
Semisynchrony and Real Time 
Extended abstract 

Stephen Ponzio 1 and Ray Strong 2 

1 M I T  Laboratory for Computer Science, 545Technology Sq., Cambridge, MA 02139, 
ponzio@theory.lcs.mit.odu 

2 IBM Almaden Research Center, 650 Harry Rd., San Jose, CA 95120-6099 
strong@almaden.ibm.com 

Abst rac t .  This paper represents the confluence of several streams of 
research on the real time complexity of distributed algorithms. The pri- 
mary focus of our study is on two models and two problems: the timed 
automata model of Attiya and Lynch and the ("latency") model of ap- 
proximately synchronized clocks studied by Strong et. al., and the prob- 
lems of consensus and atomic broadcast. We compare these models and 
problems, producing new results and significant improvements of previ- 
ously known bounds. In particular, we are able to significantly improve 
the upper bound of Strong, Dolev, and Cristian on latency for Byzan- 
tine failures, giving an algorithm that is much simpler with vastly easier 
analysis. For this problem, we also improve the best known lower bound 
on latency. We also provide certain reductions between problems and 
models and provide preliminary answers to some new questions in the 
timed automata model. 

1 I n t r o d u c t i o n  

In the interest of obtaining more accurate and useful t ime bounds for distributed 
algorithms, there recently has been much attention devoted to deriving time 
bounds that  explicitly account for the degrees of asynchrony that  exist in dis- 
tr ibuted systems. Several different models of semisynchrony have been used, cap- 
turing different concerns about issues of real time. Similar but different problems 
have been studied in these models, yielding quantitative results that  are seem- 
ingly related. This paper at tempts to present a unified view of these research 
efforts, summarizing the concerns addressed by each. We compare solutions to 
the general problem of simulating round-based synchronous algorithms and fo- 
cus on specific solutions to consensus-type problems, which, as the fundamental  
distributed problems requiring some synchrony, are the natural candidates for 
the initial stages of this research. By comparing the concerns and approaches 
in both studies, we have sometimes been able to achieve significant and sur- 
prising improvements over existing results. Although we have found that  most 
techniques do not carry over from one setting to the other, understanding the 
disparity has led to a greater appreciation of what aspects of these two prob- 
lems are important  to different measures of real-time performance. In addition, 



121 

our study has revealed some very natural unanwered questions regarding these 
problems as well as the area of clock synchronization. 

For this extended abstract we consider two models of timing in distributed 
message-passing systems3; briefly (see Section 2 for complete definitions), these 
a r e  

1. The TA ("Timed Automata") model: A basic model ofsemisynchrony, for- 
malized and studied by Attiya and Lynch ([AL89, ADLS90, P91]). Studies 
in this model focus on the effect of the maximum possible ratio of processor 
rates, denoted C. Message delay time is denoted d. 

2. The AC ("Approximately synchronized Clocks") model: A model in which 
processors are assumed to have approximately synchronized clocks. Stud- 
ied by Strong, Dolev, and Cristian ([CASD86, SDC90, GSTC90]). Work in 
this model have focused on the effect of the maximum difference e between 
clocks ("skew" or "precision" ). The maximum possible ratio of clock rates is 
denoted A and the message delay is denoted dAc. 

In each of the models, it is easy to simulate arbitrary synchronous round- 
based algorithms by allowing' the maximum possible time for each round. How- 
ever such straightforward simulations are generally inefficient. The motivating 
question is 

Can  one  do b e t t e r  t han  d i rec t ly  s imula t ing  r o u n d - b a s e d  a lgor i thms?  

Natural vehicles to explore time complexities are the fundamental fault- 
tolerant problems of consensus and 'atomic broadcast. We distinguish atomic 
broadcast from consensus in two ways: consensus is "multi-source" and one-time 
only---each processor gets exactly one input value and the output is a single 
value; atomic broadcast is "single-source" and dynamic--each processor may 
get input values repeatedly and the output is a sequence of these values, which 
must be identical for each processor. The consensus problem has been studied 
in the TA model ([ADLS90, P91]) and the atomic broadcast problem has been 
studied in the AC model ([CASD86, SDC90, GSTC90, BGT90]). 

1.1 O u r  r e s u l t s  

We apply algorithmic techniques used for consensus (with Byzantine failures) in 
the TA model to obtain a greatly improved algorithm for atomic broadcast (with 
Byzantine failures) in the AC model. The best previous algorithm ([SDC90]) for 
atomic broadcast in the presence of Byzantine failures had "latency "4 2e + 3(2 + 
A+A 2 +.. .+A l)dAc, where f is the number of Byzantine processor failures to be 
tolerated. We adapt an algorithm from [P91] to obtain a vastly simpler algorithm 
with much simpler analysis and an improved latency of 2e + ((1 + 2A)f + 1)dAc. 

3 In the full paper, we also include comparisons with the related model studied by 
Herzberg and Kutten ([HK89]). 

4 A measure of time complexity defined in Section 2.4. 



122 

We also prove that, even for more benign failures (such as authenticated 
Byzantine or clock failures with send and receive omissions), a lower bound for 
latency is 2e + ( f  + 1)dAc. This improves on the previously best known lower 
bounds of 2e + 2dAc ([SDC90]) and e + ( f  + 1)dAc ([CASD86]). 

Although there is a vast literature on the problem of atomic broadcast (e.g., 
[CM84, BJ87, MMA90, MMA91, ADKM92]), we know of no work that focuses 
on the real time complexity of this problem when processors are not fully syn- 
chronous. Surprisingly, there is no simple algorithm for solving atomic broadcast 
in the TA model (even inefficiently). We consider implementing synchronized 
clocks in the TA model as one way of solving the atomic broadcast problem. Un- 
fortunately, many important clock synchronization algorithms such as [ST87], 
[DHSS89] and [LL88] were designed only for systems with extremely small drift 
(C ~ 1 + r it is not clear whether these algorithms can be extended to work for 
the case we are interested in, when C is large. 5 We also adapt a lower bound 
proof of [ST87] to show that A >_ C for any clocks implemented in TA. 

