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Abstract—We study an abstract setting, where the basic
information units (called “superpackets”) do not fit into a single
packet, and are therefore spread over multiple packets. We
assume that a superpacket is useful only if the number of its
delivered packets is above a certain threshold. Our focus of
attention is communication link ingresses, where large arrival
bursts result in dropped packets. The algorithmic question we
address is which packets to drop so as to maximize goodput.
Specifically, suppose that each superpacket consists of k packets,
and that a superpacket can be reconstructed if at most β · k
of its packets are lost, for some given parameter 0 ≤ β < 1.
We present a simple online distributed randomized algorithm in
this model, and prove that in any scenario, its expected goodput
is at least O(OPT/(k

√
(1− β)σ)), where OPT denotes the best

possible goodput by any algorithm, and σ denotes the size of the
largest burst (the bound can be improved as a function of burst-
size variability). We also analyze the effect of buffers on goodput
under the assumption of fixed burst size, and show that in this
case, when the buffer is not too small, our algorithm can attain,
with high probability, (1− ε) goodput utilization for any ε > 0.
Finally, we present some simulation results that demonstrate that
the behavior of our algorithm in practice is far better than our
worst-case analytical bounds.

I. INTRODUCTION

Context and Goal. The following basic situation occurs
on many levels in communication systems. There is a data
unit that we want to send, but it’s too big for the available
communication primitive. It is therefore broken into a number
of packets, which are sent separately. Since communication
may be unreliable, some packets may not arrive at the receiver.
However, the data unit is useful at the receiver only if all its
parts are delivered.

There are many variants of the basic problems, and a few
solution approaches. For example, in the transport layer it
is common to use automatic repeat request (ARQ); in the
application layer, forward error correction (FEC) is sometimes
used. In this paper we concentrate on the network layer. As
a concrete example, the reader may think about an MPEG
video stream transmitted over the Internet in UDP (see, e.g.,
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[1]). In this case, the basic data unit is a “frame slice,” whose
size may be larger than the MTU (maximal transfer unit)
of the end-to-end connection, and thus it is common that
each slice is broken into a few UDP packets. If any of its
packets is lost, the slice becomes completely worthless. In the
network layer, losses are primarily due to buffer overflows.
This motivates our main basic research question in this paper,
which can be informally described as follows. Suppose that
the basic data units (which we call “superpackets”) consist
of some k ≥ 1 packets. Consider link ingresses. When the
arrival rate of packets exceeds the link capacity, which packets
should be dropped so as to maximize the number of completed
superpackets?
The basic idea and overview of results. We study this
problem mainly from the theoretical perspective. Our basic
model is the following (see Section II for more details). Each
superpacket consists of k packets. Time is slotted, and in each
time step t, an arbitrary set of σ(t) packets, called the burst
of step t, arrives at a server (the server models a link). The
server can serve at most c packets at a step (c is the link
speed). The task of the scheduling algorithm is to select, in
an online fashion, which packets to serve and which to drop,
due to buffer space constraints. A superpacket is said to be
completed if at least (1 − β)k is its constituent packets are
served, for some given redundancy parameter 0 ≤ β < 1. The
goal of the scheduling algorithm is to maximize the number
of completed packets.

Possibly the simplest algorithm to this problem is dropping
packets at random. However, a second thought shows that
this is not a good strategy: The probability that all k packets
of a superpacket are delivered, under random discards, is
exponential in k. We therefore consider the following slightly
more structured randomization rule:
Algorithm PRIORITY:
• Each superpacket is independently assigned a priority

uniformly at random from [0, 1].
• Whenever an overflow occurs, the packets whose super-

packets have the smallest priority are retained, and the
others are discarded.

Aside from its obvious simplicity, PRIORITY has some other
important attractive features. From the implementation point
of view, note that it is straightforward to implement in a
distributed system, by using pseudo-random hash functions,
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mapping superpacket IDs to priorities (we only need to ensure
that all algorithm sites use the same hash function and the same
random seed). From the theoretical viewpoint, this rule (which
is inspired by Luby’s maximal independent set algorithm [2])
was showed to be effective in the case of online set packing
[3], i.e., without buffers or redundancy.

In this paper we extend the results of [3] as follows. First,
we consider redundancy: we show that if superpackets are
encoded so that they can be recovered even if a fraction β of
their constituent packets are lost, then the PRIORITY algorithm
is very effective (in [3] β = 0). Second, we analyze systems
with buffers, and derive a bound on the minimum size buffer
that guarantees, for any given ε > 0, (1− ε)(1− β) goodput
utilization, when bursts are of roughly the same size. We also
consider the case where burst sizes may vary. The idea is that
by adding a little redundancy to the superpackets, we may
overcome the variability of the burst sizes.

