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Abstract

We consider the time complexity of reaching agree-

ment in a semi-synchronous model of distributed

systems, in the presence of omission and Byzantine

failures. In our semi-synchronous model, processes

have inexact knowledge about the time to perform

certain primitive actions: messages arrive within

time d of when they are sent and the time between

two consecutive steps of any process is in the known

interval [cl, CZ]. We use C = cz/cl as a measure of

the timing uncertainty.

A simple adaptation of the synchronous lower

bound shows that at least time ($+ l)d is required

to tolerate ~ failures; time (~ + l)Cd is sufficient

for stopping or omission failures by directly simu-

lating synchronous rounds. By strengthening the

algorithm for stopping failures of Attiya, Dwork,

Lynch, and Stockmeyer ([1]), we derive an algo-

rithm for omission failures that has minimal de-

pendency on the uncertainty factor C’. If fewer

than half the processes are faulty then the running

time is 4(!+ l)d + Cd, which is within a factor of

4 of optimal and may be much faster than direct

rounds simulation if C is large. If more than half

the processes are faulty, then the running time is

shown to be greater by approximately a factor of

min(+, /5).
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Finally, we present a general simulation for n ~

3~ + 1 that tolerates Byzantine failures and simu-

lates any round-based synchronous algorithm at a

cost of time M’d + d per round.

1 Introduction

Real systems are likely to be neither perfectly syn-

chronous nor completely asynchronous. Recent

work in analyzing realtime systems has made an ef-

fort to more accurately measure the amount of real

time used by real systems when the time needed

to perform certain primitive steps is known only

approximately.

We are interested in studying how the degree

of iirning uncertainty affects the time complexity

of distributed computing problems. Of particu-

lar interest are problems that are intractable in

an asynchronous setting yet have solutions with

tight bounds in the synchronous setting; a nat-

ural candidate is the consensus problem. In our

semi-synchronous model, processes have uncertain

information about the time needed to perform cer-

tain primitive operations: every message is de-

livered within time d of when it is sent and the

amount of time between any two consecutive steps

of any process is in the known interval [cl, C2].1 We

use C = c2/cl as a measure of the timing uncer-

tainty. We assume that processes begin executing aL

given algorithm at the same time and measure the

amount of real time until all nonfaulty processes

reach a decision. In this paper, we consider twc)

kinds of process failure: send-omission failures ancl

1Results of [14] and [8] imply that if any of the bouncb

d, c1, and C2 does not exist then there is no algorithm for
Consensustolerating evena single stopping failure.
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Byzantine (arbitrary) failures.

The time complexity of the consensus problem

has been well studied in the synchronous “rounds”

model (see, for example, [16, 18, 13, 10, 7]). The

synchronous lower bound of ~ + 1 rounds ([17, 12,

5]) can be adapted in a straightforward way to yield

a lower bound of (j + l)d in our semi-synchronous

model. For omission failures, an upper bound of

approximately (~ + l)(Cd + d) is achievable by di-

rectly simulating the rounds of any synchronous al-

gorithm, at a cost of time Cd+ d per round. This

factor of C arises from detecting the absence of mes-

sages. If another process fails to send a message at

time t,the recipient cannot be sure that the mes-

sage will not arrive until time d has elapsed. Be-

cause process steps are the only actions for which a

lower bound on time is known, a process must wait

for d/cl of its own steps in order to be certain that

time d has elapsed (in case that it is running “fast”

with time c1 between steps), which may take time

C2(d/cl) = Cd (if it is running “slowly”). Thus

each round takes approximately time Cd to simu-

late. When failures are arbitrary, it is not clear even

how to simulate a synchronous algorithm correctly.

In [1], Attiya, Dwork, Lynch, and Stockmeyer

prove nearly tight upper and lower bounds on the

time to reach consensus in the presence of stopping

failures. By combining several lower bound tech-

niques, they prove a lower bound of (j – l)d + Cd.

More surprisingly, they give a clever algorithm for

consensus that runs in time 2fd + Cd, much faster

than a direct simulation when C is large.

This paper makes three contributions: the

strengthening the algorithm of [1] to tolerate omis-

sion failures requiring a finer analysis, the charac-

terization both algorithms as the simulation of a

simple synchronous algorithm, and a general sim-

ulation tolerant of Byzantine failures. The result-

ing algorithm for omission failures has running time

4(~ + l)d + Cd for n ~ 2f + 1, which is within a

constant factor (4) of the lower bound, minimiz-

ing the dependence on the timing uncertainty C.

If n < 2f, then a more involved analysis proves

two different upper bounds for the running time:

(&q+ 5)( f+l)d+C’d and (2@+6)(f+l)d+Cd.

We identify our algorithm and that of [1] as opti-

mized simulations of a synchronous algorithm. This

view may help in understanding what problems

can and cannot be efficiently solved in this semi-

synchronous model. Our general simulation toler-

ates Byzantine failures and works for any round-

based synchronous algorithm for n 2 3f + 1 at a

cost of time 2Cd + d per round, implying a con-

sensus algorithm for our semi-synchronous model

requiring time (f + l)(2Cd + d).

1.1 Related work

In [11], the consensus problem was studied using a

model of partial synchrony in which upper bounds

on message delivery time and/or processes’ rela-

tive step rates exist, but are unknown a priori to

the processes. The algorithms of[11] are concerned

with fault tolerance rather than timing efficiency,

and therefore translate to relatively slow algorithms

for our model. In contrast, we concentrate on exact

time complexity. Current work also concentrating

on the real time complexity of the consensus prob-

lem appears in [21]. There, process clocks are as-

sumed to be synchronized to within a fixed additive

error. In contrast to our results, the results there

are stated in terms of process clock time, not ab-

solute time. It is unclear how to translate results

back and forth between their model and ours; this

is posed as a direction for further research.