Finally, we derive several simple reductions between the problems and mod- 
els. They relate latency of atomic broadcast with the real time required to achieve 
consensus. We first show that if there is an atomic broadcast protocol with la- 
tency L, then there is a consensus protocol for the AC model that requires at 
most real time R ~ (L + 2e) /v~ .  We also show that if there is a consensus 
protocol that requires at most real time R, then there is an atomic broadcast 
protocol with latency L ~ v ~ R  + dAc + e. 

2 Models, problems, and discussion 

Consensus-type problems are the most natural candidate to study in a semi- 
synchronous model: their time complexity is well understood in the case of syn- 
chronous round-based computation; they are well known to be impossible for 
completely asynchronous systems, and the necessary degrees of synchrony have 
been thoroughly studied ([DDS87]). However, the different models of semisyn- 
chrony have inspired the study of different versions of the consensus problem. 
We begin by describing the two models in more detail. In both models, pro- 
cessors are completely connected by reliable message links and all parameters 
are known to the processors. We consider the standard failure modes; unless 
otherwise stated, "omission" failures refers "send-omission" failures only. 

2.1 Mode l  TA: A basic mode l  of semisynchrony  

A basic model of semisynchrony is developed in the work of Attiya and Lynch 
([AL89]), based on the timed automaton model ([MMT90]). Conceptually, the 
model is very simple: successive steps of a nonfaulty process are separated by at 
least time cl and at most c2 and all messages sent are delivered within time d. 

The question of whether e and A can be simultaneously minimized--e ~ d and 
A = C--is a long-standing open question in the area of clock synchronization. 



123 

Although these constants are common knowledge among the processors, a pro- 
cessor cannot directly determine the exact time between any two particular steps. 
A "step" of a process consists of performing some local computation and sending 
messages to other processors. Messages may be delivered to a processor between 
two of its steps. Processors are assumed to obey the timing constraints if they 
suffer omission failures but not if they suffer Byzantine failures. (An interesting 
but unstudied alternative model of failure is "timing" failures, where processors 
act correctly except that they may violate the step-time constraint. The most 
efficient algorithm known for this class of failures is the algorithm for Byzantine 
failures.) 

In this model, the ratio c2/cl  is used as a measure of the timing uncer- 
tainty and denoted simply C = c2/cl .  This parameter measures the rate of 
drift between processors. Processor steps are typically much faster than message 
transmission, so we usually consider c~ << d and make approximations appropri- 
ately. An essential factor in the running time of a round-based simulation is the 
time required to timeout the message of another processor. We therefore first 
outline why a timeout may take up to time C d  + d in this model. Suppose pro- 
cessors implement fault-detection by continuously sending "I 'm alive" messages 
to each other, so that d is approximately an upper bound on the time between 
the delivery of any two successive messages. If q fails to send a message to p at 
time t, p will begin to notice an absence of messages at time t + d. Processor p 
concludes that q has failed when it is sure that time d has elapsed since the last 
message received. It can only conclude that time d has elapsed by waiting for 
d /c l  steps, which may take up to time t + d + c2(d/c l )  = t + d + Cd. Thus we 
see that although it takes only time d to receive a message, it may take up to 
time Cd + d to detect the absence of a message. 

Any round-based algorithm may then be simulated despite stopping or omis- 
sion failures by continuously performing this timeout protocol between every 
pair of processors. Each processor simulates round i by waiting until for each 
processor q, p has either received a round i - 1 message from q or has detected 
the failure of q. Each round then takes approximately time C d  + d to simulate. 
The goal of the work of [ADLS90, P91] is to quantify the effect of semisynchrony 
on the real-time complexity of distributed computing problems: given a system 
with parameters cl, c2, d, what are tight upper and lower bounds on the real t ime 
required for these problems? 

2.2 Mode l  AC: A p p r o x i m a t e l y  synch ron i zed  clocks 

A higher-level model of semisynchrony in the spirit of the work on clock syn- 
chronization has been studied by Dolev, Strong, and Cristian ([SDC90]). Each 
processor has a clock that stays within a linear envelope of real time: there exist 
positive constants al < 1 < as and a3 such that for each clock of a correct 
processor and for all real times tl < ~2, 

al( t2 -- t l )  -- a3 < Clock( t2)  - C lock (Q)  < a2(t2 - Q)  -4- a3. 



124 

Clocks of correct processors never differ by more than e. This is a discretized 
version of the standard model of clocks that  has been used throughout the liter- 
ature on clock synchronization (e.g., [DHSSS9, DHS86, LM85]). Processors are 
interrupt-driven: they may be caused to take a step either by the arrival of a 
message or by its clock reaching a prespecified time. As in the TA model, a 
processor may send messages to several other processors during one step. Also, 
processors are assumed to obey the timing constraints if they suffer omission 
failures but  not if they suffer Byzantine failures. 

In the AC model, the maximum delay of any message is defined in terms 
of clock time: the interval between the sending and delivery of any message 
measures at most dAc on the clock of any correct processor. We use the subscript 
AC to distinguish this term from d, defined in the TA model, which we retain 
to denote maximum real time between sending and delivery. To put the drift 
assumption into a more usable form, we first note that  if an interval is t imed 
to be of length t on the clock of a correct processor, then it measures at most 
(a2/al)t+2aa ~ At on the clock of any other correct processor (take t 2 - t l  = t /al  
in the above definition). As with the TA model, we will generally assume that  
the granularity of the clocks is much less than message delay--a3 << dAc--and 
make appropriate approximations. We denote A = a2/a~ and call this quantity 
the relative accuracy 6. 