Our results are stated mostly in terms of competitive anal-
ysis, comparing the goodput of the algorithm in any given
scenario to the best possible goodput of any schedule. Specif-
ically, for the case where no buffer space is provided, namely
the case in which an arriving packet arrives is either served
or dropped, we show that PRIORITY guarantees expected
goodput of Ω(|OPT|/(k

√
σmax(1− β))), where OPT is the

best possible schedule and σmax denotes the maximum burst
size. In fact, it turns out that the competitive ratio (the worst-
case ratio between the expected performance of the algorithm
and OPT), depends on the variability of the burst sizes. For
example, if all bursts have the same size, then the competitive
ratio improves to O(k). (We note that even offline, it is NP-
hard to obtain an O(k/ log k)-approximation for the case of
β = 0.) For the case where buffers are provided, and assuming
that the burst size is fixed, we show that for any given ε > 0,
if the buffer size is Ω(ε−2k log(k/ε)), then the algorithm
guarantees expected goodput of (1− ε)3|OPT|. We also define
a notion of “relatively large burst” and provide an upper bound
on the competitive ratio of PRIORITY for the case where such
bursts are uncommon. Our theoretical study is augmented by
some simulation results.

Related Work. Overflow management was studied quite ex-
tensively in the last decade from the competitive analysis
viewpoint (starting with [4], [5]: see [6] for a recent survey).
However, only relatively little is known about the superpacket
model we study. The model was first introduced in the com-
petitive analysis context in [7]. In that work, no redundancy
is considered, and burst size may be unbounded. They show
that in this case, no finite upper bound on the competitive
ratio exists; they proceeded to consider a certain restriction
on packet arrival order.1. Under this assumption, [7] prove
an upper bound of O(k2) and a lower bound of Ω(k) on
the competitive ratio for deterministic online algorithms. A
different, possibly more realistic, ordering restriction is studied

1The condition is that for any 1 ≤ i, j ≤ k, the ith packet of superpacket
S arrives before the ith packet of superpacket S′ if and only if the jth packet
of S arrives before the jth packet of S′.

in [8].2 In this model, [8] gives an exponential (in k) upper
bound on the deterministic competitive ratio, and a linear
lower bound. They also give simulation results in which they
compared their algorithm to various versions of tail-drop. Both
[7] and [8] assume a push-out FIFO buffer architecture.

A different angle was taken in [3], where instead of restrict-
ing the packet ordering in the input, the results are expressed
in terms of the maximal burst size. In [3], this model is studied
under the simplifying assumption that no buffers are available
(and again, without redundancy). For this model, PRIORITY
is introduced, and shown to have optimal competitive ratio of
O(k
√
σmax).

If β = 0 and b = 0, the offline version of the problem
reduces to Set Packing, where each superpacket corresponds
to a set and each burst correspond to an element. Set Packing is
as hard as Maximum Independent Set even when all elements
are contained in at most two sets (i.e., σ(t) ≤ 2, for every
t), and therefore cannot be approximated to within O(n1−ε)-
factor, for any ε > 0 [9]. In terms of the number of elements
(time steps), Set Packing is O(

√
T )-approximable, and hard

to approximate within T 1/2−ε [10]. When set sizes is at most
k, it is approximable within k/2 + ε, for any ε > 0 [11] and
within (k + 1)/2 in the weighted case [12], but known to be
hard to approximate to within O(k/ log k)-factor [13].

Paper organization. We formally define our model in Sec-
tion II. In Section III we present upper bounds on the com-
petitive ratio of Algorithm PRIORITY for the case where β > 0
and c = 0. Our results for the case of large buffers are given
in Section IV, and we consider the case where most bursts
are not large in Section V. Section VI contains our simulation
results.

II. THE MODEL

In this section we formalize the model we study.
Our basic concept is a superpacket, typically denoted S.

Each superpacket consists of k unit size packets. The input to
the system is a sequence of packets that arrive online. Each
packet is associated with a superpacket, where a super-packet
Si comprises the packets denoted p1i , p

2
i , . . . , p

k
i . The set of

superpackets is denoted by I (I is unknown in advance). The
system progresses in discrete time steps, where in each step an
arbitrary set of packets arrive. The time horizon is denoted by
T . The arrival time of a packet p is denoted by arr(p). In each
step t, a set of σ(t) packets arrive, corresponding to a set I(t)
of superpackets, i.e. I(t) = {S ∈ I : p ∈ S and arr(p) = t}.
We denote σ = 1

T

∑
t σ(t), σ2 = 1

T

∑
t σ

2(t) and σmax =
maxt σ(t).

The packets arrive at a buffer denoted by B. The buffer
can contain at most b packets, and has an output link that
can transmit c packets per step. Specifically, an execution
of an online algorithm ALG proceeds as follows. Initially,
the buffer is empty. Each step consists of three substeps.

2The assumption there is that there are some M sources, each generating
a stream of packets sequentially, one superpacket after another. The link sees
an arbitrary interleaving of these streams.
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The first substep is the arrival substep, where a set of σ(t)
packets arrives at the system. In the drop substep some packets
may be dropped at the discretion of the buffer management
algorithm. More specifically, a buffer management algorithm
may discard packets that arrived earlier and are currently in
the buffer or packets that arrived in this step. The third substep
is the delivery substep: at most c packets are transmitted on
the link. A feasible system satisfies the following capacity
constraint: the maximum number of packets in the buffer
between consecutive time steps (i.e., after the delivery substep)
must not exceed the given buffer size b. A buffer management
algorithm may drop packets even if there is space available at
the buffer. In the special case where b = 0 the algorithm acts as
an admission control algorithm: at most c packets are delivered
and the rest are dropped. A schedule produced by a buffer
management algorithm is an assignment of packets to time
steps, such that a packet assigned to time t, is transmitted (or
equivalently, delivered) in time t. Given an arrival sequence,
we sometimes identify an execution of an algorithm with the
schedule of its transmitted packets.

