = 0.99 in the right plot.

same for ε = 1/Φ. This implies that for very large Φ, ε needs to be very small in order 668

to have equal values in the two rows. Approximate task allocation is achieved faster 669

than precisely accurate task allocation when Φ > 1/ε. 670

Finally, for the third option of the choice component, we also study the time to 671

re-allocate all workers under some noise in the success and choice components. In 672

particular, we assume the success component can make a limited number of ‘mistakes’ 673

(at most z flipped bits from 0 to 1 and vice versa) and the choice component may 674

return a task with a probability slightly larger or smaller than we require in option (3) 675

(change the probability of a task being suggested to a worker by at most a factor of 676

1− y). We show that the best the workers can do in re-allocating is to satisfy all but z 677

units of work, and the time to reach such a re-allocation increases as the range of the 678

probabilities of choice increases. 679

Numerical results 680

Here, we choose some sample values for the parameters in the model and calculate 681

numerical results (Table 4 and Fig 2). The expressions used to generate these values 682

roughly correspond to the first two rows of the table in Table 3, with the difference that 683

here the values are exact upper bounds and not asymptotic (big-oh) notation (see S2 684

Text for how they are calculated). 685

The most obvious pattern here is that task allocation takes a lot more rounds under 686

option (1) (workers are not able to assess quickly which tasks need more work) than 687

under options (2) and (3) for choice. Is task allocation then a ‘difficult’ problem that 688

requires a significant amount of time? This depends on how long, in real time, a ‘round’ 689

is. If workers require time on the order of minutes to choose a task, attempt to perform 690

work in it, and assess whether they have successfully contributed to the colony with this 691

work, then the results for option (1) imply that a colony will need one or several hours 692

to correctly match workers to tasks when the demand for work in the different tasks 693

changes. For the examples given here, that would imply a definite cost, in terms of not 694

being able to maintain a correct match of workers to the tasks that need work (since the 695

level of demand for work is likely to change more frequently than every few hours, or 696

because a lag in matching demand in the realm of hours implies a significant cost). If 697

workers only require seconds to assess demand for work across all tasks (e.g. because 698

task stimuli are volatile pheromones, or global variables like temperature), and can 699

choose a task based on this information, then the time cost of correct allocation in 700

options (2) and (3) is likely insignificant. This would imply that a correct allocation can 701

be achieved quickly, and thus workers should be dynamically and optimally reallocated 702

to changing demands on a timescale of less than a minute. 703

Another pattern emerging from these calculations is that under options (2) and (3) 704

for choice, it is primarily the number of task types (|T |) that affects how fast task 705

allocation proceeds. Neither the number of extra workers (c) nor the size of the initial 706

work deficit (Φ) play a major role; also neither does ε, i.e. allowing a small amount of 707

error in allocation does not decrease the time to successful reallocation in a meaningful 708

PLOS 18/31

Table 4. Numerical results.

Insect name |T | c Φ 1− δ 1− ε (1) (2) (3)
Honey bee 10 1.3 5000 0.95 0.7 708.49 10 6.32

(Apis mellifera)
predator attack (258.44) (10) (4.73)

Honey bee 10 1.3 150 0.8 0.7 407.39 10 4.93
(Apis mellifera)

change in foraging (173.13) (10) (3.35)
conditions
Rock ants 4 1.7 5 0.5 0.7 43.34 4 2.69

(Temnothorax
rugutulus)

change in foraging (35.71) (4) (2.43)
conditions
Rock ants 4 1.7 25 0.9 0.9 103.93 4 4

(Temnothorax
rugutulus)

emigration after (86.69) (4) (4)
nest breakdown

Bumble bee 8 1.5 5 0.9 0.75 166.91 8 4.62
(Bombus impatiens)

(157.39) (8) (4.3)

We calculated the time to successful allocation, in the three options of our model, using
numerical parameter values that approximate the conditions in some example cases of
task re-allocation in social insects. For each option, we calculate the number of rounds
until the entire demand D (consequently, the entire initial deficit Φ) is satisfied and, in
parentheses, the number of rounds until a (1− ε) · Φ fraction of the demand is satisfied.
These are not intended to be exact time estimates; the values for c, δ, and ε have not
been estimated empirically for any species, nor is it clear how long a ‘round’ precisely
should be. The intent, here, is to check whether task allocation might take a significant
amount of time in realistic scenarios (and thus be considered a difficult problem, and its
solutions, i.e. task allocation algorithms, subject to natural selection). These numerical
estimates also serve to illustrate how the different parameters affect the time to successful
reallocation in a realistic context of other parameter values.

way. How accurate are these conclusions, given that we are only examining somewhat 709

arbitrarily chosen parameter combinations? Our results in Table 3 give a more complete 710

picture, as do the plots in Fig 2; this table is only intended as an illustration of the 711

results. However, the parameter values illustrated here are not entirely arbitrary, but 712

represent best-guesses given empirical data (see Table 4). For example, many authors 713

have tried to examine the number of task types in social insects, and our results cover 714

the range generally found (2–30; Table 4). 715

Discussion 716

Modeling, in general, can serve different purposes in the scientific process [62,63]. Our 717

paper has the goal of examining, first, whether ‘task allocation’, i.e. the process of using 718

a distributed, self-organized algorithm to dynamically match workers to work, is a 719

difficult problem, and second, what factors determine the optimal algorithm to achieve 720

such task allocation. Our paper thus aims to provide a ‘proof of principle’ sensu [63]: 721