A related model is proposed in [15] to study the

time complexity of detecting failures along a net-

work path. This model assumes synchronous pro-

cesses but different iates between the worst-case a

priori bound A on message delay and the actual

worst-case message delay b in a given execution,

which may be much less. It is thus desirable for al-

gorithms to have minimal dependency on A. This

model raises similar concerns as our model does:

detecting the absence of a message may be much

more expensive than receiving the message. It is

not difficult to see that direct implementation of

synchronous consensus algorithms gives a running

time of about (f + l)A for any type of failures;

on the other hand, clearly the synchronous lower

bound implies that no algorithm can guarantee a

running time of less than (~ + 1)8. In this model,

our algorithms yield an improvement over direct

simulation strategies similar to the corresponding

improvement in our semi-synchronous model. In

fact, our algorithms may be run without modifica-

tion (with c1 = C2) in the model of [15], yielding

the running times derived here with the syntactic
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substitution of 6 for d and A/& for C.

Other work in this area includes the extensive

literature on clock synchronization algorithms (see

[20] forasurvey). Algorithms from[22]andthepre-

viously mentioned consensus work of [11] include

ideas similar to those in our simulation tolerant of

arbitrary failures. Other problems recently stud-

ied in our model of timing uncertainty include the

problem of mutual exclusion [2] and the complexity

of a network synchronizer algorithm [3].

2 Model

Our underlying formal model is essentially the same

as that used in [1]. Our model differs by assuming

for ease of presentation that all processes begin ex-

ecuting the algorithm at time O and all messages

are delivered in the order sent. The latter assump-

tion is easily removed from both of our algorithms;

for our omissions algorithm, the former may be re-

placed by the formalism of [1] whereby processes re-

ceive “input(vi)” actions and running time is mea-

sured beginning with the latest of these.

We consider a system of n processes 1, ..., n.

Each process is modeled as a deterministic (pos-

sibly infinite) state machine. Processes commu-

nicate by sending messages via a completely con-

nected and totally reliable message system. For-

mally, we model a computation of the algorithm as

a sequence of configurations alternated with events.

A configuration is simply a vector of the processes

local states. Events are of two types, process steps

and message delivery events, and each event has a

real time associated with it. During a process step,

a process performs local computation and may send

messages. During a message delivery event, a pro-

cess does not take a step but may change its state

according to the message delivered (e.g., “remem-

ber” the delivered message). We consider execu-

tions of the system in which the successive steps

of all nonfaulty process are separated by at least

time c1 and at most C2, and all messages sent are

delivered within time d. A timed execution a is

an execution of the algorithm satisfying these tim-

ing requirements. Although it is not necessary for

the proof, we will generally assume that Cz << d:

process step time is very small compared to the

maximum message delay time. In the analysis, we

therefore approximate the quantity d + C2 by d,

Omission failures. A process suffers an omis-

sion failure if at some step of the process, the mes-

sages it sends are a subset of the messages deter-

mined by the algorithm. If the algorithm requires j

to broadcast a message to all processes, but j does

not send a message to i, then we say that “j omits

to i“ or that this broadcast is “unsuccessful”.

Byzantine failures. A process that suffers a

Byzantine failure may exhibit arbitrary behavior;

no restrictions are made on its state transitions or

what messages it sends. Also, the time between

successive steps of a faulty process might not be in

the interval [cl, C2].

Consensus. Finally, we briefly define the con-

sensus problem. Each process receives aa input a

binary value as part of its iocal state. The prob-

lem is for the processes to agree on a binary value

despite the failure of some processes. We say that

a timed execution a is j-admissible if at most j

processes fail in CY. An algorithm solves the consen-

sus problem for f failures within time T provided

that for each of its f-admissible timed executions

a, (1) no two different processes decide on different

values (agreement), (2) if some nonfaulty process

decides on v, then some process has initial value v

(validity), and (3) every nonfaulty process decides

by time T (time bound).

We consider the binary version of the problem,

where the initial values are O or 1. Like the algo-

rithm of [1], our algorithm for omission failures can

be extended to work for any value set, using the

same extension given there ([1], ~5 .4). Our algo-

rithm for Byzantine failures is a general simulation

for any rounds based algorithm and therefore can

simulate any synchronous agreement algorithm for

any value set.

3 Omissions failures

In this section, we strengthen the algorithm of [1]

to tolerate omission failures. Unlike [1], our algo-

rithm requires an a priori bound f on the number

of failures to be tolerated. It is, however, “early

stopping”: the running time for a given execution

is a function of the number of processes that fail

in that execution, not of the maximum number of

failures to be tolerated.
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3.1 Intuition: the underlying

synchronous algorithm

Our algorithm and the algorithm of [1] may be in-

terpreted as simulations of the following simple syn-

chronous algorithm:

ROUND O:

If v = 1, then send “I didn’t decide in ROUND O“

and goto ROUND 1.

If w = O, then send “I decided in ROUND O“

and decide O.

ROUND T >0:

If “I decided in ROUND T – 1“ received,

then send “I didn’t decide in ROUND r“

and goto ROUND r + 1

If no “I decided in ROUND r – 1“ received,

then send “I decided in ROUND r“

and decide r mod 2.

It is easy to see that if a nonfaulty process decides

in round r then no process decides in round r + 1

and all processes then decide in round r + 2. The

algorithm is also “early-stopping”: any execution

in which at most ~ processes fail takes at most

! + 2 rounds of communication. (This means that

all processes decide in round ~+2 or earlier, despite

the fact that the first round is numbered O, since

a decision in round i is based on messages sent in

round i — 1 or earlier.) The is easily seen by ob-

serving that if an execution takes x rounds then a

faulty process decides in each of rounds O through

x –3: if no faulty process decides in round i < x – 3

then either (1) a nonfaulty process decides in round

i and all processes decide by round i + 2, or (2) no

process decides in round i and therefore they all

decide in round i + 1 (because no process receives

an “I decided in round i“ message).