How can synchronous round-based algorithms be simulated in this model? 
Because clocks are available, timing out other processors is a simple matter:  if p 
is supposed to send a message to q at t ime t on its clock, then q knows that  the 
message should be sent no later than time t + e on its own clock and therefore 
should be received no later than time t + e + dAc on its clock. To simulate a 
round-based algorithm starting at clock time t, each processor waits until t ime 
t + i(dAc + e) on its clock to receive round i messages and then sends its round 
i + 1 message. 

2.3 C o n s e n s u s  

This version was studied in [ADLS90, P91]. It is the standard classical binary 
consensus problem: each processor has a one-bit input and all correct processors 
must agree on a one-bit output  which is equal to the input if all inputs are equal. 

Because each processor is supposed to receive an input for the problem, it 
makes the most sense to assume that  these inputs arrive within some known 
time interval. (In the synchronous round-based model, processors are assumed 
to begin executing the algorithm at the same time.) We therefore introduce a 
parameter  x to denote the length of the interval of real t ime in which all pro- 
cessors receive their inputs. We measure running time as the difference between 
the real t ime at which the last correct processor decides on a value and the real 
t ime at which the first correct processor gets its input. Note that  this definition 
applies to all failure models. (The algorithms from [ADLS90] and [P91] work for 
x > 0 with little or no modifications.) 

This ratio is equivalent to "( l+p)  2" in [ST87, LL88, DHSS89] and " l+p"  in [SDC90]. 



125 

2.4 Atomic  broadcast  

This version was studied in [CASD86, SDC90, GSTC90]. It is a dynamic problem 
in the sense that  inputs arrive repeatedly and asynchronously. At any time, 
a processor may receive a binary input which must be broadcast to all other 
processors. Processors must output a sequence of values such that  (1) all correct 
processors output  the same sequence of values, and (2) the input sequence of 
each correct processor appears as a distinct subsequence of this sequence. Note 
that  this definition allows for the possibility that  processors may agree on a 
value different from the sender's input even if the sender suffers only stopping 
or omission failure. When a processor (irreversibly) adds a message to its list, it 
is said to deliver the message. 

A natural definition of real-time complexity for this problem is to measure 
the difference between the time that a processor gets an input and the time 
the last correct processor delivers the message. This definition is workable for 
omission failures, but it is not meaningful if a Byzantine processor delays acting 
on its input and then correctly executes the broadcast algorithm on that  input; 
in this case the time cannot be bounded. 

In [CASD86], this difficulty is resolved for the AC model by defining a time 
complexity measure called the latency. This measurement requires as part of the 
problem statement that  when a processor initiates a message, it should attach 
its local time to the message. 

D e f i n i t i o n  1. The latency of an algorithm for atomic broadcast is the maximum 
difference (over all executions, processors, and messages) between the local clock 
time that  a correct processor delivers the message and the timestamp on that  
message. 

Thus the algorithms developed for atomic broadcast in the AC model are con- 
cerned not with minimizing the elapsed real time, but with minimizing the age of 
any message (as defined by its timestamp) that  must be accepted by a processor, 
relative to its current clock time. Although this measure may seem unnatural  at 
first, it does have the advantage of being directly observable by processors. Note 
that  for stopping or omission failures, the latency is equal to e plus the maxi- 
mum time that  can elapse on a processor's clock between the real time of the 
input and the real time that  the processor delivers the corresponding message. 
Of course, this is not true for Byzantine failures, as clocks of faulty processors 
need not be within e of each other. 

2.5 P r e v i o u s  work  

Work on consensus in the TA model has focused on the extent to which the drift, 
or t iming uncertainty, C, affects the real-time complexity. A straightforward 
rounds simulation (for omission failures) requires time approximately Cd per 
round. Interesting new algorithms were developed with running times of 2fd+Cd 
for stopping failures ([ADLS90]) and 4( f  + 1)d + Cd for omission failures and 
(2f  + 1)Cd + fd  for Byzantine failures ([P91]). 



126 

Work on atomic broadcast in the AC model, however, has focused on the 
extent to which the clock skew e affects the running time; the effect of drift 
(A) has not been a primary concern of this research. A straightforward rounds 
simulation may require clock time dAc + e per round. It is easy to show that  
this is not optimal for stopping and omission failures; a simple message-diffusion 
algorithm gives a total latency of ( f  + 1)dAc + e ([CASD86]). However, a great 

deal of effort was needed to achieve a latency of 3(2 + ~-~//=0 Ai) dAc + 2e for 
Byzantine failures ([SDC90]). 

From looking at the results above, it is tempting to infer some kind of rela- 
tionship between the additive factor of Cd which the TA bounds minimize and 
the additive factor of e which the AC bounds minimize. However, we shall see 
that  no such relationship exists. 

3 I m p r o v e d  l a t e n c y  b o u n d s  f o r  a t o m i c  b r o a d c a s t  

3.1 R o u n d  s i m u l a t i o n s  

We first consider the general problem of simulating synchronous rounds. For 
simplicity, we will assume that  all processors begin a TA rounds simulation at 
the same real t ime and an AC rounds simulation at the same clock time. We 
saw in Section 2 that  rounds may be simulated in the AC model at a cost of 
dAc+e elapsed clock t ime per round (for all failure models) and in the TA model 
at a cost of Cd + d real t ime per round (for stopping or omission failures) or 
( 2C +  1)d per round (for Byzantine failures). In neither model does the respective 
round simulation yield an efficient algorithm for consensus or atomic broadcast 
(except for the Byzantine consensus algorithm in the TA model, which is not 
known to be suboptimal-- i .e . ,  it is not known whether O(fd) + Cd is sufficient 
or if (2(fCd) is required). 