PLOS 19/31

namely, we aim to show under which factors should be expected, or not expected, to 722

affect the performance of task allocation mechanisms given certain assumptions. Next, 723

we survey the relevant work on theoretical modeling and empirical studies of task 724

allocation; then, we discuss our results, and examine the assumptions we made in the 725

model to achieve them. 726

Related work 727

The process of task allocation and its typical outcome, division of labor, have received a 728

lot of attention in the social insect literature. Empirical studies typically focus on 729

determining the individual traits or experiences that shape, or at least correlate with, 730

individual task specialization: e.g. when larger or older individuals are more likely to 731

forage (e.g. [53]) or when interaction rates or positive experience in performing a task 732

affect task choices [32, 64]. Generally the re-allocation of workers to tasks after changes 733

in the demand for work often needs to happen on a time scale that is shorter than the 734

production of new workers (which, in bees or ants, takes weeks or months, [65]), and 735

indeed empirical studies have found that the traits of new workers do not seem to be 736

modulated by colonies to match the need for work in particular tasks [66]. Therefore, 737

more recent empirical and most modeling studies focus on finding simple, local behavior 738

rules that generate individual task specialization (i.e. result in division of labor at the 739

colony level), while simultaneously also enabling group-level responsiveness to the 740

changing needs for work in different tasks [35,67,68]. For example, in classic papers, 741

Bonabeau et al. [69] showed theoretically that differing task stimulus response thresholds 742

among workers enable both task specialization and a flexible group-level response to 743

changing task needs; and Tofts and others [70,71] showed that if workers inhabit 744

mutually-avoiding spatial fidelity zones, and tasks are spread over a work surface, this 745

also enables both task specialization and flexible response to changing needs for work. 746

In this paper we examined how well we should expect task allocation to be able to 747

match actual demands for work, and how this will depend on group size and the number 748

of ‘extra’, thus inactive, workers. Neither of the modeling studies cited above explicitly 749

considered whether task allocation is improved or hindered by colony size and inactive 750

workers. In addition, while several studies find increasing levels of individual 751

specialization in larger groups, the empirical literature overall does not show a 752

consensus on how task allocation or the proportion of inactive workers is or should be 753

affected by group size (reviewed in [14,22]). 754

In general, few studies have cosidered the efficiency of the task allocation process 755

itself, and how it relates to the algorithm employed [72], often in the context of 756

comparing bio-(ant-)inspired algorithms to algorithms of an entirely different 757

nature [73,74]. For example, Pereira and Gordon, assuming task allocation by social 758

interactions, demonstrate that speed and accuracy of task allocation may trade off 759

against each other, mediated by group size, and thus ‘optimal’ allocation of workers to 760

tasks is not achieved [72]. Duarte et al. also find that task allocation by response 761

thresholds does not achieve optimal allocation, and they also find no effect of colony 762

size on task allocation performance [75]. Some papers on task allocation in social insects 763

do not examine how group size per se influences task allocation, but look at factors such 764

as the potential for selfish worker motives [76], which may be affected by group size, 765

and which imply that the task allocation algorithm is not shaped by what maximizes 766

collective outcomes. When interpreting modeling studies on task allocation, it is also 767

important to consider whether the number of inactive workers is an outcome emerging 768

from particular studied task allocation mechanisms, or whether it is an assumption put 769

into the model to study its effect on efficiency of task allocation. In our study, we 770

examined how an assumed level of ‘superfluous’, thus by definition ‘inactive’, workers 771

would affect the efficiency of re-allocating workers to tasks after demands had changed. 772

PLOS 20/31

While the above models concern the general situation of several tasks, such as 773

building, guarding, and brood care, being performed in parallel but independently of 774

one another, several published models of task allocation specifically consider the case of 775

task partitioning [77], defined in the social insect literature as a situation where, in an 776

assembly-line fashion, products of one task have to be directly passed to workers in the 777

next task, such that a tight integration of the activity in different tasks is required. This 778

is, for example, the case in wasp nest building, where water and pulp are collected by 779

different foragers, these then have to be handed to a construction worker (who mixes 780

the materials and applies them to the nest). Very limited buffering is possible because 781

the materials are not stored externally to the workers, and a construction worker cannot 782

proceed with its task until it receives a packet of water and pulp. One would expect 783

different, better-coordinated mechanisms of task allocation to be at work in this case. 784