Both our algorithm and that of [1] simulate this

synchronous algorithm, making several import ant

optimizations in order to improve the running time

for our model. If during the simulation of round r-,

a process receives a message saying “I decided in

round r – 1“, it does not wait for round r — 1

messages from other processes, but immediately

advances to round r + 1, broadcasting to all pro-

cesses, in effect, “I know of a process that decided

in round r– 1“. Other processes in round r that re-

ceive this message relay it to all processes and also

advance immediately to round r + 1. A process

may decide in round r only if it can be sure that

no nonfaulty process decided in round r – 1. This

is ascertained only when, for every other process

p, either (1) the message “I didn’t decide in round

r — 1“ is received from p, or (2) p has been de-

tected as faulty, or (3) p has decided in some round

r’<r —l.

The key to the improved efficiency of our al-

gorithm relative to that of [1] is the addition of

a mechanism for a process to detect its own fail-

ure. We require that a process receive at least

n – ~ acknowledgments for every message of the

synchronous algorithm that it sends. Until a pro-

cess has received a sufficient number of acknowledg-

ments for its round r message, it is prohibited from

deciding in round r+ 1 or advancing to round r +2.

This is important to the efficiency of the algorithm

because it limits to 1 the number of times a faulty

process can omit a message of the synchronous al-

gorithm to all nonfaulty processes.

3.2 The algorithm

We first explain the presentation of our algorithm.

We describe our algorithm as the parallel compo-

sition of a fault-detection protocol and a main al-

gorithm. At each step, a process first executes the

code of the fault-detection protocol, then executes

the code of the main algorithm, and finally sends a

message. (Recall that in our model a process may

send at most one message at each step).

This message is the concatenation of possibly

several component “messages” which are specified

by the queue commands in the code: if during

a step, the statement “queue ‘m’” is executed in

the code, then “message” m is a component of the

message sent at the end of that step. We will re-

fer to a message by any one of its components: we

will say “an m message” or simply “an m“ to refer

to any message with m as one of its components.

An omission failure causes the entire message to be

omitted; the message cannot be corrupted by losing

only some components.

Our model also specifies that a process receives

messages only during delivery events (and there-

fore only between process steps). For every delivery

event, a process changes its state by adding the re-

ceived message to a buffer (an unordered set). At

its next step, the process reads and empties this
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STEP s: If “shutdown i“ received, then halt.

If decided, then queue “I’ve decided: s“

else queue “I ‘m alive: s“.

For each j @ D UF’,

if “shutdown j“ message received

then F e F U {j}; queue “shutdown j“

if “I’m decided: sj” message received from j

then D i-D U {j}

if “I’m alive” messages from j not numbered consecutively

then F + F U {j}; queue “shutdown j“

if no message received from j and more than

(d+ c2)/cl steps taken since last message received from j,

then F + F U {j}; queue “shutdown j“.

Figure 1: The fault-detection protocol for process i at step number s.

buffer. A conditional statement in the code re-

ferring to the receipt of a message checks whether

such a message was read from this buffer during the

given step.

For ease of presentation, some components of a

process’s state are not explicitly named or main-

tained in the code—for instance, the number of

steps a process has taken, whether it has decided,

or whether it has sent a certain message. Process

index subscripts are omitted in the code but used

in the text (e.g., )“Di” to refer to a local variable

(D) of process i.

3.2.1 The fault-detection protocol

A process sends a message at every step that it

takes, consecutively numbering all messages that

it sends with the number s of its current step. z

Before a process decides, it sends the message ‘(I’m

alive: s“ where s is the number of its current step;

after a process decides, it sends “I’ve decided: s“.

The failure of a process can thus be detected by a

gap in the sequence numbering (recall we assume

that message links deliver messages in the order

sent) or by the absence of any messages for too

long a period of time (more than timed+ C2).

All processes detected as faulty are added to a

local set F. When a process i detects the failure

2 As * ~on~equence of the bound on mnning time to be

derived, these sequence numbers are bounded by a function

of j, d, Cl and CZ.

of another process j, it broadcasts this fact in the

form of a “shutdown j“ message. Upon receiving

this message, other processes add j to their respec-

tive sets F; when process j receives this message,,

it halts, ceasing its execution of the algorithm. The

timeout protocol also keeps track of which processes

have decided. When a process receives a message

“I’ve decided: s“ from another process, it adds that

process to its set D. When a process i adds j tc,

Di (Fi, resp.), we say it has “detected” that j has

decided (failed, resp. ). We say that a process i is

shut down at time t if it receives a “shutdown i“

message at time t. The code for the fault-detection

protocol is in Figure 1.

We now state without proof two basic proper-

ties of the fault-detection protocol with respect tc,

arbitrary executions.

Lemma 3.1 If process i does not fail, then i is no]!

added to any set Fj and is not shut down. ■

Lemma 3.2 If at time t, process j omits a roes-

sage to i, and i is not shut down by time t + C(d+

cz)+(d+cz) x Cd+ d, then i adds j to Fi by thait

time. M

3.2.2 The main algorithm

The main algorithm is basically an asynchronous

version of the synchronous algorithm of Section 3.1,

Because in the synchronous algorithm, both “1 de-

cided in round r“ and “I didn’t decide in roundl
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PHASE O: If v = 1, then queue “O” and goto PHASE 1.

If v = O, then queue “l” and decide O and goto PHASE 2.

PHASE r >0: For each j and each r’, 1< j ~ n and O s r’ < r,

if “r’” message received from j,

then M“’ t M“’ U {j}
if “ack(i, r – l)” received from j and j @ F,

then An-l - An-l U {j}

if j E ~r’ and r’ < r and “ack(j, r’)” not yet sent,

then queue “ack(j, r’)” (whether decided or not)

If decided and &f”-z # 0 and “r – 2“ not yet sent,

then queue “r – 2“

If not decided and lAr-l I ~ n – f, (enough ack’s received)

then if iW # 0, (some process decided in phase r - 1)

then queue “r” and goto PHASE r + 1

if it4r = 0 and j c M“-l for allj @ (Du F),

then queue “r+ 1“ and decide r mod 2 and goto PHASE r + 2

Figure 2: The main algorithm, performed by a process at every step.

r + 1“ serve the same purpose—both mean “I know

of a process that decided in round r“-our main al-

gorithm uses the message “r+ 1“ in place of both.