We consider adapting rounds-simulation algorithms of the TA model to work 
in the AC model. The algorithms for the TA model use the bounds on step time 
exclusively for deriving upper bounds on elapsed t ime--for  instance, counting 
enough steps to ensure that  t ime d has passed after sending a message in order to 
be sure that  it has been delivered. These algorithms can thus be used in the AC 
model with little change by instead using the clocks to give such guarantees--f6r  
example, if a processor waits for time dAc on its clock after sending a message, it 
ensures that  the message must be delivered because at most time dAc can elapse 
on any correct clock while the message is in transit. Thus the clocks are used as 
"timers" to measure the length of intervals, and their synchronizat ion-that  they 
are within e of each other-- is  ignored. 

The rounds simulation for omission failures in the TA model described in 
Section 2.1 uses real t ime ( C + l ) d  per round. To analyze the adapted algorithm in 
the AC model, we must ask how much any clock may advance during a "round". 
As with the analysis in the TA model, the worst case is when a single processor 
fails just  before sending its roun d message; this causes the other processors to 
wait for d/cl steps, or Cd time, before concluding that  a failure has occurred. In 



127 

the AC model, this failure leads to a worst-case latency if a processor with a fast 
clock quickly concludes that a failure has occurred while another processor with 
a slow clock takes longer to reach that conclusion; on the slower clock, time dAc 
elapses while on the faster clock, time A. dAc elapses. By a similar argument as 
in Section 2.1, we see that some clock may advance (A q- 1)dAc each round. We 
note that the worst-case execution in the TA bound is with all processors going 
fast, whereas in the AC bound, it is with one clock going slow and another going 
fast. 

Thus the adapted simulation is successful in avoiding an additive e with each 
round, improving in that respect on the first simulation described for the AC 
model. It suffers, however, from the A + 1 factor of dAc. Suppose we use this 
round simulation to run a standard atomic broadcast algorithm for omission 
failures (assuming a common clock start time). Simulating f + 1 rounds gives a 
total latency of about ( f  + 1)(A + 1)dAc + e, as a faster clock may have started 
out e ahead of that of the processor receiving (and timestamping) the input. 
This fails to improve the latency of the simple message-diffusion algorithm of 
[CASD86]. 

Indeed, even if we translate the efficient consensus algorithm of [ADLS90], 
the resulting latency is 2fdAc+AdAc+e, which is also worse than [CASD86]. We 
remark that the algorithm of [ADLS90] can be viewed as an optimized simulation 
of a synchronous early-stopping consensus algorithm with a special property 
regarding the circumstances under which a processors must advance to successive 
rounds (see [P91]). This suggests that it may be possible to identify a class 
of efficiently simulatable synchronous algorithms whose simulations need incur 
neither the e per round nor the A + 1 factor of dAc. 

The algorithm for consensus with Byzantine failures in the TA model [P91] 
works by simulating synchronous rounds efficiently (relative to naive strategies). 
In Section 3.2 below, we show that this simulation, which uses time (2C + 1)d 
per round, may be adapted to the AC model so that any clock advances at most 
(2A + 1)dAc per round. However, because the clocks of Byzantine processors 
may differ from correct clocks by more than e, the total latency for simulating 
f + 1 rounds turns out to be ( f  + 1)(2A + 1)dAc + 2e (instead of plus le). 
Surprisingly, this is far better than the latency bound of [SDC90] (modulo the 
synchronized start assumption). 

We see that except for this assumption the adaptation of the TA rounds- 
simulation improves the atomic broadcast latency bound for Byzantine failures 
but not for stopping or omission failures. We can now see that the differing factor 
of e for omission and Byzantine failures (1 and 2, respectively) is precisely due 
to the difference on the clocks at the beginning of the algorithm. 

3.2 The  a lgo r i t hm 

The following algorithm simulates synchronous rounds despite Byzantine fail- 
ures, under the assumption that it is common knowledge that the input message 
should be timestamped T. The algorithm uses the synchronized clocks to wait 



128 

for round one messages (this is where the additive 2e is incurred) and then re- 
lies only on the rates of the clocks for the rest of the algorithm. All t imes are 
measured on local clocks. 

Xa. 
lb .  

2a. 
2b. 
2c. 

W a i t  until t ime T + dac  Jr e or  until f + 1 round 2 messages received 
S e n d  round 2 message 

W a i t  until 2 f  + 1 round 2 messages received 
W a i t  for t ime 2dAc o r  until f + 1 round 3 messages received 
S e n d  round 3 message 

(i - 1)a. W a i t  until 2 f  + 1 round i - 1 messages received 
(i - 1)b. W a i t  for t ime 2dAc o r  until f + 1 round i messages received 
(i - 1)c. S e n d  round i message 

ra.  W a i t  until 2 f  + 1 round r messages received ;the last round 
rb. W a i t  for t ime 2dAc 

E N D  

T h e o r e m 2 .  ( C o r r e c t n e s s )  For n > 3 f +  1, the above simulation ensures that 
each correct processor receives round i - 1 messages from all correct processors 

before sending its round i message. 

Proof. First note tha t  because n >_ 3 f  + 1, processors will eventually advance to 
all rounds of the simulation. It  is clear that  a processor does not send its round 2 
message before receiving a round 1 message from all correct processors: consider 
the first correct processor to send a round 2 message. It cannot receive f + 1 
round 2 messages before it sends, so it must  wait until T + dAc + e on its clock 
before sending. Clearly, all round 1 messages of correct processors are delivered 
by this t ime. All other correct processors send their round 2 messages later. 