In task partitioning situations, a higher level of noise (variation in availability of 785

materials, or in worker success at procuring them) increases the optimal task switching 786

rate as well as the number of inactive workers, although this might reverse at very high 787

noise levels [78]. Generally larger groups are expected to experience relatively lower 788

levels of noise [79]. In this line of reasoning, inactive workers are seen as serving a 789

function as ‘buffer’ (or ‘common stomach’, as they can hold materials awaiting 790

work) [79,80]; this implies that as noise or task switching rate increase, so does the 791

benefit (and optimal number) of inactive workers. 792

Does task allocation matter? 793

Is task allocation a difficult problem, and does it matter which algorithm is chosen? If 794

task allocation is an easy problem, then the match of work to workers can be achieved 795

without significant costs. If task allocation is difficult, on the other hand, the choice of 796

task allocation algorithm matters for system performance; in biological systems where 797

this is the case, we would expect task allocation mechanisms to be under strong 798

selection, and their evolution to reflect the specific ecological context of the system. In 799

social insect colonies, for example, task allocation mechanisms appear to differ between 800

species - this could be the case because they are not under selection, and different 801

species happen to have hit on different, equally good, solutions, or because they are 802

under selection, and different species have different requirements (e.g. because they 803

differ in the frequency with which demand for work in different tasks changes). There is 804

some evidence that even brief mismatches of work to workers, i.e. incorrect task 805

allocation, can be detrimental in certain species (e.g. because brood do not develop well 806

when briefly not thermoregulated [81]). 807

Here we estimate the time to correct allocation for several species and contexts 808

(Table 4). For example, we estimate that when a honey bee colony is attacked by a 809

large predator, and 5000 (±30%) bees should ideally be allocated to defense, the time to 810

achieve this within our generalized task allocation algorithm would be around 5− 10 811

rounds if all bees can directly sense the need for more defenders (options (2) or (3)), 812

and 700 rounds if they cannot (and only arrive in the defense task because they 813

randomly tested different tasks in different rounds, option (1)). Since this particular 814

situation requires a quick collective response, the difference between option (1) and 815

options (2) or (3) appears meaningful, regardless of whether a ‘round’ takes minutes or 816

seconds to complete. In another example, a change in foraging conditions in the case of 817

rock ants (Temnothorax) may imply that only five additional workers need to be 818

allocated to the task of foraging; however, in that system it appears likely that 819

individuals need on the order of a minute rather than seconds to assess both the state of 820

their environment and whether their own task performance is successful (in the sense of 821

fulfilling a demand). If that is the case, a delay of 40 rounds may also be a meaningful 822

and costly delay to appropriately exploiting novel food sources, for example. In all cases, 823

PLOS 21/31

the main effect on the difficulty of task allocation is whether or not individuals can 824

assess the demand across different tasks simultaneously (instead of only in the one task 825

they are working on), and what time period a ‘round’ in our model corresponds to (i.e. 826

how long it takes a worker to assess whether its current work is needed, i.e. whether it 827

is ‘successful’ in the task according to the terms used in our model). In addition, the 828

costs as presented in Table 4 have to be paid each time the demands for work in 829

different tasks change, and workers have to be reallocated to match these new demands. 830

Overall, our calculations show that realistic parameter estimates can lead to potentially 831

meaningful costs of slow task allocation. Our calculations are pretty coarse however, as 832

the precise values of many of the parameters are not known (however see Table 2 for 833

references on parameter estimates). More empirical work in this area would be useful. 834

Our work also addresses a more general question. Division of labor is widespread in 835

complex systems from developing embryos to human organizations; it implies a degree 836

of individual specialization, i.e. more or less consistent differences between individuals 837

in the tasks chosen. Division of labor is often associated with ‘progress’ or ‘increase in 838

complexity’ (e.g. [17]). All systems with division of labor must implement some 839

algorithm that lets individuals choose their task. How do these task allocation 840

algorithms evolve, i.e. which external or internal conditions select for which kinds of 841

mechanism? For example, under which conditions and in which systems do the best task 842

allocation algorithms produce highly specialized workers, insensitive to small changes in 843

demands across tasks? One might argue that in a system with highly specialized 844

workers, the cost of allocation mismatch is never more than the average allocation 845

minus current demands, because the system can make specialized workers in the correct 846

proportion for the average expected allocation. Any algorithm that allows workers to be 847

fully generalist, i.e. to freely switch between any tasks, must ensure that the mismatch 848

of workers to demands is not on average greater than that. Understanding more about 849

why particular task allocation mechanisms are selected for would thus increase our 850

understanding about the evolution of specialization and division of labor more generally. 851

Colony size does not affect ease of task allocation 852

Does colony size lead to a change in which task allocation algorithms perform well, and 853

does it lead to selection for specialization? The answers to these questions are not 854

straightforward (and neither are the empirical results on this [22]). Contrary perhaps to 855

conventional wisdom in both biology and computer science, we do not find a direct 856

dependence of the time to solve the task allocation problem on ‘colony size’ or ‘problem 857

size’, if we assume that the total amount of work scales linearly with the number of 858

workers (c = |A|/D, the number of workers per work available, is constant across 859

different |A|). This holds even if all work only has to be satisfied with a certain 860

probability, and if only close to the total needed work has to be satisfied. This result is 861

perhaps logical because we implemented neither the type of noise that would lead to a 862

benefit of large numbers (where the relative amount of variation in environments 863

experienced decreases with colony size), nor did we implement any economies of scale 864

(there are no broadcast signals; we did not model any communication explicitly, and if 865

the task feedback is thought of as the result of communication, we did not implement 866

any constant costs with colony size). No matter how logical in hindsight however, this 867

was not what we had intuitively expected nor what is sometimes suggested in the 868

literature [22]. 869

If we find empirically that in some systems the level of specialization or the task 870

allocation mechanism implemented change with colony size, some factors not modeled 871

here have to be at play: e.g. fixed costs leading to economies of scale, or non-linear 872

scaling in the effectiveness of communication. For example, it may be that the feedback 873

on whether an individual worker contributes to reducing a deficit depends on social 874