The code for the main algorithm appears in Fig-

ure 2. We call the simulation of round r of the

synchronous algorithm “phase r“. Each process i

starts in phase O with vi set to its own private value

(1 or O). As with the synchronous algorithm, in

even numbered phases a process can decide only O,

and in odd numbered phases a process can decide

only 1.

When a process advances from phase r to phase

r + 1, it broadcasts an “r” message. (This is the

equivalent of the message “I didn’t decide in round

r“ in the synchronous algorithm. ) When a process

decides in phase r, itbroadcasts an “r+ 1“ message.

Set Mr contains those processes from which an r

message has been received. A process may decide

in phase r only if it has (1) not yet received an r

message, and therefore does not know of a process

that decided in round r, and (2) has received an

r – 1 message from all processes not yet detected

as failed or decided, indicating that they did not

decide in round r – 1. If process i is nonfaulty,

then the receipt of an r+ 1 message from i prevents

other processes from deciding in phase r + 1 since

they do not add i to D or F before receiving it. A

process that decides in round r does not send an r

message unless it receives one first (this necessarily

implies that some process decided in round r – 1

but failed).

Our convention of acknowledging messages works

as follows. Each process maintains a set A“ con-

taining those processes from which a properly se-

quenced “ack(., r)” message (i.e., sender not in F)

has been received. (This restriction is necessary

only for the bound when n s 2~.) Until a pro-

cess decides, it sends exactly one acknowledgment

message, “ack(j, r’)”, for each r’ message it receives

where r’ is less than its current phase number. Af-

ter a process decides in some phase r, it continues

to acknowledge r’ messages for r’ < r + 1. This is

implemented in the code by allowing the process to

advance to phase r + 2 but no further. It is not nec-

essary for a process to acknowledge r’ messages for

r’ > r + 1 because as we will see, if it is nonfaulty

then other nonfaulty processes do not advance to

phase r + 3 without deciding and therefore do not

require acknowledgments for their r + 2 messages.

Until a process has received at least n – ~ prop-

erly sequenced acknowledgments for its r message

(lA’-’ I ~ n – f), itmay not advance to phase r+ 1

or decide in phase r.

Definition 1 A process i is blocked in phase r (for

r > O) if it advances to phase r without deciding

and never has IAJ-ll z n – f.
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Being blocked is a permanent state, but even if a

process is not blocked in phase r, it may be tem-

porarily delayed from advancing to phase r + 1 as

it waits for acknowledgments before proceeding.

We prove here a few basic lemmas about the main

algorithm with respect to any j-admissible execu-

tion. The first two lemmas affirm two expected

properties that held for the synchronous algorithm.

Lemma 3.3 If some nonfaulty process decides in

phase r ~ O then no process decides in phase r + 1.

Proof: Let i be a nonfaulty process that decides

in phase r and consider any other process j. Ac-

cording to the code of the main algorithm, j cannot

decide in phase r + 1 without receiving an r mes-

sage from i or adding i to Fj or Dj. Because i

is nonfaulty, by Lemma 3.1 it is never added to

Fj. During any step at which j has received an

r message or an “I’ve decided” message from i, j

must also have received an r + 1 message from i and

therefore is precluded from deciding in phase r + 1

(which requires itfr+’ # 0). ■

The following definition is useful in proving cor-

rectness and analyzing time complexity.

Definition 2 Phase r ts quiet if there is some pro-

cess that never receives any r messages.

Lemma 3.4 If a nonfaulty process decides in

phase r ~ O then phase r + 2 is quiet.

Proof: By Lemma 3.3, no process decides in phase

r + 1. If a process does not decide in phase r + 1,

then it does not send an r + 2 message until it re-

ceives one. Therefore, no process sends an r + 2

message and in fact no process receives an r mes-

sage. ■

The next two lemmas affirm that the convention

of acknowledging r messages works as expected—

nonfaulty processes are never blocked—and the last

lemma states that the failure of blocked processes

is eventually detected by all processes.

Lemma 3.5 If a process i advances to phase r ~

1 without deciding and sends an r’ message to a

nonfaulty process j for O ~ r’ ~ r—1, then i receives

an “ack(i, r – 1)” message from j.

Proofi By induction on r. Clearly the lemma is

true for r = 1: j advances to phase 1 during its first

step and sends “ack(i, O)” during the next step at

which it has received a O message from i.

Assume the lemma is true for r – 1 z 1. First

observe that j does not decide in any phase r! s

r — 3: by Lemma 3.3, this would imply that no

process decides in phase r’ + 1 and therefore no

process sends an r’ + 2 message, but this is not

possible because i advances to phase T > r’ + 3

without deciding and therefore must receive an r’+

2 message. If j decides in phase r! and r! = r –

2 or r – 1, then j immediately advances to phase

r’ + 2 > r after deciding and sends “ack(i, r — l)”

to i. Suppose that j does not decide in any phase

r’~k–l. Process j must advance from each

phase r ‘ < k — 1 because it is never shut down

(by Lemma 3.1), has ill~’ # O (an r’ message is

received from i), and haa IA;’ I ~ n – f (because

it is nonfaulty and therefore sends an r“ message

to all processes for each r“ s r’ – 1 and by the

induction hypothesis receives “ack(j, r“)” from all

nonfault y processes—none of which, by Lemma 3.1

are ever added to I’j ). Process j therefore advances

to phase r and may then send “ack(i, r – l)” to i. ■1

Corollary 3.6 If process i is nonfaulty and ad-

vances to phase r z 1 without deciding, then ii!

eventually has IAj-l I z n— f. (A nonfaulty process

is never blocked.)