The input also contains a redundancy factor β. The goal of
the buffer management algorithm is to maximize the number
of successfully delivered superpackets, where a superpacket is
considered successfully delivered if at least (1−β)k out of its
k constituent packets are delivered. (Henceforth, we assume
that (1 − β)k is integral.) In the special case where β = 0 a
super-packet is considered successfully delivered if all of its
constituent packets are delivered.

Given an algorithm ALG, we denote the set of completed
superpackets by ALG(I) (or simply by ALG). If the algorithm
is randomized, the benefit for a given instance is a random
variable, and we shall use its expected value. We measure
the performance of algorithms using competitive analysis: The
competitive ratio of an algorithm is the supremum, over all
instances I, of |OPT(I)|/|ALG(I)|, where OPT(I) denotes the
schedule with maximum number of super-packets that can be
delivered.

In this paper we concentrate on the algorithm whose pseu-
docode is presented below.

Algorithm 1 : PRIORITY

1: For each superpacket S ∈ I, pick a random priority r(S)
according to the uniform distribution in the range [0, 1],
namely r(S) ∼ U [0, 1].

2: for all time step t do
3: Receive the packets corresponding to I(t)
4: Keep the b+ c packets with smallest priority from B ∪

I(t). All other packets are dropped.
5: Deliver the first c packets (according to FIFO order),

and keep the remaining packets in B. (The buffer B
has at most b packets.)

6: end for

It may also make sense to consider a weighted version of
the problem, where each superpacket S has a weight w(S),

and the goal is to maximize the total weight of delivered su-
perpackets (as opposed to their total number in the unweighted
version). This seems reasonable in an MPEG video stream, for
example, where a slice of an I-frame is more important than
a slice of a B-frame.

We note that Algorithm PRIORITY extends to the weighted
case by changing step 1: just let r(S) be the maximum of w(S)
uniformly distributed random numbers in the range [0, 1]. We
omit further details due to lack of space.

III. ADMISSION CONTROL WITH REDUNDANCY

In this section we assume that no buffers are available. In
some sense, in this case the algorithm acts as an admission
control algorithm: at most c packets are delivered and the rest
are dropped.

We show that PRIORITY guarantees, for any packet arrival
pattern, that its expected number of completed superpackets
is Ω

(
|OPT|/

(
k
√
σmax(1− β)/c

))
, where OPT denotes the

schedule with maximum possible number of completed su-
perpackets on that arrival pattern (recall that c is the link
capacity). We note that this result extends to the weighted
setting (details omitted). We also show how the competitive
ratio of PRIORITY depends on the variability of the burst sizes.

This section is organized as follows. First we analyze the
case of unit capacity links. This gives the basic ideas of the
analysis. We then extend the results links of capacity c > 1.
Finally, we consider the influence of variable burst size on the
competitive ratio.

Additional notation. Before presenting our analyses we
need several definitions. We write S ∈ PRIORITY to de-
note that S was successfully delivered by Algorithm PRI-
ORITY. For every superpacket S ∈ I, we denote N [S]

def
=

{S′ ∈ I : ∃t s.t. S, S′ ∈ I(t)} and N(S)
def
= N [S] \ {S}.

A. Unit Capacity Links

In this section we analyze Algorithm PRIORITY for the case
where c = 1. We first compute a lower bound on the survival
probability of a superpacket S.

Lemma 1. Let S ∈ I. Then for any S1−β ⊆ S containing at
least (1− β)k packets we have

Pr[S ∈ PRIORITY] ≥ 1

|N [S1−β ]|
.

Proof: Clearly, a superpacket S is successfully delivered
if r(S) = minS′∈N [S1−β ] r(S

′). Hence,

Pr[S ∈ PRIORITY] ≥ Pr

[
r(S) = min

S′∈N [S1−β ]
r(S′)

]
=

1

|N [S1−β ]|
,

and we are done.
We use the following technical lemma that is based on the

Cauchy-Schwarz Inequality.
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Lemma 2. For any positive reals a1, a2, . . . , an and

b1, b2, . . . , bn, it holds that
∑
i
a2i
bi
≥ (

∑
i ai)

2∑
i bi

.

Lemma 1 and Lemma 2 imply the following.

Lemma 3. Let I ′ ⊆ I be a collection of superpackets, and
for every S ∈ I ′ let S1−β ⊆ S be a subset containing at least
(1− β)k packets. Then,

E[|PRIORITY|] ≥ |I ′|2∑
S∈I′ |N [S1−β ]|

.

Proof: By linearity of expectation we have

E[|PRIORITY|] =
∑
S∈I

Pr[S ∈ PRIORITY]

≥
∑
S∈I′

1

|N [S1−β ]|

≥ |I ′|2∑
S∈I′ |N [S1−β ]|

,

where the first inequality is by Lemma 1 and the second is by
Lemma 2 with ai = 1 and bi = |N [S1−β ]|.