PLOS 22/31

interactions that do not scale linearly with colony size. This is plausible of course (and 875

has been demonstrated empirically in some cases, e.g. [50]). Importantly however, it is 876

not obvious that task allocation will perform better at larger colony sizes in all systems. 877

It is worth noting that even if the time to correct allocation did change with colony size, 878

this does not make obvious predictions for the evolution of division of labor (the degree 879

to which workers should be specialized). If task allocation is difficult (takes a long 880

time), it may be that colonies abandon the attempt to dynamically reallocate workers at 881

all, and instead employ specialized, ‘preprogrammed’ workers in proportions of the 882

average expected demands across tasks. 883

The amount of work available per worker affects ease of task 884

allocation 885

We discover that to understand the dependence of task allocation on the number of 886

workers in the colony (|A|), actually what we really need to know is (D), the total 887

amount of work that needs to be done. Note that D refers to currently open tasks, thus 888

is not likely to be ‘unlimited’; in social insects, if nothing else, in the short term, 889

available work will be limited by the queen’s egg laying rate. This total amount of work 890

available (or necessary) has not been studied explicitly either empirically or in models of 891

social insect task allocation, with few exceptions [28]. So, we do not have a good 892

understanding of how D behaves with |A| intra- or inter-specifically. Here we have 893

simply assumed that |A|/D is constant, but this may well not generally be so: previous 894

studies and conceptual papers have suggested either that larger colonies are relatively 895

less productive, perhaps suggesting that less work is available per worker, or that they 896

are more productive (because they are capitalizing on some economies of scale) — it is 897

unclear what the latter would imply for the amount of work per worker available. One 898

interesting new hypothesis here is that the evolution of task allocation across social 899

insects may, in part, be driven by the factors that limit productivity -– e.g. is the colony 900

raising brood at near the queen’s maximal egg laying rate? In this case D may increase 901

less than linearly with increasing colony size, and thus task allocation may become 902

easier, even trivial, at higher colony sizes. Our modeling study thus suggests a new 903

hypothesis (one for the purposes of modeling more generally, [82]), by providing the 904

insight that a previously ignored variable impacts the outcome of a well-studied process. 905

‘Extra’ workers make task allocation faster 906

Our results also suggest that c (the ratio of |A|/D, or the number of workers divided by 907

the amount of work available) matters, and higher c generally leads to faster allocation 908

time. Thus colonies may benefit from having more workers available than work. This is 909

a novel hypothesis for the existence of ‘inactive’ workers in social insect colonies and 910

other complex systems [14]. That is, colonies may produce more workers than needed to 911

complete available work simply in order to speed up the process of (re-)allocating 912

workers to work, and thus potentially reducing costs of temporary mismatches of 913

workers with needed work. In other words, inactive, ‘surplus’ workers in colonies may 914

increase colony flexibility and how close colonies get to an ‘optimal’ task allocation in 915

environments where task demands often change and workers frequently have to be 916

reallocated. The benefit of extra workers (higher c) does not depend on colony size 917

(|A|), thus we would expect both large and small colonies to have as many extra workers 918

as they can afford. Although the dependence on c varies with task allocation algorithm 919

(it is least strong in option (2)), higher c is always beneficial. 920

Apparently inactive workers are common in social insect colonies. While these 921

workers may be selfish [40,41] or immature [42], or temporarily unemployed due to 922

fluctuating total demand [14], our work here thus implies that they may also be present 923

PLOS 23/31

simply to improve task allocation. That is, colonies may produce extra workers such 924

that some workers are ‘unemployed’ at all times on average, but so that the time to 925

correct reallocation of workers when demands across tasks change is minimal. This is a 926

novel hypothesis for the function of inactive workers in complex systems more generally. 927

The number of task types matters 928

It is intuitive that task allocation may be more difficult if workers have to choose among 929

many different possible tasks to perform (high |T |). However, we show that the effects 930

of |T | are mixed and depend both on the information available to workers and the 931

actual combination of parameter values, particularly on the size of |T |. Specifically, in 932

the parameter ranges we explored numerically (based on empirically plausible parameter 933

values), the time to correctly allocated workers to tasks depends linearly on the number 934

of task types for options (1) and (2), and not at all for option (3). In option (1), where 935

workers effectively have to ‘test’ tasks sequentially to discover where work is needed 936

(because they only find out through the success mechanism), |T | always enters into 937

performance as a linear factor. This would be the case for example if workers have to 938

walk to different locations in the nest, or if they have to invest some other significant 939

effort into assessing demand for each specific task. In options (2) and (3), workers can 940

effectively assess demand across all tasks in parallel; this may be the case if task 941

demand is communicated through global stimuli, such as temperature or volatile 942

pheromone levels. In such a case, the number of task types matters only if it is lower 943

than the second term in the minimum function (for example, see Corollary C.6 in S2 944

Text). Thus, whether the number of task types affects task allocation performance 945

depends on the context of other parameter values. 946

What do we know about |T | empirically? Several authors have attempted to 947

quantify this number (see Table 2). However, empirically studies have often 948

acknowledged that what are ‘separate tasks’ and what are just elements of the same 949

task is difficult to define, and that this may lead to number estimates that are quite 950

subjective. In our model, workers within the same task are assumed to immediately 951