Proof: Because i is nonfault y and advances tc~

phase r without deciding, for O ~ r’ < r itsends an

r’ message to all processes as it advances to phase

r’+ 1. By Lemma 3.5, i receives “ack(i, r– l)” from

each nonfaulty process. Because by Lemma 3.1,

nonfaulty processes are never added to Fi, each

nonfaulty process is added to A;- 1, giving the nec-

essary bound. HI

The following lemma relies on the fact that a

process continues to take steps, executing the al-

gorithm after it decides; in particular, it continues

to detect the failure of processes and, if necessary,

send acknowledgments.

Lemma 3.7 If a faulty process j unsuccessfully

broadcasts an r message at time t and is subse-

quently blocked in phase r i- 1, then all processes
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not shut down by time t + C(d + C2) + 2(d + C2) x

t + Cd+ 2d detect the failure of j by that time.

Proofi By the definition of being blocked, j ad-

vances to phase r + 1 but never has IA; I ~ n – f.

Thus there is some nonfaulty process i never added

A;. By Lemma 3.5, j omits an r’ message to i for

some O ~ r’ s r. This omission occurs at or before

time t. By Lemma 3.2, i detects this failure by

time t+ C(d + C2) + (d+ C2), broadcasting “shut-

down j“ to all processes in the same step. By time

d + C2 later, all processes not yet shut down have

received this message and taken a step, adding j to

their failed sets. ■

3.3 Proof of correctness

We now prove that in all ~-admissible executions,

the algorithm terminates and correctly satisfies the

agreement and validity conditions. We first prove

“progress” —that processes in fact advance to suc-

cessive phases as expected. Given this progress

lemma and a few simple facts about quiet phases,

the proofs of agreement, validity, and termination

are easily derivable. These proofs follow the same

reasoning as the informal argument about the syn-

chronous algorithm given in Section 3.1.

Lemma 3.8 For each r ~ O and each process i

that is neither blocked nor shat down in any phase

r’ ~ r, process i either decides in some phase rt < r

or advances to phase r + 1.

Proof sketch: For contradiction, let phase r be

the first phase for which the lemma is not satisfied

and let i be any process for which the lemma is not

satisfied at phase r. By the choice of r, i advances

to phase r. First note that r # O, since every pro-

cess either decides or advances to phase 1 during its

first step. Next note that i receives no r messages,

since that would enable it to advance to phase r + 1

(it is not blocked in phase r). It is not difficult to

show that by the choice of r, if i receives no r mes-

sages, then for every other process j, i eventually

either receives an r — 1 message from j or adds j

to Fi or Di. This enables pi to decide in phase r, a

contradiction. ■

Corollary 3.9 For any r ~ O, every nonfaulty

process either decides in phase rt ~ r or advances

to phase r + 1.

Proof: By Lemmas 3.1 and 3.6, a nonfaulty pro-

cess is never shut down or blocked; the corollary

then follows immediately from Lemma 3.8. E

Corollary 3.10 1~ phase r ~ O is quiet, then each

nonfaulty process decides in some phase rt < r.

Proof: By Corollary 3.9, each nonfault y process

either decides in phase r! ~ r or advances to phase

r + 1. But a nonfaulty process cannot advance to

phase r + 1: to do so, it would send an r message

to all processes, contradicting the assumption that

phase r is quiet. ■

Lemma 3.11 (Agreement) No two nonfazdty

processes decide on different values.

Proofi Let r be the first phase in which some non-

faulty process i decides. By Lemma 3.3, no process

decides in phase r + 1. Because no process decides

in phase r+ 1, no process sends an r+2 message and

thus phase r + 2 is quiet. Thus by Lemma 3.10, all

nonfaulty processes decide in some phase r’ s r+ 2.

By the choice of r, all nonfaulty processes decide in

either phase r or phase r + 2, in either case on

r mod 2. ■

Lemma 3.12 (Validity) If any process decides

on value b, then some process i starts with vi = b.

Proof: Clearly if some process j decides on 1, it

does so in phase r >0 and that process itself must

have started with Vj = 1 since otherwise it would

have decided on O during its first step.

If some process j decides on O, it cannot be that

all processes started with vi = 1. For then, no pro-

cess would decide in phase O and no process would

send a 1 message. No process would receive a 1

message and therefore no process would advance to

phase 2 without deciding and so no process would

decide O. ■

Lemma 3.13 (Termination) In any f-admissible

execution, there is a quiet phase numbered at most

f i-2 and so each nonfaulty process decides in some

phase r s f + 2.

Proofi If some nonfaulty process decides in

r ~ f then no process decides in phase r +

no process sends an r + 2 message. Phase

phase

1 and

r+2
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is therefore quiet and by Lemma 3.10 all nonfaulty

processes decide by phase r + 2< f +2.

If no nonfaulty process decides in any phase r <

~,thenthere must beaphaseh-1,0< h-l <~,

in which no faulty process decides, and therefore

in which no process decides. If a process does not

decide in phase h – 1, then it does not send an

h message until it receives one. Therefore no pro-

cess sends an h message—phase h is quiet—and

by Lemma 3.10, all nonfaulty processes decide by

pha.seh~f+l. ■

3.4 Analysis of time bounds

We now outline analysis of the algorithm’s running

time. The analysis that follows is carried out with

respect to any ~-admissible execution. We calcu-

late an upper bound on the amount of real time

until all nonfaulty processes decide in any such ex-

ecution. Having already proved the correctness of

the algorithm, we will hereafter assumed >> C2 and

make approximations appropriately. We first intro-

duce some notation.

● For r > 0, let tr be the earliest time by which—

all processes not blocked in any phase r’ < r

of the execution have either decided, advanced

to phase r + 1, or been shut down.

Because every process either decides or ad-

vances to phase 1 on its first step, to = O.