We now apply Lemma 3 to two collections of superpackets.
First, to the superpackets in an optimal solution.

Lemma 4. E[|PRIORITY|] ≥ |OPT|2

k · |I|
.

Proof: For each S ∈ OPT fix S1−β to be the subset of S
which contains the packets delivered by OPT. Clearly |S1−β | ≥
(1− β)k for every S ∈ OPT. By Lemma 3 with I ′ = OPT we
have that

E[|PRIORITY|] ≥ |OPT|2∑
S∈OPT |N [S1−β ]|

.

Now, observe that since for any S′, S′′ ∈ OPT and any
p′i ∈ S′1−β and p′′j ∈ S′′1−β we have arr(p′i) 6= arr(p′′j ), each
superpacket S ∈ I intersects at most k such subsets, and hence∑
S∈OPT |N [S1−β ]| ≤ k · |I|.
Next, we apply Lemma 3 with the collection of all super-

packets in the instance.

Lemma 5. E[|PRIORITY|] ≥ |I|2

(1− β)|T | · σ2
.

Proof: Fix a superpacket S. Order the packets of S by
increasing burst size, namely, let S =

{
p1, p2, . . . , pk

}
and

assume, w.l.o.g., that σ(arr(pj)) ≤ σ(arr(pj+1)) for 1 ≤ j ≤
k. Let S1−β contain the first (1 − β)k packets in such an
ordering, for every S ∈ I. Now by Lemma 3, we have that

E[|PRIORITY|] ≥ |I|2∑
S∈I |N [S1−β ]|

.

Summing over the superpackets we get∑
S∈I
|N [S1−β |] ≤

∑
S∈I

∑
p∈S1−β

σ(arr(p)) (1)

≤
∑
S∈I

(1− β)
∑
p∈S

σ(arr(p))

= (1− β)
∑
t

σ(t)2

= (1− β)T · σ2 ,

and therefore E[|PRIORITY|] ≥ |I|2

(1−β)T ·σ2
, as required.

Theorem 1. In the case of unit-capacity instances, the com-

petitive ratio of PRIORITY is at most k
√

(1− β)σ2/σ .

Proof: Lemma 4 and Lemma 5 give us two lower bounds
on |PRIORITY|. The maximum of these bounds is minimized
when |OPT| =

√
|I|3·k

(1−β)T ·σ2
, and therefore, for any instance

E[|PRIORITY|] ≥ |OPT| ·
√

|I|
kT (1−β)·σ2

.

Finally, since

T · σ =
∑
t

σ(t) =
∑
S∈I

k = k · |I| , (2)

it follows that

E[|PRIORITY|] ≥ |OPT| ·
√

σ

(1−β)k2σ2
= |OPT|

k ·
√

σ

(1−β)σ2
,

and we are done.

Corollary 2. For any unit capacity instance,

E[|PRIORITY|] ≥ |OPT|
k
√

(1− β)σmax

.

Proof: Follows from the fact that√
σ

σ2
=
√ ∑

t σ(t)/T∑
t σ(t)

2/T ≥
√ ∑

t σ(t)

σmax
∑
t σ(t)

= 1√
σmax

.

B. Larger Capacity Links

We now consider the case of links whose capacity is larger
than 1. As we show, it turns out that larger capacity may
increase the best possible goodput by a disproportionate factor,
and therefore a more careful analysis is required. However, we
show that the competitive factor proved for the unit capacity
case essentially holds, losing only a constant factor.

The effect on OPT. We start by pointing out the following
interesting phenomenon, which shows that a slight increase
in the capacity can dramatically increase the best possible
goodput.

Theorem 3. For any link capacity c ≥ 2 and for any n > c
there exist an input instance I with n superpackets such that

|OPTc(I)|
|OPTc−1(I)|

=
n

c− 1
=

Ω(k1/c−1)

c− 1
,

where OPTx is the optimal schedule with capacity x.
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Proof: We construct the instance I as follows. Our
instance consists of

(
n
c

)
time steps, where for each step t,

we choose a distinct subset St ⊂ {1, . . . , n} of superpackets,
and let packets of St arrive at time t. We take all distinct(
n
c

)
subsets of size c, one for each time step. This implies that

k =
(
n−1
c−1
)
. Consider now different capacities of the link: If the

capacity is c, then all packets—and hence all superpackets—
can be delivered. However, if the capacity is c− 1 only c− 1
superpackets can be delivered, because by construction, any
c superpackets meet at some step from which at most c − 1
superpackets can survive.

Analysis of the competitive ratio. As in Section III-A we
first bound the probability that a given superpacket S is
successfully delivered by the algorithm.

Lemma 6. For S ∈ I and fix any subset S1−β of S containing
at least (1 − β)k packets. If |N [S1−β ]| ≤ c then Pr[S ∈
PRIORITY] = 1, and if |N [S1−β ]| > c then

Pr[S ∈ PRIORITY] ≥ c

2|N [S1−β ]|
.