In subsequent rounds, when the first correct processor p sends its round i 
message, the round i - 1 messages of all correct processors have been delivered: 
Because p is the first correct processor to send its round i message at ( i -  1)c, it 
could not have received f + 1 round i messages before then and therefore must  
have waited for a period of 2dac on its clock after it received 2 f  + 1 round i - 1 
messages. After p has waited dac,  all correct processors have received at least 
f + 1 of those messages and therefore, by the code, they must  have sent round 
i - 1 messages (they must  already be at least to (i - 2)b, since they have each 
sent a round i - 2 message to p by the induction hypothesis and then advanced 
to (i - 2)a, and subsequently received at least 2 f  + 1 round i - 2 messages from 
each other).  These round i -  1 messages are received by all processors within 
another  t ime dac  on p 's  clock, which is when p sends its round i message. [] 

To tolerate Byzantine failures with authentication and n > 2 f  + 1, simply 
change " W a i t  until 2 f +  1 round i - 1  messages received" to " R e l a y  f +  1 round 



129 

i - 1 messages." Thus a processor p executing this s ta tement  ensures that  all 
other correct processors will send their i - 1 messages within 2dAc because the 
signed relayed messages satisfy (i - 2)b. 

T h e o r e m  3. ( L a t e n c y )  The latency for simulating a synchronous algorithm of 
f + 1 rounds in the presence of Byzantine failures is ((1 + 2 A ) f  + 1)dAc + 2e. 

Proof. For a given execution define 
�9 Cp(t) = the value of processor p 's  clock at real t ime t, 
�9 ti = the latest real t ime at which a correct processor sends a round i message, 
�9 taiet = the latest real t ime at which the round i message of any correct processor 

is delivered. 
So we have Cp(t2) < T +  dac + 2e for all correct p, since every correct processor 
sends a round 2 message by t ime T + dAc 4- e on its clock, at which t ime the 
clock of any other correct processor reads at most  (T + dAc + e) + e. 

By induction on the round number  i > 2, we show Cp(ti+l) - Cp(ti) <_ 
dAc 4- 2dAcA: First note that  Cp(t del) - Cp(ti) <_ dAc for all correct p, by the 
definition of dAc. Now consider the last correct processor q to send a round 
i + 1 message (at t ime t i+l) .  It  receives a round i message from each correct 
processor by real t ime t det and sends its round i + 1 message no more than 2dAc 
on its clock thereafter, so we have Cq(ti+l) - Cq(tdi el) < 2dAc. As we showed in 
Section 2.2, this implies that  Cp(ti+x) - Cp(t d~t) <_ A(2dac)  for all correct p. 

~t  " Summing over rounds 2 through f + 2 (the processors END at ]+2 ), we 
have Cp(tl+2 ) - Cp(t2) < f (1  + 2A)dAc for all correct processors p. 

Because a processor knows the initial message was scheduled to be sent at 
t ime T, it need not deliver a message with t imes tamp older than T, and the 
latency of the algorithm is 

Cp(ty+2) - T <_ Cp(t/+2) - (Cp(t2) - dAc -- 2e) < (1 + 2A) fdAc  Jr dAc + 2e 

[] 

R e m o v i n g  t h e  s y n c h r o n i z e d  s t a r t  a s s u m p t i o n .  A simple but  message- and 
computation-inefficient way to remove the assumption tha t  processors know the 
start ing t ime is for the processors to execute the broadcasts as if an input were 
known to be received every e t ime on their clocks, using "dummy" messages if 
they have received no input. When a processor gets an input, it sends the initial 
message with the beginning of the next scheduled execution of the simulation. 
The total  latency is then e + ((1 + 2A) f  + 1)dAc + 2e, for any e. 

A less wasteful way to remove this assumption is to use a clever proto- 
col developed in [BGT90] to synchronize the start ing round of an agreement 
algorithm. 7 This protocol adds 3(e + d) to the latency. When a processor receives 
an input m at local t ime t, it broadcasts a message "start: t" announcing that  an 
execution of the broadcast algorithm will begin at clock t ime t + 3(dAc + e). At 
tha t  t ime, the processors will execute n atomic broadcast algorithms in parallel 

7 One could use the "firing squad" algorithms for this purpose, but they require f + 3 
rounds, whereas this technique requires only an additional three. 



130 

as each processor broadcasts a vote (the original processor broadcasts m along 
with its vote). Tha t  is, the broadcast algorithms are executed by each processor 
as if it knew that  every processor were scheduled to receive an input (which is 
actually its vote) at clock t ime t + 3(dAc + e). The vector of votes produced 
by the broadcasts determines whether m is delivered by the processors. Any 
processor that  receives a "start: t" message by t + dAc d- e on its clock and 
relays the message to everyone and participates in the broadcasts with a vote 
of YES. Any processor that  receives a (possibly relayed) "start: t" message by 
t ime t + 2(dAc + e) on its clock (but not by t + dAc + e) relays the message to 
everyone and participates in the broacasts with a vote of NO. In either case, if 
the broadcasts produce a vector of votes with at least f + 1 YES's, then these 
processors deliver m iff they would deliver m according to the atomic broadcast 
algorithm corresponding to the originator. However, a processor that  does not 
receive a relayed message by time t + 2(dAc + e) participates in the broacasts (to 
the best of its abi l i ty--depending upon when it first hears about the broadcasts) 
but  does not deliver m as a result of the broadcasts. The claim is that  despite 
the fact that  the original atomic broadcast algorithm is guaranteed to work only 
if all correct processors participate, with the addition of this protocol a correct 
processor delivers m if and only if all correct processors deliver m. 

C l a i m  1 For any atomic broadcast algorithm that is correct when the clock time 
of input is common knowledge, the protocol above ensures that even without 
this common knowledge a correct processor delivers m if and only if  all correct 
processors deliver m. 