● Let phase h be the first quiet phase.

. For r ~ O, let Br = {i : i is blocked in phase

r+ l}; let b, = IB, I.

The definition of Br may seem unusual, but it

serves a purpose. We will want to bound t,– tr_l,

which we think of as the time for phase r, in terms

of the number of processes that omit an r message

to all nonfaulty processes. This number is br, since

all such processes are subsequently blocked in phase

r + 1. Note that for r # r’, Br n Br~ = (3 and there-

fore ~, Etr < j.

We prove an upper bound for two kinds of phases:

those that are quiet and those that are not. A

quiet phase may take up to time approximately Cd

as processes may have to perform “long timeouts”,

but there can be only one quiet phase before all

nonfaulty processes decide. We will show that the

time of non-quiet phases does not depend on C.

A useful fact, which we here state without proof

is that if a process receives a sufficient number of

acknowledgments for its r message, then it receives

them promptly, by time tr _ 1 + 2d. (An r message is

sent no later than time & and an acknowledgment

for it is sent no later than t.+ d.)

Lemma 3.14 If process j eventually has lA~l >

n– f, then it has lAj[~n– f by tirnetr+2d. ■

To prove the bound for quiet phases, we use a

proof similar to the proof of Lemma 3.8 to give a

generous bound that holds for any phase:

Lemma 3.15 tl– to< Cd+ d and for any phase

r >1, t,< max(tr_l + Cd+ d, tr_2 + Cd+ 2d).

Proof sketch: By time tr_1,every process j either

sends an r – 1 message or an “I’ve decided” message

or else omits a message to a nonfaulty process. If j

omits a message to a nonfaulty process by then, its

failure is detected by all processes by the greater of

times tr_l+Cd+d and tr_2+Cd+2d. If a process

is not blocked in phase r, then it has lAr I 2 n – f by

time tr_1+2d < tr_l +Cd+d. Thus, if a process is

not blocked in phase r and has not decided or been

shut down by the claimed time, it may advance to

phase r + 1 or decide (depending on whether or not

it haa received an r message). ■

In bounding the time of a phase r that is not

quiet, we will bound the time until every process

receives an r message (which every process does, by

the definition of a quiet phase). By that time, every

process that is not yet decided or shut down or

blocked in any phase r’ < r may advance to phase

r + 1; thus this is a bound for t,. In bounding the

time until every process receives an r message, the

following reasoning is at the heart of the analysis.

In order for the first r message to ever be sent,

some process must decide in phase r – 1, which

by definition, it does by time tr_~. An r message

sent by any other process i that does not decide in

phase r – 1 is sent because i received an r message.

Thus, a causal chain of r messages maybe followed

back to the process that originated it, sending the

“first” r message before tr_1. Because after time

tr-1+ 2d a process broadcasts an r message as soon

as it receives one (at its next step), our time bound
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for phases that are not quiet is approximately d

times the length of the shortest such chain to each

process.

3.4.1 Bound for n ~ 2f + 1

If n ~ 2f + 1, we can be sure that when a faulty

process broadcasts an r message, it either sends

to at least one nonfaulty process or it sends to at

most f < n — f processes and therefore becomes

blocked in phase r + 1. If it sends to a nonfaulty

process, then that process will send an r message to

all processes. The number of processes blocked in

phase r+ 1 is exactly b,; our bound is roughly br. d.

Lemma 3.16 If phase r ~ 1 is not quiet and no

nonfaulty process decides in any phase r’ ~ r, then

t, – t._l s (3+ br)d. ■

Instead of giving the proof of this lemma, we re-

inforce the above informal argument by describing

how this bound is realized by a worst-case execu-

tion. Process 1 G B, is the first to send an r mes-

sage. It decides in phase r – 1 at time tr_ 1 (no

later, by definition of tr_1, since process 1 is not

blocked in any phase r’ s r– 1) and sends an r mes-

sage to only process 2 G B~. Process 2 waits until

time tr-l + 2d for lAj-l I z n – f and then, having

received an r message from 1, advances to phase

r + 1, sending an r message to only process 3 c Br.

The pattern is repeated until process b, -I- 1 @ B,

receives an r message at time i!r _ 1 + (b. + l)d. Pro-

cess /Jr + 1 advances to phase r + 1 and sends an

r message to all processes except i. All nonfaulty

process except i receive an r message from b, + 1

at time t.-I+ (b~ + 2)d and i receives an r message

from them at time t._II-(b. + 3)d. By this time,

each process has either advanced to phase r + 1 (as

it sent an r message), decided, been shut down, or

is blocked in some phase r! ~ r.

We can now tightly bound the running time of

any f-admissible execution by summing the bounds

for all phases in that execution. The bound shows

that the algorithm depends on C only to the extent

of an additive factor of Cd. For C large, this algo-

rithm may be far more efficient that a direct rounds

simulation. The bound we obtain for n ~ 2f + 1 is

within approximately a factor of 4 of optimal: our

bound is 4(f + l)d + Cd; the lower bound proved

in [1] is (f – l)d + Cd.

Theorem 3.17 For n z 2f + 1, the algorithm

above solves the consensus problem for f omission

failures within time 4(f + l)d + Cd.

Proof: For any given execution, let h be the first

quiet phase. By Lemma 3.10, each nonfaulty pro-

cess decides in some phase r < h, by time tb.

Clearly, if h = O or h = 1, we have the desired

bound. If h > 1, then we can bound the time for

phases 1,. ... h – 1 by Lemma 3.16, and the time

for phase h by Lemma 3.15. Thus we have

h–1

th–tlj = ~(tr -Al)+ (h -%.1)
r= 1

h-1

S ‘r(s+b)d+ (Cd+d)
r=l

S (f+l)3d+f”d+(Cd+d)

since h< f+2and~rb, <f

= 4(f + l)d+ Cd.

8

We note that for C z 4, it is possible to construct

an execution that takes exactly time 3d+4(f –3)d+

3d+Cd+d.