Proof: Consider a superpacket S ∈ I. Clearly, S is
successfully delivered if all packets from S1−β are delivered.
Furthermore, S ∈ PRIORITY if every packet in S1−β has one
of the top c priorities in I(t). We shall analyze the probability
that even a stronger condition holds, namely that S has one
of the top c priorities from the priorities of all superpackets
in N [S1−β ].

Observe that if |N [S1−β ]| ≤ c, then Pr[S ∈ PRIORITY] =
1, as required. Hence, we assume that N [S1−β ] > c. View
the selection of the top c superpackets in N [S1−β ] as a
sequential process, where we choose superpackets at random
from N [S1−β ] without repetition. The probability that a su-
perpacket S in one of the top c will only decrease if we allow
repetition. Thus, recalling that by the proof of Lemma 1, we
have that Pr[r(S′) = minT∈N [S1−β ] r(T )] = 1

|N [S1−β ]| , for
every superpacket S′ ∈ N [S1−β ], we may conclude that

Pr[S ∈ PRIORITY] ≥ 1−
(

1− 1

|N [S1−β ]|

)c
.

By the binomial expansion we have

Pr[S ∈ PRIORITY] ≥ 1−
(

1− 1

|N [S1−β ]|

)c
≥ c

|N [S1−β ]|
− 1

2

(
c

|N [S1−β ]|

)2

≥ c

2|N [S1−β ]|
.

and we are done.
Lemma 6 and Lemma 2 imply the following.

Lemma 7. Let I ′ ⊆ I be a collection of superpackets, and
for every S ∈ I ′ let S1−β ⊆ S be a subset containing at least
(1− β)k packets. Then,

E[|PRIORITY|] ≥ min
{
|I′|
2 , c|I′|2

8
∑
S∈I′ |N [S1−β ]|

}
.

Proof: Let I ′′ = {S ∈ I ′ : |N [S1−β ] > c}. If |I ′′| ≤
1
2 |I
′|, we are done. Otherwise,

E[|PRIORITY|] ≥
∑
S∈I′′

c

2|N [S1−β ]|

≥ c|I ′′|2

2
∑
S∈I′′ |N [S1−β ]|

≥ c|I ′|2

8
∑
S∈I′ |N [S1−β ]|

,

where the first inequality is by Lemma 1 and the second is by
Lemma 2 with ai = 1 and bi = |N [S1−β ]|.

The next two lemmas They are analogs of Lemmas 4 and 5.

Lemma 8. E[|PRIORITY|] ≥ |OPT|2

8k · |I|
.

Proof: For each S ∈ OPT let S1−β contain the packets
from S that are delivered by OPT. Now, by Lemma 7 with
I ′ = OPT we have that either E[|PRIORITY|] ≥ 1

2 |OPT| and
we are done, or

E[|PRIORITY|] ≥ c|OPT|2

8
∑
S∈OPT |N [S1−β ]|

.

Now, observe that |I(t) ∩ {S1−β : S ∈ OPT} | ≤ c, and
therefore each superpacket S ∈ I intersects at most kc subsets,
and hence

∑
S∈OPT |N [S1−β ]| ≤ kc · |I|. The lemma follows.

Lemma 9. E[|PRIORITY|] ≥ min
{
|I|
2 , c|I|2

8T (1−β)·σ2

}
.

Proof: As in Lemma 5 let p1, p2, . . . , pk be an ordering
of the packets in a superpacket S such that σ(arr(pj)) ≤
σ(arr(pj+1)) for every j. Let S1−β contain the first (1− β)k
packets in such an ordering, for every S ∈ I. By Lemma 7
with I ′ = OPT we have that either E[|PRIORITY|] ≥ 1

2 |I| and
we are done, or

E[|PRIORITY|] ≥ c|I|2

8
∑
S∈I |N [S1−β ]|

.

By Eq. (1) we have
∑
S∈I |N [S1−β ]| = (1− β)Tσ2 .

Theorem 4. The competitive ratio of Algorithm PRIORITY is

O

k
√

(1− β)σ2

cσ

 .

Proof: First, observe that if E[|PRIORITY|] ≥ 1
2 |I|,

then we are done. Otherwise, Considering the lower bounds
provided by Lemmas 8 and 9, we conclude that the larger of
the two bounds on E(|PRIORITY|) is minimized when

|OPT| =

√
ck · |I|3

(1− β)T · σ2
.
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Hence, we have

E[|PRIORITY|] ≥ |OPT|
8

√
c|I|

(1− β)kTσ2

=
|OPT|

8
·
√

cσ

(1− β)k2σ2

=
|OPT|

8
· 1

k

√
cσ

(1− β)σ2
,

since T · σ = k · |I| (cf. Eq. (2)).
Similarly to Corollary 2 we have:

Corollary 5. E[|PRIORITY|] ≥ |OPT|
8k
√

(1− β)σmax/c
.

C. The Effect of Variable Burst Size

In this section we provide sharper bounds for the case where
all bursts are of the same size.

Theorem 6. E[|PRIORITY|] ≥ |OPT| · σ2/(8kσ2). Further-
more, if c = 1, then E[|PRIORITY|] ≥ |OPT| · σ2/(kσ2).

Proof: It follows from Lemma 9 that

E[|PRIORITY|] ≥ min
{
|I|
2 ,

c|I|2

8T (1−β)σ2

}
.