(within one round) correctly distribute the work among themselves, whereas the demand 952

for work in a different task is only assessed via the choice and success feedback 953

mechanisms as defined above. So, one may think, for example, of each item to be 954

worked on as a ‘task’ (e.g. each larva that needs tending and feeding, or each breach in 955

the wall), in which case |T | might be a quite large number; or one may think that all 956

larvae are part of the single task of brood care, and all places in the wall that need 957

repair are part of the task of nest building, in which case |T | is likely to be a small 958

number (perhaps below 20, or even below 10). Which is the more appropriate way of 959

counting tasks, in the context of our model, depends on whether, for example, each ant 960

worker dedicated to brood care will be able to immediately assess which particular 961

larvae need care, not loosing time in arriving at a consensus with other brood care 962

workers about who is tending to which exact brood item, or alternatively where each 963

brood care worker can jointly and concurrently contribute to the work in that task 964

without internal coordination required at the timescale of overall task allocation. 965

Assumptions made in our approach 966

The results presented in this paper were derived using methods from the field of 967

theoretical distributed computing. The problems considered in this field are very similar 968

to those that are relevant in the biological study of distributed systems – and almost all 969

biological units, from cells with their metabolic and molecular networks to ecosystems, 970

are really distributed systems. We believe that the techniques and results from 971

theoretical distributed computing may lead to many novel approaches and insights in 972

PLOS 24/31

biology in the future, and interdisciplinary work in this area is 973

increasing [29,46, 47, 83, 84]. In particular, research in theoretical distributed computing 974

has examined the limitations of distributed algorithms, for example in such contexts as 975

distributed task allocation as we study here. 976

Generally, this field analytically derives results about models that often assume 977

stochastic individual behavior, and in particular quantifies system-level performance 978

given specific individual algorithms (i.e. behavioral rules). Here, we have analyzed how 979

our model, a generalized form of an insect-inspired task allocation algorithm, performs 980

in terms of how long it takes to correctly allocate workers to different task types which 981

need work. We have allowed for approximate solutions, by looking at the time to 982

allocating workers correctly only with a certain minimum probability (1− δ), and only 983

to within ε of the best allocation. We have also allowed for errors in the demand 984

assessment function, e.g. if workers make mistakes when assessing whether they are 985

needed in a particular task. We have made the assumption that the relevant measure of 986

how well a task allocation mechanism performs is related to the time to correct 987

allocation, that is the time until workers are matched to tasks that need work. Other 988

performance measures are possible, such as assessing how quickly the task-worker match 989

approaches an ideal allocation, or how good the match can ever get; or entirely different 990

parameters may be under selection, such as how much workers have to switch tasks [38], 991

how well workers prioritize more important tasks over unimportant ones, or how much 992

information workers need to collect in order to allocate correctly. 993

Second, our approach makes another assumption about how the performance of a 994

task allocation mechanism is measured: we only quantify this performance for the 995

worst-case inputs, namely the configuration of task deficits (i.e. the distribution of 996

unfulfilled demands across tasks) that leads to the longest possible time to re-allocate. 997

Thus, while stochasticity in worker decisions and information is taken into account and 998

expected results derived, we do not make any assumptions about what configuration of 999

task deficits workers are likely to encounter. If this was known, more precise 1000

expectations for performance could be derived. In distributed computing theory, there 1001

is a general assumption that such a worst-case scenario (generally called the upper 1002

bound of performance) is a good measure of algorithm performance; however it does not 1003

need to be close to the overall expected case. 1004

Finally, we make the crucial assumption that all workers are identical in preferences 1005

and skills. Thus, our model represents a system of flexible, homogeneous workers. If 1006

workers randomly differed in their ability to perform different tasks, matching them 1007

optimally to tasks with changing demands for work becomes an extremely hard 1008

problem [12]. On the other hand, worker skills in a task may be linked to their 1009

preferences for that task, either because these are innately linked, or because workers 1010

learn to prefer the tasks they do well, or learn to do the tasks well they prefer [85]. How 1011

much the dynamic (re-)allocation of workers in response to changing demands in 1012

different tasks is affected by such worker heterogeneity remains to be analyzed. 1013

Conclusion 1014

We mathematically derived how the time it takes to correctly allocate workers to work 1015

is affected by several factors, such as colony size and the number of ‘extra’ workers. We 1016

make only minimal assumptions about the algorithm used, and we explore several ways 1017

of measuring performance of task allocation, which means these relationships should 1018

hold fairly generally. Our model brings several insights. First, costs or benefits of group 1019

size do not arise in task allocation ‘automatically’, that is from minimal assumptions 1020

such as ours. Second, such a result clarifies our thinking and suggests how, for example, 1021

colony-size-dependencies may occur (e.g. if information on work deficits is 1022

communicated faster in larger colonies), thus guiding future research as well as 1023

PLOS 25/31

identifying which variables qualitatively affect system behavior. One such variable is the 1024

amount of work available; this has not been considered in previous empirical studies but 1025

appears to be a crucial factor affecting the evolution of task allocation algorithms [28]. 1026