3.4.2 A bound for n < 2f

When n < 2f, we are able to bound the running

time by an expression that depends on A. This

bound requires a lemma about the length of causal

sequences of r messages more complicated than

Lemma 3.16. The bound is proved in the same way,

using the following lemma instead of Lemma 3.16:

Lemma 3.18 For any r >1, if for allr’ ~ r phase

r’ is not quiet, then t. – tr-l s (3* + br + 4)d.

Proof idea: We consider a directed graph with the

processes as nodes and an edge from i to j if i sends

an r message to j. Fix a path of minimal length

from from a process that sends an r message by

time tr_1+ 2d to a process that sends an r message

to a nonfaulty process. If 6 is the length of this path

then by time tr-1-l-2d+(6+2)d, all processes receive

an r message. We show that 6 < br + 3&. Note

that because of its minimality, each process on the

path must be faulty. Therefore consider the sub-

graph on only faulty processes. The key observation
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is that if process i that broadcasts an r message at

time tr _ 1 + 2d or later, then i must receive r mes-

sages from all processes in A~—these processes do

not omit to i before sending “ack(i, r) ’’—and there-

fore has bidirectional edges to each node in A:. By

the minimality of our fixed path, any node 1?at dis-

tance less than 6 from the first node of the path

does not send to a nonfaulty process and therefore

all nodes in A; are cent ained in the subgraph. The

idea is that most of the nodes at distance less than

6 (all except b, of them) have ]Ar I z n – f and so

have at least n – $ – 1 incident bidirectional edges

in the subgraph. There are at most ~ nodes in sub-

graph, so 6 cannot be very large; a simple argument

shows that 6< ~ + b,. ■

The theorem then follows in the same fashion aa

Theorem 3.17:

Theorem 3.19 For n ~ 2f, the algorithm above

solves the consensus problem for f omission failures

within time (3* + 5)(f + l)d + Cd. ■

3.4.3 Another bound for n < 2f

When n ~ 2f, we are also able to bound the run-

ning time by an expression that depends on e.

In contrast to the previous two bounds, this bound

does not bound the length of all phases by chains of

r messages. Instead we partition the first r phases

of any execution into two classes according to their

length:

x, = {i:t~-t~-1~~.d andi<r}

= {short phases}

Y, = {i:i@X, andi <r}

= {long phsses}.

Define So(r) = {p : p omits an r message to a non-

faulty process after time tr_1}.We bound the long

phases by chains of r messages but bound the short

phases by their defined bound. A simple argument

about the length of r message chains shows the fol-

lowing:

Lemma 3.20 If phase r ~ 1 is not quiet then ei-

ther t, < t.-l + (lSO(r)l + 3)d or all nonfaulty pro-

cesses decide by this time. 9

The key observation is that a process cannot fail to

a nonfault y process in many long phases:

Lemma 3.21 For any execution of the protocol

taking at least ~ phases and for any process j,

there are at most & + 3 phases p E Y4 such that

j E so(p).

Proof sketch: Process j is shut down within time

Cd+ 2d s (~+ 2)~d of when it first omits to

a non fault y process. ■

Theorem 3.22 For n ~ 2f, the algorithm above

solves the consensus problem for f omission failures

within time (2W + 6)(f -t l)d + Cd.

Proof: Let phase h be the first quiet phase.

Clearly if h = O or h = 1, we have the desired

bound. If h > 1, we consider two cases. Consider

first the case that not all nonfaulty processes de-

cide in phase h – 2. We bound the length of the

short phsses by’ their defined length. We bound

the length of the long phases by Lemma 3.20 and

then sum the sizes of SO(p) using Lemma 3.21. The

length of phase h is bounded by Lemma 3.15. Thus

we have th — to =

~ (t, -t,-,)+ ~ (t, -~,-l)+(h -t,-,)

Pexh-1 /?6yh_~

lx~-11 ~~d + ~ (3+ lSJp)l)d + (Cd+ d)

P6Yh-1

lX,-l[. @d+31Yh_11d+ f(@+3)d+(Cd+d)

(f+ l)~d+ 3(f + l)d+ f(~+ 3)d+ Cd+ d

(2W + 6)(f + l)d + Cd.

consider that case that all nonfaulty processes

decide in phase h – 2. The running time is then

bounded by th_z – to =

~ (t, -t,-.,)+ ~ (t, -t,-,)
p~xh–1 P~yh-2

= (2/@ + 6)fd

■
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4 Byzantine failures

We now present a simulation algorithm using 3 f -t- 1

processes and tolerating f Byzantine failures. The

algorithm simulates any synchronous round-based

algorithm that tolerates Byzantine failures in time

r(d + 2Cd) + Cd, where r is the number of rounds

required by the synchronous algorithm.

4.1 The simulation algorithm

The simulation works by keeping processes loosely

synchronized. The partial synchronization works

by using a combination of two criteria for advancing

to further rounds, one based on elapsed local time

and the other based on messages received. A simi-

lar technique is used in [22] to initiate new rounds

of clock resynchronization. Processes are synchr-

onized only to the extent that a nonfaulty process

does not advance to round r until it haa received a

round r – 1 message from every nonfaulty process.

We do not explore the semantics of “correct sim-

ulation”, but regard this property as sufficient for

simulating round-based algorithms.

Therefore, for the purposes of simulation, we de-

fine a synchronous algorithm by its message func-

tion only, suppressing information about the state

of the synchronous algorithm. Let Mi (r, V“- 1) de-

note the vector of messages to be sent in the syn-

chronous algorithm by process t’ in round r when

messages Vr- 1 are received in round r – 1 (of

course, this message function may also depend on

the state of the process; we leave this implicit).