If E[|PRIORITY|] ≥ 1
2 |I|, then we are done. Otherwise,

E[|PRIORITY|] ≥ cn2

8T (1− β) · σ2

=
cT 2σ2

8T (1− β)k2σ2
≥ σ2

8kσ2
· |OPT| ,

where the equality is due to the fact that nk = Tσ, and the
last equality is due to the fact that |OPT| ≤ Tc/(1− β)k.

The result for c = 1 is obtained by using Lemma 5.
The following corollary is for the case of uniform σ.

Corollary 7. If all bursts have the same size, then
E[|PRIORITY|] ≥ |OPT|/(8k). Furthermore, if c = 1 then
E[|PRIORITY|] ≥ |OPT|/k.

IV. BUFFER MANAGEMENT

In this section we consider the case where sufficient buffer
space is available, assuming that all burst sizes are equal.
We do it in two steps. First, we analyze Algorithm PRI-
ORITY for large capacity links. We show that if c =
Ω( 1

ε2(1−ε) log (1−β)k
ε ) for some ε > 0, then the link utilization

is at least (1 − ε)2(1 − β). Then, we reduce the model with
large buffers and arbitrary link capacity to the model with
no buffers and large link capacity by a simple “dual buffer”
algorithm. This reduction allows us to prove link utilization
of at least (1− ε)3(1− β), if all bursts have the same size σ
and the buffer size satisfies b ≥ 6k log(k/ε)

ε2(1−ε)2 .

A. Large Capacity

In this section we analyze Algorithm PRIORITY for the case
where c = Ω( 1

ε2(1−ε) log (1−β)k
ε ) and no buffers, i.e., b = 0.

Intuitively, the idea of the analysis in this case is that since
in each time step the algorithm can choose relatively many
packets to serve, the law of large numbers should apply, in
the sense that if a superpacket has “sufficiently good” priority,
it is very likely that all of its packets will be served. We now
formalize this intuition.

For each superpacket S, define σ(S)
def
= maxp∈S σ(arr(p)),

namely σ(S) is the size of the largest burst of any packet of
S.

Lemma 10. Let ε > 0. For every S ∈ I,

Pr[S ∈ PRIORITY] ≥ (1− ε)c
σ(S)

(
1− (1− β)ke−ε

2(1−ε)c/3
)
.

Proof: Let S be a superpacket and let t be a time step
such that S ∈ I(t). If σ(t) = 1, then S’s packet is delivered.
Hence, we assume that σ(t) > 1.

Observe that

Pr

[
r(Sj) ≤

(1− ε)c
σ(t)− 1

]
=

(1− ε)c
σ(t)− 1

,

for every Sj ∈ I(t).
Now, define the following random variable

Xtj =

{
1 r(Sj) ≤ (1−ε)c

σ(t)−1 ,

0 otherwise,

for every Sj ∈ I ′(t), where I ′(t) def
= I(t) \ {S}. Also, let

Xt =
∑
Sj∈I′(t)Xtj . It follows that

E[Xt] =
∑

Sj∈I′(t)

(1− ε)c
σ(t)− 1

= (1− ε)c .

Using a relative Chernoff bound we have,

Pr[Xt ≥ c] < Pr[Xt > (1 + ε)E[Xt]]

< e−E[Xt]·ε2/3

≤ e−c·ε
2(1−ε)/3 .

S is successfully delivered if its packets are delivered in its
first (1− β)k bursts, by union bound it follows that

Pr[Xt ≤ c,∀t s.t.S ∈ I(t)] ≤ 1− (1− β)ke−c·ε
2(1−ε)/3 ,

and therefore

Pr[S ∈ PRIORITY] ≥ (1− ε)c
σ(S)

(
1− (1− β)ke−c·ε

2(1−ε/3
)

as required.

Theorem 8. If c ≥ 3
ε2(1−ε) log (1−β)k

ε , then

Pr[S ∈ PRIORITY] ≥ c(1− ε)2/σ(S) ,

for every S ∈ I.
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Proof: By Lemma 10 we have that

Pr[S ∈ PRIORITY] ≥ (1− ε)c
σ(S)

(
1− (1− β)ke−c·ε

2(1−ε)/3
)

≥ (1− ε)c
σ(S)

(
1− (1− β)ke− log kε

)
≥ (1− ε)2c

σ(S)
,

and we are done.

Corollary 9. If all bursts have the same size σ and the link
capacity satisfies c ≥ 3

ε2(1−ε) log (1−β)k
ε , then the goodput

utilization is at least (1− ε)2(1− β).

Proof: Since in every time t we have σ packets, the
number of superpackets is Tσ/k. The expected number of
superpackets that are delivered is∑

S

(1− ε)2 c
σ

= (1− ε)2 c
σ

Tσ

k
= (1− ε)2 cT

k

Clearly, one cannot hope to deliver more than cT packets, and
hence OPT ≤ cT

k(1−β) frames.