Third, the model results have generated a novel hypothesis for the existence of inactive 1027

workers in social insect colonies [14], namely that they may serve to speed up the task 1028

allocation process. It now can be studied whether this may be the reason for their 1029

evolution. All of these results are derived analytically, using approaches from theoretical 1030

distributed computing, without the need for parameter estimation such as would be 1031

necessary in a simulation study. In summary, our ‘proof of concept’ model sensu [63] 1032

helps to identify how limitations and processes at the individual level can affect group 1033

level processes in a distributed system. 1034

Acknowledgments 1035

We wish to thank the organizers of the annual ‘Biological Distributed Algorithms’ 1036

workshop for creating a venue to encourage biology-computer science interaction and 1037

collaboration. 1038

References

1. Becker GS, Murphy KM. The division of labor, coordination costs, and knowledge.
In: Human Capital: A Theoretical and Empirical Analysis with Special Reference
to Education (3rd Edition). The University of Chicago Press; 1994. p. 299–322.

2. Gerkey BP, Matarić MJ. A Formal Analysis and Taxonomy of Task Allocation in
Multi-Robot Systems. The International Journal of Robotics Research.
2004;23(9):939–954.

3. Lindbeck A, Snower DJ. Multitask Learning and the Reorganization of Work:
From Tayloristic to Holistic Organization. Journal of Labor Economics.
2000;18(3):353–376.

4. Maynard Smith J, Szathmáry E. The Major Transitions in Evolution. Oxford
University Press; 1995.

5. Older MT, Waterson PE, Clegg CW. A critical assessment of task allocation
methods and their applicability. Ergonomics. 1997;40(2):151–171.

6. Smith A. The Wealth of Nations. W. Strahan and T. Cadell, London; 1776.

7. Herron MD, Hackett JD, Aylward FO, Michod RE. Triassic origin and early
radiation of multicellular volvocine algae. Proceedings of the National Academy
of Sciences. 2009;106(9):3254–3258.

8. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch Signaling: Cell Fate Control
and Signal Integration in Development. Science. 1999;284(5415):770–776.

9. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters.
Communications of the ACM. 2008;51(1):107–113.

10. Hunt P, Konar M, Junqueira FP, Reed B. ZooKeeper: Wait-free Coordination for
Internet-scale Systems. In: USENIX Annual Technical Conference. vol. 8; 2010.
p. 9.

PLOS 26/31

11. Georgiou C. Do-All Computing in Distributed Systems: Cooperation in the
Presence of Adversity. Springer Science & Business Media; 2007.

12. Cornejo A, Dornhaus AR, Lynch NA, Nagpal R. Task Allocation in Ant Colonies.
In: Proceedings of the 2014 Symposium on Distributed Computing (DISC); 2014.
p. 46–60.

13. Lynch NA. Distributed algorithms. Morgan Kaufmann; 1996.

14. Charbonneau D, Dornhaus A. When doing nothing is something. How task
allocation mechanisms compromise between flexibility, efficiency, and inactive
agents. Journal of Bioeconomics. 2015;17:217–242.

15. Charbonneau D, Dornhaus A. Workers ‘specialized’ on inactivity: behavioral
consistency of inactive workers and their role in task allocation. Behavioral
Ecology and Sociobiology. 2015;published online.

16. Johnson BR. Global information sampling in the honey bee. Naturwissenschaften.
2008;95(6):523 – 530.

17. Bonner JT. Why size matters: from bacteria to blue whales. Princeton
University Press; 2011.

18. Herron MD, Michod RE. Evolution of Complexity in the Volvocine Algae:
Transitions in Individuality through Darwin’s Eye. Evolution. 2008;62(2):436–451.

19. Hall RH, Johnson NJ, Haas JE. Organizational Size, Complexity, and
Formalization. American Sociological Review. 1967;32(6):903–912.

20. Moch MK, Morse EV. Size, Centralization and Organizational Adoption of
Innovations. American Sociological Review. 1977;42(5):716–725.

21. Easley D, Kleinberg J. Networks, crowds, and markets: Reasoning about a highly
connected world. Cambridge University Press; 2010.

22. Dornhaus A, Powell S, Bengston S. Group size and its effects on collective
organization. Annual review of entomology. 2012;57:123–141.

23. Dornhaus A, Klugl F, Oechslein C, Puppe F, Chittka L. Benefits of recruitment
in honey bees: effects of ecology and colony size in an individual-based model.
Behavioral Ecology. 2006;17(3):336–344.

24. Garicano L, Hubbard TN. Specialization, Firms, and Markets: The Division of
Labor within and between Law Firms. Journal of Law, Economics, and
Organization. 2009;25(2):339–371.

25. Beckers R, Goss S, Deneubourg JL, Pasteels JM. Colony size, communication
and ant foraging strategy. Psyche. 1989;96:239–256.

26. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms. MIT
Press; 2009.

27. Attiya H, Welch J. Distributed computing: fundamentals, simulations, and
advanced topics. vol. 19. John Wiley & Sons; 2004.

28. Dornhaus A. Finding optimal collective strategies using individual-based
simulations: colony organization in social insects. Mathematical and Computer
Modelling of Dynamical Systems. 2012;18(1):25–37.