Proof. Suppose a correct processor p delivers m. Then p must have received a 
"start: t" message by time t + 2(dAc + e) on its clock and therefore all processors 
received a "start: t" message by time t + 3(dAc + e) on their clocks. Thus, all 
correct processors participated in the entire broadcasts and the same vector of 
votes is therefore produced at each processor. In particular, all correct processors 
agree on whether or not m was received. Now, for p to deliver m, at least f +  1 of 
those votes must be YES, so some correct processor received a "start: t" message 
by t ime t + dac + e on its clock. It follows that each processor receives a "start: 
t" message by t ime t + 2(dAc + e) on its clock and therefore delivers m as a 
result of seeing f + 1 YES's. [] 

3.3 Optimal precision 

In this section, we prove a lower bound oil the latency of the atomic broadcast 
problem of ( f  + 1)dAc + 2e if processors fail by omitt ing messages and having 
clocks that  differ from correct clocks by more than e. By improving over the 
previously best known lower bounds of 2e + 2dAc ([SDC90]) and e + ( f  + 1)dAc 
([CASD86]), we obtain the first lower bound that is tight (with the Byzantine 
upper bound) both precisely in the factor of e and to within a "constant" factor 
in its coefficient of dAc. The "constant" factor is in fact equal to about twice 
the drift rate A; it remains a major  open question in this area to obtain lower 
bounds that  depend substantially on the drift (A or C). 



131 

T h e o r e m 4 .  Any algorithm for atomic broadcast in the AC model tolerating 
send and receive omission failures and clock failures has latency at least ( f  + 
1)dAc + 2e. 

Proof. Let Q - { 2 , . . . , n -  f}  and R = {n - f + 1 , . . . , n }  be subsets of the 
processors. For the purposes of the proof, the rate of clocks and all absolute 
readings are unimportant .  We will assume throughout the proof all clocks run 
at the rate of real time, with l ' s  clock displaying real t ime exactly, Q's clocks 
reading e greater than real time, and R's clocks reading 2e greater than real time. 
Processor 1 receives an input message x at real t ime 0. All times and intervals 
in the proof refer to real t ime unless otherwise specified. We use d = dAc. 

Let E0 be an execution in which (1) for all k, any message sent in the interval 
[(k - 1)d, kd) is delivered at t ime kd, and (2) processor 1 acts as if it has done 
everything correctly, but it omits x to R. By delivering messages only at multiples 
of d, we can identify each interval [(k - 1)d, kd) with a "round" in the natural 
way. Although processor 1 is clearly faulty in E0 from the point of view R, to Q 
it is equally possible that all processors in R (which number f )  received x but 
are claiming otherwise. Note that  Q may also be able to discern that  either 1 or 
R must be faulty by discovering that  their clocks differ by more than e. Now, if 1 
sends follows the algorithm with respect to Q, then processors in Q must deliver 
it, despite what 1 says to R. To ensure agreement, correct processors in R must 
deliver x if those in Q deliver it. Thus, in E0, all correct processors deliver x. 

We can now mimic the argument of the synchronous lower bound ([DS83, 
DM86, M85, CD86]) of creating a chain of executions E 0 , . . . ,  E I' such that  in 
E "  no input is received by processor 1. Each pair of successive executions is 
indistinguishable to some correct processor in R before t ime T + ( f  + 1)d 4- 2e 
on its clock. All correct processors must deliver x in E0 but not in E ~', so some 
pair of executions must be distinguishable to all correct processors by time T 
plus the latency on their clocks. Thus, the latency must be at least (f- t-1)d 4-2e. 

Each successive pair of executions differ only in the existence of a single 
message. Clearly, if a message m is sent in the interval [(f  - 1)d, fd), then only 
the recipient can tell by t ime fd  if m has been sent or not. Since subsequent 
messages sent by the recipient are not delivered until t ime ( f +  1)d, processors in 
R cannot tell before time ( f  + 1)d+ 2e on their clocks if m has been sent or not. 
Thus, only one processor in R (if it is the recipient of m) can distinguish before 
local t ime ( f  + 1)d + 2e between two executions that  differ only in whether or 
not m is sent in the interval [ ( f  - 1)d, fd). 

Starting with execution E0, for any processor p we may construct a sequence 
of executions E 0 , . . . ,  E ~ such that  p sends no messages at all in the interval 
[ ( f  - 1)d, fd) of E '  and each pair of successive executions is indistinguishable to 
some correct processor in R. This is done by removing one at a time each message 
sent by p in the interval. Another execution created by removing a message sent 
by p' to p in the interval [(f  - 2)d, ( f -  1)d) is then clearly indistinguishable 
from E '  to all processors but  p (since p sends no messages in E '  after t ime 
( f -  1)d). Now, by adding back one at a time the messages sent by p in the interval 
[ ( f -  1)d, fd), we can continue the sequence to arrive at an execution that  differs 



132 

from E0 only in the message from p~ to p. In this manner, we can remove any 
messages of up to f -  1 processors in addition to processor 1. This is easily proved 
formally with a (standard) recursive proof (see [DS83, CD86, M85, DM86]). We 
finally arrive at an execution E"  in which processor 1 omits m to all processors, 
completing the proof. 

The key fact is that  this sequence of executions leading to E"  has the prop- 
erty that  each consecutive pair is indistinguishable to some correct processor in 
R. This is because the recursion requires that  for each execution, at most i pro- 
cessors fail in the first i rounds. Since processors in R don't  receive m directly 
from 1 by time d, there is no need to remove any messages sent by processors in 
R before time 2d; therefore at most f - 2 processors in R are faulty in any pair 
of successive executions. At most one processor can distinguish between any pair 
of successive executions, leaving us at least one in R that  cannot. 

3.4 R e a l - t i m e  b o u n d s  for  a t o m i c  b r o a d c a s t  

In addressing the atomic broadcast problem in the TA model, we encounter two 
problems. The first is that  new techniques are needed to establish a common or- 
dering of messages--atomic broadcast algorithms for the AC model establish this 
ordering by delivering messages in t imestamped order, making critical use of the 
synchronized clocks. The second problem, discussed in Section 2.4, is with defin- 
ing the running time for Byzantine failures. In this section, we avoid Byzantine 
failures altogether and take solve the ordering problem by simply implementing 
synchronized clocks in the TA model. 