B. Buffering

In this section we consider the case where sufficient buffer
space is available. Specifically, we present an algorithm whose
link utilization is at least (1− ε)3, if all bursts have the same
size σ and the buffer space satisfies b ≥ 6k log(k/ε)

ε2(1−ε)2 .
Let us assume, for convenience, that b = ` · c where c is the

link capacity, for some integer ` ≥ 2. Our algorithm, ALG, is a
dual buffer algorithm, defined as follows. The buffer is divided
into two parts, of size b/2 each. At any given time, one part is
used to receive arriving packets, and the other part is used to
send packets. Only the parts used for receiving may overflow,
in which case it retains only the highest priority packets. Every
b/(2c) time steps, the role of the buffers is switched: the
receiving part starts transmitting, and the transmitting part (by
now empty) starts receiving. This concludes the description of
the algorithm. We now analyze it.

Lemma 11. Let ε ≥ 0. If b ≥ 2k/ε, then

Pr[S ∈ ALG] ≥ c(1− ε)2

σ

(
1− ke−bε

2(1−ε)2/(6k)
)
.

Proof: S ∈ ALG if it survives every block ω of b/(2c)
time steps in which its packets appear. Intuitively, the above
algorithm simulates a scheduler executing Algorithm PRIOR-
ITY, where the bursts contain σ′ = σb/(2c) packets and
the capacity is c′ = b/2. The main difference is that some
of the packets in the burst of size σ′ may belong to the
same superpacket. However, observe that we still have at least
σb/(2kc) different superpackets within each burst.

We follow the same logic as in Lemma 10. Fix a block ω
of b/(2c) time steps in which a packet from S appears, and
let nS be the number of packets from S that appear in ω.

Also, let Bω be the set of superpackets that appear in ω. For
Sj ∈ Bω \ {S} define the following random variable,

Xω,j =

{
nω,j
k r(Sj) ≤ (1−ε)(c′−k)

σ′−nS ,

0 otherwise,

where nω,j is the number of packets from Sj that appear in ω.
Observe that

∑
j nω,j = σ′−nS . Let Xω =

∑
Sj∈B\{S}Xω,j .

Note that if Xω ≤ (b/2 − k)/k and r(S) ≤ (1−ε)(c′−k)
σ′−nS

then all packets of S in ω are delivered. We lower bound
the probability of this event. First, note that

E[Xω] =
∑

Sj∈B\{S}

(1− ε)(c′ − k)

σ′ − nS
· nω,j
k

=
(1− ε)(b/2− k)

k
.

Using a relative Chernoff bound we have,

Pr

[
Xω >

b/2− k
k

]
< Pr[Xω > (1 + ε)E[Xω]]

< e−E[Xω]·ε2/3

= e−
(1−ε)(b/2−k)

k ·ε2/3

≤ e−ε
2(1−ε)2b/(6k) ,

because b/2− k ≥ (b/2)(1− ε). Hence

Pr[Xω ≤ b/2− k, ∀ω s.t.S ∈ Bω] ≤ 1− ke−b·ε
2(1−ε)2/(6k) ,

by union bound, and therefore

Pr[S ∈ ALG] ≥ (1− ε)(c′ − k)

σ′ − nS

(
1− ke−b·ε

2(1−ε)2/(6k)
)

≥ c(1− ε)2

σ

(
1− ke−b·ε

2(1−ε)2/(6k)
)

as required.
Similarly to Theorem 8 we have

Theorem 10. If b ≥ 6k log(k/ε)
ε2(1−ε)2 , then for every S ∈ I:

Pr[S ∈ ALG] ≥ c(1− ε)3/σ .

Analogously to Corollary 9 also have

Corollary 11. If all bursts have the same size σ and b ≥
6k log(k/ε)
ε2(1−ε)2 , then the link utilization is at least (1− ε)3(1−β).

V. FEW LARGE BURSTS

The analysis in Section IV assumed that burst sizes are
fixed, and now we extend it to the case where burst sizes
may vary. While arbitrary variability is hard to cope with,
we believe that in many practical situations something can
be done. The rationale is that in practical many situations,
it appears reasonable to assume that overflow events occur
infrequently, namely in most time steps σ(t) ≤ c. The idea
is that by having a little redundancy, we can overcome the
damage incurred by the few large bursts. We formalize this
idea below.

First, we define a notion of large burst. Given α > 1,
define an α-large burst (or just large burst, when α is clear by
context) to be a burst satisfying σ(t) > α·c. We shall focus on
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Fig. 1. The effect of k. σ = 4.67 packet/time
slot on average, link capacity is c = 5 packets
per slot and buffer size is b = 10 packet slots.
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Fig. 2. The effect of varying the offered load.
Here k = 4, link capacity is c = 6 packets per
slot and buffer size is b = 10 buffer slots.
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Fig. 3. The effect of varying the link capacity.
Here k = 4, average offered packets/time slot is
σ = 4.5, and buffer size is b = 10 packet slots.

the “good” packets of a superpackets S, namely the packets
whose corresponding bursts are not large. Formally, given a
superpacket S, define Sα to be the packets p of S for which
σ(arr(p)) ≤ α · c, namely

Sα = {p ∈ S : σ(arr(p)) ≤ α · c} .