PLOS 27/31

29. Dornhaus A, Korman A, Feinerman O. Distributed problem solving – applying
computer science to learn about a biological complex system: social insect
colonies. in prep;.

30. Wilson EO. The insect societies. Cambridge: Belknap Press of Harvard
University Press; 1971.

31. Seeley TD. Honeybee ecology. A study of adaptation in social life. Princeton
University Press; 1985.

32. Gordon DM. The organization of work in social insect colonies. Nature.
1996;380(14 March):121–124.

33. Jeanne RL. Division of labor is not a process or a misleading concept. Behavioral
Ecology and Sociobiology. 2016;70(7):1109–1112.

34. Duarte A, Weissing FJ, Pen I, Keller L. An evolutionary perspective on
self-organized division of labor in social insects. Annual Review of Ecology,
Evolution, and Systematics. 2011;42:91–110.

35. Beshers SN, Fewell JH. Models of division of labor in social insects. Annual
review of entomology. 2001;46(1):413–440.

36. Pinter-Wollman N, Hubler J, Holley JA, Franks NR, Dornhaus A. How is activity
distributed among and within tasks in Temnothorax ants? Behavioral Ecology
and Sociobiology. 2012;66(10):1407–1420.

37. Gordon DM. Dynamics of task switching in harvester ants. Animal Behaviour.
1989;38(2):194–204.

38. Leighton GM, Charbonneau D, Dornhaus A. Task switching is associated with
temporal delays in Temnothorax rugatulus ants. Behavioral Ecology.
2016;28(1):319–327.

39. Charbonneau D, Dornhaus A. Who needs ‘lazy’ workers? Inactive workers act as
a ‘reserve’ labor force, but inactive workers are not replaced when they are
removed. submitted;.

40. Charbonneau D, Hillis NB, Dornhaus A. Are ‘lazy’ ants selfish? Testing whether
highly inactive workers invest more in their own reproduction than highly active
workers. submitted;.

41. Jandt JM, Dornhaus A. Competition and cooperation: bumblebee spatial
organization and division of labor may affect worker reproduction late in life.
Behavioral Ecology and Sociobiology. 2011;65:2341–2349.

42. Charbonneau D, Nguyen H, Shin MC, Dornhaus A. Who are the ’lazy’ ants?
Concurrently testing multiple hypotheses for the function of inactivity in social
insects. Scientific Reports. submitted;.

43. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, et al. Above
the clouds: A Berkeley view of cloud computing. EECS Department, University
of California, Berkeley; 2009. UCB/EECS-2009-28.

44. Varia J. Architecting for the cloud: Best practices. Amazon Web Services. 2010;.

45. Afek Y, Alon N, Barad O, Hornstein E, Barkai N, Bar-Joseph Z. A biological
solution to a fundamental distributed computing problem. Science.
2011;331(6014):183–185.

PLOS 28/31

46. Feinerman O, Korman A. Memory lower bounds for randomized collaborative
search and implications for biology. In: International Symposium on Distributed
Computing. Springer; 2012. p. 61–75.

47. Feinerman O, Korman A. Theoretical distributed computing meets biology: A
review. In: International Conference on Distributed Computing and Internet
Technology. Springer; 2013. p. 1–18.

48. Feinerman O, Korman A, Lotker Z, Sereni JS. Collaborative search on the plane
without communication. In: Proceedings of the 2012 ACM Symposium on
Principles of Distributed Computing. ACM; 2012. p. 77–86.

49. Lenzen C, Lynch N, Newport C, Radeva T. Trade-offs between selection
complexity and performance when searching the plane without communication.
In: Proceedings of the ACM Symposium on Principles of Distributed Computing.
ACM; 2014. p. 252–261.

50. Pacala SW, Gordon DM, Godfray HCJ. Effects of social group size on
information transfer and task allocation. Evolutionary Ecology. 1996;10:127–165.

51. Wilson EO. Behavioral discretization and the number of castes in an ant species.
Behavioral Ecology and Sociobiology. 1976;1(2):141–154.

52. Herbers JM. Social organisation in Leptothorax ants: within-and between-species
patterns. Psyche. 1983;90(4):361–386.

53. Wilson EO. Caste and division of labor in leaf-cutter ants (Hymenoptera:
Formicidae: Atta) I. The overall pattern in A.sexdens. Behavioral Ecology and
Sociobiology. 1980;7:143–156.

54. Donaldson-Matasci MC, DeGrandi-Hoffman G, Dornhaus A. Bigger is better:
honeybee colonies as distributed information-gathering systems. Animal
Behaviour. 2013;85(3):585–592.

55. Dornhaus A, Holley JA, Pook VG, Worswick G, Franks NR. Why do not all
workers work? Colony size and workload during emigrations in the ant
Temnothorax albipennis. Behavioral Ecology and Sociobiology. 2008;63(1):43–51.

56. Dornhaus A. Specialization does not predict individual efficiency in an ant. PLoS
Biology. 2008;6(11):e285.

57. Jandt JM, Dornhaus A. Bumblebee response thresholds and body size: does
worker diversity increase colony performance? Animal Behaviour. 2014;87:97–106.

58. Jandt JM, Huang E, Dornhaus A. Weak specialization of workers inside a bumble
bee (Bombus impatiens) nest. Behavioral Ecology and Sociobiology.
2009;63(12):1829–1836.