The extensive literature on clock synchronization has thoroughly studied 
almost exactly this problem of implementing clocks--given "hardware" clocks 
that  drift from real time at some rate bounded by a constant, implement logical 
"software" clocks that  drift from real time as little as possible and are also 
within some constant ("skew") of each other. Unfortunately, to the best of our 
knowledge, all clock synchronization algorithms (e.g., [ST87], [DHSS89], [LL88]) 
were designed only for assume extremely small rates of drift in the "hardware" 
clocks (C ~ 1 + e). 

We can implement a "hardware clock" as a counter that  increments by cx/r?~ 
at each step. An interval with k steps is measured to be of length g = k cx/-C-~ 
on the hardware clock but its real time may be as little as kCl = * / v ~  or as 
great as kc2 = x/~g. Thus we essentially get a drift of ~ relative to real time; 
the relative accuracy is C. The clock synchronization algorithm of Srikanth and 
Toueg ([ST87]) preserves this drift in the logical clocks and gives a worst-case 
skew of V ~ 2 C +  1)d (c.f. their expression for Dmax on p. 631, with their (1 +p)  
equal to ~/C and their drain = 2tdel equal to our 2d). 

Using the synchronized clocks, we can run the message diffusion algorithm 
([CASD86]) with latency L = ( f  + 1)dac + e. Because an interval of t units 
of real time may be measured as x/-Ct on a fast clock, we conclude that the 
delay d of any message measures at most x/~d on the clock of any correct 
processor; this is "dae".  Because any clock reads at least T -  e when the input 
is received at t ime t, the maximum elapsed clock time from t to the last delivery 



133 

is L + e. The maximum elapsed real time is at most a factor of x /~  greater: 

v ~  [(f  + i ) v ~ d  + 2  ( v ~ ( 2 C  + i)d)]  = ( f  + 1)Cd + 2C(2C + 1)d. This gives 

T h e o r e m  5. For suj~ficiently small values of C, there is an algorithm for atomic 
broadcast tolerating omission failures with real time complexity at most ( f  + 
1)Cd + 2C(2C + 1)d. 

It is not obvious how to achieve such a running time without explicitly imple- 
menting clocks. Algorithms are known to solve atomic broadcast without clocks; 
it would be interesting to investigate their real time complexities. 

As might be expected, the relative accuracy of C achieved above is optimal; 
it is not difficult to adapt a lower bound of Srikanth and Toueg ([ST87]) to show 

T h e o r e m 6 .  For any logical clocks implemented in the TA model, the relative 
accuracy A must be at least C. 

This theorem shows that  blind syntactic translation of maximum elapsed 
clock time to maximum elapsed real time will always incur a factor of C. Clocks 
measure message delay to be at most a2d q-a3 -" d A c  and if elapsed clock 
is expressed as g(n, f ,  e, A)dAc for some function g then an upper bound on 
the elapsed real time is ~ ~ g ( n ,  f,  e, A)a2d = Ag(n, f ,  e, A) > Cg(n, f,  e, A). 
However, it may be that  the elapsed real time can be better bounded by more 
carefully examining the possible executions of an algorithm. 

3.5 R e d u c t i o n s  

In this section, we work exclusively within the AC model, converting back and 
forth between real time bounds for consensus and latency bounds for atomic 
broadcast. 

T h e o r e m  7. I f  there is an atomic broadcast protocol with latency L, then for 
each x > 0 there is a consensus protocol for the AC model with start interval 
length x and real ~ime from start to finish bounded above by ~ x + (L + 2(e + 
;rAC))/al, where XAC ~ a2z .  

Of course, the idea is to have each processor use the atomic broadcast al- 
gorithm to send its value to all other processors. Note that  a trivial algorithm 
of merely adopting the first message delivered is incorrect by our definition of 
atomic broadcast: if the sender is faulty, the atomic broadcast algorithm may 
cause processors to deliver a value different from the sender's input, possibly 
violating the validity condition of consensus. For n _> 3f  + 1, i t  is sufficient for 
processors to wait for the first 2f  + 1 messages delivered and decide on the ma- 
jority of those; this gives a real time of (L + e)/al.  Our theorem is interesting for 
f < n < 3f.  The problem is how to ensure that  all processors resolve the vector 
of delivered messages in the same way. In particular, we need to ensure that  if a 
faulty processor starts its broadcast too late, then all correct processors either 
include that  value in their vector or not. To solve this problem, we use a tech- 
nique developed in studies of the AC model, of reducing the vector of delivered 



134 

messages to a subset tha t  are "believable" in the sense that  for each one, there 
are enough other messages with t imes tamps  inside a small enough interval. 

FinMly, we have the following simple theorem which we state without proof. 

T h e o r e m 8 .  I f  there is a consensus protocol in A C  with z > (e + a3)/al and 
with real time from start to finish bounded above by R, then there is an atomic 
broadcast protocol in A C  with latency bounded above by L ~, a2R + e + dac.  

4 Direct ions  for further research 

�9 Is there an algori thm for multi-source consensus with Byzantine failures 
in the TA model, assuming synchronized start ,  that  runs in t ime o( fCd)? 
O( fd)?  Same question but  for ' t iming" failures (see Section 2.1)? 

�9 W h a t  are good bounds for the real t ime complexity of a tomic broadcast  in 
the TA model? 

* How well can clocks be synchronized for very inaccurate "hardware" clocks 
(C > 3/2)7 

�9 Can the algorithm for atomic broadcast in the AC model presented in sec- 
tion 3 be generalized for authenticated Byzantine failures with n _< 2 f  to 
give an  algori thm running in t ime with ~ ~ as the coefficient of e? (See 

[SDC90].) 

5 A c k n o w l e d g m e n t s  

We thank Faith Fich for her comments.  