Our general idea is forfeit all packets in large bursts, and
account only for the other packets, leveraging redundancy. We
rely on the following argument. If for some 0 ≤ δS < 1, a
superpacket S participates in δSk large bursts (i.e., |Sα| = (1−
δS)k), and the redundancy parameter satisfies β > δS , then
S is delivered if its packets are delivered in at least (1− β)k
non-large bursts. More formally, we prove the following.

Lemma 12. Let S ∈ I be a superpacket, and let δS
def
=

1− |Sα|k . If δS < β then Pr[S ∈ PRIORITY] > 1
4α ·

β−δS
1−δS .

The proof of the above lemma is omitted due to space
constraints. Next, given 0 ≤ δ < β < 1, define

I1−δ = {S ∈ I : |Sα| ≥ (1− δ)k} ,

namely I1−δ contains all superpackets that have at most δk
packets contained in large bursts. For I1−δ we prove the
following result.

Theorem 12. Algorithm PRIORITY completes at least OPT ·
|I1−δ|
|I| ·

β−δ
4α(1−δ) superpackets.

Proof: Due to Lemma 12 we have that

E[|PRIORITY|] ≥
∑

S∈I1−δ

1

4α
· β − δS

1− δS
≥ |I1−δ|

4α
· β − δ

1− δ
,

while |OPT| ≤ |I|.
Setting δ = β/2 and δ = 0 in Theorem 12, we obtain

Corollary 13. The competitive ratio of Algorithm PRIORITY
is at most
•

|I|
|I1−β/2|

· 4α(2−β)β .
• 4α

β , if σ(t) = α · c, for every t.

Combining Corollary 9 and Theorem 12 yields:

Corollary 14. If all bursts have the same size σ = α · c, for
α > 1, and c ≥ 3

ε2(1−ε) log (1−β)k
ε , then the competitive ratio

is at most 1+4α(1−ε)2
α(1−ε)2 .

VI. SIMULATION

While most of our results are worst-case type of results with
adversarial input, it seems also interesting to see how does the
system perform when the input is generated by some stochastic
process. We have implemented a simulation that allows us to
observe the system behavior under a variety of conditions. In
this section we present some of the simulation results. The
buffer policy we employ here is a single buffer, rather than
the dual buffer analyzed in section IV, because we believe it
is much more likely to be used in practice.

A. Parameters

Our system implements the model as described in Section II.
Our tunable parameters, set in each run, are

• k, the number of packets per superpacket,
• c, the link capacity in packets per step,
• b, the number of packet slots in the buffer, and
• β, the portion of the superpacket which is redundant.

The results presented below are for traffic generated by an
aggregate of 10 on-off process, with a tunable parameter
λ

def
= λon/λoff. The association of packets with superpack-

ets is determined by a random permutation. Each datapoint
represents the average of 10 runs.

B. Comparison Base

Our analytical bounds are stated in terms of the “competitive
ratio,” defined with respect to OPT, the optimal performance
for each given sequence. Since computing the optimum is
infeasible even off-line (it is NP-hard to approximate to
within a factor O(k/ log k), see [13]), in many cases we state
the performance results of our algorithm as the fraction of
goodput, defined to be the number of packets transmitted and
used in completed frames divided by the total number of
transmission slots available to the algorithm.

Also, to get a better perspective on the algorithm, we com-
pare the performance of our algorithm with the performance
of the simplistic tail-drop policy, which, in case of overflow,
discards the last packets to arrive. We note that since the
superpacket IDs are random, tail-drop in our simulation is
equivalent to dropping packets at random upon overflow.
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C. Results

In Figure 1 we can see the effect of varying the number
of packets per superpacket. While the goodput of tail-drop
decreases almost linearly with k, the effect on PRIORITY
is much less pronounced. These numbers were taken with
moderately high load.

Next we measure the effect of offered load (Figure 2).
Again, the fraction of goodput packets of tail-drop decreases
linearly, while Priority manages to maintain close to 90%
goodput even when the offered load is 124% capacity (with
overflows occurring in 65% of the time slots).

Another view of the effect of overload is presented in
Figure 3, where we vary the link capacity while holding
offered load fixed. The effect on goodput is by far stronger
for tail-drop (whose starting point is worse). We note that the
non-monotonic plot for Priority is due to the normalization by
available time-slots, which apparently provide a poor estimate
of the optimal performance when the capacity is small. Nearly
full goodput utilization is attained when the link bandwidth
approaches twice the average offered load.

Our next figure gives a flavor of the effect of varying the
buffer size (Figure 4). We also plot the percentage of overflow
events from the set of time steps. Note that it matches quite
closely the goodput percentage of tail-drop, which makes sense
when we recall that in our set-up, tail-drop is equivalent to
random packet drop.

Finally, we present results for variable redundancy (Fig-
ure 5). To be fair, we fix the number of packet arrivals per slot
(and thus to total number of possible transmission slots), and
observe the effect of adding redundancy packet to superpackets
whose information spans 10 packets. This means that as we
increase redundancy, the total number of offered superpackets
decreases. As expected, adding too much redundancy hurts the
goodput: adding just 1–2 redundancy packets yields the best
goodput. Please note that in Figure 5 the y axis counts the total
number of superpackets delivered (and not goodput fraction).
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