Recall that we assume all processes begin exe-

cuting the algorithm at the same time. At each

step, a process increments a counter s (initially ())

and executes the code in Figure 3. A local variable,

initially 1, keeps track of the ROUND number. Or-

dered set Vr contains the rth message received from

each process. We refer to the rt h message sent by

a process ss a “round r“ message. (Assume with-

out loss of generality that each process sends one

messa e to all processes in every round.)
fEac process first sends its round 1 message and

then waits for at least time d to ensure that it re-

ceives a round 1 message from every other non-

faulty process. When it can be sure that time d

has elapsed, it advances to round 2 and broadcasts

its round 2 message bssed on the round 1 messages

ROUND 1 Send M(l, .); goto ROUND 1’.

ROUND 1’ Ifs> d/cl or IV21 ~ f -t-1,

then goto ROUND 2

ROUND r Send M(r, Vr-l); goto ROUND r’.

ROUND r’ Hlv”l>2f+l,

then s t O; goto ROUND r“.

ROUND r“ Ifs > (2d+ 3c2)/cl or IV”+l I ~ f + 1,

then goto ROUND r + 1.

Figure 3: The simulation algorithm for process i. At

each step, a process increments the counter s and exe-

cutes the code according to its present round number.

it has received so far. It ensures that time d has

passed by either waiting for d/cl of its own steps

or by receiving f + 1 round 2 messages—this en-

sures that some nonfaulty process has waited at

least time d.

In each subsequent round r, a process waits for at

least time 2d (actually 2d+ 3CZ) after at least f+ 1

nonfault y processes have sent a round r message.

By this time, all nonfaulty processes must have re-

ceived at least f + 1 round r messages and therefore

advanced to round r and sent a round r message.

At this time, a process advances to round r+ 1 and

broadcasts its round r + 1 message. Again, there

are two ways for a process to deduce that sufficient

time hss passed: if it takes (2d + 3c2)/cl steps af-

ter receiving at least 2f + 1 round r messages or

if it receives at least f + 1 round r + 1 messages.

The latter ensures that some nonfaulty process has

advanced to round r + 1 and therefore has already

waited a sufficient amount of time.

4.2 Proof of correctness

Let t, be the latest time that any nonfaulty process

sends a round r message. Again, we assume that

all processes begin at the same time (here, tl). We

say a process “advances to round r“ when it exe-

cutes the “goto ROUND r“ statement in the code.

In order to prove correctness, we must show that a

nonfaulty process eventually advances to all rounds

required by the synchronous algorithm and always

receives a round r message from all nonfaulty pro-

cesses before advancing to round r + 1.
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Lemma 4.1 Each nonfaulty process advances to

all rounds required by the synchronous algorithm,

Proof: By induction on the round number.

Clearly each nonfaulty advances to round 2—it ad-

vances to round 1’ after its first step and advances

to round 2 after at most 1 + d/cl more steps. For

r >2, each nonfaulty process receives at least 2 f + 1

round r messages from the other nonfaulty pro-

cesses and after at most (2d+3cz)/cl steps in round

r“, advances to round r + 1.

Lemma 4.2 No nonfaulty

round r+ 1 before receiving a

each nonfauliy process.

Proofi By induction on the

process advances to

round r message from

round number.

r = 1: Clear—each nonfaulty process takes more

than rl/cl steps, which takes more than time d, be-

fore advancing to round 2.

r > 1: Assuming the lemma is true for r – 1,

we show the lemma is true for r. Let i be the first

correct process to advance to round r + 1 and let q

be the time at which i advances to round r“. We

make the following series of deductions about the

events that occur at or before the listed times:

ri : (By the induction hypothesis, i has received a

round r — 1 message from all nonfaulty processes.)

Process i has received at least 2f + 1 round r mes-

sages

~i + d : All nonfaulty processes are in round (r – 1)’

or greater (because they have each sent an r – 1

message to i) and have received at least 2f + 1

round r – 1 messages (from each other).

~i + d + C2 : All nonfaulty processes advance to

round (r – l)”.

~i + d + 2C2 : All nonfaulty processes have received

at least f + 1 round r messages (from the nonfaulty

subset of processes that sent round r messages to i)

and advance to round r.

ri + d + 30J : All nonfaulty processes send a round

r message and advance to round r’.

ri + 2d + 3C2 : All processes receive a round r mes-

sage from each nonfault y process.

Process i advances to ~ound r + 1 only after (2d +

3c2)/cI steps in round r“, which occurs later than

time Ti + 2d + 3CZ and hence after i has received a

round r message from all nonfaulty processes. All

other nonfaulty processes advance to round r + 1

at later times. ■

4.3 Analysis of time bounds

Again, we assume d >> C2 and therefore

mate d + C2 by d in the timing analysis.

approxi-

Lemma 4.3 t2– tl< Cd and, for r ~ 2, tr+l --

t.< d + 2Cd.

Proofi Clearly, t2< tl+ Cd. By time tr all non-

faulty processes send a round r message and ad-

vanced to round r’. Therefore by time t, + d, all

nonfaulty processes receive at least 2f + 1 round

r messages and advance to round rll. Within an-

other time 2Cd, all nonfaulty processes have taken

(2d + 3c2)/cl steps and advance to round r + 1,

sending an r + 1 message. ml

Theorem 4.4 There is an algorithm using 3f + 11

processes which solves the consensus problem for f

arbitrary failures wathin time Cd+ f(d + 2Cd) =

fd + (2f + l) Cd.

Proofi Any (f + 1)-round synchronous algorithm

can be simulated. Agreement and validity fol-

low from correct simulation. Termination follows

from Lemma 4.1. The time bound follows from

Lemma 4.3. M

5 Open questions

We leave open an obvious and tantalizing question:

does consensus in the presence of Byzantine fail-

ures require time Q(fCd)? The difficulty of this

problem seems to lie not in the potential of for

arbitrary message content but in the potential for

timing misbehavior. We believe an important step

towards answering this question will be to obtain

tight bounds for “timing failures”, where the time

between steps of a faulty process is not in the in-

terval [cl, cz].
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