References  

[ADKM92] Y. Amir, D. Dolev, S. Kramer and D. Malki. Total ordering of messages 
in broadcast domains. Manuscript. 

[ADLS90] H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer. Bounds on the time to 
reach agreement in the presence of timing uncertainty. MIT/LCS/TM-435, 
November .1990. Also: STOC 1991. 

[AL89] H. Attiya and N. A. Lynch. Time bounds for real-time process control in 
the presence of timing uncertainty. Proc. lOth IEEE Real-Time Systems 
Symposium, 1989, pp. 268-284. Also: MIT/LCS/TM-403, July 1989. 

[BJ87] K. Birman and T. Joseph. Reliable communication in the presence of fail- 
ures. ACM TOCS, Vol. 5, No. 1 (February 1987), pp. 47-76. 

[BGT90] N. Budhiraja; A. Gopal and S. Toueg. Early-stopping distributed bidding 
with applications. Proc. 4th Int'l. WDAG 1990. 

[CASD86] F. Cristian, H. Aghili, R. Strong and D. Dolev. Atomic broadcast: from 
simple message diffusion to Byzantine agreement. Proc. 15th Int. Conf. 
on Fault Tolerant Computing, 1985, pp. 1-7. Also: IBM Research Report 
RJ5244, revised October 1989. 

[CM84] J . M .  Chang and N. Maxemchuck. Reliable broadcast protocols. ACM 
TOCS, Vol. 2, No. 3 (August 1984), pp. 251-273. 

[CD86] B.A.  Coan and C. Dwork. Simultaneity is harder than agreement. Infor- 
mation and Computation Vol. 91, No. 2, 1991. 



135 

[DDS87] 

[DHS86] 

[DHSS89] 

[DS83] 

[DLS88] 

[DM86] 

[DS91] 

[FL82] 

[FLP85] 

[GSTC90] 

[HK89] 

[LM85] 

[LSP82] 

[LL84] 

[LL88] 

[MMA90] 

[MMA91] 

[M85] 

[MMT90] 

[P91] 

[ST87] 

[SDC90] 

D. Dolev, C. Dwork and L. Stockmeyer. On the minimal synchronism 
needed for distributed consensus. JACM, Vol. 34, No. 1 (1987), pp. 77-97. 
D. Dolev, J. Y. Halpern and R. Strong. On the possibility and impossibility 
of achieving clock synchronization. JCSS, Vol. 32, No. 2, 1986, pp. 230-250. 
D. Dolev, J. Halpern, R. Stong and B. Simons. Dynamic fault-tolerant clock 
synchronization. IBM Research Report RJ 6722, March 1989. Also: Fault- 
tolerant clock synchronization. Proc. 3rd ACM PODC 1984, pp. 89-102. 
D. Dolev and H. R. Strong. Authenticated algorithms for Byzantine agree- 
ment. SIAM J. Computing, Vol. 12, No. 3 (November 1983), pp. 656-666. 
C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of 
partial synchrony. JACM, Vol. 35 (1988), pp. 288-323. 
C. Dwork and Y. Moses. Knowledge and common knowledge in Byzantine 
environments I: crash failures. Information and Computation, Vol. 88, No. 2 
(1990), pp. 156-186. 
C. Dwork and L. Stockmeyer. Bounds on the time to reach agreement as a 
function of message delay. IBM Research Report RJ8181, June 1991. 
M. Fischer and N. Lynch. A lower bound for the time to assure interactive 
consistency. IPL, Vol. 14, No. 4 (June 1982), pp. 183-186. 
M. Fischer, N. Lynch and M. Paterson. Impossibility of distributed consen- 
sus with one faulty process. JACM, Vol. 32, No. 2 (1985), pp. 374-382. 
A. Gopal, R. Strong, S. Toueg and F. Cristian. Early-delivery atomic broad- 
cast. Proc. 9th ACM PODC, 1990, pp. 297-309. 
A. Herzberg and S. Kutten. Efficient Detection of Message Forwarding 
Faults. Proc. 8th ACM PODC, 1989, pp. 339-353. 
L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence 
of faults. JACM, Vol. 32, No. 1 (January 1985), pp. 52-78. 
L. Lamport, R. Shostak and M. Pease. The Byzantine generals problem. 
ACM TOPLAS, Vol. 4, No. 3 (1982), pp. 382-401. 
J. Lundelius and N. Lynch. An upper and lower bound for clock synchro- 
nization. Information and Control, Vol. 62, Nos. 2/3 (1984), pp. 190-204. 
J. L. Welch and N. Lynch. A new fault-tolerant algorithm for clock synchro- 
nization. Information and Computation, Vol. 77, No. 1, (1988), pp. 1-36. 
P. M. Melliar-Smith, L. Moser and V. Agrawala. Broadcast protocols for 
distributed systems. IEEE Trans. on Para/lel and Dist. Systems, Vol. 1, No. 
1 (January 1990), pp. 17-25. 
L. Moser, P. M. Melliar-Smith and V. Agrawala. Asynchronous fault- 
tolerant total ordering algorithms. Manuscript. 
M. Merritt. Notes on the Dolev-Strong lower bound for Byzantine agree- 
ment. Unpublished manuscript, 1985. 
M. Merritt, F. Modugno and M. Tuttle. Time constrained automata. Un- 
published manuscript, August 1990. 
S. Ponzio. Consensus in the presence of timing uncertainty: omission and 
Byzantine failures. Proc. lOth ACM PODC, 1991, pp. 125-138. Also: MIT 
SM Thesis, June 1991. MIT/LCS/TR-518, October 1991. 
T. K. Srikanth and S. Toueg. Optimal clock synchronization. JACM, Vol. 
34, No. 3, July 1987, pp. 626-645. 
R. Strong, D. Dolev and F. Cristian. New latency bounds for atomic broad- 
cast. Proc. l l th IEEE Real-Time Systems Symposium, 1990. 