59. Retana J, Cerdá X. Social Organization of Cataglyphis cursor Ant Colonies
(Hymenoptera, Formicidae): Inter-, and Intraspecific Comparisons. Ethology.
1990;84(2):105–122.

60. Schmid-Hempel P. Reproductive Competition and the Evolution of Work Load in
Social Insects. The American Naturalist. 1990;135:501–526.

61. Charbonneau D, Hillis N, Dornhaus A. ‘Lazy’ in nature: ant colony time budgets
show high ‘inactivity’ in the field as well as in the lab. Insectes Sociaux.
2015;62(1):31–35.

PLOS 29/31

62. Gunawardena J. Models in biology: ‘accurate descriptions of our pathetic
thinking’. BMC Biology. 2014;12(1):1–11.

63. Servedio MR, Brandvain Y, Dhole S, Fitzpatrick CL, Goldberg EE, Stern CA,
et al. Not Just a Theory – The Utility of Mathematical Models in Evolutionary
Biology. PLoS Biol. 2014;12(12):e1002017.

64. Ravary F, Lecoutey E, Kaminski G, Châline N, Jaisson P. Individual experience
alone can generate lasting division of labor in ants. Current Biology.
2007;17(15):1308–1312.

65. Hölldobler B, Wilson EO. The ants. Harvard University Press; 1990.

66. Schmid-Hempel P. Worker castes and adaptive demography. Journal of
Evolutionary Biology. 1992;5(1):1–12.

67. Calabi P. Behavioral flexibility in Hymenoptera: a re-examination of the concept
of caste. Advances in Myrmecology. 1988; p. 237–258.

68. Robinson GE. Regulation of division of labor in insect societies. Annual Review
of Entomology. 1992;37(1):637–665.

69. Bonabeau E, Theraulaz G, Deneubourg JL. Fixed response thresholds and the
regulation of division of labor in insect societies. Bulletin of Mathematical
Biology. 1998;60(4):753–807.

70. Franks NR, Tofts C. Foraging for work: how tasks allocate workers. Animal
Behaviour. 1994;48(2):470–472.

71. Tofts C. Algorithms for task allocation in ants. (A study of temporal polyethism:
theory). Bulletin of Mathematical Biology. 1993;55(5):891–918.

72. Pereira HM, Gordon DM. A trade-off in task allocation between sensitivity to the
environment and response time. Journal of Theoretical Biology.
2001;208(2):165–184.

73. Campos M, Bonabeau E, Theraulaz G, Deneubourg JL. Dynamic scheduling and
division of labor in social insects. Adaptive Behavior. 2000;8(2):83–95.

74. Price R, Tino P. Evaluation of adaptive nature inspired task allocation against
alternate decentralised multiagent strategies. In: Proceedings of the International
Conference on Parallel Problem Solving from Nature. Springer; 2004. p. 982–990.

75. Duarte A, Pen I, Keller L, Weissing FJ. Evolution of self-organized division of
labor in a response threshold model. Behavioral Ecology and Sociobiology.
2012;66(6):947–957.

76. Bourke A. Colony size, social complexity and reproductive conflict in social
insects. Journal of Evolutionary Biology. 1999;12(2):245–257.

77. Ratnieks F, Anderson C. Task partitioning in insect societies. Insectes Sociaux.
1999;46(2):95–108.

78. Hamann H, Karsai I, Schmickl T. Time delay implies cost on task switching: A
model to investigate the efficiency of task partitioning. Bulletin of Mathematical
Biology. 2013;75(7):1181–1206.

PLOS 30/31

79. Karsai I, Phillips MD. Regulation of task differentiation in wasp societies: A
bottom-up model of the“common stomach”. Journal of Theoretical Biology.
2012;294:98–113.

80. Karsai I, Runciman A. The ‘common stomach’ as information source for the
regulation of construction behaviour of the swarm. Mathematical and Computer
Modelling of Dynamical Systems. 2012;18(1):13–24.

81. Groh C, Tautz J, Rossler W. Synaptic organization in the adult honey bee brain
is influenced by brood-temperature control during pupal development. PNAS.
2004;101(12):4268–4273.

82. Franks NR, Dornhaus A, Marshall JAR, Dechaume-Mincharmont FX. The dawn
of a golden age in mathematical insect sociobiology. Organization of Insect
Societies: From Genome to Sociocomplexity. 2009; p. 437–459.

83. Feinerman O, Haeupler B, Korman A. Breathe before speaking: efficient
information dissemination despite noisy, limited and anonymous communication.
In: Proceedings of the 2014 ACM Symposium on Principles of Distributed
Computing. ACM; 2014. p. 114–123.

84. Gelblum A, Pinkoviezky I, Fonio E, Ghosh A, Gov N, Feinerman O. Ant groups
optimally amplify the effect of transiently informed individuals. Nature
Communications. 2015;6.

85. Dornhaus A. Does learning increase or decrease behavioral variation? The role of
experience in division of labor of the ant Temnothorax albipennis. in prep;.

Supporting Information

S1 Text. Formal definitions We provide mathematically rigorous definitions of our
task allocation model.

S2 Text. Full proofs We provide full formal proofs of the mathematical statements
in the Results section.

PLOS 31/31

